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Abstract

In today’s industrial applications, we see that knowledge systems are success-

fully implemented. However, critical domains require the elaborate and thought-

ful validation of the knowledge bases before the deployment. Empirical testing,

also known as regression testing, denotes the most popular validation technique,

where predefined test cases are used to simulate and review the correct behavior

of the system. In this paper, we motivate that the classic notions of a test case and

the corresponding measures are not sufficient in many application scenarios. We

present enhanced notions generalizing the standard test case, and we show appro-

priate extensions of the measures precision and recall, that work on these test case

notions. Furthermore, the effective inspection of test runs is important whenever

test cases fail. We introduce a novel visualization technique that allows for the

effective and intuitive analysis of test cases and test run outcomes. The new visu-

alization is useful for debugging a knowledge base and test case, respectively, but

it also provides an intuitive overview of the status of the entire test suite. A case

study reports on the (repeated) validation of a medical decision-support system

and demonstrates the practical relevance of the presented work.

Key words: regression testing, validation, verification, evaluation, test cases,

quality measures, knowledge quality, test visualization

1. Introduction

Today, intelligent decision-support systems are widely used in industry, rang-

ing from smart medical applications, e.g., [24, 25, 30, 38], to the automated sup-

port of technical and industrial problem-solving tasks, e.g., [22, 31, 33, 36]. Typ-
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ically, such systems process inputs—for instance recorded observations—and de-

rive suitable solutions for the given inputs. Whereas some systems are carrying

out the work hidden away from the user (commonly closed-loop systems), many

systems present an interactive dialog and expect the user to describe the problem

by manually entering inputs. In such an interactive setting, we face varying sce-

narios posing different requirements on the system. In some scenarios, users are

willing to enter all available input data before receiving a solution. Other applica-

tion contexts, however, require a more flexible approach, where possible solutions

should be provided as soon as possible. Here, the quality of the proposed solu-

tions improves with more data entered by the user. That way, the user can stop

at any time with the data entry as soon as the provided solution is sufficient for

his/her current problem.

In general, the quality of the provided solutions is an important criterion for

the success and acceptance of the system. Evaluation research in knowledge engi-

neering contributed with validation and verification methods for knowledge bases.

In the literature, the terms evaluation, testing, validation, and verification are not

used in a consistent manner. Whereas evaluation is often used as the generic term,

the adjunct tasks of the methods validation and verification are sometimes mixed.

In this paper, we define the evaluation of a knowledge base as the generic term of

the following methods:

1. Validation is the task that checks, if “the right system is built”. As a com-

mon subtask, empirical validation runs test cases with the system, thus eval-

uating its quality in an operational environment [40]. That way, it is tested

whether the system’s input/output behavior matches the users’ expectations.

Common empirical validation methods are empirical testing [39] and ro-

bustness testing [5, 19].

2. Verification tests, if the “system was built right”. The system is reviewed

with respect to known flaws and defective knowledge. Albeit such flaws

can be detected by running test cases, the more common subtask static veri-

fication [41] is typically applied to test for the absence of logical anomalies

like redundancies, inconsistencies, and further deficiencies.

This differentiation is in line with the understanding of today’s evaluation

research, for example see definitions by Ayel and Laurent [3, p. xvi], Gómez-

Pérez [17], and Preece [39]. In the context of this article we restrict our consid-

erations to the validation task. For most knowledge representations there exists a

wide range of verification methods, that can be applied in a straight–forward way,

for example, see [3, 4, 7, 8, 41, 50].
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In the past, the validation of knowledge bases (mainly rule bases) was dis-

cussed thoroughly. The work mostly focussed on the manual inspection of the

knowledge, on the validation using test cases, and on the generation of suitable

test cases for a given (rule) base, for example [20, 28, 39, 50]. We see that the

empirical testing technique denotes a very important and frequently applied vali-

dation method. A survey on the practical use of evaluation methods in knowledge

engineering is reported in [52]. In software engineering research, empirical testing

is often called regression testing. Empirical testing is simple and effective: Pre-

viously solved test cases with correct solutions are given to the system as input,

and the subsequently derived solutions are compared with the expected solutions,

that are included in the test cases. The derivation quality is typically measured by

precision/recall.

However, the described properties of many systems—interactivity and anytime-

solutions—were primarily not considered by these methods. Consequently, we

see a gap between the research and their practical applicability in industrial projects.

In this article, we revive empirical testing research: We introduce an extension of

the classical test case, and we propose appropriate measures for such test cases.

In the following, we propose two extensions of testing measures:

1. The rated precision/recall that are able to compare solution states rather

than the usual boolean occurrences of solutions, i.e., the default states de-

rived/not derived.

2. The chained precision/recall that not only take into account the final so-

lutions of a case, but also intermediate solutions derived during a problem-

solving process. They are also able to weight intermediate solutions in com-

parison to the final solutions.

Another problem is the efficient and intuitive inspection of the validation re-

sults. In practice, test cases need to be reviewed when they failed during an empir-

ical test run or when they were added as new cases to the test suite. We introduce a

novel visualization technique, that combines automated testing methods with the

manual inspection task of the domain specialist. Test cases are rendered as tree-

like graphs, where failed, new, and already inspected cases are represented differ-

ently. When printed on paper, such visualizations are the basis for the effective

manual inspection of the test cases and the knowledge base behavior, respectively.

The paper is organized as follows: Section 2 introduces the basic data struc-

tures for empirical testing, i.e., test cases and their extensions, and we show ap-

propriate extensions of the quality measures precision and recall, that take into

account the characteristics of the extended test cases. An important issue is the
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inspection of the results of a test run. In Section 3 we describe visualization meth-

ods that help during the inspection of empirical test runs. A case study shows the

evaluation of a medical consultation system in Section 4. The paper concludes in

Section 5 with a summary and a discussion of the approach.

2. Data Structures and Measures

The process of empirical testing usually operates on a suite of test cases, where

each test case contains a collection of findings and a set of solutions that are ex-

pected for the given findings. In this section, we elaborate this process by formally

defining the notions of findings, solutions, and test case. We enhance the classic

definition of a test case by the rated test case and the sequential test case, and we

introduce formal definitions of precision and recall, applicable to the extensions

of test cases.

2.1. Data Structures: Findings, Solutions, and Test Cases

A knowledge system typically uses a knowledge base to derive suitable out-

puts (solutions) for a given set of inputs (findings). In the following, we define

the basic elements of a knowledge system to be used in empirical testing in more

detail.

Definition 1 (Input). Let I be the finite set of observable inputs. For every input

i ∈ I a value range dom(i) is defined, i.e., dom(i) contains all values v that can be

assigned to the input i ∈ I.

In interactive dialog systems, inputs specify the set of possible questions, that

can be presented to the user. The range of possible answers for an input i ∈ I is

defined by dom(i), accordingly. For example, a knowledge base contains temper-

ature as an input having the possible values dom(temperature) = { low, normal,

high }.

Definition 2 (Finding). An assignment f : i = v is called a finding, where i ∈ I

is an input and v ∈ dom(i) is a value assigned to the input. For a set of observable

inputs I we call FI the corresponding universal set of findings, that is defined by

all possible combinations of inputs i ∈ I and corresponding values v ∈ dom(i).

Referring to the previous example, the assignment temperature=high is a valid

finding f ∈ FI of the domain, for instance entered by the user of the system. In

clear cases we omit the index in FI and only use F for short.
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Definition 3 (Solution). Let S be the universal set of solutions that can be derived

by the system. An output of the system is an assignment s = v, where s ∈ S is a

solution and v ∈ {true, false} is a boolean value assignable to s. The boolean value

”true” assigned to a solution s represents the positive derivation of this solution.

That way, solutions represent the possible outputs of the knowledge system.

Following the simple example from above, we define the solution fever, that

is derived with the value ”true” for the given finding temperature=high.

Empirical testing runs a collection of test cases, where a test case contains a

list of findings and the expected solutions for the given findings. Formally, a test

case can be defined as follows.

Definition 4 (Test Case). A test case tc is a tuple storing a list of findings and a

set of derived solutions:

tc =
(

[ f1, . . . , fp], {s1, . . . , sq}
)

, (1)

where [ f1, . . . , fp] ⊂ F are the observed findings and {s1, . . . , sq} ⊆ S are the pos-

itively derived solutions, i.e., solutions for which the value ”true” was assigned.

In some applications the order of the findings is relevant, for the case that for

example some findings represent temporal values of an input. Since there is no

order of the derived solutions in the test case every derived solution is equally

important. Often it is beneficial to specify a more refined confirmation state of the

particular solutions, for example, some solutions are only derived as possible out-

puts whereas other solutions are categorically derived as a suitable solution. For

this reason we extend the definition of solutions by rated solutions and introduce

the notion of a rated test case.

Definition 5 (Rated Solution). Let R be the universal set of ratings that are used

to (partially) order a set of solutions. Let RS =
{

(s = r) | s ∈ S ∧ r ∈ R
}

be the

universal set of rated solutions, where a rated solution (s = r) ∈ RS is a rating

r ∈ R assigned to a solution s ∈ S.

The domain of ratings depends on the particular knowledge representation

used to build the knowledge base. For example, the universal set of ratings R can

be defined as the real values in [0, 1] to represent the probabilities derived by a

Bayesian network. Alternatively, symbolic values like R = {undefined, excluded,

suggested, established} can be used to express the qualitative rating of a solution.

It is easy to see that for the solutions always having the rating r = established

a rated solution collapses to a solution in a standard test case as given in Defini-

tion 4. Based on the definition of rated solutions we introduce rated test cases.
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Definition 6 (Rated Test Case). A rated test case rtc is a tuple consisting of a list

of findings fi ∈ F and a set of rated solutions {rs1, . . . , rsq} ⊂ RS:

rtc =
(

[ f1, . . . , fp], {rs1, . . . , rsq}
)

. (2)

We denote the findings of the case by F(rtc) = [ f1, . . . , fp] and the set of rated

solutions of the case by RS(rtc) = {rs1, . . . , rsq}.

For a default rating R = {true, false} and by omitting the solutions with the

rating ”false”, the rated test case simplifies to a standard test case as introduced in

Definition 4.

Although the use of rated test cases improves the testing possibilities, it is

sometimes not sufficient to test the derivation quality of the knowledge base at

the end of the test case. In fact, it is interesting to also test the derivation state

during the execution of a test case, especially for knowledge bases implementing

an anytime system behavior. In order to enable this type of testing, we partition

the test case into a sequence of (partial) test cases, where each partial test case

stores its findings entered in the particular phase and the solutions (with ratings)

derived so far. More formally, we introduce the notion of a sequential test case.

Definition 7 (Sequential Test Case). A sequential test case seq is defined by a list

of rated test cases rtci

stc = [rtc1, . . . , rtcn] ,

where a rated test case rtci =
(

[ fi,1, . . . , fi,p], {rsi,1, . . . , rsi,q}
)

depends on its prede-

cessors rtc j with j = 1, . . . , i − 1, i.e., the ratings of RS(rtci) are derived based on

the observation of findings F(rtci) and the previous findings F(rtc1), . . . , F(rtci−1).

We see that a sequential test case partitions a standard test case into dis-

tinct rated test cases, where every case rtci contains an ordered list of findings

[ fi,1, . . . , fi,p] that are supposed to be entered by the user in the given order. Ad-

ditionally, a rated test case rtci stores a set of solutions {rsi,1, . . . , rsi,q} with their

corresponding ratings that are expected to be derived by a valid knowledge sys-

tem based on the findings entered in rtci and all findings given in the preceding

sequences rtc j with j < i.

It is worth noticing that the order of the finding sequences defined in a sequen-

tial test case is explicit and important. Thus, every sequence rtci depends on its

predecessors, especially with respect to the ratings of the particular solutions. The

rating of solutions also depends on findings that were entered in previous case

sequences.
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In summary, a sequential test case stc = [rtc1, . . . , rtcn] is a generalization of

a rated test case; for n = 1 a sequential test case contains only one sequence and

collapses to a rated test case as introduced in Definition 6.

2.2. Traditional Validation Measures

In the previous paragraphs, we defined the basic data structures to be used for

empirical testing—the test case, the rated test case, and the sequential test case.

For empirical testing a suite of test cases is selected and the findings of each test

case are successively batched into a knowledge system. After running each test

case the derived solutions are compared with the expected solutions given in the

test case. Here, the quality of the derived and the expected solutions, respectively,

is computed by standard measures such as precision and recall. In literature, the

measures simply compare the set of positively derived solutions with the set of

expected solutions.

Definition 8 (Precision). For a given test case, let exp ⊆ S be the set of expected

solutions and let der ⊆ S be the set of derived solutions. Then, the precision of

the solutions der and exp is defined as follows:

precision(der, exp) =



























| der ∩ exp |
/

| der | if der , {} ,

1 if der = exp = {} ,

0 otherwise.

(3)

The precision measures how many of the derived solutions were expected to

be derived by the case. Analogously, the recall of a test case is defined.

Definition 9 (Recall). For a given test case, let exp ⊆ S be the set of expected

solutions and let der ⊆ S be the set of derived solutions. Then, the recall of the

solutions der and exp is defined as follows:

recall(der, exp) =















|der ∩ exp|
/

|exp| if exp , {} ,

1 otherwise.
(4)

The recall measures how many expected solutions were derived by the knowledge

base. Sometimes, it is helpful to provide one combined measure, that integrates

the results of the precision and recall and thus provides a generalizing overview

of the test results. Then, the F-measure is a favorable metric.
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Definition 10 (F-Measure). For a given test case, let exp ⊆ S be the set of ex-

pected solutions and let der ⊆ S be the set of derived solutions. Then, the F-

measure compares the solutions der and exp as follows:

fβ(der, exp) =
(β2 + 1) · precision(der, exp) · recall(der, exp)

β2 · precision(der, exp) + recall(der, exp)
(5)

The F-measure uses a single equation to weight the outcomes of precision and

recall of the derived solutions. Here, the constant β ∈ R+ is used to weight the

calculated precision in relation to the recall. Often, we use the f1 measure, where

precision and recall are defined to be equally important.

Empirical testing uses the presented measures to compare the expected and

derived solutions of a test case. Here, a test case fails if the computed preci-

sion/recall falls below a given threshold; in most applications the measures must

not fall below the maximum threshold value 1.

2.3. Extended Validation Measures

Standard precision and recall measures only compare the positive or negative

derivation of a solution in a given case. However, when using the extended notions

of a test case—the rated test case and the sequential test case—it is reasonable to

integrate the additional information stored in the test cases into a set of general-

ized measures. For example, a generalized precision should be able to compare

different ratings of a solution, but also the intermediate ratings of solutions. In

summary, an improved set of measures needs to take the following issues into

account:

1. The comparison of rated solutions instead of a boolean intersection of the

solution occurrences.

2. The evaluation of the quality of chained case sequences instead of one single

test case.

Concerning the first issue we introduce “rated” versions of the precision/recall

measures that generalize the standard measures and are applicable to arbitrary

solution ratings. We further extend these measures by a “sequentialized” version

of the precision/recall in order to handle the second issue.

2.3.1. Rated Precision/Recall

The rated precision and recall take into account that the derivation of solutions

in a case can be generalized from a boolean occurrence to an explicit rating of the
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solution that expresses its degree of confirmation. Since precision and recall com-

pare all solutions occurring in both sets—the derived solutions and the expected

solutions—we first define a special intersection function to retrieve all solutions

that are contained in both sets independent of their current rating.

Definition 11 (Intersection of Rated Solutions). Let RS 1,RS 2 ⊂ RS be two sets

of rated solutions. The rated intersection ∩(RS 1,RS 2) is defined by

∩(RS 1,RS 2) =
{

s ∈ S
∣

∣

∣ (s = r1) ∈ RS 1 ∧ (s = r2) ∈ RS 2

}

. (6)

Given the intersection function ∩(RS 1,RS 2) we are now able to extract all relevant

solutions in the cases and to compute their similarity of the particular ratings.

Definition 12 (Rated Precision). Let exprs ⊂ RS be the set of expected solutions

of a rated test case, and let derrs ⊂ RS be the set of derived solutions. Then, the

rated precision is defined as

precisionrs(derrs, exprs) =



























precrs(derrs, exprs) if derrs , {} ,

1 if derrs = exprs = {} ,

0 otherwise,

(7)

where the precrs is defined by

precrs(derrs, exprs) =

∑

s∈∩(derrs,exprs)
rsim
(

r(s, derrs), r(s, exprs)
)

| derrs |
. (8)

The rated precision compares the ratings of solutions by using the abstract simi-

larity function rsim : R × R→ [0, 1] for ratings r ∈ R of a solution s contained in

derrs as well as in exprs. The function r(s,RS ) returns the rating of solution s in

the rated solution set RS , i.e.,

r(s,RS ) =















r for (s = r) ∈ RS ,

0 otherwise.
(9)

Before applying the definition of the rated precision in an application domain,

we need to formulate the function for the rated similarity appropriately. It is im-

portant to notice that the similarity function rsim always returns values between 0

and 1. If it is not defined appropriately for a specific application domain, then we

can simply use the individual similarity function rsimi as the default:

rsimi

(

r(s,RS 1), r(s,RS 2)
)

=















1 if r(s,RS 1) = r(s,RS 2) ,

0 otherwise.
(10)
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When using the individual similarity function, the rated similarity reduces to a

boolean comparison as already known from the standard precision measure (see

Equation 3).

Examples (Rated Similarity Functions). In the following, we give an example

of a possible rated similarity function that could be used for symbolic ratings with

the following domain R = {unclear, excluded, suggested, established}.

rsim
(

r(s, derrs), r(s, exprs)
)

=































































1 if r(s, derrs) = r(s, exprs) ,

0.8 if r(s, derrs) = suggested∧

r(s, exprs) = established ,

0.5 if r(s, derrs) = established∧

r(s, exprs) = suggested ,

0 else.

(11)

We can see that the asymmetric similarity function uses the intermediate evalu-

ations 0.8 and 0.5, so that it returns a better similarity value, when the expected

rating is better than currently derived.

For applications using a numeric value range to define the rating of solutions,

for example Bayesian networks, the following similarity function is appropriate:

rsim
(

r(s, derrs), r(s, exprs)
)

= 1 −
∣

∣

∣ r(s, derrs) − r(s, exprs)
∣

∣

∣ (12)

In the context of case-based reasoning the notions of similarity are investigated in

more detail, and we refer the reader to [12, 45] for a further discussion.

Analogously to the rated precision we define the rated recall of two sets of

rated solutions.

Definition 13 (Rated Recall). Let exprs ⊂ RS be the expected solutions of a rated

test case and let derrs ⊂ RS be the collection of derived solutions. Then, the rated

recall is defined as

recallrs(derrs, exprs) =















recrs(derrs, exprs) if exp , {} ,

1 otherwise,
(13)

where recrs is defined by

recrs(derrs, exprs) =

∑

s∈∩(derrs,exprs)
rsim
(

r(s, derrs), r(s, exprs)
)

| exprs |
.
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As already introduced, we use the intersection function ∩(RS 1,RS 2) defined

in Equation 6 and the rated similarity function rsim(. . . ) as discussed before. For

the individual similarity function rsimi (see Equation 10) the rated recall recallrs

is equivalent to the standard recall measure recall shown in Definition 9.

2.3.2. Chained Precision/Recall

Based on the extensions of precision/recall introduced above, we further gen-

eralize the measures to evaluate a knowledge base using a test suite of sequential

test cases.

Definition 14 (Chained and Rated Precision). Let stc = [rtc1, . . . , rtcn] be a se-

quential test case. Every rated test case rtci stores its expected solutions expi,rs ⊂

RS in sequence i of the test case stc. Accordingly, we define deri,rs ⊂ RS to be the

solutions derived by the knowledge base in sequence i. We define the chained and

rated precision for DERrs = (der1,rs, . . . , dern,rs) and EXPrs = (exp1,rs, . . . , expn,rs)

as follows:

precisionrs,c(DERrs,EXPrs) =

∑

i=1...n wp(i) · precisionrs(deri,rs, expi,rs)
∑

i=1...n wp(i)
, (14)

where wp : N+ → [0, 1] defines the weight of the intermediate solutions for every

sequence. The measure precisionrs is known from Definition 12.

It is easy to see that for n = 1 and wp(n) = 1 the chained and rated precision

precisionrs,c yields the rated precision precisionrs as introduced in Definition 12.

Examples (Weight Functions). The appropriate specification of the weights

depends on the particular application domain. We see two typical possibilities to

define the weights for the chained and rated precision:

• Equi-important: The quality of the derived solutions is equally important

for every sequence, i.e., wp(i) = 1 for all i = 1, . . . , n.

• Inverse-annealing: The quality of the derived solutions becomes more im-

portant in later sequences and is most important in the final sequence. Then,

we define wp(i) = i/n for i = 1, . . . , n.

The definition of the chained and rated recall is analogous to the definition of

the chained and rated precision.
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Definition 15 (Chained and Rated Recall). Let stc = [rtc1, . . . , rtcn] be a sequen-

tial test case. Every rated test case rtci stores its expected solutions expi,rs ⊂ RS

at the sequence i of the test case stc. Accordingly, we define deri,rs ⊂ RS to be the

solutions derived by the knowledge base in sequence i. We compute the chained

and rated recall for DERrs = (der1,rs, . . . , dern,rs) and EXPrs = (exp1,rs, . . . , expn,rs)

as follows:

recallrs,c(DERrs,EXPrs) =

∑

i=1...n wr(i) · recallrs(deri,rs, expi,rs)
∑

i=1...n wr(i)
, (15)

where wr : N+ → [0, 1] defines the weight of the intermediate solutions in se-

quence i. The measure recallrs is given in Definition 13.

In the context of the chained and rated recall we are able to specify a distinct

weighting function wr in order to define a different weighting scheme compared

to the weighting of the computed precisions. However, often the same weighting

function is used for wp and wr.

2.4. The Test Suite and Total Measures

In practice, a collection of cases, i.e., a test suite, is used for the validation

of the knowledge base and all cases are rated with respect to their validity. For a

proper validation process, we need to ensure that the test suite is consistent with

respect to their included test cases.

Definition 16 (Consistent Test Suite). A test suite TS is called a consistent test

suite, if and only if there exist no two sequential test cases stci, stc j ∈ TS with the

following conditions:

1. The first (q − 1) sequences of the cases stci and stc j are identical, i.e.,

(rtci,1 = rtc j,1), . . . , (rtci,q−1 = rtc j,q−1).

2. The findings in sequence q are identical but their solutions differ, i.e.,

F(rtci,q) = F(rtc j,q) and RS(rtci,q) , RS(rtc j,q).

Thus, for two cases with an identical prefix of findings in the rated test cases we

expect to also have the identical rated solutions.

It is worth noticing that a test suite with two identical cases is still consistent.

A more comprehensive discussion of the consistency of a test suite in the context

of software engineering tests can be found for example in [13]. With a consistent

test suite the averaged quality of the knowledge base is then defined by the total

precision and the total recall.
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Definition 17 (Total Precision and Total Recall). For a given consistent test suite

of sequential test cases TS = {stc1, . . . , stcn} the expected solutions for each test

case are given in stci with EXPrs(stci), and the solutions currently derived by the

knowledge base for this case are denoted by DERrs(stci). Then, the total precision

of the test suite TS is calculated by

Precision(TS) =

∑

c∈TS precisionrs,c

(

DERrs(c),EXPrs(c)
)

|TS |
, (16)

and the total recall of the test suite TS is given by

Recall(TS) =

∑

c∈TS recallrs,c

(

DERrs(c),EXPrs(c)
)

|TS |
. (17)

We see, that the total F-measure can be easily computed by using the total pre-

cision and the total recall as defined above. All three measures yield real numbers

between 0 and 1, where the result 1 denotes a “fully correct knowledge base”, i.e.,

the derived solutions perfectly match the solutions expected in the test cases of

the suite.

2.5. Related Work

Since the beginning of expert systems, the validation of developed systems

has always been a lively research topic. Reports on early work can be found for

example in [3, 14, 26, 42, 48]; all approaches basically consider only the boolean

test of the final solutions for test cases. Furthermore, Djelouah et al. [15] investi-

gate the validation of rule-based systems, but postulate a complete test suite. Also,

validity is only tested on a boolean level, and no sequential test knowledge can be

represented. Santos and Dinh [46] introduce a validation framework for Bayesian

knowledge bases. Since the exact comparison of solutions’ probabilities is not

reasonable in the general case, the validity of the expected and derived solutions

is defined by ordering the solutions’ ratings, i.e., a test case is valid if there exists

no incorrect solution with a higher probability than a correct solution.

In the context of this paper we focus on the measures precision, recall, and F-

measure. For some domains, for example medicine, it is also common to measure

the validity of test outcomes by the sensitivity, specificity, and intersection accu-

racy, for example see [49]. These relate true positive and true negative as well

as false positive and false negative outcomes of a test. However, the idea of the

proposed extensions of precision and recall can be transferred to these measures

in an almost direct manner.
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3. Inspection and Visualization of Test Cases

In the previous section, we introduced advanced data structures and measures

to evaluate the validity of a test suite. For the practical application of empirical

testing we need appropriate tools to inspect the results of the testing phase. Espe-

cially with a growing size of the test suite, the use of visualization methods can

provide an easier access to the validation results. Visualization methods can ag-

gregate and organize the elements of the knowledge base, so that the manual and

semi-automated review of the knowledge becomes easier. In the following, we

introduce visualization approaches that are applicable for the intuitive inspection

of empirical testing runs.

3.1. Visualization using the Unit Testing Metaphor

In the context of the agile development of software systems, the unit testing

metaphor has become a popular and successful method [11]; for example, JU-

nit [16] is a very popular testing framework for Java development. Here, every

single feature of a software program is covered by an automated test, i.e., a test

that already knows the expected results of the method to test. All tests are col-

lected in a test suite that can be launched by a one-click action. The successful

run of all tests is indicated by a green status bar, otherwise this bar is colored

in red in order to signalize that at least one test failed. With the metaphor of a

colored status bar, the developers immediately can check the overall status of the

software.

In the past, this approach was also transferred to the knowledge engineer-

ing task, where the validity of a knowledge base was tested using a suite of test

cases [9, 10]. Test cases—as presented in this paper—are also automated, since

the expected results of a case are also stored as its solutions. Here, every test case

covers a specific aspect of the knowledge in the best case. Coverage measures for a

knowledge base and the test suite, respectively, have been discussed for example

in [4]. Figure 1 shows an example of a unit testing tool in practice. The em-

pirical testing tool of the knowledge development environment d3web.KnowME

(http://www.d3web.de) follows the unit metaphor and not only presents the exact

values for precision, recall and F-measure, but also visualizes the overall result

by a colored bar. The result bar moves like a progress bar during the test run and

changes the color from green to red as soon as some test cases of the suite failed,

i.e., the total F-measure falls below a given threshold (usually set to 1).

In Figure 1, the test run of a medical knowledge base is shown, where a

test suite with 5.045 test cases is applied to the knowledge base. Although the
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Figure 1: Empirical testing of a knowledge base using the unit testing metaphor with green/red

colored bars.

metaphor allows for a quick and intuitive analysis of the overall result, it lacks

when errors occur and a deeper analysis becomes important. For detected errors,

usually a debugging session of the erroneous test case(s) is initiated, for example

see [53] for a discussion of rule base debugging.

Although debugging is a powerful technique to find faulty knowledge, it some-

times fails to efficiently display the context of the erroneous case: That way, often

surrounding cases with similar findings have passed the test run successfully and

they would help to understand the problem of the faulty case. In addition, common

evaluation techniques are not supporting the manual inspection of sequential test

cases sufficiently. Here, appropriate visualizations can provide helpful support for

the developer of the knowledge base. In the following, we introduce a tree-like vi-

sualization method that displays test cases and their contextual surrounding cases

in an effective manner.

3.2. Tree-like Visualization with DDTrees

The construction of DDTrees is a novel technique to visualize the cases of a

test suite together with the validation results in a compact manner. Furthermore,

the visualization can also be used to verify the interactive behavior of a knowl-

edge base, that is represented by the particular sequences of a sequential test case.

DDTree stands for derivation/dialog tree since it uses a tree structure to visualize

the derivation as well as the dialog behavior of the system.
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3.2.1. Construction of the DDTree

In summary, a DDTree arranges the cases of a test suite in a tree. Every

path from the root of the DDTree to a leaf prints a distinct test case, whereas

inner nodes of the tree represent distinct rated test cases that are shared by mul-

tiple sequential test cases. More formally, we define a DDTree as a collection of

DDNodes and DDEdges. A DDNode contains the information given in a partic-

ular sequence rtci of a sequential test case stc ∈ TS, i.e., the findings Fi and the

rated solutions RS i of rtci.

Definition 18 (DDNode). Let TS be a consistent test suite and let stc be a sequen-

tial test case stc = [rtc1, . . . , rtcn] with stc ∈ TS. A DDNode n represents at least

one sequence rtci contained in the test cases of TS and is given as the tuple

n = ( Fn,RSn, outn ) ,

where Fn = F(rtci) is the collection of findings of the sequence and RSn = RS(rtci)

is the set of rated solutions of the sequence. Furthermore, outn ⊆ I is a list of

inputs, for which values are assigned in the next sequences of the particular test

cases. The next sequences of test cases are represented by follow-up nodes in the

DDTree.

Usually, the inputs contained in outn are presented as subsequent follow-up

questions in a dialog with the user. A DDEdge connects two DDNodes, i.e., se-

quences of a sequential test case, and depicts the findings given in the targeted

sequence and DDNode, respectively.

Definition 19 (DDEdge). A DDEdge e connects two distinct DDNodes ni and n j.

For a DDEdge e = ni → n j we call ni the source node of e and n j the target

node of edge e. As additional information the findings F j of the target node n j are

attached to the edge e.

The information given on the edges is redundant since the findings are also

contained in the target DDNode. However, printing the findings also on the par-

ticular edges appears to be intuitive and effective when manually inspecting the

resulting tree.

Definition 20 (DDTree). A DDTree is defined as a poly-tree DDT = (N, E),

where N is the collection of DDNodes and E is the collection of DDEdges. Let

TS = {stc1, . . . , stcn} be a consistent test suite. For each sequential test case stc ∈

TS a path from the root of the tree to a leaf is defined, and for each maximum

16



path in the tree there exists a corresponding test case in TS. For every stc =

[rtc1, . . . , rtcm] in TS the first sequence rtc1 defines a root of the DDTree and the

last sequence rtcm is a leaf of the DDTree.

In summary, the node of a DDTree can belong to a couple of sequential test

cases, if and only if this rated test case and the prior sequences of the sequential

test cases are identical, i.e., the sequential test cases share the same prefix of rated

test cases.

We illustrate the semantics of a DDTree by an example. For a given test suite

with the following sequential test cases

TS = {
[(

[q1 = a1,1, q2 = a2,1], {rs1}
)

,
(

[q3 = a3,1, q4 = a4,2], {rs1, rs2}
)]

,
[(

[q1 = a1,1, q2 = a2,1], {rs1}
)

,
(

[q3 = a3,2, q4 = a4,1], {rs1, rs3}
)]

,
[(

[q1 = a1,2, q2 = a2,1], {rs2}
)

,
(

[q3 = a3,1, q4 = a4,2], {rs2, rs4}
)]

}

the DDTree is built as depicted in Figure 2. It is important to notice that each

path of the DDTree, starting from the root to a leaf, corresponds to a sequential

test case introduced in Definition 7. Each node of such a path describes a rated

test case rtci =
(

[ fi,1, . . . , fi,n], {rsi,1, . . . , rsi,q}
)

of the sequential test case. The

questions displayed at the bottom of the node represent possible directions of

following sequences. Since the first two test cases of the test suite share the same

prefix, they also share the left DDNode at the first level in Figure 2.

We see that a DDTree is able to display the sequences and intermediate solu-

tions of a collection of test cases in a compact manner. The interview and deriva-

tion behavior of one single case can be reproduced by navigating from the root

to a leaf of the DDTree. Related cases with a similar context can be investigated

very easily since often they are printed very close to the given path.

However, for realistic knowledge bases and test suites, respectively, the size

of the corresponding DDTree tends to become very large. A large DDTree can be

partitioned into smaller trees by extracting the subtrees below the root into single

trees that are in turn validated.

3.2.2. Inspecting Test Results with DDTrees

The previous Figure 2 showed sequential test cases in a static way. Figure 3

gives a further example, where also the results of an empirical test run are visual-
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Figure 2: An abstract example of a DDTree generated from three sequential test cases.

ized within the DDTree1. The correctness of the derived and expected solutions is

rendered by red and green colors of the arcs connecting the tree nodes and the case

sequences, respectively. To calculate the correctness, we apply the precision/re-

call measures introduced in Section 2.3.2. Here, edges of the tree are displayed in

green color when this sequential part yielded the expected solutions. Further on,

edges of the tree are printed in red color if this edge was part of a faulty sequence,

i.e., the F-measure dropped below 1. The example DDTree depicted in Figure 3

contains only cases with one finding for each sequence.

Also, the ratings of the particular solutions are explicitly given as integer

points, i.e., score weights corresponding to the confidence of the derivation state.

For instance, input Question 1 is initially asked; for finding Question 1=yes the

system derives the solutions Solution 2 and Solution 3 with 10 points, thereafter

Question 4 is asked. If this input is answered with yes then Solution 2 is rated with

1009 points, whereas Solution 3 remains at 10 points. In this example the points

1In the following figures, the red arcs are also printed in a wider shape in order to identify them

more easily in a possible b/w-printed version of this article.
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directly correspond to the rating of the solutions.

Question 1

Question 1 = yes

Solution 3 10  

Solution 2 10  

Question 4

yes

Question 1 = no

Solution 3 10  

Solution 2 10  

Solution 1 10  

Question 3

no

Question 4 = yes

Solution 2 1009  

Solution 3 50  

yes

Question 4 = no

Solution 1 1004  

Solution 3 10  

Solution 2 10  

no

Question 3 = normal

Solution 1 1009  

Solution 2 15  

Solution 3 10  

normal

Question 3 = high

Solution 2 1009  

Solution 1 15  

Solution 3 10  

high

Question 3 = low

Solution 1 15  

Solution 2 12  

Solution 3 10  

Question 2

low

Question 2 = green

Solution 2 1011  

Solution 1 15  

Solution 3 10  

Question 2 = red

Solution 1 1014  

Solution 2 17  

Solution 3 10  

Question 2 = blue

Solution 3 1009  

Solution 1 15  

Solution 2 12  

green red blue

Figure 3: An example DDTree: Each test case is represented by a path from the root to a leaf of

the tree. Faulty sequences of cases are colored as red arcs, whereas valid sequences are colored in

green.

We see that the DDTree visualization technique generalizes the unit testing

metaphor introduced in Section 3.1, since the overall color appearance of the tree

visualizes the overall healthiness of the test suite, i.e., the number of correctly

solved test cases: The greener the tree appears to the user the “healthier” the

knowledge base is. In contrast, a tree displaying many red arcs intuitively signal-

izes an “unhealthy” knowledge base.

In comparison to the abstract visualization as a status bar of the unit test, the

DDTree also shows related cases as a bonus, that are correctly solved in this con-

text. When the developer inspects incorrect cases he/she usually starts with the

analysis from the beginning of the incorrect behavior, i.e., the first red arc of the

path representing the sequential test case. The preceding and correct beginning

of the case is not marked in red color. Thus, the following sequences of the er-

roneous case are simple to grasp. Since the adjacent and similar cases are also

depicted in the tree, the context of the erroneous case is much easier to understand

and analyze.

3.2.3. Evolution of the Test Suite and DDTrees

In addition to the inspection of the test suite with respect to correct and faulty

test cases, the presented visualization technique allows for the application within
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the evolution of the test suite. Often, a test suite grows with the development of

the knowledge base. For example, when adding new parts to the knowledge base,

also new test cases covering the new features are added to the test suite.

In this context, the DDTree visualization helps to check the new cases in the

context of the existing test suite. For the review of new cases it is reasonable to

change the color metaphor to improve the analysis: When rendering the extended

test suite as a DDTree, we propose to grey out cases that were already contained in

the suite before and that were solved correctly in the previous test run. Sequences

of newly added test cases are highlighted by drawing the arcs in black color. Thus,

the developer can easily identify the new cases and their context, i.e., the relation

to related cases in the test suite. Further, faulty cases are always colored in red to

signalize the need for a detailed inspection.

Figure 4 shows an example for the coloring of a DDTree to be used during the

inspection of an evolved test suite. Already inspected and valid cases are greyed

out (left part of the tree), whereas new cases or faulty cases are printed in color so

that the inspecting person can focus on the interesting parts of the test suite.

Question 1

Question 1 = yes

Solution 3 10  

Solution 2 10  

Question 4

yes

Question 1 = no

Solution 3 10  

Solution 2 10  

Solution 1 10  

Question 3

no

Question 4 = yes

Solution 2 1009  

Solution 3 50  

yes

Question 4 = no

Solution 1 1004  

Solution 3 10  

Solution 2 10  

no

Question 3 = normal

Solution 1 1009  

Solution 2 15  

Solution 3 10  

normal

Question 3 = high

Solution 2 1009  

Solution 1 15  

Solution 3 10  

high

Question 3 = low

Solution 1 15  

Solution 2 12  

Solution 3 10  

Question 2

low

Question 2 = green

Solution 2 1011  

Solution 1 15  

Solution 3 10  

Question 2 = red

Solution 1 1014  

Solution 2 17  

Solution 3 10  

Question 2 = blue

Solution 3 1009  

Solution 1 15  

Solution 2 12  

green red blue

Figure 4: Already inspected and valid test cases are greyed out (left), so that the tester can con-

centrate on new and faulty tests (right).

For the acknowledgement task of added test cases we propose a manual review

process: Each unreviewed case, i.e., every path from the root to a leaf, is manually

inspected by a domain specialist (not necessarily the developer of the knowledge

base). For this step, we recommend to print out the entire DDTree on a poster (or
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the partitioned trees on a couple of posters) in order to obtain a better overview

of the interview and derivation workflow. We experienced the classic review on a

printed poster as beneficial for a couple of reasons:

1. Usually, domain specialists are not familiar with the handling of (special-

ized) computer software. Therefore, when using printed paper to display the

knowledge base and test suite, respectively, we significantly lower barriers

to accomplish the review task.

2. The generated DDTrees are often very large and thus a full display of the

entire tree is usually not feasible even on large computer screens. However,

having a coherent overview of the test cases is often necessary in order to

review a specific case in the context of related (and correct) cases.

3. The review process can be easily documented by highlighting the already

inspected sequences with a textmarker pen and by optionally writing com-

ments for refinement instructions directly on the poster. Also, there is no

need to learn/cope with specialized software, that often distracts from the

review process. As a side-effect, we experienced that visually checking-off

accomplished reviews with the textmarker pen increases the motivation of

the domain specialist doing the review.

In summary, the presented visualization offers a number of advantages: The

domain specialist can easily see the context of the current case he/she is inspect-

ing, e.g., what will happen if the question is answered differently, and which so-

lutions are still possible at this stage, etc. Furthermore, no computer skills are

required; the specialist can concentrate on the domain knowledge and does not

have to possibly struggle with the particular nature of a computer software.

3.3. Related Work

The presented visualization technique is strongly related to decision trees [44]

and ordered binary decision diagrams [2, 23]. Both approaches represent the

derivation knowledge in a compact, graph-like manner, that is similar to the de-

scribed DDTree method. However, the DDTree approach does not aim to display

the entire knowledge base and its derivation paths exhaustively, but only the test

cases given by a test suite. Moreover, DDTrees additionally use color metaphors

to visualize the valid derivation of single test runs.

A more recent approach for a graph-like visualization of derivation knowledge

was proposed by eXtended Tabular Trees (XTT), for example see [29, 34, 35].

Here, an attribute-set value representation is visualized by a collection of con-

nected derivation graphs. As with decision trees the entire knowledge base is
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represented by XTT graphs but not a selection of corresponding test cases. A

similar approach was taken by the visualization of derivation graphs, see for ex-

ample [1, 37], that displays the derivation traces for a specific solution [6, 47].

A software engineering-oriented approach was presented in [21], where rules

of a reengineered knowledge base are visualized by UML sequence diagrams.

The sequence diagrams depict the derivation flow from findings to solutions, and

during the inspection of these diagrams test cases are generated. Finally, the test

suite consists of all inspected derivation paths.

It is important to notice that all the previous approaches visualize explicit

derivation knowledge by graphs, whereas the DDTree approach is independent

from the underlying knowledge representation since it displays the derivation

knowledge in a black-box manner only using the test cases of the test suite.

4. Case Study

In the context of this work we presented two contributions to the evaluation of

intelligent systems: 1) enhanced measures for the precision and recall of derived

solutions, 2) a novel visualization method for the interactive inspection of valida-

tion results. For both, we report on experiences of their application we have made

so far.

4.1. Enhanced Precision and Recall

The presented measures were implemented as a plugin of d3web.KnowME, a

visual modeling environment for the development of diagnostic knowledge sys-

tems [10]. The newly introduced measures rated precision and recall are espe-

cially useful when validating knowledge bases using an elaborated knowledge

representation such as Bayesian networks, heuristic decision trees, and (heuris-

tic) scoring rules. d3web.KnowME supports a variety of (uncertain) knowledge

representations to be used for the development of the knowledge base.

Albeit the measures are applicable within arbitrary development projects, they

appear to be especially useful in the context of a debugging session. By using se-

quential test cases, one can define a conditional breakpoint that stops the execution

of the test suite once the chained precision and recall fall below a given thresh-

old. Figure 5 shows a screenshot of the debugger of d3web.KnowME, where an

example knowledge base for car fault diagnosis is inspected using a test case.

The breakpoints are ordered by their object’s type: solutions (“Diagnoses”),

input findings (“Questions”) and applied derivation knowledge (“Rules”); in this
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Figure 5: The visual debugger of d3web.KnowME. The top panels display the defined breakpoints

for solutions, questions, and rules. At the bottom, the stack trace of the working rule base is

depicted.

example, heuristic scoring rules are used to derive the particular solutions. A trace

of executed rules is shown in the lower part of the window.

4.2. Visualization by DDTrees

As described earlier, the enhanced measures chained precision and recall are

used for DDTrees to render the tree. The visualization technique was successfully

applied in the context of several evaluation phases during the development and

evolution of the medical decision-support system Digitalys CareMate. The system

is commercially sold as part of an equipment kit for medical rescue trucks. It is

used as a consultation system during medical rescue services, when the problem

definition of a particular rescue mission is complex and a second opinion becomes

important.
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Currently, the underlying knowledge base comprises about 200 findings that

are used to derive a rated scoring of 120 solutions. Besides the rated derivation

of suitable solutions, the implementation of an efficient interview technique was

the major goal of the project. Thus, the user can be guided through an interview

focussing on relevant questions of the current problem definition. With more ques-

tions answered, the current ranking of possible solutions improves in relevance,

and the interview strategy targets at the presentation of reasonable follow-up ques-

tions. The interview strategy follows official school guidelines for emergency

medical technicians. An extended version of the knowledge formalization pattern

heuristic decision tree [43] was used for the implementation of the knowledge

base, defining about 1.500 rules for the construction of the interview behavior as

well as the rated derivation of the solutions.

Figure 6: A picture taken during the second review phase of the CareMate knowledge base (July

2008). DDTrees are printed on posters and checked using a textmarker pen.

A first evaluation phase was conducted in March 2008 with a prototype of parts

of the knowledge base. Test cases were generated automatically from the existing

knowledge base by an exhaustive traversal of all possible interview trails. Based

on this test suite the DDTree was built, printed on paper, and reviewed in a one-

day workshop by the expert panel consisting of two domain specialists. Due to

the intuitive semantics of the tree the domain specialists were able to immediately

grasp the behavior of the system by manually traversing through the particular tree

paths. For each case, alternative case trails could be easily inspected on the paper,
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and the discussion about the cases was not interrupted by external circumstances

like handling specific computer software.

Before its deployment in version 1.0, the knowledge base was finally reviewed

in July 2008. Here, already checked test cases as well as newly generated test

cases were printed on a collection of 11 posters comprising the entire test suite.

The test suite consisted of 2.051 test cases; the generated cases were created by

exhaustively traversing all possible dialog trails of the system—yielding a test case

coverage of 100%. Each poster represented a sub-part of the application domain

and could be reviewed separately. The review was performed by one domain

specialist in a three-day workshop, meaning on an average less than 3 minutes for

each test case, where a test case averagely consists of 16 findings and 43 solutions

(including the intermediate and the final solutions).

Figure 6 shows a picture taken during the second review of the knowledge

base. The use of colored DDTrees, their printing on paper, and the use of the

textmarker pen for the review process was perceived to be very intuitive by the do-

main specialist that performed the evaluation. Since no computer was required the

(almost unexperienced) domain specialist could start immediately to work with

textmarker and pen. The intuitive “user interface” was beneficial for erroneous ar-

eas of the tree. For example, when identifying errors the domain specialist could

simply write/draw some text/corrections on the paper, e.g., linking a question to

another sub-tree by drawing the edge manually on the poster, making comments

etc.

5. Conclusions

We conclude the paper with a summary of the presented work by highlighting

the most important aspects, and we discuss a number of issues for future work.

5.1. Summary

Empirical testing denotes one of the most important and frequently applied

evaluation methods for knowledge systems. In this context, the interactivity of the

system and the online derivation of solutions yielding early and intermediate solu-

tions are distinct features of today’s systems. Consequently, we motivated that the

classic notions of a test case and the corresponding evaluation measures, such as

precision and recall, are not sufficient to evaluate the interactive and online behav-

ior of knowledge systems in an appropriate manner. We consequently enhanced

the notion of a test case by the introduction of rated test cases and sequential test
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cases. Both enhancements are true generalizations of the standard test case no-

tion. The rated precision/recall and the chained and rated precision/recall were

introduced as suitable extensions of the precision and recall measures in order to

take into account the enhancements of rated test cases and sequential test cases,

respectively. Also, the rated version as well as the rated and chained version of

the precision/recall are true generalizations of the standard measures.

Evaluation measures often have only a small utility when not provided with

appropriate inspection methods. We introduced a unit testing metaphor that uses

the described measures in a 1-dimensional visualization, and additionally intro-

duced the novel visualization technique DDTree, that depicts the results of a test

run by a 2-dimensional rendering of a tree. The visualization of a DDTree can be

used to effectively gain an overview of the overall “healthiness” of the knowledge

base, but also is an intuitive instrument for the manual validation and debugging

of new and faulty test cases.

The practical application and effectiveness of the presented measures and their

use in the DDTree visualization was demonstrated in a case study. Here, the qual-

ity of the medical decision-support system Digitalys CareMate was evaluated in

iterative sessions. The visualization of the knowledge and the test cases, respec-

tively, was experienced as intuitive and effective.

5.2. Future Directions

Empirical testing builds on mature research and practical tools, but still is

not a closed research area; there still remain a couple of issues to consider for

future work. We briefly describe three issues in the following: 1) The extension to

temporal case testing, 2) the integration in robustness tests, and 3) the adaptation

of test case generation techniques.

Especially in the medical domain knowledge systems typically reason over

temporal data, for example, weaning systems, e.g., the SmartCare system [30],

or systems to monitor patients in the ICU, e.g., such as described in [32]. The

testing of temporal knowledge systems was not explicitly discussed within this

paper, but it can be seen, that the particular sequences of a sequential test case

can be interpreted as particular sessions of a temporal consultation. This does not

hold for temporal data that is asynchronously fed into the system, for example, in

different time shifts and with varying frequencies. Here, it needs to be discussed

if and how the notion of sequential test cases needs appropriate adaptation.

Robustness testing [5, 19] is an extension of empirical testing, that evaluates

the valid behavior of the knowledge base with respect to either incorrect findings

or a partly faulty knowledge base. Thus, the developed knowledge base is tested
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for its reasonable behavior in noisy environments. The noisy environment is sim-

ulated by so-called torture tests, that gradually decrease the quality of the findings

or the quality of the used knowledge. Then, the changed quality is tested by an

empirical testing run. In the past, torture tests usually applied the standard mea-

sures for precision and recall, but it is easy to see that the degradation of the test

cases with respect to their quality can be adapted to the new notions of rated test

cases and sequential test cases. Furthermore, the analysis of the robustness test

outcomes yields more interesting results when the extended measures for preci-

sion and recall are used.

In the past, alternative approaches for the automated generation of test cases

have been presented, cf. [18, 20, 27, 28, 51]. These methods are useful for the gen-

eration of appropriate test cases in arbitrary domains, but they require the avail-

ability of explicit knowledge, either represented as already formalized knowledge

(e.g. rules) or described as generation knowledge (e.g. constraints or causal de-

pendency models). Furthermore, the possibility of rated solutions and sequential

test data is typically not considered at all. In [6] the exhaustive generation of all

possible (sequential) test cases was sketched using a simple dialog bot. Since this

naive algorithm will generate an exponential number of possible cases, reason-

able constraints need to be defined in order to shrink the number of combinations

sufficiently.
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