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Abstract

Traffic accidents are one of the main reasons for the loss of human lives worldwide.
Their increasing number has led to the realization that the use of advanced technology
for manufacturing safer vehicles is imperative for limiting casualties. Since
technological breakthroughs allowed the incorporation of cheap, low consumption
systems with high processing speeds in vehicles, it became apparent that complex
computer vision techniques could be used to assist drivers in navigating their vehicles.
In this direction, this thesis focuses on providing novel solutions for different tasks
involved in advanced driver assistance systems. More specifically, this thesis
proposes novel sub-systems for traffic sign recognition, traffic light recognition,
preceding vehicle detection and road detection. The techniques used for developing
the proposed solutions are based on color image processing with a focus on
illumination invariance, using symmetry information for man-made objects (like
traffic signs, traffic lights and vehicles) detection, spatiotemporal tracking of detected
results and automated image segmentation for road detection. The proposed systems
were implemented with a goal of robustness to changes of illumination and weather
conditions, as well as to diverse driving environments. A special focus on the prospect
for real-time implementation has also been given. The results presented in this thesis
indicate the superiority of the proposed methods to their counterparts found in
relevant literature in both normal and challenging conditions, especially in the cases
of preceding vehicle detection and road detection. Hopefully, parts of this research
will provide new insights for future developments in the field of intelligent
transportation.






Hepidnn

Ta avToKVNTIoTIKE SLGTLYNUATO ATOTEAOVVY o and TIG KLPLOTEPEG attieg Bavdtov
naykoopimg. O av&avouevog aplBudg tovg odynoe oty cuvewdnromoinon 6tL
YPNON TPONYUEVNG TEXVOAOYIOG YO TNV KOTOOKEVLT OCGQPUAEGTEP®V OYNUATOV ivat
ATOPOATNTN Yo TNV PEIMOTN TOV aTLVYNUATOV Kol Katd cuvénela Tov Bavatov mov
opeilovtar o avtd. Amd TN OTIYU TOV Ol TEXVOAOYIKEG eEeMEEIC eméTpeyay TV
EVOOUATOON GONVAOV, YOUNANG KOTOVIAMONG CLGTNUATOV HE LEYAAN emeEepyaoTIKN
TayOTNTO GE OYNUOTO, KOTEGTN TPOPOVEG OTL TEPITAOKES TEYVIKEG VTOAOYIGTIKNG
OPOCNG LITOPOVCAV TAEOV VO YPNOLUOTOO0VV Yia TNV voondnon g odnynone. X
avt Vv kotevboven, n moapovca OSatpPn €otidlel oV AVATTLEN KOVOTOU®V
AMOoEMV Y10l SOPOPETIKG KOUUATIO TOV EUTAEKOVTOL OTO TPONYUEVO GULGTILOTOL
vroPondnong tov odnyov. Il cvykekpyéva, ce avty TV dTpipn TpoteivovTal
KOWVOTOUO, DITOGLGTHLOTO Y0l TV OVAYVAOPLoN GNUATOV 001KNG KuKAo@opiag, TNV
AVAYVOPIoT POTEWVOV CGNUOTOO0TAOV, TOV EVIOTIGUO TPOTOPEVOUEVOL OYTLLOTOS Kot
TOV EVIOTIGHO OpOpov. Ot texVikég mov ypnoiponomdnkay ywoo v avantoén tov
npoTEVOUEVOV Acewv Pacilovtar oty ypopaTikn enesepyacio eidvag pe ELPAOT
ommv avegoptnoie omd TV EOTEWVOTNTA TNG OGKNVNG, OTNV YPNoN TANpoeopiog
CUULETPIOG Y10 TOV EVIOTICUO YOPOKTNPIOTIKAOV OVTIKEILEVOV (OTMG CUATO 0OIKNG
KUKAOQOpiOG, QOTEWVOL  ONUOTOSOTEC  KOL  OYNUOTO), OTNV  YWOPOXPOVIKY|
TOPOKOAOVONCN TOV EVIOMICUEVOV OVTIKEWWEVOV KOl GTNV OLTOUOTY KOTATUNON
EIKOVAG YL0L TOV EVIOTIGUSO Opouov. To mpotevoueEVO CLGTHKATA OVOTTUYXONKOY LE
oTOY0 TNV OVOEKTIKOTNTO GE OAAAYEG TNG QOTEWVOTNTOC N TIG KOUPIKEG GUVONKEC,
KaBdg Ko otV 0dMynom o€ amattntikd nepiParriovto. Emiong, €yl 600el 1daitepn
EUQOCT OTNV TPOOTMTIKN] VAOTOINGNG GLGTNUHAT®V TPayHaTikoy ypovov. Ta
OmOTEAECUATO. OV Topovctdloviar o ovt) TV dwtpn  omodeikvdiouy TNV
aveOTEPOTNTA TV TPOTEWVOUEVOV HEBOOMV Evavil avTioTOW®V TNG GYETIKNG
BipAoypapiag, €101KE OTIC TEPUTTAOGEIS TOV EVIOTICUOD TPOTOPEVOUEVOL OYNLOTOC
Kol TOV evtomicopov opopov. EAmilovpe 011 pépn g €pevvog avtng Ba epumvevcovv
VEEC TPOGEYYIGELS Y10 TIC LEAAOVTIKEG VAOTOMGELS OVTIGTOLY®V GUGTNUATOV.
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Extended Abstract in Greek

1. Ewoyoy

Kotd 11g mepacpéveg dekaetieg, Ta anToKvnTikd duotuyfuata £xovv e&ehybel o Eva
amd to TPMOTO aitie Bavatov moykooping. Onwg mpokdmTel omd o £PELVO TOL
[Maykoéopiov Opyoaviopod Yyeiog mov ekdoOnke 1o 2004 [1], too owToKIVNTIKG
dvotuynpota kooticay v {on o€ mepimov 1.2 exatoppdpla avlpdmTovg ToyKoGHimd,
eved mepimov 50 exatoppdpla avOpwmor tpavpatiotnkay cofapd €' atiog Tovg. H
coPapotnta NG Kotdotoong evioyveTton Kot amd Tto yeyovdg ott to 2000 ta
OLTOKIVNTIKG QLGTLYNUATO NTOV 1 KLPLOTEPN Ottio BavACIU®V TPOVUATIGUMV
TayKoouimg, cupParroviag oto 23% tov Bavacipov tpovpaticpodv. EmnpocsOétwg,
10 2004 Ntav 1 tpotn attia Bavdtov otig nhkieg 15-29 ko n devtepn oTIg NAkieg 5-
14.

Axopa mo avnovyntikég eivar ot mpoPAcyelg 0Tt 0 aplBuog Tov Bavdteov amd
avToKVNTIKE dvotuyfuate Ba vrootel avénon xotd 65% oto ypovikd SdoTnua
2000-2020 [2], [3]. ITio ocvykekpéva, o aplBudc tov Bavdtov and to aitio avtd
avapévetor vo dumlactactel oty ypoviky mepiodo 2004-2030 [1]. Muwdvtag pe
TOGOGTA, TO AVTOKIVNTIKG SvoTuyAuate TpoPAémetal va yivooy 1 5" autia Oavdtmv
péypt to 2030, tpokarmdvtag to 3.6% and 2.2% tov favitwv.

Ta voonpd avtd otatiotikd yw v avénon tev Bavdtov omd avTtoKVNTIKA
dvotuynpote opeilovtal Kupiwg oty Olapkn avENon Tov apliov CVTOKIVIT®V TOL
KWVoOVTOl TOYKOOUI®G, O0MYDVTOG C€ U0 avTioTolyN OUENGCT TOV OTLUYNHATOV.
Evtovtolg, m 0dwkn acedieln kotd to teElevtaio ypovia €xel PeAtimBel wvpiog
eCantiag TOV TEYVOAOYIKOV eEeMEe@V GTOV YDPO TMOV GLOTNUATOV TOONTIKNG
ac@dielog o omoio Exovv emPAndel oe Ola ta vEa HOVTELL EMPATNYOV OYNUATOV.
Tétow ovompata, Ommg elvar ot {dves ac@aleiag, ot agpdCAKOlL Kol OUPOPES
BeAtuboelg 610 coci TV oynuatwv, Bertiocav onuovtikd v aflomotiac Tovg o€
TEPIMTOON ATVYNUATOS, TOGO Yo TOVG emPATES, 0G0 Kot Yoo Tovg melove. [Tapdia
T, 01 BEATIOCELS TOV GLOTNUATOV TOONTIKNG ACPAAELNG POAVETOL VO £XOVV PTACEL
o€ £vov KOpeGUO amd dmoyn peiwong twv dvotuynudtov. O Kuptdtepog Adyog, sivor
OTL AOLVOTOVV VO GUUBAAAOVY GTNV ATOPVYT ATVYNUATOV TTOL 0PEIAOVTOL GE 0ONYIKA
ocpaipata. Mo mpoceatn épguva tov EBvikov Opyoaviopod Awayeipiong Odwmng
Acpdielog oe Avtokivntodpopovg otig HILA. [4], é6ei&e 011 éva mocooto 41% tmv
00IK®V aTuyNUdtwv mov oyetilovtar pe Tov 0dNYd o@eidetol o COAOALOTO
aVayvVmOPLoNS TOV KIvdOvov, v kat €vo 34% oeidetal 6e GOAALOTA ATOPAOTG.

Amo 6Aa o Tapomdve, pmopel va e&aybel To cuumépacua OTL 1| TEPATEP® WEimON
TV Oavatnedpov 00IKOV aTuYNUATOV TPEMEL Vo Pactotel mAEOV GE evePYNTIKA
CLOTAMOTA VYNANG TEXVOAOYIKNG otafung. TToAhd amd avtd evidccovtolr oty
evputepn  katnyopia mov ovoudleton IIponyuéva Zvotmjuata  YmoPonOnong
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Odnynong (IIXYO). Ta IIEYO eivar véec OovOTTUCGOUEVEG TEYVOAOYIEG TOV MG
TPOTOUPYIKO OKOTO £XOVV VO TOPEYXOVY CVTOUOTI VITOGTNPIKTIKN TANPOPOPI. GTOVG
00MYyo0V¢, N ooio umopel va GUUPAAAEL GTNV LEI®ON TOV OTUYNUATOV.

Ye ovt) Vv katevbvvon, to Evponaikd [Mpdypappa A&ordoynong Kawvovpyuwv
Avtokvintov £xel avakovoaoet [S] 0Tt and to €tog 2014, kabe avtoktvnToPlopnyavio
mov Béhel va emrtoyel po télela (S-aotépwv) Pabuoroyio yio ta oxnuatd g Oa
npénel va to eEomAiletl pe éva cvatnua Avtopatng Enstyovsag I1éomong. [apodpoteg
npwtoPovAiieg tov Euro NCAP and v idpvor tov 10 1996 €yxovv mpokarécel tnv
Bedtioon TtV ovoTUATOV TOONTIKNG OAAG KOl EVEPYNTIKNG OGPAAELNG OV
ypnopomoovvtol ota emiParnyd oynuata. Ta kpuripie mov Tifeviow amd Tov
OpYOVICUO €ivol o KOAY €KTIUNCT TOV TEXVOAOYIOV OYUNG mov B mpémel va
evoouatmbovv ota oynuata Kadnuepvng ypnone. Kanowo omd ta peAloviikd oyédia
UTOPOLV va. YIVouv gppovn e po peAétn tov emPpafedocwv mov £xel Oeomicel and
10 2010 10 Euro NCAP, oyetikd pe tmv €VoOUATOCN TPONYUEVOV GLGTNUAT®OV
ACQOAELNG OTO AVTOKIVITO TTAPOLYOYTG.

Ta cvomuota mov &govv emPpaPevdel wg topa and 1o Euro NCAP vmooniodvouv
po yevikn xotevbuvon mpog v xpnon HeBOd®mV VTOAOYIGTIKNG Opacng Yo TNV
avantuén tev ouyypovav ITEYO. Eite pe v pHoper| vTosTnpIkTikng TAnpopopiag o
GLGTNLLOTO GLOTOLYIOG ACONTNPWV, ElTE MG LOVAOTIKN TN TANPOPOPIS, Ol KAUEPES
aroteAobv onuoavtikd epyoreio yu ta [IZYO. [Two ocvykekpyéva, omnd OAa To
ocvotnuata mov £yovv emPpafevbel péypt onuepa, povo n Avtoéparn Emeiyovca
KAnon dev ypnowonotetl ontikn mAnpogopia. O kvuptdTEPOg AOYOG TOL £YIVE AT M
OTPOPN TPOG TNV ONTIKN TANPOPOPIN GE GYECT LE TPONYOVUEVES VAOTOUGELS TMOV
[IXYO eivor n Sopkdg av&avopevn eneEepyooTikn 10Y0C TOV EVOOUATOUEVOV
ouoTNHATOV YNELoKNG enegepyaciog GNUATOS, TOV, GE GLVOVAGUS LE TV OVATTLEN
eONVOV  PvteoKaplep®V HE KOAN TOWOTNTA €KOVOC, EMETPEYAV TNV  YP1yopn
vAomoinor ToATAOK®Y 0AYOpiOU®Y VTOAOYIGTIKNG OPACT|G GE TPOGITEG TLUES Yol TOL
emPatnyd oynuoto.

2. Ao evig IIXYO Baowopévov og Ontiki) ITinpogopio

Ta povtépva TIEYO mov €yovv Byst oG tdpo GtV ayopd ¥pnGUYLOTOLO0V KLPImg
ovototyieg aucOnmMpwv Kot kopepav. Eva evoeiktikd cevaplo yia £va oAoKANpoUEVO
I[IXYO mov Oa ypnoipomolel pOVo ORTIKY TANPOPOPio. Omd GLGTOLXIN KOUEPDV,
napovctdletal otnv Ewdva 1.

210)0G avTtng TG dTpPng eivar 1 £pgvva Kot ovaTTLEN AVGEWMV Y10 KOO0 o ToL
O OTOLTNTIKG TPOPANUATE TOL UITOPOLY VA PacIOTOVV GTNV ¥PNoN HOG KOUEPOS
TOMO0ETUEVIC GTO TAUTAO TOL OYNUOTOS, OGS tvat:

® 1 avayvoOplon onudtev 0dtkng kukiopopiag (AXOK),
® 1 AVAYVOPLON QOTEWVAV ONUaTod0TOV (ADY),

® 0 eVIOTIOUOG TpomopeLOeEVeY oxnuatov (ETIO) kot
e 0 gvtomopog opouov (EA).
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ENTOMIZMOZX
AIATPAMMIZEQN

Ewova 1: Evésuktucn} dopn evog ITIZYO ohoxkinpotikd fasiopévov og omtiki) ahnpogopio. Xe oot Thv dwatpipi] £xovv
peretn 0l Te CKLOOPEVE VTOGUGTI AT, .

Ewdwn péppuva d60nke oty avamntuén kot v aloAdynon cLuGTNUATOV Tov Vo, lval
avOEKTIKA € SPOPETIKEG GLVONKEG KApoD Kot POTIGUOV, KAB®DS Kol v TapEYouV
KOVOTIOMTIKY]  aOO0GT) G TPMIVEG KOl VOYXTEPWVEG GKNVES 00NYyNoms, xwpig va
emmpedlovton apvnTiKa amd to TePPAAiov 001 ynong.

3. Bdocig Agdopévov Yo v Avantoén kor Aordynon tov IIXYO

‘Eva amd 1o peyoddtepa mpoPfANUATO TOV YDPOL TNG VIOAOYIGTIKNG Opaong eivar 1
EMEWYN TTIPOCEXTIKA EMAEYUEVOV, O0OECIUOV GTO VPV KOO PACE®MV OEOOUEVOV LE
TANODpa PVTEOGKOTNGEMY YOPOUKTINPICUEVOV OVE EIKOVOGTOLEIO OO €101KOVE Yo
mv adloAdynon tov cvotudtov. Oco mo mepimhoko &ivor 10 mPOPANUA TTOL
emyepel va AMoel to cvotnuo, 1060 peyalvtepo Ba mpémel va ival kol To GUVOAO
TV Pwteockonnoemy mov Ba ypnoipomomBovv oty aflohdynorn, ®cTE va
KOADTTOLV OA0 TO €0POS TOV GLVONK®OV OV UTopet vo Tpokvyovv. o To. cueTHpaTe
OV avomTOYONKOV oTa TAOIGLO QLTS TNG STPIPNG, XPNOLLOTOMONKE £Vvag apKETA
Heyarog aptpnog and PvteooKOmNGES, GALEG [LE EVOOUOTOUEVOVS YOPUKTNPIGLOVG
TEPLOYDV Y10 TOGOTIKN ASI0A0YNOT Kol AALEC Y®PIg YOPAKTNPIOUOVS, Y10 TOLOTIKN
a&oroynon. To chvoro TV PivteooKOnGE®Y TOL YpNoLoTOmOnKay TopotifeTon
otov [livaxag 1.

XI
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Hivoxog 1: Bivteookom) 615 1OV (P GIHOTOMONKAY Y10 TIS OVAYKES TG OLATPIPIC.

No Name Used for | Annot. [Car Camera Resolution |fps| Duration |Environ.|Weather| Daytime Place

1 TSR1 TSR No AX | DCR-TRV60OE | 720x576 | 25 8:55 Rural | Sunny Day Joannina
2 TSR2 TSR No AX | DCR-HCS85 720x576 | 25 2:10 Rural Rainy Day Patras

3 TSR3 TSR No AX | DCR-HCS85 720x576 | 25 1:05 Rural Good Night Patras
4 TSR4 TSR No AX | DCR-HCS85 720x576 | 25 3:07 City Good Night Patras

5 Patrasl RD/VD No AX Pinhole 640x480 | 25 >2h Mixed | Mixed Mixed Patras
6 Patras2 RD/VD No Colt| PV-GS180 720x576 | 25 >1h City Sunny Day Patras

7 TIoannl RD/VD No Colt| HDC-SD100 10801 25 ~1h Rural Mixed Day Joannina
8 LARA TLR/VD TLs C3 | Marling F-046C| 640x480 |25 8:49 City Sunny Day Paris

9 DiploDoc RD Road MEGA-D 320x240 | 15 0:56 Mixed | Sunny Noon Trento
10 Alvarezl RD Road ZZ | Bumblebee 320x240 | 15 0:56 Rural Sunny Noon Barcelona
11 Alvarez2 RD Road 7ZZ | Bumblebee 320x240 | 15 0:32 Rural Rainy | Morning | Barcelona
12 HRI1 VD R/VITS/TL Unknown 800x600 | 10 16:24 Mixed Dry Afternoon| Unknown
13 HRI2 VD R/VITS/TL Unknown 800x600 | 20 18:50 Mixed Dry Evening | Unknown
14 HRI3 VD R/VITS/TL Unknown 800x600 | 10 11:12 Mixed Rainy |Afternoon| Unknown
15 HRI4 VD R/VITS/TL Unknown 800x600 | 10 11:22 Mixed Dry Night Unknown
16 HRI5 VD R/V/TS/TL Unknown 800x600 | 20 13:48 Mixed Snow [Afternoon| Unknown
17 | YouTube | TLR/VD No Various Various >2h Various | Various | Various Various
18 [ Caltech 1999 VD No Unknown 892x592 126 frames | Parking [ Sunny Day Caltech
19 | Caltech 2001 VD No Unknown 360x240 526 frames| Urban | Sunny Day S. California

Ot mapomdve PLvieoGKOTNOEL, YPNOILOTOMONKAY Yid dAPopovg AHGYovS oIV
duwapkewa g dwtpPne. [To cvykekprpéva:

1.

il

Ta Pivteo mov meprypdeoviar otig ypappés 1 éog ko 7 tov Ilivakag 1
TPOPAYTNKOV ATOKAEIGTIKA Y10, TOVG GKOTOVS TNG SLOTPIPNG, HE SLOPOPETIKEG
KOUEPES, ©E OPOPETIKEG GLVONKES, €mMOY€G Kol OPEG NG MUEPOS.
Xpnowonomdnkav yio. xpnomn Katd TNV ovATTLEN TOV CLGTNUATOV, KOOMG
KOLL Y10, TNV TTOL0TIKY TOVG a&loAdynon).

o tovg oKOmOUG NG  TMOGOTIKNG a&lOAOYNONG T®V GULOTNUAT®OV OV
avartoyOnkav ota mhaicla g SwTpPng, ypnopwomomdnkay ta Bivieo mov
avaivovtot oTig ypoupués 8 émg ko 11 tov IMivaxag 1. Emiong, g mocotikn
a&oroynon yw to cvommua AXOK Paciotnke kot otig Prvteockomnoelg
TSR1 éwg TSR4 mov mapovsialovror otig Tpmtes 4 ypauués tov IMivaxoag 1.
To obomupa ADPEX mov avarmtdydnke aloroyndnke pe Paon v
Bwrteookdnmon LARA, mov amotereiton and 11179 kapé kot mapovcialeran
o10 [6]. H Bdom avt) mepiéyet xapaktnpiopévous 32 potevods onuotodoTed.
H Bwreookdnnon avt €xet ypnotpomombei emiong kot yuo v a&toddynon
tov ovotudtov EIIO mov avoamtoyOnkav. Télog, vy v mTOCOTIKN
a&loAdoynon tov cvotiuatog EA mov avantiydnke ot mhaicio g dwtppng,
YPNOLOTOMONKAY Kot 01 BIVTEOGKOTNGELS TOV TOPOLGLALOVTOL OTIG YPOLLESG
9, 10 xou 11 tov Ilivaxag 1. H Bdon DiploDoc amoteieiton and 5 chvropa
Bivteo odnynong, oamoteAovpEVa ©6TO GOUVOAO TOuG omd 865 Kapé e
ONUEWOWUEVO TO TTEPTYPALLLLO TOL dpOHOL Kot Exel ypnotpomom et ota [7], [8].
H Bdon mov ypnopomomOnke and tov Alvarez 6to [9] kou mapovsialetan oTig
ypoppés 10 wor 11 tov Ilivakag 1 omoteheiton amd 2 Prvteookomnoelg
ouvorov 1335 kapé pe yapoaktnpiopévo tov dpopo ota 1005 amd avtd.

XII
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iii.  Ta vrworowma Pivteo mov meprypdpovion otov Ilivakag 1 ypnopomoOnkov
Y0 TNV TOLOTIKN AEl0AOYNOT TOV GLGTNUATOV TG SUTPIPNG GE SLUPOPETIKESG
KOIPIKEG GLVONKEG Kol DPEG NG NUEPAS, KaODG emione Kol o€ OPOPETIKA
nepPaALovTO Kot YDPES.

iv.  Téhog, vy Vv oaéoloynon 1Tov oTaTiK®v  pefddmv  avayvodpiong
TPOTOPEVOLUEVOL  OYAUOTOG  Tov  ovomtoydnkav oty dwtppn
YPNOOTOMONKaY Kot dV0 PACELS OEOOUEVOV HE QOTOYPAPIEG TOL TIoM®
UEPOVG OVTOKIVATOV Tpofnynéveg o) péca oe yopo otdbuevong (Caltech
1999) ka1 B) katd v ddpkela odnynong (Caltech 2001).

4. Merpkéc ASohdynong s Am6o0ong TOV LVeTNUATOV

IMa va yivel epikt 1 a&loAdynon Tov GLGTNUATOV TOV avarTLYONKOY GTo TACIGLO
¢ SatpPng elvar avaykaio n ypnoyonoinon KatdAnAwy peyedmv kot peboddwv
TOGOTIKNG KOt TOWOTIKNG a&toddynong. Il cvykekpuéva, yuoo v a&toAdynon tov
CLCTNUATOV YPNOLUOTOONKOV:

[Tocotkég petpcéc mov ypMoipomolovvtal cuyvé o€ ovOaAoyeS aSIOAOYNGELS Kot
Bacilovtar oe Ttéooeplg  Olakpltovg  aplBpod MOV TPOKLATOVV  KOTA TNV
KOTYOPLOTOINGT TOV EIKOVOGTOLKEIOV Hl0G EIKOVAG GE dVO  Katryopies (Betucd Kot
apvnTikd): tov apud tov Anbong Oetikdv (True Positive, TP) ewovootoyeiov,
ONAOdN TOV EKOVOGTOLYEI®V TTOL KT yoplomombnkay cmwotd wg Betikd, tov aplBud
tov Pevdog Oetikov (False Positive, FP) swovootoyeiov, Oomiadn twv
EIKOVOOTOLYEIOV TTOV KotnyoplomomOnkav Aavlacuéva wg Oetikd, tov aplBud twv
AMbog  Apvnuikeov  (True Negative, TN) eswovootoryeiov, omMAadn TV
EIKOVOGTOLYEIMV OV KOTNYOPLOTOMONKAY GMGTH MG apVNTIKE Kot TOV aplOpd tov
Yevodg Apvnukov (False Negative, FN) ewovootoyegiov, OomAady tov
EIKOVOGTOLYEIV OV Katnyoplomombnkay Aovlasuéva o apvntikd. Me Bdon tovg
TOPATAVE® OPIoUOVS, UTOPOVE VO, OPIGOVLE TIG AKOAOVOES LETPUKEG TOV UTOPOVV VL
XapaKTNPIGOVY TNV AmdO0CT TG KATNYOPLOToinong:

e OpBomta: P =TP/( TP+ FP)

e [IAnpomta: R=TP /(TP +FN)

e [Jlowmrto: g =TP/(TP+FP+FN)

o Axpifea: A=(TP+TN)/(TP+TN+FP+FN)

e Amoterecpatikotnta: F=2PR/(P+R)
O\a ta mopamdve peyédn £xovv e0pog TV amd 0 0 (XEPITEPO OMOTEAEGHN) EMG
10 1 (KaAOTEPO OMOTEAEGLAL).

Extog and v mocotikn a&oAdynon, ta cvotiuote mov Pacilovtal oe pebddovg
VTOAOYIOTIKNG OpaonG TTpEmeL vo. a&loAoyoUVTOL KOl TOLOTIKA, Y10l VO CGNUAVTIKOVG
AOYOLG: TPOTOV Y1OTL [ YOPOKTNPIGUEVT PACT OEOOUEVOV TOL VA KOAVTTEL OAEG TIG
mOAVEC €KO0YEG €VOC TOAVTAOKOL TPOPAUOTOG OIS M 0dNynomn &ivol TPOKTIKA
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adVVATOV VO KOTOOKELOOTEL KoL OEVTEPOV O YOPOUKTNPIOUOS OVA EIKOVOCTOLYEID
TEPLOYDV TNG EKOVAG 0md €101K0VG €lval TOAMEG POopEC VITOKELUEVIKOC. [ Tovg Vo
avtohg AGYOLG, T TOLOTIKN OVAALGT TMV OTOTEAECUAT®OV €VOG GULOTHUATOS OF
OLYKEKPIEVO Kapé pmopel vo dmdoel emmpoOchetn ypioun mAnpoopio. yoo TV
aOd00T TOV GUGTHHOTOC, OAAG Kol Yo TV TOWdTNTA TNG XPNoonroindeicag faong
OEdOUEVDV.

"Eva tpito ko mdpa moAd onpoavtikd ototyeio evog ITEY O, mov mpémetl va a&loloyndet
Eexyoplotd, eivar m toyvtd tov. To [IEYO amouteiton va Asttovpyodhv o€
TPAYLOTIKO ¥pOVO KoL VO TOPEXOVV T AMOTEAECUOTA TOVG UE TNV HIKPOTEPT] SLVATY|
kabvotépnon. Me dedopévo OTL Ol KAUEPEG TOL YPNOUYLOTOLOVVTIOL Y0 TETOLES
EQUPUOYEG EYOLV O HEOT) oLyxvOTTO TOV 25 Kopé TO OELTEPOAENMTO Kol OTL TO.
emPatnyd oyfuoata TagldedoVY pE TOYLTNTEG MOV KOALATOVIOL OO OVTH TNV
oLUYVOTNTO, &VOG TPMOTOS OTOY0G €mMeCepPYaoTIKNG ovyvotTag Tev 25 Kapé To
devteporento Yo éva [IXYO eivar Loyikog. Xe cuvOnkes 00nynong o€ TOAN 1e PIKPEG
TOYVTNTES, AVTOS 0 GTOYOG Umopel va LelmBEel, VA Yo KATO10VG AVTOKIVITOOPOUOVG
OV EMTPEMOVY GTOLG 0dNYOVS va KivnBohv pe moAd peydheg taydtTeg, 0 GTOYOGC
avEaveral.

5. Avayvopion Inpuateov Oownec Kvklogopiog

To npdTO CVOTHHA MOV avoarTLYXONKE oTa TAAiclo TG dTpPPng elxe otdY0 ™V
AXOK péoa amd kwvovpevo Oynupo, HE YpNom TANpoeopiag mov mpoépyetal amd
Bvteokdpepa TPOSAPLOGUEVT GTO TOPUTPIL TOVL OYNLLATOG.

To obomua AXOK yopiletor oe téooepo Poocikd otdd: 10 OTASI0 TPO-
enefepyaciog g eKOVOG e GTOYO TOV EVIOTICUO YPOUAT®V TOV XPNGLLOTOLOVVTOL
oe XOK, 10 o1dd10 gvromicopov tv vroyneiov XOK mov Baciletal otnv cvoppetpio
T0V¢, T0 oTAd0 TapakorovOnong twv XOK oe cuveydueva kapé Kol 10 6TdO10
taivounong tov ZOK.

Mo v mpo-eneepyasio tov Kapé e Prvteookdnnong xpnoomroteiton po pébodog
SWYOPICUOD TOV YPOUATOV TNG EKOVOG CE EMUEPOVS YPOUATIKOVG YAPTEC,
Baciopévn otov ypopatikd yopo CIE-L*a*b*. O dwuympiopndg akorovbeitarl amd o
dwdkacio KotoeAioong kabe evoc amd TOLG YPOUOTIKOVG YAPTES UE XPNON TNG
pefooov katmeAiwong tov Otsu [10].

2NV GLVEYELD Ol KATOPMOUEVES EIKOVEG TEPVAVE QO EVOV YPIYOPO UETOGYNUOTIGUO
aktvikng ovppetpiog (FTMAX) [11] ywo vo €vTOmGTOOV TA KEVIPO GLUUETPIKOV
oYNUATOV pHE &viovo YpOUATO, £vo XopoKINploTikd yvopiopo tov XOK. O
eviomiopnog tov XOK vy kGBe kopé ocvuminpodvetolr omd gl dodKocio
TOVTOTOINoMG TOL GYNHaTog Tov ZOK, KaBMG ekTdHS md AVGTNPN OKTIVIKY GUUUETPIN
(Yo kukAkd oynpata), o TMAX gvtomiletl kot GALN GUUUETPIKE GYNULATO.

Ta egvtomopéva vroyneua XOK og éva kapé mapakolovBovvtal oto ETOUEVE KOPE
¢ Pvreookomnong, pe po pébodo N omoio. amopovdveL TV TEPLOYN YOP® and TO
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EVIOTICUEVO OYNUO. KOl WYAYVEL OTNV 1010 TePLoyn ywr €va Alyo HEYOADTEPO
GUUUETPIKO, OLO0 GYNUO GTO ETOUEVO KOPE.

To televtaio Prpa eivon n ta&vounon tov eviomopévov XOK pe Bdon évav amhd
EAEYYO TNG KOVOVIKOTOUNUEVNG ETEPOGVGYETIONG TOV EVTOMICUEVOL vroymeiov ZOK
pe kabe éva amd to mpotétvIa povtéda LOK tov K®Mdtka 0d1kng KukAogopioc. Avo
POPETIKOL GLVOLACUOL TV TIUDV ETEPOGVOYETIONG oTa Tpia kavéito tov CIE-
L*a*b* opiCovv 600 talvountéc pe ypnomn Tov omoimv yivetoar 1 taSvounon tov
YOK. O évag 00vAeDEL KOADTEPO Y10l LTAE CTIUOTO KOl O AAAOG Y10l KOKKLVOL.

To cvotnua AXOK eEetdotnke Kot aloAoynonke oe didpopec cvvOnkec, petald twv
omoi®V 001YNo™M KOTA TIG TPOIVEG MPES LE NALOAOVGTO KAPO, GUVVEPLAGHEVO Kopo,
Bpoyn, aAAd kal voyteptviy odnynon. Ta amoteAéopato evtomopov kpidnkav mépa
TOAD  IKOVOTOMTIKG 0O TAELPAG TANPOTNTAG, OAAGL OEV €YOLV OPKETH UEYOAN
opBotta. To 6Tddio mTapakorovdnong copPdriet Betikd oy avénon g opHoTTOG
tov evtomcpov XOK. To vrocvotua tagvopnons mdoyel o€ amdOALTA TOGOGTA
emtuyiog oe oyéon pe dAha g PProypaeiag, €0KA ce avtiEoec cuvOnkeg, aALd
onuovtikd poéro ce avtd mailelr m peyddn Pdon XOK mov ypnowponoleitor 6to
GUGTNUA LLOG.

6. Evromopnoc ®otetvav nuotodotov og Avrioes LovOnkeg pe
Xpnon Xpopatog, Xopuerpiog kor Xopoypovikng IIinpogopiag

To debtepo cvoTua OV avorTLYONKE oTa TAAiGLO TG JTPIPNS Elxe WG 6TOHYO TOV
evtomiopd DX amd  Pvteockomnoelg mov  AapPdavovror  and  Pvteokdpepa
tonofetnuévn 6to mapumpil KvoLUEVOL O LOTOC.

To cvomua mov avantdiydnke PBacileton oe Tpia dadoykd otddla enesepyacioc. To
TPOTO O©TA00 glvor avtd NG Tpo-emeEepyaciag ewovag, Omov kdbe Kapé
petotpénetar and RGB oe CIE-L*a*b* kot ommv ovvéyeia axolovbeiton o
dwdwacio evioyvong g Oweopds petalhd TOL KOKKIVOL KOl TOVL TPACIVOL
YPOUATOG, EWOIKA Y10 TEPLOYES e LVYMAN TIUN @OTEWVOTNTOGS (OTT™G gival Ta Pavapla).
AoV o1 gKOveG avTég avapyBodv pHe TIC OVTIGTOWES NG EVICYLUEVNG OLPOPAS
Kitpvov-pmie, akolovbel o S1ad1Kacion LOPPOAOYIKOD YEUGUOTOS TPUTTMOV Yo TV
KOTOTOAEUNOY] TOV QOIVOUEVOL TTOV givol Yvooto ¢ "blooming effect”.

To debtepo othdo enesepyaciog amotedeital and évav TMAZ yw tov €viomiouo
OKTIVIKO GUUUETPIK®OV GYNUATOV O0pOp®V OKTIVOV HEGO GTNV €KOVA, TO OmOoio
aKolovBeitar amd TV OmOUOVMOOT) TOV HEYIGTOV/EANYICTOV TILADV TOV ATOTEAEGIATOC
tov I'MAZ. Ta péyota/eldyiota vroonimvovy mihovh VIapEn KOKKIVOU/TPAGIVO
®X avrtictol o 6TO GLYKEKPIUEVA GTULETDL.

INo va emaAnBevBel 1 va amoppredet n vVopén O oto Vot onueia, okoAovOel o
Jwdkacion €AEYYOL TNG YWPOYPOVIKNG EMUOVG TV vroyneiov OX. Iho
OLYKEKPIEVA, Yoo vo gykplel kdmowo vmoynolo kévipo DX, Oa mpémer va
eupaviCeton o€ pio pkpn yertovia Tov KAdpov yia Evay wovd aplpd and cuveyodpeva
KOpE.

XV



Extended Abstract in Greek

To mpotewvouevo cHotnua agloroyndnke mocotikd oty Pivteookonnon LARA. Ta
amoteAéopato £0e1Eav OTL €lval GUECH GUYKPIVOUEVO LE OVTIOTOL(OL GLUGTHIATO TNG
BipAoypapiog kot pdAoTo ympig va ¥pNoIUOTolEl KATO0 LOPPOAOYIKO LOVIEAO TMOV
DX, olte kdmoov pnyoviopd ekmaidevong. Ilo ovykekpéva, m puébodog mov
npoteivetal emTuyyavel amoteléopato TAnpodTnToc Tov ayyilovv to 94%, oAAd pe
opBotTa TEpinov 61%.

Ta molotkd amoteléopato Tov mapatPRONKav 6€ TAdva Tov cLAAEXONKAV omd TO
Internet (YouTube), oe d1dpopeg cvuvOnkeg kot mepifailovia odnynong, £oei&av Ott
TO TPOTEWVOUEVO GUOTNUO Eivol apKeTd aSlOTIGTO Kol 68 cLVONKES 001 ynong vrd
Bpoyn, aAAd kot Tqv voyxto. To 7O ONUOVIIKO TOL HEIOVEKTNUO TOPOTNPEITOL G
VOYTEPIVY] O00NYNON OE KEVTPO WHEYOAOLTOAEWV, OOV VRAPYOLV TOAAEC POTEWVEG
TNYEC TOV UTOPEL VAL 03N YOOVY GE GVUYYVOT) TO GUGTNUO EVTIOTIGHOV LIToYNeiny OX.

7. Evtomopog Ipomopevopevov Oynpatog amd po Ewkovo

To tpito cvopa oV avartHyOnke 6To TAAIGLO TNG TaPOVGAG A TPIPNS Elxe 0TOYXO
TOV EVIOMIGUO TPOTOPEVOUEVOL OYNUOTOS LE YPNOT TANPOPOPIOS TOV TPOEPYETOL
amd po eKove Tpafnypévn and To E6OTEPIKO EVOG KIVOOLEVOL OYNUOTOC.

To mpotevdevo GHGTNUA EVIOTIGHOV TOV TPOTOPELOUEVOV oxNudtov Bacileton og
peBOO0VG TOV EKUETAAALEDOVTOL TNV EK TOV TPOTEPWOV YVAOCT] Y10 TNV €E0y®YN T®OV TO
YOPOUKTINPIOTIKOV YVOPIoUdTOV Tov oynudtov. H Bacwkn) mtinpogopia eEdyetar amd
TIC VTOYNQLEG TEPLOYEC TIO®  QAVOPUDY, YL TOV  EVIOTICUO TOV ONOI®MV
xpnoonoteitor ypopatiky katdtunon g ewkovag otov CIE-L*a*b* ypopotuco
YDPO, KOOGS Kot TANpopopia aKTVIKNG cLUpeTpiag pe Paorn tov IMAZX.

Ta wiocow @avaplo amoteAovV £va EPEAVEG XOPOKTNPIOTIKO Yvapiopa yu tov EITO.
HEéyopo amd To YEYOVOS OTL AmOTEAODV £val KOO YVAOPICUO OA®V TOV OYNUAT®V,
AOy® vopobesiag, eivar emiong epeavn KAT® omd S1POPETIKEG CLVONKES PMOTIGLOV,
Kapov, Kabdg kot amd v opa ™S Mpépoc. EmmpocsBitwg, pmopodv va
¥PNOLoTomBoHV yio va Tapdyouy po Tpdun €donoinon yuo mhovo Kivouvo, apov
TOL OVOLLLILEVO THG® QOVAPLO VTTOONADVOLV OTL TO TPOTOPELOLEVO OYNLLOL EMPPASVVEL.

To 0ebtepo KOUUATL TOL TPOTEWVOUEVOL GUCTHUATOG TEPIAUUPAVEL LOPPOAOYIKO
TOPLOGUO TOV OVIYVELUEVOV VTOYNPLOV QOVOPLOV e pia oviyvevon oplloviiov
OKUAOV Y10 VO OPIOTOVV TEPLOYES TNG EKOVAG oL THOVAOG TEPEXOVYV OYNLOTAL.
AxoloV0wg, €vag €heyyoc a&ovikng ovppetpiag Koatd v Kdbetn pecokabeto
ypnopomoteitan yoo v emainfevon g vmoapEng oyfuatog. O €reyyog a&ovikng
ovppetpiog éxel Paciotel 6TOoV GLVOLAGUO VO pPeYEBDY cLYKPIONG TNG OUOLOTNTOG
HETOED VO €IKOVAOV (GTNV TEPITTMOT AVTH 01 OVO €IKOVEG lval TO aploTEPd KOl TO
O0el KOUUATL NG TEPLOYNG TOV VIOYNPIOL OYNUaTOG), TG Aopkng Opotdtnrag
(Structural SIMilarity - SSIM) [12] kot tov Mécov Amdivtov ZedAipatog (Mean
Absolute Error - MAE). T ta emtuoy®g eviomouéva, OxNUoTe TpoyLoTonToteiTal
GTNV GLVEYELN L0 EKTIUNOT TG OMOGTAGCTC TOVS OO TO YN0 TOV GLGTHLLOTOC.
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To cvotua ETIO and po ewcovo a&rodoyndnke oe 600 Pacelg dedopuévmv pe ekdveg
wpomopevouevav oynuatov, tv Caltech 1999 xow v Caltech 2001. Emiong
e€etdotnke 1 amoddoon Tov oto Kapé g Pvteookommong LARA mov mepieiyav
KAmolo mpomopevopevo Oynua. To TOGoTIKE OmOTEAEGUOTO GE QVTEG TIC PACELS
€0e1&av 0Tt T0 GVOTNHO SOVAEVEL TOAD KOAG amd Amoymg TANPOTNTOC, GTAVOVTOG
10606Td oL ayyilovv 10 93.6%. Otav 3¢ T0 TPOTOPEVOUEVO OYNLLOL PPEVAPEL, OTOTE
1o TGM EAOTO TOL £IVOL OVOUUEVA, TO TOCOGTO EKTIVAGGETAL GE TYLES TOV PTAVOLV TO
99.2%.

To ovotua EIIO a&loloynfnke Kol mTOOTIKA 6€ TAGVO TOV GLAAEXONKOV omd TO
Internet (YouTube), oe d1dpopeg cuvOnkes kot mepipdiiovta 0dfynons. Ta molotikd
avTd amoteAéopaTa £GE1E0V OTL TO CLGTNUO Efvol APKETA AVOEKTIKO Kol € GLVOTKES
Bpoyomtwone. Ta peyoddtepa mpoPfinuota ta avtipetonilet 6€ mMOAD OVOKOAN
neppdAlovio.  odMynong, Om®G Yoo TOPAOEYHO TNV 00NyNnon O©€  VUYTEPVA
nepdArovto e TOAD Kivnor, Omov ta KOKKIva ¢®OTo ToAlamAactdlovtal otV
OKNVI.

8. Evtromopnog Ilpomopevopevov Oynpatog pe Xprjon Bivreo

To obomuo eviomopuod TPOTOPELOUEVOL OYNUOTOS TOV TOPOVCIACTNKE CTNV
wponyoOUevn evotnto, TAoyeL and to OTL Ypnoponolel povo mAnpopopio amd Eva
kapé (M eotoypapia). To yeyovdg avtd mepropilet Tic SOLVATOTNTEG TOL GLGTNHLOTOC
Kol TPOKOAEL OOENCT TOV ECQOAUEVO OETIKOV EVIOMIGU®V, LE OTOTEAEGUO, TNV
peimon Tov 0G0 ToL 0pHOHTNTAG TOV EVIOTICUMOV.

M €£€MEN TOL GLOTNUATOG MGTE VO EKUETOAAEVETOL YOPOXPOVIKN TANPOQOpia
nwpoegpyduevn ond PBivteo €xel emiong mpotabel ota mAaicwa g datpPng. Avtiy v
QOp& TO TPAOTO VTOGVGTNHUA TOV GTOYEVEL GE EVIOMICUO TOV TO® QOVOPIDOV TOL
TPOTOPELOUEVOL OYNUATOG E£xel TaporiayBel elappd kot ypnoyonotel Eva VRPLOKO
KOVAAL YpOUATIKNG TANpOoQOopiag Tov e&AyeTon amd o avapiEn twv dVo and to Tpio
KOvOAlo Tov cicc3 ypopatikod yopov [13]. To xavdi ovtd veiotator €va
QuUTpdpiopa pecsaiov, peyéBovg 3x3 kot v ovveyeio vmoroyiletor o TMAZX tov Yo
dupopes axtives. To amotéhespo tov IMAX gdéyyeton kot evromilovtal To TOTKA
TOV HEYIOTO TAVE amd éva KATOEAL, To omoio opilovtal ¢ LEOYNeL GovapLo
OYNUATOV.

Ymv ovvéyela OAa ta mhava (gvyn vroymeiov eovopldv e£eTalovial ™G TPOog TV
HETOED TOVG OmOCTOCT KO YOVio Kot avAAOYd LE TO OOTEAEGUO OmOPPITTOVTOL, N
eykpivovion yuu mepontépm €Aeyyo. O €leyyog avtdg €xel 600 otadwa. To mpdro
016010 0popd otV oTATIKY| ETaAnBgvom TV vroyneiov (evyov kot Pacileton oy
Aopkp  Opowdnta tov  0e€lov KOl OPIOTEPOV  KOUWOTION U0  0pBoydVIoGg
TOPOUAANAGYPAUUNG TTEPLOYNG TOL TEPIAAUPAVEL TaL HVO VTTOYNPLO POVAPLAL.

To 014810 aWTd TACKEL OO TO GVYVO EAVOLEVO TNG ETOANOEVONG TOAADY TEPLOYDV
avdpeco og 600 Qavapla, AOY® TOv EAEYXOV TOAAGV akTvdv otov TMAX. T va

neploplotel to  Qovopevo avtd  axoilovBel €va  devTEpO, dLVOLIKO, GTAO0
enmaAnfevong. e avtd YPNCYOTOOVVTOL T amoTEAEGHOTA £VOC piktpov Kalman pe
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€10000VC TIG GLVTETOYUEVEG X KOL Y TOL OYNHaTog KoBMd¢ Kot To mAdtog tov, W. H
TpoPAeym G véag BEong kot Tov pey€Bovg Tov LTOYNPIOL OYNLLOTOG GLYKPIVETOL UE
TO OMOTEAEGUO TOV OTATIKOD EVTOMIGHOV KOl OV €lvol KOVTH, TO OMOTEAEGUO TOV
evtomopo  yivetar Oektd. EddAhmg, axoiovbel pio  dwodikacio  eVTOmIGHOD
VITOYNPIOL OYNUATOG EVIOC TNG TTEPLOYNG OV E£XEL TPOPAEPDel amd To pidTpo. AV dev
Bpebel ovte ekel wdmowo vmoynelo Oynua, 1o IO Oswpeiton "yapévo" wor M
dwdkacio mapoakolovOnong pe to eidtpo Kalman crtapatder péypt vo evromobet
EOvA KATO10 VITOYNPLO OYNUOL LE TV CTOTIKY| O10d1KaGia.

To ocvomuo EIIO pe ypnon Pivieo oa&loloyndnke 1060 HE TIG OTOTIKEC OKNVEG
Caltech 1999 kot 2001, 660 ko pe v Prvteookdénnon LARA, addd Ko mévte axoua
Bwrteookomnoelg oonynong oe odpopec ovvOnkec (HRII-HRIS). To mocotikd
OTOTIOTIKA OTIG OTATIKEG OKNVES (YwpPic TNV XpNon TS TopakoAovnong) ptdcave o
nAnpotta to 94.2%, pe opBotta 95.1%. Ta mOc0GTE GE €1KOVES OYNUAT®OV TOV
epevapovv aviABav oe 97,7% xor 98% avtictorya. Ta mocootd avtd tvor avatepa
and avtictorya g Pploypapiog.

Ymv Pwreookoémnon LARA wotdco, 10 mpotewvopevo cvotnuo £0mce HETPLOL
AmOTEAECUATO  YOPIG TNV ¥PNON TOL VTOCLOTNUATOS mapakoAovOnong. Ilo
OLYKEKPIUEVA, M TANPOTNTA dgv Eemépace 10 72.5% pe opBdtta 73.6%. Me v
YPNON TOL VTOGLGTHUOTOG TOPAKOAOVONGNG, TO TOCOGTH OVTA EKTOEEVLTNKOV OE
93.1% a1 94.4% avtictoyyo, emPePfardvovtag v entrvyio g pLebodov.

Ta mwolotikd amoteréspota otig Prvteockomnoelg HRIT-HRIS €dei&av 6t 10 chotpa
oV TPOTEIVETOL €lval OVOEKTIKO Kol O SlPOPETIKEG GLVONKES Kapoh Kot
nepipailovta odnynongs. [ cuykekpuéva, to oo avTameENAOE IKOVOTOTIKA
1660 G€ 001 yNnon vVd Ppoyn Kot ydvL, 660 Kol o€ GLVONKES VUYTEPIVIS 00N YNONG.

Téhog, pekemOnke kot M emidpaocm g aviivong TV TAGVOV otnv omddoon Tov
cvotnpatog kot Bpédnke 6t oty avdivon 160x120, n toydtnra eneéepyasiog sivar
nepinov 7 kapé 10 devtepdiento oe Matlab, taydtnta mov Ba propovoe vo Pertimndel
nepaltépm av 0 IMAZX viomomBel o€ TapAAANAN apyLTEKTOVIKY, OT®G Eival EPIKTO.

9. Evtomopnog opopov

To cOomua eviomopov dpoépov mov avarntdydnke ota TAaiclo TG SONKTOPIKNG
dwtpPng Paciletar otnv TAnpoopia wov Aapupdveror amd pio Eyypmun Kapepo Tov
tomofeteitan evtog tov oynuatoc. H wdpepa tomobeteitonr 610 emdvedy pEPOG TOL
napunpil, £101 doTe va unv eumodilel T B€a Tov 00My0D Kot Vo TEPIKAEIEL GTO OMTIKO
MG edio OG0 MEPIOTOTEPO YiveTal amd tov dpOHo mov PpickeTor akpPdg Urpootd
and to avtokivnto. H axpipng 0€om ko kAion g kdpepag eival onpovtiky Loévo yu
TNV 0PYIKOTOINGCT TNG €K TOV TPOTEPMOV YVOGTNG TANPOQOPiag, dNAad TOv UEPOLG
™mg €KOvag mov Bewpeitor oAV mBovd va aviKel 6ToV dPOHO Kol TOL UEPOLS TNG
ewovag mov Bewpeitarl oyedov anibovo va avinKeL GToV dpOLO.

Ta mAdva g Pivteookomnong eEetalovianr oe Levyn ocuveyOUevemv Kapé, yio Tnv
e€aymyn yopoypovikng mAnpogopiog mov Ba ypnoipomombel yioa Tov yopaKTnpiouo
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KATOI®V  €IKOVOGTOWEIOV MG oOP®V TOL OPOUOL KOl KATOIWV MG GTOPMV NG
vrdéAounG ewkovoc. Ot 6TOPOL TOL EMAEYOVTOL OO VT TO GTAIO EMKLPMDVOVTOL LE
Baon to amoTEAEGUATO TOV EVIOTICUOD OPOUOV OO TO TPONYOVUEVO KApPE Kol GTNV
ouvéyela ypnotponoodvtarl o€ Evav AkydpiBuo Tvyaiov Iepuratnt (ATII) yio v
EKTIUNON TOV EIKOVOCTOLYEI®MV OV AVIIKOLV GTOV dPOLLO GTO TPEYOV KAPE.

2y dwdwkacia Katdtunong ypnoponoteitor yo tov ATII n Avorn tov tpofAnpotog
Dirichlet [14], pa péBodog mov HEDOVEL ONUAVTIIKA TOV OTOLTOOUEVO YPOVO
VTOAOYIGHOV TNG AVOTG, VG divel Ta 1010 amoteAéopato pe tov kKAaowkd ATIT [15],
[16]. ITio ovykekpyéva, o aAyOplOHOg €VIOMIGUOD OpOUOV TOV  avamTLYONKeE,
amoteleiton omd To TOPAKAT® PrpoTo:

i.  ApyiKd GLAAEYETOL EK TMV TPOTEPWV TANPOQOpPio. TOV apopd v Béon ¢
Kauepag pésa oto Oymuo, kabmg Ko v kiion me. Me ypnon avtov tov
dedopéEVMV UTopovy va TomofeTnBovv ot apykol ordpot Pn-0popov (610 TAVM
KOUUATL TOV KOPE).

ii.  Zmv ovvéyela, dtadoyikd Cevyn amd Kopé oTovg XPpOvovg 7-1 Kot ¢t veioTovTot
petatpony] and 10 RGB 610 mpd10o KOVAAL TOL €1C2C3 YPOUATIKOD YDPOL, Y10,
TNV UEYAADTEPT OaVOEKTIKOTNTO O©E QMOTOCKIAGELS, 1M OTOTOUEG OAAOYEG
POTEVOTNTOC.

iii.  Tac; Kavaha tov 300 Kapé YPNGUYLOTOIOVVTAL Y10 TOV VITOAOYIGUO TOL UETPOV
g ontikng pong Horn Schunck [17] oto ypovikd onpeio ¢, to omoio and £d®
Ko oto €€1g B ovopdletan por) HSCH.

iv.  H pony HSC1 katopMaveton ypnopomoiwvtag v teyvikn Otsu [10] yia va
S ®PLoTOHV TO EIKOVOGTOLYEID TTOL THOVA AVI{KOVY GTOV dPOUO (YOUNAT TN
pong HSC1) amd ta eikovoototyeia mov dev avikovy atov dpdpo (epumddia, pe
vynAn tun porig HSC1).

v.  Ta ewovootoryeia g Katnyopioag pe vynin Ty pong HSC1 mov emAéyOniav
KAt TNV KOTOEOAM®OT cLVOLAloVTOL HE TO EKOVOGTOLKElD TOL €K TOV
TPOTEPMOV YVOGTOV KOUUOTIOD TOL KOPE OV OV avnkeL otov dpdpo (amd 1o
Brua (1)) kot To amotédecpo pag 0ivel To GHVOLO TV GTOP®V UN-OpOHOV.

vi.  To amotéleoua Tov EVTOMGHOV OpOHoL omd to Kopé -1 ypnoiomoteitol yo
va oplotel éva tpaméllo, GTA E€KOVOCTOXEID TNG TEPYETPOL TOL OTOIOL
tomofeTovvion o1 omdpot TG Katnyopiag Opopog. Av kdamowo omd o
gIKovooToLyEia TG TEPUETPOV TEPLEYEL O GTOPO UN-OPOLOV, TOTE KPOTAEL
TOV )01 LILAPYOVTO XOPAKTNPIGHO.

vii. H ewdéva RGB 1ov xopé oce ypoOvOo  VTOdEIYHATOANTTEITAL Yo VO
ypnowonomBei otov ATII pe pikpodtepn ovaAvoT|, 0dNYOVTAG GE YPNYOPOTEPO
VTOAOYIGLO TOV ATOTEAEGLLOTOG.

viii. H ewdva mov mpokdmtel and 10 Prpoa (vii), Kabmg kol to cHvoro GTOpwV
OpOUOV KO UN-0pOUOL TOL TPosKLYOV amd To Pripata (vi) kot (V) aviictolya,
ypnooroovvtol o¢ eicodol otov ATII, ywo v ektipmon tov TlavoT )TV
KdOe e1cOVOGTOLYEIOV TOV KOPE TNG YPOVIKNG GTLYUNG ¢ TTOL OEV TEPLEYEL OTLOPO
KAmO10G KOTyopiag, Vo avijKel 6Tov OpOLo.
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ix. O y&ptng mboavotnTtwVv mTov TPOoKLITEL O TO Prina (Viil) KATOEMOVETOL KO TO
TEMKO OTOTEAEGIO VTEPOEIYUOTOANTTEITOL VIO VO EMIGTPEYEL GTNV OPYIKN
avéivon.

To ovomupa EA mov mpoteivetar €d®d o&loloynOnke mOGOTIKG HE  OUAPOPES

Bwrteookonnoelg, 6mwg givarl ta mévie Pivteo mov amotelobv v DiploDoc, kabng

Kot Ta OVo Pivieo Alvarezl kon Alvarez2. Emiong, molotikn a&toAdynon g nebddov

£ywve ka1 o€ PVTEOCKOTNOELS TOV EANPONGOV oTa TAMIGLO TG SATPIPNG OE JAPOPES

ovvOnkeg Ko mepiairovia oonynong (Patras1, Patras2, loannl).

Ta TocoTIKA amoTEAEGLATA TOV EMTEHYONKOAV LE TNV YPNOT TOV TPOUVOPEPHEVTOV
BvteookomoemV amESEIEOV TNV AVAOTEPOTNTA TNE TPOTEVOUEVNG HeBOOOV o€ oyéon
pe oavtiotoyes g PipAoypoeiag. ITo ovykekpéva, oTig PLvieooKomnoelg
DiploDoc, n mpotewvopevn péBodog metvyaivel T0cooTd TOWOTNTAG TNG TAENG TOV
93%, eved AGAlheg pébodor mepropilovrar kTt omd 10 90%. Emiong, otig
Bwreookomnoelg Alvarezl ko Alvarez2, n mpotevopevn néBodog OTAvEL pe UIKPEG
TPOGOPLOYEG € amoTeAecpatikoOTNTa TG TaENS Tov 0.92, évavtt 0.89 dAAwv
pebdomv.

H emroyla g pebodoov yivetar opatn kot amd v mOOTIK) 0E0AOYNGN TG OF
Bwteookomnoelg kOT® omd avtifoeg ouvvOnkes, Omwg PpoxdmTmon, €Vioveg
(MTOCKIICELS, voytepvy odnynon k.o.. To peyaddtepo mAgovéktTnud g eivor Ot
TPOGOPUOLETOL GE OMOTOUEG OAAAYEG (QOTEWVOTNTOS GYETIKA ypnyopa, Ympic va
YPNOLOTOEL KATO0 HOVTELD OpOLOV, 1 Kdmola Stadikacio ekmtaidevong.

Téhog, 10 ovomua EA mov avamthybnke e€etdotnke Kot ®¢ TPOG TNV 100VIKN
avéivon PvteookOnnong mov TPEMEL VA YPNGUYOTOLEl, TOGO Yo TNV KOAVTEPN
amdd0GN TOL GLGTNUATOS, 0G0 Kot Yo TNV Tayvtepn enelepyacio tov kapé. H
nepapatikny dwdwkacio avédelte g KoAvTepn emAoyn v avdivon 160x120 mov
dtver tayvtta emeepyaciog mepimov 10 kapé 10 devtepdrento, oe Matlab, éva
VOUUEPO OV ivat apKeTA EATLOOPOPO Y10 TV VAOTOINGT GE TPAYLLATIKO ¥POVO LE
xpnon DSP.

10. Xvurepdopota

H mapovoa ddaxtopikny dwatpiPr] €xel cupPAiiel TOWKIAOTPOTMG GTNV EPELVOL TOV
[IXY O mov PBacilovtal anokAEIGTIKA GE OTTIKY] TANPOPOPin. ZEKIVOVTOG AT PACIKEG
peBOd0vg emelepyaciag YPOUATIKNG TANPOPOPING, KOTATUNONG EIKOVOS, EVIOTIGHLOD
CUUUETPIOV KOl TOPAKOAOVONONG OVTIKEIWEVOV, avATTOXONKAY VEEC TEXVIKES TTOL
e€eldkevoviol 6 TPOPANUOTO. TOV  CLVAVIMVIOL GE OKNVEG O0ONynong Kot
TPOGOPUOSTNKAY €TCL MOOTE VO PEATICTOMOM|GOVY TOV  GLUVAVACHO  OmdOOCoNG-
TaOTNTOG TOL £ivol AmOPOiTNTOS GE TETOLL GUGTILLOTO.

Yto Moo ™G SwTpPng TPOoTAONKAY VEEG TEYVIKEG YPOUOTIKNG KOTOTUNGNG
EIKOVOV, PACIGUEVEG GE 1O VIAPYOVTES, 1 VPPOKOVS YPOUOTIKOVS YDPOVG KOl GE
Khaowkés pebodovg kKatweAiwone. Emiong, peietniov kot mpotdOnkov TtexviKeég
a&lomoinong TG OKTIVIKNG CLUUUETPIOG Y10 TOV EVIOMIGUO TEPLOYDV TNG EKOVOS TOV
umopel va avikoov oe XOK, ®X, 1 oota oynudtov. H axtvik) ocvppetpio
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ocuumAnNpoOdnke pe TPpoTOTLTEG WEBOOOVE EAEYYOL OEOVIKNG GULUUETPIOG 7OV
EKUETAAAEDOVTOL TEXVIKEG €AEYYOL opolOTNTOG €KOVWVY. Emiong, efetdomnkav kot
avorTOYOnKay TEXVIKEG EMOANOELONG TOV OTATIKOV OTOTEAECUATMOV EVIOMIGLOV
YOK, ®X, | TPOTOPELOUEVOV OYNUAT®V LLE XPNOT XOPOYPOVIKNG TANpOoPopiag, site
ne TpwtdTLTTEG HEBOJOVG, gite pe TaparlayEC vTapyOVIEV HeBOdwV, OTMG Ta PIATpa
Kalman. TéAog, avamtoyOnke maporiaypév, avtoépotn HEB0d0g KATATUNOoNG EIKOVOGC
Bacwopévn otov ATIL yia tov agdmioto EA. H pébodog ypnoiponotel yopoypovikn,
KaBMOG Kol €K TOV TPOTEPMV TANPOPOPIL YO TNV EMTLYNUEV EMAOYN OTOPWOV Yo,
v apytkoroinon tov ATIL

e TpoKTIKO emimedo, peretOnkav ta mpofAnuota tov [IEYO o avtifoeg ocvuvOnkeg
Kol oot Tika meptBdAiovto odnynong kot eENYOMGaV YPNOLLO COUTEPACUATO Yol
NV QUGN TOV MO coPaP®V AVTIEOOTHTOV Kol Yio TOAVOVG TPOTOVS OVTILETOTIONG
toug. Emiong, €yive extevig pedétn yia v emidpact e avdAvong Tov eidVmV Tov
YPNOLOTOLOVVTOL GE TETOLES EPAPLOYES, TOGO Yo TNV PEATIOTN €Mid00N 0d TAEVLPAC
ToTNTOC, OGO Kol Yoo TV ToYVTEPT duvartn enelepyacio TV Kape. XTo TAOIGLL
TG TG HeEAETNG eénybnoav kot Kamowa pun-dtoncntikd amoteléopata, Om®s 10 OTL
Kamoleg @opéc M pelwon g avaivong odnyel oty avénon g ToTNTUS TOV
amotehecpdtov (my. otov EA), péyxpic evdg onueiov. Téhog, culnmbnke ko
avaAvOnke m  avdykn ovontoéng  Phoeov  0edopEvVEOV  HE  EMICTUOGUEVES
Bvteookomnoelg e S1APopeg GLVONKEG, Yo TNV KaADTEPT Kot dkaldtepn cHyKpLon
tov avantvocopevov IIEYO. INa avtd tov Adyo Kot Tpotiundnke va yivel mTOGOTIKY
avAALON TOV OTOTEAEGUATOV TNG JTpIng uoévo oe tétoleg Pdoelg, omov PéPara
Nrav avtd £PIKTO.

Melhovtikég katevfhveels e épevvog mov dlevepynnke ota mAMIGIOL AVTAG NG
dwrpifrg  meptiapPdavouv v oOvdeon  Jeopwv  amd TS HeBOdoLE oL
avantOoyOnkay, pe otdyo Vv avlmntuén evog mAnpovg IIZY O, aArd kot v PeAtioon
™G amdO0oNG TOV EMPEPOVS CGLOTNUATOV HE YPNON NS TANpoeopiag mov Oa
Aoppavetor omd to vmoélowma cvotiuate. Emiong Oa peiemBel m mbavotnto
vAomoinong kdmowwv amd T UeBOOOVG GE OPYITEKTOVIKEG TOVL EMTPEMOVY TNV
Aertovpyia Tovg o€ mpaypatikd ypdvo. Télog, Ba emiyepnBel n ypnon cvoToyLOV
KOUEPDV KOl 0 GLVOVACUOG TN TANPOPOPIOS TOVG Yo BEATIOON TV AMOTEAECUATMOV
tov [IXYO mov &yovv non avamtuydei.
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Advanced Driver Assistance Systems (ADAS)

Chapter 1

Advanced Driver Assistance Systems (ADAS)

1.1 Introduction

This chapter contains an introduction to Advanced Driver Assistance Systems
(ADAS). It begins with an overview of the road accident statistics worldwide that
dictate the need for further predictive action towards safer vehicles, moving on to a
demonstration of state-of-the-art systems that are already commercially available.
Then, an overview of vision-based systems already implemented by vehicle
manufacturers and after-market vendors is presented, followed by a presentation of
vision-based ADAS still in research stage. An exposition of the parts of a complete
vision-only ADAS is next, wrapped up by a short summary of the systems developed
for this thesis. The chapter closes with a presentation of the datasets used for the
purposes of the thesis, the performance evaluation methods for quantitative and
qualitative assessment of the proposed systems and some final conclusions.

1.2 The need for ADAS development

During the past few decades, road accidents have proven to be one of the most
common causes for the loss of human lives. According to a study by the World Health
Organization issued in 2004 [1], road accidents were estimated as the cause for 1.2
million people killed and as many as 50 million people injured worldwide. The
seriousness of the situation can be reflected by the fact that in 2000, road accidents
were the main cause of death inflicting injuries, resulting to approximately 23% of
worldwide injury related deaths (see Figure 1), while in 2004 they were the second
overall cause of death for people of ages 5-14 and the first cause of death for ages 15-
29 years [2].

Figure 1: Distribution of global injury mortality by cause (2002).




1.2 The need for ADAS development

More importantly, the forecasts state that road accident related deaths will raise by
65% between 2000 and 2020 [3], [4]. In fact, the absolute number of road-accident
inflicted deaths is estimated to double in the period 2004-2030 [1], as shown in Figure
2. In terms of percentages, road accidents are predicted to become the 5t leading
death cause by 2030, increasing by a factor of 0.54, from 2.2% to 3.6% of the world’s
deaths.

Deaths imillioas)

Figure 2: Projected global death for selected causes (2004-2030)

These dire predictions concerning the rise of road accident related deaths are mainly
based on the fact that the total number of vehicles worldwide rises, resulting in a
subsequent increase of accidents. However, vehicle safety has improved over the
years, mainly because of the advances of passive safety systems that have been
included in almost all commercial vehicles. Such systems include seat belts, airbags
and various improvements made on the vehicle bodies, improving their
crashworthiness for passengers and pedestrians. Improvements in passive safety may
have offered a lot so far, but now relative technologies seem to have reached a peak,
since they cannot offer solutions to further mitigate deaths caused by accidents
inflicted by drivers’ mistakes. As demonstrated in Figure 3, the reduction in road
accident inflicted death has been slowed down over the past decade (except from
France). In fact, a recent study by the National Highway Traffic Safety
Administration (NHTSA) of the U.S.A. revealed that from all the driver-related
causes of road accidents, a 41% was due to recognition errors and a 34% due to
decision errors [5].
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Figure 3: Trends in road traffic fatality rates in selected high-income countries




Advanced Driver Assistance Systems (ADAS)

A conclusion that can be drawn from the analysis of road accident related data is that
the further reduction of accidents has to rely more on active, state-of-the-art solutions
generally known as Advanced Driver Assistance Systems. ADAS are new emerging
technologies, primarily developed as automated advisory systems for drivers with a
goal to enhance driving safety.

In this context, the European New Car Assessment Programme (Euro NCAP) has
announced [6] that starting in year 2014, every car manufacturer hoping to achieve a
perfect, five-star, score on the Euro NCAP safety ratings will have to equip their
vehicle with an Autonomous Emergency Braking (AEB) system. Similar efforts from
Euro NCAP since it was first established in 1996, led to the improvement in passive
and active safety systems used in vehicles. The corresponding criteria are a good
indication of state-of-the-art systems that are supposed to be embedded into
commercial vehicles. Some of the future trends are revealed when studying the
rewards that Euro NCAP has established since 2010, which give incentives to
manufacturers to include advanced safety systems in their vehicles. The advanced
safety technologies that have been rewarded since 2010 until today are included in
Table 1.

1.3 Vision based subsystems used in commercial solutions

The summary of state-of-the-art ADAS recently included in commercial vehicles
denotes a turn towards heavy usage of computer vision methods. An increasing
number of ADAS rely either on the information fusion of several sensors, including
cameras, or on the utilization of information derived solely from monocular, or
stereoscopic cameras. In fact, from the ADAS presented in Table 1 only Automatic
Emergency Call does not include a computer vision based possible subsystem. The
use of cameras was somehow neglected in the past mainly because computer vision
algorithms required very powerful and expensive processors which, combined with
the high prices of good quality cameras, raised the price of camera-based ADAS to a
level that did not allow their commercialization.

Recently, the increasing processing power of embedded digital signal processing
systems combined with the development of cheap, small video cameras with good
image quality led ADAS research towards implementation of systems that operate
based on information coming only from cameras. Such systems usually concentrate
only on one of the problems of driver assistance, since the inclusion of all different
problems in one single system is still a quite challenging issue. In this section, the
most prominent examples of vision based subsystems of commercially available
ADAS are presented.
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Table 1: Advanced Safety Technologies rewarded by Euro NCAP since 2010.

Advanced Safe .
ty Description Rewarded Manufacturers
Technology
Blind Spot Radar or camera based systems to warn a | Mazda (2011 - Mazda Rear Vehicle Monitoring system,
Monitoring driver when changing lanes about possible RVM)

car approaching from the “blind spot™.

Audi (2010 - Audi Side Assist)

Lane Support Systems

Lane Departure Warning: camera based
systems to warn drivers in case of steering
into another lane.

Lane Keep Assist: camera based systems
that steer the car back to the driving lane

Ford (2011 — Lane Keeping Aid)
Infiniti (2011 - Lane Departure Prevention, LDP)
Opel (2010 — Opel eye)
Volkswagen (2010 - Lane Assist)

Speed Alert Systems

Also known as Intelligent Speed
Assistance (ISA), it is a system that warns
drivers of exceeding the speed limit of the
road, or the manually set speed limit

No rewards until the time of writing.

Autonomous
Emergency Braking

Radar or lidar based systems that act
independently of the driver (Autonomous)
to avoid or mitigate an accident in critical
situations (Emergency) by applying the
brakes (Braking)

Audi (2012 — Pre Sense Front Plus)

Ford (2011 — Forward Alert, Active City Stop)
Mercedes-Benz (2011 - Collision Prevention Assist)
Volkswagen (2011 - City Emergency Brake)
Honda (2010 - Collision Mitigation Brake System)
Mercedes-Benz (2010 - PRE-SAFE® Brake)
Volvo (2010 - Volvo City Safety)

Attention Assist

Drowsiness detection systems that warn
drivers to prevent them from sleeping on
the wheel by prompting for breaks.

Ford (2011 — Driver Alert)

Mercedes-Benz (2011 — Attention Assist)

Automatic Emergency
Call

System that sends an automatic message to
an emergency call center in case the
vehicle has been in a crash.

BMW (2010 - Assist Advanced eCall)
Citroen (2010 - Localized Emergency Call)
Peugeot (2010 - Connect SOS)

Pre-crash Systems

Systems that predict an accident to
optimize the functionality of protection
systems such as restraints (seatbelts) or
airbags.

Honda (2010 - Collision Mitigation Brake System)
Mercedes-Benz (2010 - PRE-SAFE®)
Mercedes-Benz (2010 - PRE-SAFE® Brake)

Vision Enhancement
Systems

Systems improving the visibility of the
driver, even in adverse lighting or weather
conditions, like night driving, or driving
through fog.

Opel (2011 - Adaptive Forward Lighting, AFL)

1.3.1 Traffic Sign Recognition

Traffic signs carry important information about the driving environment and they

assist drivers in making correct decisions for the safe navigation of their vehicles.
Automatic recognition of traffic signs has been the most widely researched ADAS
during the past decades. In this scientific field, a high number of papers, laboratory
systems and reports have been already presented using generic image processing and
machine learning algorithms. Recently, traffic sign recognition (TSR) systems have
been installed in Speed Alert Systems, like the one introduced by Opel and included
in the 2008 Insignia model. The system is called "Opel Eye" [7] and among other
things, it detects speed signs and no-overtake signs and informs the driver of their
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existence as demonstrated in Figure 4(a). After-market systems using TSR can also be
found, as the one developed by Mobileye and used in the BMW 7 series [8]. It is a
system similar to the Opel Eye, but it also claims to detect LED speed signs as well
(Figure 4(b)).

(a) (b)

Figure 4: (a) Opel Eye system uses a camera to recognize speed signs and warn the driver. (b) Mobileye's traffic sign
recognition system. It recognizes speed signs and warns the driver if speed limit is exceeded.

Even though some versions of TSR are already available commercially, the
technology will have reached maturity only when it will have tackled some rather
challenging problems. More specifically:

a) The TSR systems detect and recognize only speed signs and no-overtake
signs. While they are very useful for ADAS, they are still oversimplified versions of a
complete traffic sign recognizer which would include all possible traffic signs.

b) The systems that are commercially available are not always functional,
depending on the weather and lighting conditions. Even though this problem is well-
known in the computer vision society, it still poses a big obstacle in the usage of such
systems for autonomous driving, or even reliable driver warning systems.

These challenges are the main reasons why computer vision based TSR are not
reliable for commercial applications i.e. for a great variety of driving scenarios and at
least the most important road signs. This is why research in the area of traffic sign
recognition is still very active [9]. Moreover TSR is a task that can be solved using
GPS based technologies in collaboration with precise and dynamically changing
maps. This simple and efficient solution leads the major automotive companies to
minimize their effort in TSR technologies.

1.3.2 Road Lane Recognition

One of the most mature vision-based technologies for an ADAS is road lane
recognition. Its presence is vital in Lane Support Systems, as it provides the basic
information needed for such a task. Road lane recognition is targeted mainly on
highway driving, or on driving in well-maintained city or country roads. The
technology behind it is fairly simple, since there are several robust algorithms for line
finding in an image, the most widely used being Hough transform [10]. Commercially
available solutions include "Opel Eye", which has a module for lane departure
warning for the driver, Infiniti with its Lane Departure Prevention module,
Volkswagen with the Lane Assist System and Ford with the Lane Keeping Aid
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system. Some indicative pictures of the aforementioned systems are shown in Figure
5.

(a)

(© (Y]
Figure 5 : (a) Lane Departure Warning from Opel Eye, (b) Infiniti Lane Departure Prevention, (c) Volkswagen Lane
Assist and (d) Ford Lane Keeping Aid.

Lane assist systems are invaluable for highway driving, but they still fall short of what
is expected by an ADAS in situations of driving in unstructured or badly maintained
roads, where road lanes are not visible. In these scenarios such systems do not have an
alternative solution to the problem of lane keeping, so they cannot offer useful
services to the driver. In such scenarios, a road detection module would deliver much
more reliable information.

1.3.3 Vehicle Detection

Vehicle detection is the cornerstone of several ADAS, since it provides information
about possible dangers like impending collisions. It can therefore be used in
Autonomous Emergency Braking systems, in pre-crash systems and also in blind-spot
detection.

Several systems use alternative techniques to achieve vehicle detection, like radars
(Mercedes Benz Pre-SAFE® Brake and Collision Prevention Assist, Honda Collision
Mitigation Brake System, Ford Forward Alert) or Light Detection And Ranging
(LIDAR) technology (Volvo City Safety, Volkswagen City Emergency Brake, Ford
Active City Stop). Radars are chosen due to their good distance measurement when a
sufficient radar reflectance of objects in front of the vehicle is present. However, they
can be negatively affected by mud, snow or leaves blocking its "view" and appear
problematic when other cars cut in to the lane of the ego-vehicle, or when the ego-



Advanced Driver Assistance Systems (ADAS)

vehicle makes a small radius corner. On the other hand LIDARs offer distance
measurement both in daytime and nighttime, but their sensors are compromised when
stained by mud or snow and they fail to operate in adverse conditions such as fog or
heavy rain.

The aforementioned disadvantages of those two technologies are the reason vehicle
manufacturers have started using them in synergy with cameras. One such system is
Audi's Pre Sense Front Plus, which combines information from two long range radars
that detect obstacles in front of the vehicle, with data from a windscreen-mounted
camera to assess the probability of an impending forward collision and warn the
driver, or apply the brakes if the threat is imminent. Vision has also been used in
Mobileye's vehicle detection after-market solution [11], which is used for several
modules, like Forward Collision Warning, Headway Monitoring and Warning, etc.
The difference is that Mobileye has implemented vision-only systems, something that
is particularly hard to achieve for all possible driving conditions. The two
aforementioned camera-based systems are shown in Figure 6.

(a) (b)

Figure 6 : (a) Audi Pre Sense Front Plus uses two long range radars and a camera to achieve AEB, (b) Mobileye uses just
one monocular camera to warn drivers for impending collisions.

1.3.4 Driver Drowsiness Detection

The use of camera positioned inside the vehicle and facing the driver is among the
most reliable methods to evaluate the state of mind the driver is in. This can be used
for detecting possible driver drowsiness and issue an audible warning sign that warns
him/her to stop driving and take a break. However, commercial systems in vehicles
have not used this approach, but a rather more indirect one, i.e. the use of information
about the driving style to determine if the driver has low vigilance. Ford Driver Alert
uses a front-facing camera to detect sudden and exaggerated corrections to the
vehicle's motion, which are characteristics of sleepy or inattentive drivers. Mercedes-
Benz Attention Assist uses the same idea, but without a camera; information about
steering angle comes from a sensitive sensor and is used for assessing potential
drowsiness of the driver. Methods in modern literature tend to focus on solving the
problem in the more direct way, monitoring the gaze and head pose of the driver [12].
However, this is still an ongoing research with results not robust enough for
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commercialization, since there are many challenges still to be faced, like inconsistent
lighting, occlusion of the eyes from glasses, etc.

1.3.5 Pedestrian Detection Systems

Another feature of ADAS that has been extensively researched is pedestrian detection
[13], [14], [15]. However, this technology was late-blossomed in commercial systems,
as only Volvo has included such functionality in one of its cars and more specifically
the Volvo S-60 (starting from the 2010 model). The task of pedestrian detection is
accomplished with the use of a front-facing camera in combination with a radar
sensor that measures the distances to the pedestrians (Figure 7(a)). A vision-only
approach has been scheduled to be used by Subaru in its EyeSight™ system
announced for 2013 (Figure 7(b)). The system will be based on a stereoscopic pair of
cameras placed on both sides of the rearview mirror of the vehicle [16]. The vision-
only approach has been followed by Mobileye as well, in their after-market Pedestrian
Collision Warning System which is demonstrated in Figure 7(c).

Figure 7 : Pedestrian Detection Systems by (a) Volvo, (b) Subaru and (c) Mobileye.

1.3.6 Night Vision Systems

Recently [17], BMW and Mercedes-Benz offered night vision as an extra feature of
their 7-series and S-Class models respectively, using different approaches. BMW used
a passive Far-InfraRed (FIR) sensor to stream night vision images in the car monitor,
while Mercedes-Benz used a near-IR system for the same reason. Both systems are
really expensive and this is why they are offered only in top-class vehicles of the two
brands. When combined with a module like pedestrian detection, these systems can
prove truly life-saving for the driver, because they provide extra visibility. The two
systems are shown in Figure 8.

(a) (b)
Figure 8 : (a) Near-IR night vision system by Mercedes-Benz and (b) FIR Night vision system by BMW.
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1.4 Vision based subsystems still in research stage

The majority of the subsystems presented in the previous section have been included
in commercial vehicles after exhaustive research of their robustness and trust-
worthiness. As the paradigm of pedestrian detection shows, a system that has been
extensively covered by scientific research might take a long time until it reaches
commercial maturity. Thus, there are still some systems not mature enough to be
considered for inclusion in commercial vehicles. In addition, even the commercially
available systems have their limitations; bad weather conditions, limited visibility,
sudden illumination changes, dense traffic etc. are only some of the factors that can
deteriorate the performance of a vision-based ADAS. In this section we will present
some of the open research areas for vision based ADAS.

1.4.1 Traffic Lights Recognition

One of the most neglected research areas in ADAS technology is the recognition of
traffic lights. Taking into account that the number of serious accidents caused by
traffic light violations is significantly greater than the number caused by violations of
other types of traffic signs, not many researchers have treated them as essential
information for an ADAS.

Traffic light detection is not a trivial problem due to the very dense presence of red
and green light sources in cities. This effect increases the false positive error rate of
traffic light recognition systems significantly.

1.4.2 Driver Gaze Detection

In the previous section driver inattention was mentioned; however commercial
vehicles have not used computer vision methods for this task. Current research has
been moving towards using in-vehicle cameras monitoring the driver, so that not only
his/her potential drowsy state is detected, but also in order to follow his/her gaze so
that it can be correlated to the driving scene and warn for potential lack of focus to a
critical point. However, these attempts are still in a very early stage and they are still
far from being mature enough to be deployed in commercial vehicles.

1.4.3 Road Detection

Road lane detection is, as mentioned already, one of the most mature technologies in
commercially available ADAS. However, they provide useful assistance only in
specific situations such as highway driving, or driving on well-preserved roads. This
is not the general case though; many roads lack distinct markings, while others have
no markings at all. Driving in unstructured and even unpaved rural roads is also a
great challenge, as shown in recent DARPA challenges [18]. Such challenges require
a more general drivable path detection algorithm and this is where researchers have
focused lately; robust road detection in all kinds of environments, at any time of the
day and under different weather conditions.
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1.5 General structure of a computer vision based ADAS

Currently commercial vehicular technology has only included vision systems in
conjunction with other sensors, or specific subsystems that are robust enough to be
used in real world driving scenarios, like lane detection systems. A robust setup of
ADAS that would only use vision information is presented in Figure 9.

- -
-
DRIVER

DROWSINESS
DETECTION

VEHICLE DETECTION

Figure 9 : Structure of a complete, entirely vision-based ADAS. The highlighted systems are covered in this thesis.

The continuous progress in the area of automatic assistance and driver warning
methods indicates that we are not very far from developing very reliable ADAS in
typical driving conditions. In such systems, the majority of sub-systems will be
implemented using vision processing methods.

The scope of this thesis is to provide novel solutions for some of the most challenging
problems using frontal-faced cameras, i.e. traffic sign recognition, traffic light
recognition, vehicle detection and road detection. Specific attention is given to
developing and testing systems that are robust to weather and illumination changes,
providing acceptable accuracy in both daytime and nighttime driving scenarios, while
not being affected by the driving environment. All systems are designed for
monocular cameras mounted on the windscreen of the car.

1.6 Datasets used for system development and evaluation

One of the great problems faced during the evaluation of a computer vision system is
usually the lack of carefully selected, publicly available, manually annotated datasets
with a variety of examples. When the system deals with a real-world problem and
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demands a great mixture of videos taken under different conditions and frame-based
annotation information is required, then the number of man hours that have to be
spent on the construction of the dataset is extremely high. The availability of very
small publicly available annotated datasets is the most important reason for the
absence of common benchmarks for ADAS. The systems developed in thesis are no
exception; they have been tested on several different video streams, spanning from
videos shot for the purposes of the thesis to publicly available video datasets
containing manually annotated results. The datasets used, an overview of which is
given in Table 2, will be presented in the following sections.

Table 2 : Video streams used for the purposes of the thesis

No Name Used for | Annot. |Car Camera Resolution|fps| Duration [Environ.|Weather| Daytime Place

1 TSR1 TSR No AX | DCR-TRV60E | 720x576 |25 8:55 Rural | Sunny Day Toannina
2 TSR2 TSR No AX | DCR-HC85 720x576 | 25 2:10 Rural Rainy Day Patras

3 TSR3 TSR No AX | DCR-HCS85 720x576 | 25 1:05 Rural Good Night Patras

4 TSR4 TSR No AX | DCR-HC85 720x576 | 25 3:07 City Good Night Patras

5 Patrasl RD/VD No AX Pinhole 640x480 | 25 >2h Mixed | Mixed Mixed Patras
6 Patras2 RD/VD No Colt| PV-GS180 720x576 | 25 >1h City Sunny Day Patras
7 Toannl RD/VD No Colt| HDC-SD100 10801 25 ~1h Rural Mixed Day Toannina
8 LARA TLR/VD TLs C3 |Marling F-046C| 640x480 | 25 8:49 City Sunny Day Paris

9 DiploDoc RD Road - MEGA-D 320x240 | 15 0:56 Mixed | Sunny Noon Trento
10 Alvarezl RD Road 77 | Bumblebee 320x240 | 15 0:56 Rural | Sunny Noon Barcelona
11 Alvarez2 RD Road ZZ | Bumblebee 320x240 | 15 0:32 Rural Rainy | Morning | Barcelona
12 HRI1 VD R/VITS/ITL| - Unknown 800x600 | 10 16:24 Mixed Dry [Afternoon| Unknown
13 HRI2 VD R/VITS/ITL| - Unknown 800x600 | 20 18:50 Mixed Dry Evening | Unknown
14 HRI3 VD R/VITS/TL| - Unknown 800x600 | 10 11:12 Mixed Rainy [Afternoon| Unknown
15 HRI4 VD R/VITS/TL| - Unknown 800x600 | 10 11:22 Mixed Dry Night Unknown
16 HRI5 VD RWVITSITL| - Unknown 800x600 | 20 13:48 Mixed Snow [Afternoon| Unknown
17 | YouTube [ TLR/VD No - Various Various | - >2h Various | Various | Various Various
18 | Caltech 1999 VD No - Unknown 892x592 | - | 126 frames| Parking | Sunny Day Caltech
19 | Caltech 2001 VD No - Unknown 360x240 | - [526 frames| Urban | Sunny Day S. California

1.6.1 Video streams acquired for qualitative evaluation of thesis methods

For the purposes of this thesis, several video streams of driving in different
environments and conditions were acquired. The videos were shot using different
cameras with various resolutions which were mounted on the windscreen of the
vehicle. The video streams include various weather conditions, different driving
environments and were shot at different hours of the day. The details of the video
streams are presented in lines 1 through 7 of Table 2, along with information on the
subsystem they were used for. These video streams were used mostly in the
development and the qualitative evaluation of the ADAS presented in the thesis.

1.6.2 Video streams used for quantitative evaluation of thesis methods

For quantitative evaluation of the proposed ADAS, video streams have to be frame
based manually annotated with traffic signs, traffic lights and road area information.
As previously mentioned, this is a very basic problem of the field of real-world
computer vision systems, since the complexity and diversity of the scenes combined
with the vast number of frames that have to be manually annotated make such efforts
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extremely costly and time consuming. The quantitative analysis of the proposed
ADAS methods was based on a few publicly available video datasets.

The process of traffic signs detection was probably the most difficult to assess, since
there isn't any sufficient publicly available annotated datasets to use at the time of
development and evaluation of the thesis systems. Instead, a frame by frame
inspection and characterization of the results on selected parts of the video streams
TSR1 to TSR4 (lines 1 to 4 in Table 2) is used. Recently, traffic signs recognition has
been more thoroughly covered by researchers [19]-[20], but the TS dataset used was
substantially smaller than the one used for the implementation of our system.

Traffic lights recognition also is a challenging process to evaluate. A recent work by
de Charette et al [21] provided a useful video stream found in [22] called LARA,
which comprises 11179 frames of a daytime city driving video, with ground truth
manual annotations of the 32 traffic lights met, in all the frames of their appearance.

Road segmentation is probably the most challenging scenario for manual annotation.
The few publicly available video streams with manually annotated road area that can
be found online typically comprise very few frames, like the DiploDoc sequence used
by Lombardi et al in [23] (number 9 in the list of Table 2) and the two sequences
used by Alvarez et al in [24] (numbers 10 and 11 in Table 2). The aforementioned
video streams contain manual annotations of the road area in stereo frame pairs taken
from driving scenes. The one used in [23] has 865 annotated frames and the one used
in [24] comprises 1335 frames in total, of which 1005 are annotated with road
information.

1.6.3 Publicly available video streams used for qualitative evaluation

For the qualitative assessment of the systems presented in this thesis in extremely
adverse conditions, we have also used over 2 hours of video streams shot with on-
board video cameras downloaded from YouTube. The purpose of using these videos
were mainly to add more representative examples of driving scenarios that could not
be covered using the videos mentioned in the previous sections, e.g. driving in snow,
driving at night in big city roads (New York, Los Angeles), driving in fog, etc. These
videos cannot be extensively described, since they are taken with different video
cameras, in diverse environments and they are used just for qualitative purposes.

Finally, at the late stages of this research, access to a large dataset of driving scene
videos acquired by Honda Research Laboratories was provided [25], [26], [27], [28],
[29], [30]. These videos were acquired in a diversity of environments, weather and
illumination conditions and they were extensively annotated (free road area, traffic
lights, traffic signs and vehicles were among the annotated categories). These videos
were used for qualitative result analysis purposes in this thesis. The details of the five
video streams comprising the dataset are thoroughly described in [27] and have been
summarized in lines 12-16 of Table 2. Driving in both highway and urban roads in dry
weather conditions has been covered for daytime in HRI1 and HRI2. The former has a
frame rate of 10 fps, while the latter was shot at 20 fps. Heavy rain conditions have
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been covered in HRI3, where the vehicle faces also urban and highway scenes in the
afternoon. Night driving in dry conditions has been included in HRI4, once again in
both urban and highway roads. Both HRI3 and HRI4 have been shot at a frame rate of
10 fps. Finally, driving after heavy snowfall has been included in HRIS. This stream
was acquired at 20 fps in the afternoon, while driving in both urban and highway
roads.

1.6.4 Publicly available image sequences used for quantitative evaluation

For quantitative evaluation of the static performance of the preceding vehicle
detection algorithms developed in this thesis, two datasets of images of the rear part
of vehicles provided by Caltech [31], were also used. The first dataset is called
Caltech 1999 and comprises 126 images, sized 892x592 pixels, of cars from the rear
taken at the parking lots of Caltech. The second dataset, called Caltech 2001, contains
526 pictures of 60 different cars, with resolution 360x240, that have been taken in
freeways of southern California. Both datasets are ideal for the evaluation of
preceding vehicle algorithms, since they contain a variety of vehicles in front of the
ego-vehicle.

1.7 Performance evaluation measures

To achieve an efficient evaluation of the systems developed in the scope of this thesis,
it is imperative that we use a mixture of quantitative and qualitative methods that are
designed for this purpose. These methods are shortly presented here and will be used
throughout this dissertation.

1.7.1 Quantitative measures for quality evaluation

The measures that are most commonly used for assessing the detection quality of all
computer vision systems are based on the definition of four basic metrics. When the
problem at hand is classifying the pixels into two classes (i.e. positive and negative),
let True Positive (TP) be the number of pixels classified correctly as belonging to the
positive class, False Positive (FP) the number of pixels misclassified as belonging to
the positive class, False Negative (FN) the number of pixels misclassified as
belonging to the negative class and finally True Negative (TN) the number of pixels
classified correctly as belonging to the negative class. Then, the following metrics can
be defined:

e Correctness or Precision: P =TP /(TP + FP)

e Completeness or Recall : R=TP /(TP + FN )

o  Quality: g=TP/(TP+FP +FN)

o Accuracy:A=(TP+TN)/(TP +TN + FP + FN)

o FEffectiveness: F =2PR/(P+R)

13
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All the aforementioned measures range from 0 to 1, with 1 denoting the best result
(i.e. zero value for at least one type of classification error) and 0 denoting the worst
possible result.

1.7.2 Qualitative performance evaluation

Apart from quantitative performance appraisal, it is very important that a real-world
computer vision system is also assessed qualitatively. The reason for this is twofold;
first it is impossible to construct an annotated dataset that includes all possible
variations of a complex process like driving, and a frame-by-frame qualitative
analysis of the results can offer valuable insight on possible improvements of a
system. Furthermore, manual annotation is often subjective therefore the qualitative
analysis could pinpoint frames where the result of a computer vision based system is
appraised very strictly using the quantitative method. For these reasons, the systems
presented in this thesis have undergone an extensive qualitative assessment process,
with a special attention to adverse conditions, which is described separately in each
chapter.

1.7.3 Processing speed performance assessment

Quality is not the only factor that is critical for ADAS. Obviously it is the most
important factor, since such systems are used for the safety of human lives, but
processing speed also plays a very important role in this context. More specifically,
ADAS have to operate in real time; hence their processing speed must be faster than
the frame acquisition rate of video cameras. Given the up-to-date typical camera
frame rates, a goal of approximately 25 frames per second is what ADAS aim for.
Depending on the specific details of each application this goal might be either a little
lower (i.e. for city driving with low speeds), or even higher when highway driving
must be handled. For all these reasons, a special section is included where applicable,
covering the speed performance assessment for each system developed as part of this
thesis.

1.8 Conclusions

This chapter presented and justified the current worldwide trend for the development
of reliable Intelligent Transportation Systems and more specifically Advanced Driver
Assistance Systems. Most of the modern commercially available ADAS based on
computer vision methods have been reported. Furthermore, the state-of-the-art
systems that utilize only visual information have been briefly examined and a general
structure of vision-only ADAS has been proposed. Finally, the datasets used for the
purposes of this thesis, as well as the metrics for the evaluation of the implemented
systems have been described. In the next chapter, the core computer vision algorithms
used for the development of the systems in this thesis will be presented.
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Chapter 2

Computer Vision Algorithms

2.1 Introduction

This chapter contains a short presentation of the image processing concepts and
algorithms that were used in the development of the systems described in this thesis.
More specifically, the concept of shadow robustness and its importance in real world
computer vision applications are analyzed and several color spaces that promise
robustness to illumination changes are demonstrated. Consequently, the usage of
image thresholding algorithms is described with a focus on the widely used Otsu
algorithm. An analysis on the importance of symmetry for the detection of traffic
signs and lights follows, concentrating a fast radial transform solution that provides an
efficient way to tackle such problems. Then, the importance of motion information in
problems related to ADAS is given and various optical flow algorithms are presented.
A thorough discussion on the significance of image segmentation with a special
mention to the Random Walker algorithm in ADAS is presented, including also its
usage and implementation issues. Finally, an overview of popular methods for
measuring image similarity is provided.

2.2 Color spaces and illumination invariance

The notion of illumination invariance is especially important for computer vision
applications in the domain of real world problems. A system that can be used under
all weather and illumination conditions should be robust to changes in environmental
conditions, since the visual characteristics of a real world scene greatly vary
depending on whether, for example, the picture is taken in a sunny day or a gloomy
afternoon. Several approaches for different applications have been proposed in
relevant literature [32], [33], with most of them suggesting the use of color spaces
more robust to illumination changes than the normally used RGB color space. For the
development of ADAS in this thesis, the CIE L*a*b* color space, the recently
proposed c;cac3 color space and hybrid color spaces based on the two aforementioned
ones have been used.

2.2.1 Comparison of color spaces for real world scenes

The main problem of the RGB color space when used for real world scenes is mainly
the high correlation between its channels, which makes it vulnerable to illumination
changes. On the contrary the CIE L*a*b* color space [34] is less affected by
illumination changes and furthermore, it is characterized by a perceptual uniformity of
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colors, which is very useful for pattern recognition applications of man-made objects
like traffic signs or traffic lights. The superiority of the CIE L*a*b* color space over
RGB is demonstrated in Figure 10, where the red signs stand out much more in

channel a* of the L*a*b* image, than the R coefficient of the RGB image.
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Figure 10 : (a) The original RGB image, (b) its R (red) channel and (c) its a* (red-green difference) channel.
Other color spaces that promise illumination intensity invariance are the HSV,
YCbCr, and generally every color space that separates luminosity information from
color information. The increasing interest in illumination intensity invariant color
spaces due to the use of computer vision methods for real world applications, has led
to a series of novel color spaces such as cjcycs [35]. All the aforementioned color

spaces are presented in Figure 11 in a scene with dense shadows.
I — e | | s -

Figure 11 : The same scene in different color spaces. Each row contains the original image and the separate channels
intensity: first row shows the RGB image, second the L*a*b*, third the HSV, fourth the YCbCr and fifth the c,c,c; image.

16



Computer Vision Algorithms

The different color channels represented in Figure 11 show that the color spaces that
separate the intensity/brightness/luminosity channel from the chromaticity channels
appear vulnerable in shadows only in the first channel. Another conclusion that can be
drawn is that cjcoc3 appears to separate colors more successfully than other color
spaces. The worst results in color discrimination are drawn from the RGB color space,
due to strong correlation of its channels.

2.3 Fast Radial Symmetry for efficient detection of symmetrical

objects

The detection of human-made traffic-related objects appearing in a real-world scene
relies greatly on the localization of symmetrical shapes. For systems aiming at
detecting traffic signs, traffic lights or vehicle lights, a synergy of color and symmetry
information provides a solid foundation for efficient detection. Since a short
discussion about the color space influence to the object detection has already been
covered, this section will concentrate on describing how symmetry can be used as a
useful cue.

The selected algorithm in this thesis for efficient symmetry detection is the Fast
Radial Symmetry Transform (FRST). This method is based on a simple and
computationally efficient voting process which is described in [36]. The algorithm is
designed for grayscale images which have to be examined for symmetrical shapes of
various radii in a user-defined set, N. The value of the transform at range nenN
indicates the contribution of the image gradients to the radial symmetry at a distance
of n pixels from a pixel p, as shown in Figure 12 (taken from [36]).

p® |

Figure 12 : Pixels affected by the gradient element g(p) for a range n=2.

The FRST is based on the examination of the intensity gradient g (using a 3x3 Sobel
operator) at each image pixel p, which determines a positively affected pixel p.,.(p)
and a negatively affected pixel p.,.(p) at a distance n away from p. The coordinates of
the two affected pixels are defined by the orientation of the gradient; p.,.(p) is the
pixel that the gradient is pointing to while p..(p) is the pixel that the gradient is
pointing directly away from. More specifically, the positively affected pixel
coordinates are estimated by
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P (p)=p+round 2D, : 2.1
Ml
while the negatively affected pixel coordinates are
p_..(p)=p—round Lp)n , 2.2
Mol

where "round" is a mathematical operation that rounds each element of the to the nearest
integer.

Using the information of the positively and negatively affected pixels, two new
images can be formed; the orientation projection image O, and the magnitude
projection image M,. These two images are initially zero; for each pair of positively
and negatively affected pixels that are calculated, the corresponding pixels in the
orientation projection image are incremented and decremented respectively by 1. The
same process is performed for the magnitude projection image, only this time the
corresponding pixels are incremented and decremented respectively by|g(p)||. This

process is summarized in the following equations:

0,(P,,.(P) <O, (p.,.(p)+1, 23
On(pfve(p))<_On(pfve(p))_1 ’ 2.4
M, (P, (P) <M, (p,..(P) +[g (P, 2.5
M, (p_.(p) <M, (p_.(p)-|gp). 2.6
Next, two more matrices are formed, using the following formulas:
0 a
F )_Mn(p)[ n(p)\} , 57
k”l kn

- 0) ,if O k

on(p):{ (PO, () <k, 28
k,, otherwise

where a is a parameter that denotes radial strictness (the higher it is, the more "strict"
the transform for non-radial symmetrical shapes) and k, is a scaling factor for O, and
M, across different radii, as defined in [36]. Then, for one specific radial n, the radial
symmetry contribution is defined as

Sn:F;1*A/z’ 2.9

where (*) denotes the convolution of the two matrices and A, is a 2-dimensional
Gaussian probability density function. Finally, when more than one radius is
considered, the total symmetry transform is defined as the average of all the symmetry
contributions over the radii range. If N denotes the radii considered, then the final
symmetry transform matrix is

1
=—3's. 2.1
S NZSH 0

neN
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The resulting images acquired from the FRST when it is performed in chromaticity
channels is particularly interesting for applications related to traffic signs or traffic
lights detection, or even with the detection of the rear lights of vehicles. One typical
example of all these attributes is shown in Figure 13, where the FRST in channel a*
of the original image leads to a result that detects 3 green lights, one traffic sign and
one vehicle rear light, while producing 3 false alarms. The FRST was estimated for
radii of 3, 6 and 9 pixels with a radial strictness of 1 and then linearly normalized in
the range [0, 1]. Values of the normalized FRST below 0.4 (dark spots) and over 0.9
(light spots) were used to extract the Regions Of Interest (ROIs) as shown in Figure
13(d).

(a) (b)

(© (d)
Figure 13 : (a) Original image, (b) a* channel, (c) FRST result for N = {3, 6, 9} and o=1, (d) detected ROIs.

2.4 Otsu thresholding for efficient bimodal image segmentation

The problem of object detection in real world scenes often simplified into a bimodal
segmentation task, or in more complex cases into multimodal segmentation using
histogram information.

An example of this type of problems is met when the FRST contains objects that
stand out from the background, so their efficient detection relies greatly on the usage
of a thresholding method for images with bimodal histograms. The most popular fully
automatic method for estimating the intensity threshold is proposed by Otsu's
algorithm [37], which is based on the iterative splitting of the image pixels into two
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classes, with an ultimate goal to minimize their intra-class variance. As Otsu proved,
this optimization criterion is equivalent to maximizing the inter-class variance. The
method begins by splitting the image pixels into two classes, Class; containing the
pixels with value less than or equal than a threshold th and Class, containing the
pixels with value larger than ¢4, thus making their probability distributions equal to:

Class, . p,/a/(th),...,p, | o/(th)

, 2.11
Class, : p,., | @,(th),...,p, | @,(th)

th L
where a)l(t):Zpl. and o, (1) = Z D;-

i=1 i=th+1
The intra-class variance is defined as the weighted sum of variances of the two
classes, which is given by

o2 (th) = @, (th)o2 (th) + o, (th) o2 (th) 2.12

where o2(h)is the intra-class variance and o>(th), o2(th) are the variances of the
m( 1 2

pixels below and above the threshold th, respectively. Otsu's method iteratively
estimates the threshold 4 until the intra-class variance is minimized (or the inter-class
variance is maximized).

Otsu’s algorithm was originally proposed for the segmentation of grayscale images.
However, since color is a valuable cue for traffic signs, or lights detection, it is
important to investigate the usage of the algorithm for the color coefficients. In this
direction, the effect of Otsu’s algorithm in the detection of traffic signs is
demonstrated in Figure 14, where the original image has first been converted to
L*a*b* and its a* channel has been thresholded.

(@ (b)

Figure 14 : (a) Original image and (b) Otsu's thresholding on channel a* of the image.

However, color alone cannot always be enough for the detection of signs or lights,
since many types of objects in real world scenes chromatically resemble traffic lights.
This is why alternative approaches could be used, like the utilization of Otsu's
thresholding algorithm for a more efficient detection of symmetrical shapes within an
image. As was shown in the previous section, the FRST result needs to be segmented
through histogram thresholding in order to select the most prominent results. Such a
process is shown in Figure 15, where the original image has been converted to
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L*a*b* and the FRST is applied to channel a*. The transformed image is then
segmented using Otsu's threshold estimation algorithm to produce the result presented
in Figure 15(b) denoting the possible ROIs for red lights.

(a) (b)
Figure 15 : (a) Original image and (b) result of Otsu's thresholding on the FRST of channel a*.

2.5 Optical Flow for moving objects detection

The methods described so far are especially useful for the detection of human-made
symmetrical objects in static images, but fail to take advantage of the most useful cue
for such applications which is motion information. In driving scenes acquired from
on-board cameras, the images contain a great number of moving objects, since there
are not only absolute motions to be considered, but also relative motions to the
velocity of the ego-vehicle.

A very common methodology to derive motion information of an object is to estimate
its optical flow, which is defined in [38] as the “approximation to image motion
defined as the projection of velocities of 3-D surface points onto the imaging plane of
a visual sensor”. Various algorithms have been proposed for such an approximation,
each with its pros and cons. A general rule that could be drawn by the relevant
literature [39] would be that there is a trade-off between processing speed of such
algorithms and their accuracy. Optical flow algorithms that offer dense, accurate
results usually tend to have prohibiting computational complexity for real-time
applications. On the other hand, faster algorithms that produce sparse optical flow
results cannot be trusted to provide an accurate approximation that could be used for
tasks like motion-based segmentation of objects.

In this thesis, the sparse optical flow proposed by Horn and Schunck in [40] is
adopted; the algorithm is based on the assumption that optical flow is smooth over the
whole image. Consequently, the method iteratively aims to minimize flow
fluctuations favoring solutions that produce a more smooth optical flow result. Let [,
I, and I, be the derivatives of the image intensity values of a grayscale image along the
horizontal, vertical and time dimensions respectively, estimated from

1
Ix:Z(’(i,jﬂ,l)”(i,j,l)”(i+1,j+1,1)”(i+1,j,1)”(i,j+1,1+1)’I<i,j,1+1)”(i+1,j+1,1+1>”(i+1,j,1+1))’ 2.13

1
Iy =Z(I(i+l,j,l) _I(i,j,l) +I(i+l,j+l,l) _I(i,j+1,l) +I(i+1,j,l+1) _I(i,j,l+1) +I(i+1,j+1,1+1) _I(i,j+1,l+l)J’ 2.14
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2.5 Optical Flow for moving objects detection

1
’r:Z(I(i,j,lﬂ)’I(i,j,Z)”<i+1,j,1+1)’I(i+1,j,1)”(i,j+1,1+1>’I(i,j+1,z>”(i+1,j+1,1+1)’I(i+1,j+1,1))’ 2.15

where i, j, [ are the row, column and frame number respectively. Then, the horizontal
and vertical optical flow values at each pixel with coordinates i and j at time k+1,

namely V" and V,"*' are iteratively derived by

LAV +1V)E+1)

ke _ 7k
Ve =V at+ I+ 1
x y

2.16

and

LAVE+IV)+1)

V,kH 2‘7‘]( _
’ ) o+ +1]

2.17

where V' and \7}," are the average values of the previous velocity estimates for axes x

and y respectively, a is a regularization constant which leads to smoother flow results
when increased and k is the number of iterations. For small values of k and a, the
algorithm produces quite sparse results, which get denser as those values increase.

Even though the Horn-Schunck algorithm produces denser results than other local
optical flow methods, it is not as successful as more recent methods, like the one in
[41]. In his work, C. Liu proposes a mixture of local and global methods first
introduced in [42] and [43], with the difference of using conjugate gradients instead of
Gauss-Seidel or over-relaxation methods for solving large linear systems. This type of
optical flow algorithms produce more accurate results than the Horn-Schunck
approach, but the implementation of such algorithms requires more processing power.
However, when real life applications are considered, even the dense optical flow
algorithms have problems discriminating between real objects and shadows, as shown
in Figure 16. To demonstrate this problem for the two consecutive frames of Figure
16 (a) and (b), the algorithm of Horn and Schunck as described in [40] was applied,
first using a=3 and only one iteration (k=1) to acquire the sparse result of Figure 16(c)
and then using a larger value of a=15 and many iterations (k=1500) to acquire the
result of Figure 16(d). Then, the dense algorithm of [41] was applied, for few
outer/middle/inner loop iterations (1,1,1) that led to the result of Figure 16(e) and then
for more iterations (15,15,15) that led to the result of Figure 16(f).

By examining the results the first conclusion derived is that the method of Horn-
Schunck does indeed produce a more sparse result, with a tendency of estimating
larger flow values near the boundaries of objects. The sparseness is reduced when the
number of iterations rises, but the algorithm still produces flow values at the edges of
shadows that are significantly different than those inside the shadows. The algorithm
of Liu does improve the situation providing denser flow results that make more
physical sense. However, even this algorithm fails to produce meaningful results in
the presence of shadows, even if the number of iterations used is so large that the
algorithm cannot be used for real-time applications using typical embedded systems.
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(a) (b)

(©) (@

(e) ®

Figure 16 : Two consecutive frames with dense shadows in (a) and (b) produce the pseudo-colored optical flows of (c) for
Horn-Schunck with a=3 and k=1, (d) for Horn-Schunck with a=15 and k=1500, (e) C. Liu for iterations 1,1,1 and (f) C.
Liu for iterations 15,15,15.

2.6 Discrete Time Kalman Filter for object tracking

Another method that is very popular in computer vision applications is Kalman
filtering. A Kalman filter is essentially an estimator that, in this context, can be used
to predict the position of an object in future frames of a video. Kalman tracking can
provide multiple advantages for any video-based computer vision application, since it
can reduce the area of the frame that is scanned for the existence of an object thus
minimizing false positive detections and reducing the time needed for the process. An
added advantage offered by the very nature of the Kalman filter, is the smoothing
effect that can improve the robustness of the tracking result to the presence of noise
that is often observed in videos.
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2.6.1 Definition of the discrete process model

For the purposes of this thesis, only the discrete time Kalman filter [44], [45], [46]
will be considered. This filter provides a solution to the problem of estimating the
state xeR" of a linear discrete time process that abides by the stochastic difference

equation 2.18, given a measurement z € R"” described by equation 2.19:
X, =Ax,_, +Bu, +w,_,, 2.18
7, =Hx, +v,, 2.19

where x, and z, are the vectors representing the model state and measurement at the

discrete time step k, respectively, while A, B and H are the transition, control and
measurement matrices of the model. The transition matrix A, is sized n x n and
connects the previous process state (at time k - 1) to the current state (at time k).
Matrix B is n x [ and it is optional. Its function is to relate the control input u R’ to
state x. Finally, H is a m X n matrix that relates the process state to the measurement,
z, - All these matrices may change at each time step, but they are generally assumed

to be constant.

Typically, the noises of the state and measurement are considered to be white, zero
mean Gaussian, statistically independent to each other and represented by w, and v,

respectively. Their probability distributions can be denoted as
rw)~N(@©0,Q), 2.20
p(v)~N(O,R). 221

where the process noise covariance matrix, Q and the measurement covariance
matrix, R can also change over time in applications where the noise parameters are
changes through time. In most studies they are assumed constant.

2.6.2 Algorithm of the Discrete Kalman Filter

As already mentioned, the Kalman filter is an estimator of a process that relies on a
recursive, feedback-based algorithm. Once a prediction has been provided by the filter
at a certain point in time, feedback is given by measurements which could contain
noise. Apparently, this divides the Kalman filtering process into two stages, namely
the time update and the measurement update. The former projects the current process
state and error covariance (a-priori) estimates to the next step, while the latter
provides the feedback from measurements in order to improve the new (a-posteriori)
estimates.

Letx, e R" be the a-priori state estimate and x, € R" the a-posteriori estimate at time
k, given measurement z, ; the a-priori and a-posteriori estimate errors are then

defined as

e, =x, —x, and 2.22
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2.23

leading to the a-priori and a-posteriori estimate error covariance matrices that follow

B =Ele (¢,) ]

and

Bc = E[ek (ek )T]’

where E denotes the variance.

The time update equations of the discrete Kalman filter can be defined as

X, =Ax,_, +Bu, +w,_,,

P =AP_A" +Q.

The measurement update equations will be

K, =B H"(HF H" +R)",

X =x +K,(z, —

H).,

P, =(-KH)P, .

2.24
2.25

2.26
2.27

2.28
2.29
2.30

The matrix K is called the Kalman gain and it is the first parameter of the filter

estimated in the measurement update phase.

The complete Kalman filtering algorithm is a recursive succession of the time and

measurement update steps. The order of the steps involved in the Kalman filtering
process and the interaction between the two phases are described more closely in

Figure 17, as presented in [46].

Measurement Update (“Correct™)

Time Update (“Predict”)

(1) Project the state ahead
X = Ark |+Buk

{2) Project the error covanance ahead
= T
P, = AP, AT +Q

{1y Compuie the Kalman gain
- - -1
K, = P.HT(HP_HT + R)
(2) Update estimate with measurement
&, = &+ Ky(z, - Hip)
{3y Update the ermor covariance

P, = (I- KRH]P;C

& ) . .- 2 ]
Initial estimates for X, _jand Pp _

Figure 17: Analysis of the operation of the Kalman Filter as presented in [46].
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2.7 Random Walker for efficient image segmentation

The Random Walker Algorithm (RWA) as an image segmentation tool is presented in
[47]. It is based on a random process, in which a walker starting from a pixel is
moving to neighbor pixels according to a probability estimated using the intensity
difference between the two pixels. If a set of pixels is associated to M segmentation
classes, denoted also as seed pixels, the RWA estimates at each pixel the probabilities
of a walker starting moving towards pixel positions to arrive at a seed. In most
applications the departure pixel is annotated to the class with the maximum
probability of first-arrival. Seeds are the pixels that are manually defined to certainly
belong in one of the segmentation classes. The Random Walker segmentation process
that is proposed in [47] is based on a closed form solution of the Dirichlet problem,
yielding a faster solution while producing the same accuracy results as the classic
RWA of [48], [49]. The main advantages of the RWA [47] for real life problems like
road detection are the following:

= it is robust to noise, therefore suitable for real life applications,

= it locates weak or missing boundaries that are common in road scenes,

" it is quite fast in the implementation presented in [47],

" it can be used for multi-object segmentation problems, thus enabling its
generalization to problems like moving obstacles detection and

= it provides a road probability matrix instead of a road mask, allowing further
post-processing of the probabilities matrix in different applications, i.e.
segmenting the road surface to safe or unsafe areas.

The RWA consists of the following successive steps:

1) First, the image is transformed to a graph by transforming the brightness
differences of each pixel and its neighboring pixels to the edges of a fully
connected graph. When color or multimodal images are concerned, the entropy
maximization rule using the Gaussian weighting function leads to:

W =exp(-B||1, —1; Il.). 2.31

where I; and I; are the color channel vector values of pixels i and j respectively.
The square gradients are linearly normalized to [0, 1] before applying 2.31. The
only user-defined parameter of the RWA is f.

2) The next step is the construction of a linear system of equations the solution of
which derives, for each unlabeled pixel, the road and non-road probabilities. To
construct the system of equations, first the graph Laplacian matrix is defined as

d, if i=],
L,.j =4-W; if u,and u; areadjacent nodes, 2.32
0 otherwise,

where L;; is the value of the pixel indexed by vertices u;, u; and d, =) w(e;) is the

degree of a vertex for all edges e;; incident on u;.
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3) The Dirichlet integral is

D[x]=—x"Lx= Z w; (x; — 2.33
2 e .eE
where x is a combinatorial harmonic, i.e. a function that minimizes (2.33) and e;;

is an edge of the graph spanning vertices u; and u; .

4) The graph vertices are split into two classes, Vs (seeded nodes) and Vi (unseeded
nodes). Without loss of generality, the pixels in vectors L and x are sorted into two
sets, the seeds and the unseeded pixels.

5) Then, decomposition of equation 2.33 is performed:

1 T T LS B 'xS
D[xu]=5( ! U){B IJ{ } 2.34

where Ly are the seeded and Ly the unseeded pixels of L, respectively, B is a
result of the decomposition and xy, xs are the sets of road probabilities
corresponding to unseeded and seeded pixels respectively. Differentiating Dlx, ]

with respect to xy, yields
L,x,=—B"x,. 2.35

6) Assuming a two-class segmentation problem, if the road seeds are denoted by Vg
and the non-road (background) seeds by Vg, where vV, "V, =9, V, UV, =V,, then

the probabilities x* that a random walker leaving pixel u; arrives at a pixel in Vg

before arriving at a pixel in V can be computed by
LU)CR — BTmR,
2.36

where mp = 1 for road seeds and mr = O for non-road seeds. The annotation rule
assigns each pixel to the class with the maximum probability. In the two-class
road segmentation problem this is equivalent to assigning a pixel i to the road
class, if x*>05.

Since in most applications reliable definition of a sufficient number of seeds that are
properly placed leads the RWA to produce accurate segmentation results, similar
results would be expected in a two-class segmentation problem like road detection. A
typical example of the importance of seeds placement is shown in Fig. 1, where two
different manual seed placements lead the RWA to significantly different results.
When the road and non-road seeds are placed close to the road borders, the
segmentation result is superior and can be easily thresholded (Figure 18(a), (b)). On
the contrary, a less precise seed placement leads to a result with raised ambiguity that
is not easy to threshold and appears problematic in shadows as shown in Figure 18(c),

(d).
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(c) (Y]

Figure 18 : Seeds definition (left column) and segmentation result (right column). Road seeds are denoted with the red
line, while non-road seeds with the blue one. In the segmented images, red color annotates the road pixels and black
annotates the background.

2.8 Measures for object similarity assessment

So far we have presented and analyzed algorithms for image segmentation or object
detection. Often, the detected objects in an image have to be compared to some
templates so that their similarity is verified. In this section, the selected similarity
matching techniques for the purposes of this thesis are presented.

2.8.1 Normalized Cross-Correlation (NCC)

Given two images, a template 7 and a candidate C, their similarity can be assessed
using the normalized cross-correlation measure. This measure is estimated as
described in [50], [51], by

D ICx,y) = Cijlit(x =iy - j)=T]
y (i, )= —== = —, 2.37
D ICGY) = Ci P [T(x—isy— j)-TT
X,y X,y

where T is the mean of the template and C;; is the mean of image C(x, y) in the area
under the template. The NCC of two identical images will produce a result with
maximum value of 1. NCC can also be used for template matching, i.e. the detection
of a specific object in an image. In that case, the coordinates of the maximum value of
the NCC will be localized on the centre of the region where the template lies in the
image.
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2.8.2 Mean Absolute Error (MAE)

The metric of MAE is also a popular measure to determine if two images 7" and C are
similar. The metric is given by

1
MAEzMxNZZZ;V:JCU -7, 2.38

where M, N are the number of rows and columns of the two images respectively. Two
identical images will result in an error that is equal to zero.

2.8.3 Structural Similarity Index (SSIM)

A more complicated metric that combines luminance, contrast and structural
information in one single index, is the SSIM introduced in [52]. The SSIM is
estimated by

Cucpy + K )20oer +K5) 239

SSIM (C,T) = ,
(,Ucz + /lr2 + K1)(o'cz + O'T2 +K,)

where uc, pur are the average intensity values of the two images, o¢, or are the
standard deviations of the two images, ocr is the covariance of the two images and K,
K> are two constants that ensure that the denominator will never be zero. K; and K,
are calculated using: K; = (k;L)2 and K, = (kzL)2, where L is the dynamic range of the
pixel values (255 for 8-bit images) and k;, k; are very small constants. The value of
SSIM for identical images is 1.

2.9 Conclusions

In this chapter, a presentation of all computer vision algorithms that are used
throughout this thesis is given. Color space selection and illumination invariance were
discussed, bearing in mind that the overall goal is to develop ADASs that perform
efficiently under diverse weather and illumination conditions. Fast symmetry
detection was then discussed, using the FRST as selected algorithm, because of its
speed and effectiveness in detecting bright and dark symmetrical shapes in images.
Histogram-based bimodal image segmentation using the popular Otsu's method was
also presented and connected to both color segmentation and symmetrical shapes
detection problems. Motion also plays an important role in ADAS, so the
incorporation of optical flow algorithms for motion estimation was discussed, with a
focus on the issue of robustness to shadows and processing complexity, which are a
common problem in applications of this nature. The most important algorithm utilized
in this thesis was described in the next section; the RWA is a fast and noise-tolerant
image segmentation algorithm and it is used in the road detection sub-system. Finally,
measures used for the comparison of two images are described, as they are used in
template matching and candidate verification purposes in several sub-systems.
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Chapter 3

Traffic Sign Recognition System

3.1 Introduction

In this chapter we present the first system developed for the purposes of this thesis,
which is the Traffic Sign Recognition (TSR) system published in [53]. A small
analysis on the importance and challenges of such a system in a vehicle is presented
followed by the state-of-the-art algorithms that provide solutions to this problem. The
next section presents the structure of the proposed system and then its modules are
analyzed and explained. The system is then evaluated in terms of accuracy and the
conclusions and future work suggestions follow.

3.2 The Traffic Sign Recognition problem

The need for an efficient TSR system is very closely related with the high numbers of
road accidents that are caused by the driver's inability to focus on the information
conveyed by traffic signs. Especially signs that inform about dangers, or speed limits,
as well as the signs that prohibit some action are extremely necessary for secure
driving. However, the vast amount of visual and other kinds of information that is
brought into the attention of drivers at any given time often distracts their attention
from what is really important for their driving reactions. Furthermore, the great
diversity of environmental conditions and driving scenes can deteriorate drivers'
visibility and lead to neglecting to focus on Traffic Signs (TS). Some typical
examples of the diversity of conditions met are shown in Figure 19.

Figure 19 : Traffic Signs under different environmental conditions: (a) excellent weather and illumination angle, (b)
occlusions, (c¢) shaky camera, (d) driving against the sun, (e) rainy conditions and (f) night driving.



3.2 The Traffic Sign Recognition problem

TSR can be divided into two discrete problems; namely, the Traffic Sign Detection
(TSD) and the Traffic Sign Classification (TSC). The very useful Tracking of Traffic
Signs (TST) can be used to enhance the performance of the two aforementioned
problems both in accuracy and in computational complexity. What is needed in a
trustworthy TSR system is for it to be accurate, minimizing the false alarms rate and
furthermore be able to perform efficiently even in challenging driving scenarios and
adverse conditions.

The full set of traffic signs can be split into three main groups: danger proclamation
signs, traffic regulation signs and informational signs. Signs that belong to the first
group are placed to warn drivers of the dangers that exist ahead on the road, so they
can anticipate them. The second group comprises signs that inform the drivers of the
special obligations, restrictions or prohibitions they should conform to. The signs of
the third group provide information that assists the driver in the navigation task, such
as junctions, distances etc. As one can understand by examining the full set of traffic
signs in Figure 20, signs are designed to assist drivers in spotting them easily in
natural scenes. This is achieved by selecting colors and shapes that differentiate the
signs from the background. Consequently, the main colors that are used are red, blue,
yellow and green, with black or white ideograms. The shapes of the signs are
symmetrical. Triangles, circles, octagons, diamonds and rectangles are used. The
shape and colors of a TS, along with the ideogram that it contains define its

significance.
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Figure 20 : Complete set of traffic signs.
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3.3 Related work

The TSR problem has attracted the attention of many researchers over the past
decade. The development of a system that can robustly detect and classify TSs in real
time, has twofold benefits; it can be used in ADAS, assisting the driver to focus more
on the navigation of the vehicle by providing the information given by the signs but
also, such systems can be embedded in fully autonomous vehicles that travel in the
existing road infrastructure. Naturally, in order for these systems to be functional,
they must have a number of advantages, such as:

1. They must be resilient to any change in lighting or weather conditions.

2. They need to be able to recognize partially occluded signs, as well as signs that
are either rotated, or not exactly perpendicular to the camera axis.

3. These systems must be robust to the deterioration of the color of some signs,
usually due to their age and bad weather conditions.

A very important cue for efficient TSR is the TS color information. However there are
some researchers who prefer not to use it. In those implementations where grayscale
images are preferred, the TRD is based mainly on morphology features, such as
symmetry [54], [55], [56], distance transformations from offline generated templates
[57] and pyramidal structures for border detection [58], [59], [60]. A machine
learning approach to TSR using genetic algorithms and neural networks is proposed in
[61]. In color based TSR methods, proper selection of color space plays a vital role. In
[62], [63], [64], the standard RGB color space, or the ratios between its color
coefficients are used. However, RGB is not the ideal color space for real-world
problems such as TSR, because it is very susceptible to lighting changes due to the
high correlation of its channels. Thus, color spaces that are less sensitive to such
changes are preferred; such channels are the HSI, which is used in [65], [66], [67],
[68], [69], [70], [71], or the LUV space in [72]. After color segmentation is
performed, road signs are detected using circular and triangular shape matching [65],
neural networks [66], [71] and genetic algorithms [68], [69]. Simulated annealing is
used together with genetic algorithms [70].

Among the most important tracking algorithms used in TST, the authors of [71] use
Kalman filters, while Kalman-Bucy filtering is utilized in [57] and a motion-model
plus temporal information propagation is proposed in [63]. For TSC, the most popular
methods are based on template matching, either by cross-correlation [65], [70] or by
matching pursuit filters [67]. Various types of neural networks for TSC have been
used in [64], [66], [69], [72] and a Bayesian generative modeling is described in [63].

3.4 TSD system structure

The proposed system performs road-sign detection, tracking, and classification. It is
founded upon a mixture of widely used methods, like the FRST of [36], and partly
modified ones, such as a modified Otsu threshold of [37], used here for color
segmentation. Moreover, a number of novel features are introduced, such as the use of
CIE-L*a*b color space for the color image processing stage, and sign tracking in
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multiple frames by examining previously selected sub-windows of each frame. The
structure of the proposed TSD system is shown in Figure 21.

Image Pre-Processing
Otsu’s
Frame ) RGB to CIE-L*a*b* > Thresholding
Acquisition Conversion For Color
Segmentation
TS Candidate Classification TS Candidate Detection

Cropping of < Locz:\:l:\r/‘liz:;(;ma/ ¢ Radial Symmetry
TS Candidates Detection

Localization

l ¥
Cropped TS )

Inform Driver  |<—— Candidate Feed Centers to Define Area to

Classification Next Frame Scan for TSs

TS Tracking

Figure 21 : Structure of the TSR system

The system processes each image by converting it to L*a*b format and then by
performing color segmentation. The segmented frame is further processed by the TSD
and TST modules. The centers and radii of all the detected road signs are used in the
tracking stage for the next frame and are also used to crop the signs for classification.

3.4.1 Color Space Selection - Color Segmentation

For the purposes of the TSR system, the CIE L*a*b color space is chosen because of
its property of having two color-opponency channels (a* and b*) that represent
perceptual color differences which are also linearly spaced. The illumination
alterations in an image affect mostly the L* (Lightness) channel of the L*a*b space.
Thus, an examination of the L* channel of an image provides information on the
brightness conditions in which it was acquired. This property can prove beneficial for
the segmentation process, as the borders of traffic signs typically appear lighter than
the mean luminosity in dark scenes, and darker than the mean luminosity in well-lit
scenes. This can be especially useful in night driving conditions, as it filters out much
of the background scene.

The image thresholding algorithm proposed by Otsu et al in [37] and described in
Section 2.4, is used to transform the Lightness channel to a binary image denoted as
Ly,. Also, four binary images are estimated by bisecting the positive and negative part
of a* and b* channels, to acquire four chromatic subspaces; the negative subspaces
are then multiplied by -1 to ensure positive definition for all channels. This process is
summarized in Figure 22.
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Figure 22 : The top row contains the original image on the left and the thresholded luminosity, L;, on the right. The
middle row shows the normalized red and green channels derived from a* (left and right respectively). The bottom row
demonstrates the normalized blue and yellow channels derived from b* (left and right respectively).

The four chromatic subspaces are then transformed to binary images using Otsu's
thresholding algorithm [37]. The four color-based ROIs are estimated by the
intersection of the corresponding binary image and the L;,, if the mean luminosity of
the frame is lower than 40 (a heuristic threshold discriminating dark from bright
scenes), otherwise the four ROIs are identical to the corresponding binary images.
The total segmented area is defined by the union of the four ROIs.

3.4.2 Symmetry Detection

The four chromatic coefficients produced in the previous section are scanned for
symmetrical shapes, using the FRST proposed in [36]. This method has also been
used in [55] due to its computational efficiency and its relevance to the TSD problem.
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Depending on the prominent colors of TSs that must detected, some or all chromatic
coefficients of the segmented image are used.

In the proposed system the symmetry detection method is optimized for circular
shapes, but different symmetrical shapes can also be detected by adjusting the radial
strictness factor a to a low value, e.g. 1. This means that every road sign in the image
can be detected by this method, as long as it remains in the image frame after the
color segmentation. The symmetry detection algorithm scans for shapes of one or
more given radii n, belonging in a range N. A result of this process is demonstrated in
Figure 23, where TSs of multiple radii are detected. In this example, the radii » in the
range N =[5, 8, 11] are used. The results acquired for these radii in each of the four
channels were added to get the separate results of Figure 23 (b)-(d).

(a) (b)

(0 (d)

Figure 23: Original image (a) and detected symmetrical shapes from all 4 channels for radii of size (b) n =5, (¢c) n =8 and
(d) n = 11. Red circles show the two most prominent symmetrical shapes for each radius.

In order to blindly detect every existing road sign, a large set of radii has to be used,
increasing the processing time significantly. This is apparent in the example of Figure
23, since the two large circular signs were best detected by using n = 11, while the
smaller circular red-blue sign was detected for n = 8. The two triangular signs did not
produce large symmetry values at their centers, mainly because of the occlusion of the
red-yellow sign and the size of the white-yellow one that does not allow for its red
frame to be very visible. The synergy of these two facts with the presence of other,
more prominent, TSs in the scene leads to a possible miss of the two triangular signs.
However, this is not the general case, since most triangular signs can also be detected
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with the aforementioned method. Such detection is demonstrated in Figure 24. The
fusion of all 3 radii FRST results leads to the detection of both triangular signs, with
two false positive results on the surface of the red vehicle.

(@ (b)

© (d)

Figure 24 : Original image with triangular signs present (a) and detected symmetrical shapes from all 4 channels for radii
of size (b) n =5, (¢) n = 8 and (d) n = 11. Red circles denote the two most prominent red results.

The FRST also produces good results in detecting blue rectangular signs when using a
low value for the radial strictness factor. However, there is a good chance that the
detected center will be different than the actual center of mass of the detected TS, but

this deficiency can be dealt with in the post-processing phase. Such an example is
shown in Figure 25.

(a) (b)

Figure 25: (a) Original image with a blue rectangular TS present and (b) detected FRST centers from all 4 channels for
radii of size n = 5, n = 8 and n = 11. Blue circles denote the two most prominent blue results.
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The required computations when tackling a problem with multiple radii can be
reduced by taking into account two inherent properties of the TSD problem:

(a) Computations can be performed in parallel architecture, as the calculations needed
for the symmetry detection can be performed independently for each radius.

(b) Using detected TS positions from previous frames, the regions of the image that
have to be scanned for larger radii are reduced in size and number.

The second approach has been implemented in the proposed system reducing both the
number of radii that have to be used and the size of the scanned regions. Before this
process can commence, the detected candidate TSs from the aforementioned process
must be cropped and identification of their shape must be carried out.

3.4.3 Center Localization - Shape Determination

The sum of the FRST result for all radii and all color channels is filtered by a non-
maxima suppression method using a window of size nyue X Hypax, Where npg, 1s the
maximum radius used in the FRST. After the candidate TS centers have been located,
they are cropped using their radius length. More specifically, a square area with
dimensions 2.5n x 2.5n with center of mass the detected symmetrical shape center, is
cropped and used as a candidate T'S.

Once the TS candidate is cropped, it is transformed to binary by thresholding the
channel of its prominent color (a* for red, b* for yellow or blue), then undergoes a
binary closing to fix possible partial occlusion issues and the holes in the image are
filled, in order to perform NCC based template matching with the different road sign
shapes templates (i.e. circle, triangle, octagon and rectangle). At the end of this stage,
the approximate location, radius and exact shape of the candidate TS have been
estimated leading to a reduction of misclassifications for the TS, since it only has to
be compared to the template TSs of the same shape type. The process described above
is summarized in Figure 26. The NCC values between each binarized candidate in
Figure 26(c) and each of the shape templates are compared and the highest value for
each candidate denotes its shape class. When the binarized candidate is completely
black, as in the fourth case, the candidate is rejected.

(@ (b) (© @ (e)

Figure 26 : (a) The original image with the results of non-maxima suppression for the total FRST, (b) cropped candidate
TSs, (c) binarized TSs, (d) shape templates and (e) classified shapes overlaid on candidates.
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The results demonstrated in the previous figure bring forward two valuable
conclusions: a) the circular red signs were all detected and their shape was correctly
classified and b) the white object detected as a candidate sign produces a black
binarized image after the pre-processing stage, hence leading to the rejection of the
candidate.

The same process is followed in the case of blue TSs, since the only parts of the
system that change are the color channel involved in the localization process (b*

negative values instead of a* positive values) and the shape templates (rectangles
instead of octagons and triangles). Such a case is demonstrated in Figure 27, where
only one center location remains after the suppression process and the NCC result for
the circle template is higher than that of the rectangular template (approximately 0.7
vs. 0.6 respectively).

(]
ILJDI

(b) © (d) (e)

Figure 27: (a) The original image with the results of non-maxima suppression for the total FRST, (b) cropped candidate
TSs, (c) binarized TSs, (d) shape templates and (e) classified shape overlaid on candidate.

3.5 Traffic Sign Tracking

The tracking module has been designed to minimize the computational burden and
tracking errors of the system. Aiming at this direction, the center coordinates of all
detected candidate TSs, of a chosen small radius (e.g. 10 pixels), are passed to the
module that processes the next frame. This module performs symmetry detection
identical to that of the TSD module for a sub-window of specified size and centered in
the coordinates given by the localization procedure of the previous frame. Thus, once
having detected a road sign centered in (i, j), the algorithm scans the next frame in an
area around (i, j), for a symmetrical shape with a radius of the nearest integer value
greater than the one estimated in the previous frame.

This procedure is repeated for every sign detected in the previous frame, regardless if
it was its first appearance or if it was tracked from an earlier frame. An obvious flaw
of this method is the possibility of temporary loss of visibility of the tracked sign
(either total, or partial) in one or more consecutive frames, which results in tracking
failure. An efficient parallel process method is used to resolve this problem, by
choosing more than one radii in the initial candidate TS detection process (e.g. 10, 15
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and 20 pixels), thus the sign is localized again in the following frames. This technique
slightly increases the computational effort but recovers missing road signs by
including more results in the basic detection process.

A situation where this method is successfully applied is demonstrated in Figure 28. In
the first two frames, the circular red signs have been detected (the no parking sign has
been detected as blue), when the FRST has been set to detect symmetrical shapes with
radials of 10 pixels. In the third frame, the two larger circular signs cannot be detected
for a radial of 10 pixels. However, when the regions around the previously detected
TS candidates (yellow dash rectangles) are scanned for symmetrical red shapes of 11
pixels radial, the two circular signs are detected again. One important detail that
should be noted, is that the process described is limited to the area in the yellow
rectangles and possible center results that lie inside the regions that already contain a
detected candidate are discarded (to avoid overlapping results for the same TS).

(0 (d)

Figure 28: (a) First frame and detected TS candidates of 10px radial, (b) second frame and detected TS candidates of
10px radial, (c) third frame and detected TS candidates of 10px radial, (d) third frame and detected TS candidates of
10px radial, plus detected TS candidates of 11px radial around the areas of previously detected TS candidates (yellow
rectangles in (d)).

Another thing worth noting is the fact that the no parking sign gets detected as both
red and blue in the third frame. This is an early indication about the exact class of the
aforementioned sign, without having to check it against all circular TS templates in
the classification stage.
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3.6 Traffic Sign Classification (TSC)

In the previous sections, the candidate TSs detection and tracking modules of the
proposed system in the frames sequences shot from a moving vehicle have been
presented. With a successful detection and tracking procedure, every TS in the
driver’s visual field is cropped, resized to 64x64 pixels and passed on to the TSC
module. The number of potential template matches has already been significantly
reduced by processing the information of the color and shape of the TS, as explained
in previous sections.

More specifically, four categories of road-signs can be defined; circular red, triangular
red, circular blue and rectangular blue. Two more categories, i.e. the octagonal STOP
sign and the inverse triangle shaped yield sign, can be classified by the shape
classification module, since they are unique. The classification rule is based on the
maximum value of the NCC defined in Equation 2.37, of the cropped TS candidates
with the reference template TSs. The classification process for the circular and
rectangular blue signs uses only the NCC for the b* channel, while for all the other
categories the sum of NCC is used for classification. More specifically, two classifiers
are defined; one for red circular or rectangular TSs, and one for blue circular and
rectangular signs. The classifiers 7} and T, are estimated by

T, : Index = ArgMax{max(NCC(C,...T;..(k))) + max(NCC(C,..T,.(k))) + max(NCC(C,..T,.(k)))} , 3.1
1<k<S
ArgMax{max (| NCC(C,..T,.(k)) )}, if C € {red signs}

T, : Index = fsk=s 3.2
ArgMax{max(| NCC(Cy..,T,.(k)) |)} ,if C € {bluesigns},

1<k<S

where C is the cropped candidate TS image, 7(k) is the K" template TS from the
selected category and NCC(Cpx,T1+(k)), NCC(Cyx,Ty+(k)), NCC(Cypx,Tpx(k)) are the
normalized cross-correlation results for the 3 color channels between the candidate TS
and the k" template TS as estimated using equation 2.37. Finally, S is the total
number of signs in the shape/color category that the candidate TS has been classified
by the shape classifier of the previous step.

The four categories of signs that are included in our system are presented in Figure
29. Two important observations are:

() the STOP sign has been included in the circular red signs category as a fail-
safe measure for cases where the shape of a detected STOP sign is classified
as circular. The same goes for the inverse triangle yield TS.

(i1) The no parking / no stop signs have been included in both red and blue
circular categories to improve their detection rate.
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Figure 29 : The TS dataset used for the evaluation of the TSR system.

3.7 Experimental results

Our quantitative experimental data consisted of the 4 TSR video clips presented in
sub-section 1.6.1, acquired from two different video cameras, the SONY HCS85 and
the SONY DCR-TRV60E using PAL non-interlaced video (frames of 720x576 pixels)
at 25 fps. The system was also qualitatively assessed using parts of the other video
streams presented in Section 1.6 as well.

3.7.1 Traffic Sign Detection results

The strongest part of the proposed system is its TSD module, which is robust and
precise, even in challenging situations. A very high percentage of the traffic signs in
the sequences used for quantitative evaluations were detected successfully, reaching a
rate of approximately 95.3% when using three possible radii (10, 15 and 20 pixels). A
TS is considered successfully detected when the TS has been located by the TSD
module at least once in the frames of its appearance in the video stream. This means
that even without the TST module, the FRST based detection is a very effective
means of accomplishing this task. However, the big disadvantage of not using the
tracking module is the large number of false positive results and overlapping regions.
In Figure 30, some typical examples of the TSD process using the aforementioned
radii are shown.
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I

Figure 30 : Typical TSD examples for a single frame using radii in {10, 15, 20}.

What becomes obvious from the analysis of Figure 30, is that despite its very high
detection rate, the TSD module alone would be a poor choice in real-life applications
since its precision rates are very low (approximately 53%). This is the reason why the
TST module combined with the shape classifier are imperative for the system to be
considered usable. When using those two modules, the final TSD result is much more
immune to false positives and ROI overlaps, as demonstrated in Figure 31.

Figure 31 : Typical TSD and TST synergy results.

Using both TSD and TST modules in one system also proves robust in more
challenging driving scenarios, as show in Figure 32.
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Figure 32 : Typical TSD & TST synergy results in challenging scenes.

3.7.2 Traffic Sign Classification results

The TSC results can also be split in two categories; the frame-by frame TSC results
and the TSC results after tracking the sign. In the first case, the correctness of a
candidate TS classification is measured in each frame separately, while in the second
a TS is considered correctly classified when it has been assigned to the correct class
for 5 or more consecutive frames. Some examples of correct and incorrect TS
classifications using the first method are shown in Figure 33.

of JN}-] Ju
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Figure 33 : Examples of correct (top four rows) and incorrect (bottom two rows) classifications using the frame-by-frame
method.

In Table 3 the recognition rates for the classification module using the ROIs located
by the TSD module for the frame-by-frame case are shown, for normal, night driving
and raining conditions. In night recordings, the TSD module tends to locate faulty
ROIs due to the presence of a great number of light sources that are often
misclassified as TS.
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Table 3: TSR rates using only one frame.

TYPE OF ENVIRONMENT
Normal Raining Night driving
43.92% (343/781) 43.75% (7/16) 6.92% (11/159)

The tracking module does not only improve the detection accuracy of our system, but
it also boosts the classification results, since the detected TS candidates can be tracked
over time and classified in all frames of their appearance. The consecutive frames TS
classification criterion significantly reduces the false positive rate classifying as a sign
a ROI that is detected for 5 or more consecutive frames. This approach minimizes the
errors involved in a frame-by-frame classification method, where a candidate might
have multiple different classifications throughout the time of its appearance in a
driving scene.

The proposed tracking method increases the TSC rate to 81.2%, classifying correctly
216 out of 266 signs. In adverse conditions, the proposed system frequently fails to
detect the triangular signs especially in low light and rain. Furthermore, a raised
number of false positive TS candidates are detected in city night driving.

3.8 Conclusions

This chapter was devoted to the TSR sub-system developed for the purposes of this
thesis. The TSR algorithm can be split into three stages, namely the pre-processing
stage, the TS candidate detection and the TS candidate verification, which are
presented in separate sections. A tracking module that enables a more efficient and
robust function of the system is also analyzed. Finally, the system is experimentally
evaluated in video streams shot under diverse conditions to prove that, while the
detection algorithm is quite efficient, the recognition rate using the NCC method is
not very trustworthy when a large subset of TS templates is used.

The sub-systems developed for TSR purposes are very efficient in the TSD part of the
process, while introducing a limited number of false positive detections because of the
tracking module and the shape classifier that process the results before the final
classification. The TSC module is not as successful, but one has to take into account
the big number of TS templates that are included in the dataset used for the evaluation
of the system, raising the probability of error, especially for signs that are very
similar.
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Chapter 4

Traffic Light Recognition

4.1 Introduction

The system presented in this chapter performs Traffic Lights Recognition (TLR) and
was presented in [73]. The need for the development of such a module for an ADAS
is presented in the next section, followed by a literature review. Then, the structure of
the TLR system is demonstrated and the different modules comprising the system are
explained. An evaluation of the system in terms of accuracy and robustness follows
and a comparison to other methods is discussed. Finally, some conclusions about the
overall efficiency of the proposed system are drawn and some future work
suggestions are given.

4.2 Literature review

TLR is a rather neglected process in ADAS. While a vast amount of all road accidents
is caused by drivers who violate Traffic Lights (TLs) indications especially in
intersections, the number of systems designed to mitigate this risk is relatively small.
TLs might seem like a simple pattern recognition problem for computer vision
systems, but the reality lies far from that idea. The driver recognizes TLs by
processing morphological information in the scene related to the position and type of
the TLs, the presence of intersections, traffic signs, etc. All automatic methods for
TLD do not process complex scene information, but detect the presence of TLs only
by using their most prominent cues. Therefore, especially in city driving, the sources
of light that can be misclassified as TLs very frequently appear, spanning from LED
billboards, to the rear lights of other vehicles. The existence of this "noise" can affect
TLR systems negatively by increasing the number of false positive detections that
may prove disruptive for the driver. When driving at night, this phenomenon is even
more obvious, as the number of light sources is significantly increased. The process of
TLR is very similar to that of TSR presented in the previous chapter and can be
divided into the Traffic Light Detection (TLD) phase and the Traffic Light
Classification (TLC) phase. While the former is generally more challenging than TSD
due to the smaller size of TLs, the latter is much less complicated than the TSC phase,
because the number of classes is very limited.

The idea of using TLR for ADAS in urban environments was first introduced in the
late 90’s. In [74] a computer vision based Stop & Go algorithm using a color on-board
camera is proposed. However, the use of computer vision for ADAS bloomed in the
next decade, as computer processor speeds reached a point that enabled real-time
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implementation of complex algorithms. The work of [75] proposes the fusion of data
acquired by color cameras, GPS and the vehicle movement to increase the robustness
of their TLR algorithm, which is combined with a tracking module. Their TLD part
uses RGB color values, texture and shape features. The approach proposed in [76]
uses the HSV space, performing color thresholding followed by a Gaussian filtering
process and a verification of TL candidates to achieve TLD in crossroads. A similar
approach is followed in [77], based on HSV images and a Gaussian distribution-based
model estimated by training images. Shape and temporal consistency information are
combined in a post-processing phase to enhance the results. A more straight-forward
process is proposed in [78], where the normalized RGB color space is used to locate
candidate regions and the results are validated by means of edge and symmetry
detection. Color information has been ignored in [79], where grayscale spot detection
is followed by an Adaptive Template Matcher, achieving high precision and recall
rates in real time. The results of [79] were tested thoroughly and compared to those of
an AdaBoost method using the manually annotated videos found at [21]. The problem
of TLD in day and night scenes has been addressed in [80] using RGB thresholding
and shape dimensions to detect and classify lights in both conditions.

By reviewing related literature to date, the following conclusions can be drawn about
vision based TL detection:
= Color information is not always utilized; when it is, either the HSV or the RGB
color space is used.
= Many researchers propose the use of heuristic thresholds that cannot be optimal
for all possible driving conditions (i.e. shadows, rain, and night). Generally,
adverse conditions are not addressed in most papers.
= Symmetry is a widely used cue, either when estimated using novel techniques, or
using the well-known Hough transform, but never with the FRST [36].
= Traffic light candidates usually get validated to exclude false positive results.
The use of TL models, tracking, or both is the most commonly used solution.
=  Apart from [22] that provides a publicly available annotated dataset of on-board
video frames taken in Paris, to the best of our knowledge, there are no other
annotated datasets for traffic lights detection.

The TLR algorithm developed for this thesis was inspired by the approaches followed
for TSR in [81], [53] and [82]. The FRST that was introduced in [36] is employed in
all the aforementioned systems, to take advantage of the symmetrical geometry of
road signs. The symmetry and color properties are similar in road signs and traffic
lights, so these approaches can be a good starting point. The goal of the system is to
provide a timely and accurate detection of red and green traffic lights, which will be
robust even under adverse illumination or weather conditions.

The proposed system is based on the CIE-L*a*b* color space exploiting the fact that
the perceptually uniform a* coefficient is a color opponency channel between red
(positive values) and green (negative values). Therefore, it is suitable for distinction
between the two prominent classes of TLs. An image processing phase comprising 4-
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connected neighborhood image flood-filling on the positive values of a* channel is
then applied, to ensure that red traffic lights will appear as filled circles and not as
black circles with a light background. The FRST is then utilized to detect symmetrical
areas in a*. The proposed system has been tested in various conditions and has been
qualitatively and quantitatively assessed, producing very promising results.

4.3 TLR system structure

The hardware setup for the TLR system is similar to most related applications, using a
monocular camera mounted on an elevated position on the windscreen of the moving
vehicle. The video frames acquired by the camera are processed through three cascade
modules. The first module performs image pre-processing, aiming to produce images
in which red TLs will appear as very bright circular blobs and green TLs will appear
as very dark circular blobs. The output of the pre-processing module is passed on to
the traffic light detector, which consists of a FRST for various radii, followed by a
detection of multiple local maxima and minima in the top part of the frame. The last
module applies a spatiotemporal persistency validation step to exclude those
candidates that do not appear in multiple frames, thus minimizing false positives.

The proposed algorithm consists of the following successive steps:
1) Frame acquisition.
2) Image pre-processing:
a) Conversion of image from RGB to L*a*b*.
b) Enhancement of red and green color difference.
c) Holes filling process in enhanced image
3) TL candidate detection:
a) Radial symmetry detection using the FRST.
b) Maxima/minima localization.
4) TL candidate verification:
a) Spatiotemporal persistency check for validation of candidates.

All the aforementioned steps are demonstrated in the flowchart shown in Figure 34.

Image Pre-Processing

Erame RGB to CIE- Red-Green Color Hole Fillin
/ - > L*a*b* > Difference = e
Acquisition . Process
/ Conversion Enhancement
TL Candidate Verification TL Candidate Detectionv

Local Maxima/
Minima <
Localization

Spatiotemporal |
Persistency Check |

| Reject Candidate KNYES-H\ Inform Driver

Figure 34 : Structural diagram of the proposed TLR system.
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Detection

49



4.3 TLR system structure

4.3.1 Image pre-processing

The first stage of the TLR system has the purpose of further enhancing the difference
between red and green light sources in the scene using the FRST algorithm that has
already been described in Chapter 2 integrating both the TL candidate detection and
classification process in the same step. Therefore, it is safe to deduce that the images
that will be generated by the pre-processing stage must represent red TLs as very
bright circular blobs and green TLs as very dark circular blobs. In the resulting
images red TL centers will have large positive values while green TL centers will
have large negative values.

To achieve this goal, a new color channel is formed by mixing the two channels of
L*a*b* that carry the most important information for TLD. These are the lightness
channel L*, which has large values in the TL area and the red-green opponency
channel a*, which has large positive values for red TLs and large negative values for
green TLs. By multiplying these two channels we produce a channel with enhanced
difference of bright red and bright green objects in the scene, called RG hereafter:

RG(, j) =L, jyxo(i, j), 4.1
where i, j are the row and column pixel coordinates.

The aforementioned transformation leads to a further increase of pixels belonging to
TLs, while affecting other red and green objects like rooftops, trees etc. to a lesser
degree. A typical example is shown in Figure 35, where TLs appear dark both in the
RG and a* channels, while the tree leaves are less dark in the RG images. A similar
effect is observed with red signs and non-illuminated rear vehicle lights, which appear
less bright in the RG channel than in a*.

(b)

© @
Figure 35 : (a) Original image, (b) L* channel, (c) a* channel and (d) RG channel.
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Even though the process described above achieves a better discrimination of TLs from
the background, it is not efficient in handling along a common abnormality of real life
scenes with bright lights, which is denoted as "blooming effect". This phenomenon
describes the appearance of TLs and other bright objects as dark circles with a bright
circumference, as shown in Figure 36. Several effects increase the false positive TLs
rate, but the most important:

1) the dynamic range of cameras may be unable to capture very bright lights, thus
saturating their inner areas and
2) red TLs often include some orange in their hue and green TLs include some blue.

In order to tackle this problem, additional information related to yellow-blue
brightness contained in the b* channel is used. The same process followed in 4.1 is
applied, i.e. non-linear mixing of channels L* and b* is performed:

YB(i, j) =L, j)xb(, j) 4.2
The summed image of 4.1 and 4.2 is RGYB:
RGYB(, j) = RG(, j)+YB(, j) =L, j)x (a(i, j) + b(i.))), 4.3

where i, j are the pixel coordinates.

The RGYB image has a positive effect in the reduction of the "blooming effect”. An
example is given in Figure 36.

(a) (b)

(© (d)
Figure 36 : (a) The original RGB image and (b) its RG channel, where the red TL on the right suffers from the ''blooming
effect". (c) The YB channel and finally (d) is the RGYB channel, with the '"blooming effect' corrected.
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The RGYB channel is a reliable input for the forthcoming FRST, since it accomplishes
two different goals, by reducing:

1) The prominence of less bright red or green spots in the scene.
2) The "blooming effect".

The first virtue of this transformation will improve the detection rate of the FRST
module, since the prominent bright and dark spots will be reduced to light-emitting
objects, while the second virtue will enable a simpler classification process, since
there will be no correlation between a red light with "blooming effect" and a green
light.

An added difficulty is induced to the problem of TLR when more challenging
conditions, like night driving, are introduced. More specifically, the appearance of the
"blooming effect" cannot be efficiently tackled only by using the RGYB channel. Such
a scene is demonstrated in Figure 37, where the opposite problem is observed; instead
of a dark circle with a bright halo, green TLs appear as small bright circles surrounded
by a dark halo. This effect increases the false classification rate, misclassifying green
TLs as red ones.

To tackle this problem in night driving, an additional morphological operator
processing module is proposed. This is a grayscale 4-connected neighborhood image
filling [83] of the holes in both bright and dark areas of the image. The process has
two steps; first the RGYB image is thresholded to produce two separate channels, one
with red and yellow shaded pixels (RGYB = 0) and one with green and blue ones
(RGYB < 0). Then, the holes in both images are filled using the method of [83] and
the two resulting images are added to form the final result. The process described is
demonstrated in Figure 37 where the red ellipses denote areas with a strong blooming
effect and the result of our method.

(c)

Figure 37 : Handling the “blooming effect” at night. (a) RGB image, (b) RGYB channel, (c) RGYB channel after filling
process.
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4.3.2 Radial Symmetry Detection

After the RGYB image has been estimated at the end of the previous stage, it is
scanned by the already presented FRST algorithm to detect symmetrical blobs. As
mentioned in Chapter 2,he main feature of the FRST is detecting symmetrical shapes
in grayscale images, producing local maxima in the centers of bright blobs and local
minima in the centers of dark blobs. The only parameters that have to be defined for
this process are a radial strictness factor, a, and the set of radii N that need to be
detected.

Since the RGYB image includes red and green color opponency, it is appropriate for
the FRST. Some examples of the implementation of the FRST (for radii from 2 to 10
pixels with a step of 2 and a=3) to pre-processed frames of various videos are
reported in Figure 38.

Figure 38: Original driving scenes at day and night time (left column) and their corresponding FRST (right column).
Dark spots denote green TLs, light spots denote red TLs. Local maxima/minima detection is performed above the orange
line (which depends on the camera placement).

The images presented in Figure 38 show that the centers of the TLs appearing in the
scenes are included in the most voted pixels of the frame, provided that the FRST has
been applied for a set of radii that includes the TLs radials. Consequently, the result of
the FRST undergoes a non-maxima suppression to detect red TLs and a non-minima
suppression to detect green TLs must be applied. However, since the nature of the TL
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detection problem allows attention to be focused on the conspicuous region of the
image, i.e. the upper part, only this region will be used for the suppression process.
Since the on-board camera was not placed in a constant position in all the videos used,
the ROI selection used for suppression must be completed during system calibration.

An automatic ROI selection method using horizon detection, or vanishing point
techniques could be utilized [84], [85], but this is not required because the areas
where a TL could appear can be easily predicted during the camera setup. Hence, the
proposed TL detection system does not include such a method, reducing significantly
its computational complexity. In the examples of Figure 38, the suppression took
place above the orange line.

The suppression processes were setup to select the greater 5 local maxima and the
lower 5 local minima. ROIs with an absolute FRST value lower than half the global
absolute maximum were rejected. Each TL candidate ROI is produced from the
suppression step as a rectangle with coordinates that are determined by the detected
center coordinates, the radius and the color of the TL. More specifically, the
annotation of a TL rectangle ROI starts at 6 radii up and 1.5 radii to the left of its
FRST center and has a width of 3 radii and a height of 7.5 radii. Similarly, the
annotation rectangle for a red TL starts at 1.5 radii up and 1.5 radii to the left of the
FRST center and has the same height and width as above. These details are shown in
Figure 39.

+— 3n — +— 3n —

Figure 39 : TL annotation based on radial n.

4.3.3 TL candidates verification

The last stage of the proposed TLR system is a TL candidate verification process,
which is crucial for the minimization of false positive results that might be caused by
bright color blobs that resemble a TL. Road signs, LED billboards etc. can be
misinterpreted as TLs, because their shape and color properties are similar to a TL.
However, such artifacts usually don’t appear radially symmetrical for more than a few
consequent frames, as opposed to the symmetry and color properties of TLs that are
more robust to temporal scale variations. Hence, many of the false positive results can
be removed by introducing a condition of multiple appearances of a TL in successive
frames.

The condition of multiple appearances in successive frames, hereafter called
spatiotemporal persistency, states that a TL will appear in the top voted FRST results
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in a sequence of frames (temporal persistency) and its detected center is expected to
leave a track of pixels not far from each other (spatial persistency). Such a result is
shown in Figure 40, where the trails left by the centers of two green TLs over a period
of 30 frames are denoted by green dots. The trail of sparse dots on the left belong to
objects falsely detected as TLs and do not fulfill the persistency criterion.

Figure 40 : Spatiotemporal persistency check. Notice the trails left by the centers of two green TLs.

Figure 41, where the first column shows frames 1, and 2 and the second column
contains frames 3, and 4. The red rectangles denote a red TL candidate and the yellow
ones denote a green TL candidate.

Figure 41 : Four consecutive frames, TL candidates annotated by rectangles. Non persistent candidates are dismissed.
Candidates persistent for 3 out of 4 consecutive frames get verified.

4.4 Experimental results

The proposed TLR system has been evaluated using both quantitative and qualitative
experimental results. The quantitative assessment has been based on the publicly
available annotated video stream of [22], which has already been described in Section
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1.6.2. The qualitative evaluation of the system has been based on several videos from
the ones that have been described in sub-sections 1.6.1 and 1.6.3, either shot by the
authors in Greek roads, or downloaded from YouTube.

The TLR system has been implemented fully in Matlab and tested on a computer with
a Core 2 Quad CPU at 2.83GHz, and 4GB of memory. The system implementation
code did not use any parallelization. The processing times achieved were directly
affected by the resolution of the videos and they fluctuated from 0.1ms to 0.5ms per
frame, i.e. near real-time response.

As far as the parameters used for the proposed algorithm are concerned, the radii for
the FRST in the experiments were 2,4,6,8, and 10 pixels. The radial strictness was set
to a=3, and for the spatiotemporal persistency to hold, a candidate must appear in at
least three out of four consecutive frames, in an area of a radius of 20 pixels.

4.4.1 Quantitative results

The quantitative results of the TL detector are estimated following the instructions
given in [22], for their publicly available, manually annotated video stream. These
instructions stated that from the 11179 frames included in the video stream, only 9168
contain at least one TL. However, not all the TLs appearing in these frames are used:
TLs with yellow colors (58 instances) are excluded, as well as many lights which are
ambiguous due to heavy motion (449 TLs). Apart from these, 745 TLs that are not
entirely visible, i.e. are partially outside the frame, are also excluded. Eliminating all
these TL instances, a total of 7916 visible red or green TLs remain. The total distinct
TLs that comprise these 7916 image instances are 32.

The results scored by the proposed system are estimated following the same rule as
[79], which states that if a TL is detected and recognized once in the series of frames
where it appears, then it is classified as a true positive. Hence, a false negative result
is a TL never detected in its timeline. Using these definitions, the proposed algorithm
scores a detection rate (recall) of 93.75%, detecting 30 of the total 32 TLs. The 2
missed TLs were of green color and appeared for 49 and 167 frames in the scene. In
both cases, the proposed system detected the paired TLs appearing in the same scene,
so the goal of informing the driver was achieved. Some detection examples from the
aforementioned dataset are given in Figure 42. The total number of false positive
detections is 1559, of which 1245 are false red TL positives and 314 false green TL
detections. The red false positive instances concern 12 different objects misclassified
as red TLs, while the number of different objects misclassified as green TLs is 7. This
means that the precision of the system is 61.22%.

The false positive rate could be significantly reduced by using morphological
operations, like the templates utilized by [79] and [21], who report precision rates of
up to 97% using also temporal matching. A more direct comparison between our
system and the two aforementioned approaches is not feasible, due to the lack of
details in their evaluation process. Some characteristic results of successful and
unsuccessful recognitions are presented in Figure 42.
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Figure 42 : TL detection results in daytime driving. A false positive red color TL example is show in the bottom left image
and a false negative is shown in the bottom right.

4.4.2 Qualitative results

The experimental results reported in sub-section 4.4.1 show that the system appears
effective and robust in the case of urban driving in good weather and illumination
conditions. The problem of false positives is not so persistent and could be further
improved if, as already mentioned, a TL model is used for a final verification and a
color constancy module is introduced. However, the great challenge of such systems
resides in more demanding driving conditions, including driving under rainy
conditions and driving at night time.

For this reason the proposed system is also evaluated in such conditions, so that its
robustness and resilience can be examined. More than 2 hours of videos shot from on-
board cameras were gathered from the internet and used for the qualitative evaluation
of the system. The ultimate goal is to construct a dataset of driving videos shot in
challenging conditions, which will be annotated and freely distributed for research
purposes in the future.

4.4.2.1 Driving under rainy conditions

Among the most important and challenging cases in ADAS is driving in rainy
conditions. The difficulty present is that raindrops on the windshield often distort the
driving scene and could cause the various objects to appear disfigured. Another
problem in rainy conditions is the partial obstruction by the windshield wiper in
various frames. For these reasons, every vision based system should be tested under
rainy conditions, as the results produced may vary a lot from the ones achieved in
normal weather. Some examples of successful TL detections in rainy conditions are
shown in Figure 43.
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Figure 43 : Successful TL detection results in rainy conditions.

4.4.2.2 Driving at night

The second important category of adverse driving conditions is night driving. The
difficulty of the situation relies largely on the environment and the mean luminosity
of the scene. If the environment does not include excessive noise like for example
dense advertisements or other lighting sources, the proposed system performs
satisfactorily, even in urban driving situations. Successful detections in night driving
scenarios are presented in Figure 44. Most TLs are successfully detected, even when
their glow makes it very difficult to distinguish shape and morphology cues.

Figure 44 : TL detection results in urban night driving.
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4.4.2.3 Known limitations of the Traffic Lights Recognition system

A very common question when dealing with computer vision applications is whether
there are classification rate limitations, i.e. low rates of accuracy derived from
processing certain image frames. Compared to the human TLD perception system, a
machine based TLD performs poorly. Taking into account that a human driver detects
the position of TLs using an extremely accurate object recognition system and by
efficiently processing morphological information related to appearance of
simultaneous objects positions in the scene (road lines, crossroads, TLs), the accuracy
of our TLD system using only TL color information is quite satisfactory.

The proposed method is by no means flawless and can produce persistent errors in
some situations. The main problems that can be pinpointed are the following:

(1) The system produces some false positive results that cannot be easily
excluded, unless it is used in correlation to other computer vision modules like a
vehicle detector or a road detector. An example of such false positives is illuminated
vehicle tail lights, or turn lights, as shown in Figure 45(a). This image also includes a
false positive result that is eliminated in the following frames.

(i1) The proposed system fails completely in cities like New York (Figure 45(b)),
where the visual information is extremely dense and a great number of similar to TLs
objects appears in the scene.

(a) )

Figure 45 : Examples of temporary or permanent failures of the proposed system.

4.5 Conclusions

In this chapter, a novel automatic algorithm for TLR using a monocular on-board
camera has been proposed. The algorithm uses color, symmetry and spatiotemporal
information to detect the red and green color of TLs in a fashion resilient to weather,
illumination, camera setup and time of day. It utilizes a CIE-L*a*b* based color
space with a holes filling process to enhance the separability of red and green traffic
lights. A fast radial symmetry transform is then used to detect the most symmetrical
red and green regions of the upper part of the image, producing the TL candidates.
Finally, a spatiotemporal persistency criterion is applied, to exclude many false
positive results. The algorithm has been experimentally assessed in many different
scenarios and conditions, producing very high detection rates, even in very adverse
conditions.

Future work will be directed towards embedding a tracking module to decrease the
false negative results and a color consistency module to further reduce false positives.
Furthermore, the combination of the TL detector with other ADAS modules like
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vehicle, sign and road detection will be explored, so that a complete solution for
driver assistance will be proposed.
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Chapter 5

Single Image Detection of Preceding Vehicles

5.1 Introduction

In this chapter, an algorithm for Preceding Vehicles Detection (PVD) that can be
integrated in ADASs for forward collision avoidance is proposed. It is based upon a
combination of multiple cues present on vehicles, such as the red color of rear lights,
horizontal edges and symmetry. The system was presented at [86].The rest of the
chapter is organized as follows; first, a survey of state-of-the-art methods for PVD is
performed, followed by a presentation of the proposed system structure. Then, the
separate system modules are presented in detail and an evaluation of the results of the
proposed system is performed. Finally, a discussion on future improvements and ideas
on the problem of PVD is presented.

5.2 Literature Review

Computer vision based techniques proposed for vehicle detection usually utilize
visual features like appearance or motion. An extensive review of the most notable
methods until 2006 can be found in [87], while a more recent survey focusing on
active learning methods is in [88]. The methods presented in [87] mostly comprise
two stages, namely the hypothesis generation (HG) and the hypothesis verification
(HV) stage. The HG stage uses information acquired form a monocular or
stereoscopic video camera mounted on a moving vehicle to detect areas of interest in
a frame where a vehicle might be present. To achieve this, the HG module can use
low-level knowledge based cues like color, symmetry, edge or corner detection and
texture information. These cues can also be combined to detect higher-level features,
like shadows and lights. Other knowledge based methods of HG use motion
information, or stereovision in the case of stereo cameras. Once detected, the
candidate vehicle areas of interest are passed on to the HV stage, where some systems
use representative vehicle patterns to correlate to the detected region, while others use
appearance cues to train a classifier which then separates the detected regions to
vehicle or not vehicle. Many researchers have also added a third stage to their
systems, which tracks the detected vehicles in a sequence of frames, thus improving
the detection performance mainly by reducing false positive detections.

A widely used cue for the identification of a preceding vehicle is its rear lights. This
approach makes the resulting systems robust in night driving conditions, when other
vehicle features are hard to detect due to limited scene illumination. Moreover, the
regulations in the U.S.A. [89] and the E.U. [90] state that the rear lights of vehicles
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should be red, making them a discriminative cue that can also be used at day time,
especially for braking vehicles detection. The most common approaches use the RGB
color space or its separate channels to segment rear vehicle lights. In [91] rear vehicle
lights are segmented based on a combination of grayscale and red color brightness
derived from the normalized difference of the R and B color channels; the detected
tail lights are then paired and filtered for false positives using an Inverse Perspective
Mapping method. The system proposed in [92] computes a “red level” for every pixel
in small regions of interest, based on a proportion between RGB channels followed by
a symmetry analysis of the color distribution to verify the rear lights and segment the
vehicle using edge detection. In [93] the lights detection is based solely on the R
channel values and then it is combined with edge and motion information to verify the
result. In [94], brake lights are detected at night time using statistically derived
thresholds in all three RGB channels. The size of candidate taillights and the speed of
the ego-vehicle are then used to assess an impending rear-end collision risk. Even
though many systems have used it, RGB is not the optimal color space for real world
color segmentation problems mainly due to the high correlation between its channels
that makes it difficult to set and manipulate color parameters. Thus, many researchers
have proposed the use of alternative color spaces for the task of rear lights detection.
In [95], the rear lights are segmented in night driving scenes using a subjectively
selected threshold in the Cr channel of the YCbCr color space; however the color
information is not used in day scenes, when a horizontal edge detection technique is
preferred. O’Malley et al. in [96] used the color distribution of rear-lamp pixels under
real-world conditions to derive proper thresholds for the HSV color space, based on
the automotive regulations for vehicle appearance. The detected rear lamp candidates
are then paired using symmetry analysis and color cross-correlation and finally
tracked using Kalman filtering. the CIE-L*a*b* color space is used in [97] for the
detection of rear lights, using two fixed thresholds for channels a* and b* . This
approach leads to a classification of detected lights in one of three classes: white,
orange and red.

The methods described have an important disadvantage as far as benchmarking is
concerned; none of them use a publicly available annotated dataset of vehicle images
to test their accuracy. The reason for this is twofold: first the number of such datasets
is limited and usually is used for the assessment of general image classification
algorithms; second, the nature of the problem of vehicle detection allows for a huge
variety of different vehicles, environments and conditions that should be considered,
making the use of a representative to real-life conditions dataset highly impractical.
However, the quantitative assessment of vehicle detection methods in typical
situations like the ones included in [31] is useful for the comparison of similar
methods.

5.3 Preceding Vehicle Detection

The PVD system proposed is based, as all of the ADASSs in this thesis, on the video
frames acquired from a monocular camera adjusted on the ego-vehicle windscreen,
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facing the road. The system uses color, which is a basic cue for detecting the rear part
of vehicles due to the existence of red rear lights. Many existing systems utilize static
thresholds for red color segmentation of vehicle lights, thus being sensitive to
illumination changes and environmental conditions. The main feature of the proposed
method lies in the absence of such static thresholds for the detection of rear lights,
making our system resilient to illumination conditions alterations, time of day, camera
settings and sensor characteristics. Moreover, the use of multiple cues is a viable
means for improving the reliability of our system.

The proposed PVD system builds on a-priori knowledge on some of most prominent
visual features appearing on the rear facade of vehicles. In this direction, the first
stage of the system is the extraction of a binary image containing candidate rear
vehicle lights, based on color segmentation and radial symmetry. As already
mentioned, rear lights represent a conspicuous cue for PVD. The reason for that is
twofold; the red rear lights are a common feature among all vehicles according to
legislation and they are also visible under different illumination, weather conditions
and time of day. Furthermore, they can be used to provide timely warning of an
impending collision, as illuminated rear brake lights are an early indication that a
vehicle is slowing down.

The second stage of the proposed system involves morphological pairing of candidate
lights areas, followed by a horizontal edge detection process and finally an axial
symmetry check along the vertical bisector is utilized for vehicle presence
verification. For the successfully detected vehicles, a rough estimation of their
distance is performed. The architecture of the proposed system is presented in Figure
46.

Rear Lights Detection

™ ~ \
Convert 1o a Fast Radial Otsu's
L*a"b* Transform Thresholding
—— ~ T
Symmetry Hog:;ual Ctn‘;d':lo k.,
Check - B
Detection | Pairing |
Verification Define Candidate Areas

Vehicle Distance

Present Estimation

Figure 46 : Structure of the proposed PVD system.

5.3.1 Red lights detection

In the first processing stage of the proposed system, a search for areas with high red
chromaticity in the color image is performed. Among various color spaces, CIE-
L*a*b* was the most suitable for this application, as it possesses a number of
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important features. L*a*b* color space has the advantage of being a perceptually
uniform color space, mapping equally the perceived color difference into qualitative
distance in the color space. In L*a*b*, lightness information (L component) is
separated from the chrominance information (a*, b* components), which we utilize
for the red color segmentation. As a result, illumination changes have a minimal
effect on color information.

For the segmentation of the possible rear light areas, we utilize component a* (red -
green) of L*a*b*, and split the positive from the negative part, in order to acquire
only the red subspace. This subspace image is then scanned for symmetrical shapes,
using the fast radial symmetry transform presented in [11]. Although there is no
constraint in the shape of rear lights, they generally follow a symmetrical pattern. A
judicious choice of a low radial-strictness parameter (a=/) gives emphasis to non-
radially symmetric features [11], thus presenting great values at the positions of rear
lights. The results are demonstrated in Figure 47, where channel a* and the FRST
appear pseudo-colored.

(a) (b) (©

Figure 47 : (a) Original image, (b) red subspace of the L*a*b* color space visible and (c) FRST of the red subspace.

The FRST, as already mentioned, scans for shapes in one or more radii in a range
called N. When the goal is to detect symmetrical shapes of any size, a large size of
ranges must be used; however, the computational burden can be greatly reduced by
selecting a small sparse set of radii in range N, spanning between the extreme sizes of
possible rear lights. The result in this case is a very good approximation to the output
obtained if all possible radii were examined. Using the FRST approach, the
“blooming effect”, caused by the saturation of bright pixels in CCD cameras with low
dynamic range, is very effectively handled. This is attributed to the fact that saturated
lights appear as bright spots with a red halo around, thus yielding large radial
symmetry values. This phenomenon is illustrated in Figure 48.

(b) (©

Figure 48 : (a) Original image, (b) red subspace of the L*a*b* color space where the “blooming effect” is visible and (c)
FRST of the red subspace, a*.
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For the final binarization of the image, the fast and efficient Otsu’s thresholding
algorithm [37], which suggests an optimum threshold by minimizing the weighted
sum of variances of brightness for the two classes: the objects and background pixels.
The resulting binary image contains the candidate rear vehicle lights.

5.3.2 Morphological lights pairing

In the second stage, a morphological rear lights pairing scheme is applied to the
previous binary image to determine vehicle candidates. After connected component
labeling, for each region the ellipse that has the same second central moments as the
region is estimated, in order to derive its features. The parameters of the ellipse, i.e.,

the center coordinates, the major and minor axis lengths as well as their area are
K-(K-1)

computed. In order to find pairs of possible lights we consider all the possible

two-combinations, where K is the total number of candidates. However, from all these
potential pairs only a few meet the prerequisites that we impose, regarding the angle
between them and a similarity measure based on their geometrical properties:
Assuming that the target vehicle is in the same tilt as the observing vehicle, the
candidate pair of lights must be aligned in the horizontal axis (with a permissible
inclination of +5 degrees). The morphological similarity measure is based on the
normalized difference of their major axis length, minor axis length and area.

5.3.3 Horizontal edge boundaries

Given the candidate rear light pairs, we seek the horizontal boundaries of the
candidate vehicle. The vertical boundaries are defined by the extreme points of the
rear lights. A search region for the upper and lower horizontal boundaries that is
proportional to the width of the vehicle is determined, which is assigned as the
distance between the extreme points of the rear lights. In Figure 49(a) a search region
on the original image is shown. The ‘Canny’ edge detector is used to detect the edges
in the grayscale image of the search region (Figure 49(b)). The horizontal projection
of the edge map is then computed (Figure 49(c)), while the peak values indicate
pronounced horizontal edges. The upper and lower boundaries of the car are defined
as the first and last peak in the projection graph, with value at least equal to the half of
the largest value. The outcome of this stage is bounding boxes containing candidate
vehicles.

(@ (b) () (@

Figure 49 : (a) Search region on the original image, (b) edge map of the search region, (c) its horizontal projection and (d)
bounding box containing the candidate vehicle.
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5.3.4 Axial Symmetry check

Symmetry represents a very useful feature for vehicle verification, since it is a
characteristic of human-made objects. Vehicles observed from their rear view are in
general symmetrical in the vertical direction [87]. The axial symmetry check proposed
to verify that a candidate region is indeed symmetrical, is performed by splitting each
bounding box image into two sub-images along the vertical bisector and comparing
them. The comparison of the sub-images is carried out by utilizing two measures,
namely the Mean Absolute Error (MAE) and the Structural SIMilarity (SSIM)
measure [52]. Both measures have already been described in Chapter 2.

The verification of a candidate vehicle region is performed heuristically, using two
experimentally derived lower bounds for the two aforementioned measures.

5.3.5 Preceding Vehicle distance estimation

Once the system has detected and verified the preceding vehicle, its relative distance
to the ego-vehicle can also be estimated. A precise distance calculation is practically
infeasible, as the information contained in a single video frame is not sufficient to
derive precise depth information. However, a good approximation for the distance of
cars of typical size can be achieved; assuming that the average vehicle width is
approximately 1.8m and given the width of the detected preceding vehicle in the
image (as a proportion of the vehicle’s width in pixels to the total image width in
pixels) we can estimate the desired distance. A more precise estimation can be
computed as in [93], provided the camera characteristics known in advance.

5.4 Experimental results

The performance of the proposed PVD system was tested on the two publicly
available datasets named Caltech 1999 and Caltech 2001, which were described in
Chapter 1. These test sets contain images of many different cars, under various
illumination conditions and cameras. It must be clarified that in Caltech DB (Cars
2001), 22 of the 526 images were excluded because of their red rear lights being
modified beyond legislation [96], or because one of the brake lights was blown. For
the video stream of [14] only frames that contain a whole visible, preceding vehicle at
the same lane and in distance less than 15m were considered (2716 out of 11179
frames). Red vehicles, recognized successfully as large regions in the binary image,
were also detected using the same method. The recognition results are summarized in
Table 4.

Table 4 : Detection accuracy of the PVD System using a single image.

Dataset Numfber of images / Detection Rate Detection Rate — Braking
rames PV
Caltech DB (Cars 1999) 126 92.1%
Caltech DB (Cars 2001) 504 93.6% 99.2%
Lara Urban Sequence 1 2716 92.6% 96.3%
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The proposed system scores high detection rates in all test sets (up to 93.6%), and
performs outstandingly in cases when the preceding vehicle brake lights are
illuminated, as shown in Table 4. This can be attributed to the intensive, highly
distinguishable color of brake lights and the ability of our system to handle the
“blooming effect” very effectively. This specific feature is of key importance, as
accurate recognition at the stage when the preceding vehicle is braking is very crucial
for avoiding an impending collision. A fruitful comparison can be made with the
system of [98], reporting results at the same datasets (Caltech DBs). The proposed
approach performs better (93.3% versus 92% reported in [98]) on both datasets, with
the additional advantage of requiring no training. Regarding the false positive
detections (7 for the Caltech 1999 and 46 for the Caltech 2001 dataset), these can be
further reduced if certain restrictions in the admissible distance between rear lights are
included, but in this case the PV detection distance narrows down. A more robust
method can be implemented taking into account that most FPs rarely appear in more
than one consecutive frame. In this direction, simple spatiotemporal restrictions can
be used to detect the FPs not persistent in time. Some representative detection results
from all data sets used are illustrated in Figure 50.

Figure 50 : Detection results for the data sets used; Left Column: Caltech DB (cars 1999), middle column: Caltech DB
(cars 2001) and right column: Lara Urban Sequence.

The PVD system proposed was also qualitatively evaluated using images acquired
under adverse weather conditions, downloaded from the internet. For these images,
although quantitative results are not derived due to different and unknown acquisition
systems setup, the proposed single image PVD system performs sufficiently well,
yielding promising results as shown in few typical cases of Figure 51.

Further study of the FN errors shown, reveals that the most common cause is the
presence of other red artifacts near rear lights, which leads the system to failure of
detecting the real pairs of rear lights.
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Figure 51 : Detected vehicles in adverse weather conditions.

5.5 Conclusions

The development of a robust and reliable vision-based vehicle detection method is a
crucial task for driver assistance systems. In this chapter an automatic, resilient to
illumination conditions algorithm for vehicle detection has been presented, using
color and radial symmetry information for the segmentation of rear vehicle lights
from a single image. After morphological lights pairing and edge boundaries
detection, the vehicle presence is verified through symmetry detection in the
candidate rectangular ROIs. Experimental results report high detection rates both in
typical and in adverse conditions. The proposed algorithm, because of its approach of
using rear lights for detection can be easily extended for vehicle detection at night.
Future efforts are directed towards vehicle tracking and combining vehicle detection
and braking recognition with driver’s gaze detection. In this way, the level of
attention of the driver can be correlated with the potential danger of an impending
collision.
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Chapter 6

Video-based Detection of Preceding Vehicles

6.1 Introduction

The vehicle detection method presented in the previous chapter was provided a
solution for single images, not taking into account the added information that can be
collected by processing successive frames of a video. The information that can be
provided by analyzing the motion in the scene may provide valuable in the refinement
of the detection results over time, minimizing the false detections and validate the
results more efficiently. This chapter will focus on using the static framework
presented in the previous method and enhancing it with spatiotemporal information
processing to provide more accurate PVD results, even in challenging scenarios. The
proposed system is described in [99]. It has been extensively evaluated in both normal
and challenging scenarios, proving both effective and robust.

6.2 Literature review

A significant part of literature relevant to the subject of PVD has already been
presented in the previous chapter. In this section, some methods that utilize motion
information will be presented. O’Malley et al. [96] used the color distribution of rear-
lamp pixels under real-world conditions to derive proper thresholds for the HSV color
space, based on the automotive regulations for vehicle appearance. The detected rear
lamp candidates are then paired using symmetry analysis and color cross-correlation
and finally tracked Kalman filtering. Kalman tracking has been utilized again by
O’Malley et al. in [100], in a method that also uses modified hardware by means of a
polarizing filter fitted onto the camera lens to remove reflections. In their work, after
detecting vehicle lights and prior to tracking them, a perspective correction is applied
to the light pair areas to enhance their resemblance. Particle filters are used in [101],
[102] for vehicle tracking purposes. In [101], different vehicle descriptors are used in
combination with data-driven sampling in order to track the detected vehicles.
Sivaraman and Trivedi [102] use a training process with an Adaboost classifier which
is retrained through an active learning process to improve the vehicle recognition rate.
The detected vehicles are then tracked using a particle filter.

In recent papers, numerous methods for vehicle tracking have been proposed. In
[103], a SVM classifier of vehicles is combined with a Markov chain Monte Carlo
approach for the implementation of the tracking stage. In [104], shape and color
properties have been used for a mean shift based tracking method. A probabilistic
motion model is constructed for vehicle tracking in driving video streams in [105].



6.3 Proposed system overview

Recently, large datasets of driving scenes video streams have also been made publicly
available, proving very useful for benchmarking ADAS algorithms [22], [25].

In this chapter, a vehicle detection system based on the processing of video sequences
is presented. It improves and extends the work in [86], which is based on the
combined assessment of vehicle descriptors, such as the red color of their tail lights
filtered in CIE-L*a*b* and the symmetrical appearance of their rear facade. An
efficient reduction of the false negative rated is achieved by the HV stage where a
Kalman filtering process handles the spatial coherence of the detections over time by
tracking the rear lights area of the detected vehicle. The system has been
experimentally evaluated in a variety of publicly available datasets of both still
images and video streams, demonstrating superior detection and tracking rates
compared to relevant methods.

The main contributions of the proposed system are the following:

(1) the mixture of red color information derived from a novel, robust to
illumination fluctuations color channel with the FRST is used to detect the rear lights
of the vehicle as symmetrical red blobs.

(i1) The usage of the SSIM index both in color and in symmetry images as a tool
to filter out asymmetrical results and reduce the number of rear light candidate areas.

(111)  The usage of the Kalman filter as a sub-system for dynamic vehicle candidate
verification, in combination with the SSIM based static verification process.

The rest of this chapter is organized as follows: in Section 6.3 an overview of the
proposed system is described, while Section 6.4 discusses its modules in depth using
typical examples derived from the evaluation datasets. In Section 6.5, quantitative
performance evaluation for the proposed system in static images and video streams is
performed and compared to relevant methods. Finally, conclusions about the
contribution and future work are presented in Section 6.6.

6.3 Proposed system overview

The proposed system uses a-priori knowledge derived from observation of the most
prominent vehicles descriptors and more specifically their rear lights and the axial
symmetry of their rear facades. The HG stage is based on color segmentation and
radial symmetry in order to detect candidate rear vehicle lights in each image frame.

The color and luminosity of rear lights, especially when lit, make them stand out in
different weather and illumination conditions, in day and nighttime. Moreover, when
rear brake lights are illuminated, they give an advanced warning of potential danger as
they denote a decelerating vehicle. The aforementioned color related features of rear
vehicle lights inspired the incorporation of a color segmentation process based on the
cicpc3 color space, to avoid high sensitivity on shadows and illumination changes. A
mixture of two channels is used to produce a single channel which robustly
discriminates red colors from other bright spots. A FRST is applied to the estimated
“redness”. This is the second step of the HG, which ensures that non-symmetrical red
blobs will not be considered as rear light candidates. The result of the FRST is
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searched for local maxima and the most prominent results are counted as candidate
rear vehicle lights.

The candidates are passed on to the HV stage, which is based on another very typical
specification of vehicles; their axial symmetry along the vertical bisector of the
hypothetical line connecting their two rear lights. The axial symmetry detector has
two parts; the first involves pairing the candidate lights depending on their inclination
and relative distance and the second is the similarity check between the right and the
left half of the sub-image containing the two paired candidates, based on the SSIM
index [52]. Pairs with small inclination values and large similarity indices are
accepted as rear vehicle lights and are used to localize vehicles in the image.

The HG and HV stages are very successful for static images. However, when dealing
with video streams, the process of temporal information in the HV stage is beneficial
for further reduction of false negative rates. In the proposed approach, a Kalman filter
is used to estimate the position of vehicle lights in consecutive frames and
consequently check the persistency and accuracy of the HG candidates in time. This
has the effect of removing HG candidates that do not appear for more than a couple of
frames, thus improving the precision of the system. Furthermore, it improves the
spatial accuracy over time, as it provides additional information for the most
appropriate candidates in each frame which are also consistent in time.

The functional overview of the proposed system is summarized in Figure 52.
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Figure 52: Flowchart of the proposed system.
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6.4 Modules analysis

6.4.1 Hypothesis Generation stage

In the HG stage, a rough first hypothesis for the locations of possible vehicles in the
image is generated. The HG procedure involves red color segmentation of the original
image, detection of highly radially symmetric red blobs and their pairing according to
their relative topology. The respective stages of HG are analyzed in the following
sections.

6.4.1.1 Red color segmentation

The first step of the HG is the color segmentation process that is based on the usage of
the cicyc3 color space, which has been mentioned in Chapter 2. This color space is
chosen due to its robustness to illumination variations and shadows and its channel
values are calculated as

¢, (i, j) =arctan R'(i’_j) — J, 6.1
max{G(i, j),B(, )}

¢, (i, j) = arctan G_(i’_j) — ), 6.2
max{R(i, j),B(, j)}

¢, (i, j) = arctan B‘(i’.j) — j, 6.3
max{R(i, j),G(, j)}

where R, G and B are the red, green and blue channel value of the pixel at the i-th row
and j-th column of an image, while c;, ¢, and c; are the three channels of the
aforementioned color space. Finally, max{a, b} denotes the maximum value of
variables a and b.

Two of its three channels are then mixed to further enhance the color difference of the
red colored pixels. More specifically, the proposed color channel used for red color
segmentation is formulated as follows

Red(i,j)=Cl(i’j)ﬂi_cz(i’j)), 6.4
The new color channel is linearly related to c; and ¢, color channels and is based on
the observation that rear lights are best enhanced by combining high ¢; channel values
(high redness) with low ¢, channel values (low greenness). The intensity of the values
of red pixels in the new Red color channel is even more pronounced when the rear
brake lights are illuminated as demonstrated in the examples of Figure 53.
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(b)

(© (d)

Figure 53: Highlighting of rear red lights using the new Red color channel. (a), (b) Preceding vehicle images without and
with illuminated rear brake lights and (c), (d) their respective new Red color channel.

6.4.1.2 Radial Symmetry Detection

With the goal of emphasizing rear vehicle lights, the image derived from the red color
enhancement is scanned for symmetrical patterns using the fast and efficient FRST
presented in Chapter 2. The transform relies on a gradient-based operator which
considers the contribution of each pixel to the symmetry, detecting radially
symmetrical blobs in an image. Since the rear red lights are depicted in the proposed
color channel as bright, symmetrical blobs, they generate large FRST values at their
centers and therefore localize the candidate results of the HG stage.

The symmetry candidates are further enhanced if a 3x3 median filtering process is
used to smooth the Red channel image, providing more accurate center localization.
Although the rear lights of vehicles are not always circular like in the car that appears
in Figure 53, they generally follow a symmetrical pattern and thus can still be
detected by the FRST by using a low radial strictness parameter (a = 1). Some
examples that demonstrate the successful highlighting of rear vehicle lights using the
FRST are shown in Figure 54.

The results described so far have been achieved using just one radius. In order for the
system to detect vehicle rear lights of differently sized vehicles at varying distances,
the proposed system uses a set of radii that span from the minimum to the maximum
expected radius in pixels. Each FRST image result is processed separately in the next
step.
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Figure 54: Various examples of FRST based detection of preceding vehicle rear lights. The original images appear in odd
rows and the respective FRST results in even rows. The results have been estimated for one radius (8 pixels for top rows
and 6 pixels for bottom rows).

Another significant advantage of the FRST usage is that it can handle efficiently the
“blooming effect” that appears often in rear lights images, due to the saturation of
very bright pixels in CCD cameras with low dynamic range. The robustness of the
selected algorithm relies on the fact that saturated lights appear as dark spots
surrounded by a bright halo, causing the FRST to treat them as symmetrical dark

blobs. Such a result is demonstrated in Figure 55.
(@ (©

Figure 55: Cancellation of the “blooming effect” using the FRST. (a) Original image, (b) Red channel with presence of the
blooming effect and (c) FRST result localizes rear lights.

(b)

Consequently, each image produced by the FRST is scanned for local maxima to
pinpoint the centers of candidate rear vehicle lights of a given radius. To reduce the
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number of candidates and keep false positives low, the local maxima are filtered to
include only values larger than a predefined ratio, r, of the maximum value.

6.4.1.3 Light candidates pairing

The detected rear lights candidates are subsequently processed so that only true
vehicle light pairs are considered for further validation. This procedure excludes
unwanted red artifacts from the detection, including two-wheel vehicles, which should
be detected with alternative methods. If N is the number of detected light candidates,
then all the possible pairs will be (v —1)-N/2. However, only a few of these pairs can

be considered as rear lights of a vehicle.

In order to reduce the number of valid light pair candidates, excluding false positive
results, a set of heuristic rules is defined. More specifically, the two candidates must:

(1) be closer to each other than a predefined maximum distance, d, which is
proportional to the radial of the candidates and

(i1) be closely aligned in the horizontal axis, i.e. have a permissible inclination of
an angle, 8, smaller than 6,,,, degrees in absolute value.

The properties mentioned above are graphically depicted in Figure 56. If the
predefined conditions hold, then the pair of light candidates is considered as valid and
is passed on to the HV stage.

Figure 56: A pair of candidate rear lights with detected centers denoted as CL and CR. The criteria for accepting a
candidate pair depend on their relative distance, d, and their relative angle, 0, which should be smaller than two
predefined thresholds.

When a pair of symmetrical shape centers has been accepted as a valid candidate pair
of rear lights, a rectangular Region Of Interest (ROI) around the two centers is
cropped, so that the candidate pair is verified. The rectangular ROI, which is denoted
in yellow in Figure 56, is chosen so that it includes the area of the rear of a vehicle
that appears most symmetric about the vertical bisector. This area is defined by the
rectangle ABCD, with AB=DC=d, BM=MC=d / 10, and M being the mean of the row
indices of CL and CR.
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6.4.2 Hypothesis Verification stage

In the HV stage, the vehicle candidate areas defined by the light pairs selected in the
previous stage are more closely examined. Each candidate area can be validated as a
vehicle, by passing the two verification stages, i.e. the static and the dynamic stage.

6.4.2.1 Static verification

The static verification stage is based on the typical property of all vehicles, which is
their rear view symmetry. More specifically, the rear part of vehicles is strongly
symmetrical in the vertical direction [87], a property that is even more prominent
when the processed area is confined around the detected light pairs.

The axial symmetry assessment is performed in a rather straightforward manner. First,
a rectangular area surrounding the pair of candidate lights is cropped and divided into
two equal parts (sub-images), along the vertical bisector. Then, the right sub-image is
mirrored, i.e. flipped about the vertical axis. This process is summarized in Figure 57.

(a

(b

)
)
(d)

Figure 57: First stage of static verification process. (a) The detected ROI containing the pair of candidate lights. (b)
Cropped region of interest with vertical bisector highlighted in yellow. (c) Left sub-image, (d) mirrored right sub-image.

(c)

The two sub-images are then compared in each channel of the RGB color space using
the widely utilized Structural SIMilarity (SSIM) index discussed in Chapter 2. The
SSIM measures the similarity of two images based on three comparisons regarding
luminance, contrast and structure. The result is one single measure bounded to [0, 1];
the closer its value is to 1, the higher the similarity between the two images. The
proposed process compares the mean SSIM index from the three color channels to a

76



Video-based Detection of Preceding Vehicles

user-defined threshold, tssiv, to verify that the region of interest indeed contains a pair
of rear lights.

While the SSIM criterion removes most false positives, the inclusion of many radii in

the FRST stage may lead to multiple overlapping rectangular areas around the rear
lights of a single vehicle. Furthermore, some false positive examples caused by
pairing the rear lights of two different vehicles that are close to each other might still
remain. Such examples are given in Figure 58.

Figure 58: Multiple ROIs generated by the HV module.

To tackle these issues, a rule that limits the preceding vehicle detection results per
frame to just one can be applied. To achieve this, the mean color SSIM indices of the
detected ROIs are added to the SSIM indices of their mean FRST transform values.
The ROI with the largest sum is kept as the accepted vehicle rear lights area. In this
approach, the number of false positives is kept to a minimum (at most one per frame),
while the detection rate of the method is not affected significantly. Some typical
results achieved using this approach, are presented in Figure 59.
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Figure 59: Successful detection results from Caltech 2001 (first row) and Caltech 1999 (second row). Two false positive
results between two closely moving vehicles are shown in the third row. The problem of spatial inconsistency of the
detection result in consecutive frames is demonstrated in the bottom row.

The two most common problems that may occur when choosing only the most
prominent result based on the dual SSIM criterion are:

) the verification of an area between two closely moving vehicles in front of
the ego-vehicle. This mostly happens when only few detection results lie on the
preceding vehicle. Such examples are shown in the third row of Figure 59.

(i1) The verification of a different candidate area lying on the preceding vehicle
for each frame, causing the detection results in video streams to appear unreliable in a
few cases. While in a sequence of frames the ROIs accuracy may be acceptable since
all verified candidates are on the vehicle, the exact location and size of the ROIs play
an important role in the following processing steps or estimators, i.e. distance
estimation of the preceding vehicle. Such an example is demonstrated in the last row
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of Figure 59, where the location of the detection has moved to a lower part of the
vehicle between two consecutive frames.

These issues are the main reason for including an additional processing module in the
verification process, which will also take into account temporal information and
consistency rules.

6.4.2.2 Dynamic verification

As already described, the static verification process provides very promising accuracy
rates, but it is not always sufficient for dealing with dynamically changing scenes
such as a driving environment. Thus, the incorporation of a second verification step,
taking advantage of the temporal continuity of video data, is beneficial for a more
robust and effective vehicle detection system. The dynamic verification obtained by
tracking the target vehicle, suppresses false negative detections, performs smoothing
of the detection noise and provides information for the temporal association between
frames by interpolating positions during sporadic erroneous or missed detections.
Given that the relative movement of the preceding vehicle between two successive
frames is small, the modeling of its movement with the linear discrete-time Kalman
filter analyzed in Chapter 2 constitutes the optimal choice over other computationally
demanding techniques such as the extended Kalman filter or particle filter. As already
described, the Kalman filter is a recursive, adaptive technique that estimates the state
of a dynamic system from a series of noisy measurements [44], [45]

The implementation of the Kalman filter is fast and straightforward, requiring only
the tracking estimate of the previous frame. It estimates the state of a process by
recursively updating the system dynamics in two phases - the time update phase and
the measurement update phase. The time update equations project forward in time the
tracking estimates (state vector and state error covariance matrix) of the previous
frame in order to obtain a-priori predictions for the current frame. The predicted
position is the expected measurement, given all the previous measurements and the
mechanics of the system. The state transition matrix, which captures the mechanics of
the system, is derived from the theory of motion under constant acceleration. The
measurement update equations (denoted also as correction equations) are
incorporating the new measurement into the a-priori prediction in order to obtain an
improved, final estimate. A Kalman gain serves at reflecting the importance of the
prediction to the current measurement which, in turn, depends on a measurement
noise covariance matrix R. The Kalman gain is used to update the predictions, given a
current measurement. A more thorough look into the equations and details of the
Kalman filter can be found in [45] and [106].

The parameters of the target which are tracked throughout the image sequence are its
position and size. Therefore, three observations are used in order to form the state
vector; the x-coordinate, y-coordinate of the vehicle and its width W, because the
aspect ratio is fixed. A long term observation of the coordinates can yield a
description of the trajectory of the target vehicle in an image sequence, while its size
and derivative of size can yield a description of the distance and the relative to the
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ego-vehicle velocity, respectively. For the specific application, the measurement noise
covariance parameter R is used to determine the sensitivity of the tracker to updates,
by assigning weighting between the current measurements and the previous estimates.
For the specific application and given a frame rate of 25 fps, a value of 0.1 ensures a
good tradeoff between responsiveness and smoothness during noisy measurements.

In order to initialize the tracking procedure, the position and size of the detected
preceding vehicle are stored and monitored for several consecutive frames, to
examine the reliability of the detection. Given that the false positives are not
persistent in time, i.e. very rarely the same false positive appears in more than one
frame, detections with major overlap for several consecutive frames ensure true
vehicle detection. The issue of other than preceding vehicle detections like parked
vehicles along the side of the road is effortlessly tackled due to their locations’
deviation throughout the succession of frames. In the current approach, a consistent
detection of the same vehicle for 3 successive frames with a less than 15% change in
position and size denotes a ‘true preceding vehicle’ and becomes the tracking target.

After the initialization of the tracking procedure, for each new frame, the proposed
vehicle detection module is executed. A notable difference is that the output
detections are not suppressed to just one in this case. Using the Euclidian distance of
the Kalman based prediction for the vehicle location and size from all detections
derived in the static verification stage, the closest static estimation to the Kalman
prediction is kept. If the distance and size difference of the Kalman ROI prediction to
the closest static ROI detection are both below 15% of their maximum value, the
Kalman uses the chosen detection as the current measurement and performs the
measurement update stage. Otherwise, the existence of a preceding vehicle is
examined within the respective rectangular Kalman ROI prediction, using the same
methods with the static detection module. In particular, the two criteria are the
existence of two local maxima on either side of the vertical bisector of the rectangle, a
strong marker for the presence of rear vehicle lights and a prominent axial symmetry,
as defined in the static verification step using the same threshold value. In the case
where at least one criterion does not hold true, the target is considered as lost and the
tracking procedure is terminated, until a new 'true preceding vehicle' is found.

Along those lines, tracking of the preceding vehicle permits the suppression of false
positive detections, the irregularities due to temporary missed or wrong detections and
the overall accuracy and robustness of the system is improved.

6.5 Experimental results

The Preceding Vehicle Detection system proposed in this chapter has been
experimentally evaluated using both static images found in the Caltech 1999 and 2001
datasets in [31] and video frames from the LARA video stream presented in [22] and
the HRI1 through HRIS frame sequences presented in [25].
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6.5.1 Quantitative results using single images

In this section, detection accuracy of the proposed system will be presented using the
Caltech 1999 and 2001 datasets already described in Chapter 1. The experimental
results were achieved using 1/4™ of the original image resolution for the first subset
(160x120) and a 1/25™ of the original resolution for the second subset (180x119). The
radii used for the FRST estimation were 3 to 13 pixels for the first subset and 3 to 16
pixels for the second, with a step of 1 for both. In both cases, radial strictness a was
set to 1 and the result of the FRST was estimated for the lower 70% of the images so
that only conspicuous areas are included and the computational complexity is reduced
by 30%. The ratio used for the non-maximum suppression of the FRST result was set
to r = 1/4. The rectangular ROIs selected were bounded in [2n, 20n], where n is the
detected radial in pixels and the permissible inclination of two detected centers was
set to 6, = £3 degrees. Finally, the threshold of the mean SSIM of all color channels
was set to tgspy = 0.95.

The aforementioned datasets have been used as a benchmark in several research
papers. One of them is a vehicle detection system proposed by Wang and Lien in
[98], who follow a statistical approach using PCA and ICE analysis in chosen sub-
regions of the image to detect vehicles. Other researchers use the datasets as a
benchmark for more generic object detectors. Such attempts were made by Dalal and
Triggs [107] who used Histograms of Oriented Gradients to train a linear SVM, or
Fergus et al [108] who use a probabilistic, scale-invariant learning scheme to classify
objects, so the results acquired from the proposed system can be compared to them for
evaluation purposes.

Using these datasets, the proposed system achieves superior results compared to
relative works, as shown in Table 5. The recall rate of the proposed method is directly
comparable to the best effort by Wang and Lien in [98] (both score 94.2%), scoring at
the same time a considerably higher precision rate (95.1% versus 87.5%). Moreover,
the proposed method does not require any training process, a significant advantage in
applications where a great variety of video scenes can be met, as opposed to those in
[98], [107], [108].

Table 5: Vehicle detection rates in both Caltech datasets

Recall Precision
Proposed System 94.2% 95.1%
Wang and Lien [98] 94.2% 87.5%
Dalal and Triggs [107] 89.4% 87.5%
Fergus et al [108] 84.8% 87.5%

It should be noted that the second subset (Caltech 1999) is not the typical scenario
that has to be handled by a collision warning system. For this reason some more
interesting conclusions can be drawn using only the first subset that comprises more
typical driving scenes.

More specifically, the images included in the first subset can better characterize the
efficiency of the proposed system, since it also includes frames where the brake lights
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of the preceding vehicle are illuminated. These scenes are of even higher importance,
since they can be used for collision warning in cases of sudden braking of the
preceding vehicle.

In the Caltech 2001 dataset, the recall-precision values are comparable to the ones
mentioned above. However, when the frames containing vehicles with rear lights
modified beyond legislation, i.e. 13 frames from 150-158 and 253-256, are removed
from the dataset, the recall of the proposed system in the remaining 513 frames rises
from 93.2% to 95.3%. Furthermore, the detection rate for braking preceding vehicles
reaches 98%. Taking these facts into account, a conclusion that can be drawn is that
the proposed method is suitable for collision warning purposes, since it successfully
detects the braking preceding vehicles. A detailed evaluation of the proposed method
applied to the Caltech 2001 dataset of 526 images taken from driving scenes (358
braking) and the filtered dataset of 513 images (356 braking), is given in Table 6.

Table 6: Vehicle detection rates in Caltech 2001 dataset

Recall Precision
Full dataset of 526 images 93.2% 94.2%
Filtered dataset of 513 images 95.3% 95.9%
Braking - Full Dataset 97.7% 98.0%
Braking — Filtered Dataset 98.0% 98.3%

6.5.2 Quantitative results using videos

The proposed system has also been evaluated using the video dataset LARA presented
in [22] and discussed in Chapter 1, which comprises images of driving in an urban
environment. Only frames that contain unoccluded preceding vehicles at the same
lane and in a distance less than 15m were considered for our experiments (2331 out of
11179 frames). The experimental setup involved resizing the images at 1/4™ of the
original image resolution (320x240), a ratio of r = 1/4 for the non-maximum
suppression of the FRST result and radii from 3 to 10 pixels. The threshold of the
mean SSIM of all color channels was set to s = 0.99. Table 7 presents the detection
rates before and after tracking.

Table 7: Vehicle detection rates before and after tracking

Recall Precision
Before tracking 72.5% 73.6%
After tracking 93.1% 94.4%

The results of Table 7 provide supporting evidence that the tracking procedure
significantly increases the vehicle precision rate. In most cases false detections are
met only for a small number of frames, commonly due to abrupt changes in
illumination or frame to frame jitter caused by camera shaking. In these cases, the
tracking predictions are used until the target is redetected. Moreover, while the real
vehicle might not be in the most prominent detection, in most cases the rule used to
limit the detection results to one per frame, reaches the real vehicle position.
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The experimental results denote a substantial improvement in terms of both recall and
precision, when Kalman filtering verification replaces the combined SSIM
verification proposed for still images. The improvement of approximately 20% for
both measures is a clear indication of the great influence of the scenes complexity to
the static detector and the significance of spatiotemporal processing in such
applications. More specifically, the great majority of still images comprising the
Caltech 1999 and 2001 datasets include only one vehicle, in a relatively small
distance from the camera, while in the LARA dataset, there is a great diversity of
scenes, preceding vehicle distances and number. All these factors contribute to the
raised importance of a temporally adaptive verification process, such as the Kalman
approach proposed here.

The images shown in Figure 60 illustrate instances of tracking results in an image
sequence taken from the LARA video dataset. In Figure 60(d) an example of
successful elimination of false positives is presented.

(@
Figure 60: Example of Kalman tracking in the LARA video dataset. The vehicle detections are shown in yellow rectangles
while the red rectangles denote the target being tracked.

6.5.3 Qualitative results in adverse conditions

The system proposed in this chapter has also been evaluated for robustness to more
adverse conditions, using the HRI road traffic video datasets presented in [25], which
were also described in chapter 1.

A qualitative assessment reveals that the results achieved by the proposed system in
the aforementioned conditions are very promising; therefore it could be used as a
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starting point for an ADAS that will be robust to any kind of conditions. Some typical

examples of vehicle detection using the aforementioned datasets are given in Figure
61.

Figure 61: Examples of vehicle detections from the proposed system in adverse conditions. Top row: night driving.
Second row: driving in the rain. Third row: driving in snow. Fourth row: Typical false positive examples.

In the first three rows of Figure 61, successful detections from night driving, driving
in the rain and driving in snow are presented. In the last row, two typical examples of
false detections are depicted. The example on the left shows a false positive caused by
the glare of rear lights on the road, while the right image shows an example of vehicle
detection that is on the opposite lane. While this is not a strictly false positive error,
the preferable result would be the detection of the vehicle on the right. Both results
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would benefit from an incorporation of a road, or lane detection module that would
add useful information for such cases.

6.5.4 Performance issues

As the goal of every ADAS is to be implementable for real time processing purposes,
a discussion on the processing speed of each module of the proposed system is of high
importance.

For the purposes of this analysis, the mean processing time values required by the
system to detect the vehicle position for 100 frames of three different video
resolutions have been compared. All tests were conducted for a set of 8 different radii
used by the FRST. The aim is to pinpoint the bottlenecks of the system and conclude
if an implementation would be feasible for real time applications. All parts of the
system have been implemented in Matlab, except a small part of the FRST which has
been converted from C++ to Matlab executable. No code parallelization has been used
and the tests were run on a 2.8GHz Quad Core processor. The response time
performance of various processing modules from these experiments is presented in
Table 8.

Table 8: Absolute and relative processing times and frame rates analysis for different resolutions. (AS: Axial Similarity,
FRST: Fast Radial Symmetry Transform, PM: Pair Matching, MF: Median Filtering, Others: Other modules).

AS FRST PM MF Others

% 39 20 15 8 18

160x120 ms 56 29 22 12 26
T/ps 145ms / 6.91ps

% 15 33 20 10 22

320x240 ms 49 108 65 33 72
fps 327ms / 3.1fps

% 10 41 21 9 19

640x480 ms 138 567 290 125 263
fps 1383ms / 0.7fps

The results of Table 8 show that the axial similarity module is the bottleneck of the
system when using the smaller possible resolution (1/8"™ of the original). As the
resolution increases, the bottleneck of the system appears in the FRST module, with
the pair matching process being the second most time-consuming stage. The fourth
place in terms of processing time per frame is steadily occupied by the median
filtering process.

A very important implementation issue is the potential increase in processing speed
that can be achieved by a proper parallelization of processes. In the proposed system,
such a solution is feasible thanks to the lack of correlation between the results of each
radius. Most core modules can function separately for each radius, thus multiplying
their processing speed by the number of radii used. An approximate 70% of the
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processing time (spent on the first three modules of Table 8) can be accelerated by a
factor defined by the number of radii used, providing real-time performance for
smaller resolutions, even in Matlab. Real time processing in higher resolutions can be
achieved by DSP implementations.

Another implementation performance issue has to do with the fact that the FRST
scans for symmetrical blobs of certain radii, which are experimentally derived. This is
an inherent disadvantage of the algorithm, as the precise localization of several
symmetrical shapes of unknown, different sizes should require the use of a large
number of radii. However, the computational burden can be alleviated by using only a
sparse set of radii, spanning from the smallest probable radius of a rear light to the
largest one, using a fixed step, or variable step taking into account the expected size.
The result of such a process is a sufficient approximation of the output obtained when
the whole set of possible radii is used [36], provided that the step is selected
accordingly.

6.6 Conclusions

In this chapter, a novel system for vehicle detection based on the localization and
tracking of their rear lights has been proposed. The system comprises a static
hypothesis generation and verification stage, combined with a Kalman tracking
module used for enhancing the spatiotemporal coherence of the detection results and
reducing the number of false negative detections. The static stage utilizes a novel,
robust to illumination changes color space, which is correlated with a radial symmetry
transform to generate a first set of rear lights candidate regions. This set is refined
using an axial symmetry criterion based on a similarity metric and the resulting
candidates are verified by a Kalman tracker that picks the prominent candidate based
on its spatial consistency compared to previous frames.

The system has been extensively evaluated using quantitative and qualitative
methods, on publicly available datasets of both still images and video streams. The
results show that it outperforms similar methods when compared in still images, while
it achieves excellent performance on video streams, even in more adverse
environments and conditions, such as driving in rain, snow and at night. Typical
detection problems in such cases would benefit from the combination of the proposed
system with other ADAS modules, like road, or lane detection.
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Chapter 7

Road Detection

7.1 Introduction

In this chapter, an algorithm for Road Detection (RD) that can be integrated in an
ADAS for collision avoidance and automatic navigation is proposed. It has been
published in [109] and it is based upon the Random Walker Algorithm (RWA) for
image segmentation described in Chapter 2, involving also a novel automatic seed
generation stage that uses an illumination-invariant optical flow estimation derived
from the cjcoc3 color space. The information derived from the optical flow are
combined with a-priori knowledge about the camera setup and segmentation results
from previous frames to produce a set of seeds that provide a clear discrimination
between road and non-road pixels under a vast diversity of conditions. Methods
proposed so far on the field of RD are described and evaluated in the next section and
then the proposed system and all its modules are described. An extensive
experimental evaluation of the proposed system follows, including qualitative
assessment in different conditions and quantitative comparative assessment against
other efforts on two publicly available, manually annotated video datasets. Several
aspects of the RD system implementation, like resolution and processing complexity,
are then studied and proper solutions are proposed. Finally, a discussion on the
advantages and disadvantages of the proposed system is carried out.

7.2 Literature review

A popular approach to the problem of road detection is the use of lane markings.
Those markings are localized to acquire boundary information which facilitates the
road detection process. Methods that rely on lane markings are usually fast and
simple, using mainly grayscale images or videos. A pioneer work presents fast
mapping from 3D to 2D followed by a horizontal edge detection process [110]. Later
work based on edge extraction is presented in [111], [112], [113]. These approaches
often fail to perform satisfactorily in more complex scenarios like rural unstructured
roads or poorly maintained city roads.

A second popular method in road detection applications is the use of color or
brightness information to segment the road, enhanced by some feature extraction
process like edge detection to extract the road boundaries. Such efforts are presented
in [114], [115] using unsupervised and supervised Bayesian segmentation
respectively. Watershed segmentation is used to differentiate the road from the
background [116], based on gradient information. Edge information for road
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boundary detection has also been used in [117-120]. In [118] edge and area
information is combined to achieve fast and robust results in urban traffic scenes.
Such algorithms are usually fast and accurate in well-controlled environments,
however they have not been thoroughly tested in adverse conditions therefore their
accuracy in ill-defined road boundaries is not guaranteed. A very challenging issue
that often deteriorates the results of such methods is the presence of shadows, which
is a very common condition in real-life road scenes.

To improve road detection accuracy and robustness to shadows, many researchers
have utilized more complex methods, by processing information related to optical
flow [121], [122] and stereo vision acquired from camera pairs [123-127]. Among the
most recent stereo vision methods a homographic approach is induced in the road
plane and formulated as a maximum a posteriori problem in a Markov Random Field
and presented in [127]. This formulation allows for the implementation of an
optimization algorithm alternating between road detection and learning the optimal
parameters from the current stereo image pair. In [128-130], the a-priori knowledge
of a road model is used to validate regions of interest as road. Additionally, many
researchers propose the use of illumination invariant color spaces, like the well-
known HSI [131], or the training-based illumination invariant color space proposed in
[24], used along with a likelihood-based classifier to achieve road segmentation. The
method presented in [24] has also been applied in [126], to enable stereo camera head
pose estimation using a featureless registration between the detected roads from two
simultaneous frames acquired from a stereoscopic pair of video cameras. A
supervised training algorithm is used to construct a probabilistic road model and
combine visual information with a posteriori probability to acquire a “roadness” map
in [132].

From the study of the literature, several important conclusions can be drawn:

i) The accuracy of the road detection algorithms depends mainly on the
background complexity and the environmental conditions adversity.

i1) Algorithms that oversimplify the problem decrease the response time, but tend
to produce poor results in adverse conditions, complex, or unstructured
environments.

ii1) The use of extended set of features, like motion or depth descriptors, increases
robustness but results in slower processing times, especially for large video
resolutions.

iv) Many approaches don’t take advantage of information that derives from the
nature of the problem, i.e. the use of video instead of still frames, or using
information about the camera setup in the vehicle to focus the road detection on
areas that are expected candidates, i.e. excluding the upper part of the frames.

v) The videos used for assessment are rarely made publicly available and usually
tend to exclude adverse conditions like heavy rainfall, fog, snow, night driving
etc. In excellent weather conditions and well-structured environments i.e.
highways with distinct lane markings, the road detection problem can be solved
efficiently with minimal computational complexity effort.
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However, as weather conditions deteriorate and more complex environments are met,
i.e. narrow city roads in traffic, urban roads with tarmac anomalies, etc., the road
detection problem becomes increasingly difficult. Additional effects like reflections
on the windshield, large number of shadows, night driving, foreign particles on
camera lenses, etc., their synergy and the requirements for real-time response and
cost-effectiveness, make the problem of road detection using a single on-board
camera even more challenging.

The aim of the proposed system is to perform RD using a monocular color video
camera, minimizing the required assumptions and processing the relevant information
of the driving scene. Neither road lanes nor road models are used as they are
problematic in cases like dense traffic, dead ends, poorly maintained roads etc.
Furthermore, the adopted training methods are efficient, avoiding non-parametric
models which require a vast amount of training video scenes in the great variety of
adverse driving conditions.

7.3 System overview

The road detection system is based on the information captured by an on-board
monocular color video camera. The camera is placed on an elevated position on the
windshield of the vehicle and it does not disturb the driver’s field of view. The
hardware setup in the proposed approach is important mainly for the initialization of
a-priori spatial information, namely the area of high road probability and the area of
high non-road probability.

The brightness of the pixels is processed in pairs of consecutive frames to extract
spatiotemporal information that will be used to define road and non-road pixel seeds.
The seeds are fine-tuned using the segmentation results from the previous frame and
used by the RWA for the estimation of the road pixels.

In the segmentation process, the RWA solution of the Dirichlet problem [47] is used.
This approach significantly reduces the computations, while providing the same
segmentation accuracy as the classic RWA [48], [49]. The implementation details and
the rationale of using the RWA have already been discussed in Chapter 2.

However, the inherent supervised nature of the RWA remains a significant problem
for its incorporation in a road detection system. To tackle this situation, optical flow
information combined with spatial and previous road segmentation information is
used to define at each frame a robust set of seeds. Hence, the segmentation process
becomes completely automated, relies only on dynamic information extracted from
the on-board camera, the a-priori knowledge derived from the camera setup and the
previous frame segmentation results. The RWA estimates a probability map for all
pixels in a video-frame, and the pixel-based segmentation process is completed after
thresholding the probability map.

The functional overview of the proposed system is demonstrated in Figure 62 along
with some descriptive test images.
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Figure 62 : Flowchart of the proposed Road Detection System.

More specifically, the proposed system comprises the following steps:

a) A-priori information about the expected position of the sky in the frame is
estimated after the camera is installed in the vehicle. This area will be used to
assist in discrimination of non-road candidates.
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b) Consecutive pairs of frames (¢, t-1) in the cic,c3 color space are processed, to
extract motion information.

¢) The c; channels from both frames are used to estimate the Horn - Schunck optical
flow magnitude matrix, from hereon called HSC1 flow.

d) The HSC1 flow is thresholded using the Otsu technique, to discriminate high
HSC1 flow non-road areas (obstacles) from low HSC1 flow (textureless)
surfaces, therefore road candidates.

e) High HSCI flow non-road areas are combined with the a-priori sky region of
step (a) to define the non-road seeds.

f) The road detection result from frame ¢-1 is used to construct the perimeter of a
trapezoid. The pixels of this trapezoid are defined as road seeds, unless they
already belong to the non-road seeds set.

g) The RGB image of frame ¢ is downsampled to a lower resolution to reduce the
computational complexity of the RWA.

h) The image from (g) and the seeds defined in (e) and (f) are used by the RWA to
estimate the road probability at each unlabeled pixel of frame .

1) The probabilities matrix is thresholded, the resulting image undergoes a hole
filling process [83] and then is upsampled to the original resolution.

The proposed feature extraction process can be separated into two independent

processes, which can be implemented in parallel:

i) The automatic seed selection process, combining a-priori spatial information,
previous frame road detection results and spatiotemporal information. It
comprises a color space transformation followed by the optical flow estimator
and the Otsu thresholding process.

i1) The resolution of the image is reduced using bicubic interpolation and used by
the RWA for constructing the L, matrix of Eq. 2.32.

7.3.1 Spatiotemporal seeds definition

In the proposed system the road seeds are located in a predefined area in front of the
car and the lower part of the frame. These pixels must exhibit similar mobility in
terms of optical flow magnitude and they also must have high probability of
belonging to the road surface in the road detection process applied to the previous
frame. The background or non-road seeds are located in a predefined number of
rows on the top of the frame, depending on the position and viewing angle of the
camera and on pixels that should also have similar optical flow magnitudes, which
differ from the ones of the road seeds. Based on the aforementioned definitions, the
seed definition can be divided into three parts.

First, the a-priori information derived from the nature of video based road detection
is applied. The seed selection has been dependent on camera characteristics and the
expected seeds positions must be updated every time the camera position, focal length
or camera lenses are changed. Depending on the elevation and angle of view, a
number of rows in the top part of the frame are arbitrarily defined as non-road seeds.
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As shown in Figure 62, these rows typically comprise the sky surface. Furthermore,
the road seeds could, based on the camera setup, its characteristics and the nature of
the problem, be placed on a trapezoid perimeter in the bottom part of the image. The
trapezoid shape, which is initialized manually once the camera is setup, is based on
the typical structure of the unobstructed straight road as it appears in images taken
from inside a vehicle.

However, the size and coordinates of the trapezoid do not remain fixed, but should be
calculated based on the road detection result derived from the previous frame, as the
vehicle start moving. More specifically, as depicted in Figure 63, let R be the centroid
of the detected road in the previous frame and the upper bound defined as the
horizontal line passing from the road pixel with the highest vertical coordinate. Also,
let N be the pixel of the upper bound line which has the same vertical coordinate (Yc)
as the centroid. The bottom base (CD in Fig. 3) of the trapezoid is the same as the
base of the road in the previous frame. The upper base of the trapezoid (AB in Figure
63) 1s equal to the perpendicular distance of the centroid to the upper bound (RN).
Finally, the height of the trapezoid is such that its upper base is equidistant to the
centroid of the previous road and the upper bound of the previous road. The process
described ensures that the road seeds placement is performed dynamically for each
frame, taking into account previous results. Furthermore, the placement of the center
of the upper base, subject to the location of the centroid (both placed at column Yc, as
shown in Figure 63), makes the placement more adaptable for curved roads. Finally,
the proportionate length of the upper base of the trapezoid to the perpendicular
distance of the centroid to the upper bound, leads the trapezoid to be more adaptable
to the shape of the road detected in the previous frame. A typical image with the

geometrical properties used to define the road and non-road seeds, is shown in Figure
63.

/ R.{J(c Ye) \

Figure 63 : Geometrical properties used for road (red trapezoid) and non-road seeds definition.

The definition of the seeds is completed by incorporating spatiotemporal
information to detect non-road pixels belonging to obstacles like vehicles,
pedestrians, trees, etc. This type of detection is rather difficult to implement without a
stereo vision sensor that could offer structure information. However, in the proposed
system a modification of a well-known optical flow algorithm is used to tackle this

92



Road Detection

problem. Taking into account that the road is generally textureless, many sparse
optical flow algorithms compute low motion values. Thus effective discrimination of
the road from obstacles lane markings and shadow edges can be achieved. This
behavior can be characterized as flawed when accurate optical flow estimation is
needed; however it proves useful for discriminating road and non-road pixels.

A classic optical flow algorithm that can behave as mentioned, especially when
stopped after few iterations, is the one proposed by Horn and Schunck [40]. This
method is also fast enough for applications like road segmentation. Its main
disadvantage for this application is that it is based on grayscale images, due to the
brightness flow smoothness assumption, leading to high sensitivity to shadows and
illumination changes. In order to tackle this problem, the proposed system uses the c;
channel of the c;c,c3 color space introduced in [35], which is derived by

iy

1 .’ ) = t - i, ]
¢, (i, j)=arc an(maX{G(l’J)’B(l’J)}

where R, G, B are the red, green and blue brightness value of pixel (i, ). This channel

was experimentally found to be the most efficient color channel among the separate
channels of CIE-L*a*b*, HSV, YCbCr and RGB color spaces to replace the
brightness channel used for robust optical flow estimation in the presence of shadows
[40]. Using the c; channel for the estimation of the horizontal (1) and vertical (v)
optical flow velocities, Equations 2.16 and 2.17 are transformed to
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where the superscript k denotes the number of iterations, V. and V' are the average

velocities of the last k iterations, a is a regularization constant and Cy,, C;,, C, are the
normalized gradients of channel c; brightness estimated as described in [40], i.e. it has
been linearly transformed to a [0,1] space. The optical flow calculated using the
aforementioned color space will hereafter be called HSC1 flow (Horn Schunck
optical flow using the c; color channel). The number of iterations for the HSC1 flow
estimation was set to 1, leading to a low computational complexity, spatially sparse
result. In the experimental section it is shown that any number of iterations between 1
and 5 is sufficient.

A very descriptive example of the HSCI effectiveness is shown in Figure 64(c),
where a great portion of the road pixels located on the edges of shadows appear to
have high optical flow magnitude values when using the method as described in [40].
As shown in Figure 64(d), the HSC1 flow is definitely more reliable than the classic
Horn Schunck optical flow for the discrimination between road and non-road seeds.
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(c) (d)

Figure 64 : (a), (b) Two consecutive frames in the presence of shadows. (c) Normalized optical flow magnitude for
grayscale images, (d) normalized HSC1 flow magnitude. Both flow magnitude images were estimated for a=15 and k=5
iterations. Bright pixels denote high optical flow magnitudes.

All the pixels in the image with HSC1 flow magnitude greater than a threshold are
defined as non-road seeds. These pixels are removed from the road seeds set if they
are located on the trapezoid perimeter that was calculated in the previous step. The
adopted thresholding method is the Otsu algorithm described in [37]; a very popular
choice in thresholding images with bimodal histograms, i.e. typical two-class
segmentation problems. This is apparently the case in the HSC1 flow magnitude
thresholding problem, as shown in Figure 64(d), where the high brightness pixels are
the non-road class and the low brightness pixels contain both road and non-road
pixels. Using Otsu’s algorithm to calculate a threshold #h, that separates the high and
low HSC1 magnitude pixels, yields

high, if \|V.> +V.? > 1th
HSCl= , 7.4
low, if V> + Vy2 <th

where Vv, V, are the horizontal and vertical HSC1 flows as estimated using Equations

y

7.2 and 7.3respectively.

Once the thresholding operation is complete, the non-road seeds are updated to
include both the a-priori defined “sky region” and the high HSCI1 flow class. In
addition, the road trapezoid is refined by excluding all non-road seeds that are placed
on its perimeter and keeping only long connected segments of the perimeter as the
road seeds class, i.e. removing very small line segments that are very close to the non-
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road seeds and usually belong to an obstacle rather than the road. This refinement is
performed in order to incorporate spatiotemporal information in the road seeds
definition. As a result, the trapezoid area defined as road could become open instead
of closed, thus forcing the RWA to decide what happens when moving obstacles
disrupt the drivable area, leading to efficient handling of near obstacles. Some typical
results of road and non-road seeds definition in various conditions are presented in
Figure 65. The results show that this approach of seed selection is very robust even in
challenging conditions. Some problems occur from the large number of falsely placed
non-road seeds only in extreme cases of rainfall where visibility is extremely reduced.

Figure 65 : Non-road (blue pixels) and road (red pixels) seeds using the proposed method in various conditions.

7.3.2 Image Resolution Reduction

Despite being fast, the adopted RWA implementation is still the computational
bottleneck of the proposed system and the reduction of the image resolution to be
segmented was explored, to further reduce the RWA processing time. A spatial
reduction not only does not deteriorate the accuracy of the road detection algorithm
but on the contrary, as shown in the next section, increases the road detection quality.
The optimal results were observed for images half the size of the originals (160x120
pixels instead of 320x240). The trade-off between road detection accuracy and RWA
processing speed is also discussed.

7.4 Experimental results

Three types of video recordings are used in the evaluation experiments:

i) typical road scenes used for qualitative results (datasets Patras] and DIPLODOC),

ii) fully adverse conditions recordings used for qualitative evaluation in challenging
environments (from the datasets Patras1 and Patras2 as described in Chapter 1),
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iii) mixed conditions recordings with ground truth annotation (DIPLODOC dataset)
used for quantitative evaluation of the proposed road-detection system in
comparison to [123], [128] and

iv) challenging conditions recordings with ground truth annotation (Alvarezl and
Alvarez2) used for quantitative evaluation of the proposed road-detection system
in comparison to [24].

7.4.1 Qualitative Road Detection results in normal conditions

The system was initially tested in videos shot under normal weather lightly adverse
conditions, and mid-day illumination conditions, with the car speed limited to (20-
120) Km/Hour. The goal was to evaluate the proposed method in typical conditions,
especially in terms of classification correctness. The videos that were classified as
having been shot under normal conditions were acquired primarily on daytime
without intense sunshine, so that only soft shadows appear in the video scenes. These
conditions along with well-structured roads and clear road boundaries produce
excellent road detection rates as shown in Figure 66, where a set of road detection
results in such conditions is demonstrated. Some temporal inconsistencies might be
encountered for image areas with road probabilities near the threshold of 0.5. These
can be removed by updating the segmentation probability threshold, instead of the
fixed value of 0.5 used in the proposed algorithm. However in the few cases where
such inconsistencies are met, they concern scene areas that are not close to the ego
vehicle, therefore the significance of the error is lower.

Figure 66 : Road detection results in normal driving conditions using the proposed system.

7.4.2 Qualitative Road Detection results in adverse conditions

The quality of the proposed road detection system is assessed in more adverse
conditions with very promising results. Although a quantitative approach is very hard
due to the overwhelming variety of adversities in real driving videos, some useful
deductions about the advantages and disadvantages of the proposed system can still be
drawn by examining the qualitative results in adverse conditions or challenging
environments:
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The presence of shadows is handled effectively, especially in cases where they
are close to the ego-vehicle. More specifically, in some cases where the ego-
vehicle moves from a sunny area to a shadowed area of the road, or vice-versa, a
false detection result resembling the one generated when the ego-vehicle passes
over a speed bump is produced. This means that the detected drivable area in front
of the ego-vehicle gets smaller, until the trapezoidal seed area forces the RWA to
include the more distant part of the road, classifying it correctly as belonging to
the road. Examples of successful road detection in scenes with shadows are
demonstrated in Figure 67 (a) through (d). One example of the partially
problematic result mentioned above is shown in Figure 68(a). However the system
quickly adapts and when the ego-vehicle gets closer to the shadow, the shadowed
area is correctly recognized as road as shown in Figure 67(d).

The case of passing through tunnels or bridges is a typical problem in such
systems, due to the sudden illumination changes when entering or exiting. The
proposed method appears robust in such scenarios and gives results that are
temporally adaptable. More specifically, when entering tunnels, the detected
drivable area in front of the ego-vehicle falsely reduces in size (Figure 68(b)), but
only for a few frames; when the car enters the tunnel and the camera gain
automatically adjusted to the lighting conditions, the proposed system re-estimates
the road area using the new frames information producing reliable results as can
be seen in Figure 67(e) and Figure 67(f). The opposite effect is met when exiting a
tunnel, where the saturated area of the image frame at the exit of the tunnel might
be misclassified as road surface. This effect also lasts a couple of frames before
the analog circuits of the camera adapt the acquisition gain to the illumination
change. After gain correction the proposed method produces reliable segmentation
results.

iii) Qualitative results in rainy conditions have also been included in the assessment

of the proposed method. In cases of light rainfall, the system provides excellent
segmentation accuracy. Road detection accuracy is reduced in case of heavy
rainfall combined with ineffective camera position, i.e. above the effective area of
the windshield wipers (Figure 68(c)). If the field of view lies in the effective area
of the windshield wipers, the segmentation accuracy is quite satisfactory except
from the frames where the wipers pass in front of the camera (Figure 68(d)).
However, this is a temporary error and the algorithm recovers in next frames. A
more sophisticated approach would be to post-process the segmentation result
taking into account information about the movement of the wipers masking the
wiper area, or using previous frame information. Heavy rainfall also can cause
some holes in the detected road area, because large raindrops produce high HSC1
flow rates (Figure 67 (h) and Figure 68(c)). This problem can be tackled by the
addition of a post processing step of image hole filling, but this could result in
misclassification of small obstacles as road.

iv) The scenario of night driving is handled efficiently, depending on the lighting

conditions of the scene, as well as on the sensitivity of the optical sensor. When
the scene is sufficiently lit and the camera depicts night scenes efficiently, the
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algorithm performs very well (Figure 67(i)); however in the case of badly lit
scenes in conjunction with an optical sensor with low quality performance in night
scenes, there appears to be some degradation in segmentation quality (Figure
68(e)). This is a problem that might be handled more efficiently with the use of
infrared cameras, but the proposed system was not tested with such data.

v) Road detection accuracy is also affected by the blocking effect caused by video
compression algorithms. This might cause high HSC1 flow values in areas that

should normally appear textureless, thus causing the algorithm to include non-
road seeds on the road surface. Such an example appears in Figure 68(f).

(® (h) )

Figure 67 : Successful road detection results in adverse conditions. (a)-(d) Various scenes with heavy shadows, (e) passing
through a tunnel, (f) passing under a bridge, (g), (h) rainy conditions and (i) night driving.

Some of the less successful detections described in detail above, are shown in Figure
68. In most cases, the system improves the detection result significantly in the next
few frames.

Apart from the results discussed in this subsection, the proposed system also showed
robust in cases where the camera shakes at times, as well as in cases of driving in
roads with many turns. These scenarios, as well as more qualitative results in different
video formats can be viewed at: http://www.wcl.ece.upatras.gr/en/gsiogkas.
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) (e) ®)
Figure 68 : Less successful road detection in particularly challenging conditions. (a) Approaching shadowed road, (b)
entering tunnel, (c) heavy rainfall with camera above the effective area of the wipers, (d) wiper passing in front of
camera, (e) night driving in badly lit road, (f) misclassification due to high rate video compression.

7.4.3 Quantitative Road Detection results in mixed conditions

The proposed system was quantitatively evaluated using the five manually annotated
video streams from the DIPLODOC dataset provided in [23], including mixed
condition scenes. The efficiency of the proposed road detection system was directly
compared to [123], [128] giving better segmentation accuracy. The comparison is
based on the metrics of quality, recall and precision, presented in sub-section 1.7.3.

Using the aforementioned measures, [123] report several experiments using a method
based on stereo vision, achieving an average quality factor over the five videos
between 85% and 90%. These results are achieved with neither the correctness nor the
completeness ever dropping below 90%. In fact, the trade-off between correctness and
completeness almost reached 95% along the diagonal of a plot of these two measures.

In [128], P. Lombardi et al have reported that the monocular road model switching
method proposed achieved quality results that fluctuated from approximately 60% to
95% through the entire video stream. Unfortunately, the mean values of the quality
measures were not reported, instead three plots demonstrating the aforementioned
quality of several experimental setups for all the frames were provided.

When the frame-by-frame performance is measured, the proposed system achieves a
quality fluctuation from 74% to 99%. It is clear that the proposed road detection
system outperforms the efforts in both [123] and [128]. A comparative view is given
in Table 9. The statistics of the proposed method have been estimated using the best
system setup and parameter settings, which are: resizing of the frame to be segmented
to 160x120 pixels, optical flow estimation for a=3 and iteration number k=1 and
p=T70 for the RWA.
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Table 9: Overall performance of proposed RD algorithm compared to [123] and [128].

Method in [123] Method in [128] Proposed Method
Mean 85% ~ 90% N/A 92.8%
n Std N/A N/A 3.6%
Quality, g
Min N/A 60% 74.0%
Max N/A 95% 99.1%
Mean N/A N/A 95.7%
Recall, R
Std N/A N/A 3.5%
Mean N/A N/A 96.9%
Precision, P
Std N/A N/A 2.7%

For a more qualitative view of the results, each of the video streams should be
observed and analyzed separately, because the driving conditions among videos differ
significantly, as shown in the five columns of Table 10.

Table 10 : Description of DIPLODOC video streams conditions

Sequence Number Frames Environment / Traffic Vehicles Shadows Lighting
1 451 Suburban/light 4 Yes Sunny
2 150 Suburban/none 0 Yes Sunny
3 100 Suburban/light 2 Yes Sunny
4 60 Urban/dense 6 No Gloomy
5 104 Highway/light 2 No Sunny

In Table 11, the accuracy of the proposed road segmentation method shows
robustness in all DIPLODOC sequences, achieving mean segmentation quality above
92%, with a small inefficiency in sequence 3, where the mean quality drops to 89.9%
affected by a low completeness rate (93.5%), caused by increased false negatives rate.
The standard deviation (Std) of the quality never raised above 3.7%.

Table 11 : Performance of proposed RD System in DIPLODOC video streams

Sequence Number 1 2 3 4 5

. Mean 92.8% 92.9% 89.9% 93.4% 94.8%

Quality, g
Std 3.7% 3.7% 3.1% 2.0% 2.2%
Mean 96.1% 97.1% 93.5% 93.7% 94.8%

Recall, R
Std 3.7% 3.3% 3.0% 2.1% 2.2%
Mean 96.5% 95.5% 95.9% 99.7% 99.9%

Precision, P

Std 2.6% 2.5% 2.0% 0.1% 0.1%

A simplified presentation of the proposed method limitations is shown in Figure 69.
Low quality scenes from video stream 3 of DIPLODOC dataset are annotated
according to three quality measures; true positives are yellow, false positives are red
and false negatives are green.

These images show that some errors present some level of subjectivity, like in the first
row, where a parking space on the left is treated by the human annotator as non-road.
A different case is presented in the second and third column, where the region near
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the motorcyclist is treated as non-road by the algorithm even one frame after his
departure from the scene. The non-zero HSC1 flows of that area are known also as
ghosting effect. An argument could be made that such a result is useful because it
warns the driver that the area on the left is not safe, even 1/ 15" of a second after the
crossing of the motorcycle, which could, depending on its speed, be on the left of the
ego-vehicle. A speed of 60km/h by both vehicles would mean that their distance is
changed by approximately 2.2m per frame, justifying a warning event. In the last
example, a consistent false negative error appears on the right, due to the presence of
the thick road line. This is a common deficiency of such algorithms and can be dealt
with a post-processing phase that includes detection of road lines in the segmentation
map.

Figure 69 : Qualitative results in frames with low quality rate. Yellow: TP, Green: FN, Red: FP.

7.4.4 Sensitivity analysis of proposed RD system in mixed conditions

The proposed system performs satisfactorily in all the sequences and for all settings
used in the experiments, including the parameters a, k for the optical flow, f for the
RWA and several reduced image sizes. Extensive experiments were also conducted to
assess the influence on the system accuracy from a change in the color space of the
frame used in the RWA and the brightness normalization process performed after
image acquisition.

More specifically, the experiments carried out on the DIPLODOC sequences concern
the following settings using:

1) (a, k) =(3,1), (7,3), (10, 3), (15, 5) for the optical flow estimation,

2) p=170, 90, 110 for the RWA segmentation,

3) the RGB, CIE-L*a*b*, HSV and YCbCr color spaces for the RWA segmentation
and

4) resolution of 320x240 (original size), 160x120 (1/2 size), 80x60 (1/4 size), 64x48
(1/5 size) and 40x30 (1/8 size) for the RWA segmentation.
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The best experimental results are derived by altering the first three sets of parameters
and keeping the spatial resolution at 160x120, where better segmentation accuracies
are achieved. In all experiments, the best segmentation accuracy of 93.1%, was
achieved using (a, k) = (3, 1) for the optical flow, RGB color space for the RWA,
which gave the best results for f=70. The next best results are obtained using the
YCbCr color space. The selection of L*a*b* as a color space resulted in significantly
worst segmentation accuracy, of approximately 88.6%, affected by the low
correctness rate of 90.4%. Similar results were encountered for the HSV color space.
Generally, in the experiments with greater values of a, k and £ lower segmentation
quality is measured. Some of the results described above are summarized in Table 12.

Table 12 : Segmentation rate of the proposed RD system in DIPLODOC sequences for different setups

g R P

Color Space (o,k,B) Mean (%) Std (%) Mean (%) Std (%) Mean (%) Std (%)
(7.3,70) 923 44 96.8 33 95.2 40
(7.3.110) 92.1 47 96.8 33 95.0 44
LXEIE (15.5.70) 92.1 46 96.7 34 95.1 4.1
(15.5.110) 91.9 47 96.7 34 95.0 44
(7,3,70) 88.6 6.6 97.9 29 90.4 72
CIE. (7.3.110) 88.5 6.9 98.1 2.8 90.2 74
L*a*b* (15.5.70) 88.3 6.7 97.8 3.1 903 7.3
(15.5.110) 88.2 6.9 97.9 3.0 90.0 74
(7.3,70) 88.6 7.5 98.0 29 90.5 8.1
(7.3.110) 88.7 74 98.1 2.8 90.4 8.0
SN (15.5.70) 88.4 74 98.0 3.0 90.4 8.0
(15.5.110) 88.4 74 97.9 29 90.2 8.0
(7.3,70) 922 45 96.8 33 95.2 40
(7,3,110) 920 46 96.9 33 94.9 44
YCbCr (15,5,70) 92.0 46 96.6 34 95.1 41
(15.5.110) 91.9 46 96.7 34 94.9 44

Additional experiments were carried out to assess the contribution of each of the seed
selection cues to the quality of the road segmentation. More specifically, a run for the
entire Diplodoc sequence was performed using the optimum resolution of (160x120),
and (a, k, f) = (3, 1, 70) settings, for all possible combinations of: i) the a-priori sky
region being used or excluded, ii) the road trapezoid being selected based on the result
of the previous frame, or being selected by the user in the first frame and remaining
stable for all frames and iii) the HSC1 flow being used or not. The experimental
results from these experiments led to the following conclusions:

1) the a-priori sky region included in the non-road seeds class benefits mainly the
segmentation speed of the algorithm, as it can enhance it by almost 10%, when the
sky seeds are placed in the top 20% of the frame. In terms of segmentation quality,
the sky region does not seem to have any quantitative influence.
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2) The segmentation quality is improved when both previous frame road-pixels and
HSC1 flow information is processed by the RWA (4% better than static trapezoid).
When the RWA derives the road pixels without HSC1 flow data, the static road
trapezoid produces a higher correctness rate, influencing the overall quality (both
measures are raised by approximately 9%).

3) The use of HSC1 flow information is beneficial in all cases, improving the quality
result by a minimum of 4%, affected mainly by the correctness improvement.

A final experiment was carried out using a filled trapezoid for the road seeds instead
of its perimeter. In this case, the initialized seeds covered approximately 60 to 70% of
the frame (20% for the sky, 30 to 40% for the road and up to 10% for the obstacles),
leading to a reduction of the processing time of 10 to 15%. However, this
experimental setup is deficient especially in cases where a preceding vehicle is in the
trapezoidal area; this has the effect of large portions of the vehicle to be misclassified
as road, leading to a deterioration of the correctness.

7.4.5 Quantitative Road Detection results in challenging conditions

The RD system was also assessed under more challenging conditions, using the two
video streams Alvarezl and Alvarez2 provided by Alvarez et al for the purposes of
[24] and described in Chapter 1. The two video streams contain driving scenes after
rain and in the presence of very dense shadows, two factors that make the RD task
quite difficult. The results reported by Alvarez et al were measured in terms of the
effectiveness metric, F, presented in section 1.7.1, reaching an average value of
F =0.8945+0.0028 and an average standard deviation of &, =0.1001+0.0082. The

fluctuations are due to the fact that their method is training-based; therefore the
effectiveness was estimated using a cross-validation process.

Using the setup that was described for the DIPLODOC sequence, the proposed RD
system achieved directly comparable results, even though it does not include any
training phase as the one presented in [24]. More specifically, the proposed RD
system reaches an average value of £ =0.8885, with an average standard deviation of
6, =0.0084 when operating with the original image resolution. The aforementioned

results were achieved with a very high correctness/precision rate, but a low
completeness/recall rate. Another disadvantage derived by using the original
resolution is the low processing speed achieved, which is approximately 1.7sec per
frame using MATLAB code on a 2.8 GHz Quad Core processor.

When tweaking the setup of our system to balance the precision/recall factor, we can
get results that are far superior to the ones reported in [24]. More specifically, if the
upper base of the road trapezoid is expanded by a length equal to 20% of the bottom
base (10% in each direction), and the probability threshold for the RWA result is
dropped to a lower level (e.g. 0.2), the detection efficiency of the proposed RD system
rises above 0.9. The first change made, i.e. the expansion of the upper base length,
cannot be considered a "tweak", since it is a heuristic variable, based on the camera
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setup. However, lowering the probability threshold #, below the value of 0.5 is
somewhat counterintuitive, since theoretically for equal a-priori probabilities the best
RWA segmentation results for two classes' segmentation should be achieved by
setting the threshold to the value where the minimum classification error rate is
achieved, i.e. by half the maximum probability.

The automated seed selection process of the proposed algorithm significantly
influences the optimum threshold value and, hence the better results are achieved for a
lower than 0.5 threshold. All results that are reported in this section were obtained
using an image hole filling post-processing stage for the thresholded RWA result, so
that the proposed method is directly comparable to [24], which also uses such a
module.

The final results achieved by three different setups of our system for the original
resolution of 640x480, compared to those reported in [24] for their method and the
method inspired by [131] and [133]are demonstrated in Table 13.

Table 13 : Overall performance achieved by proposed RD algorithm compared to [24] and [131], [133].

Method in [24] HSI Method Proposed Proposed Method Proposed Method

inspired by Method with with longer upper with longer upper

[131], [133] 6.4.3 setup base and 7 = 0.5 base and 7, = 0.2
Efficiency, | Mean | 0.8945+0.0028 | 0.6206 + 0.0003 0.8885 0.9070 0.9216
F Std 0.1001 =0.0082 | 0.0343 +0.0002 0.0840 0.0757 0.0634
Quality, Mean N/A N/A 0.8081 0.8374 0.8603
8 Std N/A N/A 0.1167 0.1106 0.0963
Mean N/A N/A 0.8162 0.8501 09113

Recall, R

Std N/A N/A 0.1220 0.0352 0.0979
Precision, | Mean N/A N/A 0.9908 0.9859 0.9455
P Std N/A N/A 0.0028 0.1171 0.0798

From the results of Table 13, it is evident that the setup used in the proposed system
in the previous section is not optimal for every problem. Minor adjustments of the
settings can lead to great performance improvements, thus making the most successful
setup to outperform the method in [24] by approximately 0.025 in terms of efficiency.

7.4.6 Selection of optimal resolution for the RD system

One of the most important problems in designing road detection applications concerns
the selection of the optimal image resolution in the segmentation process. The
adopted spatial resolution has a dramatic effect in both the quality and the speed of
the system. In very small resolution, the segmentation quality is decreased due to
information loss, while using very large images increases the computational
complexity, while there is no guarantee of achieving better segmentation results.

Extensive quantitative experiments have been conducted in the DIPLODOC video
streams with an original size of 320x240 to study the effects of frames re-sampling to
a lower resolution before using them in the RWA. The experimental results for the
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setup that achieved the best overall quality are given in Table 14, together with the
average processing time per frame. The results reported were achieved using
MATLAB code on a 2.8 GHz Quad Core processor, Windows 7 OS, without any
parallelization. The only part of the code that is not native MATLAB is the Horn
Schunck optical flow calculation, which was written in C and compiled as a
MATLAB executable file.

The experimental results from the DIPLODOC sequence demonstrate that the best
segmentation quality is achieved when the RWA process images half the original size
(160x120). The system using this resolution reaches a frame rate of approximately
10fps, giving 101ms processing time per frame. Real-time response at 15 fps is
achieved for image resolution of 80x60. In this case the segmentation accuracy is
decreased by a 1.5%. Among the most impressive advantages of the proposed RD
method are the robustness of the correctness and the completeness rate, which are
always greater than 96.5% and 91% respectively.

Table 14: Results achieved for various resolutions of DIPLODOC video streams.

Resolution 320x240 160x120 80x60 64x48 40x30
Quality, § Mean 92.5% 92.8% 91.3% 90.3% 88.3%
Std 3.7% 3.6% 4.3% 4.5% 5.3%
Mean 95.5% 95.7% 94.3% 93.3% 91.1%
Recall, R

Std 3.8% 3.5% 4.2% 4.5% 5.8%
Precision, P Mean 96.8% 96.9 % 96.7% 96.7% 96.7%
Std 3.0% 2.7% 3.1% 3.2% 3.1%

Processing time per frame (ms) 350 101 62 59 56
Frames processed per second (fps) 29 9.9 16.0 16.9 17.8
T "";;z{ LUEL e 295/4 45/4 11/4 /4 3/4

The RWA module is the computational bottleneck of the proposed system, requiring
approximately 1.7s when the original resolution of 640x480 is used. When frame
resolutions lower than 320x240 are used, the solution of Equation 2.35 is handled
efficiently using Cholesky factorization of the large sparse symmetrical matrix
involved and the processing time spent on the RWA gradually stops being
problematic for real-time implementations, as we can see in the last row of Table 14.
The processing time spent on the optical flow calculation is generally acceptable for
the purpose of an ADAS.

7.5 Conclusions

In this chapter, a training-free RD system based on a novel automated version of the
RWA utilizing temporal, spatial and a-priori information was proposed. The system

105



7.5 Conclusions

was extensively tested, both qualitatively and quantitatively, using real on-board
video streams shot in various weather, illumination and driving conditions.

The novelty of the proposed system lies on the utilization of shadow-resistant optical
flow estimation along a-priori spatial information and previous segmentation results
to automate the RWA for usage in the RD problem. The system designed showed
robustness in many environmental conditions and has the ability to operate in real-
time in typical roads, or the presence of lane markings. It also does not require any
training, or post-processing module.

The system was evaluated experimentally achieving results superior to other methods
tested on the DIPLODOC dataset, [123], [128]. It also proved more efficient than the
method presented in [24], compared in the same challenging dataset. Shadows,
irregularities of the road surface and vehicles are handled efficiently. The proposed
approach can process video signals acquired from different types of video cameras,
including low cost ones, at different viewing angles, because all this information is
adjusted by calibrating the a-priori areas that will be used in the seed placement
process.
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Chapter 8

Conclusions and Future Work

8.1 Introduction

This thesis has presented and evaluated four computer vision based algorithms that
can be used as separate subsystems in a complete ADAS. The problems tackled were
traffic signs detection, traffic lights detection, preceding vehicle detection (both in
single images and in videos) and road detection. All the methods developed for the
purposes of this thesis were published in international conferences and journals,
proving their credibility and novelty.

The most special focus of the dissertation was split on preceding vehicles detection
and road detection, two of the most popular areas of interest in modern ADAS
research. The discussion presented in this chapter will point out the novelties of all the
methods developed, pinpoint the issues that are still open and suggest future work on
enhancements or evolution of the methods.

8.2 Traffic Sign Recognition

8.2.1 Proposed TSR system

The implementation of a TSR system was the first problem visited during this
dissertation. The system was split into two sequential stages; the detection and the
classification stage. The detection phase of the system implemented was based on
color symmetry information combined with a spatiotemporal technique that reduced
the size of the windows to be searched in the video frames, hence improving the
processing time performance of the system. The classification stage involved the
usage of two empirically selected, cross-correlation based classifiers for comparison
of the detected traffic signs with the templates included in a large dataset of the most
common signs.

8.2.2 Performance evaluation

The proposed TSD system demonstrated a very high TS detection rate for videos shot
in various conditions. The combination of color and radial symmetry proved to be a
very good choice for the problem at hand, even for traffic signs that were not circular.
The spatiotemporal stage of the algorithm also played an important role in the
correctness of the results, rejecting many false positives and focusing the search on
more conspicuous areas of the image frames. The detection module provided some
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very promising results even in cases of partial occlusions, or very badly illuminated
scenes, especially due to its usage of the CIE-L*a*b* color space.

The results achieved from the detection stage were fed to a classification module,
deploying the two aforementioned classifiers. The cross-correlation classification
performed achieves results that are very satisfying given the facts that they use solely
visual information and they use almost all the traffic signs of the E.U. However, the
classification subsystem is still far from being mature enough for commercial
deployment.

Overall, the TSD system proposed in this thesis achieves promising results even in
some more challenging situations and could, potentially, be used as a basis for more
complicated systems, which probably will have to involve some kind of machine
learning approach to improve the classification results.

8.2.3 Real time implementation potential

The proposed system is moderately fast, especially when the input images are of size
less than 720x568 pixels (the original resolution of the video streams used). Its image
processing stage also has many common parts with the TLD and PVD subsystems, a
property that could be exploited in a parallel architecture ADAS to increase the total
processing speed of the system without jeopardizing the quality of the results.

8.2.4 Prospects of the proposed system

The TSR system proposed in this thesis is a fairly simplified example of how
computer vision can be used to tackle problems that are often met in the ADAS
context. While it is promising, it cannot be evenly matched to alternative, more
complex solutions in the literature. Furthermore, pure computer vision systems for
TSR have been slowly giving their place in the market to either GPS TSR systems, or
systems fusing GPS and computer vision. Overall, the fusion of Infrastructure-to-
Vehicle (I2V) communication systems with some computer vision method and the
GPS signal of the vehicle seems to be a more reliable choice. In this context, the
proposed method could be used as a structuring element for such solutions.

8.3 Traffic Lights Recognition

8.3.1 Proposed TLR system

The second subsystem covered in this dissertation is the one performing TLR.
Similarly to the TSR module, the TLR uses radial symmetry and color as descriptive
features for the generation of candidate regions and then implements a spatiotemporal
filtering method to validate the results that belong to TLs. The approach is similar to
the one used in TSR, since the basic discriminative cues for both traffic signs and
traffic lights are color and shape. In the case of traffic lights, the cues are much
stricter since the traffic lights detected must be circular and only have one specific lit
color inside them, which can also be used for their classification.
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8.3.2 Performance evaluation

The TLR system proposed is successful in terms of completeness, since most of the
TLs in the video stream dataset used for evaluation were detected. The problem of the
system is its high rate of false positives, which is reduced but not eliminated by the
spatiotemporal filtering module used. The issue becomes more evident when the
system faces driving in big city roads, especially at nighttime. The biggest advantage
of the TLR system is the lack of a training phase or a model describing the TLs. When
compared with other methods found in relevant literature, it performs comparably in
terms of completeness, but underperforms in terms of correctness. Adverse conditions
are also tackled effectively by the system, with a small deterioration of the results
(raised number of false positives) in the case of night driving, due to the multitude of
light sources.

8.3.3 Real time implementation potential

Our TLR system achieves a near real-time performance, since it achieved a frame rate
fluctuating from 2 to 10 fps. The similarities it has with the TSR system could be
exploited for a parallel architecture implementation based on a common color filtering
process followed by a parallel implementation of the FRST to detect symmetrical
objects. Naturally, the processing performance achieved is also directly related with
the resolution of the video used and the number of radii that are used in the FRST.

8.3.4 Prospects of the proposed system

Similarly to the case of TSR, the proposed TLR subsystem appears promising for the
implementation in real life scenarios, but it still has to be improved in terms of false
positive rates. The fusion with additional sources of information from the driving
scene, like 12V communications or a GPS signal, could further improve the
effectiveness of the system.

8.4 Preceding Vehicle Detection

8.4.1 Proposed PVD system

The PVD system proposed in this thesis has two distinct implementation forms; one
subsystem that aims at PVD using a single image and one PVD subsystem for video
streams.

The single image method, presented in chapter 5, is based on a mixture of radial and
axial symmetry features that define the rear part of vehicles. The radial symmetry is
used in conjunction with a color filtering process for detection of red rear lights that
are consequently paired to define ROIs where a vehicle could exist. Then, the ROIs
are refined by an edge detection algorithm and are checked for axial symmetry to
validate the vehicle candidates. The axial symmetry process is based on a
combination of two object similarity metrics applied on the two sub-images created
when the candidate ROl is split in half along the vertical bisector.
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The video-based PVD method, presented in chapter 6, is based on the same initial
steps, with three main differences: i) the color filtering process is performed in a
different illumination invariant color space, ii) there is no edge detection process
involved and iii) the ROI is confined around the area of the rear lights and does not
cover the entire rear part of the vehicle. When these steps are completed, the detected
ROIs are processed using the results of a Kalman filter, to validate just at most one
result as a preceding vehicle.

8.4.2 Performance evaluation

Both versions of the proposed PVD system were evaluated quantitatively using
publicly available datasets, providing superior results in comparison to other relevant
methods found in the literature. In the case of single image PVD, the results suffered
from a high false positive rate, which was minimized in the case of video based PVD,
due to the Kalman filtering stage. Both methods were also qualitatively evaluated in
more challenging conditions, shown robust accuracy even in cases of rainfall, snow,
or night driving.

More specifically, the single image PVD system presented in chapter 5 outperforms
similar methods when detection rates are compared. However, it appears to produce a
high number of false positives, and also it sometimes fails to verify vehicles that do
not have symmetrical rear views. Also, its reliance on the CIE-L*a*b* color space
sometimes fails to detect all the vehicle rear lights in the image.

The video based PVD system uses a different color space, derived from a mixture of
the channels of the cjcyc3 color space. This color space has experimentally been
shown to produce better initial detection results. Furthermore, the confinement of the
selected ROIs in an area close to the rear lights instead of the whole rear part of the
vehicles improves the verification results for vehicles with less symmetry in their rear
views. Finally, the inclusion of Kalman filtering for the final verification of the
preceding vehicles greatly reduces the false positive rates, without affecting the
detection rates of the system.

8.4.3 Real time implementation potential

Both proposed PVD systems are based on the same basic concepts; hence their
processing speeds are similar. The bottleneck of the systems is the FRST, except in
the case of processing smaller images (160x120) where the bottleneck is the axial
symmetry calculation. The frame rate measured in MATLAB almost reached 7 frames
per second for the case of small images and without any parallelization. Due to the
structure of the proposed algorithm and the nature of the FRST, the overall processing
time could be reduced significantly if a parallel architecture was used. The system
then could perform in real time (at least at 25 frames per second), even using
MATLAB code.
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8.4.4 Prospects of the proposed systems

The proposed systems have been thoroughly evaluated even in challenging conditions
with very promising results. Especially the video based PVD system can be used as a
stand-alone solution, or at least be a part of a more complicated system that uses extra
information from radar or lidar systems to provide even better localization results.
The system assumes the existence of red symmetrical lights in the rear part of
vehicles, so an even stricter legislation when it comes to vehicle manufacturing could
improve its robustness. A possible mixture with a road or lane detector can enhance
the accuracy of the system even further. Finally, since the system relies greatly on
radial symmetry and color filtering, it can be used in conjunction with the previous
systems presented (TSR and TLR) to form a complete ADAS solution.

8.5 Road Detection

8.5.1 Proposed RD system

The RD system is the final one proposed in this thesis, but it has been the most
successful one in terms of accuracy, speed and robustness.

The first processing step of the RD system is the estimation of the color Horn-
Schunck flow of a pair of frames, followed by a thresholding of the result to pinpoint
pixels with high flow (which represent non-road objects). Then, these pixels are
combined with a-priori knowledge about the camera setup and the road pixels
detected in the previous frame to automatically initialize a random-walker process.
Finally the results of the RWA are then thresholded to locate the road area, which will
be used for the RD in the next frame.

8.5.2 Performance evaluation

The RD algorithm proposed in this thesis has been extensively tested and proven to be
superior to several of the alternative methods found in recent literature. The
assessment of the system was based on two publicly available datasets provided by
the researchers whose methods were compared to the one proposed here, therefore the
results are as objective as possible.

Extra qualitative assessment of the proposed system was also carried out, using video
streams acquired for the purposes of this thesis. The results showed that the system
appears robust to particularly challenging scenarios, like heavy rainfall, driving
through tunnels and underpasses, driving in presence of dense shadows, or driving at
nighttime. Finally, the proposed RD system has a very useful quality; it tends to be
adaptive to sudden illumination changes and recover from temporary drops in its
detection accuracy.

8.5.3 Real time implementation potential

The proposed RD system is exceptionally fast. It performs in near real-time speeds,
fluctuating from approximately 3 to approximately 18 frames per second (using
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MATLAB code), depending on the resolution used. It produces its best results at an
approximate processing rate of 10 fps, making it a very good candidate for a real time
ADAS. A DSP implementation, or even a C++ code optimized for speed, would
achieve real time speeds, without jeopardizing the quality of the results.

8.5.4 Prospects of the proposed system

The RD system proposed could, potentially be included in a complete ADAS, to assist
with localization of obstacles, or inform the driver for potential dangers. The direct
connection of the size of the detected road with impending collisions could prove
useful for a collision warning system. More specifically, a potential implementation
taking into account the rate of change of the size of drivable road ahead, could inform
the driver that an obstacle is approaching, hence extra attention is needed.

The system also can be used in conjunction with a vehicle detection module, to assess
the overall dangerousness of detected vehicles in the scene. Possible implementations
that could benefit from the RD module include overtaking vehicles detection,
preceding vehicle detection, etc. Furthermore, RD results can be used to filter out
false positive results in TSR and TLR systems, since the expected positions of traffic
lights and signs in a driving scene are constrained and have a close relationship with
the position and boundaries of the road.

8.6 Final words and future work

The work carried out and described in this thesis spans through several areas of
modern ADAS technology. The usage of information coming only from a monocular
on-board color camera for all developed systems incorporates an additional challenge,
but adds extra value to the proposed systems, since all of them can be used as the
foundations of more complete ADASs which will fuse information from different
sources.

In that direction, the future work that can be inspired from this dissertation thesis can
potentially focus in fusing several of the proposed systems, or enhancing them with
usage of information acquired from additional sources.

A first approach will be to try and merge the three first systems proposed in this thesis
into one ADAS that performs TLR, TSR and PVD at the highest possible processing
speed. The underlying components of all three subsystems are very compatible, since
they are all based on color thresholding (aiming at isolating intense colors) and radial
symmetry detection. A complete system that performs these processes in a parallel
architecture is a very challenging and rewarding goal.

The aforementioned ADAS can later be enhanced by taking into account information
generated from the RD module, leading to an improvement of the detection rates of
the individual components, by taking into account spatial information of their results
and correlating it to the spatial information of the road area. This might lead to a
better overall performance in terms of quality.
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A third approach that has great potential, is fusing the results from a complete ADAS
like the one just described with the information gathered from a camera pointed at the
driver's face. The correlation of the driver's gaze information with potential eminent
dangers in the driving scene can prove very effective for early warning in dangerous
situations, hence giving the driver a heads-up that could prevent accidents.

Finally, the ultimate goal that is common in all ADAS implementations is to produce
systems that are robust in all possible conditions. The systems proposed so far in
relevant literature have not been addressing challenging conditions very frequently.
Apart from the inherent difficulties to build such a system due to the presence of
strong multi-source, non-white and time-variant noise, a reason for this is the lack of
benchmarks that can be used to assess the performance of such systems. Therefore, a
move towards gathering large datasets of driving videos in challenging, or even
adverse conditions could be very valuable to the researchers of this field.
Furthermore, the annotation of TLs, TSs, vehicles, pedestrians, other obstacles and the
drivable road on a large volume of video frames is a very important goal for vision-
based ADAS researchers, so that a common, widely accepted benchmark can be
developed.

8.7 Dissertation Publications

The research work described in this dissertation has resulted in the following articles:

8.7.1 Journal Publications

J.1 G. Siogkas and E. Dermatas, “Random Walker Monocular Road Detection in
Adverse Conditions using Automated Spatiotemporal Seed Selection,” to appear in

Intelligent Transportation Systems, IEEE Transactions on, vol. 14, no. 2, pp. 527—-
538, 2013.

J.2 G. Siogkas, E. Skodras, N. Fakotakis, and E. Dermatas, “Rear Lights Vehicle
Detection and Tracking,” Integrated Computer Aided Engineering, invited paper,
submitted, pending review, 2013.

8.7.2 Conference Publications

C.1E. Skodras, G. Siogkas, E. Dermatas, and N. Fakotakis, ‘“Rear lights vehicle
detection for collision avoidance,” in Systems, Signals and Image Processing
(IWSSIP), 2012 19th International Conference on, 2012, pp. 134—137.

C.2 G. Siogkas, E. Skodras, and E. Dermatas, “Traffic Lights Detection in Adverse
Conditions Using Color, Symmetry and Spatiotemporal Information,” in International
Conference on Computer Vision Theory and Applications (VISAPP), 2012, pp. 620—
627.

C.3 G. K. Siogkas and E. S. Dermatas, “Detection, tracking and classification of road
signs in adverse conditions,” in Electrotechnical Conference, 2006. MELECON 2006.
IEEE Mediterranean, 2006, pp. 537-540.
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