
Advanced Features for Enterprise-Wide Role-Based Access Control

Axel Kern
Systor Security Solutions GmbH
Hermann-Heinrich-Gossen-Str. 3

50858 K̈oln, Germany
axel.kern@systorsecurity.com

Abstract

The administration of users and access rights in large
enterprises is a complex and challenging task. Roles are
a powerful concept for simplifying access control, but their
implementation is normally restricted to single systems and
applications. In this article we define Enterprise Roles ca-
pable of spanning all IT systems in an organisation. We
show how the Enterprise Role-Based Access Control (ER-
BAC) model exploits the RBAC model outlined in the NIST
standard draft[5] and describe its extensions.

We have implemented ERBAC as a basic concept of SAM
Jupiter, a commercial security administration tool. Based
on practical experience with the deployment of Enterprise
Roles during SAM implementation projects in large organ-
isations, we have enhanced the ERBAC model by includ-
ing different ways of parametrising the roles. We show that
using parameters can significantly reduce the number of
roles needed in an enterprise and simplify the role struc-
ture, thereby reducing the administration effort consider-
ably. The enhanced ERBAC features are illustrated by real-
life examples.

1 Introduction

The economic and technical changes taking place in to-
day’s business world are imposing growing demands for
flexibility and efficiency upon enterprises striving to remain
competitive. This is true not only for business practices,
but also for the IT architectures established to support and
implement them. One major issue affecting the competi-
tiveness of an enterprise is the availability and reliability
of information. Most companies have realised that protect-
ing corporate data has become a matter of survival. Al-
though information technology itself has been improving
significantly over the past decade, the IT security architec-
ture needed to protect such information has not kept pace.
This has created a discrepancy in the levels of efficiency

and sophistication between the technology and the security
mechanisms developed to protect and support it.

Managing an effective IT security environment is be-
coming increasingly costly and time-consuming for the fol-
lowing reasons:

• Applications and solutions are implemented on an in-
creasing number of different platforms and systems.

• A growing number of different locations are associated
with the enterprise, due to company growth or merger
activity.

• Discrete and isolated IT security solutions are used
across the enterprise. Enterprise-wide security man-
agement requires more and more specialised knowl-
edge, making it increasingly difficult to uphold secu-
rity standards.

• An ever-increasing demand for reliable information se-
curity, due to economic as well as technical and legal
conditions requiring a tight control on information re-
sources.

• A need for providing users with exactly the access
rights needed for daily work when they are needed.

One important strategy pursued by companies in order to
remedy this situation is the implementation of an enterprise-
wide security administration solution. A number of tools
designed to meet this need are available on the market. This
article is based on SAM Jupiter, a state-of-the-art security
administration tool which

• allows customers to establish corporate standards of
security administration valid across all platforms, sys-
tems and locations,

• supports central auditing and control,

• provides a uniform administration environment,

• automates security administration,

1



SAM GUI
Administra-
tor Client

Import
Interface

¡
¡

¡
¡

¡
¡

SAM
Business
Server

SAM
Back-end

SAM
Repository

¡
¡

¡
¡

¡
¡

©©©
HHH@

@
@

@
@

@ Agent
RACF

Agent
Win 2000

Agent
UNIX

...

...

Figure 1. Architecture of SAM Jupiter

• supports not only standard security systems, but also
has an open architecture able to support home-made
systems or systems which will be developed in the fu-
ture,

• complies with the standards of modern information
technology, including the support of central server,
client/server and internet/intranet architectures across
different communication protocols.

One of the major features of SAM Jupiter is the usage of
roles, which we shall discuss in detail in this article. In sec-
tion 2 we describe the basic functionality and architecture
of SAM Jupiter as a basis for this discussion.

Role-based access (RBAC) control has proved to be a
solid base for today’s security administration needs. RBAC
has been a subject of research for many years [3] [4] and
is used in a lot of commercial software products. In 2001,
NIST proposed a standard [5] that defines the common fea-
tures of RBAC.

In [6] we introduced Enterprise Role-Based Access Con-
trol (ERBAC), the role model used by SAM Jupiter. ER-
BAC enhances RBAC by the definition of Enterprise Roles,
which span different IT systems and form the basis for
company-wide security management. After recapitulating
the basic components of the NIST RBAC standard, section
3 of this paper describes our ERBAC model in more detail,
whereas [6] concentrated mainly on role engineering and
the life-cycle of roles. We compare ERBAC with the NIST
standard and show how the NIST RBAC levels are mapped
to ERBAC. Furthermore, we also present the differences re-
sulting from the fact that Enterprise Roles encompass per-
missions in a variety of different systems.

In our experiences deploying SAM at a number of large
customer sites, we have found a number of drawbacks when
using the basic ERBAC model. We have therefore defined

and implemented a number of enhancements that have re-
duced the complexity and administration effort consider-
ably. In section 4, these enhancements are described and
illustrated by several real-life examples.

2 Enterprise Security Management

The administration of users and their access rights in the
IT environments of medium and large companies is a com-
plex and expensive task. Most companies operate a large
number of applications running on several different operat-
ing systems. According to the Gartner Group, the number
and variety of platforms is continuing to grow in most enter-
prises [14]. As most applications and platforms have their
own administration product, this results in high adminis-
trative effort and the need for administrators with specific
know-how for many platforms.

In this section we describe the architecture and function-
ality of SAM Jupiter, a commercial enterprise security man-
agement product developed by Systor Security Solutions
[10]. It is the new generation of the Security Administra-
tion Manager (SAM), one of the leading products in this
market[1]. SAM Jupiter provides a central point of adminis-
tration, giving administrators full control of all IT manage-
ment for employees and resources without compromising
on the lowest common denominator of security protection.
Interfaces to the specific security systems and applications
make it possible to consolidate information in a common
security repository using a system-independent conceptual
model. When these systems are connected to SAM Jupiter
and their data loaded into its repository, administrators work
only within the SAM environment and no longer need spe-
cific knowledge about the systems to be administered. This
not only consolidates the administration work, but also re-
duces the need for in-depth knowledge about all underlying

2



Organi-
sational

Unit

? ?

Organisational
Structure

User Policy

User

Role

? ?

Role Hierarchy

Account

Group

©©©©©©

HHHHHH Resource

Resource
Class

Figure 2. Entity Relationship Diagram of SAM Jupiter

systems. All administration work is done in SAM Jupiter
and automatically propagated to the underlying systems in
the format required.

Figure 1 shows the architecture of SAM Jupiter. It is
based on a state-of-the-art 3-tier architecture. The presenta-
tion layer is represented by a modern, Web-based graphical
user interface which provides access for both central and de-
centralised administrators. The GUI was developed based
on a user-centric development process according to ISO
13407 [2]. By ensuring high usability for the administra-
tion interface, it is possible to minimise errors and thereby
increase overall security. An import interface is provided
for automation purposes.

The SAM Business Server implements the business logic
of SAM Jupiter. This is also where the security and admin-
istration policies enforced by SAM Jupiter are defined. The
SAM back-end component acts as transaction engine for the
repository and provides connections to the supported sys-
tems – which we refer to as “target systems” – via agents.
The agents run on the target platform, propagate the admin-
istrative work completed in SAM Jupiter to the relevant se-
curity systems and also load the data into the SAM repos-
itory. Standard agents are provided for all major software
systems. Customer applications can be easily adapted us-
ing the SAM connector technology. Specific connectors
are provided for supporting application security systems,
LDAP-based systems, and other company-specific applica-
tions.

Figure 2 shows the basic entity relationship diagram of
SAM Jupiter. The left-hand side of the diagram shows the
enterprise-wide entities, positioning the user as the central
entity. A user can be a member of an organisational unit.
Organisational units are connected to build an organisa-

tional structure. Permissions can be assigned either via roles
– which is the recommended method – or explicitly. On
the right-hand side, the target system specific security en-
tities are mapped: Users receive accounts (also called user
IDs) in a target system. Accounts can become members of
groups. Both accounts and groups can be authorised to re-
sources, which are often categorised into different classes
(such as database, table or view for a database system). All
this data is stored in the SAM repository as the basis for
administration and review functions. Administration per-
formed in SAM Jupiter is directly propagated to the target
systems. The review functionality is symmetric and allows
viewing permissions from the user side as well as from the
resource side – independent of the way the target system
actually stores the information.

To further reduce administration costs, most enterprises
wish to automate administration. The most accurate infor-
mation about its employees can often be found in the hu-
man resources database. Extracted information such as em-
ployee number, organisational unit, location or job descrip-
tion can be used to add and delete users automatically as
well as update their access rights. A prerequisite for au-
tomation is the usage of roles corresponding to organisa-
tional structures, job descriptions etc. (see section 3.2). The
mapping of user attributes to the roles a user will receive is
achieved by defining a set of rules.

If a new employee starts with the company, this infor-
mation is transferred directly from the human resources
database to SAM Jupiter, which automatically transforms
the information to role assignments and makes the corre-
sponding updates in the connected target systems. In ad-
dition, when an employee leaves the company, all of the
employee’s accounts and access rights are automatically

3



Sessions

Users Roles Operations Objects

Permissions@
@

@R ¡
¡

¡µ

-¾ User
Assignment

? ?

Role Hierarchy

-¾

Static Separation of Duty
@

@@R

XXXXXXXz

Dynamic Separation of DutyHHHY

Permission
Assignment

-¾

Figure 3. Standard RBAC Model [5]

deleted, thus greatly reducing security risks.
Consistency between the information in the human re-

sources system and SAM Jupiter can be ensured by extract-
ing all relevant users from the human resources database,
evaluating the corresponding rules and comparing the re-
sults with the current status in the SAM repository. The
differences are then adjusted accordingly. The same proce-
dure is used when rules change, for example, due to organ-
isational changes.

3 Enterprise Roles

3.1 Role-Based Access Control (RBAC)

Roles are a powerful concept for simplifying access con-
trol. In Role-Based Access Control (RBAC), permissions
are not directly associated to users but are instead collected
in roles. Users are then assigned to these roles, thereby ac-
quiring the roles’ permissions. A role normally contains all
rights needed in an organisational unit or for a specific job
function [12].

The usage of RBAC offers numerous advantages for an
enterprise:

• Separation of responsibilities: The business processes
“Defining a role” and “Assigning a role” are separated.
The definition of roles, which requires system-specific
know-how about resources, is performed by system or
security administrators. On the other hand, the assign-
ment of roles to users is done in the business depart-
ments by people who know which job function a user
performs, but do not have system know-how.

• The number of administration tasks can be reduced,
as the number of roles is normally considerably lower
than the number of users and permissions. (Example:
A large German bank has defined 400 roles for 40,000

users.) This reduces the administration costs signifi-
cantly.

• RBAC allows a better overview of the permissions
granted to a user. On one hand, auditors can more
easily see what access rights users have and check
whether they are supposed to have them. On the other
hand, administrators can authorise users in a more con-
trolled way. In companies working with individual
permission assignments, users often accumulate access
rights when changing positions within the company.
Nobody really knows anymore which of these rights
belong to older job functions and which of them the
employee really needs. The usage of roles connected
to such functions thus increases security.

• Last but not least, roles are an important prerequisite
for automating security administration.

In recent years, roles have been implemented in many
commercial systems. However, there is no widely accepted
RBAC model, meaning that implementations differ consid-
erably. In 2001, an RBAC standard was proposed which
defines the core and extended capabilities of roles [5].

Core RBACdefines the basic functionality of roles. It
includes sets of five basic data elements: users, roles, ses-
sions, objects and operations (see figure 3). Roles collect
permissions for objects (permission assignment). Users can
be assigned to roles (user assignment). Both types of as-
signments are many-to-many relations. During a session, a
user can activate one or more of the assigned roles. Each
session is associated with one user, whereas a user can have
several sessions at the same time.

Hierarchical RBACextends core RBAC with role hierar-
chies that allow the structuring of roles to correspond with
functional or organisational hierarchies. Child roles inherit
all permissions of their parent roles. The standard differen-
tiates between general and limited role hierarchies.General

4



User -¾ User
Assignment

Enterprise
Role

´
´

´
´

´
´

´
´́3́

´
´

´
´

´
´

´́+ -¾
Q

Q
Q

Q
Q

Q
Q

QQsQ
Q

Q
Q

Q
Q

Q
QQk

Permission
Assignment

Group
(UNIX)

Role
(Oracle)

Group
(RACF)

-¾ Update
@

@
@

@
@

@R@
@

@
@

@
@I

Read

Dataset
(RACF)

DB2 Table
(RACF)

Figure 4. Enterprise Role Example

role hierarchiesallow roles to be connected in an arbitrary
partial order, whereaslimited role hierarchiesare restricted
to tree structures.

Constrained RBACadds Separation of Duty (SoD) re-
lations to core RBAC. The standard allows for both static
and dynamic SoD.Static Separation of Dutyenforces con-
straints on assignments of users to roles. For example, two
roles can be defined as mutually exclusive. In contrast,Dy-
namic Separation of Dutylimits the activation of roles for a
user’s session.

In addition, the standard contains requirement specifica-
tions for administrative functions, supporting system func-
tions and review functions.Administrative functionsen-
able administrators to create and delete the RBAC options
and their relations.Supporting system functionsare used to
maintain sessions.Review functionsprovide reports such as
“All permissions of a user”.

3.2 Enterprise Role-Based Access Control (ER-
BAC)

As already mentioned, the IT environments of large en-
terprises consist of a variety of platforms and applications.
These include a number of operating systems (e.g. OS/390,
Windows NT/2000 and UNIX), databases (e.g. Oracle and
DB2), standard applications, such as SAP’s R/3, and a large
number of business applications. Most of them have built-
in security components (as in the case of Windows NT or
Oracle) or are secured by a separate security product (such
as RACF, ACF2 or Top Secret for OS/390). The mech-
anisms used by these security components differ signifi-
cantly. Some of them already work with roles.

A typical enterprise user must have access to a variety
of systems and applications on different platforms. How-
ever, existing role concepts are mainly specific to particular
applications and operating systems, causing administrative

overhead. For example, to access an application, a user may
need parallel sessions at different layers, such as Windows
NT, OS/390 and a database, requiring access rights for all
of them. These rights must be administered separately in
the participating systems as no common RBAC support is
currently provided. There are some developments towards
broadening the scope of operating system security. Operat-
ing systems such as Netware and Windows 2000 allow ad-
ministration components of other systems and applications
to use their directories. However, these approaches are re-
stricted to only a subset of the systems operated by a typ-
ical enterprise; in particular, the support of mainframe and
midrange systems is very restricted.

Because of the variety of different systems in the mar-
ket and their dynamic behaviour, modern enterprises require
a more comprehensive RBAC solution. Such a solution is
provided by introducing Enterprise Roles, as implemented
in SAM Jupiter. Enterprise Roles span over more than one
target system and consist of permissions in multiple sys-
tems. These permissions are specific to the target system
and can be of various natures. The example in figure 4
shows a role containing a group in UNIX, a role in Ora-
cle and a group in RACF with authorisations for updating a
dataset and reading a database table.

Figure 5 shows the resulting model, which we call the
Enterprise RBAC model (ERBAC). It is based on RBAC96
[12] and the NIST role standard draft [5] (see figure 3). The
basic ERBAC model is analogous to core RBAC. Enterprise
Roles collect all permissions needed to perform a specific
role. Users are then assigned to these roles. The main dif-
ference between ERBAC and the RBAC96 model lies in
the notion of sessions. In an enterprise-wide administration
concept, all systems in the enterprise are administered, but
without control of the actual user sessions. Therefore, ses-
sions cannot be part of ERBAC. Instead, the permissions
a user receives through the assignment of a role are prop-

5



User

Account
in TS

-¾

?

User
Assignment

?

Role

? ?

Role Hierarchy

-¾

Static Separation of Duty
@

@@R

XXXXXXXz

Permission
Assignment

?

Permission

Permission
in TS

?

-¾

Enterprise Level

Propagation

Target Systems

Figure 5. Enterprise RBAC Model (ERBAC)

agated to the administered target systems (TS). The Enter-
prise User definition leads to the creation of user accounts
(user IDs) in the target system. A permission can be any au-
thorisation (called an operation in core RBAC) to a resource
in one of the underlying target systems. The assignment of
a permission to an Enterprise Role does not necessarily lead
to any update in the target system. The permissions of the
role are propagated and the user’s accounts receive the as-
sociated permissions in the respective TS only when a role
is assigned to the user. The same happens, of course, when
permissions are added to or removed from roles.

As already mentioned, a permission can be any entity in
the target system, such as a group, a role or an authorisation.
Let us take a deeper look at the concept of groups: There
has been some discussion about the differences between the
notion of roles and groups (e.g. in [11]). Groups can be seen
more as grouping mechanisms for users (see e.g. [8]) or as
groups of permissions. In our context, a group is simply a
target system entity which bundles permissions in the target
system. From the ERBAC viewpoint, a group is therefore a
type of permission that can be assigned to Enterprise Roles.

In addition to the core RBAC features, ageneral role
hierarchy is supported. Enterprise Roles can be assigned
to other roles in a directed acyclic graph. Child roles in-
herit all permissions from their parent roles (including all
permissions that these roles inherit). A user assigned to a
child role thus receives all permissions assigned to this role,
plus all permissions which the role inherits from its ances-
tors. Role hierarchies allow easy structuring of roles and
reduce redundancy. This leads to a smaller number of roles
to be defined in an enterprise and less administrative effort.
However, experience has shown that the role tree should
not be too deep, as it can otherwise become very difficult to
maintain. A role hierarchy with a maximum of three to four
levels is recommended.

The RBAC standard draft also defines constraints.Static
Separation of Dutyis implemented in ERBAC by rules
defining constraints between roles. These rules are evalu-

ated when assigning users to roles and roles to roles, thus
preventing a user from receiving illegal combinations of
roles, even in the presence of a role hierarchy.

As an ERBAC system does not control the actual ses-
sions of a user, it cannot directly enforceDynamic Separa-
tion of Duty. Instead, it must rely on such mechanisms in
the target systems. A common way to enforce dynamic SoD
is to use different accounts for different tasks. In ERBAC,
we can simply define different users for these tasks. Thus,
by defining static Separation of Duty constraints in ERBAC,
dynamic Separation of Duty can be enforced in the under-
lying systems. If the target system itself supports dynamic
SoD, this feature can be controlled directly by ERBAC.

In addition to the role model, the RBAC standard also
defines administrative and review functions. Our imple-
mentation of ERBAC in SAM Jupiter also offers a complete
set of administrative commands for all supported functions.
A complete list of all supported commands, however, goes
beyond the scope of this paper. The review functions are
based on the ERBAC repository and are realised using a
Web-based reporting engine. The symmetric nature of the
repository allows for a comprehensive set of lists including
basic and advanced lists for all ERBAC levels. Some exam-
ples for advanced reports are:

• List all permissions of a user (including those inherited
from all directly or indirectly connected roles).

• List all users to which a role is connected directly or
indirectly via the role hierarchy.

• List all users with a specific permission.

4 Enhanced ERBAC

ERBAC as defined in the previous section provides a
good basis for user and security administration. However,
our experience during deployment of roles with SAM at
several customer sites showed that the sole usage of this

6



User

Account
in TS1

Account
in TS2

-¾

?

?

User
Assignment

?

T
S
1

?

T
S
2

Role -¾Permission
Assignment

Generic
Permission

(SET1)

Permission
in TS1

Permission
in TS2

?

-¾

?

-¾

Enterprise Level

Propagation

Target System 1

Target System 2

Figure 6. ERBAC with Generic Roles

model would have led to a large number of roles and thus
to a high administration effort. There are basically two rea-
sons for this: multiple factors defining roles and the need
for fine-grained control of application security.

The access rights a person receives are normally based
on a number of factors. These may be organisational unit,
job, location or others. As the combination of these factors
defines the rights, one cannot simply build separate role hi-
erarchies based on organisation, job etc. Instead, a role must
be defined for every valid combination of these factors. The
resulting role structure would obviously be very complex
and difficult to maintain1.

In typical business applications, fine-grained, restrictions
to access rights often apply. For example, different loan
managers may be allowed to approve loans up to differ-
ent amounts. Using the described ERBAC model, one loan
manager role must be defined for every different maximum
approval amount. This would again lead to many similar
roles differing only in a single constraint.

The solution for these problems is to parametrise roles.
We have therefore enhanced our ERBAC model with at-
tributes and rules. Attributes can be assigned to the fol-
lowing entities:

• users,

• roles,

• user assignments,

• permission assignments,

1The situation is comparable to multiple inheritance in object-oriented
programming. Extensive use of – especially multiple – inheritance leads
to unmaintainable software systems.

• role-to-role assignments.

These attributes may specify constraints or other values rel-
evant for access control decisions. Rules specify what hap-
pens when attributes are changed or assignments are given
or removed.

In the following sections, we describe how enhanced
ERBAC can dramatically reduce the number of roles, thus
greatly facilitating role administration. All features are mo-
tivated by real-life situations that we have encountered dur-
ing role deployment in large organisations.

4.1 User Attributes

The user in our ERBAC model contains a rich set of stan-
dard and company-specific attributes. These attributes are
used for a number of important functions:

• A set of attributes such as name, title, telephone num-
ber describes the user. Furthermore, they can also be
propagated to a target system when an account is cre-
ated for the user.

• Several attributes describe the user’s organisational
unit, job function(s) and so on. These attributes pro-
vide the basis for automation of user administration
as they normally define the roles a user will receive.
As described in section 2, this data is often extracted
from a human resources system. If these attributes
change, the roles a user receives or loses are com-
puted using rules and automatically assigned or deas-
signed. Of course, automation can considerably reduce
administration costs and is therefore the main goal of
many companies when implementing an enterprise-
wide user administration tool. Some companies have

7



User
Cost Account

= 4267

Account
in RACF

-¾

?

User
Assignment

?

Role -¾Permission
Assignment

?

Rule Evaluation

Joker
Permission

Group
ACCT4267

in RACF

?

-¾

Enterprise Level

Propagation

Target System

Figure 7. ERBAC with Joker: Example

succeeded in automating more than 90-95% of their
user administration tasks. As an example, table 1
shows some figures for role-based administration in a
European bank.

40 000 users
12 000 changes of user assignments to roles per
week (fully automated)
600 changes of permission assignments to roles
per week (manually)
→ 95% automation of administration

Table 1. Figures for Role-Based Administra-
tion in a Bank

• A further possibility is to use user attributes for spec-
ifying user-specific information which can be used as
constraints for roles and permissions or for other ad-
ministration tasks. The following sections go into
more detail on this.

4.2 Generic Roles

For several types of systems – such as Windows NT and
UNIX – many organisations have a number of locally dis-
tributed installations. A user is defined in one or more
of these systems according to location (or some other at-
tribute). Users working at more than one location may be
defined in several systems. Typically, the group and permis-
sion structures of these systems are defined quite similarly.

To prevent building separate role structures for all of
these systems, we added the concept of roles with generic
permissions to ERBAC. Normal roles are collections of per-
missions defined in specific target systems. Generic roles
allow the assignment of generic permissions defined for a
set of target systems. When such a role is assigned to a
user, one or more target systems from this set are specified.

The user then receives these permissions only in the speci-
fied target systems.

Figure 6 illustrates this feature. A generic permission de-
fined in a target system set SET1 is assigned to a role. The
target system set SET1 may contain five target systems with
similar permission structures (TS1 ... TS5). When assign-
ing our role to a user, we specify the target systems TS1 and
TS2 from this set. The user then receives the permissions
defined in the role for these two systems.

4.3 Joker Permissions

Information from several structures is often needed to
define a role. A common example is that a user’s access
rights depend on location and job function[6]. If we tried
to build a role tree including both factors, the tree structure
would become quite complex. It also would contain a large
number of roles, as one role is needed for every valid com-
bination of location and job function.

We have established a successful alternative approach
that avoids increasing complexity. Only one structure is
used as a basis for the role graph, while the other is im-
plemented via parameters of these roles. As an example,
we can take the job function for building the role graph and
define the location as an attribute of the user/role relation-
ship.

This feature is implemented by assigning so-called joker
permissions instead of explicit permissions to a role. When
assigned to a user, the actual permission is computed using
the attributes of the user and/or user-role connection on the
basis of rules. The permission is then granted to the user.
The rules use attributes of the user (e.g. organisational unit,
location, job function) to compute the actual permission. A
naming convention for the permissions is a prerequisite for
this method.

Figure 7 shows an example for the usage of jokers. In a
bank, all users receive a membership to a RACF group on
the mainframe according to their cost accounts, which are

8



User
Max. loan
amount =

1 Mio. Euro

Account
in TS

-¾

?

User
Assignment

?

Role -¾Permission
Assignment

¤
¤¤

Constraint: Maximum amount

?

Permission

Permission
in TS

?

-¾ ¤¤

Constraint: Maximum amount
= 1 Mio. Euro

Enterprise Level

Propagation

Target System

Figure 8. Example for user-specific constraint

represented by four digit numbers. For this purpose, groups
in RACF are defined with names consisting of the string
“ACCT” followed by the account number. A role is now
defined containing a Joker Group. When a user is assigned
to this role, a rule is triggered that computes the name of
the group by concatenating the fixed string ”ACCT” with
the cost account of the user (taken from the user attributes)
and assigns the user in RACF to this group. This mecha-
nism is quite powerful, as it uses information about the user
and the permission structure to automate the administration
process.

4.4 User-Specific Constraints

User-specific constraints constitute a further aspect often
occurring – especially in business applications. People do-
ing principally the same job may have different restrictions.
Some examples include:

• A bank teller may only work with a specific set of cus-
tomer accounts.

• A loan manager may grant loans up to a specific
amount.

It would be possible to build separate loan manager roles
for every different maximum amount or separate bank teller
roles for every range of customer accounts. Obviously, this
is not a good solution as it would lead to a large number of
similar roles.

In ERBAC we have enhanced the permission assignment
with additional parameters. The underlying application se-
curity system already has parameters for its authorisations
in order to check the constraints. These system-specific pa-
rameters are now mapped to permission assignments. Fur-
thermore, rules are defined to determine how these param-
eters are filled. This can be anything from filling the pa-
rameter with an attribute from the user record to complex
computations. When a user is assigned to a role in ERBAC,

these parameters are computed and propagated to the un-
derlying system.

Figure 8 shows a simple example of user-specific con-
straints. A banking application has defined the constraint
“Maximum amount” for the assignment of a permission to
approve a loan. A loan manager role is now built that in-
cludes this constrained permission but does not define an
explicit amount for the constraint. A user has an attribute
“Maximum loan amount” of one million Euro, which de-
fines the limit. When this user is connected to the role and
the permission is propagated to the target system, the con-
straint is filled with the value from the user attribute.

5 Conclusion

Role-Based Access Control is an effective mechanism
for simplifying the administration of users and access rights
in complex IT infrastructures. To support enterprise-wide
security management, we have introduced Enterprise Roles
and the Enterprise Role-Based Access Control Model (ER-
BAC). ERBAC has been implemented in the commercial
security administration tool SAM and has proven success-
ful in many projects in large organisations. We have also
shown that enhancing ERBAC with parameters reduces the
number of roles dramatically, thereby minimising adminis-
tration and role maintenance costs.

Future work will be done to improve the ERBAC model
and its validity will be proven in deployment at further cus-
tomer sites. In particular, we must cope with the challenges
deriving from the growing distribution of IT systems over
the internet.

A second important area is role engineering, as the de-
ployment and maintenance of roles requires a thorough pro-
cess. We have already defined a role life-cycle in [6]. The
role-finding process in particular will be further investi-
gated. So far, two approaches have been considered. On one
hand, a top-down approach starts with the business struc-
tures and processes and refines them to obtain roles (see

9



also [9]). The bottom-up approach, on the other hand, takes
the existing permissions and applies data mining techniques
to find clusters of permissions which represent roles. It will
be interesting to combine both approaches.

References

[1] R. Awischus. Role-Based Access Control with the Security
Administration Manager (SAM). InProceedings of the Sec-
ond ACM Workshop on Role-Based Access Control, Fairfax,
Virginia, USA, pages 61–68, November 1997.

[2] A. Beu, A. Kern, and J. Schwagereit. “Das User Interface ist
wunderscḧon...”. Der benutzerzentrierte Gestaltungsprozess
nach ISO 13407 in der Praxis.Java Magazin, pages 28–35,
May 2002.

[3] B. Biddle and E. Thomas, editors.Role Theory: Concepts
and Research. Robert E. Krieger Publishing, New York,
1979.

[4] D. F. Ferraiolo and D. R. Kuhn. Role-Based Access Control.
In 15th NCSC National Computer Security Conference, Bal-
timore, 1992.

[5] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed NIST Standard for Role-Based
Access Control.ACM Transactions on Information and Sys-
tem Security (TISSEC), 4(3):224–274, August 2001.

[6] A. Kern, M. Kuhlmann, A. Schaad, and J. Moffett. Obser-
vations on the Role Life-Cycle in the Context of Enterprise
Security Management. InProceedings of the 7th ACM Sym-
posium on Access Control Models and Technologies (SAC-
MAT 2002), Monterey, California, USA, pages 43–51, June
2002.

[7] A. Kern, M. Kuhlmann, and R. Wick. Ein Vorgehensmodell
für Enterprise Security Management. InProceedings of the
Working Conference on IT Security in Electronic Business
Processes, St. Leon-Rot, Germany, September 2002.

[8] S. Osborn and Y. Guo. Modelling Users in Role-Based Ac-
cess Control. InProceedings of the Fifth ACM Workshop on
Role-Based Access Control, Berlin, Germany, pages 31–37,
July 2000.

[9] H. Röckle, G. Schimpf, and R. Weidinger. Process-Oriented
Approach for Role Finding to Implement Role-Based Secu-
rity Administration in a Large Industrial Organization. In
Proceedings of the Fifth ACM Workshop on Role-Based Ac-
cess Control, Berlin, Germany, pages 103–110, July 2000.

[10] For more information about SAM Jupiter, see our product
homepage: http://www.sam-security.com.

[11] R. Sandhu. Roles Versus Groups. InProceedings of the First
ACM Workshop on Role-Based Access Control, Gaithers-
burg, Maryland, USA, pages I–25–I–26, December 1995.

[12] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
Based Access Control Models.IEEE Computer, 29(2):38–
47, February 1996.

[13] D. Thomsen, R. O’Brien, and C. Payne. Napoleon Net-
work Application Policy Enforcement. InProceedings of
the Fourth ACM Workshop on Role-Based Access Control,
Fairfax, Virginia, USA, pages 145–152, October 1999.

[14] R. Witty and W. Malik. Enterprise User Administration
Magic Quadrant FY01, Research Note. Gartner Group, Jan-
uary 2001.

10


