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Abstract 

Traffic accidents are one of the main reasons for the loss of human lives worldwide. 

Their increasing number has led to the realization that the use of advanced technology 

for manufacturing safer vehicles is imperative for limiting casualties. Since 

technological breakthroughs allowed the incorporation of cheap, low consumption 

systems with high processing speeds in vehicles, it became apparent that complex 

computer vision techniques could be used to assist drivers in navigating their vehicles. 

In this direction, this thesis focuses on providing novel solutions for different tasks 

involved in advanced driver assistance systems. More specifically, this thesis 

proposes novel sub-systems for traffic sign recognition, traffic light recognition, 

preceding vehicle detection and road detection. The techniques used for developing 

the proposed solutions are based on color image processing with a focus on 

illumination invariance, using symmetry information for man-made objects (like 

traffic signs, traffic lights and vehicles) detection, spatiotemporal tracking of detected 

results and automated image segmentation for road detection. The proposed systems 

were implemented with a goal of robustness to changes of illumination and weather 

conditions, as well as to diverse driving environments. A special focus on the prospect 

for real-time implementation has also been given. The results presented in this thesis 

indicate the superiority of the proposed methods to their counterparts found in 

relevant literature in both normal and challenging conditions, especially in the cases 

of preceding vehicle detection and road detection. Hopefully, parts of this research 

will provide new insights for future developments in the field of intelligent 

transportation.         

  





 

 

Περίληψη 

Τα αυτοκινητιστικά δυστυχήματα αποτελούν μια από τις κυριότερες αιτίες θανάτου 
παγκοσμίως. Ο αυξανόμενος αριθμός τους οδήγησε στην συνειδητοποίηση ότι η 
χρήση προηγμένης τεχνολογίας για την κατασκευή ασφαλέστερων οχημάτων είναι 
απαραίτητη για την μείωση των ατυχημάτων και κατά συνέπεια των θανάτων που 
οφείλονται σε αυτά. Από τη στιγμή που οι τεχνολογικές εξελίξεις επέτρεψαν την 
ενσωμάτωση φθηνών, χαμηλής κατανάλωσης συστημάτων με μεγάλη επεξεργαστική 
ταχύτητα σε οχήματα, κατέστη προφανές ότι περίπλοκες τεχνικές υπολογιστικής 
όρασης μπορούσαν πλέον να χρησιμοποιηθούν για την υποβοήθηση της οδήγησης. Σε 
αυτή την κατεύθυνση, η παρούσα διατριβή εστιάζει στην ανάπτυξη καινοτόμων 
λύσεων για διαφορετικά κομμάτια που εμπλέκονται στα προηγμένα συστήματα 
υποβοήθησης του οδηγού.  Πιο συγκεκριμένα, σε αυτή την διατριβή προτείνονται 
καινοτόμα υποσυστήματα για την αναγνώριση σημάτων οδικής κυκλοφορίας, την 
αναγνώριση φωτεινών σηματοδοτών, τον εντοπισμό προπορευόμενου οχήματος και 
τον εντοπισμό δρόμου. Οι τεχνικές που χρησιμοποιήθηκαν για την ανάπτυξη των 
προτεινόμενων λύσεων βασίζονται στην χρωματική επεξεργασία εικόνας με έμφαση 
στην ανεξαρτησία από την φωτεινότητα της σκηνής, στην χρήση πληροφορίας 
συμμετρίας για τον εντοπισμό χαρακτηριστικών αντικειμένων (όπως σήματα οδικής 
κυκλοφορίας, φωτεινοί σηματοδότες και οχήματα), στην χωροχρονική 
παρακολούθηση των εντοπισμένων αντικειμένων και στην αυτόματη κατάτμηση 
εικόνας για τον εντοπισμό δρόμου. Τα προτεινόμενα συστήματα αναπτύχθηκαν με 
στόχο την ανθεκτικότητα σε αλλαγές της φωτεινότητας ή τις καιρικές συνθήκες, 
καθώς και στην οδήγηση σε απαιτητικά περιβάλλοντα. Επίσης, έχει δοθεί ιδιαίτερη 
έμφαση στην προοπτική υλοποίησης συστημάτων πραγματικού χρόνου. Τα 
αποτελέσματα που παρουσιάζονται σε αυτή την διατριβή αποδεικνύουν την 
ανωτερότητα των προτεινόμενων μεθόδων έναντι αντίστοιχων της σχετικής 
βιβλιογραφίας, ειδικά στις περιπτώσεις του εντοπισμού προπορευόμενου οχήματος 
και του εντοπισμού δρόμου. Ελπίζουμε ότι μέρη της έρευνας αυτής θα εμπνεύσουν 

νέες προσεγγίσεις για τις μελλοντικές υλοποιήσεις αντίστοιχων συστημάτων.  
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Extended Abstract in Greek 

1. Εισαγωγή  

Κατά τις περασμένες δεκαετίες, τα αυτοκινητικά δυστυχήματα έχουν εξελιχθεί σε ένα 
από τα πρώτα αίτια θανάτων παγκοσμίως. Όπως προκύπτει από μια έρευνα του 
Παγκόσμιου Οργανισμού Υγείας που εκδόθηκε το 2004 [1], τα αυτοκινητικά 
δυστυχήματα κόστισαν την ζωή σε περίπου 1.2 εκατομμύρια ανθρώπους παγκοσμίως, 
ενώ περίπου 50 εκατομμύρια άνθρωποι τραυματίστηκαν σοβαρά εξ' αιτίας τους. Η 
σοβαρότητα της κατάστασης ενισχύεται και από το γεγονός ότι το 2000 τα 
αυτοκινητικά δυστυχήματα ήταν η κυριότερη αιτία θανάσιμων τραυματισμών 
παγκοσμίως, συμβάλλοντας στο 23% των θανάσιμων τραυματισμών. Επιπροσθέτως, 
το 2004 ήταν η πρώτη αιτία θανάτων στις ηλικίες 15-29 και η δεύτερη στις ηλικίες 5-

14.  

Ακόμα πιο ανησυχητικές είναι οι προβλέψεις ότι ο αριθμός των θανάτων από 
αυτοκινητικά δυστυχήματα θα υποστεί αύξηση κατά 65% στο χρονικό διάστημα 
2000-2020 [2], [3]. Πιο συγκεκριμένα, ο αριθμός των θανάτων από το αίτιο αυτό 
αναμένεται να διπλασιαστεί στην χρονική περίοδο 2004-2030 [1]. Μιλώντας με 
ποσοστά, τα αυτοκινητικά δυστυχήματα προβλέπεται να γίνουν η 5η αιτία θανάτων 
μέχρι το 2030, προκαλώντας το 3.6% από 2.2% των θανάτων.  

Τα νοσηρά αυτά στατιστικά για την αύξηση των θανάτων από αυτοκινητικά 
δυστυχήματα οφείλονται κυρίως στην διαρκή αύξηση του αριθμού αυτοκινήτων που 
κινούνται παγκοσμίως, οδηγώντας σε μια αντίστοιχη αύξηση των ατυχημάτων. 
Εντούτοις, η οδική ασφάλεια κατά τα τελευταία χρόνια έχει βελτιωθεί κυρίως 
εξαιτίας των τεχνολογικών εξελίξεων στον χώρο των συστημάτων παθητικής 
ασφάλειας τα οποία έχουν επιβληθεί σε όλα τα νέα μοντέλα επιβατηγών οχημάτων. 
Τέτοια συστήματα, όπως είναι οι ζώνες ασφαλείας, οι αερόσακοι και διάφορες 
βελτιώσεις στο σασί των οχημάτων, βελτίωσαν σημαντικά την αξιοπιστία τους σε 
περίπτωση ατυχήματος, τόσο για τους επιβάτες, όσο και για τους πεζούς. Παρόλα 
αυτά, οι βελτιώσεις των συστημάτων παθητικής ασφάλειας φαίνεται να έχουν φτάσει 
σε έναν κορεσμό από άποψη μείωσης των δυστυχημάτων. Ο κυριότερος λόγος, είναι 
ότι αδυνατούν να συμβάλλουν στην αποφυγή ατυχημάτων που οφείλονται σε οδηγικά 
σφάλματα. Μια πρόσφατη έρευνα του Εθνικού Οργανισμού Διαχείρισης Οδικής 
Ασφάλειας σε Αυτοκινητοδρόμους στις Η.Π.Α. [4], έδειξε ότι ένα ποσοστό 41% των 
οδικών ατυχημάτων που σχετίζονται με τον οδηγό οφείλεται σε σφάλματα 
αναγνώρισης του κινδύνου, ενώ και ένα 34% οφείλεται σε σφάλματα απόφασης. 

Από όλα τα παραπάνω, μπορεί να εξαχθεί το συμπέρασμα ότι η περαιτέρω μείωση 
των θανατηφόρων οδικών ατυχημάτων πρέπει να βασιστεί πλέον σε ενεργητικά 
συστήματα υψηλής τεχνολογικής στάθμης. Πολλά από αυτά εντάσσονται στην 
ευρύτερη κατηγορία που ονομάζεται Προηγμένα Συστήματα Υποβοήθησης 
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Οδήγησης (ΠΣΥΟ). Τα ΠΣΥΟ είναι νέες αναπτυσσόμενες τεχνολογίες που ως 
πρωταρχικό σκοπό έχουν να παρέχουν αυτόματη υποστηρικτική πληροφορία στους 
οδηγούς, η οποία μπορεί να συμβάλλει στην μείωση των ατυχημάτων.  

Σε αυτή την κατεύθυνση, το Ευρωπαϊκό Πρόγραμμα Αξιολόγησης Καινούργιων 
Αυτοκινήτων έχει ανακοινώσει [5] ότι από το έτος 2014, κάθε αυτοκινητοβιομηχανία 
που θέλει να επιτύχει μια τέλεια (5-αστέρων) βαθμολογία για τα οχήματά της θα 
πρέπει να τα εξοπλίζει με ένα σύστημα Αυτόματης Επείγουσας Πέδησης. Παρόμοιες 
πρωτοβουλίες του Euro NCAP από την ίδρυσή του το 1996 έχουν προκαλέσει την 
βελτίωση των συστημάτων παθητικής αλλά και ενεργητικής ασφάλειας που 
χρησιμοποιούνται στα επιβατηγά οχήματα. Τα κριτήρια που τίθενται από τον 
οργανισμό είναι μια καλή εκτίμηση των τεχνολογιών αιχμής που θα πρέπει να 
ενσωματωθούν στα οχήματα καθημερινής χρήσης. Κάποια από τα μελλοντικά σχέδια 
μπορούν να γίνουν εμφανή με μια μελέτη των επιβραβεύσεων που έχει θεσπίσει από 
το 2010 το Euro NCAP, σχετικά με την ενσωμάτωση προηγμένων συστημάτων 
ασφαλείας στα αυτοκίνητα παραγωγής. 

Τα συστήματα που έχουν επιβραβευθεί ως τώρα από το Euro NCAP  υποδηλώνουν 
μια γενική κατεύθυνση προς την χρήση μεθόδων υπολογιστικής όρασης για την 
ανάπτυξη των σύγχρονων ΠΣΥΟ. Είτε με την μορφή υποστηρικτικής πληροφορίας σε 
συστήματα συστοιχίας αισθητήρων, είτε ως μοναδική πηγή πληροφορίας, οι κάμερες 
αποτελούν σημαντικό εργαλείο για τα ΠΣΥΟ. Πιο συγκεκριμένα, από όλα τα 
συστήματα που έχουν επιβραβευθεί μέχρι σήμερα, μόνο η Αυτόματη Επείγουσα 
Κλήση δεν χρησιμοποιεί οπτική πληροφορία. Ο κυριότερος λόγος που έγινε αυτή η 
στροφή προς την οπτική πληροφορία σε σχέση με προηγούμενες υλοποιήσεις των 
ΠΣΥΟ είναι η διαρκώς αυξανόμενη επεξεργαστική ισχύς των ενσωματωμένων 
συστημάτων ψηφιακής επεξεργασίας σήματος, που, σε συνδυασμό με την ανάπτυξη 
φθηνών βιντεοκαμερών με καλή ποιότητα εικόνας, επέτρεψαν την γρήγορη 
υλοποίηση πολύπλοκων αλγορίθμων υπολογιστικής όρασης σε προσιτές τιμές για τα 
επιβατηγά οχήματα.        

2.  Δομή ενός ΠΣΥΟ Βασισμένου σε Οπτική Πληροφορία   

Τα μοντέρνα ΠΣΥΟ που έχουν βγει ως τώρα στην αγορά χρησιμοποιούν κυρίως 
συστοιχίες αισθητήρων και καμερών. Ένα ενδεικτικό σενάριο για ένα ολοκληρωμένο 
ΠΣΥΟ που θα χρησιμοποιεί μόνο οπτική πληροφορία από συστοιχία καμερών, 
παρουσιάζεται στην Εικόνα 1. 

Στόχος αυτής της διατριβής είναι η έρευνα και ανάπτυξη λύσεων για κάποια από τα 
πιο απαιτητικά προβλήματα που μπορούν να βασιστούν στην χρήση μιας κάμερας 
τοποθετημένης στο ταμπλό του οχήματος, όπως είναι: 

 η αναγνώριση σημάτων οδικής κυκλοφορίας (ΑΣΟΚ),  
 η αναγνώριση φωτεινών σηματοδοτών (ΑΦΣ),  
 ο εντοπισμός προπορευόμενων οχημάτων (ΕΠΟ) και  
 ο εντοπισμός δρόμου (ΕΔ).  
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Εικόνα 1: Ενδεικτική δομή ενός ΠΣΥΟ ολοκληρωτικά βασισμένου σε οπτική πληροφορία. Σε αυτή την διατριβή έχουν 
μελετηθεί τα σκιασμένα υποσυστήματα . 

Ειδική μέριμνα δόθηκε στην ανάπτυξη και την αξιολόγηση συστημάτων που να είναι 
ανθεκτικά σε διαφορετικές συνθήκες καιρού και φωτισμού, καθώς και να παρέχουν 
ικανοποιητική απόδοση σε πρωινές και νυχτερινές σκηνές οδήγησης, χωρίς να 
επηρεάζονται αρνητικά από το περιβάλλον οδήγησης.     

3. Βάσεις Δεδομένων για την Ανάπτυξη και Αξιολόγηση των ΠΣΥΟ   

Ένα από τα μεγαλύτερα προβλήματα του χώρου της υπολογιστικής όρασης είναι η 
έλλειψη προσεχτικά επιλεγμένων, διαθέσιμων στο ευρύ κοινό βάσεων δεδομένων με 
πληθώρα βιντεοσκοπήσεων χαρακτηρισμένων ανά εικονοστοιχείο από ειδικούς για 
την αξιολόγηση των συστημάτων. Όσο πιο περίπλοκο είναι το πρόβλημα που 
επιχειρεί να λύσει το σύστημα, τόσο μεγαλύτερο θα πρέπει να είναι και το σύνολο 
των βιντεοσκοπήσεων που θα χρησιμοποιηθούν στην αξιολόγηση, ώστε να 
καλύπτουν όλο το εύρος των συνθηκών που μπορεί να προκύψουν. Για τα συστήματα 
που αναπτύχθηκαν στα πλαίσια αυτής της διατριβής, χρησιμοποιήθηκε ένας αρκετά 
μεγάλος αριθμός από βιντεοσκοπήσεις, άλλες με ενσωματωμένους χαρακτηρισμούς 
περιοχών για ποσοτική αξιολόγηση και άλλες χωρίς χαρακτηρισμούς, για ποιοτική 
αξιολόγηση. Το σύνολο των βιντεοσκοπήσεων που χρησιμοποιήθηκαν παρατίθεται 
στον Πίνακας 1. 
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Πίνακας 1: Βιντεοσκοπήσεις που χρησιμοποιήθηκαν για τις ανάγκες της διατριβής. 

      

Οι παραπάνω βιντεοσκοπήσεις, χρησιμοποιήθηκαν για διάφορους λόγους στην 
διάρκεια της διατριβής. Πιο συγκεκριμένα:  

i. Τα βίντεο που περιγράφονται στις γραμμές 1 έως και 7 του Πίνακας 1 

τραβήχτηκαν αποκλειστικά για τους σκοπούς της διατριβής, με διαφορετικές 
κάμερες, σε διαφορετικές συνθήκες, εποχές και ώρες της ημέρας. 
Χρησιμοποιήθηκαν για χρήση κατά την ανάπτυξη των συστημάτων, καθώς 
και για την ποιοτική τους αξιολόγηση. 

ii. Για τους σκοπούς της  ποσοτικής αξιολόγησης των συστημάτων που 
αναπτύχθηκαν στα πλαίσια της διατριβής, χρησιμοποιήθηκαν τα βίντεο που 
αναλύονται στις γραμμές  8 έως και 11 του Πίνακας 1. Επίσης, μια ποσοτική 
αξιολόγηση για το σύστημα ΑΣΟΚ βασίστηκε και στις βιντεοσκοπήσεις 
TSR1 έως TSR4 που παρουσιάζονται στις πρώτες 4 γραμμές του Πίνακας 1. 

Το σύστημα ΑΦΣ που αναπτύχθηκε αξιολογήθηκε με βάση την 
βιντεοσκόπηση LARA, που αποτελείται από 11179 καρέ και παρουσιάζεται 
στο [6]. Η βάση αυτή περιέχει χαρακτηρισμένους  32 φωτεινούς σηματοδότες. 
Η βιντεοσκόπηση αυτή έχει χρησιμοποιηθεί επίσης και για την αξιολόγηση 
των συστημάτων ΕΠΟ που αναπτύχθηκαν. Τέλος, για την ποσοτική 
αξιολόγηση του συστήματος ΕΔ που αναπτύχθηκε στα πλαίσια της διατριβής, 
χρησιμοποιήθηκαν και οι βιντεοσκοπήσεις που παρουσιάζονται στις γραμμές 
9, 10 και 11 του Πίνακας 1. Η βάση DiploDoc αποτελείται από 5 σύντομα 
βίντεο οδήγησης, αποτελούμενα στο σύνολό τους από 865 καρέ με 
σημειωμένο το περίγραμμα του δρόμου και έχει χρησιμοποιηθεί στα [7], [8]. 

Η βάση που χρησιμοποιήθηκε από τον Alvarez στο [9] και παρουσιάζεται στις 
γραμμές 10 και 11 του Πίνακας 1 αποτελείται από 2 βιντεοσκοπήσεις 
συνόλου 1335 καρέ με χαρακτηρισμένο τον δρόμο στα 1005 από αυτά.  

No Name Used for Annot. Car Camera Resolution fps Duration Environ. Weather Daytime Place

1 TSR1 TSR No AX DCR-TRV60E 720x576 25 8:55 Rural Sunny Day Ioannina

2 TSR2 TSR No AX DCR-HC85 720x576 25 2:10 Rural Rainy Day Patras

3 TSR3 TSR No AX DCR-HC85 720x576 25 1:05 Rural Good Night Patras

4 TSR4 TSR No AX DCR-HC85 720x576 25 3:07 City Good Night Patras

5 Patras1 RD/VD No AX Pinhole 640x480 25 > 2 h Mixed Mixed Mixed Patras

6 Patras2 RD/VD No Colt PV-GS180 720x576 25 > 1 h City Sunny Day Patras

7 Ioann1 RD/VD No Colt HDC-SD100 1080i 25 ~1 h Rural Mixed Day Ioannina

8 LARA TLR/VD TLs C3 Marling F-046C 640x480 25 8:49 City Sunny Day Paris

9 DiploDoc RD Road - MEGA-D 320x240 15 0:56 Mixed Sunny Noon Trento

10 Alvarez1 RD Road ZZ Bumblebee 320x240 15 0:56 Rural Sunny Noon Barcelona

11 Alvarez2 RD Road ZZ Bumblebee 320x240 15 0:32 Rural Rainy Morning Barcelona

12 HRI1 VD R/V/TS/TL - Unknown 800x600 10 16:24 Mixed Dry Afternoon Unknown

13 HRI2 VD R/V/TS/TL - Unknown 800x600 20 18:50 Mixed Dry Evening Unknown

14 HRI3 VD R/V/TS/TL - Unknown 800x600 10 11:12 Mixed Rainy Afternoon Unknown

15 HRI4 VD R/V/TS/TL - Unknown 800x600 10 11:22 Mixed Dry Night Unknown

16 HRI5 VD R/V/TS/TL - Unknown 800x600 20 13:48 Mixed Snow Afternoon Unknown

17 YouTube TLR/VD No - Various Various - > 2 h Various Various Various Various

18 Caltech 1999 VD No - Unknown 892x592 - 126 frames Parking Sunny Day Caltech

19 Caltech 2001 VD No - Unknown 360x240 - 526 frames Urban Sunny Day S. California
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iii. Τα υπόλοιπα βίντεο που περιγράφονται στον Πίνακας 1 χρησιμοποιήθηκαν 
για την ποιοτική αξιολόγηση των συστημάτων της διατριβής σε διαφορετικές 
καιρικές συνθήκες και ώρες της ημέρας, καθώς επίσης και σε διαφορετικά 
περιβάλλοντα και χώρες. 

iv. Τέλος, για την αξιολόγηση των στατικών μεθόδων αναγνώρισης 
προπορευόμενου οχήματος που αναπτύχθηκαν στην διατριβή 
χρησιμοποιήθηκαν και δύο βάσεις δεδομένων με φωτογραφίες του πίσω 
μέρους αυτοκινήτων τραβηγμένες α) μέσα σε χώρο στάθμευσης (Caltech 
1999) και β) κατά την διάρκεια οδήγησης (Caltech 2001).            

4.  Μετρικές Αξιολόγησης της Απόδοσης των Συστημάτων  

Για να γίνει εφικτή η αξιολόγηση των συστημάτων που αναπτύχθηκαν στα πλαίσια 
της διατριβής είναι αναγκαία η χρησιμοποίηση κατάλληλων μεγεθών και μεθόδων 
ποσοτικής και ποιοτικής αξιολόγησης. Πιο συγκεκριμένα, για την αξιολόγηση των 
συστημάτων χρησιμοποιήθηκαν: 

Ποσοτικές μετρικές που χρησιμοποιούνται συχνά σε ανάλογες αξιολογήσεις και 
βασίζονται σε τέσσερις διακριτούς αριθμούς που προκύπτουν κατά την 
κατηγοριοποίηση των εικονοστοιχείων μιας εικόνας σε δύο  κατηγορίες (θετικά και 
αρνητικά): τον αριθμό των Αληθώς Θετικών (True Positive, TP) εικονοστοιχείων, 
δηλαδή των εικονοστοιχείων που κατηγοριοποιήθηκαν σωστά ως θετικά, τον αριθμό 
των Ψευδώς Θετικών (False Positive, FP) εικονοστοιχείων, δηλαδή των 
εικονοστοιχείων που κατηγοριοποιήθηκαν λανθασμένα ως θετικά, τον αριθμό των 
Αληθώς Αρνητικών (True Negative, TN) εικονοστοιχείων, δηλαδή των 
εικονοστοιχείων που κατηγοριοποιήθηκαν σωστά ως αρνητικά και τον αριθμό των 
Ψευδώς Αρνητικών (False Negative, FN) εικονοστοιχείων, δηλαδή των 
εικονοστοιχείων που κατηγοριοποιήθηκαν λανθασμένα ως αρνητικά. Με βάση τους 
παραπάνω ορισμούς, μπορούμε να ορίσουμε τις ακόλουθες μετρικές που μπορούν να 
χαρακτηρίσουν την απόδοση της κατηγοριοποίησης: 

 Ορθότητα: P  = TP / ( TP + FP ) 
 

 Πληρότητα: R = TP / ( TP + FN ) 
 

 Ποιότητα:   = TP / ( TP + FP + FN ) 
 

 Ακρίβεια: A = ( TP + TN ) / ( TP + TN + FP + FN ) 
 

 Αποτελεσματικότητα: F = 2PR / ( P + R ) 
Όλα τα παραπάνω μεγέθη έχουν εύρος τιμών από το 0 (χειρότερο αποτέλεσμα) έως 
το 1 (καλύτερο αποτέλεσμα). 

Εκτός από την  ποσοτική αξιολόγηση, τα συστήματα που βασίζονται σε μεθόδους 
υπολογιστικής όρασης πρέπει να αξιολογούνται και ποιοτικά, για δύο σημαντικούς 
λόγους: πρώτον γιατί μια χαρακτηρισμένη βάση δεδομένων που να καλύπτει όλες τις 
πιθανές εκδοχές ενός πολύπλοκου προβλήματος όπως η οδήγηση είναι πρακτικά 
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αδύνατον να κατασκευαστεί και δεύτερον ο χαρακτηρισμός ανά εικονοστοιχείο 
περιοχών της εικόνας από ειδικούς είναι πολλές φορές υποκειμενικός. Για τους δύο 
αυτούς λόγους, η ποιοτική ανάλυση των αποτελεσμάτων ενός συστήματος σε 
συγκεκριμένα καρέ μπορεί να δώσει επιπρόσθετη χρήσιμη πληροφορία για την 
απόδοση του συστήματος, αλλά και για την ποιότητα της χρησιμοποιηθείσας βάσης 
δεδομένων.      

Ένα τρίτο και πάρα πολύ σημαντικό στοιχείο ενός ΠΣΥΟ, που πρέπει να αξιολογηθεί 
ξεχωριστά, είναι η ταχύτητά του. Τα ΠΣΥΟ απαιτείται να λειτουργούν σε 
πραγματικό χρόνο και να παρέχουν τα αποτελέσματά τους με την μικρότερη δυνατή 
καθυστέρηση. Με δεδομένο ότι οι κάμερες που χρησιμοποιούνται για τέτοιες 
εφαρμογές έχουν μια μέση συχνότητα των 25 καρέ το δευτερόλεπτο και ότι τα 
επιβατηγά οχήματα ταξιδεύουν με ταχύτητες που καλύπτονται από αυτή την 
συχνότητα, ένας πρώτος στόχος επεξεργαστικής συχνότητας των 25 καρέ το 
δευτερόλεπτο για ένα ΠΣΥΟ είναι λογικός. Σε συνθήκες οδήγησης σε πόλη με μικρές 
ταχύτητες, αυτός ο στόχος μπορεί να μειωθεί, ενώ για κάποιους αυτοκινητοδρόμους 
που επιτρέπουν στους οδηγούς να κινηθούν με πολύ μεγάλες ταχύτητες, ο στόχος 
αυξάνεται.  

5. Αναγνώριση Σημάτων Οδικής Κυκλοφορίας 

Το πρώτο  σύστημα που αναπτύχθηκε στα πλαίσια της διατριβής είχε στόχο την 
ΑΣΟΚ μέσα από κινούμενο όχημα, με χρήση πληροφορίας που προέρχεται από 
βιντεοκάμερα προσαρμοσμένη στο παρμπρίζ του οχήματος.  

Το σύστημα ΑΣΟΚ χωρίζεται σε τέσσερα βασικά στάδια: το στάδιο προ-

επεξεργασίας της εικόνας με στόχο τον εντοπισμό χρωμάτων που χρησιμοποιούνται 
σε ΣΟΚ, το στάδιο εντοπισμού των υποψηφίων ΣΟΚ που βασίζεται στην συμμετρία 
τους, το στάδιο παρακολούθησης των ΣΟΚ σε συνεχόμενα καρέ και το στάδιο 
ταξινόμησης των ΣΟΚ.  

Για την προ-επεξεργασία των καρέ της βιντεοσκόπησης χρησιμοποιείται μια μέθοδος 
διαχωρισμού των χρωμάτων της εικόνας σε επιμέρους χρωματικούς χάρτες,  
βασισμένη στον χρωματικό χώρο CIE-L*a*b*. Ο διαχωρισμός ακολουθείται από μια 
διαδικασία κατωφλίωσης κάθε ενός από τους χρωματικούς χάρτες με χρήση της 
μεθόδου κατωφλίωσης του Otsu [10].  

Στην συνέχεια οι κατωφλιωμένες εικόνες περνάνε από έναν γρήγορο μετασχηματισμό 
ακτινικής συμμετρίας (ΓΜΑΣ) [11] για να εντοπιστούν τα κέντρα συμμετρικών 
σχημάτων με έντονα χρώματα, ένα χαρακτηριστικό γνώρισμα των ΣΟΚ. Ο 
εντοπισμός των ΣΟΚ για κάθε καρέ συμπληρώνεται από μια διαδικασία 
ταυτοποίησης του σχήματος του ΣΟΚ, καθώς εκτός από αυστηρή ακτινική συμμετρία 
(για κυκλικά σχήματα), ο ΓΜΑΣ εντοπίζει και άλλα συμμετρικά σχήματα.  

Τα εντοπισμένα υποψήφια ΣΟΚ σε ένα καρέ παρακολουθούνται στα επόμενα καρέ 
της βιντεοσκόπησης, με μια μέθοδο η οποία απομονώνει την περιοχή γύρω από το 
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εντοπισμένο σχήμα και ψάχνει στην ίδια περιοχή για ένα λίγο μεγαλύτερο 
συμμετρικό, όμοιο  σχήμα στο επόμενο καρέ.  

Το τελευταίο βήμα είναι η ταξινόμηση των εντοπισμένων ΣΟΚ με βάση έναν απλό 
έλεγχο της κανονικοποιημένης ετεροσυσχέτισης του εντοπισμένου υποψηφίου ΣΟΚ 
με κάθε ένα από τα πρωτότυπα μοντέλα ΣΟΚ του κώδικα οδικής κυκλοφορίας. Δύο 
διαφορετικοί συνδυασμοί των τιμών ετεροσυσχέτισης στα τρία κανάλια του CIE-

L*a*b* ορίζουν δύο ταξινομητές με χρήση των οποίων γίνεται η ταξινόμηση των 
ΣΟΚ. Ο ένας δουλεύει καλύτερα για μπλε σήματα και ο άλλος για κόκκινα.  

Το σύστημα ΑΣΟΚ εξετάστηκε και αξιολογήθηκε σε διάφορες συνθήκες, μεταξύ των 
οποίων οδήγηση κατά τις πρωινές ώρες με ηλιόλουστο καιρό, συννεφιασμένο καιρό, 
βροχή, αλλά και νυχτερινή οδήγηση. Τα αποτελέσματα εντοπισμού κρίθηκαν πάρα 
πολύ ικανοποιητικά από πλευράς πληρότητας, αλλά δεν έχουν αρκετά μεγάλη 
ορθότητα. Το στάδιο παρακολούθησης συμβάλλει θετικά στην αύξηση της ορθότητας 
των εντοπισμών ΣΟΚ. Το υποσύστημα ταξινόμησης πάσχει σε απόλυτα ποσοστά 
επιτυχίας σε σχέση με άλλα της βιβλιογραφίας, ειδικά σε αντίξοες συνθήκες, αλλά 
σημαντικό ρόλο σε αυτό παίζει η μεγάλη βάση ΣΟΚ που χρησιμοποιείται στο 
σύστημά μας.  

6. Εντοπισμός Φωτεινών Σηματοδοτών σε Αντίξοες Συνθήκες με 
Χρήση Χρώματος, Συμμετρίας και Χωροχρονικής Πληροφορίας 

Το δεύτερο σύστημα που αναπτύχθηκε στα πλαίσια της διατριβής είχε ως στόχο τον 
εντοπισμό ΦΣ από βιντεοσκοπήσεις που λαμβάνονται από βιντεοκάμερα 
τοποθετημένη στο παρμπρίζ κινούμενου οχήματος.  

Το σύστημα που αναπτύχθηκε βασίζεται σε τρία διαδοχικά στάδια επεξεργασίας. Το 
πρώτο στάδιο είναι αυτό της προ-επεξεργασίας εικόνας, όπου κάθε καρέ 
μετατρέπεται από RGB σε CIE-L*a*b* και στην συνέχεια ακολουθείται μια 
διαδικασία ενίσχυσης της διαφοράς μεταξύ του κόκκινου και του πράσινου 
χρώματος, ειδικά για περιοχές με υψηλή τιμή φωτεινότητας (όπως είναι τα φανάρια). 
Αφού οι εικόνες αυτές αναμιχθούν με τις αντίστοιχες της ενισχυμένης διαφοράς 
κίτρινου-μπλε, ακολουθεί μια διαδικασία μορφολογικού γεμίσματος τρυπών για την 
καταπολέμηση του φαινομένου που είναι γνωστό ως "blooming effect".  

Το δεύτερο στάδιο επεξεργασίας αποτελείται από έναν ΓΜΑΣ για τον εντοπισμό 
ακτινικά συμμετρικών σχημάτων διαφόρων ακτινών μέσα στην εικόνα, το οποίο 
ακολουθείται από την απομόνωση των μεγίστων/ελαχίστων τιμών του αποτελέσματος 
του ΓΜΑΣ. Τα μέγιστα/ελάχιστα υποδηλώνουν πιθανή ύπαρξη κόκκινου/πράσινου 
ΦΣ αντίστοιχα στα συγκεκριμένα σημεία.       

Για να επαληθευθεί ή να απορριφθεί η ύπαρξη ΦΣ στα ύποπτα σημεία, ακολουθεί μια 
διαδικασία ελέγχου της χωροχρονικής επιμονής των υποψηφίων ΦΣ. Πιο 
συγκεκριμένα, για να εγκριθεί κάποιο υποψήφιο κέντρο ΦΣ, θα πρέπει να 
εμφανίζεται σε μια μικρή γειτονία του κάδρου για έναν ικανό αριθμό από συνεχόμενα 
καρέ.   
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Το προτεινόμενο σύστημα αξιολογήθηκε ποσοτικά στην βιντεοσκόπηση LARA. Τα 
αποτελέσματα έδειξαν ότι είναι άμεσα συγκρινόμενο με αντίστοιχα συστήματα της 
βιβλιογραφίας και μάλιστα χωρίς να χρησιμοποιεί κάποιο μορφολογικό μοντέλο των 
ΦΣ, ούτε κάποιον μηχανισμό εκπαίδευσης. Πιο συγκεκριμένα, η μέθοδος που 
προτείνεται επιτυγχάνει αποτελέσματα πληρότητας που αγγίζουν το 94%, αλλά με 
ορθότητα περίπου 61%.  

Τα ποιοτικά αποτελέσματα που παρατηρήθηκαν σε πλάνα που συλλέχθηκαν από το 
Internet (YouTube), σε διάφορες συνθήκες και περιβάλλοντα οδήγησης, έδειξαν ότι 
το προτεινόμενο σύστημα είναι αρκετά αξιόπιστο και σε συνθήκες οδήγησης υπό 
βροχή, αλλά και την νύχτα. Το πιο σημαντικό του μειονέκτημα παρατηρείται σε 
νυχτερινή οδήγηση σε κέντρα μεγαλουπόλεων, όπου υπάρχουν πολλές φωτεινές 
πηγές που μπορεί να οδηγήσουν σε σύγχυση το σύστημα εντοπισμού υποψηφίων ΦΣ.    

7. Εντοπισμός Προπορευόμενου Οχήματος από μια Εικόνα  

Το τρίτο σύστημα που αναπτύχθηκε στα πλαίσια της παρούσας διατριβής είχε στόχο 
τον εντοπισμό προπορευόμενου οχήματος με χρήση πληροφορίας που προέρχεται 
από μια εικόνα τραβηγμένη από το εσωτερικό ενός κινούμενου οχήματος.  

Το προτεινόμενο σύστημα εντοπισμού των προπορευόμενων οχημάτων βασίζεται σε 
μεθόδους που εκμεταλλεύονται την εκ των προτέρων γνώση για την εξαγωγή των πιο 
χαρακτηριστικών γνωρισμάτων των οχημάτων. Η βασική πληροφορία εξάγεται από 
τις υποψήφιες περιοχές πίσω φαναριών, για τον εντοπισμό των οποίων 
χρησιμοποιείται χρωματική κατάτμηση της εικόνας στον CIE-L*a*b* χρωματικό 
χώρο, καθώς και πληροφορία ακτινικής συμμετρίας με βάση τον ΓΜΑΣ.  

Τα πίσω φανάρια αποτελούν ένα εμφανές χαρακτηριστικό γνώρισμα για τον ΕΠΟ. 
Ξέχωρα από το γεγονός ότι αποτελούν ένα κοινό γνώρισμα όλων των οχημάτων, 
λόγω νομοθεσίας, είναι επίσης εμφανή κάτω από διαφορετικές συνθήκες φωτισμού, 
καιρού, καθώς και από την ώρα της ημέρας. Επιπροσθέτως, μπορούν να 
χρησιμοποιηθούν για να παράγουν μια πρώιμη ειδοποίηση για πιθανό κίνδυνο, αφού 
τα αναμμένα πίσω φανάρια υποδηλώνουν ότι το προπορευόμενο όχημα επιβραδύνει. 

Το δεύτερο κομμάτι του προτεινόμενου συστήματος περιλαμβάνει μορφολογικό 
ταίριασμα των ανιχνευμένων υποψήφιων φαναριών με μια ανίχνευση οριζόντιων 
ακμών για να οριστούν περιοχές της εικόνας που πιθανώς περιέχουν οχήματα. 
Ακολούθως, ένας έλεγχος αξονικής συμμετρίας κατά την κάθετη μεσοκάθετο 
χρησιμοποιείται για την επαλήθευση της ύπαρξης οχήματος. Ο έλεγχος αξονικής 
συμμετρίας έχει βασιστεί στον συνδυασμό δύο μεγεθών σύγκρισης της ομοιότητας 
μεταξύ δύο εικόνων (στην περίπτωση αυτή οι δύο εικόνες είναι το αριστερό και το 
δεξί κομμάτι της περιοχής του υποψηφίου οχήματος), της Δομικής Ομοιότητας 
(Structural SIMilarity - SSIM) [12] και του Μέσου Απόλυτου Σφάλματος (Mean 

Absolute Error - MAE).  Για τα επιτυχώς εντοπισμένα οχήματα πραγματοποιείται 
στην συνέχεια μια εκτίμηση της απόστασής τους από το όχημα του συστήματος.  
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Το σύστημα ΕΠΟ από μια εικόνα αξιολογήθηκε σε δύο βάσεις δεδομένων με  εικόνες 
προπορευόμενων οχημάτων, την Caltech 1999 και την Caltech 2001. Επίσης 
εξετάστηκε η απόδοσή του στα καρέ της βιντεοσκόπησης LARA που περιείχαν 
κάποιο προπορευόμενο όχημα. Τα ποσοτικά αποτελέσματα σε αυτές τις βάσεις 
έδειξαν ότι το σύστημα δουλεύει πολύ καλά από άποψης πληρότητας, φτάνοντας 
ποσοστά που αγγίζουν το 93.6%. Όταν δε το προπορευόμενο όχημα φρενάρει, οπότε 
τα πίσω φώτα του είναι αναμμένα, το ποσοστό εκτινάσσεται σε τιμές που φτάνουν το  
99.2%.   

Το σύστημα ΕΠΟ αξιολογήθηκε και ποιοτικά σε πλάνα που συλλέχθηκαν από το 
Internet (YouTube), σε διάφορες συνθήκες και περιβάλλοντα οδήγησης. Τα ποιοτικά 
αυτά αποτελέσματα έδειξαν ότι το σύστημα είναι αρκετά ανθεκτικό και σε συνθήκες 
βροχόπτωσης. Τα μεγαλύτερα προβλήματα τα αντιμετωπίζει σε πολύ δύσκολα 
περιβάλλοντα οδήγησης, όπως για παράδειγμα την οδήγηση σε νυχτερινά 
περιβάλλοντα με πολύ κίνηση, όπου τα κόκκινα φώτα πολλαπλασιάζονται στην 
σκηνή.       

8. Εντοπισμός Προπορευόμενου Οχήματος με Χρήση Βίντεο 

Το σύστημα εντοπισμού προπορευόμενου οχήματος που παρουσιάστηκε στην 
προηγούμενη ενότητα πάσχει από το ότι χρησιμοποιεί μόνο πληροφορία από ένα 
καρέ (ή φωτογραφία). Το γεγονός αυτό περιορίζει τις δυνατότητες του συστήματος 
και προκαλεί αύξηση των εσφαλμένα θετικών εντοπισμών, με αποτέλεσμα την 
μείωση του ποσοστού ορθότητας των εντοπισμών. 

Μια εξέλιξη του συστήματος ώστε να εκμεταλλεύεται χωροχρονική πληροφορία 
προερχόμενη από βίντεο έχει επίσης προταθεί στα πλαίσια της διατριβής. Αυτή την 
φορά το πρώτο υποσύστημα που στοχεύει σε εντοπισμό των πίσω φαναριών του 
προπορευόμενου οχήματος έχει παραλλαχθεί ελαφρά και χρησιμοποιεί ένα υβριδικό 
κανάλι χρωματικής πληροφορίας που εξάγεται από μια ανάμιξη των δύο από τα τρία 
κανάλια του c1c2c3 χρωματικού χώρου [13]. Το κανάλι αυτό υφίσταται ένα 
φιλτράρισμα μεσαίου, μεγέθους 3x3 και εν συνεχεία υπολογίζεται ο ΓΜΑΣ του για 
διάφορες ακτίνες. Το αποτέλεσμα του ΓΜΑΣ ελέγχεται και εντοπίζονται τα τοπικά 
του μέγιστα πάνω από ένα κατώφλι, τα οποία ορίζονται ως υποψήφια φανάρια 
οχημάτων.  

Στην συνέχεια όλα τα πιθανά ζεύγη υποψηφίων φαναριών εξετάζονται ως προς την 
μεταξύ τους απόσταση και γωνία και ανάλογα με το αποτέλεσμα απορρίπτονται, ή 
εγκρίνονται για περαιτέρω έλεγχο. Ο έλεγχος αυτός έχει δύο στάδια. Το πρώτο 
στάδιο αφορά στην στατική επαλήθευση των υποψηφίων ζευγών και βασίζεται στην 
Δομική Ομοιότητα του δεξιού και αριστερού κομματιού μιας ορθογώνιας 
παραλληλόγραμμης περιοχής που περιλαμβάνει τα δύο υποψήφια φανάρια.  

Το στάδιο αυτό πάσχει από το συχνό φαινόμενο της επαλήθευσης πολλών περιοχών 
ανάμεσα σε δύο φανάρια, λόγω του ελέγχου πολλών ακτινών στον ΓΜΑΣ. Για να 
περιοριστεί το φαινόμενο αυτό ακολουθεί ένα δεύτερο, δυναμικό, στάδιο 
επαλήθευσης. Σε αυτό χρησιμοποιούνται τα αποτελέσματα ενός φίλτρου Kalman με 
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εισόδους τις συντεταγμένες x και y του οχήματος καθώς και το πλάτος του, W. Η 
πρόβλεψη της νέας θέσης και του μεγέθους του υποψηφίου οχήματος συγκρίνεται με 
το αποτέλεσμα του στατικού εντοπισμού και αν είναι κοντά, το αποτέλεσμα του 
εντοπισμού γίνεται δεκτό. Ειδάλλως, ακολουθεί μια διαδικασία εντοπισμού 
υποψηφίου οχήματος εντός της περιοχής που έχει προβλεφθεί από το φίλτρο. Αν δεν 
βρεθεί ούτε εκεί κάποιο υποψήφιο όχημα, το ΠΟ θεωρείται "χαμένο" και η 
διαδικασία παρακολούθησης με το φίλτρο Kalman σταματάει μέχρι να εντοπισθεί 
ξανά κάποιο υποψήφιο όχημα με την στατική διαδικασία.   

Το σύστημα ΕΠΟ με χρήση βίντεο αξιολογήθηκε τόσο με τις στατικές σκηνές 
Caltech 1999 και 2001, όσο και με την βιντεοσκόπηση LARA, αλλά και πέντε ακόμα 
βιντεοσκοπήσεις οδήγησης σε διάφορες συνθήκες (HRI1-HRI5). Τα ποσοτικά 
στατιστικά στις στατικές σκηνές (χωρίς την χρήση της παρακολούθησης) φτάσανε σε 
πληρότητα το 94.2%, με ορθότητα 95.1%. Τα ποσοστά σε εικόνες οχημάτων που 
φρενάρουν ανήλθαν σε 97,7% και 98% αντίστοιχα. Τα ποσοστά αυτά είναι ανώτερα 
από αντίστοιχα της βιβλιογραφίας. 

Στην βιντεοσκόπηση LARA ωστόσο, το προτεινόμενο σύστημα έδωσε μέτρια 
αποτελέσματα χωρίς την χρήση του υποσυστήματος παρακολούθησης. Πιο 
συγκεκριμένα, η πληρότητα δεν ξεπέρασε το 72.5% με ορθότητα 73.6%. Με την 
χρήση του υποσυστήματος παρακολούθησης, τα ποσοστά αυτά εκτοξεύτηκαν σε 
93.1% και 94.4% αντίστοιχα, επιβεβαιώνοντας την επιτυχία της μεθόδου. 

Τα ποιοτικά αποτελέσματα στις βιντεοσκοπήσεις HRI1-HRI5 έδειξαν ότι το σύστημα 
που προτείνεται είναι ανθεκτικό και σε διαφορετικές συνθήκες καιρού και 
περιβάλλοντα οδήγησης. Πιο συγκεκριμένα, το σύστημα ανταπεξήλθε ικανοποιητικά 
τόσο σε οδήγηση υπό βροχή και χιόνι, όσο και σε συνθήκες νυχτερινής οδήγησης. 

Τέλος, μελετήθηκε και η επίδραση της ανάλυσης των πλάνων στην απόδοση του 
συστήματος και βρέθηκε ότι στην ανάλυση 160x120, η ταχύτητα επεξεργασίας είναι 
περίπου 7 καρέ το δευτερόλεπτο σε Matlab, ταχύτητα που θα μπορούσε να βελτιωθεί 
περαιτέρω αν ο ΓΜΑΣ υλοποιηθεί σε παράλληλη αρχιτεκτονική, όπως είναι εφικτό.             

9. Εντοπισμός δρόμου 

Το σύστημα εντοπισμού δρόμου που αναπτύχθηκε στα πλαίσια της διδακτορικής 
διατριβής βασίζεται στην πληροφορία που λαμβάνεται από μία έγχρωμη κάμερα που 
τοποθετείται εντός του οχήματος. Η κάμερα τοποθετείται στο επάνω μέρος του 
παρμπρίζ, έτσι ώστε να μην εμποδίζει τη θέα του οδηγού και να περικλείει στο οπτικό 
της πεδίο όσο περισσότερο γίνεται από τον δρόμο που βρίσκεται ακριβώς μπροστά 
από το αυτοκίνητο. Η ακριβής θέση και κλίση της κάμερας είναι σημαντική μόνο για 
την αρχικοποίηση της εκ των προτέρων γνωστής πληροφορίας, δηλαδή του μέρους 
της εικόνας που θεωρείται πολύ πιθανό να ανήκει στον δρόμο και του μέρους της 
εικόνας που θεωρείται σχεδόν απίθανο να ανήκει στον δρόμο.  

Τα πλάνα της βιντεοσκόπησης εξετάζονται σε ζεύγη συνεχόμενων καρέ, για την 
εξαγωγή χωροχρονικής πληροφορίας που θα χρησιμοποιηθεί για τον χαρακτηρισμό 
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κάποιων  εικονοστοιχείων ως σπόρων του δρόμου και κάποιων ως σπόρων της 
υπόλοιπης εικόνας. Οι σπόροι που επιλέγονται από αυτό το στάδιο επικυρώνονται με 
βάση τα αποτελέσματα του εντοπισμού δρόμου από το προηγούμενο καρέ και στην 
συνέχεια χρησιμοποιούνται σε έναν Αλγόριθμο Τυχαίου Περιπατητή (ΑΤΠ) για την 
εκτίμηση των εικονοστοιχείων που ανήκουν στον δρόμο στο τρέχον καρέ. 

Στην διαδικασία κατάτμησης χρησιμοποιείται για τον ΑΤΠ η λύση του προβλήματος 
Dirichlet [14], μια μέθοδος που μειώνει σημαντικά τον απαιτούμενο χρόνο 
υπολογισμού της λύσης, ενώ δίνει τα ίδια αποτελέσματα με τον κλασικό ΑΤΠ [15], 

[16]. Πιο συγκεκριμένα, ο αλγόριθμος εντοπισμού δρόμου που αναπτύχθηκε, 
αποτελείται από τα παρακάτω βήματα: 

i. Αρχικά συλλέγεται εκ των προτέρων πληροφορία που αφορά την θέση της 
κάμερας μέσα στο όχημα, καθώς και την κλίση της. Με χρήση αυτών των 
δεδομένων μπορούν να τοποθετηθούν οι αρχικοί σπόροι μη-δρόμου (στο πάνω 
κομμάτι του καρέ). 

ii. Στην συνέχεια, διαδοχικά ζεύγη από καρέ στους χρόνους t-1 και t υφίστανται 
μετατροπή από το RGB στο πρώτο κανάλι του c1c2c3 χρωματικού χώρου, για 
την μεγαλύτερη ανθεκτικότητα σε φωτοσκιάσεις, ή απότομες αλλαγές 
φωτεινότητας. 

iii. Τα c1 κανάλια των δύο καρέ χρησιμοποιούνται για τον υπολογισμό του μέτρου 
της οπτικής ροής Horn Schunck [17] στο χρονικό σημείο t, το οποίο από εδώ 
και στο εξής θα ονομάζεται ροή HSC1. 

iv. Η ροή HSC1 κατωφλιώνεται χρησιμοποιώντας την τεχνική Otsu [10] για να 
διαχωριστούν τα εικονοστοιχεία που πιθανά ανήκουν στον δρόμο (χαμηλή τιμή 
ροής HSC1) από τα εικονοστοιχεία που δεν ανήκουν στον δρόμο (εμπόδια, με 
υψηλή τιμή ροής HSC1).  

v. Τα εικονοστοιχεία της κατηγορίας με υψηλή τιμή ροής HSC1 που επιλέχθηκαν 
κατά την κατωφλίωση συνδυάζονται με τα εικονοστοιχεία του εκ των 
προτέρων γνωστού κομματιού του καρέ που δεν ανήκει στον δρόμο (από το 
βήμα (i)) και το αποτέλεσμα μας δίνει το σύνολο των σπόρων μη-δρόμου. 

vi. Το αποτέλεσμα του εντοπισμού δρόμου  από το καρέ t-1 χρησιμοποιείται για 
να οριστεί ένα τραπέζιο, στα εικονοστοιχεία της περιμέτρου του οποίου 
τοποθετούνται οι σπόροι της κατηγορίας δρόμος. Αν κάποιο από τα 
εικονοστοιχεία της περιμέτρου περιέχει ήδη σπόρο μη-δρόμου, τότε κρατάει 
τον ήδη υπάρχοντα χαρακτηρισμό. 

vii. Η εικόνα RGB του καρέ σε χρόνο t υποδειγματοληπτείται για να 
χρησιμοποιηθεί στον ΑΤΠ με μικρότερη ανάλυση, οδηγώντας σε γρηγορότερο 
υπολογισμό του αποτελέσματος. 

viii. Η εικόνα που προκύπτει από το βήμα (vii), καθώς και τα σύνολα σπόρων 
δρόμου και μη-δρόμου που προέκυψαν από τα βήματα (vi) και (v) αντίστοιχα, 
χρησιμοποιούνται ως είσοδοι στον ΑΤΠ, για την εκτίμηση των πιθανοτήτων 
κάθε εικονοστοιχείου του καρέ της χρονικής στιγμής t που δεν περιέχει σπόρο 
κάποιας κατηγορίας, να ανήκει στον δρόμο. 
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ix. Ο χάρτης πιθανοτήτων που προκύπτει από το βήμα (viii) κατωφλιώνεται και το 
τελικό αποτέλεσμα υπερδειγματοληπτείται για να επιστρέψει στην αρχική 
ανάλυση. 

Το σύστημα ΕΔ που προτείνεται εδώ αξιολογήθηκε ποσοτικά με διάφορες 
βιντεοσκοπήσεις, όπως είναι τα πέντε βίντεο που αποτελούν την DiploDoc, καθώς 
και τα δύο βίντεο Alvarez1 και Alvarez2. Επίσης, ποιοτική αξιολόγηση της μεθόδου 
έγινε και σε βιντεοσκοπήσεις που ελήφθησαν στα πλαίσια της διατριβής σε διάφορες 
συνθήκες και περιβάλλοντα οδήγησης (Patras1, Patras2, Ioann1).  

Τα ποσοτικά αποτελέσματα που επιτεύχθηκαν με την χρήση των προαναφερθέντων 
βιντεοσκοπήσεων απέδειξαν την ανωτερότητα της προτεινόμενης μεθόδου σε σχέση 
με αντίστοιχες της βιβλιογραφίας. Πιο συγκεκριμένα, στις βιντεοσκοπήσεις 
DiploDoc, η προτεινόμενη μέθοδος πετυχαίνει ποσοστά ποιότητας της τάξης του 
93%, ενώ άλλες μέθοδοι περιορίζονται κάτω από το 90%. Επίσης, στις 
βιντεοσκοπήσεις Alvarez1 και Alvarez2, η προτεινόμενη μέθοδος φτάνει με μικρές 
προσαρμογές σε αποτελεσματικότητα της τάξης του 0.92, έναντι 0.89 άλλων 
μεθόδων.  

Η επιτυχία της μεθόδου γίνεται ορατή και από την ποιοτική αξιολόγησή της σε 
βιντεοσκοπήσεις κάτω από αντίξοες συνθήκες, όπως βροχόπτωση, έντονες 
φωτοσκιάσεις, νυχτερινή οδήγηση κ.α. Το μεγαλύτερο πλεονέκτημά της είναι ότι 
προσαρμόζεται σε απότομες αλλαγές φωτεινότητας σχετικά γρήγορα, χωρίς να 
χρησιμοποιεί κάποιο μοντέλο δρόμου, ή κάποια διαδικασία εκπαίδευσης.  

Τέλος, το σύστημα ΕΔ που αναπτύχθηκε εξετάστηκε και ως προς την ιδανική 
ανάλυση βιντεοσκόπησης που πρέπει να χρησιμοποιεί, τόσο για την καλύτερη 
απόδοση του συστήματος, όσο και για την ταχύτερη επεξεργασία των καρέ. Η 
πειραματική διαδικασία ανέδειξε ως καλύτερη επιλογή την ανάλυση 160x120 που 
δίνει ταχύτητα επεξεργασίας περίπου 10 καρέ το δευτερόλεπτο, σε Matlab, ένα 
νούμερο που είναι αρκετά ελπιδοφόρο για πιθανή υλοποίηση σε πραγματικό χρόνο με 
χρήση DSP.  

10.  Συμπεράσματα 

Η παρούσα διδακτορική διατριβή έχει συμβάλλει ποικιλοτρόπως στην έρευνα των 
ΠΣΥΟ που βασίζονται αποκλειστικά σε οπτική πληροφορία. Ξεκινώντας από βασικές 
μεθόδους επεξεργασίας χρωματικής πληροφορίας, κατάτμησης εικόνας, εντοπισμού 
συμμετριών και παρακολούθησης αντικειμένων, αναπτύχθηκαν νέες τεχνικές που 
εξειδικεύονται σε προβλήματα που συναντώνται σε σκηνές οδήγησης και 
προσαρμόστηκαν έτσι ώστε να βελτιστοποιήσουν τον συνδυασμό απόδοσης-

ταχύτητας που είναι απαραίτητος σε τέτοια συστήματα. 

Στα πλαίσια της διατριβής προτάθηκαν νέες τεχνικές χρωματικής κατάτμησης 
εικόνων, βασισμένες σε ήδη υπάρχοντες, ή υβριδικούς χρωματικούς χώρους και σε 
κλασικές μεθόδους κατωφλίωσης. Επίσης, μελετήθηκαν και προτάθηκαν τεχνικές 
αξιοποίησης της ακτινικής συμμετρίας για τον εντοπισμό περιοχών της εικόνας που 
μπορεί να ανήκουν σε ΣΟΚ, ΦΣ, ή φώτα οχημάτων. Η ακτινική συμμετρία 
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συμπληρώθηκε με πρωτότυπες μεθόδους ελέγχου αξονικής συμμετρίας που 
εκμεταλλεύονται τεχνικές ελέγχου ομοιότητας εικόνων. Επίσης, εξετάστηκαν και 
αναπτύχθηκαν τεχνικές επαλήθευσης των στατικών αποτελεσμάτων εντοπισμού 
ΣΟΚ, ΦΣ, ή προπορευόμενων οχημάτων με χρήση χωροχρονικής πληροφορίας, είτε 
με πρωτότυπες μεθόδους, είτε με παραλλαγές υπαρχόντων μεθόδων, όπως τα φίλτρα 
Kalman. Τέλος, αναπτύχθηκε παραλλαγμένη, αυτόματη μέθοδος κατάτμησης εικόνας 
βασισμένη στον ΑΤΠ, για τον αξιόπιστο ΕΔ. Η μέθοδος χρησιμοποιεί χωροχρονική, 
καθώς και εκ των προτέρων πληροφορία για την επιτυχημένη επιλογή σπόρων για 
την αρχικοποίηση του ΑΤΠ.    

Σε πρακτικό επίπεδο, μελετήθηκαν τα προβλήματα των ΠΣΥΟ σε αντίξοες συνθήκες 
και απαιτητικά περιβάλλοντα οδήγησης και εξήχθησαν χρήσιμα συμπεράσματα για 
την φύση των πιο σοβαρών αντιξοοτήτων και για πιθανούς τρόπους αντιμετώπισής 
τους. Επίσης, έγινε εκτενής μελέτη για την επίδραση της ανάλυσης των εικόνων που 
χρησιμοποιούνται σε τέτοιες εφαρμογές, τόσο για την βέλτιστη επίδοση από πλευράς 
ποιότητας, όσο και για την ταχύτερη δυνατή επεξεργασία των καρέ. Στα πλαίσια 
αυτής της μελέτης εξήχθησαν και κάποια μη-διαισθητικά αποτελέσματα, όπως το ότι 
κάποιες φορές η μείωση της ανάλυσης οδηγεί στην αύξηση της ποιότητας των 
αποτελεσμάτων (π.χ. στον ΕΔ), μέχρις ενός σημείου. Τέλος, συζητήθηκε και 
αναλύθηκε η ανάγκη ανάπτυξης βάσεων δεδομένων με επισημασμένες 
βιντεοσκοπήσεις σε διάφορες συνθήκες, για την καλύτερη και δικαιότερη σύγκριση 
των αναπτυσσόμενων ΠΣΥΟ. Για αυτό τον λόγο και προτιμήθηκε να γίνει ποσοτική 
ανάλυση των αποτελεσμάτων της διατριβής μόνο σε τέτοιες βάσεις, όπου βέβαια 
ήταν αυτό εφικτό. 

Μελλοντικές κατευθύνσεις της έρευνας που διενεργήθηκε στα πλαίσια αυτής της 
διατριβής περιλαμβάνουν την σύνδεση διαφόρων από τις μεθόδους που 
αναπτύχθηκαν, με στόχο την ανάπτυξη ενός πλήρους ΠΣΥΟ, αλλά και την βελτίωση 
της απόδοσης των επιμέρους συστημάτων με χρήση της πληροφορίας που θα 
λαμβάνεται από τα υπόλοιπα συστήματα. Επίσης θα μελετηθεί η πιθανότητα 
υλοποίησης κάποιων από τις μεθόδους σε αρχιτεκτονικές που επιτρέπουν την 
λειτουργία τους σε πραγματικό χρόνο. Τέλος, θα επιχειρηθεί η χρήση συστοιχιών 
καμερών και ο συνδυασμός της πληροφορίας τους για βελτίωση των αποτελεσμάτων 
των ΠΣΥΟ που έχουν ήδη αναπτυχθεί.      
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Chapter 1  

Advanced Driver Assistance Systems (ADAS) 

1.1 Introduction 

This chapter contains an introduction to Advanced Driver Assistance Systems 

(ADAS). It begins with an overview of the road accident statistics worldwide that 

dictate the need for further predictive action towards safer vehicles, moving on to a 

demonstration of state-of-the-art systems that are already commercially available. 

Then, an overview of vision-based systems already implemented by vehicle 

manufacturers and after-market vendors is presented, followed by a presentation of 

vision-based ADAS still in research stage. An exposition of the parts of a complete 

vision-only ADAS is next, wrapped up by a short summary of the systems developed 

for this thesis. The chapter closes with a presentation of the datasets used for the 

purposes of the thesis, the performance evaluation methods for quantitative and 

qualitative assessment of the proposed systems and some final conclusions.        

1.2 The need for ADAS development 

During the past few decades, road accidents have proven to be one of the most 

common causes for the loss of human lives. According to a study by the World Health 

Organization issued in 2004 [1], road accidents were estimated as the cause for 1.2 

million people killed and as many as 50 million people injured worldwide. The 

seriousness of the situation can be reflected by the fact that in 2000, road accidents 

were the main cause of death inflicting injuries, resulting to approximately 23% of 

worldwide injury related deaths (see Figure 1), while in 2004 they were the second 

overall cause of death for people of ages 5-14 and the first cause of death for ages 15-

29 years [2].  

 
Figure 1: Distribution of global injury mortality by cause (2002). 
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More importantly, the forecasts state that road accident related deaths will raise by 

65% between 2000 and 2020 [3], [4]. In fact, the absolute number of road-accident 

inflicted deaths is estimated to double in the period 2004-2030 [1], as shown in Figure 

2. In terms of percentages, road accidents are predicted to become the 5th leading 

death cause by 2030, increasing by a factor of 0.54, from 2.2% to 3.6% of the world’s 
deaths.   

 
Figure 2: Projected global death for selected causes (2004-2030) 

These dire predictions concerning the rise of road accident related deaths are mainly 

based on the fact that the total number of vehicles worldwide rises, resulting in a 

subsequent increase of accidents. However, vehicle safety has improved over the 

years, mainly because of the advances of passive safety systems that have been 

included in almost all commercial vehicles. Such systems include seat belts, airbags 

and various improvements made on the vehicle bodies, improving their 

crashworthiness for passengers and pedestrians. Improvements in passive safety may 

have offered a lot so far, but now relative technologies seem to have reached a peak, 

since they cannot offer solutions to further mitigate deaths caused by accidents 

inflicted by drivers’ mistakes. As demonstrated in Figure 3, the reduction in road 

accident inflicted death has been slowed down over the past decade (except from 

France). In fact, a recent study by the National Highway Traffic Safety 

Administration (NHTSA) of the U.S.A. revealed that from all the driver-related 

causes of road accidents, a 41% was due to recognition errors and a 34% due to 

decision errors [5].  

 
Figure 3: Trends in road traffic fatality rates in selected high-income countries 
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A conclusion that can be drawn from the analysis of road accident related data is that 

the further reduction of accidents has to rely more on active, state-of-the-art solutions 

generally known as Advanced Driver Assistance Systems. ADAS are new emerging 

technologies, primarily developed as automated advisory systems for drivers with a 

goal to enhance driving safety.  

In this context, the European New Car Assessment Programme (Euro NCAP) has 

announced [6] that starting in year 2014, every car manufacturer hoping to achieve a 

perfect, five-star, score on the Euro NCAP safety ratings will have to equip their 

vehicle with an Autonomous Emergency Braking (AEB) system. Similar efforts from 

Euro NCAP since it was first established in 1996, led to the improvement in passive 

and active safety systems used in vehicles. The corresponding criteria are a good 

indication of state-of-the-art systems that are supposed to be embedded into 

commercial vehicles. Some of the future trends are revealed when studying the 

rewards that Euro NCAP has established since 2010, which give incentives to 

manufacturers to include advanced safety systems in their vehicles. The advanced 

safety technologies that have been rewarded since 2010 until today are included in 

Table 1. 

1.3 Vision based subsystems used in commercial solutions 

The summary of state-of-the-art ADAS recently included in commercial vehicles 

denotes a turn towards heavy usage of computer vision methods. An increasing 

number of ADAS rely either on the information fusion of several sensors, including 

cameras, or on the utilization of information derived solely from monocular, or 

stereoscopic cameras. In fact, from the ADAS presented in Table 1 only Automatic 

Emergency Call does not include a computer vision based possible subsystem. The 

use of cameras was somehow neglected in the past mainly because computer vision 

algorithms required very powerful and expensive processors which, combined with 

the high prices of good quality cameras, raised the price of camera-based ADAS to a 

level that did not allow their commercialization.  

Recently, the increasing processing power of embedded digital signal processing 

systems combined with the development of cheap, small video cameras with good 

image quality led ADAS research towards implementation of systems that operate 

based on information coming only from cameras. Such systems usually concentrate 

only on one of the problems of driver assistance, since the inclusion of all different 

problems in one single system is still a quite challenging issue. In this section, the 

most prominent examples of vision based subsystems of commercially available 

ADAS are presented. 
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Table 1: Advanced Safety Technologies rewarded by Euro NCAP since 2010. 

Advanced Safety 
Technology 

Description Rewarded Manufacturers 

Blind Spot 
Monitoring 

Radar or camera based systems to warn a 
driver when changing lanes about possible 
car approaching from the “blind spot”. 

Mazda (2011 - Mazda Rear Vehicle Monitoring system, 
RVM) 

Audi (2010 - Audi Side Assist) 

Lane Support Systems Lane Departure Warning: camera based 
systems to warn drivers in case of steering 
into another lane. 

Lane Keep Assist: camera based systems 
that steer the car back to the driving lane 

Ford (2011 – Lane Keeping Aid) 

Infiniti (2011 - Lane Departure Prevention, LDP) 

Opel (2010 – Opel eye) 

Volkswagen (2010 - Lane Assist) 

Speed Alert Systems Also known as Intelligent Speed 
Assistance (ISA), it is a system that warns 
drivers of exceeding the speed limit of the 
road, or the manually set speed limit 

No rewards until the time of writing. 

Autonomous 
Emergency Braking 

Radar or lidar based systems that act 
independently of the driver (Autonomous) 
to avoid or mitigate an accident in critical 
situations (Emergency) by applying the 
brakes (Braking) 

Audi (2012 – Pre Sense Front Plus) 

Ford (2011 – Forward Alert, Active City Stop) 

Mercedes-Benz (2011 - Collision Prevention Assist) 

Volkswagen (2011 - City Emergency Brake) 

Honda (2010 - Collision Mitigation Brake System) 

Mercedes-Benz (2010 - PRE-SAFE® Brake) 

Volvo (2010 - Volvo City Safety) 

Attention Assist Drowsiness detection systems that warn 
drivers to prevent them from sleeping on 
the wheel by prompting for breaks. 

Ford (2011 – Driver Alert) 

Mercedes-Benz (2011 – Attention Assist) 

Automatic Emergency 
Call 

System that sends an automatic message to 
an emergency call center in case the 
vehicle has been in a crash. 

BMW (2010 - Assist Advanced eCall) 

Citroen (2010 - Localized Emergency Call) 

Peugeot (2010 - Connect SOS) 

Pre-crash Systems Systems that predict an accident to 
optimize the functionality of protection 
systems such as restraints (seatbelts) or 
airbags. 

Honda (2010 - Collision Mitigation Brake System) 

Mercedes-Benz (2010 - PRE-SAFE®) 

Mercedes-Benz (2010 - PRE-SAFE® Brake) 

Vision Enhancement 
Systems 

Systems improving the visibility of the 
driver, even in adverse lighting or weather 
conditions, like night driving, or driving 
through fog. 

Opel (2011 - Adaptive Forward Lighting, AFL) 

1.3.1 Traffic Sign Recognition 

Traffic signs carry important information about the driving environment and they 

assist drivers in making correct decisions for the safe navigation of their vehicles. 

Automatic recognition of traffic signs has been the most widely researched ADAS 

during the past decades. In this scientific field, a high number of papers, laboratory 

systems and reports have been already presented using generic image processing and 

machine learning algorithms. Recently, traffic sign recognition (TSR) systems have 

been installed in Speed Alert Systems, like the one introduced by Opel and included 

in the 2008 Insignia model. The system is called "Opel Eye" [7] and among other 

things, it detects speed signs and no-overtake signs and informs the driver of their 
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existence as demonstrated in Figure 4(a). After-market systems using TSR can also be 

found, as the one developed by Mobileye and used in the BMW 7 series [8]. It is a 

system similar to the Opel Eye, but it also claims to detect LED speed signs as well 

(Figure 4(b)).    

   

(a) (b) 

Figure 4: (a) Opel Eye system uses a camera to recognize speed signs and warn the driver. (b) Mobileye's traffic sign 

recognition system. It recognizes speed signs and warns the driver if speed limit is exceeded. 

Even though some versions of TSR are already available commercially, the 

technology will have reached maturity only when it will have tackled some rather 

challenging problems. More specifically:  

a) The TSR systems detect and recognize only speed signs and no-overtake 
signs. While they are very useful for ADAS, they are still oversimplified versions of a 
complete traffic sign recognizer which would include all possible traffic signs. 
b) The systems that are commercially available are not always functional, 
depending on the weather and lighting conditions. Even though this problem is well-
known in the computer vision society, it still poses a big obstacle in the usage of such 
systems for autonomous driving, or even reliable driver warning systems. 

These challenges are the main reasons why computer vision based TSR are not 

reliable for commercial applications i.e. for a great variety of driving scenarios and at 

least the most important road signs. This is why research in the area of traffic sign 

recognition is still very active [9]. Moreover TSR is a task that can be solved using 

GPS based technologies in collaboration with precise and dynamically changing 

maps. This simple and efficient solution leads the major automotive companies to 

minimize their effort in TSR technologies. 

1.3.2 Road Lane Recognition 

One of the most mature vision-based technologies for an ADAS is road lane 

recognition. Its presence is vital in Lane Support Systems, as it provides the basic 

information needed for such a task. Road lane recognition is targeted mainly on 

highway driving, or on driving in well-maintained city or country roads. The 

technology behind it is fairly simple, since there are several robust algorithms for line 

finding in an image, the most widely used being Hough transform [10]. Commercially 

available solutions include "Opel Eye", which has a module for lane departure 

warning for the driver, Infiniti with its Lane Departure Prevention module, 

Volkswagen with the Lane Assist System and Ford with the Lane Keeping Aid 
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system. Some indicative pictures of the aforementioned systems are shown in Figure 

5. 

  

(a) (b) 

  

(c) (d) 

Figure 5 : (a) Lane Departure Warning from Opel Eye, (b) Infiniti Lane Departure Prevention, (c) Volkswagen Lane 

Assist and (d) Ford Lane Keeping Aid. 

Lane assist systems are invaluable for highway driving, but they still fall short of what 

is expected by an ADAS in situations of driving in unstructured or badly maintained 

roads, where road lanes are not visible. In these scenarios such systems do not have an 

alternative solution to the problem of lane keeping, so they cannot offer useful 

services to the driver. In such scenarios, a road detection module would deliver much 

more reliable information. 

1.3.3 Vehicle Detection 

Vehicle detection is the cornerstone of several ADAS, since it provides information 

about possible dangers like impending collisions. It can therefore be used in 

Autonomous Emergency Braking systems, in pre-crash systems and also in blind-spot 

detection.  

Several systems use alternative techniques to achieve vehicle detection, like radars 

(Mercedes Benz Pre-SAFE® Brake and Collision Prevention Assist, Honda Collision 

Mitigation Brake System, Ford Forward Alert) or Light Detection And Ranging 

(LIDAR) technology (Volvo City Safety, Volkswagen City Emergency Brake, Ford 

Active City Stop). Radars are chosen due to their good distance measurement when a 

sufficient radar reflectance of objects in front of the vehicle is present. However, they 

can be negatively affected by mud, snow or leaves blocking its "view" and appear 

problematic when other cars cut in to the lane of the ego-vehicle, or when the ego-
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vehicle makes a small radius corner. On the other hand LIDARs offer distance 

measurement both in daytime and nighttime, but their sensors are compromised when 

stained by mud or snow and they fail to operate in adverse conditions such as fog or 

heavy rain. 

The aforementioned disadvantages of those two technologies are the reason vehicle 

manufacturers have started using them in synergy with cameras. One such system is 

Audi's Pre Sense Front Plus, which combines information from two long range radars 

that detect obstacles in front of the vehicle, with data from a windscreen-mounted 

camera to assess the probability of an impending forward collision and warn the 

driver, or apply the brakes if the threat is imminent. Vision has also been used in 

Mobileye's vehicle detection after-market solution [11], which is used for several 

modules, like Forward Collision Warning, Headway Monitoring and Warning, etc. 

The difference is that Mobileye has implemented vision-only systems, something that 

is particularly hard to achieve for all possible driving conditions. The two 

aforementioned camera-based systems are shown in Figure 6. 
  

(a) (b) 

Figure 6 : (a) Audi Pre Sense Front Plus uses two long range radars and a camera to achieve AEB, (b) Mobileye uses just 

one monocular camera to warn drivers for impending collisions.    

1.3.4 Driver Drowsiness Detection 

The use of camera positioned inside the vehicle and facing the driver is among the 

most reliable methods to evaluate the state of mind the driver is in. This can be used 

for detecting possible driver drowsiness and issue an audible warning sign that warns 

him/her to stop driving and take a break. However, commercial systems in vehicles 

have not used this approach, but a rather more indirect one, i.e. the use of information 

about the driving style to determine if the driver has low vigilance. Ford Driver Alert 

uses a front-facing camera to detect sudden and exaggerated corrections to the 

vehicle's motion, which are characteristics of sleepy or inattentive drivers. Mercedes-

Benz Attention Assist uses the same idea, but without a camera; information about 

steering angle comes from a sensitive sensor and is used for assessing potential 

drowsiness of the driver. Methods in modern literature tend to focus on solving the 

problem in the more direct way, monitoring the gaze and head pose of the driver [12]. 

However, this is still an ongoing research with results not robust enough for 
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commercialization, since there are many challenges still to be faced, like inconsistent 

lighting, occlusion of the eyes from glasses, etc.      

1.3.5 Pedestrian Detection Systems 

Another feature of ADAS that has been extensively researched is pedestrian detection 

[13], [14], [15]. However, this technology was late-blossomed in commercial systems, 

as only Volvo has included such functionality in one of its cars and more specifically 

the Volvo S-60 (starting from the 2010 model). The task of pedestrian detection is 

accomplished with the use of a front-facing camera in combination with a radar 

sensor that measures the distances to the pedestrians (Figure 7(a)). A vision-only 

approach has been scheduled to be used by Subaru in its EyeSight™ system 

announced for 2013 (Figure 7(b)). The system will be based on a stereoscopic pair of 

cameras placed on both sides of the rearview mirror of the vehicle [16]. The vision-

only approach has been followed by Mobileye as well, in their after-market Pedestrian 

Collision Warning System which is demonstrated in Figure 7(c). 

   
(a) (b) (c) 

Figure 7 : Pedestrian Detection Systems by (a) Volvo, (b) Subaru and (c) Mobileye. 

1.3.6 Night Vision Systems 

Recently [17], BMW and Mercedes-Benz offered night vision as an extra feature of 

their 7-series and S-Class models respectively, using different approaches. BMW used 

a passive Far-InfraRed (FIR) sensor to stream night vision images in the car monitor, 

while Mercedes-Benz used a near-IR system for the same reason. Both systems are 

really expensive and this is why they are offered only in top-class vehicles of the two 

brands. When combined with a module like pedestrian detection, these systems can 

prove truly life-saving for the driver, because they provide extra visibility. The two 

systems are shown in Figure 8. 

 

 

(a) (b) 

Figure 8 : (a) Near-IR night vision system by Mercedes-Benz and (b) FIR Night vision system by BMW. 
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1.4 Vision based subsystems still in research stage 

The majority of the subsystems presented in the previous section have been included 

in commercial vehicles after exhaustive research of their robustness and trust-

worthiness. As the paradigm of pedestrian detection shows, a system that has been 

extensively covered by scientific research might take a long time until it reaches 

commercial maturity. Thus, there are still some systems not mature enough to be 

considered for inclusion in commercial vehicles. In addition, even the commercially 

available systems have their limitations; bad weather conditions, limited visibility, 

sudden illumination changes, dense traffic etc. are only some of the factors that can 

deteriorate the performance of a vision-based ADAS. In this section we will present 

some of the open research areas for vision based ADAS. 

1.4.1 Traffic Lights Recognition      

One of the most neglected research areas in ADAS technology is the recognition of 

traffic lights. Taking into account that the number of serious accidents caused by 

traffic light violations is significantly greater than the number caused by violations of 

other types of traffic signs, not many researchers have treated them as essential 

information for an ADAS.  

Traffic light detection is not a trivial problem due to the very dense presence of red 

and green light sources in cities. This effect increases the false positive error rate of 

traffic light recognition systems significantly. 

1.4.2 Driver Gaze Detection      

In the previous section driver inattention was mentioned; however commercial 

vehicles have not used computer vision methods for this task. Current research has 

been moving towards using in-vehicle cameras monitoring the driver, so that not only 

his/her potential drowsy state is detected, but also in order to follow his/her gaze so 

that it can be correlated to the driving scene and warn for potential lack of focus to a 

critical point. However, these attempts are still in a very early stage and they are still 

far from being mature enough to be deployed in commercial vehicles.  

1.4.3 Road Detection       

Road lane detection is, as mentioned already, one of the most mature technologies in 

commercially available ADAS. However, they provide useful assistance only in 

specific situations such as highway driving, or driving on well-preserved roads. This 

is not the general case though; many roads lack distinct markings, while others have 

no markings at all. Driving in unstructured and even unpaved rural roads is also a 

great challenge, as shown in recent DARPA challenges [18]. Such challenges require 

a more general drivable path detection algorithm and this is where researchers have 

focused lately; robust road detection in all kinds of environments, at any time of the 

day and under different weather conditions.       
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1.5 General structure of a computer vision based ADAS  

Currently commercial vehicular technology has only included vision systems in 

conjunction with other sensors, or specific subsystems that are robust enough to be 

used in real world driving scenarios, like lane detection systems. A robust setup of 

ADAS that would only use vision information is presented in Figure 9.     

TRAFFIC LIGHT 

RECOGNITION

VEHICLE DETECTION

BLIND SPOT 

DETECTION

LANE DETECTION

PEDESTRIAN 

DETECTION
ROAD DETECTION

TRAFFIC SIGN 

RECOGNITION

NIGHT VISION

DRIVER 

DROWSINESS 

DETECTION

  

 

Figure 9 : Structure of a complete, entirely vision-based ADAS. The highlighted systems are covered in this thesis. 

The continuous progress in the area of automatic assistance and driver warning 

methods indicates that we are not very far from developing very reliable ADAS in 

typical driving conditions. In such systems, the majority of sub-systems will be 

implemented using vision processing methods. 

The scope of this thesis is to provide novel solutions for some of the most challenging 

problems using frontal-faced cameras, i.e. traffic sign recognition, traffic light 

recognition, vehicle detection and road detection. Specific attention is given to 

developing and testing systems that are robust to weather and illumination changes, 

providing acceptable accuracy in both daytime and nighttime driving scenarios, while 

not being affected by the driving environment. All systems are designed for 

monocular cameras mounted on the windscreen of the car. 

1.6 Datasets used for system development and evaluation 

One of the great problems faced during the evaluation of a computer vision system is 

usually the lack of carefully selected, publicly available, manually annotated datasets 

with a variety of examples. When the system deals with a real-world problem and 
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demands a great mixture of videos taken under different conditions and frame-based 

annotation information is required, then the number of man hours that have to be 

spent on the construction of the dataset is extremely high. The availability of very 

small publicly available annotated datasets is the most important reason for the 

absence of common benchmarks for ADAS. The systems developed in thesis are no 

exception; they have been tested on several different video streams, spanning from 

videos shot for the purposes of the thesis to publicly available video datasets 

containing manually annotated results. The datasets used, an overview of which is 

given in Table 2, will be presented in the following sections.  

Table 2 : Video streams used for the purposes of the thesis 

 

1.6.1 Video streams acquired for qualitative evaluation of thesis methods 

For the purposes of this thesis, several video streams of driving in different 

environments and conditions were acquired. The videos were shot using different 

cameras with various resolutions which were mounted on the windscreen of the 

vehicle. The video streams include various weather conditions, different driving 

environments and were shot at different hours of the day. The details of the video 

streams are presented in lines 1 through 7 of Table 2, along with information on the 

subsystem they were used for. These video streams were used mostly in the 

development and the qualitative evaluation of the ADAS presented in the thesis. 

1.6.2 Video streams used for quantitative evaluation of thesis methods 

For quantitative evaluation of the proposed ADAS, video streams have to be frame 

based manually annotated with traffic signs, traffic lights and road area information. 

As previously mentioned, this is a very basic problem of the field of real-world 

computer vision systems, since the complexity and diversity of the scenes combined 

with the vast number of frames that have to be manually annotated make such efforts 

No Name Used for Annot. Car Camera Resolution fps Duration Environ. Weather Daytime Place

1 TSR1 TSR No AX DCR-TRV60E 720x576 25 8:55 Rural Sunny Day Ioannina

2 TSR2 TSR No AX DCR-HC85 720x576 25 2:10 Rural Rainy Day Patras

3 TSR3 TSR No AX DCR-HC85 720x576 25 1:05 Rural Good Night Patras

4 TSR4 TSR No AX DCR-HC85 720x576 25 3:07 City Good Night Patras

5 Patras1 RD/VD No AX Pinhole 640x480 25 > 2 h Mixed Mixed Mixed Patras

6 Patras2 RD/VD No Colt PV-GS180 720x576 25 > 1 h City Sunny Day Patras

7 Ioann1 RD/VD No Colt HDC-SD100 1080i 25 ~1 h Rural Mixed Day Ioannina

8 LARA TLR/VD TLs C3 Marling F-046C 640x480 25 8:49 City Sunny Day Paris

9 DiploDoc RD Road - MEGA-D 320x240 15 0:56 Mixed Sunny Noon Trento

10 Alvarez1 RD Road ZZ Bumblebee 320x240 15 0:56 Rural Sunny Noon Barcelona

11 Alvarez2 RD Road ZZ Bumblebee 320x240 15 0:32 Rural Rainy Morning Barcelona

12 HRI1 VD R/V/TS/TL - Unknown 800x600 10 16:24 Mixed Dry Afternoon Unknown

13 HRI2 VD R/V/TS/TL - Unknown 800x600 20 18:50 Mixed Dry Evening Unknown

14 HRI3 VD R/V/TS/TL - Unknown 800x600 10 11:12 Mixed Rainy Afternoon Unknown

15 HRI4 VD R/V/TS/TL - Unknown 800x600 10 11:22 Mixed Dry Night Unknown

16 HRI5 VD R/V/TS/TL - Unknown 800x600 20 13:48 Mixed Snow Afternoon Unknown

17 YouTube TLR/VD No - Various Various - > 2 h Various Various Various Various

18 Caltech 1999 VD No - Unknown 892x592 - 126 frames Parking Sunny Day Caltech

19 Caltech 2001 VD No - Unknown 360x240 - 526 frames Urban Sunny Day S. California
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extremely costly and time consuming. The quantitative analysis of the proposed 

ADAS methods was based on a few publicly available video datasets. 

The process of traffic signs detection was probably the most difficult to assess, since 

there isn't any sufficient publicly available annotated datasets to use at the time of 

development and evaluation of the thesis systems. Instead, a frame by frame 

inspection and characterization of the results on selected parts of the video streams 

TSR1 to TSR4 (lines 1 to 4 in Table 2) is used. Recently, traffic signs recognition has 

been more thoroughly covered by researchers [19]-[20], but the TS dataset used was 

substantially smaller than the one used for the implementation of our system.   

Traffic lights recognition also is a challenging process to evaluate. A recent work by 

de Charette et al [21] provided a useful video stream found in [22] called LARA, 

which comprises 11179 frames of a daytime city driving video, with ground truth 

manual annotations of the 32 traffic lights met, in all the frames of their appearance.   

Road segmentation is probably the most challenging scenario for manual annotation. 

The few publicly available video streams with manually annotated road area that can 

be found online typically comprise very few frames, like the DiploDoc sequence used 

by Lombardi et al in  [23] (number 9 in the list of Table 2) and the two sequences 

used by Alvarez et al in [24] (numbers 10 and 11 in Table 2). The aforementioned 

video streams contain manual annotations of the road area in stereo frame pairs taken 

from driving scenes. The one used in [23] has 865 annotated frames and the one used 

in [24] comprises 1335 frames in total, of which 1005 are annotated with road 

information.  

1.6.3 Publicly available video streams used for qualitative evaluation 

For the qualitative assessment of the systems presented in this thesis in extremely 

adverse conditions, we have also used over 2 hours of video streams shot with on-

board video cameras downloaded from YouTube. The purpose of using these videos 

were mainly to add more representative examples of driving scenarios that could not 

be covered using the videos mentioned in the previous sections, e.g. driving in snow, 

driving at night in big city roads (New York, Los Angeles), driving in fog, etc. These 

videos cannot be extensively described, since they are taken with different video 

cameras, in diverse environments and they are used just for qualitative purposes.   

Finally, at the late stages of this research, access to a large dataset of driving scene 

videos acquired by Honda Research Laboratories was provided [25], [26], [27], [28], 

[29], [30]. These videos were acquired in a diversity of environments, weather and 

illumination conditions and they were extensively annotated (free road area, traffic 

lights, traffic signs and vehicles were among the annotated categories). These videos 

were used for qualitative result analysis purposes in this thesis. The details of the five 

video streams comprising the dataset are thoroughly described in [27] and have been 

summarized in lines 12-16 of Table 2. Driving in both highway and urban roads in dry 

weather conditions has been covered for daytime in HRI1 and HRI2. The former has a 

frame rate of 10 fps, while the latter was shot at 20 fps. Heavy rain conditions have 
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been covered in HRI3, where the vehicle faces also urban and highway scenes in the 

afternoon. Night driving in dry conditions has been included in HRI4, once again in 

both urban and highway roads. Both HRI3 and HRI4 have been shot at a frame rate of 

10 fps. Finally, driving after heavy snowfall has been included in HRI5. This stream 

was acquired at 20 fps in the afternoon, while driving in both urban and highway 

roads.     

1.6.4 Publicly available image sequences used for quantitative evaluation 

For quantitative evaluation of the static performance of the preceding vehicle 

detection algorithms developed in this thesis, two datasets of images of the rear part 

of vehicles provided by Caltech [31], were also used. The first dataset is called 

Caltech 1999 and comprises 126 images, sized 892x592 pixels, of cars from the rear 

taken at the parking lots of Caltech. The second dataset, called Caltech 2001, contains 

526 pictures of 60 different cars, with resolution 360x240, that have been taken in 

freeways of southern California. Both datasets are ideal for the evaluation of 

preceding vehicle algorithms, since they contain a variety of vehicles in front of the 

ego-vehicle.  

1.7 Performance evaluation measures 

To achieve an efficient evaluation of the systems developed in the scope of this thesis, 

it is imperative that we use a mixture of quantitative and qualitative methods that are 

designed for this purpose. These methods are shortly presented here and will be used 

throughout this dissertation.  

1.7.1 Quantitative measures for quality evaluation 

The measures that are most commonly used for assessing the detection quality of all 

computer vision systems are based on the definition of four basic metrics. When the 

problem at hand is classifying the pixels into two classes (i.e. positive and negative), 

let True Positive (TP) be the number of pixels classified correctly as belonging to the 

positive class, False Positive (FP) the number of pixels misclassified as belonging to 

the positive class, False Negative (FN) the number of pixels misclassified as 

belonging to the negative class and finally True Negative (TN) the number of pixels 

classified correctly as belonging to the negative class. Then, the following metrics can 

be defined:  

 Correctness or Precision: P  = TP / ( TP + FP ) 
 

 Completeness or Recall : R = TP / ( TP + FN ) 
 

 Quality:   = TP / ( TP + FP + FN ) 
 

 Accuracy: A = ( TP + TN ) / ( TP + TN + FP + FN ) 

 

 Effectiveness: F = 2PR / ( P + R ) 
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All the aforementioned measures range from 0 to 1, with 1 denoting the best result 

(i.e. zero value for at least one type of classification error) and 0 denoting the worst 

possible result. 

1.7.2 Qualitative performance evaluation 

Apart from quantitative performance appraisal, it is very important that a real-world 

computer vision system is also assessed qualitatively. The reason for this is twofold; 

first it is impossible to construct an annotated dataset that includes all possible 

variations of a complex process like driving, and a frame-by-frame qualitative 

analysis of the results can offer valuable insight on possible improvements of a 

system. Furthermore, manual annotation is often subjective therefore the qualitative 

analysis could pinpoint frames where the result of a computer vision based system is 

appraised very strictly using the quantitative method. For these reasons, the systems 

presented in this thesis have undergone an extensive qualitative assessment process, 

with a special attention to adverse conditions, which is described separately in each 

chapter.    

1.7.3 Processing speed performance assessment 

Quality is not the only factor that is critical for ADAS. Obviously it is the most 

important factor, since such systems are used for the safety of human lives, but 

processing speed also plays a very important role in this context. More specifically, 

ADAS have to operate in real time; hence their processing speed must be faster than 

the frame acquisition rate of video cameras. Given the up-to-date typical camera 

frame rates, a goal of approximately 25 frames per second is what ADAS aim for. 

Depending on the specific details of each application this goal might be either a little 

lower (i.e. for city driving with low speeds), or even higher when highway driving 

must be handled. For all these reasons, a special section is included where applicable, 

covering the speed performance assessment for each system developed as part of this 

thesis. 

1.8 Conclusions 

This chapter presented and justified the current worldwide trend for the development 

of reliable Intelligent Transportation Systems and more specifically Advanced Driver 

Assistance Systems. Most of the modern commercially available ADAS based on 

computer vision methods have been reported. Furthermore, the state-of-the-art 

systems that utilize only visual information have been briefly examined and a general 

structure of vision-only ADAS has been proposed. Finally, the datasets used for the 

purposes of this thesis, as well as the metrics for the evaluation of the implemented 

systems have been described. In the next chapter, the core computer vision algorithms 

used for the development of the systems in this thesis will be presented.    

  



 

 

Chapter 2  

Computer Vision Algorithms  

2.1 Introduction 

This chapter contains a short presentation of the image processing concepts and 

algorithms that were used in the development of the systems described in this thesis. 

More specifically, the concept of shadow robustness and its importance in real world 

computer vision applications are analyzed and several color spaces that promise 

robustness to illumination changes are demonstrated. Consequently, the usage of 

image thresholding algorithms is described with a focus on the widely used Otsu 

algorithm. An analysis on the importance of symmetry for the detection of traffic 

signs and lights follows, concentrating a fast radial transform solution that provides an 

efficient way to tackle such problems. Then, the importance of motion information in 

problems related to ADAS is given and various optical flow algorithms are presented. 

A thorough discussion on the significance of image segmentation with a special 

mention to the Random Walker algorithm in ADAS is presented, including also its 

usage and implementation issues. Finally, an overview of popular methods for 

measuring image similarity is provided.  

2.2 Color spaces and illumination invariance 

The notion of illumination invariance is especially important for computer vision 

applications in the domain of real world problems. A system that can be used under 

all weather and illumination conditions should be robust to changes in environmental 

conditions, since the visual characteristics of a real world scene greatly vary 

depending on whether, for example, the picture is taken in a sunny day or a gloomy 

afternoon. Several approaches for different applications have been proposed in 

relevant literature [32], [33], with most of them suggesting the use of color spaces 

more robust to illumination changes than the normally used RGB color space. For the 

development of ADAS in this thesis, the CIE L*a*b* color space, the recently 

proposed c1c2c3 color space and hybrid color spaces based on the two aforementioned 

ones have been used. 

2.2.1 Comparison of color spaces for real world scenes   

The main problem of the RGB color space when used for real world scenes is mainly 

the high correlation between its channels, which makes it vulnerable to illumination 

changes. On the contrary the CIE L*a*b* color space [34] is less affected by 

illumination changes and furthermore, it is characterized by a perceptual uniformity of 
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colors, which is very useful for pattern recognition applications of man-made objects 

like traffic signs or traffic lights. The superiority of the CIE L*a*b* color space over 

RGB is demonstrated in Figure 10, where the red signs stand out much more in 

channel a* of the L*a*b* image, than the R coefficient of the RGB image. 

   (a) (b) (c) 

Figure 10 : (a) The original RGB image, (b) its R (red) channel and (c) its a* (red-green difference) channel. 

Other color spaces that promise illumination intensity invariance are the HSV, 

YCbCr, and generally every color space that separates luminosity information from 

color information. The increasing interest in illumination intensity invariant color 

spaces due to the use of computer vision methods for real world applications, has led 

to a series of novel color spaces such as c1c2c3 [35]. All the aforementioned color 

spaces are presented in Figure 11 in a scene with dense shadows.  

 

 

 

 

 Figure 11 : The same scene in different color spaces. Each row contains the original image and the separate channels 

intensity: first row shows the RGB image, second the L*a*b*, third the HSV, fourth the YCbCr and fifth the c1c2c3 image. 
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The different color channels represented in Figure 11 show that the color spaces that 

separate the intensity/brightness/luminosity channel from the chromaticity channels 

appear vulnerable in shadows only in the first channel. Another conclusion that can be 

drawn is that c1c2c3 appears to separate colors more successfully than other color 

spaces. The worst results in color discrimination are drawn from the RGB color space, 

due to strong correlation of its channels.   

2.3 Fast Radial Symmetry for efficient detection of symmetrical 

objects 

The detection of human-made traffic-related objects appearing in a real-world scene 

relies greatly on the localization of symmetrical shapes. For systems aiming at 

detecting traffic signs, traffic lights or vehicle lights, a synergy of color and symmetry 

information provides a solid foundation for efficient detection. Since a short 

discussion about the color space influence to the object detection has already been 

covered, this section will concentrate on describing how symmetry can be used as a 

useful cue.  

The selected algorithm in this thesis for efficient symmetry detection is the Fast 

Radial Symmetry Transform (FRST). This method is based on a simple and 

computationally efficient voting process which is described in [36]. The algorithm is 

designed for grayscale images which have to be examined for symmetrical shapes of 

various radii in a user-defined set, N. The value of the transform at range n N  

indicates the contribution of the image gradients to the radial symmetry at a distance 

of n pixels from a pixel p, as shown in Figure 12 (taken from [36]). 

 

Figure 12 : Pixels affected by the gradient element g(p) for a range n=2. 

The FRST is based on the examination of the intensity gradient g (using a 3x3 Sobel 

operator) at each image pixel p, which determines a positively affected pixel p+ve(p) 

and a negatively affected pixel p-ve(p) at a distance n away from p. The coordinates of 

the two affected pixels are defined by the orientation of the gradient; p+ve(p) is the 

pixel that the gradient is pointing to while p-ve(p) is the pixel that the gradient is 

pointing directly away from. More specifically, the positively affected pixel 

coordinates are estimated by 
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while the negatively affected pixel coordinates are  
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where "round" is a mathematical operation that rounds each element of the to the nearest 

integer.      

Using the information of the positively and negatively affected pixels, two new 

images can be formed; the orientation projection image On and the magnitude 

projection image Mn. These two images are initially zero; for each pair of positively 

and negatively affected pixels that are calculated, the corresponding pixels in the 

orientation projection image are incremented and decremented respectively by 1. The 

same process is performed for the magnitude projection image, only this time the 

corresponding pixels are incremented and decremented respectively by ( )g p . This 

process is summarized in the following equations: 

( ( )) ( ( )) 1n ve n veO p p O p p   ,   2.3 

             ( ( )) ( ( )) 1n ve n veO p p O p p   ,     2.4 
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                    ( ( )) ( ( )) ( )n ve n veM p p M p p g p   .    2.6 

Next, two more matrices are formed, using the following formulas: 
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where a is a parameter that denotes radial strictness (the higher it is, the more "strict" 

the transform for non-radial symmetrical shapes) and kn is a scaling factor for On and 

Mn across different radii, as defined in [36]. Then, for one specific radial n, the radial 

symmetry contribution is defined as  

  ,n n nS F A           2.9 

where (*) denotes the convolution of the two matrices and An is a 2-dimensional 

Gaussian probability density function. Finally, when more than one radius is 

considered, the total symmetry transform is defined as the average of all the symmetry 

contributions over the radii range. If N denotes the radii considered, then the final 

symmetry transform matrix is 

                              
1

.n

n N

S S
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       2.10 
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The resulting images acquired from the FRST when it is performed in chromaticity 

channels is particularly interesting for applications related to traffic signs or traffic 

lights detection, or even with the detection of the rear lights of vehicles. One typical 

example of all these attributes is shown in Figure 13, where the FRST in channel a* 

of the original image leads to a result that detects 3 green lights, one traffic sign and 

one vehicle rear light, while producing 3 false alarms. The FRST was estimated for 

radii of 3, 6 and 9 pixels with a radial strictness of 1 and then linearly normalized in 

the range [0, 1]. Values of the normalized FRST below 0.4 (dark spots) and over 0.9 

(light spots) were used to extract the Regions Of Interest (ROIs) as shown in Figure 

13(d).  

  
(a) (b) 

 

 

 

(c) (d) 

Figure 13 : (a) Original image, (b) a* channel, (c) FRST result for N = {3, 6, 9} and α=1, (d) detected ROIs. 

2.4 Otsu thresholding for efficient bimodal image segmentation 

The problem of object detection in real world scenes often simplified into a bimodal 

segmentation task, or in more complex cases into multimodal segmentation using 

histogram information. 

 An example of this type of problems is met when the FRST contains objects that 

stand out from the background, so their efficient detection relies greatly on the usage 

of a thresholding method for images with bimodal histograms. The most popular fully 

automatic method for estimating the intensity threshold is proposed by Otsu's 

algorithm [37], which is based on the iterative splitting of the image pixels into two 
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classes, with an ultimate goal to minimize their intra-class variance. As Otsu proved, 

this optimization criterion is equivalent to maximizing the inter-class variance. The 

method begins by splitting the image pixels into two classes, Class1 containing the 

pixels with value less than or equal than a threshold th and Class2 containing the 

pixels with value larger than th, thus making their probability distributions equal to: 

 
1 1 1 1

2 1 2 2

: / ( ),..., / ( )

: / ( ),..., / ( )
th

th L

Class p th p th

Class p th p th

 
 

,    2.11 

where 1
1

( )
th

i

i

t p


  and 2
1

( )
L

i

i th

t p
 

  . 

The intra-class variance is defined as the weighted sum of variances of the two 

classes, which is given by 

 
2 2 2
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where 2 ( )th is the intra-class variance and 2
1 ( )th , 2

2 ( )th  are the variances of the 

pixels below and above the threshold th, respectively. Otsu's method iteratively 

estimates the threshold th until the intra-class variance is minimized (or the inter-class 

variance is maximized).  

Otsu’s algorithm was originally proposed for the segmentation of grayscale images. 
However, since color is a valuable cue for traffic signs, or lights detection, it is 

important to investigate the usage of the algorithm for the color coefficients. In this 

direction, the effect of Otsu’s algorithm in the detection of traffic signs is 
demonstrated in Figure 14, where the original image has first been converted to 

L*a*b* and its a* channel has been thresholded. 
 

  

(a) (b) 

Figure 14 : (a) Original image and (b) Otsu's thresholding on channel a* of the image. 

However, color alone cannot always be enough for the detection of signs or lights, 

since many types of objects in real world scenes chromatically resemble traffic lights. 

This is why alternative approaches could be used, like the utilization of Otsu's 

thresholding algorithm for a more efficient detection of symmetrical shapes within an 

image. As was shown in the previous section, the FRST result needs to be segmented 

through histogram thresholding in order to select the most prominent results. Such a 

process is shown in Figure 15, where the original image has been converted to 
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L*a*b* and the FRST is applied to channel a*. The transformed image is then 

segmented using Otsu's threshold estimation algorithm to produce the result presented 

in Figure 15(b) denoting the possible ROIs for red lights. 

  

(a) (b) 

Figure 15 : (a) Original image and (b) result of Otsu's thresholding on the FRST of channel a*. 

2.5 Optical Flow for moving objects detection 

The methods described so far are especially useful for the detection of human-made 

symmetrical objects in static images, but fail to take advantage of the most useful cue 

for such applications which is motion information. In driving scenes acquired from 

on-board cameras, the images contain a great number of moving objects, since there 

are not only absolute motions to be considered, but also relative motions to the 

velocity of the ego-vehicle.  

A very common methodology to derive motion information of an object is to estimate 

its optical flow, which is defined in [38] as the “approximation to image motion 
defined as the projection of velocities of 3-D surface points onto the imaging plane of 

a visual sensor”. Various algorithms have been proposed for such an approximation, 

each with its pros and cons. A general rule that could be drawn by the relevant 

literature [39] would be that there is a trade-off between processing speed of such 

algorithms and their accuracy. Optical flow algorithms that offer dense, accurate 

results usually tend to have prohibiting computational complexity for real-time 

applications. On the other hand, faster algorithms that produce sparse optical flow 

results cannot be trusted to provide an accurate approximation that could be used for 

tasks like motion-based segmentation of objects.  

In this thesis, the sparse optical flow proposed by Horn and  Schunck in [40] is 

adopted; the algorithm is based on the assumption that optical flow is smooth over the 

whole image. Consequently, the method iteratively aims to minimize flow 

fluctuations favoring solutions that produce a more smooth optical flow result. Let Ix, 

Iy and It be the derivatives of the image intensity values of a grayscale image along the 

horizontal, vertical and time dimensions respectively, estimated from 

1
,

( , 1, ) ( , , ) ( 1, 1, ) ( 1, , ) ( , 1, 1) ( , , 1) ( 1, 1, 1) ( 1, , 1)4
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where i, j, l are the row, column and frame number respectively. Then, the horizontal 

and vertical optical flow values at each pixel with coordinates i and j at time k+1, 

namely 1k

xV
  and 1k

yV
  are iteratively derived by  
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and 
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where k

xV  and k

yV are the average values of the previous velocity estimates for axes x 

and y respectively, α is a regularization constant which leads to smoother flow results 

when increased and k is the number of iterations. For small values of k and a, the 

algorithm produces quite sparse results, which get denser as those values increase. 

Even though the Horn-Schunck algorithm produces denser results than other local 

optical flow methods, it is not as successful as more recent methods, like the one in 

[41]. In his work, C. Liu proposes a mixture of local and global methods first 

introduced in [42] and [43], with the difference of using conjugate gradients instead of 

Gauss-Seidel or over-relaxation methods for solving large linear systems. This type of 

optical flow algorithms produce more accurate results than the Horn-Schunck 

approach, but the implementation of such algorithms requires more processing power. 

However, when real life applications are considered, even the dense optical flow 

algorithms have problems discriminating between real objects and shadows, as shown 

in Figure 16. To demonstrate this problem for the two consecutive frames of Figure 

16 (a) and (b), the algorithm of Horn and Schunck as described in [40] was applied, 

first using a=3 and only one iteration (k=1) to acquire the sparse result of Figure 16(c) 

and then using a larger value of a=15 and many iterations (k=1500) to acquire the 

result of  Figure 16(d). Then, the dense algorithm of [41] was applied, for few 

outer/middle/inner loop iterations (1,1,1) that led to the result of Figure 16(e) and then 

for more iterations (15,15,15) that led to the result of Figure 16(f). 

By examining the results the first conclusion derived is that the method of Horn-

Schunck does indeed produce a more sparse result, with a tendency of estimating 

larger flow values near the boundaries of objects. The sparseness is reduced when the 

number of iterations rises, but the algorithm still produces flow values at the edges of 

shadows that are significantly different than those inside the shadows. The algorithm 

of Liu does improve the situation providing denser flow results that make more 

physical sense. However, even this algorithm fails to produce meaningful results in 

the presence of shadows, even if the number of iterations used is so large that the 

algorithm cannot be used for real-time applications using typical embedded systems.    
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However, when real life applications are  (a) (b) 

  

(c) (d) 

 

 (e) (f) 

Figure 16 : Two consecutive frames with dense shadows in (a) and (b) produce the pseudo-colored optical flows of (c) for 

Horn-Schunck with a=3 and k=1, (d) for Horn-Schunck with a=15 and k=1500, (e) C. Liu for iterations 1,1,1 and (f)  C. 

Liu for iterations 15,15,15. 

2.6 Discrete Time Kalman Filter for object tracking  

Another method that is very popular in computer vision applications is Kalman 

filtering. A Kalman filter is essentially an estimator that, in this context, can be used 

to predict the position of an object in future frames of a video. Kalman tracking can 

provide multiple advantages for any video-based computer vision application, since it 

can reduce the area of the frame that is scanned for the existence of an object thus 

minimizing false positive detections and reducing the time needed for the process. An 

added advantage offered by the very nature of the Kalman filter, is the smoothing 

effect that can improve the robustness of the tracking result to the presence of noise 

that is often observed in videos. 
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2.6.1 Definition of the discrete process model  

For the purposes of this thesis, only the discrete time Kalman filter [44], [45], [46] 

will be considered. This filter provides a solution to the problem of estimating the 

state n
x  of a linear discrete time process that abides by the stochastic difference 

equation 2.18, given a measurement m
z  described by equation 2.19: 

 1 1k k k kx Ax Bu w    ,    2.18  

 
k k kz Hx v  ,    2.19 

where 
kx and 

kz are the vectors representing the model state and measurement at the 

discrete time step k, respectively, while A ,  B  and H are the transition, control and 

measurement matrices of the model. The transition matrix A, is sized n x n and 

connects the previous process state (at time k - 1) to the current state (at time k). 

Matrix B is n x l and it is optional. Its function is to relate the control input l
u  to 

state x. Finally, H is a m x n matrix that relates the process state to the measurement, 

kz . All these matrices may change at each time step, but they are generally assumed 

to be constant.     

Typically, the noises of the state and measurement are considered to be white, zero 

mean Gaussian, statistically independent to each other and represented by 
kw  and 

kv  

respectively. Their probability distributions can be denoted as 

 ( ) ~ (0, )p w N Q ,    2.20 

 ( ) ~ (0, )p v N R ,    2.21 

where the process noise covariance matrix, Q and the measurement covariance 

matrix, R can also change over time in applications where the noise parameters are 

changes through time. In most studies they are assumed constant. 

2.6.2 Algorithm of the Discrete Kalman Filter  

As already mentioned, the Kalman filter is an estimator of a process that relies on a 

recursive, feedback-based algorithm. Once a prediction has been provided by the filter 

at a certain point in time, feedback is given by measurements which could contain 

noise. Apparently, this divides the Kalman filtering process into two stages, namely 

the time update and the measurement update. The former projects the current process 

state and error covariance (a-priori) estimates to the next step, while the latter 

provides the feedback from measurements in order to improve the new (a-posteriori) 

estimates.     

Let ˆ n
kx
  be the a-priori state estimate and ˆ n

kx  the a-posteriori estimate at time 

k, given measurement 
kz ; the a-priori  and a-posteriori estimate errors are then 

defined as  

 ˆ andk k ke x x
       2.22 
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 ˆ ,k k ke x x      2.23 

leading to the a-priori  and a-posteriori estimate error covariance matrices that follow 

 [ ( ) ] andT
k k kP E e e
       2.24 

 [ ( ) ],T
k k kP E e e     2.25 

where E denotes the variance. 

The time update equations of the discrete Kalman filter can be defined as  

 1 1ˆ ˆ
k k k kx Ax Bu w


    ,    2.26 

 1
T

k kP AP A Q


  .    2.27 

The measurement update equations will be  

 1( )T T
k k kK P H HP H R

    ,    2.28 

 ˆ ˆ ˆ( )k k k k kx x K z Hx
    ,    2.29 

 ( )k k kP I K H P
  .    2.30 

The matrix Kk is called the Kalman gain and it is the first parameter of the filter 

estimated in the measurement update phase. 

The complete Kalman filtering algorithm is a recursive succession of the time and 

measurement update steps. The order of the steps involved in the Kalman filtering 

process and the interaction between the two phases are described more closely in 

Figure 17, as presented in [46]. 

 

Figure 17: Analysis of the operation of the Kalman Filter as presented in [46]. 
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2.7 Random Walker for efficient image segmentation 

The Random Walker Algorithm (RWA) as an image segmentation tool is presented in 

[47]. It is based on a random process, in which a walker starting from a pixel is 

moving to neighbor pixels according to a probability estimated using the intensity 

difference between the two pixels. If a set of pixels is associated to M segmentation 

classes, denoted also as seed pixels, the RWA estimates at each pixel the probabilities 

of a walker starting moving towards pixel positions to arrive at a seed. In most 

applications the departure pixel is annotated to the class with the maximum 

probability of first-arrival. Seeds are the pixels that are manually defined to certainly 

belong in one of the segmentation classes. The Random Walker segmentation process 

that is proposed in [47] is based on a closed form solution of the Dirichlet problem, 

yielding a faster solution while producing the same accuracy results as the classic 

RWA of [48], [49]. The main advantages of the RWA [47] for real life problems like 

road detection are the following: 

 it is robust to noise, therefore suitable for real life applications, 

 it locates weak or missing boundaries that are common in road scenes, 

 it is quite fast in the implementation presented in [47], 

 it can be used for multi-object segmentation problems, thus enabling its 

generalization to problems like moving obstacles detection and 

 it provides a road probability matrix instead of a road mask, allowing further 

post-processing of the probabilities matrix in different applications, i.e. 

segmenting the road surface to safe or unsafe areas. 

The RWA consists of the following successive steps: 

1) First, the image is transformed to a graph by transforming the brightness 

differences of each pixel and its neighboring pixels to the edges of a fully 

connected graph. When color or multimodal images are concerned, the entropy 

maximization rule using the Gaussian weighting function leads to: 

       2exp( || || ),ij i jw I I       2.31 

where Ii and Ij are the color channel vector values of pixels i and j respectively. 

The square gradients are linearly normalized to [0, 1] before applying 2.31. The 

only user-defined parameter of the RWA is β.  

2) The next step is the construction of a linear system of equations the solution of 

which derives, for each unlabeled pixel, the road and non-road probabilities. To 

construct the system of equations, first the graph Laplacian matrix is defined as 
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    2.32 

where Lij  is the value of the pixel indexed by vertices ui, uj and ( )
i ij

d w e  is the 

degree of a vertex for all edges eij incident on ui. 
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3) The Dirichlet integral is 

 21 1
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       2.33 

where x is a combinatorial harmonic, i.e. a function that minimizes (2.33) and eij 

is an edge of the graph spanning vertices ui and uj .  

4) The graph vertices are split into two classes, VS (seeded nodes) and VU (unseeded 

nodes). Without loss of generality, the pixels in vectors L and x are sorted into two 

sets, the seeds and the unseeded pixels.  

5) Then, decomposition of equation 2.33 is performed: 
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    2.34 

where LS are the seeded and LU  the unseeded pixels of L, respectively, B is a 

result of the decomposition and xU, xS are the sets of road probabilities 

corresponding to unseeded and seeded pixels respectively. Differentiating [ ]
U

D x  

with respect to xU, yields 

  .T

U U SL x B x     2.35 

6) Assuming a two-class segmentation problem, if the road seeds are denoted by VR 

and the non-road (background) seeds by VB, where ,
R B R B S

V V V V V    , then 

the probabilities R

i
x  that a random walker leaving pixel ui arrives at a pixel in VR 

before arriving at a pixel in VB can be computed by 

                          ,R T R

UL x B m                                      

2.36 

where mR = 1 for road seeds and mR  = 0 for non-road seeds. The annotation rule 

assigns each pixel to the class with the maximum probability. In the two-class 

road segmentation problem this is equivalent to assigning a pixel i to the road 

class, if 0.5R

i
x  . 

Since in most applications reliable definition of a sufficient number of seeds that are 

properly placed leads the RWA to produce accurate segmentation results, similar 

results would be expected in a two-class segmentation problem like road detection. A 

typical example of the importance of seeds placement is shown in Fig. 1, where two 

different manual seed placements lead the RWA to significantly different results. 

When the road and non-road seeds are placed close to the road borders, the 

segmentation result is superior and can be easily thresholded (Figure 18(a), (b)). On 

the contrary, a less precise seed placement leads to a result with raised ambiguity that 

is not easy to threshold and appears problematic in shadows as shown in Figure 18(c), 

(d). 
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(a) (b) 

  

(c) (d) 

Figure 18 : Seeds definition (left column) and segmentation result (right column). Road seeds are denoted with the red 

line, while non-road seeds with the blue one. In the segmented images, red color annotates the road pixels and black 

annotates the background. 

2.8 Measures for object similarity assessment  

So far we have presented and analyzed algorithms for image segmentation or object 

detection. Often, the detected objects in an image have to be compared to some 

templates so that their similarity is verified. In this section, the selected similarity 

matching techniques for the purposes of this thesis are presented. 

 2.8.1 Normalized Cross-Correlation (NCC)  

Given two images, a template T and a candidate C, their similarity can be assessed 

using the normalized cross-correlation measure. This measure is estimated as 

described in [50], [51], by  
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where T is the mean of the template and ,i jC  is the mean of image C(x, y) in the area 

under the template. The NCC of two identical images will produce a result with 

maximum value of 1. NCC can also be used for template matching, i.e. the detection 

of a specific object in an image. In that case, the coordinates of the maximum value of 

the NCC will be localized on the centre of the region where the template lies in the 

image.  
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 2.8.2 Mean Absolute Error (MAE) 

The metric of MAE is also a popular measure to determine if two images T and C are 

similar. The metric is given by  

           
1 1

1 M N

ij iji j
MAE C T

M N  
 

   ,    2.38 

where M, N are the number of rows and columns of the two images respectively. Two 

identical images will result in an error that is equal to zero. 

 2.8.3 Structural Similarity Index (SSIM)   

A more complicated metric that combines luminance, contrast and structural 

information in one single index, is the SSIM introduced in [52]. The SSIM is 

estimated by 
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where μC, μT are the average intensity values of the two images,  σC,  σT are the 

standard deviations of the two images, σCT is the covariance of the two images and K1, 

K2 are two constants that ensure that the denominator will never be zero. K1 and K2 

are calculated using: K1 = (k1L)2 and K2 = (k2L)2, where L is the dynamic range of the 

pixel values (255 for 8-bit images) and k1, k2 are very small constants. The value of 

SSIM for identical images is 1.  

2.9 Conclusions  

In this chapter, a presentation of all computer vision algorithms that are used 

throughout this thesis is given. Color space selection and illumination invariance were 

discussed, bearing in mind that the overall goal is to develop ADASs that perform 

efficiently under diverse weather and illumination conditions. Fast symmetry 

detection was then discussed, using the FRST as selected algorithm, because of its 

speed and effectiveness in detecting bright and dark symmetrical shapes in images. 

Histogram-based bimodal image segmentation using the popular Otsu's method was 

also presented and connected to both color segmentation and symmetrical shapes 

detection problems. Motion also plays an important role in ADAS, so the 

incorporation of optical flow algorithms for motion estimation was discussed, with a 

focus on the issue of robustness to shadows and processing complexity, which are a 

common problem in applications of this nature. The most important algorithm utilized 

in this thesis was described in the next section; the RWA is a fast and noise-tolerant 

image segmentation algorithm and it is used in the road detection sub-system. Finally, 

measures used for the comparison of two images are described, as they are used in 

template matching and candidate verification purposes in several sub-systems.    

  





 

 

Chapter 3  

Traffic Sign Recognition System 

3.1 Introduction 

In this chapter we present the first system developed for the purposes of this thesis, 

which is the Traffic Sign Recognition (TSR) system published in [53]. A small 

analysis on the importance and challenges of such a system in a vehicle is presented 

followed by the state-of-the-art algorithms that provide solutions to this problem. The 

next section presents the structure of the proposed system and then its modules are 

analyzed and explained. The system is then evaluated in terms of accuracy and the 

conclusions and future work suggestions follow. 

3.2 The Traffic Sign Recognition problem  

The need for an efficient TSR system is very closely related with the high numbers of 

road accidents that are caused by the driver's inability to focus on the information 

conveyed by traffic signs. Especially signs that inform about dangers, or speed limits, 

as well as the signs that prohibit some action are extremely necessary for secure 

driving. However, the vast amount of visual and other kinds of information that is 

brought into the attention of drivers at any given time often distracts their attention 

from what is really important for their driving reactions. Furthermore, the great 

diversity of environmental conditions and driving scenes can deteriorate drivers' 

visibility and lead to neglecting to focus on Traffic Signs (TS). Some typical 

examples of the diversity of conditions met are shown in Figure 19. 

   (a) (b) (c) 

   (d) (e) (f) 

Figure 19 : Traffic Signs under different environmental conditions: (a) excellent weather and illumination angle, (b) 

occlusions, (c) shaky camera, (d) driving against the sun, (e) rainy conditions and (f) night driving. 
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TSR can be divided into two discrete problems; namely, the Traffic Sign Detection 

(TSD) and the Traffic Sign Classification (TSC). The very useful Tracking of Traffic 

Signs (TST) can be used to enhance the performance of the two aforementioned 

problems both in accuracy and in computational complexity. What is needed in a 

trustworthy TSR system is for it to be accurate, minimizing the false alarms rate and 

furthermore be able to perform efficiently even in challenging driving scenarios and 

adverse conditions.     

The full set of traffic signs can be split into three main groups: danger proclamation 

signs, traffic regulation signs and informational signs. Signs that belong to the first 

group are placed to warn drivers of the dangers that exist ahead on the road, so they 

can anticipate them. The second group comprises signs that inform the drivers of the 

special obligations, restrictions or prohibitions they should conform to. The signs of 

the third group provide information that assists the driver in the navigation task, such 

as junctions, distances etc. As one can understand by examining the full set of traffic 

signs in Figure 20, signs are designed to assist drivers in spotting them easily in 

natural scenes. This is achieved by selecting colors and shapes that differentiate the 

signs from the background. Consequently, the main colors that are used are red, blue, 

yellow and green, with black or white ideograms. The shapes of the signs are 

symmetrical. Triangles, circles, octagons, diamonds and rectangles are used. The 

shape and colors of a TS, along with the ideogram that it contains define its 

significance. 

 

Figure 20 : Complete set of traffic signs. 
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3.3 Related work 

The TSR problem has attracted the attention of many researchers over the past 

decade. The development of a system that can robustly detect and classify TSs in real 

time, has twofold benefits; it can be used in ADAS, assisting the driver to focus more 

on the navigation of the vehicle by providing the information given by the signs but 

also, such systems can be embedded in fully autonomous vehicles that travel in the 

existing road infrastructure. Naturally, in order for these systems to be functional, 

they must have a number of advantages, such as: 

1. They must be resilient to any change in lighting or weather conditions.  
2. They need to be able to recognize partially occluded signs, as well as signs that 

are either rotated, or not exactly perpendicular to the camera axis.  
3. These systems must be robust to the deterioration of the color of some signs, 

usually due to their age and bad weather conditions.  

A very important cue for efficient TSR is the TS color information. However there are 

some researchers who prefer not to use it. In those implementations where grayscale 

images are preferred, the TRD is based mainly on morphology features, such as 

symmetry [54], [55], [56], distance transformations from offline generated templates 

[57] and pyramidal structures for border detection [58], [59], [60]. A machine 

learning approach to TSR using genetic algorithms and neural networks is proposed in 

[61]. In color based TSR methods, proper selection of color space plays a vital role. In 

[62], [63], [64], the standard RGB color space, or the ratios between its color 

coefficients are used. However, RGB is not the ideal color space for real-world 

problems such as TSR, because it is very susceptible to lighting changes due to the 

high correlation of its channels. Thus, color spaces that are less sensitive to such 

changes are preferred; such channels are the HSI, which is used in [65], [66], [67], 

[68], [69], [70], [71], or the LUV space in [72]. After color segmentation is 

performed, road signs are detected using circular and triangular shape matching [65], 

neural networks [66], [71] and genetic algorithms [68], [69]. Simulated annealing is 

used together with genetic algorithms [70]. 

Among the most important tracking algorithms used in TST, the authors of [71] use 

Kalman filters, while Kalman-Bucy filtering is utilized in [57] and a motion-model 

plus temporal information propagation is proposed in [63]. For TSC, the most popular 

methods are based on template matching, either by cross-correlation [65], [70] or by 

matching pursuit filters [67]. Various types of neural networks for TSC have been 

used in [64], [66], [69], [72] and a Bayesian generative modeling is described in [63].  

 3.4 TSD system structure 

The proposed system performs road-sign detection, tracking, and classification. It is 

founded upon a mixture of widely used methods, like the FRST of [36], and partly 

modified ones, such as a modified Otsu threshold of [37], used here for color 

segmentation. Moreover, a number of novel features are introduced, such as the use of 

CIE-L*a*b color space for the color image processing stage, and sign tracking in 



3.4 TSD system structure 

 

34 

 

multiple frames by examining previously selected sub-windows of each frame. The 

structure of the proposed TSD system is shown in Figure 21. 

Frame 

Acquisition

RGB to CIE-L*a*b* 

Conversion 

 Otsu’s 
Thresholding

For Color 

Segmentation

Radial Symmetry 

Detection
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Inform Driver

Image Pre-Processing

TS Candidate DetectionTS Candidate Classification

Cropped TS 
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Define Area to 
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Figure 21 : Structure of the TSR system 

The system processes each image by converting it to L*a*b format and then by 

performing color segmentation. The segmented frame is further processed by the TSD 

and TST modules. The centers and radii of all the detected road signs are used in the 

tracking stage for the next frame and are also used to crop the signs for classification.  

3.4.1 Color Space Selection - Color Segmentation 

For the purposes of the TSR system, the CIE L*a*b color space is chosen because of 

its property of having two color-opponency channels (a* and b*) that represent 

perceptual color differences which are also linearly spaced. The illumination 

alterations in an image affect mostly the L* (Lightness) channel of the L*a*b space. 

Thus, an examination of the L* channel of an image provides information on the 

brightness conditions in which it was acquired. This property can prove beneficial for 

the segmentation process, as the borders of traffic signs typically appear lighter than 

the mean luminosity in dark scenes, and darker than the mean luminosity in well-lit 

scenes. This can be especially useful in night driving conditions, as it filters out much 

of the background scene.  

The image thresholding algorithm proposed by Otsu et al in [37] and described in 

Section 2.4, is used to transform the Lightness channel to a binary image denoted as 

Lbo. Also, four binary images are estimated by bisecting the positive and negative part 

of a* and b* channels, to acquire four chromatic subspaces; the negative subspaces 

are then multiplied by -1 to ensure positive definition for all channels. This process is 

summarized in Figure 22. 
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Figure 22 : The top row contains the original image on the left and the thresholded luminosity, Lbo on the right. The 

middle row shows the normalized red and green channels derived from a* (left and right respectively). The bottom row 

demonstrates the normalized blue and yellow channels derived from b* (left and right respectively).  

The four chromatic subspaces are then transformed to binary images using Otsu's 

thresholding algorithm [37]. The four color-based ROIs are estimated by the 

intersection of the corresponding binary image and the Lbo, if the mean luminosity of 

the frame is lower than 40 (a heuristic threshold discriminating dark from bright 

scenes), otherwise the four ROIs are identical to the corresponding binary images. 

The total segmented area is defined by the union of the four ROIs. 

3.4.2 Symmetry Detection 

The four chromatic coefficients produced in the previous section are scanned for 

symmetrical shapes, using the FRST proposed in [36]. This method has also been 

used in [55] due to its computational efficiency and its relevance to the TSD problem. 
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Depending on the prominent colors of TSs that must detected, some or all chromatic 

coefficients of the segmented image are used.  

In the proposed system the symmetry detection method is optimized for circular 

shapes, but different symmetrical shapes can also be detected by adjusting the radial 

strictness factor a to a low value, e.g. 1. This means that every road sign in the image 

can be detected by this method, as long as it remains in the image frame after the 

color segmentation. The symmetry detection algorithm scans for shapes of one or 

more given radii n, belonging in a range N. A result of this process is demonstrated in 

Figure 23, where TSs of multiple radii are detected. In this example, the radii n in the 

range N = [5, 8, 11] are used. The results acquired for these radii in each of the four 

channels were added to get the separate results of Figure 23 (b)-(d).  

 

(a) (b) 

  

(c) (d) 

Figure 23: Original image (a) and detected symmetrical shapes from all 4 channels for radii of  size (b) n = 5, (c) n = 8 and 

(d) n = 11. Red circles show the two most prominent symmetrical shapes for each radius. 

In order to blindly detect every existing road sign, a large set of radii has to be used, 

increasing the processing time significantly. This is apparent in the example of Figure 

23, since the two large circular signs were best detected by using n = 11, while the 

smaller circular red-blue sign was detected for n = 8. The two triangular signs did not 

produce large symmetry values at their centers, mainly because of the occlusion of the 

red-yellow sign and the size of the white-yellow one that does not allow for its red 

frame to be very visible. The synergy of these two facts with the presence of other, 

more prominent, TSs in the scene leads to a possible miss of the two triangular signs. 

However, this is not the general case, since most triangular signs can also be detected 
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with the aforementioned method. Such detection is demonstrated in Figure 24. The 

fusion of all 3 radii FRST results leads to the detection of both triangular signs, with 

two false positive results on the surface of the red vehicle.  

 

(a) (b) 

  

(c) (d) 

Figure 24 : Original image with triangular signs present (a) and detected symmetrical shapes from all 4 channels for radii 

of size (b) n = 5, (c) n = 8 and (d) n = 11. Red circles denote the two most prominent red results.  

The FRST also produces good results in detecting blue rectangular signs when using a 

low value for the radial strictness factor. However, there is a good chance that the 

detected center will be different than the actual center of mass of the detected TS, but 

this deficiency can be dealt with in the post-processing phase. Such an example is 

shown in Figure 25. 

(a) (b) 

Figure 25: (a) Original image with a blue rectangular TS present and (b) detected FRST centers from all 4 channels for 

radii of size n = 5, n = 8 and n = 11. Blue circles denote the two most prominent blue results. 



3.4 TSD system structure 

 

38 

 

The required computations when tackling a problem with multiple radii can be 

reduced by taking into account two inherent properties of the TSD problem: 

(a) Computations can be performed in parallel architecture, as the calculations needed 

for the symmetry detection can be performed independently for each radius. 

(b) Using detected TS positions from previous frames, the regions of the image that 

have to be scanned for larger radii are reduced in size and number.  

The second approach has been implemented in the proposed system reducing both the 

number of radii that have to be used and the size of the scanned regions. Before this 

process can commence, the detected candidate TSs from the aforementioned process 

must be cropped and identification of their shape must be carried out. 

3.4.3 Center Localization – Shape Determination 

The sum of the FRST result for all radii and all color channels is filtered by a non-

maxima suppression method using a window of size nmax x nmax, where nmax is the 

maximum radius used in the FRST. After the candidate TS centers have been located, 

they are cropped using their radius length. More specifically, a square area with 

dimensions 2.5n x 2.5n with center of mass the detected symmetrical shape center, is 

cropped and used as a candidate TS.  

Once the TS candidate is cropped, it is transformed to binary by thresholding the 

channel of its prominent color (a* for red, b* for yellow or blue), then undergoes a 

binary closing to fix possible partial occlusion issues and the holes in the image are 

filled, in order to perform NCC based template matching with the different road sign 

shapes templates (i.e. circle, triangle, octagon and rectangle). At the end of this stage, 

the approximate location, radius and exact shape of the candidate TS have been 

estimated leading to a reduction of misclassifications for the TS, since it only has to 

be compared to the template TSs of the same shape type. The process described above 

is summarized in Figure 26. The NCC values between each binarized candidate in 

Figure 26(c) and each of the shape templates are compared and the highest value for 

each candidate denotes its shape class. When the binarized candidate is completely 

black, as in the fourth case, the candidate is rejected.   

(a) (b) (c) (d) (e) 

Figure 26 : (a) The original image with the results of non-maxima suppression for the total FRST, (b) cropped candidate 

TSs, (c) binarized TSs, (d) shape templates and (e) classified shapes overlaid on candidates. 
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The results demonstrated in the previous figure bring forward two valuable 

conclusions: a) the circular red signs were all detected and their shape was correctly 

classified and b) the white object detected as a candidate sign produces a black 

binarized image after the pre-processing stage, hence leading to the rejection of the 

candidate. 

The same process is followed in the case of blue TSs, since the only parts of the 

system that change are the color channel involved in the localization process (b* 

negative values instead of a* positive values) and the shape templates (rectangles 

instead of octagons and triangles). Such a case is demonstrated in Figure 27, where 

only one center location remains after the suppression process and the NCC result for 

the circle template is higher than that of the rectangular template (approximately 0.7 

vs. 0.6 respectively).  

     

(a) (b) (c) (d) (e) 

Figure 27: (a) The original image with the results of non-maxima suppression for the total FRST, (b) cropped candidate 

TSs, (c) binarized TSs, (d) shape templates and (e) classified shape overlaid on candidate. 

3.5 Traffic Sign Tracking 

The tracking module has been designed to minimize the computational burden and 

tracking errors of the system. Aiming at this direction, the center coordinates of all 

detected candidate TSs, of a chosen small radius (e.g. 10 pixels), are passed to the 

module that processes the next frame. This module performs symmetry detection 

identical to that of the TSD module for a sub-window of specified size and centered in 

the coordinates given by the localization procedure of the previous frame. Thus, once 

having detected a road sign centered in (i, j), the algorithm scans the next frame in an 

area around (i, j), for a symmetrical shape with a radius of the nearest integer value 

greater than the one estimated in the previous frame.  

This procedure is repeated for every sign detected in the previous frame, regardless if 

it was its first appearance or if it was tracked from an earlier frame. An obvious flaw 

of this method is the possibility of temporary loss of visibility of the tracked sign 

(either total, or partial) in one or more consecutive frames, which results in tracking 

failure. An efficient parallel process method is used to resolve this problem, by 

choosing more than one radii in the initial candidate TS detection process (e.g. 10, 15 
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and 20 pixels), thus the sign is localized again in the following frames. This technique 

slightly increases the computational effort but recovers missing road signs by 

including more results in the basic detection process.  

A situation where this method is successfully applied is demonstrated in Figure 28. In 

the first two frames, the circular red signs have been detected (the no parking sign has 

been detected as blue), when the FRST has been set to detect symmetrical shapes with 

radials of 10 pixels. In the third frame, the two larger circular signs cannot be detected 

for a radial of 10 pixels. However, when the regions around the previously detected 

TS candidates (yellow dash rectangles) are scanned for symmetrical red shapes of 11 

pixels radial, the two circular signs are detected again. One important detail that 

should be noted, is that the process described is limited to the area in the yellow 

rectangles and possible center results that lie inside the regions that already contain a 

detected candidate are discarded (to avoid overlapping results for the same TS).   

(a) (b) 

(c) (d) 

Figure 28: (a) First frame and detected TS candidates of 10px radial, (b) second frame and detected TS candidates of 

10px radial, (c) third frame and detected TS candidates of 10px radial, (d) third frame and detected TS candidates of 

10px radial, plus detected TS candidates of 11px radial around the areas of previously detected TS candidates (yellow 

rectangles in (d)). 

Another thing worth noting is the fact that the no parking sign gets detected as both 

red and blue in the third frame. This is an early indication about the exact class of the 

aforementioned sign, without having to check it against all circular TS templates in 

the classification stage.     
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3.6 Traffic Sign Classification (TSC) 

In the previous sections, the candidate TSs detection and tracking modules of the 

proposed system in the frames sequences shot from a moving vehicle have been 

presented. With a successful detection and tracking procedure, every TS in the 

driver’s visual field is cropped, resized to 64x64 pixels and passed on to the TSC 

module. The number of potential template matches has already been significantly 

reduced by processing the information of the color and shape of the TS, as explained 

in previous sections.  

More specifically, four categories of road-signs can be defined; circular red, triangular 

red, circular blue and rectangular blue. Two more categories, i.e. the octagonal STOP 

sign and the inverse triangle shaped yield sign, can be classified by the shape 

classification module, since they are unique. The classification rule is based on the 

maximum value of the NCC defined in Equation 2.37, of the cropped TS candidates 

with the reference template TSs. The classification process for the circular and 

rectangular blue signs uses only the NCC for the b* channel, while for all the other 

categories the sum of NCC is used for classification. More specifically, two classifiers 

are defined; one for red circular or rectangular TSs, and one for blue circular and 

rectangular signs. The classifiers T1 and T2 are estimated by 
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where C is the cropped candidate TS image, T(k) is the k
th

  template TS from the 

selected category and NCC(CL*,TL*(k)), NCC(Ca*,Ta*(k)), NCC(Cb*,Tb*(k)) are the 

normalized cross-correlation results for the 3 color channels between the candidate TS 

and the k
th

  template TS as estimated using equation 2.37. Finally, S is the total 

number of signs in the shape/color category that the candidate TS has been classified 

by the shape classifier of the previous step.  

The four categories of signs that are included in our system are presented in Figure 

29. Two important observations are:  

(i) the STOP sign has been included in the circular red signs category as a fail-
safe measure for cases where the shape of a detected STOP sign is classified 
as circular. The same goes for the inverse triangle yield TS.  

(ii) The no parking / no stop signs have been included in both red and blue 
circular categories to improve their detection rate.   
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(a) (b) 

 

 

(c) (d) 

Figure 29 : The TS dataset used for the evaluation of the TSR system. 

3.7 Experimental results 

Our quantitative experimental data consisted of the 4 TSR video clips presented in 

sub-section 1.6.1, acquired from two different video cameras, the SONY HC85 and 

the SONY DCR-TRV60E using PAL non-interlaced video (frames of 720x576 pixels) 

at 25 fps. The system was also qualitatively assessed using parts of the other video 

streams presented in Section 1.6 as well. 

3.7.1 Traffic Sign Detection results 

The strongest part of the proposed system is its TSD module, which is robust and 

precise, even in challenging situations. A very high percentage of the traffic signs in 

the sequences used for quantitative evaluations were detected successfully, reaching a 

rate of approximately 95.3% when using three possible radii (10, 15 and 20 pixels). A 

TS is considered successfully detected when the TS has been located by the TSD 

module at least once in the frames of its appearance in the video stream. This means 

that even without the TST module, the FRST based detection is a very effective 

means of accomplishing this task. However, the big disadvantage of not using the 

tracking module is the large number of false positive results and overlapping regions. 

In Figure 30, some typical examples of the TSD process using the aforementioned 

radii are shown. 
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Figure 30 : Typical TSD examples for a single frame using radii in {10, 15, 20}. 

What becomes obvious from the analysis of Figure 30, is that despite its very high 

detection rate, the TSD module alone would be a poor choice in real-life applications 

since its precision rates are very low (approximately 53%). This is the reason why the 

TST module combined with the shape classifier are imperative for the system to be 

considered usable. When using those two modules, the final TSD result is much more 

immune to false positives and ROI overlaps, as demonstrated in Figure 31.  

 

Figure 31 : Typical TSD and TST synergy results. 

Using both TSD and TST modules in one system also proves robust in more 

challenging driving scenarios, as show in Figure 32. 
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Figure 32 : Typical TSD & TST synergy results in challenging scenes. 

3.7.2 Traffic Sign Classification results 

The TSC results can also be split in two categories; the frame-by frame TSC results 

and the TSC results after tracking the sign. In the first case, the correctness of a 

candidate TS classification is measured in each frame separately, while in the second 

a TS is considered correctly classified when it has been assigned to the correct class 

for 5 or more consecutive frames. Some examples of correct and incorrect TS 

classifications using the first method are shown in Figure 33. 

 

Figure 33 : Examples of correct (top four rows) and incorrect (bottom two rows) classifications using the frame-by-frame 

method. 

 In Table 3 the recognition rates for the classification module using the ROIs located 

by the TSD module for the frame-by-frame case are shown, for normal, night driving 

and raining conditions. In night recordings, the TSD module tends to locate faulty 

ROIs due to the presence of a great number of light sources that are often 

misclassified as TS. 
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Table 3: TSR rates using only one frame. 

TYPE OF ENVIRONMENT 

Normal  Raining  Night driving 

43.92% (343/781)  43.75% (7/16) 6.92% (11/159) 

The tracking module does not only improve the detection accuracy of our system, but 

it also boosts the classification results, since the detected TS candidates can be tracked 

over time and classified in all frames of their appearance. The consecutive frames TS 

classification criterion significantly reduces the false positive rate classifying as a sign 

a ROI that is detected for 5 or more consecutive frames. This approach minimizes the 

errors involved in a frame-by-frame classification method, where a candidate might 

have multiple different classifications throughout the time of its appearance in a 

driving scene.   

The proposed tracking method increases the TSC rate to 81.2%, classifying correctly 

216 out of 266 signs. In adverse conditions, the proposed system frequently fails to 

detect the triangular signs especially in low light and rain. Furthermore, a raised 

number of false positive TS candidates are detected in city night driving. 

3.8 Conclusions  

This chapter was devoted to the TSR sub-system developed for the purposes of this 

thesis. The TSR algorithm can be split into three stages, namely the pre-processing 

stage, the TS candidate detection and the TS candidate verification, which are 

presented in separate sections. A tracking module that enables a more efficient and 

robust function of the system is also analyzed. Finally, the system is experimentally 

evaluated in video streams shot under diverse conditions to prove that, while the 

detection algorithm is quite efficient, the recognition rate using the NCC method is 

not very trustworthy when a large subset of TS templates is used.  

The sub-systems developed for TSR purposes are very efficient in the TSD part of the 

process, while introducing a limited number of false positive detections because of the 

tracking module and the shape classifier that process the results before the final 

classification. The TSC module is not as successful, but one has to take into account 

the big number of TS templates that are included in the dataset used for the evaluation 

of the system, raising the probability of error, especially for signs that are very 

similar. 

      

 

  





 

 

Chapter 4 

Traffic Light Recognition  

4.1 Introduction 

The system presented in this chapter performs Traffic Lights Recognition (TLR) and 

was presented in [73]. The need for the development of such a module for an ADAS 

is presented in the next section, followed by a literature review. Then, the structure of 

the TLR system is demonstrated and the different modules comprising the system are 

explained. An evaluation of the system in terms of accuracy and robustness follows 

and a comparison to other methods is discussed. Finally, some conclusions about the 

overall efficiency of the proposed system are drawn and some future work 

suggestions are given. 

4.2 Literature review 

TLR is a rather neglected process in ADAS. While a vast amount of all road accidents 

is caused by drivers who violate Traffic Lights (TLs) indications especially in 

intersections, the number of systems designed to mitigate this risk is relatively small. 

TLs might seem like a simple pattern recognition problem for computer vision 

systems, but the reality lies far from that idea. The driver recognizes TLs by 

processing morphological information in the scene related to the position and type of 

the TLs, the presence of intersections, traffic signs, etc. All automatic methods for 

TLD do not process complex scene information, but detect the presence of TLs only 

by using their most prominent cues. Therefore, especially in city driving, the sources 

of light that can be misclassified as TLs very frequently appear, spanning from LED 

billboards, to the rear lights of other vehicles. The existence of this "noise" can affect 

TLR systems negatively by increasing the number of false positive detections that 

may prove disruptive for the driver. When driving at night, this phenomenon is even 

more obvious, as the number of light sources is significantly increased. The process of 

TLR is very similar to that of TSR presented in the previous chapter and can be 

divided into the Traffic Light Detection (TLD) phase and the Traffic Light 

Classification (TLC) phase. While the former is generally more challenging than TSD 

due to the smaller size of TLs, the latter is much less complicated than the TSC phase, 

because the number of classes is very limited.  

The idea of using TLR for ADAS in urban environments was first introduced in the 

late 90’s. In [74] a computer vision based Stop & Go algorithm using a color on-board 

camera is proposed. However, the use of computer vision for ADAS bloomed in the 

next decade, as computer processor speeds reached a point that enabled real-time 
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implementation of complex algorithms. The work of [75] proposes the fusion of data 

acquired by color cameras, GPS and the vehicle movement to increase the robustness 

of their TLR algorithm, which is combined with a tracking module. Their TLD part 

uses RGB color values, texture and shape features. The approach proposed in [76]  

uses the HSV space, performing color thresholding followed by a Gaussian filtering 

process and a verification of TL candidates to achieve TLD in crossroads. A similar 

approach is followed in [77], based on HSV images and a Gaussian distribution-based 

model estimated by training images. Shape and temporal consistency information are 

combined in a post-processing phase to enhance the results. A more straight-forward 

process is proposed in [78], where the normalized RGB color space is used to locate 

candidate regions and the results are validated by means of edge and symmetry 

detection. Color information has been ignored in [79], where grayscale spot detection 

is followed by an Adaptive Template Matcher, achieving high precision and recall 

rates in real time. The results of [79] were tested thoroughly and compared to those of 

an AdaBoost method using the manually annotated videos found at [21]. The problem 

of TLD in day and night scenes has been addressed in [80] using RGB thresholding 

and shape dimensions to detect and classify lights in both conditions. 

By reviewing related literature to date, the following conclusions can be drawn about 

vision based TL detection:  

 Color information is not always utilized; when it is, either the HSV or the RGB 

color space is used. 

 Many researchers propose the use of heuristic thresholds that cannot be optimal 

for all possible driving conditions (i.e. shadows, rain, and night). Generally, 

adverse conditions are not addressed in most papers.  

 Symmetry is a widely used cue, either when estimated using novel techniques, or 

using the well-known Hough transform, but never with the FRST [36]. 

 Traffic light candidates usually get validated to exclude false positive results. 

The use of TL models, tracking, or both is the most commonly used solution. 

 Apart from [22] that provides a publicly available annotated dataset of on-board 

video frames taken in Paris, to the best of our knowledge, there are no other 

annotated datasets for traffic lights detection.  

The TLR algorithm developed for this thesis was inspired by the approaches followed 

for TSR in [81], [53]  and [82]. The FRST that was introduced in [36] is employed in 

all the aforementioned systems, to take advantage of the symmetrical geometry of 

road signs. The symmetry and color properties are similar in road signs and traffic 

lights, so these approaches can be a good starting point. The goal of the system is to 

provide a timely and accurate detection of red and green traffic lights, which will be 

robust even under adverse illumination or weather conditions. 

The proposed system is based on the CIE-L*a*b* color space exploiting the fact that 

the perceptually uniform a* coefficient is a color opponency channel between red 

(positive values) and green (negative values). Therefore, it is suitable for distinction 

between the two prominent classes of TLs. An image processing phase comprising 4-
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connected neighborhood image flood-filling on the positive values of a* channel is 

then applied, to ensure that red traffic lights will appear as filled circles and not as 

black circles with a light background. The FRST is then utilized to detect symmetrical 

areas in a*. The proposed system has been tested in various conditions and has been 

qualitatively and quantitatively assessed, producing very promising results.  

4.3 TLR system structure 

The hardware setup for the TLR system is similar to most related applications, using a 

monocular camera mounted on an elevated position on the windscreen of the moving 

vehicle. The video frames acquired by the camera are processed through three cascade 

modules. The first module performs image pre-processing, aiming to produce images 

in which red TLs will appear as very bright circular blobs and green TLs will appear 

as very dark circular blobs. The output of the pre-processing module is passed on to 

the traffic light detector, which consists of a FRST for various radii, followed by a 

detection of multiple local maxima and minima in the top part of the frame. The last 

module applies a spatiotemporal persistency validation step to exclude those 

candidates that do not appear in multiple frames, thus minimizing false positives. 

The proposed algorithm consists of the following successive steps: 

1) Frame acquisition.  

2) Image pre-processing: 

a) Conversion of image from RGB to L*a*b*. 

b) Enhancement of red and green color difference. 

c) Holes filling process in enhanced image    

3) TL candidate detection: 

a) Radial symmetry detection using the FRST. 

b) Maxima/minima localization. 

4) TL candidate verification: 

a) Spatiotemporal persistency check for validation of candidates. 

All the aforementioned steps are demonstrated in the flowchart shown in Figure 34. 
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Figure 34 : Structural diagram of the proposed TLR system. 
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4.3.1 Image pre-processing  

The first stage of the TLR system has the purpose of further enhancing the difference 

between red and green light sources in the scene using the FRST algorithm that has 

already been described in Chapter 2 integrating both the TL candidate detection and 

classification process in the same step. Therefore, it is safe to deduce that the images 

that will be generated by the pre-processing stage must represent red TLs as very 

bright circular blobs and green TLs as very dark circular blobs. In the resulting 

images red TL centers will have large positive values while green TL centers will 

have large negative values. 

To achieve this goal, a new color channel is formed by mixing the two channels of 

L*a*b* that carry the most important information for TLD. These are the lightness 

channel L*, which has large values in the TL area and the red-green opponency 

channel a*, which has large positive values for red TLs and large negative values for 

green TLs. By multiplying these two channels we produce a channel with enhanced 

difference of bright red and bright green objects in the scene, called RG hereafter: 

 ( , ) L( , ) α( , )RG i j i j i j  ,    4.1 

where i, j are the row and column pixel coordinates. 

The aforementioned transformation leads to a further increase of pixels belonging to 

TLs, while affecting other red and green objects like rooftops, trees etc. to a lesser 

degree. A typical example is shown in Figure 35, where TLs appear dark both in the 

RG and a* channels, while the tree leaves are less dark in the RG images. A similar 

effect is observed with red signs and non-illuminated rear vehicle lights, which appear 

less bright in the RG channel than in a*.     

  (a) (b) 

  

(c) (d) 

Figure 35 : (a) Original image, (b) L* channel, (c) a* channel and (d) RG channel. 
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Even though the process described above achieves a better discrimination of TLs from 

the background, it is not efficient in handling along a common abnormality of real life 

scenes with bright lights, which is denoted as "blooming effect". This phenomenon 

describes the appearance of TLs and other bright objects as dark circles with a bright 

circumference, as shown in Figure 36. Several effects increase the false positive TLs 

rate, but the most important:  

1) the dynamic range of cameras may be unable to capture very bright lights, thus 
saturating their inner areas and  

2) red TLs often include some orange in their hue and green TLs include some blue. 

In order to tackle this problem, additional information related to yellow-blue 

brightness contained in the b* channel is used. The same process followed in 4.1 is 

applied, i.e. non-linear mixing of channels L* and b* is performed: 

( , ) L( , ) b( , )YB i j i j i j     4.2 

The summed image of 4.1 and 4.2 is RGYB: 

                         ( , ) ( , ) ( , ) L( , ) (a( , ) b(i,j)),RGYB i j RG i j YB i j i j i j         4.3 

where i, j are the pixel coordinates. 

The RGYB image has a positive effect in the reduction of the "blooming effect". An 

example is given in Figure 36. 

 

 

(a) (b) 

 

0 

(c) (d) 

Figure 36 : (a) The original RGB image and (b) its RG channel, where the red TL on the right suffers from the "blooming 

effect". (c) The YB channel and finally (d) is the RGYB channel, with the "blooming effect" corrected. 



4.3 TLR system structure 

 

52 

 

The RGYB channel is a reliable input for the forthcoming FRST, since it accomplishes 

two different goals, by reducing:  

1) The prominence of less bright red or green spots in the scene. 
2) The "blooming effect".  

The first virtue of this transformation will improve the detection rate of the FRST 

module, since the prominent bright and dark spots will be reduced to light-emitting 

objects, while the second virtue will enable a simpler classification process, since 

there will be no correlation between a red light with "blooming effect" and a green 

light. 

An added difficulty is induced to the problem of TLR when more challenging 

conditions, like night driving, are introduced. More specifically, the appearance of the 

"blooming effect" cannot be efficiently tackled only by using the RGYB channel. Such 

a scene is demonstrated in Figure 37, where the opposite problem is observed; instead 

of a dark circle with a bright halo, green TLs appear as small bright circles surrounded 

by a dark halo. This effect increases the false classification rate, misclassifying green 

TLs as red ones.  

To tackle this problem in night driving, an additional morphological operator 

processing module is proposed. This is a grayscale 4-connected neighborhood image 

filling [83] of the holes in both bright and dark areas of the image. The process has 

two steps; first the RGYB image is thresholded to produce two separate channels, one 

with red and yellow shaded pixels (RGYB   0) and one with green and blue ones 

(RGYB  < 0). Then, the holes in both images are filled using the method of [83] and 

the two resulting images are added to form the final result. The process described is 

demonstrated in Figure 37 where the red ellipses denote areas with a strong blooming 

effect and the result of our method. 

 

 

(a) (b) 

 

 

(c)  

Figure 37 : Handling the “blooming effect” at night. (a) RGB image, (b) RGYB channel, (c) RGYB channel after filling 
process. 
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4.3.2 Radial Symmetry Detection 

After the RGYB image has been estimated at the end of the previous stage, it is 

scanned by the already presented FRST algorithm to detect symmetrical blobs. As 

mentioned in Chapter 2,he main feature of the FRST is detecting symmetrical shapes 

in grayscale images, producing local maxima in the centers of bright blobs and local 

minima in the centers of dark blobs. The only parameters that have to be defined for 

this process are a radial strictness factor, a, and the set of radii N that need to be 

detected. 

Since the RGYB image includes red and green color opponency, it is appropriate for 

the FRST. Some examples of the implementation of the FRST (for radii from 2 to 10 

pixels with a step of 2 and a=3) to pre-processed frames of various videos are 

reported in Figure 38.  

  

  

  
Figure 38: Original driving scenes at day and night time (left column) and their corresponding FRST (right column). 

Dark spots denote green TLs, light spots denote red TLs. Local maxima/minima detection is performed above the orange 

line (which depends on the camera placement). 

The images presented in Figure 38 show that the centers of the TLs appearing in the 

scenes are included in the most voted pixels of the frame, provided that the FRST has 

been applied for a set of radii that includes the TLs radials. Consequently, the result of 

the FRST undergoes a non-maxima suppression to detect red TLs and a non-minima 

suppression to detect green TLs must be applied. However, since the nature of the TL 
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detection problem allows attention to be focused on the conspicuous region of the 

image, i.e. the upper part, only this region will be used for the suppression process. 

Since the on-board camera was not placed in a constant position in all the videos used, 

the ROI selection used for suppression must be completed during system calibration.  

An automatic ROI selection method using horizon detection, or vanishing point 

techniques could be utilized [84], [85], but this is not required because the areas 

where a TL could appear can be easily predicted during the camera setup. Hence, the 

proposed TL detection system does not include such a method, reducing significantly 

its computational complexity. In the examples of Figure 38, the suppression took 

place above the orange line. 

The suppression processes were setup to select the greater 5 local maxima and the 

lower 5 local minima. ROIs with an absolute FRST value lower than half the global 

absolute maximum were rejected. Each TL candidate ROI is produced from the 

suppression step as a rectangle with coordinates that are determined by the detected 

center coordinates, the radius and the color of the TL. More specifically, the 

annotation of a TL rectangle ROI starts at 6 radii up and 1.5 radii to the left of its 

FRST center and has a width of 3 radii and a height of 7.5 radii. Similarly, the 

annotation rectangle for a red TL starts at 1.5 radii up and 1.5 radii to the left of the 

FRST center and has the same height and width as above. These details are shown in 

Figure 39. 

n

7.5n

3n

n

3n  

Figure 39 : TL annotation based on radial n. 

4.3.3 TL candidates verification 

The last stage of the proposed TLR system is a TL candidate verification process, 

which is crucial for the minimization of false positive results that might be caused by 

bright color blobs that resemble a TL. Road signs, LED billboards etc. can be 

misinterpreted as TLs, because their shape and color properties are similar to a TL. 

However, such artifacts usually don’t appear radially symmetrical for more than a few 

consequent frames, as opposed to the symmetry and color properties of TLs that are 

more robust to temporal scale variations. Hence, many of the false positive results can 

be removed by introducing a condition of multiple appearances of a TL in successive 

frames. 

The condition of multiple appearances in successive frames, hereafter called 

spatiotemporal persistency, states that a TL will appear in the top voted FRST results 
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in a sequence of frames (temporal persistency) and its detected center is expected to 

leave a track of pixels not far from each other (spatial persistency). Such a result is 

shown in Figure 40, where the trails left by the centers of two green TLs over a period 

of 30 frames are denoted by green dots. The trail of sparse dots on the left belong to 

objects falsely detected as TLs and do not fulfill the persistency criterion. 

 
Figure 40 : Spatiotemporal persistency check. Notice the trails left by the centers of two green TLs. 

 

Figure 41, where the first column shows frames 1, and 2 and the second column 

contains frames 3, and 4. The red rectangles denote a red TL candidate and the yellow 

ones denote a green TL candidate. 

  

  

 

Figure 41 : Four consecutive frames, TL candidates annotated by rectangles. Non persistent candidates are dismissed. 

Candidates persistent for 3 out of 4 consecutive frames get verified. 

4.4 Experimental results 

The proposed TLR system has been evaluated using both quantitative and qualitative 

experimental results. The quantitative assessment has been based on the publicly 

available annotated video stream of [22], which has already been described in Section 
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1.6.2. The qualitative evaluation of the system has been based on several videos from 

the ones that have been described in sub-sections 1.6.1 and 1.6.3, either shot by the 

authors in Greek roads, or downloaded from YouTube.  

The TLR system has been implemented fully in Matlab and tested on a computer with 

a Core 2 Quad CPU at 2.83GHz, and 4GB of memory. The system implementation 

code did not use any parallelization. The processing times achieved were directly 

affected by the resolution of the videos and they fluctuated from 0.1ms to 0.5ms per 

frame, i.e. near real-time response. 

As far as the parameters used for the proposed algorithm are concerned, the radii for 

the FRST in the experiments were 2,4,6,8, and 10 pixels. The radial strictness was set 

to a=3, and for the spatiotemporal persistency to hold, a candidate must appear in at 

least three out of four consecutive frames, in an area of a radius of 20 pixels. 

4.4.1 Quantitative results 

The quantitative results of the TL detector are estimated following the instructions 

given in [22], for their publicly available, manually annotated video stream. These 

instructions stated that from the 11179 frames included in the video stream, only 9168 

contain at least one TL. However, not all the TLs appearing in these frames are used: 

TLs with yellow colors (58 instances) are excluded, as well as many lights which are 

ambiguous due to heavy motion (449 TLs). Apart from these, 745 TLs that are not 

entirely visible, i.e. are partially outside the frame, are also excluded. Eliminating all 

these TL instances, a total of 7916 visible red or green TLs remain. The total distinct 

TLs that comprise these 7916 image instances are 32. 

The results scored by the proposed system are estimated following the same rule as 

[79], which states that if a TL is detected and recognized once in the series of frames 

where it appears, then it is classified as a true positive. Hence, a false negative result 

is a TL never detected in its timeline. Using these definitions, the proposed algorithm 

scores a detection rate (recall) of 93.75%, detecting 30 of the total 32 TLs. The 2 

missed TLs were of green color and appeared for 49 and 167 frames in the scene. In 

both cases, the proposed system detected the paired TLs appearing in the same scene, 

so the goal of informing the driver was achieved. Some detection examples from the 

aforementioned dataset are given in Figure 42. The total number of false positive 

detections is 1559, of which 1245 are false red TL positives and 314 false green TL 

detections. The red false positive instances concern 12 different objects misclassified 

as red TLs, while the number of different objects misclassified as green TLs is 7. This 

means that the precision of the system is 61.22%.  

The false positive rate could be significantly reduced by using morphological 

operations, like the templates utilized by [79] and [21], who report precision rates of 

up to 97% using also temporal matching. A more direct comparison between our 

system and the two aforementioned approaches is not feasible, due to the lack of 

details in their evaluation process. Some characteristic results of successful and 

unsuccessful recognitions are presented in Figure 42.  
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Figure 42 : TL detection results in daytime driving. A false positive red color TL example is show in the bottom left image 

and a false negative is shown in the bottom right. 

4.4.2 Qualitative results 

The experimental results reported in sub-section 4.4.1 show that the system appears 

effective and robust in the case of urban driving in good weather and illumination 

conditions. The problem of false positives is not so persistent and could be further 

improved if, as already mentioned, a TL model is used for a final verification and a 

color constancy module is introduced. However, the great challenge of such systems 

resides in more demanding driving conditions, including driving under rainy 

conditions and driving at night time. 

For this reason the proposed system is also evaluated in such conditions, so that its 

robustness and resilience can be examined. More than 2 hours of videos shot from on-

board cameras were gathered from the internet and used for the qualitative evaluation 

of the system. The ultimate goal is to construct a dataset of driving videos shot in 

challenging conditions, which will be annotated and freely distributed for research 

purposes in the future.  

4.4.2.1 Driving under rainy conditions 

Among the most important and challenging cases in ADAS is driving in rainy 

conditions. The difficulty present is that raindrops on the windshield often distort the 

driving scene and could cause the various objects to appear disfigured. Another 

problem in rainy conditions is the partial obstruction by the windshield wiper in 

various frames. For these reasons, every vision based system should be tested under 

rainy conditions, as the results produced may vary a lot from the ones achieved in 

normal weather. Some examples of successful TL detections in rainy conditions are 

shown in Figure 43.  
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Figure 43 : Successful TL detection results in rainy conditions. 

4.4.2.2 Driving at night 

The second important category of adverse driving conditions is night driving. The 

difficulty of the situation relies largely on the environment and the mean luminosity 

of the scene. If the environment does not include excessive noise like for example 

dense advertisements or other lighting sources, the proposed system performs 

satisfactorily, even in urban driving situations. Successful detections in night driving 

scenarios are presented in Figure 44. Most TLs are successfully detected, even when 

their glow makes it very difficult to distinguish shape and morphology cues.   

  

  
Figure 44 : TL detection results in urban night driving. 
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4.4.2.3 Known limitations of the Traffic Lights Recognition system 

A very common question when dealing with computer vision applications is whether 

there are classification rate limitations, i.e. low rates of accuracy derived from 

processing certain image frames. Compared to the human TLD perception system, a 

machine based TLD performs poorly. Taking into account that a human driver detects 

the position of TLs using an extremely accurate object recognition system and by 

efficiently processing morphological information related to appearance of 

simultaneous objects positions in the scene (road lines, crossroads, TLs), the accuracy 

of our TLD system using only TL color information is quite satisfactory.   

The proposed method is by no means flawless and can produce persistent errors in 

some situations. The main problems that can be pinpointed are the following: 

(i) The system produces some false positive results that cannot be easily 
excluded, unless it is used in correlation to other computer vision modules like a 
vehicle detector or a road detector. An example of such false positives is illuminated 
vehicle tail lights, or turn lights, as shown in Figure 45(a). This image also includes a 
false positive result that is eliminated in the following frames.  
(ii) The proposed system fails completely in cities like New York (Figure 45(b)), 
where the visual information is extremely dense and a great number of similar to TLs 
objects appears in the scene.  

  
(a) (b) 

Figure 45 : Examples of temporary or permanent failures of the proposed system. 

4.5 Conclusions 

In this chapter, a novel automatic algorithm for TLR using a monocular on-board 

camera has been proposed. The algorithm uses color, symmetry and spatiotemporal 

information to detect the red and green color of TLs in a fashion resilient to weather, 

illumination, camera setup and time of day. It utilizes a CIE-L*a*b* based color 

space with a holes filling process to enhance the separability of red and green traffic 

lights. A fast radial symmetry transform is then used to detect the most symmetrical 

red and green regions of the upper part of the image, producing the TL candidates. 

Finally, a spatiotemporal persistency criterion is applied, to exclude many false 

positive results. The algorithm has been experimentally assessed in many different 

scenarios and conditions, producing very high detection rates, even in very adverse 

conditions.  

Future work will be directed towards embedding a tracking module to decrease the 

false negative results and a color consistency module to further reduce false positives. 

Furthermore, the combination of the TL detector with other ADAS modules like 



4.5 Conclusions 

 

60 

 

vehicle, sign and road detection will be explored, so that a complete solution for 

driver assistance will be proposed.      

 

  



 

 

Chapter 5 

Single Image Detection of Preceding Vehicles  

5.1 Introduction 

In this chapter, an algorithm for Preceding Vehicles Detection (PVD) that can be 

integrated in ADASs for forward collision avoidance is proposed. It is based upon a 

combination of multiple cues present on vehicles, such as the red color of rear lights, 

horizontal edges and symmetry. The system was presented at [86].The rest of the 

chapter is organized as follows; first, a survey of state-of-the-art methods for PVD is 

performed, followed by a presentation of the proposed system structure. Then, the 

separate system modules are presented in detail and an evaluation of the results of the 

proposed system is performed. Finally, a discussion on future improvements and ideas 

on the problem of PVD is presented.  

5.2 Literature Review 

Computer vision based techniques proposed for vehicle detection usually utilize 

visual features like appearance or motion. An extensive review of the most notable 

methods until 2006 can be found in [87], while a more recent survey focusing on 

active learning methods is in [88]. The methods presented in [87]  mostly comprise 

two stages, namely the hypothesis generation (HG) and the hypothesis verification 

(HV) stage. The HG stage uses information acquired form a monocular or 

stereoscopic video camera mounted on a moving vehicle to detect areas of interest in 

a frame where a vehicle might be present. To achieve this, the HG module can use 

low-level knowledge based cues like color, symmetry, edge or corner detection and 

texture information. These cues can also be combined to detect higher-level features, 

like shadows and lights. Other knowledge based methods of HG use motion 

information, or stereovision in the case of stereo cameras. Once detected, the 

candidate vehicle areas of interest are passed on to the HV stage, where some systems 

use representative vehicle patterns to correlate to the detected region, while others use 

appearance cues to train a classifier which then separates the detected regions to 

vehicle or not vehicle. Many researchers have also added a third stage to their 

systems, which tracks the detected vehicles in a sequence of frames, thus improving 

the detection performance mainly by reducing false positive detections.  

A widely used cue for the identification of a preceding vehicle is its rear lights. This 

approach makes the resulting systems robust in night driving conditions, when other 

vehicle features are hard to detect due to limited scene illumination. Moreover, the 

regulations in the U.S.A. [89] and the E.U. [90] state that the rear lights of vehicles 
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should be red, making them a discriminative cue that can also be used at day time, 

especially for braking vehicles detection. The most common approaches use the RGB 

color space or its separate channels to segment rear vehicle lights. In [91] rear vehicle 

lights are segmented based on a combination of grayscale and red color brightness 

derived from the normalized difference of the R and B color channels; the detected 

tail lights are then paired and filtered for false positives using an Inverse Perspective 

Mapping method. The system proposed in [92] computes a “red level” for every pixel 
in small regions of interest, based on a proportion between RGB channels followed by 

a symmetry analysis of the color distribution to verify the rear lights and segment the 

vehicle using edge detection. In [93] the lights detection is based solely on the R 

channel values and then it is combined with edge and motion information to verify the 

result. In [94], brake lights are detected at night time using statistically derived 

thresholds in all three RGB channels. The size of candidate taillights and the speed of 

the ego-vehicle are then used to assess an impending rear-end collision risk. Even 

though many systems have used it, RGB is not the optimal color space for real world 

color segmentation problems mainly due to the high correlation between its channels 

that makes it difficult to set and manipulate color parameters. Thus, many researchers 

have proposed the use of alternative color spaces for the task of rear lights detection. 

In [95], the rear lights are segmented in night driving scenes using a subjectively 

selected threshold in the Cr channel of the YCbCr color space; however the color 

information is not used in day scenes, when a horizontal edge detection technique is 

preferred.  O’Malley et al. in [96] used the color distribution of rear-lamp pixels under 

real-world conditions to derive proper thresholds for the HSV color space, based on 

the automotive regulations for vehicle appearance. The detected rear lamp candidates 

are then paired using symmetry analysis and color cross-correlation and finally 

tracked using Kalman filtering. the CIE-L*a*b* color space is used in [97] for the 

detection of rear lights, using two fixed thresholds for channels a* and b* . This 

approach leads to a classification of detected lights in one of three classes: white, 

orange and red.          

The methods described have an important disadvantage as far as benchmarking is 

concerned; none of them use a publicly available annotated dataset of vehicle images 

to test their accuracy. The reason for this is twofold: first the number of such datasets 

is limited and usually is used for the assessment of general image classification 

algorithms; second, the nature of the problem of vehicle detection allows for a huge 

variety of different vehicles, environments and conditions that should be considered, 

making the use of a representative to real-life conditions dataset highly impractical. 

However, the quantitative assessment of vehicle detection methods in typical 

situations like the ones included in [31] is useful for the comparison of similar 

methods. 

5.3 Preceding Vehicle Detection  

The PVD system proposed is based, as all of the ADASs in this thesis, on the video 

frames acquired from a monocular camera adjusted on the ego-vehicle windscreen, 
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facing the road. The system uses color, which is a basic cue for detecting the rear part 

of vehicles due to the existence of red rear lights. Many existing systems utilize static 

thresholds for red color segmentation of vehicle lights, thus being sensitive to 

illumination changes and environmental conditions. The main feature of the proposed 

method lies in the absence of such static thresholds for the detection of rear lights, 

making our system resilient to illumination conditions alterations, time of day, camera 

settings and sensor characteristics. Moreover, the use of multiple cues is a viable 

means for improving the reliability of our system. 

The proposed PVD system builds on a-priori knowledge on some of most prominent 

visual features appearing on the rear facade of vehicles. In this direction, the first 

stage of the system is the extraction of a binary image containing candidate rear 

vehicle lights, based on color segmentation and radial symmetry. As already 

mentioned, rear lights represent a conspicuous cue for PVD. The reason for that is 

twofold; the red rear lights are a common feature among all vehicles according to 

legislation and they are also visible under different illumination, weather conditions 

and time of day. Furthermore, they can be used to provide timely warning of an 

impending collision, as illuminated rear brake lights are an early indication that a 

vehicle is slowing down. 

The second stage of the proposed system involves morphological pairing of candidate 

lights areas, followed by a horizontal edge detection process and finally an axial 

symmetry check along the vertical bisector is utilized for vehicle presence 

verification. For the successfully detected vehicles, a rough estimation of their 

distance is performed. The architecture of the proposed system is presented in Figure 

46.  

 
Figure 46 : Structure of the proposed PVD system. 

5.3.1 Red lights detection 

In the first processing stage of the proposed system, a search for areas with high red 

chromaticity in the color image is performed. Among various color spaces, CIE-

L*a*b* was the most suitable for this application, as it possesses a number of 



5.3 Preceding Vehicle Detection 

 

64 

 

important features. L*a*b* color space has the advantage of being a perceptually 

uniform color space, mapping equally the perceived color difference into qualitative 

distance in the color space. In L*a*b*, lightness information (L component) is 

separated from the chrominance information (a*, b* components), which we utilize 

for the red color segmentation. As a result, illumination changes have a minimal 

effect on color information.  

For the segmentation of the possible rear light areas, we utilize component a* (red - 

green) of L*a*b*, and split the positive from the negative part, in order to acquire 

only the red subspace. This subspace image is then scanned for symmetrical shapes, 

using the fast radial symmetry transform presented in [11]. Although there is no 

constraint in the shape of rear lights, they generally follow a symmetrical pattern. A 

judicious choice of a low radial-strictness parameter (a=1) gives emphasis to non-

radially symmetric features [11], thus presenting great values at the positions of rear 

lights. The results are demonstrated in Figure 47, where channel a* and the FRST 

appear pseudo-colored.  

 

(a) (b) (c) 

Figure 47 : (a) Original image, (b) red subspace of the L*a*b* color space visible and (c) FRST of the red subspace. 

The FRST, as already mentioned, scans for shapes in one or more radii in a range 

called N. When the goal is to detect symmetrical shapes of any size, a large size of 

ranges must be used; however, the computational burden can be greatly reduced by 

selecting a small sparse set of radii in range N, spanning between the extreme sizes of 

possible rear lights. The result in this case is a very good approximation to the output 

obtained if all possible radii were examined. Using the FRST approach, the 

“blooming effect”, caused by the saturation of bright pixels in CCD cameras with low 
dynamic range, is very effectively handled. This is attributed to the fact that saturated 

lights appear as bright spots with a red halo around, thus yielding large radial 

symmetry values. This phenomenon is illustrated in Figure 48. 

  

(a) (b) (c) 

Figure 48 : (a) Original image, (b) red subspace of the L*a*b* color space where the “blooming effect” is visible and (c) 
FRST of the red subspace, a*. 
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For the final binarization of the image, the fast and efficient Otsu’s thresholding 
algorithm [37], which suggests an optimum threshold by minimizing the weighted 

sum of variances of brightness for the two classes: the objects and background pixels. 

The resulting binary image contains the candidate rear vehicle lights.  

5.3.2 Morphological lights pairing 

In the second stage, a morphological rear lights pairing scheme is applied to the 

previous binary image to determine vehicle candidates. After connected component 

labeling, for each region the ellipse that has the same second central moments as the 

region is estimated, in order to derive its features. The parameters of the ellipse, i.e., 

the center coordinates, the major and minor axis lengths as well as their area are 

computed. In order to find pairs of possible lights we consider all the possible 
          

two-combinations, where K is the total number of candidates. However, from all these 

potential pairs only a few meet the prerequisites that we impose, regarding the angle 

between them and a similarity measure based on their geometrical properties: 

Assuming that the target vehicle is in the same tilt as the observing vehicle, the 

candidate pair of lights must be aligned in the horizontal axis (with a permissible 

inclination of    degrees). The morphological similarity measure is based on the 

normalized difference of their major axis length, minor axis length and area.  

5.3.3 Horizontal edge boundaries 

Given the candidate rear light pairs, we seek the horizontal boundaries of the 

candidate vehicle. The vertical boundaries are defined by the extreme points of the 

rear lights. A search region for the upper and lower horizontal boundaries that is 

proportional to the width of the vehicle is determined, which is assigned as the 

distance between the extreme points of the rear lights. In Figure 49(a) a search region 

on the original image is shown. The ‘Canny’ edge detector is used to detect the edges 
in the grayscale image of the search region (Figure 49(b)). The horizontal projection 

of the edge map is then computed (Figure 49(c)), while the peak values indicate 

pronounced horizontal edges. The upper and lower boundaries of the car are defined 

as the first and last peak in the projection graph, with value at least equal to the half of 

the largest value. The outcome of this stage is bounding boxes containing candidate 

vehicles. 

 

(a) (b) (c) (d) 

Figure 49 : (a) Search region on the original image, (b) edge map of the search region, (c) its horizontal projection and (d) 

bounding box containing the candidate vehicle. 
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5.3.4 Axial Symmetry check 

Symmetry represents a very useful feature for vehicle verification, since it is a 

characteristic of human-made objects. Vehicles observed from their rear view are in 

general symmetrical in the vertical direction [87]. The axial symmetry check proposed 

to verify that a candidate region is indeed symmetrical, is performed by splitting each 

bounding box image into two sub-images along the vertical bisector and comparing 

them. The comparison of the sub-images is carried out by utilizing two measures, 

namely the Mean Absolute Error (MAE) and the Structural SIMilarity (SSIM) 

measure [52]. Both measures have already been described in Chapter 2. 

The verification of a candidate vehicle region is performed heuristically, using two 

experimentally derived lower bounds for the two aforementioned measures. 

5.3.5 Preceding Vehicle distance estimation 

Once the system has detected and verified the preceding vehicle, its relative distance 

to the ego-vehicle can also be estimated. A precise distance calculation is practically 

infeasible, as the information contained in a single video frame is not sufficient to 

derive precise depth information. However, a good approximation for the distance of 

cars of typical size can be achieved; assuming that the average vehicle width is 

approximately 1.8m and given the width of the detected preceding vehicle in the 

image (as a proportion of the vehicle’s width in pixels to the total image width in 

pixels) we can estimate the desired distance. A more precise estimation can be 

computed as in [93], provided the camera characteristics known in advance. 

5.4 Experimental results 

The performance of the proposed PVD system was tested on the two publicly 

available datasets named Caltech 1999 and Caltech 2001, which were described in 

Chapter 1. These test sets contain images of many different cars, under various 

illumination conditions and cameras. It must be clarified that in Caltech DB (Cars 

2001), 22 of the 526 images were excluded because of their red rear lights being 

modified beyond legislation [96], or because one of the brake lights was blown. For 

the video stream of [14] only frames that contain a whole visible, preceding vehicle at 

the same lane and in distance less than 15m were considered (2716 out of 11179 

frames). Red vehicles, recognized successfully as large regions in the binary image, 

were also detected using the same method. The recognition results are summarized in 

Table 4. 

Table 4 : Detection accuracy of the PVD System using a single image. 

Dataset 
Number  of images / 

frames  
Detection Rate 

Detection Rate – Braking 

PV 

Caltech DB (Cars 1999) 126 92.1% - 

Caltech DB (Cars 2001) 504 93.6% 99.2% 

Lara Urban Sequence 1 2716 92.6% 96.3% 
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The proposed system scores high detection rates in all test sets (up to 93.6%), and 

performs outstandingly in cases when the preceding vehicle brake lights are 

illuminated, as shown in Table 4. This can be attributed to the intensive, highly 

distinguishable color of brake lights and the ability of our system to handle the 

“blooming effect” very effectively. This specific feature is of key importance, as 
accurate recognition at the stage when the preceding vehicle is braking is very crucial 

for avoiding an impending collision. A fruitful comparison can be made with the 

system of [98], reporting results at the same datasets (Caltech DBs). The proposed 

approach performs better (93.3% versus 92% reported in [98]) on both datasets, with 

the additional advantage of requiring no training. Regarding the false positive 

detections (7 for the Caltech 1999 and 46 for the Caltech 2001 dataset), these can be 

further reduced if certain restrictions in the admissible distance between rear lights are 

included, but in this case the PV detection distance narrows down. A more robust 

method can be implemented taking into account that most FPs rarely appear in more 

than one consecutive frame. In this direction, simple spatiotemporal restrictions can 

be used to detect the FPs not persistent in time. Some representative detection results 

from all data sets used are illustrated in Figure 50.  

   

   Figure 50 : Detection results for the data sets used; Left Column: Caltech DB (cars 1999), middle column: Caltech DB 

(cars 2001) and right column: Lara Urban Sequence. 

The PVD system proposed was also qualitatively evaluated using images acquired 

under adverse weather conditions, downloaded from the internet. For these images, 

although quantitative results are not derived due to different and unknown acquisition 

systems setup, the proposed single image PVD system performs sufficiently well, 

yielding promising results as shown in few typical cases of Figure 51.  

Further study of the FN errors shown, reveals that the most common cause is the 

presence of other red artifacts near rear lights, which leads the system to failure of 

detecting the real pairs of rear lights.   
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Figure 51 : Detected vehicles in adverse weather conditions. 

5.5 Conclusions 

The development of a robust and reliable vision-based vehicle detection method is a 

crucial task for driver assistance systems. In this chapter an automatic, resilient to 

illumination conditions algorithm for vehicle detection has been presented, using 

color and radial symmetry information for the segmentation of rear vehicle lights 

from a single image. After morphological lights pairing and edge boundaries 

detection, the vehicle presence is verified through symmetry detection in the 

candidate rectangular ROIs. Experimental results report high detection rates both in 

typical and in adverse conditions. The proposed algorithm, because of its approach of 

using rear lights for detection can be easily extended for vehicle detection at night. 

Future efforts are directed towards vehicle tracking and combining vehicle detection 

and braking recognition with driver’s gaze detection. In this way, the level of 
attention of the driver can be correlated with the potential danger of an impending 

collision. 

  



 

 

Chapter 6 

Video-based Detection of Preceding Vehicles  

6.1 Introduction 

The vehicle detection method presented in the previous chapter was provided a 

solution for single images, not taking into account the added information that can be 

collected by processing successive frames of a video. The information that can be 

provided by analyzing the motion in the scene may provide valuable in the refinement 

of the detection results over time, minimizing the false detections and validate the 

results more efficiently. This chapter will focus on using the static framework 

presented in the previous method and enhancing it with spatiotemporal information 

processing to provide more accurate PVD results, even in challenging scenarios. The 

proposed system is described in [99]. It has been extensively evaluated in both normal 

and challenging scenarios, proving both effective and robust.       

6.2 Literature review 

A significant part of literature relevant to the subject of PVD has already been 

presented in the previous chapter. In this section, some methods that utilize motion 

information will be presented. O’Malley et al. [96] used the color distribution of rear-

lamp pixels under real-world conditions to derive proper thresholds for the HSV color 

space, based on the automotive regulations for vehicle appearance. The detected rear 

lamp candidates are then paired using symmetry analysis and color cross-correlation 

and finally tracked Kalman filtering. Kalman tracking has been utilized again by 

O’Malley et al. in [100], in a method that also uses modified hardware by means of a 

polarizing filter fitted onto the camera lens to remove reflections. In their work, after 

detecting vehicle lights and prior to tracking them, a perspective correction is applied 

to the light pair areas to enhance their resemblance. Particle filters are used in [101], 

[102] for vehicle tracking purposes. In [101], different vehicle descriptors are used in 

combination with data-driven sampling in order to track the detected vehicles. 

Sivaraman and Trivedi [102] use a training process with an Adaboost classifier which 

is retrained through an active learning process to improve the vehicle recognition rate. 

The detected vehicles are then tracked using a particle filter.  

In recent papers, numerous methods for vehicle tracking have been proposed. In 

[103], a SVM classifier of vehicles is combined  with a Markov chain Monte Carlo 

approach for the implementation of the tracking stage. In [104], shape and color 

properties have been used for a mean shift based tracking method. A probabilistic 

motion model is constructed for vehicle tracking in driving video streams in [105].   
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Recently, large datasets of driving scenes video streams have also been made publicly 

available, proving very useful for benchmarking ADAS algorithms [22], [25].  

In this chapter, a vehicle detection system based on the processing of video sequences 

is presented. It improves and extends the work in [86], which is based on the 

combined assessment of vehicle descriptors, such as the red color of their tail lights 

filtered in CIE-L*a*b* and the symmetrical appearance of their rear facade. An 

efficient reduction of the false negative rated is achieved by the HV stage where a 

Kalman filtering process handles the spatial coherence of the detections over time by 

tracking the rear lights area of the detected vehicle. The system has been 

experimentally evaluated in a variety of publicly available datasets of both still 

images and video streams, demonstrating superior detection and tracking rates 

compared to relevant methods.    

The main contributions of the proposed system are the following:  

(i) the mixture of red color information derived from a novel, robust to 
illumination fluctuations color channel with the FRST is used to detect the rear lights 
of the vehicle as symmetrical red blobs.  

(ii) The usage of the SSIM index both in color and in symmetry images as a tool 
to filter out asymmetrical results and reduce the number of rear light candidate areas. 

(iii) The usage of the Kalman filter as a sub-system for dynamic vehicle candidate 
verification, in combination with the SSIM based static verification process.  

The rest of this chapter is organized as follows: in Section 6.3 an overview of the 

proposed system is described, while Section 6.4 discusses its modules in depth using 

typical examples derived from the evaluation datasets. In Section 6.5, quantitative 

performance evaluation for the proposed system in static images and video streams is 

performed and compared to relevant methods. Finally, conclusions about the 

contribution and future work are presented in Section 6.6. 

6.3 Proposed system overview 

The proposed system uses a-priori knowledge derived from observation of the most 

prominent vehicles descriptors and more specifically their rear lights and the axial 

symmetry of their rear facades. The HG stage is based on color segmentation and 

radial symmetry in order to detect candidate rear vehicle lights in each image frame.  

The color and luminosity of rear lights, especially when lit, make them stand out in 

different weather and illumination conditions, in day and nighttime. Moreover, when 

rear brake lights are illuminated, they give an advanced warning of potential danger as 

they denote a decelerating vehicle. The aforementioned color related features of rear 

vehicle lights inspired the incorporation of a color segmentation process based on the 

c1c2c3 color space, to avoid high sensitivity on shadows and illumination changes. A 

mixture of two channels is used to produce a single channel which robustly 

discriminates red colors from other bright spots. A FRST is applied to the estimated 

“redness”. This is the second step of the HG, which ensures that non-symmetrical red 

blobs will not be considered as rear light candidates. The result of the FRST is 
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searched for local maxima and the most prominent results are counted as candidate 

rear vehicle lights. 

The candidates are passed on to the HV stage, which is based on another very typical 

specification of vehicles; their axial symmetry along the vertical bisector of the 

hypothetical line connecting their two rear lights. The axial symmetry detector has 

two parts; the first involves pairing the candidate lights depending on their inclination 

and relative distance and the second is the similarity check between the right and the 

left half of the sub-image containing the two paired candidates, based on the SSIM 

index [52]. Pairs with small inclination values and large similarity indices are 

accepted as rear vehicle lights and are used to localize vehicles in the image.  

The HG and HV stages are very successful for static images. However, when dealing 

with video streams, the process of temporal information in the HV stage is beneficial 

for further reduction of false negative rates. In the proposed approach, a Kalman filter 

is used to estimate the position of vehicle lights in consecutive frames and 

consequently check the persistency and accuracy of the HG candidates in time. This 

has the effect of removing HG candidates that do not appear for more than a couple of 

frames, thus improving the precision of the system. Furthermore, it improves the 

spatial accuracy over time, as it provides additional information for the most 

appropriate candidates in each frame which are also consistent in time. 

The functional overview of the proposed system is summarized in Figure 52. 

 

Figure 52: Flowchart of the proposed system. 
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6.4 Modules analysis 

6.4.1 Hypothesis Generation stage 

In the HG stage, a rough first hypothesis for the locations of possible vehicles in the 

image is generated. The HG procedure involves red color segmentation of the original 

image, detection of highly radially symmetric red blobs and their pairing according to 

their relative topology. The respective stages of HG are analyzed in the following 

sections. 

6.4.1.1 Red color segmentation 

The first step of the HG is the color segmentation process that is based on the usage of 

the c1c2c3 color space, which has been mentioned in Chapter 2. This color space is 

chosen due to its robustness to illumination variations and shadows and its channel 

values are calculated as  
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where R, G and B are the red, green and blue channel value of the pixel at the i-th row 

and j-th column of an image, while c1, c2 and c3 are the three channels of the 

aforementioned color space. Finally, max{a, b} denotes the maximum value of 

variables a and b. 

Two of its three channels are then mixed to further enhance the color difference of the 

red colored pixels. More specifically, the proposed color channel used for red color 

segmentation is formulated as follows 
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     6.4 

The new color channel is linearly related to c1 and c2 color channels and is based on 

the observation that rear lights are best enhanced by combining high c1 channel values 

(high redness) with low c2 channel values (low greenness).  The intensity of the values 

of red pixels in the new Red color channel is even more pronounced when the rear 

brake lights are illuminated as demonstrated in the examples of Figure 53.  
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(a) (b) 

  

(c) (d) 

Figure 53: Highlighting of rear red lights using the new Red color channel. (a), (b) Preceding vehicle images without and 

with illuminated rear brake lights and (c), (d) their respective new Red color channel. 

6.4.1.2 Radial Symmetry Detection 

With the goal of emphasizing rear vehicle lights, the image derived from the red color 

enhancement is scanned for symmetrical patterns using the fast and efficient FRST 

presented in Chapter 2. The transform relies on a gradient-based operator which 

considers the contribution of each pixel to the symmetry, detecting radially 

symmetrical blobs in an image. Since the rear red lights are depicted in the proposed 

color channel as bright, symmetrical blobs, they generate large FRST values at their 

centers and therefore localize the candidate results of the HG stage.  

The symmetry candidates are further enhanced if a 3x3 median filtering process is 

used to smooth the Red channel image, providing more accurate center localization. 

Although the rear lights of vehicles are not always circular like in the car that appears 

in Figure 53, they generally follow a symmetrical pattern and thus can still be 

detected by the FRST by using a low radial strictness parameter (a = 1). Some 

examples that demonstrate the successful highlighting of rear vehicle lights using the 

FRST are shown in Figure 54. 

The results described so far have been achieved using just one radius. In order for the 

system to detect vehicle rear lights of differently sized vehicles at varying distances, 

the proposed system uses a set of radii that span from the minimum to the maximum 

expected radius in pixels. Each FRST image result is processed separately in the next 

step. 
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Figure 54: Various examples of FRST based detection of preceding vehicle rear lights. The original images appear in odd 

rows and the respective FRST results in even rows. The results have been estimated for one radius (8 pixels for top rows 

and 6 pixels for bottom rows). 

Another significant advantage of the FRST usage is that it can handle efficiently the 

“blooming effect” that appears often in rear lights images, due to the saturation of 
very bright pixels in CCD cameras with low dynamic range. The robustness of the 

selected algorithm relies on the fact that saturated lights appear as dark spots 

surrounded by a bright halo, causing the FRST to treat them as symmetrical dark 

blobs. Such a result is demonstrated in Figure 55.  

   
(a) (b) (c) 

Figure 55: Cancellation of the “blooming effect” using the FRST. (a) Original image, (b) Red channel with presence of the 
blooming effect and (c) FRST result localizes rear lights. 

Consequently, each image produced by the FRST is scanned for local maxima to 

pinpoint the centers of candidate rear vehicle lights of a given radius. To reduce the 
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number of candidates and keep false positives low, the local maxima are filtered to 

include only values larger than a predefined ratio, r, of the maximum value.  

6.4.1.3 Light candidates pairing 

The detected rear lights candidates are subsequently processed so that only true 

vehicle light pairs are considered for further validation. This procedure excludes 

unwanted red artifacts from the detection, including two-wheel vehicles, which should 

be detected with alternative methods. If N is the number of detected light candidates, 

then all the possible pairs will be ( 1) / 2N N  . However, only a few of these pairs can 

be considered as rear lights of a vehicle. 

In order to reduce the number of valid light pair candidates, excluding false positive 

results, a set of heuristic rules is defined. More specifically, the two candidates must: 

(i) be closer to each other than a predefined maximum distance, d, which is 
proportional to the radial of the candidates and 
(ii) be closely aligned in the horizontal axis, i.e. have a permissible inclination of 
an angle, θ, smaller than θmax degrees in absolute value.  

The properties mentioned above are graphically depicted in Figure 56. If the 

predefined conditions hold, then the pair of light candidates is considered as valid and 

is passed on to the HV stage. 

 

Figure 56: A pair of candidate rear lights with detected centers denoted as CL and CR. The criteria for accepting a 

candidate pair depend on their relative distance, d, and their relative angle, θ, which should be smaller than two 
predefined thresholds. 

When a pair of symmetrical shape centers has been accepted as a valid candidate pair 

of rear lights, a rectangular Region Of Interest (ROI) around the two centers is 

cropped, so that the candidate pair is verified. The rectangular ROI, which is denoted 

in yellow in Figure 56, is chosen so that it includes the area of the rear of a vehicle 

that appears most symmetric about the vertical bisector. This area is defined by the 

rectangle ABCD, with AB=DC=d, BM=MC=d / 10, and M being the mean of the row 

indices of CL and CR. 
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6.4.2 Hypothesis Verification stage 

In the HV stage, the vehicle candidate areas defined by the light pairs selected in the 

previous stage are more closely examined. Each candidate area can be validated as a 

vehicle, by passing the two verification stages, i.e. the static and the dynamic stage. 

6.4.2.1 Static verification 

The static verification stage is based on the typical property of all vehicles, which is 

their rear view symmetry. More specifically, the rear part of vehicles is strongly 

symmetrical in the vertical direction [87], a property that is even more prominent 

when the processed area is confined around the detected light pairs.  

The axial symmetry assessment is performed in a rather straightforward manner. First, 

a rectangular area surrounding the pair of candidate lights is cropped and divided into 

two equal parts (sub-images), along the vertical bisector. Then, the right sub-image is 

mirrored, i.e. flipped about the vertical axis. This process is summarized in Figure 57.  

 
(a) 

 

(b) 

  

(c) (d) 

Figure 57: First stage of static verification process. (a) The detected ROI containing the pair of candidate lights. (b) 

Cropped region of interest with vertical bisector highlighted in yellow. (c) Left sub-image, (d) mirrored right sub-image. 

The two sub-images are then compared in each channel of the RGB color space using 

the widely utilized Structural SIMilarity (SSIM) index discussed in Chapter 2. The 

SSIM measures the similarity of two images based on three comparisons regarding 

luminance, contrast and structure. The result is one single measure bounded to [0, 1]; 

the closer its value is to 1, the higher the similarity between the two images. The 

proposed process compares the mean SSIM index from the three color channels to a 
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user-defined threshold, tSSIM, to verify that the region of interest indeed contains a pair 

of rear lights. 

While the SSIM criterion removes most false positives, the inclusion of many radii in 

the FRST stage may lead to multiple overlapping rectangular areas around the rear 

lights of a single vehicle. Furthermore, some false positive examples caused by 

pairing the rear lights of two different vehicles that are close to each other might still 

remain. Such examples are given in Figure 58. 

  

  

  

Figure 58: Multiple ROIs generated by the HV module. 

To tackle these issues, a rule that limits the preceding vehicle detection results per 

frame to just one can be applied. To achieve this, the mean color SSIM indices of the 

detected ROIs are added to the SSIM indices of their mean FRST transform values. 

The ROI with the largest sum is kept as the accepted vehicle rear lights area. In this 

approach, the number of false positives is kept to a minimum (at most one per frame), 

while the detection rate of the method is not affected significantly. Some typical 

results achieved using this approach, are presented in Figure 59. 
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Figure 59: Successful detection results from Caltech 2001 (first row) and Caltech 1999 (second row). Two false positive 

results between two closely moving vehicles are shown in the third row. The problem of spatial inconsistency of the 

detection result in consecutive frames is demonstrated in the bottom row.      

The two most common problems that may occur when choosing only the most 

prominent result based on the dual SSIM criterion are:  

(i) the verification of an area between two closely moving vehicles in front of 
the ego-vehicle. This mostly happens when only few detection results lie on the 
preceding vehicle. Such examples are shown in the third row of Figure 59.  
(ii) The verification of a different candidate area lying on the preceding vehicle 
for each frame, causing the detection results in video streams to appear unreliable in a 
few cases. While in a sequence of frames the ROIs accuracy may be acceptable since 
all verified candidates are on the vehicle, the exact location and size of the ROIs play 
an important role in the following processing steps or estimators, i.e. distance 
estimation of the preceding vehicle. Such an example is demonstrated in the last row 
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of Figure 59, where the location of the detection has moved to a lower part of the 
vehicle between two consecutive frames.   

These issues are the main reason for including an additional processing module in the 

verification process, which will also take into account temporal information and 

consistency rules.   

6.4.2.2 Dynamic verification 

As already described, the static verification process provides very promising accuracy 

rates, but it is not always sufficient for dealing with dynamically changing scenes 

such as a driving environment. Thus, the incorporation of a second verification step, 

taking advantage of the temporal continuity of video data, is beneficial for a more 

robust and effective vehicle detection system.  The dynamic verification obtained by 

tracking the target vehicle, suppresses false negative detections, performs smoothing 

of the detection noise and provides information for the temporal association between 

frames by interpolating positions during sporadic erroneous or missed detections. 

Given that the relative movement of the preceding vehicle between two successive 

frames is small, the modeling of its movement with the linear discrete-time Kalman 

filter analyzed in Chapter 2 constitutes the optimal choice over other computationally 

demanding techniques such as the extended Kalman filter or particle filter. As already 

described, the Kalman filter is a recursive, adaptive technique that estimates the state 

of a dynamic system from a series of noisy measurements [44], [45] 

The implementation of the Kalman filter is fast and straightforward, requiring only 

the tracking estimate of the previous frame. It estimates the state of a process by 

recursively updating the system dynamics in two phases - the time update phase and 

the measurement update phase. The time update equations project forward in time the 

tracking estimates (state vector and state error covariance matrix) of the previous 

frame in order to obtain a-priori predictions for the current frame. The predicted 

position is the expected measurement, given all the previous measurements and the 

mechanics of the system. The state transition matrix, which captures the mechanics of 

the system, is derived from the theory of motion under constant acceleration. The 

measurement update equations (denoted also as correction equations) are 

incorporating the new measurement into the a-priori prediction in order to obtain an 

improved, final estimate. A Kalman gain serves at reflecting the importance of the 

prediction to the current measurement which, in turn, depends on a measurement 

noise covariance matrix R. The Kalman gain is used to update the predictions, given a 

current measurement. A more thorough look into the equations and details of the 

Kalman filter can be found in [45] and [106]. 

The parameters of the target which are tracked throughout the image sequence are its 

position and size. Therefore, three observations are used in order to form the state 

vector; the x-coordinate, y-coordinate of the vehicle and its width W, because the 

aspect ratio is fixed. A long term observation of the coordinates can yield a 

description of the trajectory of the target vehicle in an image sequence, while its size 

and derivative of size can yield a description of the distance and the relative to the 
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ego-vehicle velocity, respectively. For the specific application, the measurement noise 

covariance parameter R is used to determine the sensitivity of the tracker to updates, 

by assigning weighting between the current measurements and the previous estimates. 

For the specific application and given a frame rate of 25 fps, a value of 0.1 ensures a 

good tradeoff between responsiveness and smoothness during noisy measurements. 

In order to initialize the tracking procedure, the position and size of the detected 

preceding vehicle are stored and monitored for several consecutive frames, to 

examine the reliability of the detection. Given that the false positives are not 

persistent in time, i.e. very rarely the same false positive appears in more than one 

frame, detections with major overlap for several consecutive frames ensure true 

vehicle detection. The issue of other than preceding vehicle detections like parked 

vehicles along the side of the road is effortlessly tackled due to their locations’ 
deviation throughout the succession of frames. In the current approach, a consistent 

detection of the same vehicle for 3 successive frames with a less than 15% change in 

position and size denotes a ‘true preceding vehicle’ and becomes the tracking target.  

After the initialization of the tracking procedure, for each new frame, the proposed 

vehicle detection module is executed. A notable difference is that the output 

detections are not suppressed to just one in this case. Using the Euclidian distance of 

the Kalman based prediction for the vehicle location and size from all detections 

derived in the static verification stage, the closest static estimation to the Kalman 

prediction is kept. If the distance and size difference of the Kalman ROI prediction to 

the closest static ROI detection are both below 15% of their maximum value, the 

Kalman uses the chosen detection as the current measurement and performs the 

measurement update stage. Otherwise, the existence of a preceding vehicle is 

examined within the respective rectangular Kalman ROI prediction, using the same 

methods with the static detection module. In particular, the two criteria are the 

existence of two local maxima on either side of the vertical bisector of the rectangle, a 

strong marker for the presence of rear vehicle lights and a prominent axial symmetry, 

as defined in the static verification step using the same threshold value. In the case 

where at least one criterion does not hold true, the target is considered as lost and the 

tracking procedure is terminated, until a new 'true preceding vehicle' is found. 

Along those lines, tracking of the preceding vehicle permits the suppression of false 

positive detections, the irregularities due to temporary missed or wrong detections and 

the overall accuracy and robustness of the system is improved.    

6.5 Experimental results 

The Preceding Vehicle Detection system proposed in this chapter has been 

experimentally evaluated using both static images found in the Caltech 1999 and 2001 

datasets in [31] and video frames from the LARA video stream presented in [22] and 

the HRI1 through HRI5 frame sequences presented in [25]. 
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6.5.1 Quantitative results using single images 

In this section, detection accuracy of the proposed system will be presented using the 

Caltech 1999 and 2001 datasets already described in Chapter 1. The experimental 

results were achieved using 1/4th of the original image resolution for the first subset 

(160x120) and a 1/25th of the original resolution for the second subset (180x119). The 

radii used for the FRST estimation were 3 to 13 pixels for the first subset and 3 to 16 

pixels for the second, with a step of 1 for both. In both cases, radial strictness a was 

set to 1 and the result of the FRST was estimated for the lower 70% of the images so 

that only conspicuous areas are included and the computational complexity is reduced 

by 30%.  The ratio used for the non-maximum suppression of the FRST result was set 

to r = 1/4. The rectangular ROIs selected were bounded in [2n, 20n], where n is the 

detected radial in pixels and the permissible inclination of two detected centers was 

set to θmax = ±3 degrees. Finally, the threshold of the mean SSIM of all color channels 
was set to tSSIM = 0.95. 

The aforementioned datasets have been used as a benchmark in several research 

papers. One of them is a vehicle detection system proposed by Wang and Lien in  

[98], who follow a statistical approach  using PCA and ICE analysis in chosen sub-

regions of the image to detect vehicles. Other researchers use the datasets as a 

benchmark for more generic object detectors. Such attempts were made by Dalal and 

Triggs [107] who used Histograms of Oriented Gradients to train a linear SVM, or 

Fergus et al [108] who use a probabilistic, scale-invariant learning scheme to classify 

objects, so the results acquired from the proposed system can be compared to them for 

evaluation purposes. 

Using these datasets, the proposed system achieves superior results compared to 

relative works, as shown in Table 5. The recall rate of the proposed method is directly 

comparable to the best effort by Wang and Lien in [98] (both score 94.2%), scoring at 

the same time a considerably higher precision rate (95.1% versus 87.5%). Moreover, 

the proposed method does not require any training process, a significant advantage in 

applications where a great variety of video scenes can be met, as opposed to those in 

[98], [107], [108]. 

Table 5: Vehicle detection rates in both Caltech datasets 

 Recall Precision 

Proposed System 94.2% 95.1% 

Wang and Lien [98] 94.2% 87.5% 

Dalal and Triggs [107] 89.4% 87.5% 

Fergus et al [108] 84.8% 87.5% 

It should be noted that the second subset (Caltech 1999) is not the typical scenario 

that has to be handled by a collision warning system. For this reason some more 

interesting conclusions can be drawn using only the first subset that comprises more 

typical driving scenes.  

More specifically, the images included in the first subset can better characterize the 

efficiency of the proposed system, since it also includes frames where the brake lights 
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of the preceding vehicle are illuminated. These scenes are of even higher importance, 

since they can be used for collision warning in cases of sudden braking of the 

preceding vehicle.  

In the Caltech 2001 dataset, the recall-precision values are comparable to the ones 

mentioned above. However, when the frames containing vehicles with rear lights 

modified beyond legislation, i.e. 13 frames from 150-158 and 253-256, are removed 

from the dataset, the recall of the proposed system in the remaining 513 frames rises 

from 93.2% to 95.3%. Furthermore, the detection rate for braking preceding vehicles 

reaches 98%. Taking these facts into account, a conclusion that can be drawn is that 

the proposed method is suitable for collision warning purposes, since it successfully 

detects the braking preceding vehicles. A detailed evaluation of the proposed method 

applied to the Caltech 2001 dataset of 526 images taken from driving scenes (358 

braking) and the filtered dataset of 513 images (356 braking), is given in Table 6. 

Table 6: Vehicle detection rates in Caltech 2001 dataset 

 Recall Precision 

Full dataset of 526 images 93.2% 94.2% 

Filtered dataset of 513 images 95.3% 95.9% 

Braking  - Full Dataset 97.7% 98.0% 

Braking – Filtered Dataset 98.0% 98.3% 

6.5.2 Quantitative results using videos 

The proposed system has also been evaluated using the video dataset LARA presented 

in [22] and discussed in Chapter 1, which comprises images of driving in an urban 

environment. Only frames that contain unoccluded preceding vehicles at the same 

lane and in a distance less than 15m were considered for our experiments (2331 out of 

11179 frames). The experimental setup involved resizing the images at 1/4th of the 

original image resolution (320x240), a ratio of r = 1/4 for the non-maximum 

suppression of the FRST result and radii from 3 to 10 pixels. The threshold of the 

mean SSIM of all color channels was set to tSSIM = 0.99. Table 7 presents the detection 

rates before and after tracking.   

   Table 7: Vehicle detection rates before and after tracking 

 Recall Precision 

Before tracking 72.5% 73.6% 

After tracking 93.1% 94.4% 

The results of Table 7 provide supporting evidence that the tracking procedure 

significantly increases the vehicle precision rate. In most cases false detections are 

met only for a small number of frames, commonly due to abrupt changes in 

illumination or frame to frame jitter caused by camera shaking. In these cases, the 

tracking predictions are used until the target is redetected. Moreover, while the real 

vehicle might not be in the most prominent detection, in most cases the rule used to 

limit the detection results to one per frame, reaches the real vehicle position.  
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The experimental results denote a substantial improvement in terms of both recall and 

precision, when Kalman filtering verification replaces the combined SSIM 

verification proposed for still images. The improvement of approximately 20% for 

both measures is a clear indication of the great influence of the scenes complexity to 

the static detector and the significance of spatiotemporal processing in such 

applications. More specifically, the great majority of still images comprising the 

Caltech 1999 and 2001 datasets include only one vehicle, in a relatively small 

distance from the camera, while in the LARA dataset, there is a great diversity of 

scenes, preceding vehicle distances and number. All these factors contribute to the 

raised importance of a temporally adaptive verification process, such as the Kalman 

approach proposed here.    

The images shown in Figure 60 illustrate instances of tracking results in an image 

sequence taken from the LARA video dataset. In Figure 60(d) an example of 

successful elimination of false positives is presented. 

  
(a) (b) 

  

(c) (d) 

Figure 60: Example of Kalman tracking in the LARA video dataset. The vehicle detections are shown in yellow rectangles 

while the red rectangles denote the target being tracked. 

6.5.3 Qualitative results in adverse conditions 

The system proposed in this chapter has also been evaluated for robustness to more 

adverse conditions, using the HRI road traffic video datasets presented in [25], which 

were also described in chapter 1.  

A qualitative assessment reveals that the results achieved by the proposed system in 

the aforementioned conditions are very promising; therefore it could be used as a 
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starting point for an ADAS that will be robust to any kind of conditions. Some typical 

examples of vehicle detection using the aforementioned datasets are given in Figure 

61.  

  

  

  

  
Figure 61: Examples of vehicle detections from the proposed system in adverse conditions. Top row: night driving. 

Second row: driving in the rain. Third row: driving in snow. Fourth row: Typical false positive examples. 

In the first three rows of Figure 61, successful detections from night driving, driving 

in the rain and driving in snow are presented. In the last row, two typical examples of 

false detections are depicted. The example on the left shows a false positive caused by 

the glare of rear lights on the road, while the right image shows an example of vehicle 

detection that is on the opposite lane. While this is not a strictly false positive error, 

the preferable result would be the detection of the vehicle on the right. Both results 
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would benefit from an incorporation of a road, or lane detection module that would 

add useful information for such cases.  

6.5.4 Performance issues 

As the goal of every ADAS is to be implementable for real time processing purposes, 

a discussion on the processing speed of each module of the proposed system is of high 

importance.  

For the purposes of this analysis, the mean processing time values required by the 

system to detect the vehicle position for 100 frames of three different video 

resolutions have been compared. All tests were conducted for a set of 8 different radii 

used by the FRST. The aim is to pinpoint the bottlenecks of the system and conclude 

if an implementation would be feasible for real time applications. All parts of the 

system have been implemented in Matlab, except a small part of the FRST which has 

been converted from C++ to Matlab executable. No code parallelization has been used 

and the tests were run on a 2.8GHz Quad Core processor.  The response time 

performance of various processing modules from these experiments is presented in 

Table 8.    

Table 8: Absolute and relative processing times and frame rates analysis for different resolutions. (AS: Axial Similarity, 

FRST: Fast Radial Symmetry Transform, PM: Pair Matching, MF: Median Filtering, Others: Other modules). 

  
AS FRST PM MF Others 

160x120 

% 39 20 15 8 18 

ms 56 29 22 12 26 

T/fps 145ms / 6.9fps 

320x240 

% 15 33 20 10 22 

ms 49 108 65 33 72 

fps 327ms / 3.1fps 

640x480 

% 10 41 21 9 19 

ms 138 567 290 125 263 

fps 1383ms / 0.7fps 

The results of Table 8 show that the axial similarity module is the bottleneck of the 

system when using the smaller possible resolution (1/8th of the original). As the 

resolution increases, the bottleneck of the system appears in the FRST module, with 

the pair matching process being the second most time-consuming stage. The fourth 

place in terms of processing time per frame is steadily occupied by the median 

filtering process.  

A very important implementation issue is the potential increase in processing speed 

that can be achieved by a proper parallelization of processes. In the proposed system, 

such a solution is feasible thanks to the lack of correlation between the results of each 

radius. Most core modules can function separately for each radius, thus multiplying 

their processing speed by the number of radii used. An approximate 70% of the 
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processing time (spent on the first three modules of Table 8) can be accelerated by a 

factor defined by the number of radii used, providing real-time performance for 

smaller resolutions, even in Matlab. Real time processing in higher resolutions can be 

achieved by DSP implementations.    

Another implementation performance issue has to do with the fact that the FRST 

scans for symmetrical blobs of certain radii, which are experimentally derived. This is 

an inherent disadvantage of the algorithm, as the precise localization of several 

symmetrical shapes of unknown, different sizes should require the use of a large 

number of radii. However, the computational burden can be alleviated by using only a 

sparse set of radii, spanning from the smallest probable radius of a rear light to the 

largest one, using a fixed step, or variable step taking into account the expected size. 

The result of such a process is a sufficient approximation of the output obtained when 

the whole set of possible radii is used [36], provided that the step is selected 

accordingly.  

6.6 Conclusions 

In this chapter, a novel system for vehicle detection based on the localization and 

tracking of their rear lights has been proposed. The system comprises a static 

hypothesis generation and verification stage, combined with a Kalman tracking 

module used for enhancing the spatiotemporal coherence of the detection results and 

reducing the number of false negative detections. The static stage utilizes a novel, 

robust to illumination changes color space, which is correlated with a radial symmetry 

transform to generate a first set of rear lights candidate regions. This set is refined 

using an axial symmetry criterion based on a similarity metric and the resulting 

candidates are verified by a Kalman tracker that picks the prominent candidate based 

on its spatial consistency compared to previous frames. 

The system has been extensively evaluated using quantitative and qualitative 

methods, on publicly available datasets of both still images and video streams. The 

results show that it outperforms similar methods when compared in still images, while 

it achieves excellent performance on video streams, even in more adverse 

environments and conditions, such as driving in rain, snow and at night. Typical 

detection problems in such cases would benefit from the combination of the proposed 

system with other ADAS modules, like road, or lane detection.  

  



 

 

Chapter 7 

Road Detection  

7.1 Introduction 

In this chapter, an algorithm for Road Detection (RD) that can be integrated in an 

ADAS for collision avoidance and automatic navigation is proposed. It has been 

published in [109] and it is based upon the Random Walker Algorithm (RWA) for 

image segmentation described in Chapter 2, involving also a novel automatic seed 

generation stage that uses an illumination-invariant optical flow estimation derived 

from the c1c2c3 color space. The information derived from the optical flow are 

combined with a-priori knowledge about the camera setup and segmentation results 

from previous frames to produce a set of seeds that provide a clear discrimination 

between road and non-road pixels under a vast diversity of conditions. Methods 

proposed so far on the field of RD are described and evaluated in the next section and 

then the proposed system and all its modules are described. An extensive 

experimental evaluation of the proposed system follows, including qualitative 

assessment in different conditions and quantitative comparative assessment against 

other efforts on two publicly available, manually annotated video datasets. Several 

aspects of the RD system implementation, like resolution and processing complexity, 

are then studied and proper solutions are proposed. Finally, a discussion on the 

advantages and disadvantages of the proposed system is carried out.      

7.2 Literature review 

A popular approach to the problem of road detection is the use of lane markings. 

Those markings are localized to acquire boundary information which facilitates the 

road detection process. Methods that rely on lane markings are usually fast and 

simple, using mainly grayscale images or videos. A pioneer work presents fast 

mapping from 3D to 2D followed by a horizontal edge detection process [110]. Later 

work based on edge extraction is presented in [111], [112], [113]. These approaches 

often fail to perform satisfactorily in more complex scenarios like rural unstructured 

roads or poorly maintained city roads.       

A second popular method in road detection applications is the use of color or 

brightness information to segment the road, enhanced by some feature extraction 

process like edge detection to extract the road boundaries. Such efforts are presented 

in [114], [115] using unsupervised and supervised Bayesian segmentation 

respectively. Watershed segmentation is used to differentiate the road from the 

background [116], based on gradient information. Edge information for road 
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boundary detection has also been used in [117-120]. In [118] edge and area 

information is combined to achieve fast and robust results in urban traffic scenes. 

Such algorithms are usually fast and accurate in well-controlled environments, 

however they have not been thoroughly tested in adverse conditions therefore their 

accuracy in ill-defined road boundaries is not guaranteed. A very challenging issue 

that often deteriorates the results of such methods is the presence of shadows, which 

is a very common condition in real-life road scenes. 

To improve road detection accuracy and robustness to shadows, many researchers 

have utilized more complex methods, by processing information related to optical 

flow [121], [122] and stereo vision acquired from camera pairs [123-127]. Among the 

most recent stereo vision methods a homographic approach is induced in the road 

plane and formulated as a maximum a posteriori problem in a Markov Random Field 

and presented in [127]. This formulation allows for the implementation of an 

optimization algorithm alternating between road detection and learning the optimal 

parameters from the current stereo image pair. In [128-130], the a-priori knowledge 

of a road model is used to validate regions of interest as road. Additionally, many 

researchers propose the use of illumination invariant color spaces, like the well-

known HSI [131], or the training-based illumination invariant color space proposed in 

[24], used along with a likelihood-based classifier to achieve road segmentation. The 

method presented in [24] has also been applied in [126], to enable stereo camera head 

pose estimation using a featureless registration between the detected roads from two 

simultaneous frames acquired from a stereoscopic pair of video cameras. A 

supervised training algorithm is used to construct a probabilistic road model and 

combine visual information with a posteriori probability to acquire a “roadness” map 
in [132]. 

From the study of the literature, several important conclusions can be drawn: 

i) The accuracy of the road detection algorithms depends mainly on the 
background complexity and the environmental conditions adversity. 

ii) Algorithms that oversimplify the problem decrease the response time, but tend 
to produce poor results in adverse conditions, complex, or unstructured 
environments. 

iii) The use of extended set of features, like motion or depth descriptors, increases 
robustness but results in slower processing times, especially for large video 
resolutions. 

iv) Many approaches don’t take advantage of information that derives from the 
nature of the problem, i.e. the use of video instead of still frames, or using 
information about the camera setup in the vehicle to focus the road detection on 
areas that are expected candidates, i.e. excluding the upper part of the frames.  

v) The videos used for assessment are rarely made publicly available and usually 
tend to exclude adverse conditions like heavy rainfall, fog, snow, night driving 
etc. In excellent weather conditions and well-structured environments i.e. 
highways with distinct lane markings, the road detection problem can be solved 
efficiently with minimal computational complexity effort. 
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However, as weather conditions deteriorate and more complex environments are met, 

i.e. narrow city roads in traffic, urban roads with tarmac anomalies, etc., the road 

detection problem becomes increasingly difficult. Additional effects like reflections 

on the windshield, large number of shadows, night driving, foreign particles on 

camera lenses, etc., their synergy and the requirements for real-time response and 

cost-effectiveness, make the problem of road detection using a single on-board 

camera even more challenging. 

The aim of the proposed system is to perform RD using a monocular color video 

camera, minimizing the required assumptions and processing the relevant information 

of the driving scene. Neither road lanes nor road models are used as they are 

problematic in cases like dense traffic, dead ends, poorly maintained roads etc. 

Furthermore, the adopted training methods are efficient, avoiding non-parametric 

models which require a vast amount of training video scenes in the great variety of 

adverse driving conditions. 

7.3 System overview 

The road detection system is based on the information captured by an on-board 

monocular color video camera. The camera is placed on an elevated position on the 

windshield of the vehicle and it does not disturb the driver’s field of view. The 
hardware setup in the proposed approach is important mainly for the initialization of 

a-priori spatial information, namely the area of high road probability and the area of 

high non-road probability. 

The brightness of the pixels is processed in pairs of consecutive frames to extract 

spatiotemporal information that will be used to define road and non-road pixel seeds. 

The seeds are fine-tuned using the segmentation results from the previous frame and 

used by the RWA for the estimation of the road pixels. 

In the segmentation process, the RWA solution of the Dirichlet problem [47] is used. 

This approach significantly reduces the computations, while providing the same 

segmentation accuracy as the classic RWA [48], [49]. The implementation details and 

the rationale of using the RWA have already been discussed in Chapter 2.  

However, the inherent supervised nature of the RWA remains a significant problem 

for its incorporation in a road detection system. To tackle this situation, optical flow 

information combined with spatial and previous road segmentation information is 

used to define at each frame a robust set of seeds. Hence, the segmentation process 

becomes completely automated, relies only on dynamic information extracted from 

the on-board camera, the a-priori knowledge derived from the camera setup and the 

previous frame segmentation results. The RWA estimates a probability map for all 

pixels in a video-frame, and the pixel-based segmentation process is completed after 

thresholding the probability map. 

The functional overview of the proposed system is demonstrated in Figure 62 along 

with some descriptive test images. 
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Figure 62 : Flowchart of the proposed Road Detection System. 

More specifically, the proposed system comprises the following steps:  

a) A-priori information about the expected position of the sky in the frame is 

estimated after the camera is installed in the vehicle. This area will be used to 

assist in discrimination of non-road candidates. 
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b) Consecutive pairs of frames (t, t-1) in the c1c2c3 color space are processed, to 

extract motion information. 

c) The c1 channels from both frames are used to estimate the Horn - Schunck optical 

flow magnitude matrix, from hereon called HSC1 flow. 

d) The HSC1 flow is thresholded using the Otsu technique, to discriminate high 

HSC1 flow non-road areas (obstacles) from low HSC1 flow (textureless) 

surfaces, therefore road candidates. 

e) High HSC1 flow non-road areas are combined with the a-priori sky region of 

step (a) to define the non-road seeds. 

f) The road detection result from frame t-1 is used to construct the perimeter of a 

trapezoid. The pixels of this trapezoid are defined as road seeds, unless they 

already belong to the non-road seeds set. 

g) The RGB image of frame t is downsampled to a lower resolution to reduce the 

computational complexity of the RWA. 

h) The image from (g) and the seeds defined in (e) and (f) are used by the RWA to 

estimate the road probability at each unlabeled pixel of frame t. 

i) The probabilities matrix is thresholded, the resulting image undergoes a hole 

filling process [83] and then is upsampled to the original resolution. 

The proposed feature extraction process can be separated into two independent 

processes, which can be implemented in parallel: 

i) The automatic seed selection process, combining a-priori spatial information, 

previous frame road detection results and spatiotemporal information. It 

comprises a color space transformation followed by the optical flow estimator 

and the Otsu thresholding process. 

ii) The resolution of the image is reduced using bicubic interpolation and used by 

the RWA for constructing the ij
L matrix of Eq. 2.32.  

7.3.1 Spatiotemporal seeds definition 

In the proposed system the road seeds are located in a predefined area in front of the 

car and the lower part of the frame. These pixels must exhibit similar mobility in 

terms of optical flow magnitude and they also must have high probability of 

belonging to the road surface in the road detection process applied to the previous 

frame. The background or non-road seeds are located in a predefined number of 

rows on the top of the frame, depending on the position and viewing angle of the 

camera and on pixels that should also have similar optical flow magnitudes, which 

differ from the ones of the road seeds. Based on the aforementioned definitions, the 

seed definition can be divided into three parts. 

First, the a-priori information derived from the nature of video based road detection 

is applied. The seed selection has been dependent on camera characteristics and the 

expected seeds positions must be updated every time the camera position, focal length 

or camera lenses are changed. Depending on the elevation and angle of view, a 

number of rows in the top part of the frame are arbitrarily defined as non-road seeds. 
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As shown in Figure 62, these rows typically comprise the sky surface. Furthermore, 

the road seeds could, based on the camera setup, its characteristics and the nature of 

the problem, be placed on a trapezoid perimeter in the bottom part of the image. The 

trapezoid shape, which is initialized manually once the camera is setup, is based on 

the typical structure of the unobstructed straight road as it appears in images taken 

from inside a vehicle.  

However, the size and coordinates of the trapezoid do not remain fixed, but should be 
calculated based on the road detection result derived from the previous frame, as the 
vehicle start moving. More specifically, as depicted in Figure 63, let R be the centroid 
of the detected road in the previous frame and the upper bound defined as the 
horizontal line passing from the road pixel with the highest vertical coordinate. Also, 
let N be the pixel of the upper bound line which has the same vertical coordinate (Yc) 
as the centroid. The bottom base (CD in Fig. 3) of the trapezoid is the same as the 
base of the road in the previous frame. The upper base of the trapezoid (AB in Figure 
63) is equal to the perpendicular distance of the centroid to the upper bound (RN). 
Finally, the height of the trapezoid is such that its upper base is equidistant to the 
centroid of the previous road and the upper bound of the previous road. The process 
described ensures that the road seeds placement is performed dynamically for each 
frame, taking into account previous results. Furthermore, the placement of the center 
of the upper base, subject to the location of the centroid (both placed at column Yc, as 
shown in Figure 63), makes the placement more adaptable for curved roads. Finally, 
the proportionate length of the upper base of the trapezoid to the perpendicular 
distance of the centroid to the upper bound, leads the trapezoid to be more adaptable 
to the shape of the road detected in the previous frame. A typical image with the 
geometrical properties used to define the road and non-road seeds, is shown in Figure 
63. 

 
Figure 63 : Geometrical properties used for road (red trapezoid) and non-road seeds definition. 

The definition of the seeds is completed by incorporating spatiotemporal 

information to detect non-road pixels belonging to obstacles like vehicles, 

pedestrians, trees, etc. This type of detection is rather difficult to implement without a 

stereo vision sensor that could offer structure information. However, in the proposed 

system a modification of a well-known optical flow algorithm is used to tackle this 
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problem.  Taking into account that the road is generally textureless, many sparse 

optical flow algorithms compute low motion values. Thus effective discrimination of 

the road from obstacles lane markings and shadow edges can be achieved. This 

behavior can be characterized as flawed when accurate optical flow estimation is 

needed; however it proves useful for discriminating road and non-road pixels. 

A classic optical flow algorithm that can behave as mentioned, especially when 
stopped after few iterations, is the one proposed by Horn and Schunck [40]. This 
method is also fast enough for applications like road segmentation. Its main 
disadvantage for this application is that it is based on grayscale images, due to the 
brightness flow smoothness assumption, leading to high sensitivity to shadows and 
illumination changes. In order to tackle this problem, the proposed system uses the c1 
channel of the c1c2c3 color space introduced in [35], which is derived by 

 1

( , )
( , ) arctan

max{ ( , ), ( , )}
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c i j

G i j B i j

 
  

 
,    7.1 

where R, G, B are the red, green and blue brightness value of pixel ( ,i j ). This channel 

was experimentally found to be the most efficient color channel among the separate 
channels of CIE-L*a*b*, HSV, YCbCr and RGB color spaces to replace the 
brightness channel used for robust optical flow estimation in the presence of shadows 
[40]. Using the c1 channel for the estimation of the horizontal (u) and vertical (v) 
optical flow velocities, Equations 2.16 and 2.17 are transformed to 
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where the superscript k denotes the number of iterations, k

xV  and k

y
V  are the average 

velocities of the last k iterations, α is a regularization constant and C1x, C1y, C1t are the 

normalized gradients of channel c1 brightness estimated as described in [40], i.e. it has 

been linearly transformed to a [0,1] space. The optical flow calculated using the 

aforementioned color space will hereafter be called HSC1 flow (Horn Schunck 

optical flow using the c1 color channel). The number of iterations for the HSC1 flow 

estimation was set to 1, leading to a low computational complexity, spatially sparse 

result. In the experimental section it is shown that any number of iterations between 1 

and 5 is sufficient. 

A very descriptive example of the HSC1 effectiveness is shown in Figure 64(c), 

where a great portion of the road pixels located on the edges of shadows appear to 

have high optical flow magnitude values when using the method as described in [40]. 

As shown in Figure 64(d), the HSC1 flow is definitely more reliable than the classic 

Horn Schunck optical flow for the discrimination between road and non-road seeds. 
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(a) (b) 

  

(c) (d) 

Figure 64 : (a), (b) Two consecutive frames in the presence of shadows. (c) Normalized optical flow magnitude for 

grayscale images, (d) normalized HSC1 flow magnitude. Both flow magnitude images were estimated for a=15 and k=5 

iterations. Bright pixels denote high optical flow magnitudes. 

All the pixels in the image with HSC1 flow magnitude greater than a threshold are 

defined as non-road seeds. These pixels are removed from the road seeds set if they 

are located on the trapezoid perimeter that was calculated in the previous step. The 

adopted thresholding method is the Otsu algorithm described in [37]; a very popular 

choice in thresholding images with bimodal histograms, i.e. typical two-class 

segmentation problems. This is apparently the case in the HSC1 flow magnitude 

thresholding problem, as shown in Figure 64(d), where the high brightness pixels are 

the non-road class and the low brightness pixels contain both road and non-road 

pixels. Using Otsu’s algorithm to calculate a threshold th, that separates the high and 

low HSC1 magnitude pixels, yields 
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where 
xV , yV  are the horizontal and vertical HSC1 flows as estimated using Equations 

7.2 and 7.3respectively. 

Once the thresholding operation is complete, the non-road seeds are updated to 

include both the a-priori defined “sky region” and the high HSC1 flow class. In 
addition, the road trapezoid is refined by excluding all non-road seeds that are placed 

on its perimeter and keeping only long connected segments of the perimeter as the 

road seeds class, i.e. removing very small line segments that are very close to the non-
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road seeds and usually belong to an obstacle rather than the road. This refinement is 

performed in order to incorporate spatiotemporal information in the road seeds 

definition. As a result, the trapezoid area defined as road could become open instead 

of closed, thus forcing the RWA to decide what happens when moving obstacles 

disrupt the drivable area, leading to efficient handling of near obstacles. Some typical 

results of road and non-road seeds definition in various conditions are presented in 

Figure 65. The results show that this approach of seed selection is very robust even in 

challenging conditions. Some problems occur from the large number of falsely placed 

non-road seeds only in extreme cases of rainfall where visibility is extremely reduced.  

   

   

   
Figure 65 : Non-road (blue pixels) and road (red pixels) seeds using the proposed method in various conditions. 

7.3.2 Image Resolution Reduction 

Despite being fast, the adopted RWA implementation is still the computational 

bottleneck of the proposed system and the reduction of the image resolution to be 

segmented was explored, to further reduce the RWA processing time. A spatial 

reduction not only does not deteriorate the accuracy of the road detection algorithm 

but on the contrary, as shown in the next section, increases the road detection quality. 

The optimal results were observed for images half the size of the originals (160x120 

pixels instead of 320x240). The trade-off between road detection accuracy and RWA 

processing speed is also discussed.   

7.4 Experimental results 

Three types of video recordings are used in the evaluation experiments: 

i) typical road scenes used for qualitative results (datasets Patras1 and DIPLODOC), 

ii) fully adverse conditions recordings used for qualitative evaluation in challenging 

environments (from the datasets Patras1 and Patras2 as described in Chapter 1),  
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iii) mixed conditions recordings with ground truth annotation (DIPLODOC dataset) 

used for quantitative evaluation of the proposed road-detection system in 

comparison to [123], [128] and 

iv) challenging conditions recordings with ground truth annotation (Alvarez1 and 

Alvarez2) used for quantitative evaluation of the proposed road-detection system 

in comparison to [24]. 

7.4.1 Qualitative Road Detection results in normal conditions 

The system was initially tested in videos shot under normal weather lightly adverse 
conditions, and mid-day illumination conditions, with the car speed limited to (20-
120) Km/Hour. The goal was to evaluate the proposed method in typical conditions, 
especially in terms of classification correctness. The videos that were classified as 
having been shot under normal conditions were acquired primarily on daytime 
without intense sunshine, so that only soft shadows appear in the video scenes. These 
conditions along with well-structured roads and clear road boundaries produce 
excellent road detection rates as shown in Figure 66, where a set of road detection 
results in such conditions is demonstrated. Some temporal inconsistencies might be 
encountered for image areas with road probabilities near the threshold of 0.5. These 
can be removed by updating the segmentation probability threshold, instead of the 
fixed value of 0.5 used in the proposed algorithm. However in the few cases where 
such inconsistencies are met, they concern scene areas that are not close to the ego 
vehicle, therefore the significance of the error is lower. 

   

   
Figure 66 : Road detection results in normal driving conditions using the proposed system. 

7.4.2 Qualitative Road Detection results in adverse conditions 

The quality of the proposed road detection system is assessed in more adverse 

conditions with very promising results. Although a quantitative approach is very hard 

due to the overwhelming variety of adversities in real driving videos, some useful 

deductions about the advantages and disadvantages of the proposed system can still be 

drawn by examining the qualitative results in adverse conditions or challenging 

environments: 
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i) The presence of shadows is handled effectively, especially in cases where they 

are close to the ego-vehicle. More specifically, in some cases where the ego-

vehicle moves from a sunny area to a shadowed area of the road, or vice-versa, a 

false detection result resembling the one generated when the ego-vehicle passes 

over a speed bump is produced. This means that the detected drivable area in front 

of the ego-vehicle gets smaller, until the trapezoidal seed area forces the RWA to 

include the more distant part of the road, classifying it correctly as belonging to 

the road. Examples of successful road detection in scenes with shadows are 

demonstrated in Figure 67 (a) through (d). One example of the partially 

problematic result mentioned above is shown in Figure 68(a). However the system 

quickly adapts and when the ego-vehicle gets closer to the shadow, the shadowed 

area is correctly recognized as road as shown in Figure 67(d).  

ii) The case of passing through tunnels or bridges is a typical problem in such 

systems, due to the sudden illumination changes when entering or exiting. The 

proposed method appears robust in such scenarios and gives results that are 

temporally adaptable. More specifically, when entering tunnels, the detected 

drivable area in front of the ego-vehicle falsely reduces in size (Figure 68(b)), but 

only for a few frames; when the car enters the tunnel and the camera gain 

automatically adjusted to the lighting conditions, the proposed system re-estimates 

the road area using the new frames information producing reliable results as can 

be seen in Figure 67(e) and Figure 67(f). The opposite effect is met when exiting a 

tunnel, where the saturated area of the image frame at the exit of the tunnel might 

be misclassified as road surface. This effect also lasts a couple of frames before 

the analog circuits of the camera adapt the acquisition gain to the illumination 

change. After gain correction the proposed method produces reliable segmentation 

results.  

iii) Qualitative results in rainy conditions have also been included in the assessment 

of the proposed method. In cases of light rainfall, the system provides excellent 

segmentation accuracy.  Road detection accuracy is reduced in case of heavy 

rainfall combined with ineffective camera position, i.e. above the effective area of 

the windshield wipers (Figure 68(c)). If the field of view lies in the effective area 

of the windshield wipers, the segmentation accuracy is quite satisfactory except 

from the frames where the wipers pass in front of the camera (Figure 68(d)). 

However, this is a temporary error and the algorithm recovers in next frames. A 

more sophisticated approach would be to post-process the segmentation result 

taking into account information about the movement of the wipers masking the 

wiper area, or using previous frame information. Heavy rainfall also can cause 

some holes in the detected road area, because large raindrops produce high HSC1 

flow rates (Figure 67 (h) and Figure 68(c)). This problem can be tackled by the 

addition of a post processing step of image hole filling, but this could result in 

misclassification of small obstacles as road. 

iv) The scenario of night driving is handled efficiently, depending on the lighting 

conditions of the scene, as well as on the sensitivity of the optical sensor. When 

the scene is sufficiently lit and the camera depicts night scenes efficiently, the 
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algorithm performs very well (Figure 67(i)); however in the case of badly lit 

scenes in conjunction with an optical sensor with low quality performance in night 

scenes, there appears to be some degradation in segmentation quality (Figure 

68(e)). This is a problem that might be handled more efficiently with the use of 

infrared cameras, but the proposed system was not tested with such data. 

v) Road detection accuracy is also affected by the blocking effect caused by video 

compression algorithms. This might cause high HSC1 flow values in areas that 

should normally appear textureless, thus causing the algorithm to include non-

road seeds on the road surface. Such an example appears in Figure 68(f). 

   
(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 67 : Successful road detection results in adverse conditions. (a)-(d) Various scenes with heavy shadows, (e) passing 

through a tunnel, (f) passing under a bridge, (g), (h) rainy conditions and (i) night driving. 

Some of the less successful detections described in detail above, are shown in Figure 

68. In most cases, the system improves the detection result significantly in the next 

few frames. 

Apart from the results discussed in this subsection, the proposed system also showed 

robust in cases where the camera shakes at times, as well as in cases of driving in 

roads with many turns. These scenarios, as well as more qualitative results in different 

video formats can be viewed at: http://www.wcl.ece.upatras.gr/en/gsiogkas.  
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 68 : Less successful road detection in particularly challenging conditions. (a) Approaching shadowed road, (b) 

entering tunnel, (c) heavy rainfall with camera above the effective area of the wipers, (d) wiper passing in front of 

camera, (e) night driving in badly lit road, (f) misclassification due to high rate video compression. 

7.4.3 Quantitative Road Detection results in mixed conditions  

The proposed system was quantitatively evaluated using the five manually annotated 

video streams from the DIPLODOC dataset provided in [23], including mixed 

condition scenes. The efficiency of the proposed road detection system was directly 

compared to [123], [128] giving better segmentation accuracy. The comparison is 

based on the metrics of quality, recall and precision, presented in sub-section 1.7.3. 

Using the aforementioned measures, [123] report several experiments using a method 

based on stereo vision, achieving an average quality factor over the five videos 

between 85% and 90%. These results are achieved with neither the correctness nor the 

completeness ever dropping below 90%. In fact, the trade-off between correctness and 

completeness almost reached 95% along the diagonal of a plot of these two measures. 

In [128], P. Lombardi et al have reported that the monocular road model switching 

method proposed achieved quality results that fluctuated from approximately 60% to 

95% through the entire video stream. Unfortunately, the mean values of the quality 

measures were not reported, instead three plots demonstrating the aforementioned 

quality of several experimental setups for all the frames were provided. 

When the frame-by-frame performance is measured, the proposed system achieves a 

quality fluctuation from 74% to 99%. It is clear that the proposed road detection 

system outperforms the efforts in both [123] and [128]. A comparative view is given 

in Table 9. The statistics of the proposed method have been estimated using the best 

system setup and parameter settings, which are: resizing of the frame to be segmented 

to 160x120 pixels, optical flow estimation for a=3 and iteration number k=1 and 

β=70 for the RWA. 
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Table 9: Overall performance of proposed RD algorithm compared to [123] and [128]. 

  Method in [123]  Method in [128] Proposed Method 

Quality, ĝ  

Mean 85% ~ 90% N/A 92.8% 

Std N/A N/A 3.6% 

Min N/A 60% 74.0% 

Max N/A 95% 99.1% 

Recall, R 
Mean N/A N/A 95.7% 

Std N/A N/A 3.5% 

Precision, P 
Mean N/A N/A 96.9% 

Std N/A N/A 2.7% 

For a more qualitative view of the results, each of the video streams should be 

observed and analyzed separately, because the driving conditions among videos differ 

significantly, as shown in the five columns of Table 10.  

Table 10 : Description of DIPLODOC video streams conditions 

Sequence Number Frames Environment / Traffic Vehicles Shadows Lighting 

1 451 Suburban/light 4 Yes Sunny 

2 150 Suburban/none 0 Yes Sunny 

3 100 Suburban/light 2 Yes Sunny 

4 60 Urban/dense 6 No Gloomy 

5 104 Highway/light 2 No Sunny 

In Table 11, the accuracy of the proposed road segmentation method shows 

robustness in all DIPLODOC sequences, achieving mean segmentation quality above 

92%, with a small inefficiency in sequence 3, where the mean quality drops to 89.9% 

affected by a low completeness rate (93.5%), caused by increased false negatives rate. 

The standard deviation (Std) of the quality never raised above 3.7%.  

Table 11 : Performance of proposed RD System in DIPLODOC video streams 

Sequence Number 1 2 3 4 5 

Quality, ĝ  
Mean 92.8% 92.9% 89.9% 93.4% 94.8% 

Std 3.7% 3.7% 3.1% 2.0% 2.2% 

Recall, R 
Mean 96.1% 97.1% 93.5% 93.7% 94.8% 

Std 3.7% 3.3% 3.0% 2.1% 2.2% 

Precision, P 
Mean 96.5% 95.5% 95.9% 99.7% 99.9% 

Std 2.6% 2.5% 2.0% 0.1% 0.1% 

A simplified presentation of the proposed method limitations is shown in Figure 69. 

Low quality scenes from video stream 3 of DIPLODOC dataset are annotated 

according to three quality measures; true positives are yellow, false positives are red 

and false negatives are green.  

These images show that some errors present some level of subjectivity, like in the first 

row, where a parking space on the left is treated by the human annotator as non-road. 

A different case is presented in the second and third column, where the region near 
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the motorcyclist is treated as non-road by the algorithm even one frame after his 

departure from the scene. The non-zero HSC1 flows of that area are known also as 

ghosting effect. An argument could be made that such a result is useful because it 

warns the driver that the area on the left is not safe, even 1/15th of a second after the 

crossing of the motorcycle, which could, depending on its speed, be on the left of the 

ego-vehicle. A speed of 60km/h by both vehicles would mean that their distance is 

changed by approximately 2.2m per frame, justifying a warning event. In the last 

example, a consistent false negative error appears on the right, due to the presence of 

the thick road line. This is a common deficiency of such algorithms and can be dealt 

with a post-processing phase that includes detection of road lines in the segmentation 

map. 

   

   
Figure 69 : Qualitative results in frames with low quality rate. Yellow: TP, Green: FN, Red: FP. 

7.4.4 Sensitivity analysis of proposed RD system in mixed conditions 

The proposed system performs satisfactorily in all the sequences and for all settings 

used in the experiments, including the parameters a, k for the optical flow, β for the 

RWA and several reduced image sizes. Extensive experiments were also conducted to 

assess the influence on the system accuracy from a change in the color space of the 

frame used in the RWA and the brightness normalization process performed after 

image acquisition.  

More specifically, the experiments carried out on the DIPLODOC sequences concern 

the following settings using: 

1) (a, k) =(3,1), (7,3), (10, 3), (15, 5) for the optical flow estimation, 

2) β=70, 90, 110 for the RWA segmentation, 

3) the RGB, CIE-L*a*b*, HSV and YCbCr color spaces for the RWA segmentation 

and 

4) resolution of 320x240 (original size), 160x120 (1/2 size), 80x60 (1/4 size), 64x48 

(1/5 size) and 40x30 (1/8 size) for the RWA segmentation.  
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The best experimental results are derived by altering the first three sets of parameters 

and keeping the spatial resolution at 160x120, where better segmentation accuracies 

are achieved. In all experiments, the best segmentation accuracy of 93.1%, was 

achieved using (a, k) = (3, 1) for the optical flow, RGB color space for the RWA, 

which gave the best results for β=70. The next best results are obtained using the 

YCbCr color space. The selection of L*a*b* as a color space resulted in significantly 

worst segmentation accuracy, of approximately 88.6%, affected by the low 

correctness rate of 90.4%. Similar results were encountered for the HSV color space. 

Generally, in the experiments with greater values of a, k and β lower segmentation 

quality is measured. Some of the results described above are summarized in Table 12. 

Table 12 :  Segmentation rate of the proposed RD system in DIPLODOC sequences for different setups 

 
ĝ

 
R P 

Color Space (α,k,β) Mean (%) Std (%) Mean (%) Std (%) Mean (%) Std (%) 

RGB 

(7,3,70) 92.3 4.4 96.8 3.3 95.2 4.0 

(7,3,110) 92.1 4.7 96.8 3.3 95.0 4.4 

(15,5,70) 92.1 4.6 96.7 3.4 95.1 4.1 

(15,5,110) 91.9 4.7 96.7 3.4 95.0 4.4 

CIE-

L*a*b* 

(7,3,70) 88.6 6.6 97.9 2.9 90.4 7.2 

(7,3,110) 88.5 6.9 98.1 2.8 90.2 7.4 

(15,5,70) 88.3 6.7 97.8 3.1 90.3 7.3 

(15,5,110) 88.2 6.9 97.9 3.0 90.0 7.4 

HSV 

(7,3,70) 88.6 7.5 98.0 2.9 90.5 8.1 

(7,3,110) 88.7 7.4 98.1 2.8 90.4 8.0 

(15,5,70) 88.4 7.4 98.0 3.0 90.4 8.0 

(15,5,110) 88.4 7.4 97.9 2.9 90.2 8.0 

YCbCr 

(7,3,70) 92.2 4.5 96.8 3.3 95.2 4.0 

(7,3,110) 92.0 4.6 96.9 3.3 94.9 4.4 

(15,5,70) 92.0 4.6 96.6 3.4 95.1 4.1 

(15,5,110) 91.9 4.6 96.7 3.4 94.9 4.4 

Additional experiments were carried out to assess the contribution of each of the seed 

selection cues to the quality of the road segmentation. More specifically, a run for the 

entire Diplodoc sequence was performed using the optimum resolution of (160x120), 

and (a, k, β) = (3, 1, 70) settings, for all possible combinations of: i) the a-priori sky 

region being used or excluded, ii) the road trapezoid being selected based on the result 

of the previous frame, or being selected by the user in the first frame and remaining 

stable for all frames and iii) the HSC1 flow being used or not. The experimental 

results from these experiments led to the following conclusions:  

1) the a-priori sky region included in the non-road seeds class benefits mainly the 

segmentation speed of the algorithm, as it can enhance it by almost 10%, when the 

sky seeds are placed in the top 20% of the frame. In terms of segmentation quality, 

the sky region does not seem to have any quantitative influence. 
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2) The segmentation quality is improved when both previous frame road-pixels and 

HSC1 flow information is processed by the RWA (4% better than static trapezoid). 

When the RWA derives the road pixels without HSC1 flow data, the static road 

trapezoid produces a higher correctness rate, influencing the overall quality (both 

measures are raised by approximately 9%).   

3) The use of HSC1 flow information is beneficial in all cases, improving the quality 

result by a minimum of 4%, affected mainly by the correctness improvement. 

A final experiment was carried out using a filled trapezoid for the road seeds instead 

of its perimeter. In this case, the initialized seeds covered approximately 60 to 70% of 

the frame (20% for the sky, 30 to 40% for the road and up to 10% for the obstacles), 

leading to a reduction of the processing time of 10 to 15%. However, this 

experimental setup is deficient especially in cases where a preceding vehicle is in the 

trapezoidal area; this has the effect of large portions of the vehicle to be misclassified 

as road, leading to a deterioration of the correctness.     

7.4.5 Quantitative Road Detection results in challenging conditions  

The RD system was also assessed under more challenging conditions, using the two 

video streams Alvarez1 and Alvarez2 provided by Alvarez et al for the purposes of 

[24] and described in Chapter 1. The two video streams contain driving scenes after 

rain and in the presence of very dense shadows, two factors that make the RD task 

quite difficult. The results reported by Alvarez et al were measured in terms of the 

effectiveness metric, F, presented in section 1.7.1, reaching an average value of 
ˆ 0.8945 0.0028F    and an average standard deviation of ˆ 0.1001 0.0082F   . The 

fluctuations are due to the fact that their method is training-based; therefore the 

effectiveness was estimated using a cross-validation process. 

Using the setup that was described for the DIPLODOC sequence, the proposed RD 

system achieved directly comparable results, even though it does not include any 

training phase as the one presented in [24]. More specifically, the proposed RD 

system reaches an average value of ˆ 0.8885F  , with an average standard deviation of 

ˆ 0.0084F   when operating with the original image resolution. The aforementioned 

results were achieved with a very high correctness/precision rate, but a low 

completeness/recall rate. Another disadvantage derived by using the original 

resolution is the low processing speed achieved, which is approximately 1.7sec per 

frame using MATLAB code on a 2.8 GHz Quad Core processor. 

When tweaking the setup of our system to balance the precision/recall factor, we can 

get results that are far superior to the ones reported in [24].  More specifically, if the 

upper base of the road trapezoid is expanded by a length equal to 20% of the bottom 

base (10% in each direction), and the probability threshold for the RWA result is 

dropped to a lower level (e.g. 0.2), the detection efficiency of the proposed RD system 

rises above 0.9. The first change made, i.e. the expansion of the upper base length, 

cannot be considered a "tweak", since it is a heuristic variable, based on the camera 



7.4 Experimental results 

 

104 

 

setup. However, lowering the probability threshold tp below the value of 0.5 is 

somewhat counterintuitive, since theoretically for equal a-priori probabilities the best 

RWA segmentation results for two classes' segmentation should be achieved by 

setting the threshold to the value where the minimum classification error rate is 

achieved, i.e. by half the maximum probability.  

The automated seed selection process of the proposed algorithm significantly 

influences the optimum threshold value and, hence the better results are achieved for a 

lower than 0.5 threshold. All results that are reported in this section were obtained 

using an image hole filling post-processing stage for the thresholded RWA result, so 

that the proposed method is directly comparable to [24], which also uses such a 

module. 

The final results achieved by three different setups of our system for the original 

resolution of 640x480, compared to those reported in [24] for their method and the 

method inspired by [131] and [133]are demonstrated in Table 13.  

Table 13 : Overall performance achieved by proposed RD algorithm compared to [24] and [131], [133]. 

  Method in [24] HSI Method 

inspired by  
[131], [133] 

Proposed 

Method with 

6.4.3 setup  

Proposed Method 

with longer upper 

base and tp = 0.5 

Proposed Method 

with longer upper 

base and tp = 0.2 

Efficiency, 

F̂  

Mean 0.8945 ± 0.0028 0.6206 ± 0.0003 0.8885 0.9070 0.9216 

Std 0.1001 ± 0.0082 0.0343 ± 0.0002 0.0840 0.0757 0.0634 

Quality,

ĝ  

Mean N/A N/A 0.8081 0.8374 0.8603 

Std N/A N/A 0.1167 0.1106 0.0963 

Recall, R 
Mean N/A N/A 0.8162 0.8501 0.9113 

Std N/A N/A 0.1220 0.0352 0.0979 

Precision, 

P 

Mean N/A N/A 0.9908 0.9859 0.9455 

Std N/A N/A 0.0028 0.1171 0.0798 

From the results of Table 13, it is evident that the setup used in the proposed system 

in the previous section is not optimal for every problem. Minor adjustments of the 

settings can lead to great performance improvements, thus making the most successful 

setup to outperform the method in [24] by approximately 0.025 in terms of efficiency. 

7.4.6 Selection of optimal resolution for the RD system 

One of the most important problems in designing road detection applications concerns 

the selection of the optimal image resolution in the segmentation process. The 

adopted spatial resolution has a dramatic effect in both the quality and the speed of 

the system. In very small resolution, the segmentation quality is decreased due to 

information loss, while using very large images increases the computational 

complexity, while there is no guarantee of achieving better segmentation results. 

Extensive quantitative experiments have been conducted in the DIPLODOC video 

streams with an original size of 320x240 to study the effects of frames re-sampling to 

a lower resolution before using them in the RWA. The experimental results for the 
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setup that achieved the best overall quality are given in Table 14, together with the 

average processing time per frame. The results reported were achieved using 

MATLAB code on a 2.8 GHz Quad Core processor, Windows 7 OS, without any 

parallelization. The only part of the code that is not native MATLAB is the Horn 

Schunck optical flow calculation, which was written in C and compiled as a 

MATLAB executable file. 

The experimental results from the DIPLODOC sequence demonstrate that the best 

segmentation quality is achieved when the RWA process images half the original size 

(160x120). The system using this resolution reaches a frame rate of approximately 

10fps, giving 101ms processing time per frame. Real-time response at 15 fps is 

achieved for image resolution of 80x60. In this case the segmentation accuracy is 

decreased by a 1.5%. Among the most impressive advantages of the proposed RD 

method are the robustness of the correctness and the completeness rate, which are 

always greater than 96.5% and 91% respectively. 

Table 14: Results achieved for various resolutions of DIPLODOC video streams. 

Resolution 320x240 160x120 80x60 64x48 40x30 

Quality, ĝ  Mean 92.5% 92.8% 91.3% 90.3% 88.3% 

Std 3.7% 3.6% 4.3% 4.5% 5.3% 

Recall, R 

Mean 95.5% 95.7% 94.3% 93.3% 91.1% 

Std 3.8% 3.5% 4.2% 4.5% 5.8% 

Precision, P Mean 96.8% 96.9% 96.7% 96.7% 96.7% 

Std 3.0% 2.7% 3.1% 3.2% 3.1% 

Processing time per frame (ms) 350 101 62 59 56 

Frames processed per second (fps) 2.9 9.9 16.0 16.9 17.8 

Processing time of RWA / HSC1 

(ms) 
295/4 45/4 11/4 7/4 3/4 

The RWA module is the computational bottleneck of the proposed system, requiring 

approximately 1.7s when the original resolution of 640x480 is used. When frame 

resolutions lower than 320x240 are used, the solution of Equation 2.35 is handled 

efficiently using Cholesky factorization of the large sparse symmetrical matrix 

involved and the processing time spent on the RWA gradually stops being 

problematic for real-time implementations, as we can see in the last row of Table 14. 

The processing time spent on the optical flow calculation is generally acceptable for 

the purpose of an ADAS.  

7.5 Conclusions 

In this chapter, a training-free RD system based on a novel automated version of the 

RWA utilizing temporal, spatial and a-priori information was proposed. The system 
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was extensively tested, both qualitatively and quantitatively, using real on-board 

video streams shot in various weather, illumination and driving conditions.  

The novelty of the proposed system lies on the utilization of shadow-resistant optical 

flow estimation along a-priori spatial information and previous segmentation results 

to automate the RWA for usage in the RD problem. The system designed showed 

robustness in many environmental conditions and has the ability to operate in real-

time in typical roads, or the presence of lane markings. It also does not require any 

training, or post-processing module. 

The system was evaluated experimentally achieving results superior to other methods 

tested on the DIPLODOC dataset, [123], [128]. It also proved more efficient than the 

method presented in [24], compared in the same challenging dataset. Shadows, 

irregularities of the road surface and vehicles are handled efficiently. The proposed 

approach can process video signals acquired from different types of video cameras, 

including low cost ones, at different viewing angles, because all this information is 

adjusted by calibrating the a-priori areas that will be used in the seed placement 

process.  



 

 

Chapter 8 

Conclusions and Future Work 

8.1 Introduction 

This thesis has presented and evaluated four computer vision based algorithms that 

can be used as separate subsystems in a complete ADAS. The problems tackled were 

traffic signs detection, traffic lights detection, preceding vehicle detection (both in 

single images and in videos) and road detection. All the methods developed for the 

purposes of this thesis were published in international conferences and journals, 

proving their credibility and novelty.  

The most special focus of the dissertation was split on preceding vehicles detection 

and road detection, two of the most popular areas of interest in modern ADAS 

research. The discussion presented in this chapter will point out the novelties of all the 

methods developed, pinpoint the issues that are still open and suggest future work on 

enhancements or evolution of the methods.      

8.2 Traffic Sign Recognition 

8.2.1 Proposed TSR system 

The implementation of a TSR system was the first problem visited during this 

dissertation. The system was split into two sequential stages; the detection and the 

classification stage.  The detection phase of the system implemented was based on 

color symmetry information combined with a spatiotemporal technique that reduced 

the size of the windows to be searched in the video frames, hence improving the 

processing time performance of the system. The classification stage involved the 

usage of two empirically selected, cross-correlation based classifiers for comparison 

of the detected traffic signs with the templates included in a large dataset of the most 

common signs.     

8.2.2 Performance evaluation 

The proposed TSD system demonstrated a very high TS detection rate for videos shot 

in various conditions. The combination of color and radial symmetry proved to be a 

very good choice for the problem at hand, even for traffic signs that were not circular. 

The spatiotemporal stage of the algorithm also played an important role in the 

correctness of the results, rejecting many false positives and focusing the search on 

more conspicuous areas of the image frames. The detection module provided some 
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very promising results even in cases of partial occlusions, or very badly illuminated 

scenes, especially due to its usage of the CIE-L*a*b* color space.  

The results achieved from the detection stage were fed to a classification module, 

deploying the two aforementioned classifiers. The cross-correlation classification 

performed achieves results that are very satisfying given the facts that they use solely 

visual information and they use almost all the traffic signs of the E.U. However, the 

classification subsystem is still far from being mature enough for commercial 

deployment.  

Overall, the TSD system proposed in this thesis achieves promising results even in 

some more challenging situations and could, potentially, be used as a basis for more 

complicated systems, which probably will have to involve some kind of machine 

learning approach to improve the classification results.  

8.2.3 Real time implementation potential 

The proposed system is moderately fast, especially when the input images are of size 

less than 720x568 pixels (the original resolution of the video streams used). Its image 

processing stage also has many common parts with the TLD and PVD subsystems, a 

property that could be exploited in a parallel architecture ADAS to increase the total 

processing speed of the system without jeopardizing the quality of the results.      

8.2.4 Prospects of the proposed system 

The TSR system proposed in this thesis is a fairly simplified example of how 

computer vision can be used to tackle problems that are often met in the ADAS 

context. While it is promising, it cannot be evenly matched to alternative, more 

complex solutions in the literature. Furthermore, pure computer vision systems for 

TSR have been slowly giving their place in the market to either GPS TSR systems, or 

systems fusing GPS and computer vision. Overall, the fusion of Infrastructure-to-

Vehicle (I2V) communication systems with some computer vision method and the 

GPS signal of the vehicle seems to be a more reliable choice. In this context, the 

proposed method could be used as a structuring element for such solutions.  

8.3 Traffic Lights Recognition 

8.3.1 Proposed TLR system 

The second subsystem covered in this dissertation is the one performing TLR. 

Similarly to the TSR module, the TLR uses radial symmetry and color as descriptive 

features for the generation of candidate regions and then implements a spatiotemporal 

filtering method to validate the results that belong to TLs. The approach is similar to 

the one used in TSR, since the basic discriminative cues for both traffic signs and 

traffic lights are color and shape. In the case of traffic lights, the cues are much 

stricter since the traffic lights detected must be circular and only have one specific lit 

color inside them, which can also be used for their classification.    
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8.3.2 Performance evaluation 

The TLR system proposed is successful in terms of completeness, since most of the 

TLs in the video stream dataset used for evaluation were detected. The problem of the 

system is its high rate of false positives, which is reduced but not eliminated by the 

spatiotemporal filtering module used. The issue becomes more evident when the 

system faces driving in big city roads, especially at nighttime. The biggest advantage 

of the TLR system is the lack of a training phase or a model describing the TLs. When 

compared with other methods found in relevant literature, it performs comparably in 

terms of completeness, but underperforms in terms of correctness. Adverse conditions 

are also tackled effectively by the system, with a small deterioration of the results 

(raised number of false positives) in the case of night driving, due to the multitude of 

light sources.   

8.3.3 Real time implementation potential 

Our TLR system achieves a near real-time performance, since it achieved a frame rate 

fluctuating from 2 to 10 fps. The similarities it has with the TSR system could be 

exploited for a parallel architecture implementation based on a common color filtering 

process followed by a parallel implementation of the FRST to detect symmetrical 

objects. Naturally, the processing performance achieved is also directly related with 

the resolution of the video used and the number of radii that are used in the FRST.  

8.3.4 Prospects of the proposed system 

Similarly to the case of TSR, the proposed TLR subsystem appears promising for the 

implementation in real life scenarios, but it still has to be improved in terms of false 

positive rates. The fusion with additional sources of information from the driving 

scene, like I2V communications or a GPS signal, could further improve the 

effectiveness of the system.  

8.4 Preceding Vehicle Detection 

8.4.1 Proposed PVD system 

The PVD system proposed in this thesis has two distinct implementation forms; one 

subsystem that aims at PVD using a single image and one PVD subsystem for video 

streams.  

The single image method, presented in chapter 5, is based on a mixture of radial and 

axial symmetry features that define the rear part of vehicles. The radial symmetry is 

used in conjunction with a color filtering process for detection of red rear lights that 

are consequently paired to define ROIs where a vehicle could exist. Then, the ROIs 

are refined by an edge detection algorithm and are checked for axial symmetry to 

validate the vehicle candidates. The axial symmetry process is based on a 

combination of two object similarity metrics applied on the two sub-images created 

when the candidate ROI is split in half along the vertical bisector. 
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The video-based PVD method, presented in chapter 6, is based on the same initial 

steps, with three main differences: i) the color filtering process is performed in a 

different illumination invariant color space, ii) there is no edge detection process 

involved and iii) the ROI is confined around the area of the rear lights and does not 

cover the entire rear part of the vehicle. When these steps are completed, the detected 

ROIs are processed using the results of a Kalman filter, to validate just at most one 

result as a preceding vehicle.        

8.4.2 Performance evaluation 

Both versions of the proposed PVD system were evaluated quantitatively using 

publicly available datasets, providing superior results in comparison to other relevant 

methods found in the literature. In the case of single image PVD, the results suffered 

from a high false positive rate, which was minimized in the case of video based PVD, 

due to the Kalman filtering stage. Both methods were also qualitatively evaluated in 

more challenging conditions, shown robust accuracy even in cases of rainfall, snow, 

or night driving.   

More specifically, the single image PVD system presented in chapter 5 outperforms 

similar methods when detection rates are compared. However, it appears to produce a 

high number of false positives, and also it sometimes fails to verify vehicles that do 

not have symmetrical rear views. Also, its reliance on the CIE-L*a*b* color space 

sometimes fails to detect all the vehicle rear lights in the image.  

The video based PVD system uses a different color space, derived from a mixture of 

the channels of the c1c2c3 color space. This color space has experimentally been 

shown to produce better initial detection results. Furthermore, the confinement of the 

selected ROIs in an area close to the rear lights instead of the whole rear part of the 

vehicles improves the verification results for vehicles with less symmetry in their rear 

views. Finally, the inclusion of Kalman filtering for the final verification of the 

preceding vehicles greatly reduces the false positive rates, without affecting the 

detection rates of the system.        

8.4.3 Real time implementation potential 

Both proposed PVD systems are based on the same basic concepts; hence their 

processing speeds are similar. The bottleneck of the systems is the FRST, except in 

the case of processing smaller images (160x120) where the bottleneck is the axial 

symmetry calculation. The frame rate measured in MATLAB almost reached 7 frames 

per second for the case of small images and without any parallelization. Due to the 

structure of the proposed algorithm and the nature of the FRST, the overall processing 

time could be reduced significantly if a parallel architecture was used. The system 

then could perform in real time (at least at 25 frames per second), even using 

MATLAB code.   
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8.4.4 Prospects of the proposed systems 

The proposed systems have been thoroughly evaluated even in challenging conditions 

with very promising results. Especially the video based PVD system can be used as a 

stand-alone solution, or at least be a part of a more complicated system that uses extra 

information from radar or lidar systems to provide even better localization results. 

The system assumes the existence of red symmetrical lights in the rear part of 

vehicles, so an even stricter legislation when it comes to vehicle manufacturing could 

improve its robustness. A possible mixture with a road or lane detector can enhance 

the accuracy of the system even further. Finally, since the system relies greatly on 

radial symmetry and color filtering, it can be used in conjunction with the previous 

systems presented (TSR and TLR) to form a complete ADAS solution.  

8.5 Road Detection  

8.5.1 Proposed RD system 

The RD system is the final one proposed in this thesis, but it has been the most 

successful one in terms of accuracy, speed and robustness.  

The first processing step of the RD system is the estimation of the color Horn-

Schunck flow of a pair of frames, followed by a thresholding of the result to pinpoint 

pixels with high flow (which represent non-road objects). Then, these pixels are 

combined with a-priori knowledge about the camera setup and the road pixels 

detected in the previous frame to automatically initialize a random-walker process. 

Finally the results of the RWA are then thresholded to locate the road area, which will 

be used for the RD in the next frame. 

8.5.2 Performance evaluation 

The RD algorithm proposed in this thesis has been extensively tested and proven to be 

superior to several of the alternative methods found in recent literature. The 

assessment of the system was based on two publicly available datasets provided by 

the researchers whose methods were compared to the one proposed here, therefore the 

results are as objective as possible.  

Extra qualitative assessment of the proposed system was also carried out, using video 

streams acquired for the purposes of this thesis. The results showed that the system 

appears robust to particularly challenging scenarios, like heavy rainfall, driving 

through tunnels and underpasses, driving in presence of dense shadows, or driving at 

nighttime. Finally, the proposed RD system has a very useful quality; it tends to be 

adaptive to sudden illumination changes and recover from temporary drops in its 

detection accuracy.  

8.5.3 Real time implementation potential 

The proposed RD system is exceptionally fast. It performs in near real-time speeds, 

fluctuating from approximately 3 to approximately 18 frames per second (using 
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MATLAB code), depending on the resolution used. It produces its best results at an 

approximate processing rate of 10 fps, making it a very good candidate for a real time 

ADAS. A DSP implementation, or even a C++ code optimized for speed, would 

achieve real time speeds, without jeopardizing the quality of the results.  

8.5.4 Prospects of the proposed system 

The RD system proposed could, potentially be included in a complete ADAS, to assist 

with localization of obstacles, or inform the driver for potential dangers. The direct 

connection of the size of the detected road with impending collisions could prove 

useful for a collision warning system. More specifically, a potential implementation 

taking into account the rate of change of the size of drivable road ahead, could inform 

the driver that an obstacle is approaching, hence extra attention is needed.  

The system also can be used in conjunction with a vehicle detection module, to assess 

the overall dangerousness of detected vehicles in the scene. Possible implementations 

that could benefit from the RD module include overtaking vehicles detection, 

preceding vehicle detection, etc. Furthermore, RD results can be used to filter out 

false positive results in TSR and TLR systems, since the expected positions of traffic 

lights and signs in a driving scene are constrained and have a close relationship with 

the position and boundaries of the road.    

8.6 Final words and future work 

The work carried out and described in this thesis spans through several areas of 

modern ADAS technology. The usage of information coming only from a monocular 

on-board color camera for all developed systems incorporates an additional challenge, 

but adds extra value to the proposed systems, since all of them can be used as the 

foundations of more complete ADASs which will fuse information from different 

sources. 

In that direction, the future work that can be inspired from this dissertation thesis can 

potentially focus in fusing several of the proposed systems, or enhancing them with 

usage of information acquired from additional sources.  

A first approach will be to try and merge the three first systems proposed in this thesis 

into one ADAS that performs TLR, TSR and PVD at the highest possible processing 

speed. The underlying components of all three subsystems are very compatible, since 

they are all based on color thresholding (aiming at isolating intense colors) and radial 

symmetry detection. A complete system that performs these processes in a parallel 

architecture is a very challenging and rewarding goal. 

The aforementioned ADAS can later be enhanced by taking into account information 

generated from the RD module, leading to an improvement of the detection rates of 

the individual components, by taking into account spatial information of their results 

and correlating it to the spatial information of the road area. This might lead to a 

better overall performance in terms of quality.  
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A third approach that has great potential, is fusing the results from a complete ADAS 

like the one just described with the information gathered from a camera pointed at the 

driver's face. The correlation of the driver's gaze information with potential eminent 

dangers in the driving scene can prove very effective for early warning in dangerous 

situations, hence giving the driver a heads-up that could prevent accidents.      

Finally, the ultimate goal that is common in all ADAS implementations is to produce 

systems that are robust in all possible conditions. The systems proposed so far in 

relevant literature have not been addressing challenging conditions very frequently. 

Apart from the inherent difficulties to build such a system due to the presence of 

strong multi-source, non-white and time-variant noise, a reason for this is the lack of 

benchmarks that can be used to assess the performance of such systems. Therefore, a 

move towards gathering large datasets of driving videos in challenging, or even 

adverse conditions could be very valuable to the researchers of this field. 

Furthermore, the annotation of TLs, TSs, vehicles, pedestrians, other obstacles and the 

drivable road on a large volume of video frames is a very important goal for vision-

based ADAS researchers, so that a common, widely accepted benchmark can be 

developed.  

8.7 Dissertation Publications 

The research work described in this dissertation has resulted in the following articles: 

8.7.1 Journal Publications 

J.1 G. Siogkas and E. Dermatas, “Random Walker Monocular Road Detection in 
Adverse Conditions using Automated Spatiotemporal Seed Selection,” to appear in 
Intelligent Transportation Systems, IEEE Transactions on, vol. 14, no. 2,  pp. 527–
538, 2013. 

J.2 G. Siogkas, E. Skodras, N. Fakotakis, and E. Dermatas, “Rear Lights Vehicle 
Detection and Tracking,” Integrated Computer Aided Engineering, invited paper, 

submitted, pending review, 2013. 

8.7.2 Conference Publications 

C.1 E. Skodras, G. Siogkas, E. Dermatas, and N. Fakotakis, “Rear lights vehicle 
detection for collision avoidance,” in Systems, Signals and Image Processing 

(IWSSIP), 2012 19th International Conference on, 2012, pp. 134–137. 

C.2 G. Siogkas, E. Skodras, and E. Dermatas, “Traffic Lights Detection in Adverse 

Conditions Using Color, Symmetry and Spatiotemporal Information,” in International 

Conference on Computer Vision Theory and Applications (VISAPP), 2012, pp. 620–
627. 

C.3 G. K. Siogkas and E. S. Dermatas, “Detection, tracking and classification of road 

signs in adverse conditions,” in Electrotechnical Conference, 2006. MELECON 2006. 

IEEE Mediterranean, 2006, pp. 537–540.     
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