
Universitat Politècnica de València

Departamento de Sistemas Informáticos y Computación

Doctorado en Informática

Ph.D Thesis

Advanced Features in Protocol

Verification: Theory, Properties, and

Efficiency in Maude-NPA

Candidate:

Sonia Santiago Pinazo
Supervisor:

Dr. Santiago Escobar Román

Valencia, January 2015

Universitat Politècnica de València

Departamento de Sistemas Informáticos y Computación

Doctorado en Informática

Ph.D Thesis

Advanced Features in Protocol

Verification: Theory, Properties, and

Efficiency in Maude-NPA

A dissertation submitted by Sonia Santiago Pinazo in fulfillment of the
requirements for the degree of Doctor of Philosophy in Computer Science
with International Mention at the Universitat Politècnica de València.

Valencia, January 2015

Work partially supported by the EU (FEDER) and the Spanish MECD,
under grants TIN 2007-68118-C02, TIN 2010-21062-C02-02, and FPU
AP2009-4297; by the Generalitat Valenciana, under grant
PROMETEO/2011/052; by the Universitat Politècnica de València un-
der grant “Beca de Excelencia (2010)”.

Title: Advanced Features in Protocol Verification: Theory,
Properties, and Efficiency in Maude-NPA

Author: Sonia Santiago Pinazo
Address: Departamento de Sistemas Informáticos y Computación

Universitat Politècnica de València
Camı́ de Vera, s/n
46022 Valencia
España

E-mail: ssantiago@dsic.upv.es

Advanced Features in Protocol

Verification: Theory, Properties, and

Efficiency in Maude-NPA

Author:

Sonia Santiago Pinazo

Supervisor:

Dr. Santiago Escobar Román U. Politècnica de València

External Evaluators:

Prof. Narciso Mart́ı Oliet U. Complutense de Madrid
Prof. Maribel Fernández King’s College London
Prof. Luca Viganò King’s College London

Jury:

Prof. Silvia Abrahão U. Politècnica de València
Prof. Gilles Barthe IMDEA Software
Prof. Luca Viganò King’s College London

January 23rd, 2015

A mis padres, Juan y Rosa, por su apoyo
incondicional. Su ejemplo de esfuerzo y
trabajo duro ha sido siempre mi
inspiración.

To my parents, Juan and Rosa, for their
unconditional support. Their example of
effort and hard work has always been my
inspiration.

Abstract

The area of formal analysis of cryptographic protocols has been an active
one since the mid 80’s. The idea is to verify communication protocols
that use encryption to guarantee secrecy and that use authentication of
data to ensure security. Formal methods are used in protocol analysis to
provide formal proofs of security, and to uncover bugs and security flaws
that in some cases had remained unknown long after the original proto-
col publication, such as the case of the well known Needham-Schroeder
Public Key (NSPK) protocol. In this thesis we tackle problems regard-
ing the three main pillars of protocol verification: modelling capabilities,
verifiable properties, and efficiency.

This thesis is devoted to investigate advanced features in the analysis
of cryptographic protocols tailored to the Maude-NPA tool. This tool
is a model-checker for cryptographic protocol analysis that allows for
the incorporation of different equational theories and operates in the
unbounded session model without the use of data or control abstraction.

An important contribution of this thesis is relative to theoretical as-
pects of protocol verification in Maude-NPA. First, we define a forwards
operational semantics, using rewriting logic as the theoretical framework
and the Maude programming language as tool support. This is the first
time that a forwards rewriting-based semantics is given for Maude-NPA.
Second, we also study the problem that arises in cryptographic protocol
analysis when it is necessary to guarantee that certain terms generated
during a state exploration are in normal form with respect to the protocol
equational theory.

We also study techniques to extend Maude-NPA capabilities to sup-
port the verification of a wider class of protocols and security properties.
First, we present a framework to specify and verify sequential protocol
compositions in which one or more child protocols make use of infor-

mation obtained from running a parent protocol. Second, we present a
theoretical framework to specify and verify protocol indistinguishability
in Maude-NPA. This kind of properties aim to verify that an attacker
cannot distinguish between two versions of a protocol: for example, one
using one secret and one using another, as it happens in electronic voting
protocols.

Finally, this thesis contributes to improve the efficiency of protocol
verification in Maude-NPA. We define several techniques which drasti-
cally reduce the state space, and can often yield a finite state space,
so that whether the desired security property holds or not can in fact
be decided automatically, in spite of the general undecidability of such
problems.

Resumen

El área de análisis formal de protocolos criptográficos ha experimentado
una gran actividad desde mediados de los 80. El objetivo es verificar
protocolos que utilizan un mecanismo de cifrado para garantizar la con-
fidencialidad y la autenticación de los datos. Los métodos formales han
sido utilizados en el análisis de protocolos para proporcionar pruebas for-
males de seguridad y para descubrir errores y flujos de seguridad que en
algunos casos han permanecido ocultos durante mucho tiempo después
de la publicación del protocolo original, como es el caso del conocido pro-
tocolo Needham-Schroeder Public Key (NSPK). En esta tesis abordamos
problemas relacionados con los tres pilares principales de la verificación
de protocolos: capacidades de modelado, propiedades verificables y efi-
ciencia.

Esta tesis está dedicada a investigar caracteŕısticas avanzadas del
análisis de protocolos criptográficos, centrándose en la herramienta
Maude-NPA. Esta herramienta es un comprobador de modelos (model-
checker) para el análisis de protocolos criptográficos que permite la in-
corporación de distintas teoŕıas ecuacionales y que opera en el modelo de
número ilimitado de sesiones, sin realizar ningún tipo de abstracción de
datos o de control.

Una contribución importante de esta tesis está relacionada con as-
pectos teóricos de verificación de protocolos en Maude-NPA. En primer
lugar, definimos una semántica operacional hacia adelante, usando la
lógica de reescritura como marco teórico y el lenguaje de programación
Maude como herramienta de soporte. Esta es la primera vez que se de-
fine una semántica operacional hacia adelante basada en reescritura para
Maude-NPA. En segundo lugar, estudiamos el problema que surge en el
análisis de protocolos criptográficos cuando es necesario garantizar que
determinados términos generados durante la exploración de estados están

en forma normal con respecto a la teoŕıa ecuacional del protocolo.
También estudiamos técnicas para extender las capacidades de Maude-

NPA para que se pueda verificar un abanico más amplio de protocolos
y de propiedades de seguridad. En primer lugar, presentamos un marco
para especificar y verificar composiciones secuenciales de protocolos en
las que uno o más protocolos “hijo” hacen uso de información obtenida
después de ejecutar un protocolo “padre”. En segundo lugar, presenta-
mos un marco teórico para especificar y verificar indistinguibilidad de
protocolos en Maude-NPA. El objetivo de este tipo de propiedades es
verificar que un atacante no puede distinguir dos versiones diferentes de
un protocolo: por ejemplo, una en la que se utiliza un secreto y otra en
la que se utiliza un secreto diferente, como ocurre en los protocolos de
voto electrónico.

Por último, esta tesis contribuye a mejorar la eficiencia de la ver-
ificación de protocolos en Maude-NPA. Definimos varias técnicas que
reducen drásticamente el espacio de búsqueda generado en el análisis de
un protocolo, y que, a menudo, permite obtener un espacio de búsqueda
finito de tal modo que se puede decidir automáticamente si la propiedad
de seguridad deseada se satisface o no, a pesar de que tales problemas
sean generalmente indecidibles.

Resum

L’àrea d’anàlisi formal de protocols criptogràfics ha experimentat una
gran activitat des de mitjan 80. L’objectiu és verificar protocols que util-
itzen un mecanisme de xifrat per a garantir la confidencialitat i
l’autenticació de les dades. Els mètodes formals han sigut utilitzats en
l’anàlisi de protocols per a proporcionar proves formals de seguretat i per
a descobrir errors i fluxos de seguretat que en alguns casos han romàs
ocults durant molt temps després de la publicació del protocol origi-
nal, com és el cas del conegut protocol Needham-Schroeder Public Key
(NSPK). En aquesta tesi abordem problemes relacionats amb els tres
pilars principals de la verificació de protocols: capacitats de modelatge,
propietats verificables i eficiència.

Aquesta tesi està dedicada a investigar caracteŕıstiques avançades
de l’anàlisi de protocols criptogràfics, centrant-se en l’eina Maude-NPA.
Aquesta eina és un comprobador de models (model-checker) per a l’anàlisi
de protocols criptogràfics que permet la incorporació de diferents teories
equationals i que opera en el model de nombre il☎limitat de sessions sense
realitzar cap tipus d’abstracció de dades o de control.

Una contribució important d’aquesta tesi està relacionada amb as-
pectes teòrics de verificació de protocols en Maude-NPA. En primer lloc,
definim una semàntica operacional cap a avant, usant la lògica de ree-
scriptura com a marc teòric i el llenguatge de programació Maude com
a eina de suport. Aquesta és la primera vegada que es defineix una
semàntica operacional cap a avant basada en reescriptura per a Maude-
NPA. En segon lloc, estudiem el problema que sorgeix en l’anàlisi de
protocols criptogràfics quan és necessari garantir que determinats termes
generats durant l’exploració d’estats estan en forma normal respecte a la
teoria equacional del protocol.

També estudiem tècniques per a estendre les capacitats de Maude-

NPA perquè es puga verificar un ventall més ampli de protocols i de
propietats de seguretat. En primer lloc, presentem un marc per a especi-
ficar i verificar composicions seqüencials de protocols en les quals un o
més protocols “fill” fan ús d’informació obtinguda després d’executar un
protocol “pare”. En segon lloc, presentem un marc teòric per a especi-
ficar i verificar indistinguibilitat de protocols en Maude-NPA. L’objectiu
d’aquest tipus de propietats és verificar que un atacant no pot distin-
gir dues versions diferents d’un protocol: per exemple, una en la qual
s’utilitza un secret i una altra en la qual s’utilitza un secret diferent, com
ocorre en els protocols de vot electrònic.

Finalment, aquesta tesi contribueix a millorar l’eficiència de la veri-
ficació de protocols en Maude-NPA. Definim diverses tècniques que re-
dueixen dràsticament l’espai de cerca generat en l’anàlisi d’un protocol,
i que, sovint, permet obtenir un espai de cerca finit de tal manera que
es pot decidir automàticament si la propietat de seguretat desitjada es
satisfà o no, a pesar que tals problemes siguen generalment indecidibles.

Acknowledgements

I still remember the moment when this thesis begun. I was walking
thoughtfully, wondering whether I would be capable to complete a PhD
and, at some point, I realized that the question was actually “why not?”.
This has been a long journey, but also a fulfilling and exciting experience
that has changed my perspective of life in many aspects. Sometimes
doing research might result too challenging but this is, indeed, its beauty
since accomplishing those challenges is so rewarding that it makes our
work worthwhile. As I was adviced once, the key is to always keep working
hard, no matter what happens, specially in the “not so good” moments.

Many people have contributed to make my PhD student period one
of the best times of my life and I would like to express my gratitude to
them.

First of all I would like to thank my supervisor, Santiago Escobar,
for his excellent guidance and dedication during these years. His passion
for research is a source of inspiration for any young researcher and I feel
fortunate to have been his PhD student. I am truly thankful to him for
giving me the opportunity to do this thesis.

I am indebted to Prof. José Meseguer and Prof. Catherine Meadows,
with whom I have had the pleasure to collaborate these years. I can
only feel gratitude to them for allowing me to enjoy such an enriching
experience.

Thanks also to Prof. Carolyn Talcott for offering me the opportu-
nity to visit her at SRI. That was my first contact with research, which
convinced me to begin the PhD.

I would also like to thank Maŕıa Alpuente, the leader of the ELP
research group and the person that taught me formal methods for the
first time. Her enthusiasm for this research field was a key motivation to
join the ELP group.

I am thankful to the members of the ELP and MiST research groups
for providing a friendly atmosphere. I would specially like to thank Bea,
Toni, Tama, Rafa, Michele and Pepe for their friendship in my first years
of PhD. Their advices and experience have been very helpful during these
years. I am also grateful to Marco, Nando, César, Fran, David, Javier,
Javi, Laura, Antonio and Julia for those great moments we have spent to-
gether discussing about interesting ideas, sharing experiences, or simply
making fun of stupid things. I would also like to thank Alicia and Raúl
for their friendship from the very beginning, and for many interesting
discussions during lunch times and coffee breaks.

Furthermore, I cannot forget all the people I met during my research
stay at UIUC, from whom I have learnt so many things: Camilo, Kyung-
min, Stephen, Nana, Lex, Edgar, Chelsea, Max, Antonio, and, specially,
Raúl and Ralf, who were very helpful and kind with me. Thanks to them,
that stay was fulfilling not only scientifically, but also personally.

Special mention goes to other friends here in the department: Lućıa,
Clara, the three Sergio’s, Alejandro, Pablo and Vı́ctor, which have played
an important role in making these last years such a great time. We
have shared our happiness, our worries, our doubts, our experiences, but
specially, our sense of humor to overcome whatever difficulty we have
found.

Many thanks also to my non-researchers friends for their support and
interest. It is very pleasant being surrounded by people that cares about
your work even though they have no connection to research.

I would like to thank my family for their unconditional support and
love, and specially my parents, for their dedication since I was a child. I
would never have reached this stage without them.

Finally, I owe a big thanks to Raúl Costa, the best possible companion
in this journey. His always optimistic mood enlightens anyone who is at
his side. Thanks for your patience and for always encouraging me to keep
on going.

Sonia Santiago
Valencia, November 2014

Contents

1 Introduction 1
1.1 Formal Analysis of Cryptographic Protocols 1
1.2 Protocol Analysis modulo Equational Theories 4
1.3 Reducing the State Search Space 9
1.4 Protocol Composition . 12
1.5 Security Properties . 14
1.6 Contributions . 17
1.7 Plan of the Thesis . 19

2 Preliminaries 23
2.1 Rewriting Logic and Term Rewriting 23
2.2 Symbolic Reachability Analysis by Narrowing 29
2.3 Maude . 31

3 Maude-NPA 41
3.1 Overview . 41
3.2 Maude-NPA’s Strand Space Model 43
3.3 Backwards Reachability Analysis 47
3.4 Backwards Operational Semantics 49
3.5 General Requirements for Algebraic Theories 52
3.6 Protocol Specification in Maude-NPA 55

3.6.1 Protocol States 58
3.6.2 Attack States . 60

3.7 Maude-NPA Commands 62

4 State Space Reduction in the Maude-NPA 65
4.1 Motivation . 66

4.2 Overview of State Space Reduction Techniques 67
4.3 Identifying Unreachable States 69

4.3.1 Grammars . 69
4.3.2 Early Detection of Inconsistent States 72

4.4 Redundant States . 74
4.4.1 Limiting Dynamic Introduction of New Strands . 74
4.4.2 Partial Order Reduction Giving Priority to Input

Messages . 76
4.4.3 Subsumption Partial Order Reduction 77

4.5 The Super-Lazy Intruder 84
4.5.1 Definition of Super-Lazy Terms 87
4.5.2 The Super-Lazy Intruder and Ghost States 88
4.5.3 Optimizing the Super-Lazy Intruder 94
4.5.4 Transition Subsumption and the Super-Lazy Intruder 94
4.5.5 Implementing Subsumption Partial Order Reduc-

tion in the Presence of the Super-Lazy Intruder . 97
4.6 Experimental Evaluation 106
4.7 Conclusions . 107

5 A Rewriting-based Forwards Semantics for Maude-NPA113
5.1 Overview . 113
5.2 Forward Reachability Analysis 116
5.3 Forwards Operational Semantics 119
5.4 Soundness and Completeness of the Forwards Semantics 126
5.5 Experimental Evaluation 133
5.6 Conclusions . 135

6 Sequential Protocol Composition in Maude-NPA 137
6.1 Motivation . 138
6.2 Examples of Sequential Protocol Compositions 139

6.2.1 NSL Distance Bounding Protocol 139
6.2.2 NSL Key Distribution Protocol 142

6.3 Abstract Sequential Composition in Maude-NPA 142
6.3.1 Input/Output Parameters and Roles 143
6.3.2 Strand and Protocol Composition 146
6.3.3 Abstract Operational Semantics 150

6.4 Protocol Composition via Protocol Transformation . . . 153

6.4.1 Protocol Transformation 153
6.4.2 Soundness and Completeness of the Protocol Trans-

formation . 157
6.5 Protocol Composition via Synchronization Messages . . . 169

6.5.1 Synchronization Data Type Extension 170
6.5.2 Syntax for Protocol Composition via Synchroniza-

tion Messages . 171
6.5.3 Operational Semantics of Composition via Synchro-

nization Messages 174
6.5.4 Soundness and Completeness 178

6.6 Experimental Evaluation 182
6.6.1 The NSL-DB Protocol 182
6.6.2 The NSL-KD Protocol 187
6.6.3 Performance Comparison 189

6.7 Conclusions . 191

7 Protocol Indistinguishability in Maude-NPA 193
7.1 Motivation . 193
7.2 Formal Definition of Indistinguishability in Maude-NPA . 197

7.2.1 Protocol Pairing 198
7.2.2 Synchronous Product of Protocols 199
7.2.3 Indistinguishability in Maude-NPA 203

7.3 Indistinguishability Verification in Maude-NPA 204
7.4 Experimental Evaluation 207
7.5 Conclusions . 211

8 Asymmetric Unification 213
8.1 Motivation . 214
8.2 Contextual Symbolic Reachability Analysis 217
8.3 An Asymmetric Unification Algorithm for Exclusive-OR 226

8.3.1 The Inference System 229
8.3.2 The Splitting Rule 230
8.3.3 The Branching Rules 230
8.3.4 Instantiation Rules 232

8.4 Experimental Evaluation 233
8.4.1 Experiments of Contextual Symbolic Analysis of

Cryptographic Protocols 233

8.4.2 Experiments with Unification Problems Arising in
Protocol Analysis 235

8.5 Conclusions . 238

9 Conclusion 239

Bibliography 243

List of Figures

4.1 St1 is a redundant state 68
4.2 States obtained using the super-lazy intruder optimization 95

6.1 Forward semantics for one-to-one composition 151
6.2 Forward semantics for one-to-many composition 152
6.3 Protocol Transformation 154
6.4 Relation transΦ between states valid according to the rewrite

theory RP1 ;SP2
and states valid according to the rewrite

theory RΦ♣P1 ;SP2q . 159
6.5 Function invΦ mapping from states valid according to the

rewrite theory RΦ♣P1 ;SP2q onto states valid according to
the rewrite theory RP1 ;SP2

. 160
6.6 Generic forward transition rules for composition via syn-

chronization messages . 176
6.7 Generated forward transition rules for composition via

synchronization messages 177
6.8 Relation trans between states valid according to the rewrite

theory RP1 ;SP2
and states valid according to the rewrite

theory Rsynch♣P1 ;SP2q . 179
6.9 Function inv mapping from states valid according to the

rewrite theory Rsynch♣P1 ;SP2q onto states valid according to
the rewrite theory RP1 ;SP2

. 180

List of Tables

4.1 Number of new states produced in each of 1,2,3,4 and 5
backwards narrowing steps comparing each optimization
of Sections 4.3.1,4.3.2,4.4.2,4.4.3, and 4.5. 106

4.2 Finite state space achieved by reduction techniques . . . 108

4.3 Number of new states produced in each of 1,2,3,4 and 5
backwards narrowing steps with and without the optimiza-
tion of Section 4.3.1. 109

4.4 Number of new states produced in each of 1,2,3,4 and 5
backwards narrowing steps with and without the optimiza-
tion of Section 4.3.2. 110

4.5 Number of new states produced in each of 1,2,3,4 and 5
backwards narrowing steps with and without the optimiza-
tion of Section 4.4.3. 110

4.6 Number of new states produced in each of 1,2,3,4, and
5 backwards narrowing steps with and without the opti-
mization of Section 4.5. 111

5.1 Rewrite and Narrowing steps until finding the attack . . 135

5.2 States generated in each rewrite step 135

6.1 Experiments with sequential protocol compositions . . . 190

8.1 Experiments with standard reachability analysis using reg-
ular XOR unification algorithm vs contextual reachability
analysis using asymmetric XOR unification algorithm. A
pair n④t means: n = number of states, and t = time in
seconds. 234

8.2 Experiments for contextual reachability analysis using asym-
metric XOR unification algorithm with and without opti-
mizations . 235

8.3 Unification Problems in RP protocol. 236
8.4 Unification Problems in WEPP protocol. 236
8.5 Unification Problems in TMN protocol. 237
8.6 Other Unification Problems 237

Chapter 1

Introduction

The area of formal analysis of cryptographic protocols has been an active
one since the mid 80’s. The idea is to verify communication protocols
that use encryption to guarantee secrecy and that use authentication of
data to ensure security. Whatever approach is taken, the use of formal
methods has had a long history, not only for providing formal proofs of
security, but also for uncovering bugs and security flaws that in some
cases had remained unknown long after the original protocol’s publica-
tion. This is the case, for example, of the Needham-Schroeder Public
Key (NSPK) protocol [Needham and Schroeder, 1978], a cryptographic
protocol that was intended to provide mutual authentication between
two parties communicating on a network. However, this protocol was
proved to be subject to a man-in-the-middle attack 20 years later in
[Lowe, 1996], using the FDR model-checking tool. A fixed version of this
protocol, called Needham-Schroeder-Lowe (NSL), was also presented in
that paper.

In this thesis we tackle problems in the three main pillars of protocol
verification: modelling capabilities, verifiable properties, and efficiency.

1.1 Formal Analysis of Cryptographic

Protocols

Cryptographic protocols can be analyzed on two levels. On one level
they can be modeled as communication protocols that must operate over

2 Chapter 1. Introduction

a hostile network that is controlled by an attacker who is trying to subvert
the goals of the protocol. At this level the attacker is allowed to apply an
unlimited number of operations taken from a finite set: e.g. encryption,
decryption, digital signature generation, and so on. This class of models
is usually referred to as the Dolev-Yao model, after the paper by Dolev
and Yao [1983] that introduced this approach.

At another level cryptographic protocols may be thought of as cryp-
tographic systems being attacked by a probabilistic polynomial-time ad-
versary. This class of models is usually referred to as the computational
model.

Both types of models have their advantages. The Dolev-Yao model
supports the use of model checkers that can search exhaustively through
different system traces. This makes it very good at finding attacks that
involve interleaving of different protocol executions against each other.
These types of attacks are generally nonintuitive and hard to identify
manually. On the other hand, the computational model gives a much
more fine-grained model of the attacker capabilities, and allows one to re-
duce the problem of breaking the protocol to breaking the cryptosystems
used. Cryptographic protocol analysis tools based on model-checking
discover attacks by generating and analyzing the search space of possible
states arising from the execution of a given protocol, taking into consid-
eration the functions of the honest principals as well as the capabilities
of the intruder(s). The earliest protocol analysis tools, such as the In-
terrogator [Millen et al., 1987] and the NRL Protocol Analyzer (NPA)
[Meadows, 1996b], while not strictly speaking of model checkers, relied on
state exploration, and, in the case of NPA, could be used to verify secu-
rity properties specified in a temporal logic language. Later, researchers
used generic model checkers to analyze protocols, such as FDR [Lowe,
1996] and later Murphi [Mitchell et al., 1997].

More recently the focus has been on special-purpose model check-
ers developed specifically for cryptographic protocol analysis, such as
ProVerif [Blanchet, 2001], the AVISPA tool [Armando et al., 2005], and
Maude-NPA itself [Escobar et al., 2012a, 2009a].

There are a number of possible approaches to take in the modeling
of cryptoalgorithms used. In the simplest case, the free algebra model,
cryptosystems are assumed to behave like black boxes: an attacker knows
nothing about encrypted data unless it has the appropriate key. This

1.1. Formal Analysis of Cryptographic Protocols 3

is the approach taken, for example, by the above-cited use of Murphi
and FDR to analyze cryptographic protocols, and current tools such
as SATMC [Armando et al., 2014] and TA4SP [Boichut et al., 2004],
both used in the AVISPA tool. However, such an approach, although it
can work well for protocols based on generic shared key or public key
cryptography, runs into problems with algorithms such as Diffie-Hellman
exponentiation or algorithms employing exclusive-or, which rely upon
various algebraic properties such as the law of exponentiation of prod-
ucts, associativity-commutativity and cancellation. Without the ability
to specify these properties, one needs to rely on approximations of the al-
gorithms that may result in formal proofs of secrecy invalidated by actual
attacks that are missed by the analysis (see, e.g., [Paulson, 1998; Ryan
and Schneider, 1998; Stubblebine and Meadows, 2000]). Thus there has
been considerable interest in developing algorithms and tools for pro-
tocol analysis in the presence of algebraic theories [Abadi and Cortier,
2006; Chevalier and Rusinowitch, 2008; Bursuc and Comon-Lundh, 2009;
Ştefan Ciobâcă et al., 2012; Baudet et al., 2013].

Another way in which tools can differ is in the number of sessions.
A session is defined to be one execution of a protocol role by a single
principal. A tool is said to use the bounded session model if the user
must specify the maximum number of sessions that can be generated
in a search. It is said to use the unbounded session model if no such
restrictions are required.

Secrecy is known to be decidable in the free theory together with
the bounded session model [Rusinowitch and Turuani, 2001], and unde-
cidable in the free theory together with the unbounded session model
[Durgin et al., 2004]. The same distinction between bounded and un-
bounded sessions is known to hold for a number of different equational
theories of interest, as well as for some authentication-related proper-
ties; see for example [Bursuc and Comon-Lundh, 2009]. Thus, it is no
surprise that most tools, whether or not they offer support for different
algebraic theories, either operate in the bounded session model, or rely
on abstractions that may result in reports of false attacks even when the
protocol being analyzed is secure. Tools working on an unbounded ses-
sion model making no data abstraction cannot guarantee the termination
of the protocol analysis.

Tools can also differ in the “direction” of the search, that is, for-

4 Chapter 1. Introduction

wards or backwards search. Many of the earlier approaches [Lowe, 1996;
Mitchell et al., 1997; Clarke et al., 2000] made use of explicit-state model-
checking using forward search. More recently the emphasis has been on
symbolic-state model-checking, in which states are represented by terms
containing variables [Blanchet, 2001; Escobar et al., 2009a; Basin et al.,
2005; Mödersheim and Viganò, 2009; Cremers, 2008a; Meier et al., 2013].
Here state transitions are computed using unification or constraint based
techniques, and search is generally performed backwards from a symbolic
specification of an insecure state. This approach has many advantages.
In particular, the combination of symbolic states and goal-directed back-
wards search can result in a smaller search space.

1.2 Protocol Analysis modulo Equational

Theories

The analysis of cryptographic protocols implies that the analysis must
be performed modulo the algebraic properties of their underlying crypto-
graphic functions. These range from the fact that decryption with a key
cancels out encryption with the same key, expressible by the equation

dec♣enc♣m, kq, kq ✏ m (1.1)

through the Abelian group properties of algorithms based on exponentia-
tion and/or elliptic curves, all the way to the property of homomorphism
over an Abelian group possessed by many of the algorithms used for
privacy-preserving computation.

There are two main issues in protocol analysis modulo equational
theories: (i) the procedure that is used for dealing with them, and (ii)
the class of equational theories supported by that procedure. Those two
issues greatly determine what kind of protocols can be analyzed by one
technique or another. Regarding the first issue, there are three classes of
procedures that have been developed for dealing with algebraic proper-
ties: (i) augmented intruder inference rules, (ii) deducibility algorithms,
and (iii) equational unification. We explain each of these procedures
below.

1.2. Protocol Analysis modulo Equational Theories 5

Augmented intruder inference rules. When specifying a crypto-
graphic protocol, one normally specifies a set of inference rules that de-
scribe the operations that an intruder can perform. Thus, one would
specify an inference rule that says that, if an intruder knows a message
and a key, then he can construct the encryption of the message with the
key. These inference rules can also be augmented to describe the conse-
quences of equational properties. For example, the encryption-decryption
equation (1.1) could be represented by the following inference rule:

enc♣m, kq P I, k P I
m P I

where I stands for the set of terms known to the intruder.
The problem is that this method is often incomplete. Consider the

following protocol:

1. A Ñ B : M 2. B Ñ A : dec♣M, key♣Bqq

The inference rule fails to predict what happens when M ✏ enc♣X,

key♣Bqq. In this case, A would wind up sending a cleartext message
X, but this is because of the action of A’s decryption operation, not
because of the application of an inference rule by the intruder. Thus,
the inference rules are not complete, although in some cases there are
subclasses of protocols for which given sets of inference rules are sound
(see for example [Millen, 2003; Lynch and Meadows, 2005]),

However, if successful, augmented inference rules have the advantage
that they can be used with tools that do not support the equational the-
ory that the inference rules represent. This is the case, for example, of
the works presented in [Küsters and Truderung, 2011, 2009], and [Kre-
mer and Ryan, 2005], which provide augmented inference systems that
can be used together with ProVerif to analyze protocols involving Diffie-
Hellman exponentiation, a restricted version of exclusive-or, and cipher
block chaining, respectively in a limited way. These kind of protocols are
not directly supported by ProVerif.

Deducibility algorithms. The second class of procedures for deal-
ing with equational theories, deduciblity algorithms, determine whether
an intruder can deduce a term from a set of terms already in its pos-
session, given that terms obey a given equational theory. In this case,

6 Chapter 1. Introduction

one starts with a set T of terms known to the intruder, a term t the
intruder is trying to learn, a set of inference rules describing operations
the intruder can perform, and an equational theory E. A number of al-
gorithms have been developed for different classes of equational theories,
including associative-commutative and homomorphic operators [Abadi
and Cortier, 2006]. A survey of deducibility with respect to equational
theories may be found in [Bursuc and Comon-Lundh, 2009].

In particular, algorithms for a class of theories known as subterm
convergent (convergent theories for which the right-hand side is either
an irreducible ground term or a subterm of the left-hand side) have been
developed in [Ştefan Ciobâcă et al., 2012] and for a larger class of conver-
gent theories that include encryption homomorphic over a free operator
[Baudet et al., 2013] and have been developed and implemented in the
tools KISS and YAPA, respectively. These tools when used by themselves
can only prove security against a passive intruder, who only spies upon
message traffic but does not further interact with the protocol. How-
ever they can also be interfaced with other tools that use deducibility to
reason about security against an active attacker who reads, alters, redi-
rects, and deletes traffic as well as creating its own messages. The cap
unification approach of Anantharaman et al. [2010] also uses deducibil-
ity algorithms for classes of equational theories that extend the subterm
convergent class. The tools OFMC [Basin et al., 2005; Mödersheim and
Viganò, 2009], and CL-Atse [Turuani, 2006; Arora and Turuani, 2009] all
make use of deducibility and provide some support for equational theo-
ries, in the case of OFMC and CL-Atse those governing Diffie-Hellman
and exclusive-or.

A limitation of using deducibility is that it requires a complete de-
scription of the terms an intruder knows at a given state. This is fine
for tools that generate states in a forward fashion, but it does not work
as well for tools such as Maude-NPA, which generate states on the fly in
a backwards manner and thus only are aware of some of the terms the
intruder knows at any point in time.

Equational Unification Finally, equational unification based proce-
dures consist in computing protocol execution paths by unifying messages
received with messages sent modulo an equational theory E describing
the protocol’s algebraic properties. Unification of two terms s and t mod-

1.2. Protocol Analysis modulo Equational Theories 7

ulo an equational theory E is the process of finding substitutions σ to
the variables in s and t making the two terms equal modulo E.

An advantage of E-unification over deducibility is that it can be ap-
plied even on incomplete information, since this incomplete information
can be represented by variables. Thus, it applies not only to both forward
and backwards search, but to constraint-based searches that can proceed
from any direction, e.g. [Comon-Lundh and Shmatikov, 2003; Chevalier
et al., 2007; Comon-Lundh et al., 2011], and to deducibility procedures
for checking whether one term is deducible from a given set of terms,
e.g. [Abadi and Cortier, 2006; Baudet et al., 2013; Ştefan Ciobâcă et al.,
2012].

Any unification technique used in cryptographic protocol analysis
must satisfy two properties. First of all, it must behave well with respect
to composition, especially of disjoint theories, since cryptographic pro-
tocols often combine different algorithms described by different theories.
Although methods for combining unification algorithms of disjoint the-
ories are well-known [Schmidt-Schauß, 1989; Baader and Schulz, 1992],
the solution in the general case is highly nondeterministic and inefficient,
so more efficient special algorithms are desirable. The second property
that must be satisfied is a little more subtle, and has to do with the
fact that many of the state space reduction techniques used require that
terms in the state be in some kind of normal form with respect to the
theory E used. Generally this is expressed by writing E as a decomposi-
tion ♣E0, Bq where B is regular and has a finitary unification algorithm,
and E0 is a set of oriented equations being convergent modulo B. This
ensures enough stability in normal form representations of terms so that
syntactic state space reduction techniques can be applied.

Variant-based unification Both the first and second desiderata of
unification-based cryptographic can be achieved, if the decomposition
♣B,E0q has the finite variant (FV) property, via variant unification as
described in Section 2.1, below. Since the first step of variant unification
requires the computation of all the irreducible variants of each side of the
unification problem, and a solution is discarded if a solution makes either
side reducible, variant unification guarantees the irreducibility constraint
required by state space reduction techniques. Moreover, variant unifica-
tion behaves well under composition, at least in the area of cryptographic

8 Chapter 1. Introduction

protocol analysis. First of all, the axioms B are relatively few and well-
understood. Moreover, if the combination of the two theories also has a
finite variant decomposition, then the same finite variant algorithm can
be applied as well.

Not surprisingly many tools have followed approaches similar, if not
identical, to variant unification. Both Maude-NPA [Escobar et al., 2009a]
and Tamarin [Meier et al., 2013] use variant-based unification explicitly.
Indeed support for generic variant-based unification is already built into
an upcoming version of Maude. Moreover, other tools have used ap-
proaches that have many features in common with variant-based unifi-
cation. For example, ProVerif (see [Blanchet et al., 2008, Sec. 5]) and
OFMC (see [Mödersheim, 2007, Sec. 10]) both compute the variants of
protocol rules, modulo the free theory for ProVerif, and modulo the free
theory or AC for OFMC. This has the effect of computing the variants of
both sides of the unification problem. More recently, variants have been
applied to expanding the capacity of ProVerif to deal with AC theories.
Thus, in [Küsters and Truderung, 2011] the authors implement a special
case of the exclusive-or theory in the ProVerif tool by expressing it as a
rewrite theory with the finite variant property with respect to the free
theory (E ✏ ❍) and computing variants that are unified syntactically.
This requires some restrictions on the syntax of the protocol, however.
Similar approaches have been applied by Küsters and Truderung [2009]
for modular exponentiation, and Arapinis et al. [2012] for commuting
encryption and AC theories.

Variant-based unification does have some drawbacks, however. First
of all, it can be inefficient for theories of high variant complexity. This
can be mitigated by the use of asymmetric unification (see Chapter 8),
in which only the variants of the right-hand side of a unification problem
are computed, and irreducibility constraints are also enforced only on
the right-hand sides. This requires the use of specialized asymmetric
unification algorithms, so combination is no longer as straightforward,
but it is still possible to apply the state space reduction techniques, and
efficiency gains, as shown in Chapter 8, can be dramatic.

A more serious problem arises when a theory of interest fails to have
a finite variant decomposition, at all, i.e. a decomposition of the equa-
tional theory that satisfies the FV property. Fortunately, most theories of
interest to cryptographic protocol analysis have a decomposition ♣B,E0q

1.3. Reducing the State Search Space 9

satisfying the FV property in which B is either the empty theory or AC.
However, there is one notable exception, the theory of encryption homo-
morphic over another operator, that is e♣X ✝ Y,Kq ✏ e♣X,Kq ✝ e♣Y,Kq
where ✝ is an operator that may have some other equational proper-
ties, shown not to satisfy the finite variant property when the homo-
morphic equation is in R in [Comon-Lundh and Delaune, 2005]. This
case has been successfully handled in Maude-NPA. The work presented
in [Escobar et al., 2011] provided a dedicated unfication for the theory
of homomorphic encryption shown above, and an under-approximation
to support the AGH property, i.e. the case where ✝ is an Abelian group.
More recently, Yang et al. [2014] developed a general strategy to approxi-
mate theories without the FV property, by using a combination of under-
approximation and over-approximation, to theories having that property.
This general strategy was applied to develop a hierarchy of theories ap-
proximating homomorphic encryption that are verified to have the finite
variant property.

1.3 Reducing the State Search Space

Symbolic analysis of cryptographic protocol usually generates huge, and,
even worse, infinite search state spaces. This is the case, for example,
of state exploration tools, specially when they operate in the unbounded
session model, or reason about equational theories. This issue can be-
come even more critical when the tool does not rely on data abstractions
or approximations, such as the Maude-NPA. In such general approaches,
protocol security properties are well-known to be undecidable, as ex-
plained in Section 1.1. However, any protocol analyzer tool requires a
finite state search space finding no attack to prove a protocol secure.

It is therefore very important, both for efficiency and to achieve full
verification whenever possible, to use state-space reduction techniques
that: (i) can drastically cut down the number of states to be explored;
and (ii) have in practice a good chance to make the, generally infinite,
search space finite without compromising the completeness of the analy-
sis; that is, so that if a protocol is indeed secure, failure to find an attack
in such a finite state space guarantees the protocol’s security for that
attack relative to the assumptions about the intruder actions and the

10 Chapter 1. Introduction

algebraic properties.

Optimization techniques are used in all protocol analysis tools but are
not always well documented in the literature. However, even so, there
are a number of exceptions in which particular techniques have been well
documented.

One of the most effective techniques to detect unreachable states is
the grammar generation technique of NPA [Meadows, 1996b], which is
used with very little change in Maude-NPA. The grammar generation
can be thought of as implementing something similar to a resolution
technique, in which backwards narrowing steps are applied until satura-
tion is achieved. This is probably closest in spirit to the use of resolution
to generate a search space, for example, in ProVerif [Blanchet, 2001] or
SPASS [Weidenbach, 1999]. In these tools actions of principals are rep-
resented as Horn clauses, and a form of resolution (resolution with free
selection in ProVerif and ordered resolution in SPASS), until saturation
is achieved. The application of the technique, of course, is very differ-
ent, since ProVerif and SPASS use resolution to generate a search space,
while in the generation of grammars the goal is to give a finite description
of a set of words not learnable by the intruder. It is perhaps closer in
intent to a heuristic used in the Scyther tool [Cremers, 2006, 2008b] to
recognize cyclical dependencies among terms sent in messages, although
Scyther uses a technique that is closer to Maude-NPA’s “intruder-learns-
only-once” rule, that allows the intruder to learn a term only once.

Partial order techniques are also well-known reduction techniques
used in any state exploration tool. In the context of protocol analysis,
the most promminent use of these kind of techniques is to give priority
to some kind of messages. For example, NPA and Maude-NPA, because
of their backwards search, give prioritiy to input messages, whereas the
work of Shmatikov and Stern [1998] gives priority to output messages for
forward search. Indeed, Basin et al. [2013] mentions partial order reduc-
tion as a natural optimization technique in the context of model-checking
of security protocols.

The use of heuristics to identify unreachable states is probably the
least well documented of optimization techniques. However we note that
Cremers [2008b] describes a mechanism used in the Scyther tool for iden-
tifying the case in which a nonce is used before it has been generated.
NPA also had a mechanism for doing this, which was very similar to the

1.3. Reducing the State Search Space 11

one used in Maude-NPA. The main difference among the techniques used
by NPA and Maude-NPA is that Maude-NPA’s use of the strand space
model often allows to identify these anomalous states before the event in
question has actually been produced in the narrowing sequence.

The lazy intruder, first proposed by Huima [1999] 1, and later ex-
panded upon by a number of others, for example [Amadio and Lopez,
2000; Millen and Shmatikov, 2001; Chevalier et al., 2008], is a technique
used in connection with constraint-based protocol analysis. It arises from
the fact that the actual value of a certain part of a message may be ir-
relevant to the receiver, for example, when the receiver will simply pass
it on without interpreting it. Determining all the ways an intruder could
construct a message would lead to a needless state space explosion. Thus,
instead the decision is postponed by replacing the “irrelevant” part of the
message with a variable and recording, as a constraint, the information
on which knowledge the intruder used to generate the message. Because
the relevant information is carried along with the variable, the solving
of the constraint can be delayed until more information is known about
how the lazy term will be used by a recipient of a message containing it.

The concept of lazy intruder used in constraint-based analysis has
been incorporated in Maude-NPA’s super-lazy intruder technique. More
specifically, Maude-NPA delays finding how to reach certain ‘super-lazy”
terms in the intruder knowledge about which little is known, until one
or more variables in the term are further instantiated. However, Maude-
NPA’s search method differs from that done in constraint-based systems
in that the evaluation of a constraint can take place at any point in a
search, while in Maude-NPA a search for a term must be executed at the
point in the search tree corresponding to the time the term was learned
by the intruder. This means that if a search for a term is delayed until it
has been further instantiated, the state must be “rolled back” to the point
in the search tree at which the term was learned in the intruder. The
super-lazy intruder technique was also used by NPA, but the “roll back”
process was performed in a different way as it is done in Maude-NPA.

The lazy intruder technique has been connected with partial order
reductions. For example, constraint differentiation [Mödersheim et al.,
2010] works by identifying overlaps between the constraints that arise in
the application of the lazy intruder technique. If the constraints belong-

1although not under that name, which was coined by Basin et al. [2003]

12 Chapter 1. Introduction

ing to two different states overlap, then the constraints in the overlap are
ultimately applied to only one of the states. Maude-NPA’s subsumption
partial order can be thought of as taking a similar approach, in which
substitutions are being compared instead of constraints, and instead of
identifying overlaps, one identifies cases in which one state subsumes an-
other, which for constraint differentiation would correspond to the case
in which one set of constraints contains another.

1.4 Protocol Composition

Traditionally, the analysis of cryptographic protocols has focused on indi-
vidual protocols. But protocols do not always work alone, but together,
one protocol relying on another to provide needed services. However it
is well known that many problems in the security of cryptographic pro-
tocols arise when the protocols are composed. This is true whether the
composition is parallel, in which two different protocols are executed in
an interleaved fashion, or sequential, in which one or more child proto-
cols use information from executing a parent protocols. Protocols that
work correctly in one environment may fail when they are composed with
new protocols in new environments, either because the properties they
guarantee are not quite appropriate for the new environment, or because
the composition itself is mishandled. Security of parallel composition can
generally be achieved by avoiding ambiguity about which protocol a mes-
sage belongs to (as in, e.g. [Guttman and Thayer, 2000; Ştefan Ciobâcă
and Cortier, 2010]). The necessary conditions for security of sequential
composition are harder to pin down, since they depend on the guarantees
offered and needed by the particular protocols being analyzed.

The importance of understanding composition has long been acknowl-
edged, and there have been two approaches to this problem. One, called
nondestructive composition in [Datta et al., 2003], is to concentrate on
properties of protocols and conditions on them that guarantee that prop-
erties satisfied separately are not violated by the composition. This is, for
example, the approach taken by Gong and Syverson [1998], Guttman and
Thayer [2000], Cortier and Delaune [2009a], Ştefan Ciobâcă and Cortier
[2010], Groß and Mödersheim [2011], and, in the computational model,
the Universal Composability of Canetti et al. [2002]. The conditions in

1.4. Protocol Composition 13

this case are usually ones that can be verified syntactically, so Maude-
NPA, or any other model checker, would not be of much assistance here.

The other approach, called additive composition in [Datta et al., 2003]
addresses the compositionality of the protocol properties themselves.
This addresses the development of logical systems and tools in which
inference rules are provided for deriving complex properties of a proto-
col from simpler ones. The Protocol Composition Logic (PCL) begun
in [Durgin et al., 2001] is probably the first protocol logic to approach
composition in a systematic way. Logics such as the Protocol Deriva-
tion Logic (PDL) [Cervesato et al., 2005], and tools such as the Protocol
Derivation Assistant (PDA) [Anlauff et al., 2006] and the Cryptographic
Protocol Shape Analyzer (CPSA) [Doghim et al., 2007] also support rea-
soning about composition. All of these are logical systems and tools that
support reasoning about the properties guaranteed by the protocols. One
uses the logic to determine whether the properties guaranteed by the pro-
tocols are adequate. This is a natural way to approach composition, since
one can use these tools to determine whether the properties guaranteed
by one protocol are adequate for the needs of another protocol that relies
upon it. Thus in [Datta et al., 2003] PCL and in [Guttman, 2001] the
authentication tests methodology underlying CPSA are used to analyze
key exchange standards and electronic commerce protocols, respectively,
via composition out of simpler components.

Less attention has been given to handling composition when model
checking protocols. However, model checking can provide considerable
insight into the way composition succeeds or fails. Often the desired
properties of a composed protocol can be clearly stated, while the prop-
erties of the components may be less well understood. Using a model
checker to experiment with different compositions and their results helps
us to get a better idea of what the requirements on both the subprotocols
and the compositions actually are.

The problem is in providing a specification and verification environ-
ment that supports composition. In general, it is tedious to hand-code
compositions. This is especially the case when one protocol is com-
posed with other protocols in several different ways. For example, in
the Internet Key Exchange Protocol [Harkins and Carrel, 1998] there are
sixteen different one-to-many parent-child compositions of Phase One
and Phase Two protocols. The ability to synthesize compositions auto-

14 Chapter 1. Introduction

matically would greatly simplify the specification and analysis of proto-
cols like these. However, very little work has been done to address this
problem. Indeed, to the best of our knowledge, most protocol analysis
model-checking tools simply use concatenation of protocol specifications
to express sequential composition.

We have defined a framework to support the specification and verifica-
tion of sequential protocol compositions in Maude-NPA. First, in [Esco-
bar et al., 2010] we presented a technique in which protocol compositions
were handled via a protocol transformation, so that it was not necessary
to modify Maude-NPA. More recently, we have provided a direct im-
plementation of protocol composition in Maude-NPA by extending its
operational semantics.

1.5 Security Properties

Traditionally, properties proved about Dolev-Yao specifications of proto-
cols fall into two classes: secrecy and correspondence. Correspondence
holds if, whenever certain actions have occurred, one can guarantee that
certain other actions have occurred in a specified order; correspondence
properties are thus used to reason about authentication. Secrecy (also
called simple secrecy) holds for a term if the attacker never sees that
term in the clear. This is a much weaker property than secrecy in the
computational model, which usually relies on proving that an adversary
cannot distinguish between two versions of the protocol: for example,
one using one secret and one using another, or one using an encrypted
secret and one using random data.

Recently the interest in formulating and applying indistinguishability
properties for Dolev-Yao models has been growing. There are a number
of reasons for this. The first is that cryptography has advanced to the
point at which it is not only possible to provide computational proofs of
security for algorithms, but for the protocols that use those algorithms
as well. If Dolev-Yao tools can be extended to prove indistinguishability,
this increases the likelihood that both approaches can be used together
in an effective way to ensure protocol security. The second is that there is
a growing class of privacy-protection protocols for which simple secrecy
is clearly inadequate. Such protocols protect low-entropy data such as

1.5. Security Properties 15

votes, medical records, or network routes; even partial leakage of this
information could be harmful. The third is the result of recent work on
automatic generation of cryptographic algorithms. In this work, multiple
possible algorithms are generated out of a library of components and then
checked for security. This may involve the use of Dolev-Yao like tools to
weed out insecure algorithms or even verify the security of correct ones,
as in [Barthe et al., 2013].

Work in extending the Dolev-Yao model to support the definition
and verification of indistinguishability properties goes as far back as the
early eighties, when Michael Merritt developed a theory of hidden auto-
morphisms [Merritt, 1984]. The first to apply a tool to analyze protocols
for indistinguishability was Gavin Lowe [Lowe, 2004], who used the FDR
model checker to analyze security of password-base protocols against off-
line guessing attacks.

In Abadi and Fournet [2001] the authors gave the definition of two
kinds of indistinguishability: static equivalence and observational equiva-
lence, in terms of the applied π-calculus presented in that paper. Roughly
speaking, static equivalence describes a passive observer’s inability to dis-
tinguish between two protocols, while observational equivalence describes
an active attacker’s inability to distinguish between two protocols.

More recently Cortier and Delaune [2009b] have shown that trace
equivalence implies observational equivalence for determinate applied π-
calculus processes; roughly speaking, a process is determinate if it ex-
hibits no non-deterministic choice points, and two processes are trace
equivalent if for any trace produced by one process there is a trace pro-
duced by the other process indistinguishable from the first trace by the
attacker.

Trace equivalence is decidable in the bounded session model, and a
number of algorithms and tools have been developed, covering a wide
class of equational theories [Baudet, 2005; Cheval et al., 2010, 2011;
Chadha et al., 2012; Cheval et al., 2013]. However to our knowledge
there has been very little work (if any) on trace equivalence involving
AC theories.

Although trace equivalence is decidable for the bounded session model,
it is not straightforward to implement in search-based tools that are typ-
ically used to evaluate cryptographic protocols. This is because trace
equivalence is an example of a hyperproperty [Clarkson and Schneider,

16 Chapter 1. Introduction

2010]: it is not defined in terms of sets of traces, but sets of pairs of traces,
and thus cannot be defined in terms of reachability or unreachability of
particular classes of states. However, integration of indistinguishabil-
ity into state exploration tools has a number of potential benefits, since
one automatically obtains support for whatever feature the tool offers,
e.g. support for the unbounded session model and equational theories
involving AC.

Checking for hyperproperties such as trace or observational equiva-
lence can be implemented in a search-based tool by specifying a stronger
property that can be formulated in terms of state reachability. Such an
approach was taken by Lowe [2004]; a protocol was secure against guess-
ing attacks if the attacker could not generate certain types of terms. This
was later shown in [Newcomb and Lowe, 2005] to imply a property similar
to the observational equivalence of Abadi and Fournet [2001].

The most prominent application of this approach to cryptographic
protocol verification has been in the ProVerif tool via the notion of uni-
formity, shown to imply observational equivalence in [Blanchet et al.,
2008]. It is used to define the indistinguishability of two processes that
differ only in certain terms. Uniformity requires that the two processes
be executed in lock-step as a bi-process and projection of the bi-process
to each of its components is a bisimulation. The authors prove that uni-
formity is equivalent to a state unreachability property, and thus can
be evaluated using ProVerif. ProVerif can be used to verify uniformity
for subterm convergent rewrite theories; Arapinis et al. [2012] have devel-
oped methods for extending this to some theories that include a restricted
encoding of AC axioms (in particular, some terms must be ground).

We have recently proposed in [Santiago et al., 2014b] an intuitive no-
tion of indistinguishability related to the notion of uniformity used in
ProVerif [Blanchet et al., 2008]; we define a pairing between two proto-
cols and define security in terms of reachability conditions on the protocol
pairing. One major difference is in the support of AC theories without
any encoding restrictions, as long as they have decompositions with the
finite variant property. This is inherited from Maude-NPA. There are
also differences in the approach we take to specification and implementa-
tion of security properties. In ProVerif, the intruder is given the ability
to evaluate a predicate that outputs “bad” if there is a violation of unifor-
mity. One then checks for uniformity by proving that no state containing

1.6. Contributions 17

“bad” is reachable. This gives ProVerif the ability to reduce everything
to just one property.

In our approach, we use an unmodified Dolev-Yao intruder with no
ability to evaluate predicates. This is motivated by our preference to
avoid increasing the complexity of Maude-NPA’s Dolev-Yao model unless
absolutely necessary, and thus to express our security requirements in the
original Maude-NPA framework.

1.6 Contributions

In this thesis we present different techniques that contribute both to im-
prove the performance and to extend the capabilities of the Maude-NPA
tool, a model checker for cryptographic protocol analysis that both allows
for the incorporation of different equational theories and operates in the
unbounded session model without the use of data or control abstraction.
We detail these contributions below, following the order in which they
appear.

(i) In Chapter 4, we have defined several state space reduction tech-
niques that we have implemented in Maude-NPA, and provide com-
pleteness proofs and experimental evaluations. Since Maude-NPA
allows reasoning in the unbounded session model, and because it
allows reasoning about different equational theories (which typi-
cally generate many more solutions to unification problems than
syntactic unification, leading to bigger state spaces), it is necessary
to find ways of pruning the search space in order to prevent infinite
or overwhelmingly large search spaces. The combination of these
techniques allows Maude-NPA to obtain a finite state space for all
protocols in the experiments, whereas the state space will be infinite
without our optimizations. This is very important for Maude-NPA,
which can prove a protocol secure if it obtains a finite state space
finding no attacks. All these state space reduction techniques have
been implictly used in the experiments performed in Chapters 6, 7,
and 8. These results have been published in [Escobar et al., 2014a].

(ii) In Chapter 5, we have defined a rewriting-based forwards seman-
tics for Maude-NPA. Maude-NPA has a backwards operational se-
mantics. Therefore, it already has an intuitive forwards semantics

18 Chapter 1. Introduction

obtained by reversing the rewrite rules defining this backwards se-
mantics. However, such intuitive forwards semantics is not suitable
for model-checking, and a better approach is taken. This rewriting-
based forwards semantics can be applied for purposes not suitable
for the backwards semantics, switching back and forth between
both approaches. For example, this forwards semantics has become
vital to provide a formal definition of protocol indistinguishability
in Maude-NPA (see Chapter 7). The experimental evaluation per-
formed validates the feasiblity of this forwards semantics. These
results have been published in [Escobar et al., 2014b].

(iii) In Chapter 6 we provide a framework to support dynamic sequen-
tial protocol compositions in Maude-NPA, i.e., protocols are spec-
ified in a modular way and can be composed when desired during
the verification process. More specifically, we present two different
techniques to support sequential protocol compositions, one that
does not require to modify the tool, and another one for which is
necessary to extend Maude-NPA’s operational semantics. We com-
pare both techniques showing the advantages of each approach,
and providing experimental results of their performance. This new
framework clearly extends the capabilities of Maude-NPA, since
it allows the verification of protocols, not supported before, or, at
least, not in such a modular way. These results have been published
in [Escobar et al., 2010; Santiago et al., 2014a].

(iv) In Chapter 7, we provide a theoretical framework to specify and
verify protocol indistinguishability in Maude-NPA, thus allowing
the tool to verify a class of properties not supported before. To
the best of our knowledge, this is the first time that indistinguisha-
bility has been defined for the strand space model. Moreover, our
framework supports the class of equational theories with a finite
variant decomposition which contains a large number of theories of
interest to cryptographic protocol analysis, including exclusive-or,
Abelian groups, and modular exponentiation. We have performed
a preliminar experimental evaluation of this technique obtaining
encouraging results. Our experiments include protocols involving
AC theories such as exclusive-or, which, as far was we know, is
not supported by any other existing tool. These results have been

1.7. Plan of the Thesis 19

published in [Santiago et al., 2014b].

(v) In Chapter 8 we define asymmetric unification, a new unification
paradigm with interesting properties for cryptographic protocol
analysis, and provide a method to convert standard equational uni-
fication algorithms into asymmetric algorithms, illustrating it with
an asymmetric version of an exclusive-or unification algorithm. Ba-
sically, an asymmetric unification problem is a standard unification
problem in which the right hand side is irreducible. This is very
interesting for most cryptographic protocols analysis tools, since
their optimizations usually rely on the assumption that received
messages are in normal form. For example, Maude-NPA’s state
reduction techniques of Chapter 4 require such irreducibility con-
straints. Asymmetric unification allows the development of a tool-
independent symbolic state exploration algorithm that preservers
irreducibility constraints. We illustrate the benefits of asymmetric
unification for crytographic protocol analysis w.r.t. standard uni-
fication with the results obtained in the experimental evaluation
of the asymmetric unification algorithm for exclusive-or. These
results have been published in [Erbatur et al., 2012, 2013].

1.7 Plan of the Thesis

The chapters of this thesis are not organized following the three main
pillars of protocol verification mentioned above. Instead, chapters are
presented in an order that we believe may facilitate the reading and
understanding of this thesis.

Therefore, this thesis is organized as follows. First, we recall some pre-
liminaries necessary for the understanding of the thesis in Chapter 2. In
Chapter 3 we provide detailed information on Maude-NPA, the protocol
analyzer tool in which the techniques presented in this thesis have been
implemented. Chapter 4 describes the techniques implemented to reduce
the state search space generated by Maude-NPA. Chapter 5 is devoted to
the rewriting-based forwards semantics defined for Maude-NPA. Chap-
ter 6 explains two approaches that allow the specification and analysis of
sequential protocol compositions in Maude-NPA. In Chapter 7 we pro-
vide a formal definition of protocol indistinguishability in Maude-NPA,

20 Chapter 1. Introduction

and explain how this kind of properties can be verified in the tool. Chap-
ter 8 presents asymmetric unification, a new unification paradigm that
allows to consider irreducibilty conditions necessary in protocol analysis
tools. Each chapter includes some conclusions, but, in Chapter 9, we
conclude this thesis, summarizing the contributions, and providing some
perspectives on how to extend the work presented in this thesis.

The publications derived from this thesis are:

• [Escobar et al., 2010] Santiago Escobar, Catherine Meadows, José
Meseguer, and Sonia Santiago. Sequential Protocol Composition
in Maude-NPA. In Dimitris Gritzalis, Bart Preneel, and Marianthi
Theoharidou, editors, ESORICS, volume 6345 of Lecture Notes in
Computer Science, pages 303–318. Springer, 2010. ISBN 978-3-
642-15496-6.

Acceptance rate: 42/201 (20%) - CORE 2013: A

• [Erbatur et al., 2012] Serdar Erbatur, Santiago Escobar, Deepak
Kapur, Zhiqiang Liu, Christopher Lynch, Catherine Meadows, José
Meseguer, Paliath Narendran, Sonia Santiago, and Ralf Sasse. Ef-
fective symbolic protocol analysis via equational irreducibility con-
ditions. In Sara Foresti, Moti Yung, and Fabio Martinelli, edi-
tors, ESORICS, volume 7459 of Lecture Notes in Computer Sci-
ence, pages 73–90. Springer, 2012. ISBN 978-3-642-33166-4.

Acceptance rate: 50/248 (20%) - CORE 2013: A

• [Erbatur et al., 2013] Serdar Erbatur, Santiago Escobar, Deepak
Kapur, Zhiqiang Liu, Christopher Lynch, Catherine Meadows, José
Meseguer, Paliath Narendran, Sonia Santiago, and Ralf Sasse.
Asymmetric unification: A new unification paradigm for crypto-
graphic protocol analysis. In Maria Paola Bonacina, editor, CADE,
volume 7898 of Lecture Notes in Computer Science, pages 231–248.
Springer, 2013. ISBN 978-3-642-38573-5.

Acceptance rate: 22/53 (41%) - CORE 2013: A

1.7. Plan of the Thesis 21

• [Escobar et al., 2014b] Santiago Escobar, Catherine Meadows, José
Meseguer, and Sonia Santiago. A rewriting-based forwards seman-
tics for Maude-NPA. In proceedings of I Symposium and Bootcamp
on the Science of Security (HotSoS 2014). IEEE digital library,
2014. To appear.

• [Escobar et al., 2014a] Santiago Escobar, Catherine Meadows, José
Meseguer, and Sonia Santiago. State space reduction in the Maude-
NRL Protocol Analyzer. Information and Computation, 238:157–
186, (2014).

JCR Impact Factor 2012: 0.699 -

JCR 5-Year Impact Factor 2012: 0.890 - ERA 2010 CORE B

• [Santiago et al., 2014b] Sonia Santiago, Santiago Escobar, Cather-
ine Meadows, and José Meseguer. A formal definition of proto-
col indistinguishability and its verification using Maude-NPA. In
Sjouke Mauw and Christian Damsgaard Jensen, editors, In pro-
ceedings of Security and Trust Management - 10th International
Workshop, STM 2014, Wroclaw, Poland, September 10-11, 2014.,
volume 8743 of Lecture Notes in Computer Science, pages 162–177.
Springer, 2014. ISBN 978-3-319-11850-5.

Acceptance rate (regular papers) : 11/29 (37%)

• [Santiago et al., 2014a] Sonia Santiago, Santiago Escobar, Cather-
ine Meadows, and José Meseguer. Sequential protocol composition
in Maude-NPA. Submitted to Journal of Computer Security, 2014.

Chapter 2

Preliminaries

In this chapter we provide some technical background necessary to under-
stand this thesis. More specifically, Section 2.1 recalls standard notions
and terminology of term rewriting. Section 2.2 gives an overview about
narrowing modulo equations of Meseguer and Thati [2007] using topmost
rewriting as a tool-independent semantic framework for symbolic reacha-
bility analysis of protocols under algebraic properties. Finally, Section 2.3
is devoted to Maude [Clavel et al., 2007], a very efficient implementation
of Rewriting Logic [Meseguer, 1992], upon which Maude-NPA is imple-
mented.

2.1 Rewriting Logic and Term Rewriting

In this section we recall the standard notions and terminology of term
rewriting. We follow the classical notation and terminology from [TeReSe,
2003] for term rewriting and from [Meseguer, 1992, 1997] for rewriting
logic and order-sorted notions.

Terms, sorts and positions

We assume an order-sorted signature Σ ✏ ♣S,↕,Σq with poset of sorts
♣S,↕q, and a finite number of function symbols. We also assume an S-
sorted family X ✏ tXs✉sPS of disjoint variable sets with each Xs countably
infinite. TΣ♣X qs is the set of terms of sort s, and TΣ,s is the set of ground
terms of sort s. We write TΣ♣X q and TΣ for the corresponding order-

24 Chapter 2. Preliminaries

sorted term algebras. We write Var♣tq for the set of variables present in
a term t. The set of positions of a term t is written Pos♣tq, and the set
of non-variable positions PosΣ♣tq. The subterm of t at position p is t⑤p,
and trusp is the result of replacing t⑤p by u in t.

Substitutions, matching, and unification

A substitution σ is a sort-preserving mapping from a finite subset of X ,
written Dom♣σq, to TΣ♣X q. Substitutions are written as σ ✏ tX1 ÞÑ
t1, . . . , Xn ÞÑ tn✉ where the domain of σ is Dom♣σq ✏ tX1, . . . , Xn✉ and
the set of variables introduced by terms t1, . . . , tn is written Ran♣σq. The
identity substitution is id. Substitutions are homomorphically extended
to TΣ♣X q. The application of a substitution σ to a term t is denoted by tσ.
For simplicity, we assume that every substitution is idempotent, i.e., σ
satisfies Dom♣σq❳Ran♣σq ✏ ❍. Substitution idempotency ensures tσ ✏
♣tσqσ. The restriction of σ to a set of variables V is σ⑤V . Composition
of two substitutions σ and σ✶ is denoted by σ ✆ σ✶.

A Σ-equation is an unoriented pair t ✏ t✶, where t, t✶ P TΣ♣X qs for
some sort s P S. Given Σ and a set E of Σ-equations, order-sorted
equational logic induces a congruence relation ✏E on terms t, t✶ P TΣ♣X q
(see [Meseguer, 1997]). The E-equivalence class of a term t is denoted by
rtsE, and TΣ④E♣X q and TΣ④E denote the corresponding order-sorted term
algebras modulo E. Throughout this thesis we assume that TΣ,s ✘ ❍
for every sort s, because this affords a simpler deduction system. An
equational theory ♣Σ, Eq is a pair with Σ an order-sorted signature and
E a set of Σ-equations.

The E-subsumption preorder ❹E (or just ❹ if E is understood) holds
between t, t✶ P TΣ♣X q, denoted t ❹E t✶ (meaning that t is more general
than t✶ modulo E), if there is a substitution σ such that tσ ✏E t✶; such
a substitution σ is said to be an E-match from t✶ to t. The E-renaming
equivalence t ✓E t✶, holds if there is a variable renaming θ such that
tθ ✏E t✶. We write t ⑩E t✶ if t ❹E t✶ and t ✛E t✶. Relations ✓E and
❹E are extended to substitutions in a similar way. For substitutions σ, ρ
and a set of variables V we define σ⑤V ✏E ρ⑤V if xσ ✏E xρ for all x P V ;
σ⑤V ❹E ρ⑤V if there is a substitution η such that ♣σ ✆ ηq⑤V ✏E ρ⑤V ; and
σ⑤V ✓E ρ⑤V if there is a renaming η such that ♣σ ✆ ηq⑤V ✏E ρ⑤V .

An E-unifier for a Σ-equation t ✏ t✶ is a substitution σ such that

2.1. Rewriting Logic and Term Rewriting 25

tσ ✏E t✶σ. For Var♣tq❨Var♣t✶q ❸ W , a set of substitutions CSUW
E ♣t ✏ t✶q

is said to be a complete set of unifiers for the equality t ✏ t✶ modulo E

away from W iff: (i) each σ P CSUW
E ♣t ✏ t✶q is an E-unifier of t ✏ t✶; (ii)

for any E-unifier ρ of t ✏ t✶ there is a σ P CSUW
E ♣t ✏ t✶q such that σ⑤W ❹E

ρ⑤W ; (iii) for all σ P CSUW
E ♣t ✏ t✶q, Dom♣σq ❸ ♣Var♣tq ❨ Var♣t✶qq and

Ran♣σq❳W ✏ ❍. If the set of variables W is irrelevant or is understood
from the context, we write CSUE♣t ✏ t✶q instead of CSUW

E ♣t ✏ t✶q. An
E-unification algorithm is complete if for any equation t ✏ t✶ it generates
a complete set of E-unifiers. We say that CSUE♣t ✏ t✶q is the set of
most general unifiers if each unifier τ P CSUE♣t ✏ t✶q is minimal among
all unifiers of t ✏ t✶ w.r.t. ❹E. A unification algorithm is said to be
finitary and complete if it always terminates after generating a finite and
complete set of solutions.

Example 2.1 For example, consider an infix symbol _*_ : Msg✂Msg Ñ
Msg satisfying the following associativity and commutativity (AC) equa-
tional properties (where X, Y, Z are variables of sort Msg):

X ✝ Y ✏ Y ✝X X ✝ ♣Y ✝ Zq ✏ ♣X ✝ Y q ✝ Z

A complete set of most general AC-unifiers of the two terms t ✏ X ✝ Y
and s ✏ U ✝ V (where X, Y, U, V are variables of sort Msg) is

σ1 ✏ t X ÞÑ X ✶, Y ÞÑ Y ✶, U ÞÑ X ✶, V ÞÑ Y ✶ ✉
σ2 ✏ t X ÞÑ X ✶, Y ÞÑ Y ✶, U ÞÑ Y ✶, V ÞÑ X ✶ ✉
σ3 ✏ t X ÞÑ X ✶, Y ÞÑ Y ✶ ✝ Y ✷, U ÞÑ X ✶ ✝ Y ✷, V ÞÑ Y ✶ ✉
σ4 ✏ t X ÞÑ X ✶, Y ÞÑ Y ✶ ✝ Y ✷, U ÞÑ Y ✷, V ÞÑ X ✶ ✝ Y ✶ ✉
σ5 ✏ t X ÞÑ X ✶ ✝X✷, Y ÞÑ Y ✶, U ÞÑ X✷, V ÞÑ X ✶ ✝ Y ✶ ✉
σ6 ✏ t X ÞÑ X ✶ ✝X✷, Y ÞÑ Y ✶, U ÞÑ X✷ ✝ Y ✶, V ÞÑ X ✶ ✉
σ7 ✏ t X ÞÑ X ✶ ✝X✷, Y ÞÑ Y ✶ ✝ Y ✷, U ÞÑ X✷ ✝ Y ✷, V ÞÑ X ✶ ✝ Y ✶ ✉

�

Example 2.2 Consider now the exclusive-or symbol _❵_ : Msg✂Msg Ñ
Msg and the constant 0 : Msg satisfying the following exclusive-or prop-
erties (where X, Y, Z are variables of sort Msg):

X ❵ Y ✏ Y ❵X X ❵X ✏ 0
X ❵ ♣Y ❵ Zq ✏ ♣X ❵ Y q ❵ Z X ❵ 0 ✏ X

26 Chapter 2. Preliminaries

A complete set of most general exclusive-or unifiers of the two terms
t ✏ X ❵ Y and s ✏ U ❵ V (where X, Y, U, V are variables of sort Msg) is
the unique unifier θ1 ✏ tX ÞÑ Y ✶ ❵ U ✶ ❵ V ✶, Y ÞÑ Y ✶, U ÞÑ U ✶, V ÞÑ V ✶✉.
�

Term Rewriting

A rewrite rule is an oriented pair l Ñ r, where l ❘ X and l, r P TΣ♣X qs for
some sort s P S. An (unconditional) order-sorted rewrite theory is a triple
R ✏ ♣Σ, E,Rq with Σ an order-sorted signature, E a set of Σ-equations,
and R a set of rewrite rules. A topmost rewrite theory ♣Σ, E,Rq is a
rewrite theory s.t. for each l Ñ r P R, l, r P TΣ♣X qState for a top sort
State, r ❘ X , and no operator in Σ has State as an argument sort.

The rewriting relationÑR on TΣ♣X q is t
p
ÑR t✶ (orÑR) if p P PosΣ♣tq,

l Ñ r P R, t⑤p ✏ lσ, and t✶ ✏ trrσsp for some σ. The relation ÑR④E on
TΣ♣X q is ✏E;ÑR;✏E, i.e., t ÑR④E s iff ❉u1, u2 P TΣ♣X q s.t. t ✏E u1,
u1 ÑR u2, and u2 ✏E s. Note that ÑR④E on TΣ♣X q induces a relation
ÑR④E on TΣ④E♣X q by rtsE ÑR④E rt✶sE iff t ÑR④E t✶. The transitive (resp.

transitive and reflexive) closure of ÑR④E is denoted Ñ�
R④E (resp. Ñ✝

R④E).

A term t is called ÑR④E-irreducible (or just R④E-irreducible) if there is
no term t✶ such that t ÑR④E t✶.

For a rewrite rule l Ñ r, we say that it is sort-decreasing if for each
substitution σ, we have rσ P TΣ♣X qs implies lσ P TΣ♣X qs. A rewrite
theory ♣Σ, E,Rq is sort-decreasing if all rules in R are. For a Σ-equation
t ✏ t✶, we say that it is regular if Var♣tq ✏ Var♣t✶q, and it is sort-
preserving if for each substitution σ, we have tσ P TΣ♣X qs implies t✶σ P
TΣ♣X qs and vice versa.

For substitutions σ, ρ and a set of variables V we define σ⑤V ÑR④E ρ⑤V
if there is x P V such that xσ ÑR④E xρ and for all other y P V we have
yσ ✏E yρ. A substitution σ is called R④E-normalized (or normalized) if
xσ is R④E-irreducible for all x P V .

The relationÑR④E is called terminating if there is no infinite sequence
t1 ÑR④E t2 ÑR④E ☎ ☎ ☎ tn ÑR④E tn�1 ☎ ☎ ☎ . Further, the relation ÑR④E is
confluent if whenever t Ñ✝

R④E t✶ and t Ñ✝
R④E t✷, there exists a term t✸

such that t✶ Ñ✝
R④E t✸ and t✷ Ñ✝

R④E t✸. An order-sorted rewrite theory

♣Σ, E,Rq is confluent (resp. terminating) if the relationÑR④E is confluent
(resp. terminating). In a confluent, terminating, sort-decreasing, order-

2.1. Rewriting Logic and Term Rewriting 27

sorted rewrite theory, for each term t P TΣ♣X q, there is a unique (up to
E-equivalence) R④E-irreducible term t✶ obtained from t by rewriting to
canonical form, which is denoted by t Ñ!

R④E t✶, or tÓR④E when t✶ is not
relevant.

The relation ÑR④E-reducibility is undecidable in general since E-
congruence classes can be arbitrarily large. Therefore, R④E-rewriting is
usually implemented [Jouannaud and Kirchner, 1986] by R,E-rewriting,
thank to the notion of coherence. A relation ÑR,E on TΣ♣X q is defined
as: t Ñp,R,E t✶ (or just t ÑR,E t✶) iff there is a non-variable position
p P PosΣ♣tq, a rule l Ñ r in R, and a substitution σ such that t⑤p ✏E lσ

and t✶ ✏ trrσsp. Note that, assuming E-matching is decidable, ÑR,E is
decidable. Notions such as confluence, termination, irreducible terms,
and normalized substitution, are defined in a straightforward manner
for ÑR,E [Jouannaud and Kirchner, 1986]. Note that since R is sort-
decreasing, confluent, and terminating, i.e., the relation ÑR④E is conflu-
ent and terminating, and since ÑR,E❸ÑR④E, the relation Ñ!

R,E is decid-
able.

Variants

Let ♣Σ, Eq be an order-sorted equational theory, we call ♣Σ, B, E0q a
decomposition of ♣Σ, Eq if E ✏ E0 ❨B and ♣Σ, B, E0q is an order-sorted
rewrite theory satisfying the following properties:

1. B is regular and sort-preserving; furthermore, for each equation
t ✏ t✶ in B, all variables in Var♣tq have a top sort.

2. B has a finitary and complete unification algorithm.

3. ÑE0,B is sort-decreasing, confluent, and terminating.

4. ÑE0,B is locally B-coherent [Jouannaud and Kirchner, 1986], i.e.,
❅t1, t2, t3 we have t1 ÑE0,B t2 and t1 ✏B t3 implies ❉t4, t5 such that
t2 Ñ

✝
E0,B

t4, t3 Ñ
�
E0,B

t5, and t4 ✏B t5.

Given a decomposition ♣Σ, B, E0q of an equational theory, ♣t✶, θq is
an E0, B-variant [Escobar et al., 2012b] (or just a variant) of term t if
tθÓE0,B ✏B t✶ and θÓE0,B ✏B θ. A complete set of E0, B-variants [Escobar
et al., 2012b] (up to renaming) of a term t is a subset, denoted by rrtss✍E0,B

,

28 Chapter 2. Preliminaries

of the set of all E0, B-variants of t such that, for each E0, B-variant ♣t✶, σq
of t, there is an E0, B-variant ♣t✷, θq P rrtss✍E0,B

such that ♣t✷, θq ❹E0,B

♣t✶, σq, i.e., there is a substitution ρ such that t✶ ✏B t✷ρ and σ⑤Var♣tq ✏B

♣θ ✆ ρq⑤Var♣tq.

Given two variants ♣t1, θ1q, ♣t2, θ2q P rrtss✍E0,B
, we write ♣t2, θ2q ❹E0,B

♣t1, θ1q, meaning ♣t2, θ2q is more general than ♣t1, θ1q, iff there is substitu-
tion ρ such that t1 ✏B t2ρ and ♣θ1ÓE0,Bq⑤Var♣tq ✏B ♣θ2 ✆ρq⑤Var♣tq. We write
♣t2, θ2q ⑩E0,B ♣t1, θ1q iff ♣t2, θ2q ❹E0,B ♣t1, θ1q and for every substitution
ρ such that t1 ✏B t2ρ and ♣θ1ÓE0,Bq⑤Var♣tq ✏B ♣θ2 ✆ ρq⑤Var♣tq, ρ is not a
renaming. Given a decomposition ♣Σ, E0, Bq of an equational theory and
t be a Σ-term the set of most general variants of t, denoted rrtssE0,B

, is a

subset rrtssE0,B
❸ rrtss✍E0,B

such that: (i) rrtssE0,B
❹E0,B rrtss✍E0,B

, and (ii) for
each ♣t1, θ1q P rrtssE0,B

, there is no ♣t2, θ2q P rrtssE0,B
③t♣t1, θ1q✉s.t.♣t2, θ2q ❹

♣t1, θ1q. That is, for any term t rrtssE0,B
characterizes the set of maximal

elements of the preorder ♣rrtss✍E0,B
,❹E0,Bq. Note that even though the

set of E0, B-variants of a term t may be infinite, the set of most general
variants may be finite. The variant preorder ❹E0,B takes into account
not only the instantiation relation between the two substitutions θ1 and
θ2 and the two normal forms t1 and t2 of a term t, but also whether θ2
is already an E0, B-normalized substitution, since, for a substitution θ,
the less E0, B rewrite steps, the better.

A decomposition ♣Σ, E0, Bq has the finite variant (FV) property [Es-
cobar et al., 2012b] (also called a finite variant decomposition) iff for each
Σ-term t, a complete set rrtss✍E0,B

of its most general variants is finite.

Example 2.3 Let us consider the following equational theory ♣Σ, B, E0q
for the exclusive-or theory, where E0 consists of the rules shown below, 1

and B contains the associativity and commutativity (AC) axioms for ❵:

X ❵ 0 Ñ X X ❵X Ñ 0 X ❵X ❵ Y Ñ Y

For term t ✏ M ❵M , ♣0, idq is the only variant. For term s ✏ X ❵ Y ,

1Note that the first two rules are not locally AC-coherent, but adding the third
rule (with variable Y) is sufficient to recover that property (see [Viry, 2002; Durán
and Meseguer, 2010]).

2.2. Symbolic Reachability Analysis by Narrowing 29

the set of its most general variants is

t ♣X ❵ Y, idq,
♣Z, tX ÞÑ 0, Y ÞÑ Z✉q, ♣Z, tX ÞÑ Z, Y ÞÑ 0✉q,
♣Z, tX ÞÑ Z ❵ U, Y ÞÑ U✉q, ♣Z, tX ÞÑ U, Y ÞÑ Z ❵ U✉q,
♣0, tX ÞÑ U, Y ÞÑ U✉q, ♣Z1 ❵ Z2, tX ÞÑ U ❵ Z1, Y ÞÑ U ❵ Z2✉q✉

since any possible variant of s is an instance of one of the terms according
to the substitution. �

Variants are connected with equational unification as follows. Let
R ✏ ♣Σ, B, E0q be a finite variant decomposition of an equational theory
♣Σ, Eq, and t1, t2 be two Σ-terms. Then, intuitively ρ is an E-unifier of t1
and t2 iff ♣t✶1, ρ1q and ♣t

✶
2, ρ2q are variants of t1, t2, respectively, and there

exists a substitution σ such that t✶1σ ✏B t✶2σ, and ρ ✏B ρ1 ✆ σ ✏B ρ2 ✆ σ
(see [Escobar et al., 2012b] for more details).

Transition Systems

A transition system is written A ✏ ♣A,Ñq, where A is a set of states,
and Ñ is a transition relation between states, i.e., Ñ❸ A✂A. A rewrite
theory R ✏ ♣Σ, E,Rq specifies a transition system TR whose states are
elements of the initial algebra TΣ④E, and whose transitions are specified
by the set of rewrite rules R. Given two transition systems A ✏ ♣A,ÑAq
and B ✏ ♣B,ÑBq, a simulation from A to B, written AH B, is a relation
H ❸ A✂B such that aH b and a ÑA a✶ implies that there exists b✶ P B

such that a✶H b✶ and b ÑB b✶. A simulation H from ♣A,ÑAq to ♣B,ÑBq
is a bisimulation if H✁1 is a simulation from ♣B,ÑBq to ♣A,ÑAq.

2.2 Symbolic Reachability Analysis by

Narrowing

In this section we recall basic facts about narrowing modulo equations
of Meseguer and Thati [2007] using topmost rewriting as a tool-
independent semantic framework for symbolic reachability analysis of
protocols under algebraic properties. We first define reachability goals.

30 Chapter 2. Preliminaries

Definition 2.4 (Reachability goal) Given an order-sorted rewrite the-

ory ♣Σ, E,Rq, a reachability goal is defined as a pair t
?
Ñ✝

R④E t✶, where

t, t✶ P TΣ♣X qs. It is abbreviated as t
?
Ñ✝ t✶ when the theory is clear from

the context; t is the source of the goal and t✶ is the target. A substitution
σ is a R④E-solution of the reachability goal (or just a solution for short)
iff there is a sequence tσ ÑR④E u1σ ÑR④E ☎ ☎ ☎ ÑR④E ♣uk✁1qσ ÑR④E t✶σ.

A set Γ of substitutions is said to be a complete set of solutions of

t
?
Ñ✝

R④E t✶ iff (i) every substitution σ P Γ is a solution of t
?
Ñ✝

R④E t✶, and (ii)

for any solution ρ of t
?
Ñ✝

R④E t✶, there is a substitution σ P Γ more general

than ρ modulo E, i.e., σ⑤Var♣tq❨Var♣t✶q ❹E ρ⑤Var♣tq❨Var♣t✶q.

If in a goal t
?
Ñ✝

R④E t✶, terms t and t✶ are ground, then goal solving
becomes a standard rewriting reachability problem. However, since we
allow terms t, t✶ with variables, we need a mechanism more general than
standard rewriting to find solutions of reachability goals.

Narrowing generalizes term rewriting by allowing free variables in
terms (as in logic programming) and by performing unification instead of
matching in order to (non–deterministically) reduce a term. Intuitively,
the difference between a rewriting step and a narrowing step is that in
both cases we use a rewrite rule l Ñ r to rewrite t at a position p

in t, but narrowing finds values for the variables in the chosen subject
term t⑤p before actually performing the rewriting step. The narrowing

relation ❀R on TΣ♣X q is t
p
❀σ,R t✶ (or ❀σ,R, ❀R) if p P PosΣ♣tq, l Ñ

r P R, σ P CSU❍♣t⑤p ✏ lq, and t✶ ✏ ♣trrspqσ. Given a topmost rewrite
theory R ✏ ♣Σ, E,Rq, if the left-hand side of the rules R are non-variable
terms and a finitary E-unification procedure is available, each rule l Ñ r

specifies a topmost narrowing step t ❀σ,R,E t✶ (or t ❀R,E t✶, t ❀R t✶) iff
there exists an E-unifier σ P CSUE♣t ✏ lq such that t✶ ✏ rσ.

The use of topmost rewrite theories is entirely natural for communica-
tion protocols, since all state transitions can be viewed as changes of the
global distributed state. It also provides several advantages (see [Thati
and Meseguer, 2007]): (i) as pointed out above the relationÑR,E achieves
the same effect as the relation ÑR④E, and (ii) we obtain a completeness
result between narrowing (❀R,E) and rewriting (ÑR④E).

Theorem 2.5 (Topmost Completeness) [Thati and Meseguer, 2007]
Let R ✏ ♣Σ, E,Rq be a topmost rewrite theory, t, t✶ P TΣ♣X q, and let σ

2.3. Maude 31

be a substitution such that tσ Ñ✝
R,E t✶. Then, there are substitutions θ, τ

and a term t✷ such that t ❀✝
θ,R,E t✷, tσ ✏E ♣tθqτ , and t✶ ✏E t✷τ .

2.3 Maude

Maude [Clavel et al., 2007] is a very efficient implementation of Rewriting
Logic [Meseguer, 1992], publicly available at 2. As it is presented in
this section, Maude is a high-performance programming language that
uses rewriting rules, similarly to the so-called functional languages like
Haskell, ML, Scheme, or Lisp. In the following, we briefly present some
of the features of this language that have been used in our work.

A Maude program is made up of different modules. Each module can
include:

• sort (or type) declarations;

• variable declarations;

• operator declarations;

• rules and/or equations describing the behavior of the system oper-
ators, i.e., the functions.

Maude mainly distinguishes two kinds of modules depending on the
constructions they define and on their expected behavior. Functional
modules do not contain rules and the behavior of their equations is ex-
pected to be confluent and terminating. On the contrary, system modules
can contain both equations and rules and, though the behavior of their
equations is also expected to be confluent and terminating, the behav-
ior of its rules may be non-confluent and non-terminating. A functional
module is limited by the reserved keywords fmod and endfm, whereas a
system module is defined in between mod and endm.

Sorts. A sort declaration is as follows:

sort T .

2At http://maude.cs.uiuc.edu

http://maude.cs.uiuc.edu

32 Chapter 2. Preliminaries

where T is the identifier of the newly introduced sort T. Maude identifiers
are sequences of ASCII characters without white spaces, nor the special
characters ‘{’, ‘}’, ‘(’, ‘)’, ‘[’, and ‘]’, unless they are escaped with
the back-quote character ‘`’. If we want to introduce many sorts T1 T2

...Tn at the same time, we write:

sorts T1 T2 ... Tn .

After having declared the sorts, we define operators on them.

Operators. Operators are declared as follows:

op C : T1 T2 ... Tn -> T .

where T1 T2 ... Tn are the sorts of the arguments for operator C, and
T is the resulting sort for the operator. We can also declare at the same
time many operators C1 C2 ... Cn with the same signature (i.e., sort
of arguments and resulting sort):

ops C1 C2 ... Cn : T1 T2 ... Tn -> T .

Operators can represent two kinds of objects: constructors and defined
symbols. Constructors constitute the ground terms or data associated
to a sort, whereas defined symbols represent functions whose behavior
will be specified by means of equations or rules. The rewriting engine of
Maude does not distinguish between constructors or defined symbols, so
there is no real syntactic difference between them. However, for documen-
tation (and debugging) purposes, operators that are used as constructors
can be labeled with the attribute ctor.

Operator attributes. Operator attributes are labels that can be as-
sociated to an operator in order to provide additional information (either
syntactic or semantic) about the operator. All such attributes are de-
clared within a single pair of enclosing square brackets “[” and “]”:

ops C1 C2 ... Cn : T1 T2 ... Tm -> T [A1 ... Ak] .

where the Ai are attribute identifiers. The set of operator attributes
includes among others: ctor, assoc, comm, id, ditto, etc., that are
described below.

2.3. Maude 33

Mix-fix notation. Another interesting feature of operators in Maude
is mix-fix notation. Every operator defined as above is declared in prefix
notation, that is, its arguments are separated by commas, and enclosed
in parenthesis, following the operator symbol, as in:

C(t1, t2, ... , tn)

where C is an operator symbol, and t1, t2,..., tn are, respectively,
terms of sorts T1, T2,..., Tn. Nevertheless, Maude provides a powerful
and tunable syntax analyzer that allows us to declare operators composed
of different identifiers separated by its arguments. Arguments can be set
in any position, in any order, and even separated by white spaces. Mix-
fix operators are identified by the sequence of its component identifiers,
with characters ‘ ’ inserted in the place each argument is expected to be,
as in:

op if_then_else_fi : Bool Exp Exp -> Exp .

op __ : Element List -> List .

The first line above defines an if-then-else operator, while the second one
defines Lists of juxtaposed (i.e., separated by white spaces) Elements.
A term built with the if then else fi operator looks like:

if b1 then e1 else e2 fi

where the tokens if, then, else and fi represent the mixfix operator,
b1 represents a term of sort Bool, and finally e1 and e2 represent terms
of sort Exp. A term built with the operator looks like:

e1 e2

where e1 is a term of sort Element, e2 is a term of sort List, and the
space separating them represents the juxtaposition operator .

34 Chapter 2. Preliminaries

Sorts orders. Sorts can be organized into hierarchies with subsort

declarations. In the following declaration:

subsort T1 < T2 .

we state that each element in T1 is also in T2. For example, we can define
natural numbers by considering their classification as positives or as the
zero number in this way:

sorts Nat Zero NonZeroNat .

subsort Zero < Nat .

subsort NonZeroNat < Nat .

op 0 : -> Zero [ctor] .

op s : Nat -> NonZeroNat [ctor].

Maude also provides operator overloading. For example, if we add:

sort Binary .

op 0 : -> Binary [ctor] .

op 1 : -> Binary [ctor] .

to the previous declarations, the operator 0 is used to construct values
both for the Nat and for the Binary sorts.

Structural Axioms. The language allows the specification of struc-
tural axioms over operators, i.e., certain algebraic properties like Asso-
ciativity, Commutativity and Identity element that operators may sat-
isfy. In the following, we write ACU to refer to the three previous alge-
braic properties. Structural axioms serve to perform the computation on
equivalence classes of expressions, instead of on simple expressions. In
order to carry out computations on equivalence classes, Maude chooses
an irreducible representative of each class and uses it for the computa-
tion. Thanks to the structural information given as operator attributes,
Maude can also choose specific data structures for an efficient low-level
representation of expressions.

For example, let us define a list of natural numbers separated by
colons:

2.3. Maude 35

sorts NatList EmptyNatList NonEmptyNatList .

subsort EmptyNatList < NatList .

subsort Nat < NonEmptyNatList < NatList .

op nil : -> EmptyNatList [ctor] .

op _:_ : NatList NatList -> NonEmptyNatList [assoc] .

The operator “ : ” is declared as associative by means of its attribute
assoc. Associativity means that the value of an expression is not depen-
dent on the subexpression grouping considered, that is, the places where
the parenthesis are inserted. Thus, if “ : ” is associative Maude considers
the following expressions as equivalent:

s(0) : s(s(0)) : nil

(s(0) : s(s(0))) : nil

s(0) : (s(s(0)) : nil)

As another example, let us define an associative list with nil as its
identity element:

sort NatList .

subsort Nat < NatList .

op nil : -> NatList [ctor] .

op _;_ : NatList NatList -> NatList [assoc id: nil] .

The operator “ ; ” is declared as having nil as its identity element
by means of its attribute id: nil. Having an identity element e means
that the value of an expression is not dependent on the presence of e’s
as subexpressions, that is, it is possible to insert e’s without changing
the meaning of the expression. Thus, in our example Maude considers
the following expressions (and an infinite number of similar ones) as
equivalent:

s(0) ; s(s(0))

nil ; s(0) ; s(s(0))

s(0) ; nil ; s(s(0))

s(0) ; s(s(0)) ; nil

nil ; s(0) ; nil ; s(s(0)) : nil

36 Chapter 2. Preliminaries

...

For that reason, Maude omits nil in the irreducible representative, unless
it appears alone as an expression. Now, let us introduce how we define
a multi-set, that is, an associative and commutative list with nil as its
identity element:

sort NatMultiSet .

subsort Nat < NatMultiSet .

op nil : -> NatMultiSet .

op _:_ : NatMultiSet NatMultiSet -> NatMultiSet

[assoc comm id: nil] .

In this example, the operator “ : ” is declared to be commutative by
means of the attribute comm. Commutativity means that the value of an
expression is not dependent on the order of its subexpressions, that is,
it is possible to change the order of subexpressions without changing the
meaning of the expression. Thus, if “ : ” is a commutative and associative
operator, Maude considers the following expressions equivalent:

s(0) : s(s(0)) : s(s(0))

s(s(0)) : s(0) : s(s(0))

s(s(0)) : s(s(0)) : s(0)

The structural properties are efficiently built in Maude. Additional struc-
tural properties can be defined by means of equations, as we discuss
below.

Rules and equations. In Maude, rules or equations characterize the
behavior of the defined symbols. Both language constructions have a
similar structure:

rl l => r .

eq l = r .

where l and r are terms, i.e., expressions recursively built by nesting
correctly typed operators and variables. l is called the left-hand side
of a rule or equation, whereas r is its right-hand side. Variables can
be declared when they are used in an expression by using the structure
name:sort, or also in a general variable declaration:

2.3. Maude 37

var N1 N2 ... Nm : S .

where N1, N2, ..., Nm are variable names, and S is a sort. In Maude-
NPA protocol specifications equations are labelled with the variant at-
tribute, to denote that these equations must be used for variant-based
unification.

The search command. The search command allows one to explore
(following a breadth-first strategy) the reachable state space in different
ways. Throughout this thesis, we will use search commands of either
one of the following schemes:

search in 〈ModId〉 : 〈Term-1〉 =>* 〈Term-2〉.

search in 〈ModId〉 : 〈Term-1〉 =>* 〈Term-2〉

such that 〈Condition〉.

where:

• 〈ModId〉 is the module where the search takes place. This param-
eter can be ommited.

• 〈Term-1〉 is the starting term.

• 〈Term-2〉 is the pattern that has to be reached.

• =>* indicates that the rewriting proof from 〈Term-1〉 to 〈Term-2〉

can consist of zero or more steps.

• 〈Condition〉 states an optional property that has to be satisfied
by the reached state.

Example 2.6 Finally, let us show the complete specification of a Maude
program as an example. In the following, we consider an alternating-bit-
protocol, a simple but effective protocol that avoids duplication or loss
of messages. In this protocol there are two principals, Alice and Bob,
and a communication channel connecting both of them. Each exchange
message consists in a protocol bit, i.e., either 0 or 1.

This protocol works as follows. When Alice wants to send a mes-
sage to Bob, she repeats it indefinetely through the channel, using the

38 Chapter 2. Preliminaries

same protocol bit until she receives an acknowledgement from B with the
same protocol bit she sent. When Alice receives the acknowledgement,
she sends the next message with the opposite protocol bit, that is, if the
previous sent message was 0, the next message is 1, and viceversa. When
Bob receives a message, he accepts it and sends to Alice the acknowl-
edgement, sending to her the same protocol bit that he received. If he
receives several messages with the same protocol bit, he sends the same
acknoledgement with the same bit protocol.

In order to represent the loss of messages, it is assumed that the
channel chooses in a non-deterministic way whether it copies the received
message in the channels output, or discards it.

This program is specified in Maude as follows:

mod Alternating-bit-protocol is

sorts Bit Msg Channel State .

subsort Msg < Channel .

ops 0 1 : -> Bit .

ops _>> <<_ : Bit -> Msg .

op lost : -> Channel .

op A{_}_B{_} : Bit Channel Bit -> State .

var M : Msg . vars X Y Z : Bit .

--- equations to compute inverse of a bit

op not : Bit -> Bit .

eq not(0) = 1 .

eq not(1) = 0 .

--- The message in the channel is lost

rl [loss] : A{X} M B{Y} => A{X} lost B{Y} .

--- Bob receives the message sent by Alice

rl [B-receives] : A{X} Z >> B{Y} => A{X} Z >> B{Z} .

--- Bob sends the acknowledgement to Alice

rl [B-repeats] : A{X} M B{Y} => A{X} << Y B{Y} .

--- Alice changes the bit

rl [A-changesBit] : A{X} << X B{X} => A{not(X)} << X B{X} .

2.3. Maude 39

--- Alice sends the bit

rl [A-sends] : A{X} << Z B{Z} => A{X} X >> B{Z} .

endm

This protocol must satisfy that if Alice sends to Bob a protocol bit,
e.g. 0, and Bob acknowledges, the received protocol bit must be the
same that she sent before. This can be verified in Maude by executing
the following search command:

search A{0} << 1 B{1} =>* A{0} << 0 B{0} .

which produces the output shown below:

==

search in Alternating-bit-protocol :

A{1}<< 0 B{0} =>* A{0}<< 1 B{1} .

Solution 1 (state 6)

states: 7 rewrites: 12 in 0ms cpu (0ms real)

(200000 rewrites/second)

empty substitution

No more solutions.

states: 12 rewrites: 26 in 0ms cpu (0ms real)

(156626 rewrites/second)

�

Chapter 3

Maude-NPA

In this chapter we present Maude-NPA, the protocol analyzer tool in
which the techniques explained in the thesis have been implemented.
We refer the reader to [Escobar et al., 2009a, 2012a] for futher detailed
information on Maude-NPA.

First, Section 3.1 provides an overview of the Maue-NPA tool. Sec-
tion 3.2 explains Maude-NPA’s use of the strand space model to specify
protocols and states. In Section 3.3 we show how backwards analysis
works in Maude-NPA, and in Section 3.4 we specify the rewrite rules
governing the backwards semantics. Section 3.5 explains in detail the
most general class of equational theories for which the Maude-NPA can
currently support variant-based unification, with the important require-
ment of the number of unifier solutions being finite. These are called
admissible theories. In Section 3.6 we briefly recall how to specify a pro-
tocol in Maude-NPA, and, finally, in Section 3.7 we describe the tool’s
commands for attack search.

3.1 Overview

The Maude-NPA is a tool and inference system for reasoning about the
security of cryptographic protocols in which the cryptosystems satisfy dif-
ferent equational properties. The tool handles searches in the unbounded
session model, and thus can be used to provide proofs of security as well
as to search for attacks. It is the next generation of the NRL Proto-
col Analyzer [Meadows, 1996a], a tool that supported limited equational

42 Chapter 3. Maude-NPA

reasoning and was successfully applied to the analysis of many different
protocols.

Maude-NPA is a model-checker for cryptographic protocol analysis
that both allows for the incorporation of different equational theories
and operates in the unbounded session model without the use of abstrac-
tion. This means that the analysis is exact. That is, (i) if an attack exists
using the specified algebraic properties, it will be found; (ii) no false at-
tacks will be reported; and (iii) if the tool terminates without finding an
attack, this provides a formal proof that the protocol is secure for that
attack modulo the specified properties. However, it is always possible
that the tool will not terminate; although, as explained in Chapter 4, a
number of heuristics are included to drastically reduce the search space
and make nontermination less likely. In order to have a steady, incre-
mental approximation of the analysis, the user is also given the option
of restricting the number of steps executed by Maude-NPA.

Maude-NPA is a backwards search tool, i.e., it searches backwards
from a final insecure state to determine whether or not it is reachable
from an initial state. This backwards search is symbolic, i.e., it does
not start with a concrete attack state, but uses instead a symbolic at-
tack pattern, i.e., a term with logical variables describing a general attack
situation. The backwards search is then performed by backwards narrow-
ing. Each backwards narrowing step denotes a state transition, such as a
principal sending or receiving a message or the intruder manipulating a
message, all in a backwards sense. Each backwards narrowing step takes
a symbolic state (i.e., a term with logical variables) and returns a previ-
ous symbolic state in the protocol (again a term with logical variables).
In performing a backwards narrowing step, the variables of the input
term are appropriately instantiated in order to apply the concrete state
transition, and the new previous state may contain new variables that are
differentiated from any previously used variable to avoid confusion. To
appropriately instantiate the input term, narrowing uses equational uni-
fication (see Section 2.1). As it is well-known from logic programming
and automated deduction (see e.g., [Baader and Snyder, 2001]), unifi-
cation is the process of solving equations t ✏ t✶. Standard unification
solves these equations in a term algebra. Instead, equational unification
(w.r.t. an equational theory E) solves an equation t ✏ t✶ modulo the
equational theory E. In the Maude-NPA, the equational theory E used

3.2. Maude-NPA’s Strand Space Model 43

depends on the protocol, and corresponds to the algebraic properties of
the cryptographic functions (e.g. cancellation of encryption and decryp-
tion, Diffie-Hellman exponentiation, or exclusive-or).

3.2 Maude-NPA’s Strand Space Model

In this section we give an overview of Maude-NPA’s use of the strand
space model to specify protocols and states.

Given a protocol P , states are modeled as elements of an initial al-
gebra TΣP④EP

, where ΣP is the signature defining the sorts and function
symbols (for the cryptographic functions and for all the state constructor
symbols) and EP is a set of equations specifying the algebraic properties
of the cryptographic functions and the state constructors. Therefore,
a state is an EP-equivalence class rtsEP

P TΣP④EP
with t a ground ΣP-

term. However, we explore symbolic state patterns rt♣x1, . . . , xnqsEP
P

TΣP④EP
♣X q (see Chapter 2) on the free ♣ΣP , EPq-algebra over a set of

sorted variables X . There are three relevant sorts in Maude-NPA, namely
State, Msg, and Fresh, which are described below. Also, due to the sym-
bolic representation, we use uppercase names for variables (we omit the
sort of a variable when it is easy to deduce from the context) and lower-
case names for terms (with or without variables). Indeed, we will make
explicit when a term does not contain variables.

In Maude-NPA a state pattern in a protocol execution is a term t of
sort State (i.e., t P TΣP④EP

♣X qState) tS1 & ☎ ☎ ☎ &Sn & tIK✉✉ where & is an
associative-commutative union1 operator with identity symbol ❍. Each
element in the set is either a strand Si or the intruder knowledge tIK✉
at that state.

The intruder knowledge tIK✉ is represented as a set of facts using the
comma as an associative-commutative union2 operator with identity op-
erator empty. There are two kinds of intruder facts: positive knowledge
facts (the intruder knows m, i.e., mPI), and negative knowledge facts

1As described in [Escobar et al., 2009a], & can also be treated as an associative-
commutative-idempotent union operator with an identity symbol because the combi-
nation of fresh variables and the learn-only-once rule allows for that.

2Again, the comma for the intruder’s knowledge is described in [Escobar et al.,
2009a] as an associative-commutative union operator with an identity symbol but it
can be understood as being idempotent, though only for the positive intruder facts.

44 Chapter 3. Maude-NPA

(the intruder does not yet know m but will know it in a future state, i.e.,
m❘I), where m is a message expression.

A strand [Fabrega et al., 1999] specifies the sequence of messages sent
and received by a principal executing the protocol and is represented as a
sequence of messages rmsg✁1 ,msg�2 ,msg✁3 , . . . ,msg✁k✁1,msg�k s such that
msg✁i (also written ✁msgi) represents an input message, msg�i (also
written �msgi) represents an output message, and each msgi is a term
of sort Msg (i.e., msgi P TΣP④EP

♣X qMsg). For each positive message msg�i
in a strand, the variables occurring in message msgi must appear3 in pre-
vious messages msg1, . . . ,msgi✁1, except for variables denoting principal
names (they are considered as initial knowledge available to all partici-
pants) and variables of sort Fresh. Variables of sort Fresh are unique for
each instance of a strand schemata, i.e., if we compare two strands for
Alice or a strand for Alice and a strand for Bob, they will have different,
unique, fresh variables associated with them.

Strands are used to represent both the actions of honest principals
(with a strand specified for each protocol role) and the actions of an in-
truder (with a strand for each operator an intruder is able to perform on
terms). In Maude-NPA, strands evolve over time; the symbol ⑤ is used to
divide past and future. That is, given a strand r m1

✟, . . . , mi
✟ ⑤ mi�1

✟,

. . . , mk
✟ s, messages m✟

1 , . . . ,m
✟
i are the past messages, and messages

m✟
i�1, . . . ,m

✟
k are the future messages (m✟

i�1 is the immediate future mes-
sage). We often remove the nils for clarity, except when there is nothing
else between the vertical bar and the beginning or end of a strand. A
strand rmsg✟1 , . . . ,msg✟k s is a shorthand for rnil ⑤ msg✟1 , . . . ,msg✟k , nils.
An initial state is a state where the bar is at the beginning for all strands
in the state, and all the intruder knowledge is negative, i.e., all the items
in the intruder knowledge are of the form m❘I. From an initial state no
further backwards reachability steps are possible. A final state is a state
where the bar is at the end for all strands in the state and there is no
intruder fact of the form m❘I.

Variables of sort Fresh represent fresh unguessable values, e.g., nonces.
The meaning of a variable of sort Fresh is that it will never be instanti-
ated by an E-unifier generated during the backwards reachability anal-
ysis. This ensures that if nonces are represented using variables of sort

3 This restriction is common in protocol analysis using constraint systems and cor-
responds to deterministic constraint systems, see [Chevalier and Rusinowitch, 2008].

3.2. Maude-NPA’s Strand Space Model 45

Fresh, they will never be merged and no approximation for nonces is
necessary. We make the Fresh variables generated by a strand explicit
by writing ♣r1, . . . , rk : Freshq rmsg✟1 , . . . ,msg✟n s, where r1, . . . , rk are all
the variables of sort Fresh generated by msg✟1 , . . . ,msg✟n . Each ri first
appears in an output message m�

ji
and can later be used in any input

and output message of m✟
ji�1, . . . ,m

✟
n . If it does not generate any Fresh

variable, we write :: nil :: rm✟
1 , . . . ,m

✟
n s.

Example 3.1 Let us consider the well-known Diffie-Hellman protocol,
used without authentication. This protocol uses exponentiation to share
a secret between two parties, Alice and Bob. The protocol involves an
initiator, Alice, and a responder, Bob. We use the common notation
A Ñ B : M to stand for “A sends message M to B”. Encryption of
message M using a key K is denoted by tM✉K . Decryption is done when
the principal knows the appropriate key. Concatenation of two messages
M1 and M2 is denoted by M1;M2. Raising message M to the power of
exponent X is denoted by ♣MqX . There is a public term denoted by g,
which will be the base of our exponentiations. We represent the product
of exponents by using the symbol ✝, which is an associative-commutative
symbol. Nonces are represented by NX , denoting a nonce created by
principal X. The protocol description is as follows.

1. A Ñ B : A;B; gNA

Alice creates a new nonce NA and sends her name, Bob’s name,
and gNA to Bob.

2. B Ñ A : B;A; gNB

Bob creates a new nonce NB and sends his name, Alice’s name,
and gNB to Alice.

3. A Ñ B : tsecret✉
gNB

NA

Alice computes gNB
NA and encrypts the secret data secret. The

key gNB
NA is equal to gNB✝NA using the algebraic property XY Z

✏
XZY

✏ XY ✝Z . Bob computes gNA
NB and obtains the secret data

secret.

This protocol is described using strands as follows. Here encryption
tM✉K is denoted by e♣K,Mq and exponentiation XY is denoted by

46 Chapter 3. Maude-NPA

exp♣X, Y q. Nonces and secret data are denoted by terms of the form
n♣A, rq and sec(A,r), respectively where r is a fresh variable that ensures
uniqueness and A is a variable used to identify which principal generated
the nonce or the secret data.

:: r, r✶ ::: r�♣A;B; exp♣g, n♣A, rqqq,
✁♣B;A;Xq,
�♣e♣exp♣X,n♣A, rqq, sec♣A, r✶qqqs &

:: r✷ :: r✁♣A;B;Y q,
�♣B;A; exp♣g, n♣B, r✷qqq,
✁♣e♣exp♣Y, n♣B, r✷qq,Srqqs

Intruder strands are also included for each function. For example, en-
cryption and decryption by the intruder are described by the strands
shown below, respectively:

r✁♣Kq,✁♣Mq,�♣e♣K,Mqqs

r✁♣Kq,✁♣Mq,�♣d♣K,Mqqs

together with the equational property d♣K, e♣K,Mqq ✏ M . The intruder
can perform Diffie-Hellman exponentiations via the strand below:

:: nil :: r✁♣Y q,✁♣Xq,�♣exp♣X,Y qqs

together with the equational property exp♣exp♣X, Y 1q, Y 2q ✏ exp♣X, Y 1✝
Y 2q, where ✝ is an AC operator denoting the product of exponents. The
intruder’s capability to perform the product of exponents is denoted by
the strand below:

:: nil :: r✁♣NS1 q,✁♣NS2 q,�♣NS1 ✝NS2 qs

Finally, the intruder can also generate nonces via the strand below:

:: r :: r�♣n♣i, rqqs

�

3.3. Backwards Reachability Analysis 47

3.3 Backwards Reachability Analysis

Since the number of states TΣP④EP
is in general infinite, rather than ex-

ploring concrete protocol states rtsEP
P TΣP④EP

we explore symbolic state
patterns rt♣x1, . . . , xnqsEP

P TΣP④EP
♣Xq on the free ♣ΣP , EPq-algebra over

a set of variables X. In this way, a state pattern rt♣x1, . . . , xnqsEP
repre-

sents not a single concrete state but a possibly infinite set of such states,
namely all the instances of the pattern rt♣x1, . . . , xnqsEP

where the vari-
ables x1, . . . , xn have been instantiated by concrete ground terms.

The protocol analysis methodology of Maude-NPA is then based on
the idea of symbolic backward reachability analysis, where we begin with
one or more state patterns corresponding to attack states, and want to
prove or disprove that they are unreachable from the set of initial protocol
states.

Given a protocol P and the rewrite theory ♣ΣP , EP , RBPq associated
to it, in a backwards execution of the protocol we start from an attack
pattern, i.e., a term with variables, containing: (i) some of the strands
of the protocol to be executed backwards, (ii) a variable SS denoting
a set of additional strands, (iii) some terms the intruder knows at the
attack state, i.e., of the form tPI, and (iv) a variable IK denoting a set
of additional intruder facts. We then symbolically run the protocol “in
reverse” by narrowing modulo the equations EP . This can be achieved
by using a set of rules R✁1

BP
described in Section 3.4 (where v ÝÑ u is

in R✁1
BP

iff u ÝÑ v is in RBP), and performing backwards narrowing (see
Chapter 2) until either we find an initial state, or cannot perform any
other useful backwards narrowing steps. Note that variables SS and IK
will be instantiated by backwards narrowing to additional strands and
additional intruder facts, respectively, in order to find an initial state.
Indeed, these variables SS and IK are not required for the specification
of the attack state as explained in Section 3.6.1.

Example 3.2 Given the protocol of Example 3.1, the final state pattern
associated to Bob receiving some secret data from a communication with
Alice and the intruder learning the secret is as follows (where Y , SR,
SS , and IK are variables and we use lowercase a and b to represent the
actual names of Alice and Bob instead of variable names A and B):

48 Chapter 3. Maude-NPA

t:: r✷ :: r✁♣a; b;Y q,
�♣b; a; exp♣g, n♣b, r✷qqq,
✁♣e♣exp♣Y, n♣b, r✷qq,SRqq ⑤ nils & SS & tSRPI✉✉

The strands of the initial state found by the tool correspond to a very
general man-in-the-middle attack, with two sessions and variables B✶,
NS and NS ✶. The principal strands are as follows, where Alice (principal
name a) is talking to some principal name B✶ and Bob (principal name
b) believes is talking to Alice:

:: r1, r2 :: r�♣a;B✶; exp♣g, n♣a, r2qqq,
✁♣B✶; a; exp♣g,NS qq,
�♣e♣exp♣g,NS ✝ n♣a, r2qq, sec♣a, r1qqqsq &

:: r3 :: r✁♣a; b; exp♣g,NS ✶qq,
�♣b; a; exp♣g, n♣b, r3qqq,
✁♣e♣exp♣g,NS ✶ ✝ n♣b, r3qq, sec♣a, r1qqqs

The instantiated Dolev-Yao intruder strands of the initial state found
by the tool are as follows, where variables NS and NS ✶ correspond to sets
of nonces generated by the intruder but the tool does not actually try to
find instances of those variables:

r✁♣a;B✶; exp♣g, n♣a, r2qqq,�♣B✶; exp♣g, n♣a, r2qqqs &

r✁♣B✶; exp♣g, n♣a, r2qqq,�♣exp♣g, n♣a, r2qqqs &

r✁♣exp♣g, n♣a, r2qqq,✁♣NS q,�♣exp♣g,NS ✝ n♣a, r2qqqs &

r✁♣exp♣g,NS ✝ n♣a, r2qqq,✁♣e♣exp♣g,NS ✝ n♣a, r2qq, sec♣a, r1qqq,
�♣sec♣a, r1qqs &

r✁♣exp♣g, n♣b, r3qqq,✁♣NS ✶q,�♣exp♣g,NS ✶ ✝ n♣b, r3qqqs &

r✁♣exp♣g,NS ✶ ✝ n♣b, r3qqq,✁♣sec♣a, r1qq,
�♣e♣exp♣g,NS ✶ ✝ n♣b, r3qq, sec♣a, r1qqqs &

r✁♣b; a; exp♣g, n♣b, r3qqq,�♣a; exp♣g, n♣b, r3qqqs &

r✁♣a; exp♣g, n♣b, r3qqq,�♣exp♣g, n♣b, r3qqqs

Note that Maude-NPA does not display the initial knowledge of the in-
truder, since it corresponds to all the input and output messages appear-
ing in the initial strands above.

3.4. Backwards Operational Semantics 49

Maude-NPA also allows verification of authentication properties by
using never patterns, i.e., the reachability analysis succeeds when none of
the states in the reachability sequence is an instance of the never pattern.
Never patterns can share variables with the attack pattern in order to
have more specific patterns and the vertical bar is not included in strands
of never patterns, since all the combinations of the vertical bar are taken
into account. For instance, we can specify the following authentication
attack pattern for Diffie-Hellman by including Bob’s strand and adding
never patterns for Alice’s strand

t:: r✷ :: r✁♣a; b;Y q,�♣b; a; exp♣g, n♣b, r✷qqq,
✁♣e♣exp♣Y, n♣b, r✷qq,SRqq ⑤ nils & SS & tIK ✉✉ ❫

never♣:: r, r✶ :: r�♣a; b; exp♣g, n♣a, rqqq,✁♣b; a;Xq,
�♣e♣exp♣X,n♣a, rqq, sec♣a, r✶qqqsq

The initial state above is also a solution of this attack pattern with never
patterns, since Alice was talking to a different participant in a different
session. �

Because (as we shall see in Section 3.4) terms available to the intruder
are not always explicitly represented in the intruder knowledge, we as-
sume that never patterns as implemented in Maude-NPA consist only of
strands, and do not describe intruder knowledge terms. This is generally
the case for authentication patterns. However, if we do wish to specify a
never pattern in which the intruder knows a particular message, this can
be represented as a set of never patterns, each one containing one of the
possible strands having that message as a positive term. Note that explic-
itly specifying the message as part of the intruder knowledge in the never
pattern would not rule out all states in which the message is produced,
since the intruder knowledge is only guaranteed to contain the messages
the intruder uses to get to the (main) final state; it is not guaranteed to
contain all the messages produced in the protocol execution.

3.4 Backwards Operational Semantics

In the backwards reachability analysis performed by Maude-NPA sketched
in Section 3.3, state changes are described by means of a set RBP of

50 Chapter 3. Maude-NPA

rewrite rules, so that the rewrite theory ♣ΣP , EP , RBPq characterizes the
behavior of protocol P modulo the equations EP for backwards execu-
tion. In this section we use RBP to denote the rewrite rules associated to
protocol P for backwards execution. The rules RBP are defined in two
blocks below: (i) generic rules (3.1), (3.2), and (3.3), and (ii) protocol-
specific rules (3.4) generated for each principal and intruder strand in
the given protocol.

The following rewrite rules, though written in a forward sense, are
used in a backwards sense (by reversing the direction of the arrow) and
describe4 the general state transitions:

tSS & rL ⑤ M✁, L✶s & tMPI, IK✉✉ Ñ tSS & rL,M✁ ⑤ L✶s & tMPI, IK✉✉ (3.1)

tSS & rL ⑤ M�, L✶s & tIK✉✉ Ñ tSS & rL,M� ⑤ L✶s & tIK✉✉ (3.2)

tSS & rL ⑤ M�, L✶s & tM❘I, IK✉✉ Ñ tSS & rL,M� ⑤ L✶s & tMPI, IK✉✉ (3.3)

Variables L and L✶ denote lists of input and output messages of the form
m� or m✁ within a strand, IK denotes a set of intruder facts (mPI or
m❘I), and SS denotes a set of strands.

Rule (3.1) used in a forwards sense means that the intruder knows the
message that a strand is waiting to receive, but when executed backwards
by narrowing on a symbolic state with variables SS’ and IK’ it may
either unify the input message with some term already in the intruder
knowledge or unify SS’ or IK’ with parts of the rule, thus adding new
information to the symbolic state. Rule (3.2) used in a forwards sense,
means that the intruder did not learn a message generated by a strand,
but when executed backwards by narrowing on a symbolic state with
variables SS’ and IK’, it either moves the bar to the left or unifies variable
SS’ with parts of the rule. Rule (3.3) used in a forwards sense means
that the intruder learns a message M generated by a strand that it did
not know before (expressed by M❘I), but when executed backwards by
narrowing on a symbolic state with variables SS’ and IK’, it either detects
the instant where the intruder is learning a message and, thus, transforms
a fact mPI into m❘I to identify the transition in which the fact MPI
was learned, or unifies variables SS’ or IK’ with parts of the rule, thus
adding new information to the symbolic state.

4We do not include the fresh variables in rules (3.1), (3.2), and (3.3) for simplicity,
but a expression :: r1, . . . , rk :: should always appear before each strand.

3.4. Backwards Operational Semantics 51

For an unbounded number of sessions, we have extra rewrite rules
(one for each positive message in a protocol or intruder strand) that
dynamically introduce additional strands into a state:

❅ rl1, u
�, l2s P P :

t tSS& r l1⑤u
�, l2 s& tu❘I, IK✉✉ Ñ tSS& tuPI, IK✉✉✉

(3.4)

Note that these rules are essential in a backwards sense, since they
will dynamically introduce new strands guided by existing terms in the
intruder knowledge. For example, the intruder decryption capability
r✁♣Kq,✁♣Mq,�♣d♣K,Mqs produces the following extra rewrite rule
adding a new strand (when the rules are executed backwards) if a mes-
sage of the form d♣K,Mq appears in the intruder knowledge:

tSS& r✁♣Kq,✁♣Mq ⑤ �♣d♣K,Mqs& t♣d♣K,Mq❘I, IK✉✉

Ñ tSS& td♣K,MqPI, IK✉✉ (3.5)

Definition 3.3 Let P be a protocol with signature ΣP and equational
theory EP . We define the backwards rewrite theory characterizing P to
be ♣ΣP , EP , R

✁1
BP

q where R✁1
BP

is the result of reversing the rewrite rules
in the set t(3.1), (3.2), (3.3)✉ ❨ t(3.4)✉.

Example 3.4 For example, consider the Diffie-Hellman attack state
shown in Example 3.2 (Page 48):

t:: r✷ :: r✁♣a; b;Y q,
�♣b; a; exp♣g, n♣b, r✷qqq,
✁♣e♣exp♣Y, n♣b, r✷qq,SRqq ⑤ nils & SS & tSRPI✉✉

and the Rule (3.5). We can apply this rule to our attack state modulo the
equational theory for Diffie-Hellman. That is, the attack term above uni-
fies with the left-hand side of the rule modulo the following cancellation
equational rule EP :

d♣Ke, e♣Ke,Mqq ✏ M

where Ke denotes a key and M denotes a message. To be more concrete,
the term SR unifies with the term d♣Ke,Mq modulo the cancellation
equational rules yielding the unifier θ ✏ tM ÞÑ e♣Ke, SRq✉. Therefore,

52 Chapter 3. Maude-NPA

we obtain the following predecessor state using the narrowing relation
❀θ,R✁1

P
,EP

from the Diffie-Hellman attack state shown above:

t :: nil :: rnil,✁♣Keq,✁♣e♣Ke,SRqq ⑤ �♣SRq s &

:: r✷ :: r✁♣a; b;Y q,�♣b; a; exp♣g, n♣b, r✷qqq,✁♣e♣exp♣Y, n♣b, r✷qq,SRqq ⑤ nil s

& SS & tSR❘I✉✉

�

3.5 General Requirements for Algebraic

Theories

The Maude-NPA’s unification technique is based on the computation of
variants. In order to provide a finite set of unifiers, five specific require-
ments must be met by any algebraic theory specifying cryptographic
functions that the user provides. If these requirements are not satisfied,
Maude-NPA may exhibit non-terminating and/or incomplete behavior,
and any completeness claims about the results of the analysis cannot be
guaranteed (these conditions are defined in Section 2.1). We call theories
that satisfy these criteria admissible theories.

In the following, let T be an algebraic theory with a decomposition
♣Σ, B, E0q (see Section 2.1), such that E0 are equations oriented as rules,
and B is a set of equations denoting axioms. In the Maude-NPA we
call such algebraic theory T specified by the user for the cryptographic
functions of the protocol admissible if it satisfies the following require-
ments: (i) axioms B are either commutativity (C), or associativity-
commutativity (AC), or associativity-commutativity-unit element (ACU),
(ii) the rules E0 are confluent modulo B, (iii) the rules E0 are terminating
modulo B, (iv) the rules E0 are coherent modulo B, (v) ♣Σ, B, E0q is a
finite variant decomposition. Below we explain in more detail each of
these requirements.

Axioms The axioms B can declare some binary operators in Σ to be
commutative (with the comm attribute), associative-commutative (with

3.5. General Requirements for Algebraic Theories 53

the assoc and comm attributes), or associative-communtative and iden-
tity (with the assoc,comm, and id attributes). No other combinations of
axioms are allowed; that is, a function symbol has either no attributes,
or only the comm attribute, or only the assoc and comm attributes, or
only the assoc, comm and id attributes.

Confluence. The equations E0 are called confluent modulo B if and
only if for each term t in the theory T ✏ ♣Σ, E0 ❨Bq, if we can rewrite t
with E0 modulo B in two different ways as: t ÝÑ✝

E0,B
u and t ÝÑ✝

E0,B
v,

then we can always further rewrite u and v to a common term up to
identity modulo B. That is, u and v are essentially the same term, in
the sense that they are equal modulo the axioms B.

Termination. The equations E0 are called terminating modulo B if
and only if all rewrite sequences terminate; that is, if and only if we
never have an infinite sequence of rewrites

t0 ÑE0,B t1 ÑE0,B t2 . . . tn ÑE0,B tn�1 . . .

Coherence. Rather than explaining the coherence modulo B notion
in general (already explained in Section 2.1 in Page 27), we explain in
detail its meaning in the case where it is needed for the Maude-NPA,
namely, the case of associative-commutative (AC) symbols. The best
way to illustrate the meaning of coherence is by its absence. Consider,
for example, an exclusive-or operator ❵ which has been declared AC.
Now consider the equation X ❵X ✏ 0. This equation, if not completed
by another equation, is not coherent modulo AC. What this means is that
there will be term contexts in which the equation should be applied, but it
cannot be applied. Consider, for example, the term b❵♣a❵bq. Intuitively,
we should be able to apply to it the above equation to simplify it to the
term a ❵ 0 in one step. However, since we are using the weaker rewrite
relation ÑE0,B instead of the stronger but much harder to implement
relation ÑE0④B, we cannot! The problem is that the equation cannot be
applied (even if we match modulo AC) to either the top term b❵♣a❵bq or
the subterm a❵ b. We can however make our equation coherent modulo

54 Chapter 3. Maude-NPA

AC by adding the extra equation X ❵ X ❵ Y ✏ 0 ❵ Y , which, using
also the equation X ❵ 0 ✏ X, we can slightly simplify to the equation
X ❵ X ❵ Y ✏ Y . This second variant of our equation will now apply
to the term b ❵ ♣a ❵ bq, giving the simplification b ❵ ♣a ❵ bq ÝÑE0,B a.
Technically, what coherence means is that the weaker relation ÑE0,B

becomes semantically equivalent to the stronger relation ÑE0④B.

For the Maude-NPA, coherence is only an issue for AC and ACU
symbols. And there is always an easy way, given a set E0 of equations,
to make them AC-coherent. The method is as follows. For any symbol
f which is AC, and for any equation of the form f♣u, vq ✏ w in E0,
we add also the equation f♣f♣u, vq, Xq ✏ f♣w,Xq, where X is a new
variable not appearing in u, v, w. In an order-sorted setting, we should
give to X the biggest sort possible, so that it will apply in all generality.
As an additional optimization, note that some equations may already
be coherent modulo AC, so that we need not add the extra equation.
For example, if the variable X has the biggest possible sort it could
have, then the equation X ❵ 0 ✏ X is already coherent, since X will
match “the rest of the ❵-expression,” regardless of how big or complex
that expression might be, and of where in the expression a constant 0
occurs. For example, this equation will apply modulo AC to the term
♣a❵♣b❵♣0❵cqqq❵♣c❵aq, with x matching the term ♣a❵♣b❵cqq❵♣c❵aq,
so that we indeed get a rewrite ♣a ❵ ♣b ❵ ♣0 ❵ cqqq ❵ ♣c ❵ aq ÑE0,B

♣a❵ ♣b❵ cqq ❵ ♣c❵ aq.

Finite Variant Decomposition. A decomposition ♣Σ, B, E0q of an
equational theory ♣Σ, Eq is a finite variant decomposition or has the finite
variant (FV) property iff for each term t, a complete set of its most
general variants is finite. Again, rather than explaining this notion in
detail, we illustrate its meaning by a theory that does not have the FV
property.

There is one notable theory that does not have the FV property,
the theory of encryption homomorphic over another operator, that is
e♣X ✝ Y,Kq ✏ e♣X,Kq ✝ e♣Y,Kq, where ✝ is an operator that may have
some other equational properties, shown not to satisfy the FV property
when the homomorphic equation is in E0 in [Comon-Lundh and Delaune,
2005]. In reality, Common and Delaune consider the case in which e has
only one argument and ✝ is exclusive-or, but their case can be considered

3.6. Protocol Specification in Maude-NPA 55

as corresponding to a degenerate case of e with two arguments, in which
only one key is used. Moreover, their counterexamples apply to any
subtheory of the theory they use for ✝, including the abelian group theory,
AC, and the free theory.

Comon and Delaune prove their result by producing counterexamples
to a property that they show to be equivalent to FV property. However,
it is also easy to produce direct counterexamples. Assuming that the
distributive equation is oriented as the rewrite rule e♣X ✝ Y q Ñ e♣Xq ✝
e♣Y q, there is an infinite number of most general variants for the term
e♣Zq:

♣e♣Zq, idq, ♣e♣Z1q✝e♣Z2q, tZ ÞÑ Z1 ✝Z2✉q, ♣e♣Z1q✝e♣Z2q✝e♣Z3q,
tZ ÞÑ Z1 ✝ Z2 ✝ Z3✉q, . . .

If the equation is oriented as e♣Xq ✝ e♣Y q Ñ e♣X ✝ Y q, then there is an
infinite number of most general variants of the term e♣Z ✝W q:

♣e♣Z ✝ W q, idq, ♣e♣e♣Z1 ✝ W1qqtZ ÞÑ e♣Z1q,W ÞÑ e♣W1q✉q,
♣e♣e♣e♣Z1 ✝W1qqqtZ ÞÑ e♣e♣Z1qq,W ÞÑ e♣e♣W1qq✉q, . . .

3.6 Protocol Specification in Maude-NPA

In this section we briefly recall how to specify a protocol and all its
relevant items in the current version of the Maude-NPA. Note that, since
we are using Maude also as the specification language, each declaration
has to be ended by a space and a period.

The beginning of the protocol specification is used to define the dif-
ferent types of data and function symbols of the protocol, as well as the
algebraic properties of those protocol functions. There are two types of
algebraic properties in Maude-NPA: (i) equational axioms, such as com-
mutativity, or associativity-commutativity, called axioms, (ii) equational
rules, called equations. Axioms are specified within the typed function
symbol declarations, whereas equations are specified separately with the
symbol eq and attribute variant.

We use the keyword STRANDS-PROTOCOL for storing the strands de-
noting the actions of the protocol honest principals, and the keyword
STRANDS-DOLEVYAO for storing the strands denoting the operations an
intruder can perform, or Dolev-Yao rules [Dolev and Yao, 1983]. Each

56 Chapter 3. Maude-NPA

such action can be specified by an intruder strand consisting of a (pos-
sibly empty) sequence of negative nodes, followed by a single positive
node.

As an example, we provide the specification of the Diffie-Hellman
protocol explained in Example 3.1 (in Page 45). This protocol specifi-
cation includes sorts to represent names, nonces and secret information,
namely, sorts Name, Nonce, and Secret, respectively. Sort Key is used
to represent symmetric encryption keys. Sorts Gen, Exp, GenvExp, and
NeNonceSet, are used to represent the different data necessary to perform
the Diffie-Hellman exponentiation and modular multiplication.

The Diffie-Hellman generator of the multiplicative group is denoted
by constant g, which has sort Gen. Operator exp denotes exponentia-
tions. Note that, since both sorts Gen and Exp are subsorts of GenvExp,
operator exp can be used to represent messages of the form gX as terms

of the form exp(g,X) and messages of the form gX
Y
as terms of the form

exp(exp(g,X),Y). Operator ✝ represents the associative-commutative
multiplication operation on nonces and products of such nonces (note
that sort Nonce is subsort of NeNonceSet). The remaining operators are
as explained in Example 3.1.

*** Sorts and operators

sorts Name Nonce NeNonceSet Gen Exp Key GenvExp Secret .

subsort Gen Exp < GenvExp .

subsort Name NeNonceSet GenvExp Secret Key < Msg .

subsort Exp < Key .

subsort Name < Public .

subsort Gen < Public .

--- Secret

op sec : Name Fresh -> Secret [frozen] .

--- Nonce operator

op n : Name Fresh -> Nonce [frozen] .

--- Encryption

op e : Key Msg -> Msg [frozen] .

op d : Key Msg -> Msg [frozen] .

3.6. Protocol Specification in Maude-NPA 57

--- Exp

op exp : GenvExp NeNonceSet -> Exp [frozen] .

--- Gen

op g : -> Gen .

--- NeNonceSet

subsort Nonce < NeNonceSet .

op _*_ : NeNonceSet NeNonceSet -> NeNonceSet

[frozen assoc comm] .

--- Concatenation

op _;_ : Msg Msg -> Msg [frozen gather (e E)] .

--- names

ops a b i : -> Name .

*** Algebraic properties

var W : Gen .

var K : Key .

vars Y Z : NeNonceSet .

var M : Msg .

eq exp(exp(W,Y),Z) = exp(W, Y * Z) [variant] .

eq e(K,d(K,M)) = M [variant] .

eq d(K,e(K,M)) = M [variant] .

*** Strands specification

vars A B : Name .

vars r r’ : Fresh .

vars M M1 M2 : Msg .

vars Ke : Key .

var GE : GenvExp .

vars NS1 NS2 : NeNonceSet .

var Sr : Secret .

eq STRANDS-DOLEVYAO =

:: nil :: [nil | -(M1 ; M2), +(M1), nil] &

:: nil :: [nil | -(M1 ; M2), +(M2), nil] &

58 Chapter 3. Maude-NPA

:: nil :: [nil | -(M1), -(M2), +(M1 ; M2), nil] &

:: nil :: [nil | -(Ke), -(M), +(e(Ke,M)), nil] &

:: nil :: [nil | -(Ke), -(M), +(d(Ke,M)), nil] &

:: nil :: [nil | -(NS1), -(NS2), +(NS1 * NS2), nil] &

:: nil :: [nil | -(GE), -(NS), +(exp(GE,NS)), nil] &

:: r :: [nil | +(n(i,r)), nil] &

:: nil :: [nil | +(g), nil] &

:: nil :: [nil | +(A), nil]

[nonexec] .

eq STRANDS-PROTOCOL =

:: r,r’ ::

[nil | +(A ; B ; exp(g,n(A,r))),

-(A ; B ; XE),

+(e(exp(XE,n(A,r)),sec(A,r’))), nil] &

:: r ::

[nil | -(A ; B ; XE),

+(A ; B ; exp(g,n(B,r))),

-(e(exp(XE,n(B,r)),Sr)), nil]

[nonexec] .

Finally, let us explain the use of the frozen and nonexec attributes
in the example protocol specification shown above. The frozen attribute
is technically necessary to tell Maude not to attempt to apply rewrites
in arguments of those symbols. This attribute must be included in all
operator declarations in Maude-NPA specifications, excluding constants.
The nonexec attribute is technically necessary to tell Maude not to use
an equation or rule within its standard execution, since it will be used
only at the Maude-NPA level rather than the Maude level. The nonexec
attribute must be included at the end of the equation declarations used
to specify the protocol and intruder strands.

3.6.1 Protocol States

In Maude-NPA, each state associated to the protocol execution (i.e., a
backwards search) is represented by a term with five different components
separated by the symbol || in the following order: (1) the set of current
strands, (2) the current intruder knowledge, (3) the sequence of messages
encountered so far in the backwards execution, (4) some auxiliary data,

3.6. Protocol Specification in Maude-NPA 59

and (5) the “never pattern”, a technique to reduce the search space,
associated to that state,

Strands || Intruder Knowledge || Message Sequence || Auxiliary
Data || Never Pattern.

The first component, the set of current strands, indicates in particular
how advanced each strand is in the execution process (by the placement
of the bar). The second component contains messages that the intruder
already knows (we use symbol _inI for the notation mPI) and messages
that the intruder currently doesn’t know (we use symbol _!inI for the
notation m❘I) but will learn in the future.

The third component, the sequence of messages, is nil for any attack
state at the beginning of the backwards search and records the actual
sequence of messages exchanged so far in the backwards search from the
attack state. This sequence grows as the backwards search continues and
some variables may be instantiated in the backwards search. It gives a
complete description of an attack when an initial state is reached but
this component is intended for the benefit of the user, and is not actually
used in the backward search itself, except just by recording it.

The fourth component contains information about the search space
that the tool creates to help manage5 its search. It does not provide any
information about the attack itself, and is currently only displayed by
the tool to help in debugging.

Finally, the last component allows the user to verify authentication
properties or to specify conditions that should not happen during the
analysis (see Section 3.3). By doing so, the Maude-NPA will discard
any generated state that matches any of the conditions expressed by this
“never pattern” and, thus, it will reduce the search space. In previous
implementations of the Maude-NPA, the “never patterns” were not part
of the state and were used only in the specification of the attack state.
The idea of including the “never patterns” into a state is that it allows
the user to specify attack states in a more expressive way, since now the
specification of the state itself and the states within the “never pattern”
can share variables.

5Indeed, we use the fourth component of a protocol state to store the data related
to the Super Lazy Intruder optimization (see Section 4.5).

60 Chapter 3. Maude-NPA

3.6.2 Attack States

Attack states describe not just single concrete attacks, but attack patterns
(or if you prefer attack situations), which are specified symbolically as
terms (with variables) whose instances are the final attack states we are
looking for. Given an attack pattern, Maude-NPA tries to either find an
instance of the attack or prove that no instance of such attack pattern is
possible. We can specify more than one attack state. Thus, we designate
each attack state with a natural number.

When specifying an attack state, the user should specify only the
first two components of the attack state: (i) a set of strands expected
to appear in the attack, and (ii) some positive intruder knowledge. The
intruder knowledge can also contain inequalities (the condition that a
term is not equal to some other term) and, thus we can also include them
in the intruder knowledge component of an attack state. The message
sequence, auxiliary data components should have just the empty symbol
nil. In the following we provide the specification of an attack state as
an illustrating example.

Example 3.5 Let us consider the specification in Maude-NPA’s syntax
of the Diffie-Hellman protocol shown in Page 56. The attack state below
denotes an attack in which the intruder is able to learn the secret message
sent by Alice, denoted by the intruder knowledge fact sec(a,r’) inI.
This attack state includes the strand with the last received message of
the protocol, i.e. Bob’s strand with the vertical bar at the end.

eq ATTACK-STATE(1)

= :: r ::

[nil, -(a ; b ; XE),

+(a ; b ; exp(g,n(b,r))),

-(e(exp(XE,n(b,r)),sec(a,r’))) | nil]

|| sec(a,r’) inI

|| nil

|| nil

|| nil

[nonexec] .

�

3.6. Protocol Specification in Maude-NPA 61

Regarding the last component, the never pattern, it can be either the
empty symbol nil or either the word never followed by a set of pairs
of the form (StrandSet ⑤⑤ IntruderKnowledge), where StrandSet and
IntruderKnowledge denote, respectively, the set of strands and the set
of intruder knowledge terms of the states that should be discarded by
the Maude-NPA during the backwards reachability analysis.

Note that the attack state is indeed a term with variables but the user
does not have to provide the variables denoting “the remaining strands”,
“the remaining intruder knowledge”, and the two variables for the two
last state components. These variables are symbolically inserted by the
tool.

Example 3.6 Let us consider again the specification in Maude-NPA’s
syntax of the Diffie-Hellman protocol shown in Page 56. The authen-
tication attack pattern for Diffie-Hellman of Example 3.2 is specified in
Maude-NPA’s syntax as follows:

eq ATTACK-STATE(0)

= :: r ::

[nil, -(a ; b ; Y),

+(b ; a ; exp(g,n(b,r))),

-(e(exp(Y,n(b,r)),sec(a,r’))) | nil]

|| empty

|| nil

|| nil

|| never

*** Pattern for authentication

(:: R:FreshSet ::

[nil | +(a ; b ; Y),

-(b ; a; exp(g,n(b,r))),

+(e(X,sec(a,r’))), nil]

& S:StrandSet || K:IntruderKnowledge)

[nonexec] .

�

62 Chapter 3. Maude-NPA

3.7 Maude-NPA Commands

The commands run, summary, and initials are the tool’s commands
for attack search. They are invoked by reducing them in Maude, that
is, by typing the Maude red command followed by the corresponding
Maude-NPA command, followed by a space and a period. To use them
we must specify the attack state we are searching for and the number
of backwards reachability steps we want to compute. For example, the
Maude-NPA command

run(0,10)

tells Maude-NPA to construct the backwards reachability tree up to
depth 10 for the attack state designated with natural number 0. The
Maude-NPA run command yields the set of states found at the leaves
of the backwards reachability tree of the specified depth that has been
generated. When the user is not interested in the current states of the
reachability tree, he/she can use the Maude-NPA summary command,
which outputs just the number of states found at the leaves of the reach-
ability tree and how many of those are initial states, i.e., solutions for
the attack. For instance, when we give the reduce command in Maude
with the Maude-NPA command summary(0,2) as shown below for the
Diffie-Hellman example, the tool returns:

red summary(0,2) .

result Summary: States>> 6 Solutions>> 0

The initial state representing the authentication Diffie-Hellman attack is
found in twelve steps. That is, if we type:

red summary(0,12) .

the tool outputs:

red summary(0,12) .

result Summary: States>> 2 Solutions>> 2

A slightly different version of the run command, called initials, out-
puts only the initial states, instead of all the states at the leaves of the
backwards reachability tree. Thus, if we type:

3.7. Maude-NPA Commands 63

red initials(0,12) .

for the Diffie-Hellman example protocol, our tool outputs two initial
states, which implies that the attack state has been proved reachable
and the protocol is insecure. One of these two initial states is the one ex-
plained in Example 3.2 in Page 47. The sequence of exchanged messages
of this initial state is as shown below:

generatedByIntruder(#1:NeNonceSet),

generatedByIntruder(a ; b ; exp(g, #1:NeNonceSet)),

-(a ; b ; exp(g, #1:NeNonceSet)),

+(a ; b ; exp(g, n(b, #0:Fresh))),

-(a ; b ; exp(g, n(b, #0:Fresh))),

+(b ; exp(g, n(b, #0:Fresh))),

-(b ; exp(g, n(b, #0:Fresh))),

+(exp(g, n(b, #0:Fresh))),

-(exp(g, n(b, #0:Fresh))),

-(#1:NeNonceSet),

+(exp(g, #1:NeNonceSet * n(b, #0:Fresh))),

generatedByIntruder(a ; #5:Name ; exp(g, #4:NeNonceSet)),

+(a ; #5:Name ; exp(g, n(a, #3:Fresh))),

-(a ; #5:Name ; exp(g, n(a, #3:Fresh))),

+(#5:Name ; exp(g, n(a, #3:Fresh))),

-(#5:Name ; exp(g, n(a, #3:Fresh))),

+(exp(g, n(a, #3:Fresh))),

generatedByIntruder(#4:NeNonceSet),

-(exp(g, n(a, #3:Fresh))),

-(#4:NeNonceSet),

+(exp(g, #4:NeNonceSet * n(a, #3:Fresh))),

-(a ; #5:Name ; exp(g, #4:NeNonceSet)),

+(e(exp(g, #4:NeNonceSet * n(a, #3:Fresh)), sec(a, #2:Fresh))),

resuscitated(exp(g, #4:NeNonceSet * n(a, #3:Fresh))),

-(exp(g, #4:NeNonceSet * n(a, #3:Fresh))),

-(e(exp(g, #4:NeNonceSet * n(a, #3:Fresh)), sec(a, #2:Fresh))),

+(sec(a, #2:Fresh)),

-(exp(g, #1:NeNonceSet * n(b, #0:Fresh))),

-(sec(a, #2:Fresh)),

+(e(exp(g, #1:NeNonceSet * n(b, #0:Fresh)), sec(a, #2:Fresh))),

-(e(exp(g, #1:NeNonceSet * n(b, #0:Fresh)), sec(a, #2:Fresh)))

64 Chapter 3. Maude-NPA

where the terms enclosed by the expression generatedByIntruder de-
note terms trivially learnt by the intruder. These expressions are gen-
erated due to a state space reduction technique called the “Super-Lazy
intruder” (see Section 4.5.2 for further details).

This corresponds to the following textbook version of the attack:

1. A Ñ I : A ; I ; gNA

2. I Ñ A : I ; A ; gNI

3. A Ñ I : tsec♣A, rq✉
gNA

NI

4. I decrypts tsec♣A, rq✉
gNA

NI and obtains sec♣A, rq

5. I Ñ B : I ; B ; gN
✶
I

6. B Ñ I : B ; I ; gNB

7. I Ñ B : tsec♣A, rq✉
gNB

N ✶
I

Maude-NPA applies by default the optimization techniques explained
in Chapter 4 in the protocol analysis it performs. However, these opti-
mizations can be disabled when executing the summary, run, and
initials commands, as explained in [Escobar et al., 2009b]. Indeed,
the experiments described in Section 4.6 have been performed disabling
certain optimizations.

Chapter 4

State Space Reduction in the
Maude-NPA

In this chapter we describe some of the major state space reduction tech-
niques that we have implemented in Maude-NPA, and provide complete-
ness proofs and experimental evaluations.

First, Section 4.1 motivates the work presented in this chapter. In
Section 4.2, we give an overview of the various state space reduction
techniques that have been introduced to control state explosion. In Sec-
tions 4.3, 4.4, and 4.5 we describe the state space reduction techniques
and give proofs of their completeness as well as showing their relations
to other optimization techniques in the literature. In Section 4.3, we first
briefly describe how automatically generated grammars provide the main
reduction that cuts down the search space. In this section, we also de-
scribe the early detection of inconsistent states (that will never reach an
initial state). In Section 4.4, we obtain a second important state-space
reduction by detecting redundant states using several optimizations: (i)
reducing the number of logical variables present in a state, (ii) giving
priority to input messages in strands, and (iii) a relation of transition
subsumption (to discard transitions and states already being processed
in another part of the search space). In Section 4.5, we obtain a third im-
portant state-space reduction by defining the super-lazy intruder, which
delays the generation of substitution instances as much as possible. In
Section 4.6 we describe our experimental evaluation of these state-space
reduction techniques. Finally, Section 4.7 concludes the chapter.

66 Chapter 4. State Space Reduction in the Maude-NPA

These results have been published in [Escobar et al., 2014a].

4.1 Motivation

One technique for preventing infinite searches is the generation of formal
grammars describing terms unreachable by the intruder (see [Meadows,
1996a; Escobar et al., 2006] and Section 4.3.1). However, grammars do
not prune out all infinite searches, since unbounded session security is
undecidable, and there is a need for other techniques. Moreover, even
when a search space is finite it may still be necessary to reduce it to a
manageable size, and state space reduction techniques for doing that will
be necessary.

The results of our experimental evaluation demonstrate an average
state-space size reduction of 95% (i.e., the average size of the reduced
state space is 5% of that of the original one) in the examples we have
evaluated; counting states with and without optimizations up to a depth
bound of 5. Furthermore, we show our combined techniques effective
in obtaining a finite state space for all protocols in our experiments,
whereas the state space will be infinite without our optimizations. In our
experimental evaluation we have considered a depth bound of 5 because
the number of states generated in the case without optimizations often
grows so large that it becomes unfeasible to count it even for moderate
depth sizes, while the optimized state space can still be counted. Indeed,
in most of the experiments without optimizations we could not count the
number of generated states for a depth greater than 5. Of course, due to
the undecidability of the unbounded session case, termination cannot be
guaranteed and we have encountered cases where it does fail to terminate
(see Table 4.2 in Page 108).

The optimizations we describe in this chapter were designed specifi-
cally for Maude-NPA, and work within the context of Maude-NPA search
techniques. However, although different tools use different models and
search algorithms, they all have a commonality in their syntax and se-
mantics that means that, with some adaptations, optimization techniques
developed for one tool or type of tools can be applied to different tools
as well. Indeed, in Section 1.3 we have already seen such common tech-
niques arise, for example the technique of giving priority to input or

4.2. Overview of State Space Reduction Techniques 67

output messages respectively when backwards or forwards search is used
(used by us and by Shmatikov and Stern [1998]), the use of lazy evalua-
tion techniques (used in constraint-evaluation based approaches, and by
us in a somewhat different form), and the identification of premature use
of nonces (used by us and Scyther [Cremers, 2008b]).

4.2 Overview of State Space Reduction

Techniques

In this section we present Maude-NPA’s state space reduction techniques.
They are applied when a state is generated in the backwards narrowing
search. A number of tests are applied. If a state is identified as unproduc-
tive, that is, such that its removal does not affect reachability of the final
state one way or the other, it is also removed. Techniques for removing
unproductive states, which are later refined into unreachable and redun-
dant states, are described in Sections 4.3 and 4.4. A state can also be
identified as potentially leading to a state space explosion, in which case
it may be delayed. Such a delay will be complete, but not necessarily
sound; in this case, the delay may have to be reversed as the narrowing
tree is generated in order to maintain soundness. We have developed
one technique that falls into this class: the super-lazy intruder, which is
described in Section 4.5.

In the remainder of this chapter, we make use of a very general com-
pleteness result satisfied by Maude-NPA. This result, stated by the fol-
lowing corollary, can be deduced from Theorem 2.5 (see Page 30).

Corollary 4.1 (Completeness) [Escobar et al., 2006] Given a topmost
rewrite theory RP ✏ ♣ΣP , EP , RBPq representing protocol P, and a non-
initial state St (with logical variables), if there is a substitution σ and
an initial state Stini such that Stσ Ñ✝

R✁1
BP

,EP

Stini, then there are sub-

stitutions σ✶, ρ and an initial state St✶ini such that St ❀
✝
σ✶,R✁1

BP
,EP

St✶ini,

σ ✏EP
σ✶ ✆ ρ, and Stini ✏EP

♣St✶iniqρ.

We have developed means of detecting two kinds of unproductive
states: unreachable and redundant states. These are defined below.

68 Chapter 4. State Space Reduction in the Maude-NPA

St

σ1

��

σ2

// St2
✝

θ2

// Stini2

ρ

✏EPw�

St1
✝

θ1

// Stini1

Figure 4.1: St1 is a redundant state

Definition 4.2 (Unreachable States) Given a topmost rewrite the-
ory RP ✏ ♣ΣP , EP , RBPq representing protocol P, a non-initial state St

(with logical variables) is unreachable if there is no sequence St ❀✝
σ,R✁1

BP
,EP

Stini leading to an initial state Stini.

Definition 4.3 (Redundant States) Given a topmost rewrite theory
RP ✏ ♣ΣP , EP , RBPq representing protocol P and a non-initial state St

(with logical variables), a backwards narrowing step St ❀σ1,R
✁1
BP

,EP
St1

such that St1 is a non-initial state is called redundant (or just state St1
is identified as redundant) if for any initial state Stini1 reachable from
St1, i.e., St1 ❀

✝
θ1,R

✁1
BP

,EP

Stini1, there are states St2 ✘EP
St1 and Stini2, a

narrowing step St ❀σ2,R
✁1
BP

,EP
St2, a narrowing sequence St2 ❀

✝
θ2,R

✁1
BP

,EP

Stini2, and a substitution ρ such that σ1✆θ1 ✏EP
σ2✆θ2✆ρ and Stini1 ✏EP

♣Stini2qρ.

Redundant states are represented graphically in Figure 4.1, where plain
arrows are quantified universally, dotted arrows are quantified existen-
tially, and a double-dotted arrow means equational matching using the
direction of the arrow from a more general term to a less general term.

There are three reasons for wanting to detect and remove unproduc-
tive states. One is to reduce, if possible, the initially infinite search space
to a finite one, as it is sometimes possible to do with the use of gram-
mars, by removing unreachable states. Another is to reduce the size of
a (possibly finite) search space by eliminating unreachable states early,
i.e., before they are eliminated by exhaustive search. This elimination
of unreachable states can have an effect far beyond eliminating a single
node in the search space, since a single unreachable state may appear
multiple times and/or have multiple descendants. Finally, if there are
several steps leading to the same initial state, as for redundant states,

4.3. Identifying Unreachable States 69

then it is also possible to use various partial order reduction techniques
that can further shrink the number of states that need to be explored.

4.3 Identifying Unreachable States

In this section we describe the various techniques Maude-NPA uses to
identify unreachable states. These techniques have been adapted from
those used by its ancestor, NPA.

There are two ways in which Maude-NPA identifies unreachable states.
One is the use of inductive techniques to define grammars that charac-
terize terms that can never be learned by the intruder. This has been
described in detail in previous work, e.g. [Escobar et al., 2006] and
[Meadows, 1996b], so we give only a brief overview here in Section 4.3.1.
The other is the identification of states that describe impossible events,
e.g. states in which an intruder learns a term containing a nonce that
has not yet been created. This is described in Section 4.3.2.

4.3.1 Grammars

The Maude-NPA’s ability to reason effectively about a protocol’s alge-
braic properties is a result of its combination of symbolic reachability
analysis using narrowing modulo equational properties (see Section 2.1),
together with its grammar-based techniques for reducing the size of the
search space. The key idea of grammars is to detect terms t in positive
facts tPI of the intruder’s knowledge of a state St that will never be
transformed into a negative fact tθ❘I in any initial state St✶ backwards
reachable from St. This means that St can never reach an initial state
and therefore it can be safely discarded. Here we briefly explain how
grammars work as a state space reduction technique and refer the reader
to [Meadows, 1996b; Escobar et al., 2006] for further details.

Automatically generated grammars ①G1, . . . , Gm② represent unreach-
ability information (or co-invariants), i.e., typically infinite sets of states
unreachable from an initial state. These automatically generated gram-
mars are very important in our framework, since in the best case they can
reduce the infinite search space to a finite one, or, at least, can drastically
reduce the search space.

70 Chapter 4. State Space Reduction in the Maude-NPA

Maude-NPA generates grammars completely automatically, inferring
initial grammars from the protocol specification, and using built-in in-
ference rules to generate new grammars.

As an example of how grammars work, let us consider the following
attack pattern of the Diffie-Hellman protocol explained in Example 3.1
(see Page 45), in which Bob completes the protocol and the intruder is
able to learn the secret that Bob received:

:: r✶ :: r✁♣A;B;E✶q,�♣B;A; exp♣g, n♣B, r✶qqq,
✁♣e♣exp♣E✶, n♣b, r✶qq,SRqq ⑤ nils & SS & tSRPI✉ ♣✿q

This pattern contains the intruder knowledge fact SRPI. If we run
Maude-NPA without any optimizations, it will generate a state contain-
ing the facts ♣M ; SRqPI and SR❘I, then a state containing the facts
♣M ✶;M ; SRqPI, ♣M ; SRq❘I, and SR❘I, then a state containing the facts
♣M✷;M ✶;M ; SRqPI, ♣M ✶;M ; SRq❘I, ♣M ; SRq❘I, and SR❘I, and so on,
producing an infinite sequence of states. We can describe the sequence
beginning with the state containing the facts ♣M ; SRqPI and SR❘I using
the following grammar:

grl M inL => (M’ ; M) inL . ;

grl M notInI => (M’ ; M) inL .

where the first production describes the concatenation of two terms, the
second of which is in the language L, and the second production gives
the concatenation of two terms, the second of which is not yet known by
the intruder.

We now want to see if all members of the language characterized by
this grammar are unlearnable by the intruder. In order to do this, we
attempt to show that, if the intruder learns a member of the language,
it must have already known a member of the language. This is done by
giving each production of the grammar to Maude-NPA as a goal, and
using it to determine that in each preceding state the intruder knows a
member of the language. Thus, if we give the state ♣M ✶;MqPI to Maude-
NPA, keeping in mind that the M is a member of L, then we can see
that one of the preceding states it finds contains MPI,M ✶PI. Since M

is a member of L, this state requires that the intruder knows a member
of the language.

4.3. Identifying Unreachable States 71

It is unlikely that initially all preceding states will require that the
intruder knows a member of the language. Whenever that is the case,
Maude-NPA employs heuristics to add or modify a production (by adding
constraints of the form M notLeq Pattern) so that some term known by
the intruder is in the language defined by the new grammar. This process
is iterated until it either reaches a fixed point, or no more heuristics can be
applied. These heuristics and a proof of correctness are given in [Escobar
et al., 2006].

For example, the initial grammar described above terminates in the
following:

grl M inL => e(E, M) inL . ;

grl M inL => d(E, M) inL . ;

grl M inL => (M ; M’) inL . ;

grl M inL => (M’ ; M) inL . ;

grl M notInI,

M notLeq exp(g, n(A, r)),

M notLeq B ; exp(g, n(A, r’)) => (M’ ; M) inL .

where all the productions and exceptions refer to normal forms of mes-
sages w.r.t. the equational theory EP .

Intuitively, the last production rule in the grammar above says that
any term with normal form ♣M ✶;Mq cannot be learned by the intruder
if the subterm M is different from exp♣g, n♣A, rqq and B; exp♣g, n♣A, r✶qq
(i.e., it does not match such patterns) and the constraint M❘I appears
explicitly in the intruder’s knowledge of the current state being checked
for unreachability (described by constraints of the form M notInI). More-
over, any term of any of the following normal forms: e♣E,Mq, d♣E,Mq,
♣M ✶;Mq, or ♣M ;M ✶q cannot be learned by the intruder if subterm M is
a member of the language described by the above grammar.

The interested reader can determine that the term we were originally
interested in, i.e., the term ♣M ; SRq, where SR is not yet known by the
intruder, is indeed a member of the language.

In order for Maude-NPA to generate grammars, it needs a set of ini-
tial grammars to start from. In NPA, users had to define their own initial
grammars. Maude-NPA, however, generates initial grammars automati-
cally. For any intruder strand of the form r♣M1q

✁, . . . , ♣Mkq
✁, ♣f♣M1, . . . ,

Mkq
�s, it generates k � 1 initial grammars: an initial grammar with the

72 Chapter 4. State Space Reduction in the Maude-NPA

production f♣M1, . . . ,Mkq P L, and, for each negative term Mi, an initial
grammar with the production Mi❘I ñ f♣M1, . . . ,Mkq P L.

4.3.2 Early Detection of Inconsistent States

There are several types of states that are always unreachable or incon-
sistent. We give examples below.

Example 4.4 Consider again the attack pattern ♣✿q in Page 70. After a
couple of backwards narrowing steps, the Maude-NPA finds the following
state, where the intruder learns e♣exp♣E ✶, n♣B, r✶qq, SRq by assuming it
can learn exp♣E ✶, n♣B, r✶qq and SR and combine them:

r nil ⑤ ✁ ♣exp♣E✶, n♣B, r✶qqq,✁♣SRq,
�♣e♣exp♣E✶, n♣B, r✶qq,SRqq s &

:: r✶ ::

r ✁♣A;B;E✶q,�♣B;A; exp♣g, n♣B, r✶qqq ⑤
✁♣e♣exp♣E✶, n♣B, r✶qq,SRqq s &

♣SRPI, exp♣E✶, n♣B, r✶qqPI, e♣exp♣E✶, n♣B, r✶qq,SRq❘Iq

♣❀q

From this state, the intruder tries to learn SR by assuming it can learn
messages e♣exp♣E ✶, n♣B, r✶qq, SRq and exp♣E ✶, n♣B, r✶qq and combines them
in a decryption:

r nil ⑤ ✁ ♣exp♣E✶, n♣B, r✶qqq,✁♣e♣exp♣E✶, n♣B, r✶qq,SRqq,�♣SRq s &

r nil ⑤ ✁ ♣exp♣E✶, n♣B, r✶qqq,✁♣SRq,�♣e♣exp♣E✶, n♣B, r✶qq,SRqq s &

:: r✶ ::

r ✁♣A;B;E✶q,�♣B;A; exp♣g, n♣B, r✶qqq ⑤ ✁ ♣e♣exp♣E✶, n♣B, r✶qq,SRqq s &

♣SRPI, exp♣E✶, n♣B, r✶qqPI,

e♣exp♣E✶, n♣B, r✶qq,SRqPI, e♣exp♣E✶, n♣B, r✶qq,SRq❘Iq

But then this state is inconsistent, since we have both the challenge
e♣exp♣E ✶, n♣B, r✶qq, SRqPI and the already learned message
e♣exp♣E ✶, n♣B, r✶qq, SRq❘I at the same time, violating the learn-only-once
condition in Maude-NPA. �

4.3. Identifying Unreachable States 73

If Maude-NPA attempts to search beyond an inconsistent state, it
will never find an initial state. For this reason, the Maude-NPA search
strategy always marks the following types of states as unreachable, and
does not search beyond them any further.

Proposition 4.5 A state is marked as unreachable if one of the following
situations holds:

1. A state St containing two contradictory facts tPI and t❘I (modulo
EP) for a term t.

2. A state St whose intruder’s knowledge contains the fact t❘I and
a strand of the form rm✟

1 , . . . , t
✁, . . . ,m✟

j✁1 ⑤ m✟
j , . . . ,m

✟
k s (modulo

EP).

3. A state St containing a fact tPI such that t contains a fresh variable
r and the strand in St indexed by r, i.e., s ✏:: r1, . . . , r, . . . , rk ::
rm✟

1 , . . . ,m
✟
j✁1 ⑤ m✟

j , . . . ,m
✟
k s, cannot produce r, i.e., r is not a

subterm of any output message in m✟
1 , . . . ,m

✟
j✁1.

4. A state St containing a strand of the form s ✏ rm✟
1 , . . . , t

✁, . . . ,

m✟
j✁1 ⑤ m✟

j , . . . ,m
✟
k s for some term t such that t contains a fresh

variable r and the strand in St indexed by r cannot produce r.

Proof. The proofs of unreachability of each case are given below.

1. After backwards narrowing, this will result in a state that violates
the “intruder-learns-only-once” rule.

2. This state will become a case of 1 after backwards narrowing.

3. In order for t to be found by the intruder, some other strand besides
the strand in St indexed by r would need to produce it. But that
strand would also need to be indexed by r, which contradicts the
unique origin of fresh values.

4. We first note that any backward narrowing step will leave strand
s still unable to produce r. Moreover, eventually, a backward nar-
rowing step must result in the addition of tPI. Thus this state
becomes a case of 3 after backwards narrowing. ❧

74 Chapter 4. State Space Reduction in the Maude-NPA

4.4 Redundant States

In this section we describe how Maude-NPA identifies and removes re-
dundant states.

4.4.1 Limiting Dynamic Introduction of New
Strands

As pointed out in Section 3.4, rules of type (3.4) are intended to be the
only ones that introduce new strands. Rules of type (3.1), (3.2), and
(3.3) are not intended for such an introduction. However, unless they
are modified, they will introduce new strands, but in an unproductive
way. That is, new strands can also be introduced by unification of a
state containing a variable SS denoting a set of strands and one of the
rules of (3.1), (3.2), and (3.3), where variables L and L✶ denoting lists
of input/output messages will be introduced by instantiation of SS. The
same can happen with new intruder facts of the form XPI, where X

is a variable, by instantiation of a variable IK denoting the rest of the
intruder knowledge.

Example 4.6 Consider a state St of the form SS& IK where SS denotes
a set of strands and IK denotes a set of facts in the intruder’s knowledge.
Now, consider Rule (3.1):

SS’& rL ⑤ M✁, L✶s& ♣MPI, IK’q Ñ SS’& rL,M✁ ⑤ L✶s& ♣MPI, IK’q

The following backwards narrowing step applying such a rule can be
performed from St ✏ SS& IK using the unifier σ ✏ tSS ÞÑ SS’&
rL,M✁ ⑤ L✶s, IK ÞÑ ♣MPI, IK’q✉

SS & IK
σ
❀R✁1

BP
,EP

SS’& rL ⑤ M✁, L✶s& ♣MPI, IK’q

but this backwards narrowing step is unproductive, since it is not guided
by the information in the attack state. Indeed, the same rule can be
applied again using variables SS’ and IK’ and this can be repeated many
times. �

In order to avoid a huge number of unproductive narrowing steps by
useless instantiation, we allow the introduction of new strands and/or

4.4. Redundant States 75

new intruder facts only by rule application instead of just by unification.
For this, we do two things:

1. we remove any of the following variables from attack patterns: SS
denoting a set of strands, IK denoting a set of intruder facts, and
L,L✶ denoting a set of input/output messages; and

2. we replace Rule (3.1) by the following Rule (4.1), since we no longer
have a variable denoting a set of intruder facts that has to be in-
stantiated:

SS& rL ⑤ M✁, L✶s& ♣MPI, IKqÑ SS& rL,M✁ ⑤ L✶s& IK (4.1)

One might imagine that Rule (3.3) and rules of type (3.4) must also
be modified in order to remove the MPI expression from the intruder’s
knowledge of the right-hand side of each rule. However, this is not so,
since, by keeping the expression MPI, we force the backwards applica-
tion of the rule only when there is indeed a message for the intruder
to be learned. This provides some form of on-demand evaluation of the
protocol.

Since this optimization is achieved by putting restrictions on attack
patterns and rewrite rules, the soundness proof is trivial and thus omit-
ted. However, a proof of completeness is still needed. The set of rewrite
rules actually used for backwards narrowing isRBP ✏ t(4.1), (3.2), (3.3)✉❨
t(3.4)✉; note that (3.4) represents a set of rules. The following result en-
sures that RBP and RBP compute similar initial states by backwards
reachability analysis.

Definition 4.7 (Inclusion) Given a topmost rewrite theory RP ✏ ♣ΣP ,

EP , RBPq representing protocol P, and two states St1, St2, we abuse no-
tation and write St1 ❸ St2 to denote that every state element (i.e., strand
or intruder fact) in St1 appears in St2 (modulo EP).

Proposition 4.8 Let RP ✏ ♣ΣP , EP , RBPq be a topmost rewrite the-
ory representing protocol P and let RBP be defined as above. Let St ✏
ss& SS& ♣ik, IKq. Let ss ✏ ts1, . . . , sn✉ be a multiset of strands, ik ✏
tk1, . . . , km✉ be a set of intruder facts, SS is a variable denoting a set
of strands, and IK is a variable denoting the intruder knowledge. Let

76 Chapter 4. State Space Reduction in the Maude-NPA

St✶ ✏ ss& ik. If there is an initial state Stini and a substitution σ

such that St ❀
✝
σ,R✁1

BP
,EP

Stini, then there is an initial state St✶ini and

two substitutions σ✶, ρ such that St✶ ❀✝

σ✶,RBP

✁1
,EP

St✶ini, σ ✏EP
σ✶ ✆ρ, and

♣St✶iniqρ ❸ Stini.

Proof. We obtain the narrowing sequence 1) St✶ ❀✝

σ✶,RBP

✁1
,EP

St✶ini from

2) St ❀
✝
σ,R✁1

BP
,EP

Stini by removing SSσ and IKσ from every state in

2) and then deleting the transitions that become trivial. We then check
that this results in a sequence resulting from application of the rules RBP .
This is straightforward, except that we need to check that any conditions
required by the new Rule (4.1) are fulfilled. The only such condition is
that the intruder’s knowledge be a set of intruder facts without repeated
elements, i.e., the union operator _,_ is ACUI (associative-commutative-
identity-idempotent). This follows directly from the restriction in [Esco-
bar et al., 2006] that the intruder learns a term only once. ❧

4.4.2 Partial Order Reduction Giving Priority to
Input Messages

The different rewrite rules on which the backwards narrowing search from
an attack pattern is based are in general executed non-deterministically.
This is because the order of execution can make a difference as to what
subsequent rules can be executed. For example, an intruder cannot re-
ceive a term until it is sent by somebody, and that send action within
a strand may depend upon other receives in the past. There is one ma-
jor exception, Rule (4.1) (originally Rule (3.1)), which, in a backwards
search, only moves a negative term appearing right before the bar into
the intruder’s knowledge.

Example 4.9 Consider, for instance, the attack pattern ♣✿q in Page 70
Since the strand in the attack pattern has the input message
✁♣e♣exp♣E ✶, n♣B, r✶qq, SRqq but also has the intruder challenge SRPI
there are several possible backwards narrowing steps: some processing
the intruder challenge, and Rule (4.1) processing the input message. �

4.4. Redundant States 77

The execution of Rule (4.1) in a backwards search does not disable
any other transitions; indeed, it only enables send transitions. Thus,
it is safe to execute it at each stage before any other transition. For
the same reason, if several applications of Rule (4.1) are possible, it is
safe to execute them all at once before any other transition. Requiring
all executions of Rule (4.1) to execute first thus eliminates interleavings
of Rule (4.1) with send and receive transitions, which are equivalent to
the case in which Rule (4.1) executes first. In practice, this typically
cuts down in half the search space size. The completeness proof for this
optimization is trivial and thus omitted.

Similar strategies have been employed by other tools in forward
searches. For example, in [Shmatikov and Stern, 1998] a strategy is
introduced that always executes send transitions first whenever they are
enabled. Since a send transition does not depend on any other compo-
nent of the state in order to take place, it can safely be executed first.
The original NPA also used this strategy; it had a receive transition (sim-
ilar to the input message in Maude-NPA) which had the effect of adding
new terms to the intruder’s knowledge, and which always was executed
before any other transition once it was enabled.

4.4.3 Subsumption Partial Order Reduction

Partial order reduction (POR) techniques are common in state explo-
ration. However, POR techniques for narrowing-based state exploration
do not seem to have been explored in detail, although they may be ex-
tremely relevant and may afford greater reductions than in standard state
exploration based on ground terms rather than on terms with logical
variables. For instance, the simple concept of two states being equivalent
modulo renaming of variables does not apply to standard state explo-
ration, whereas it does apply to narrowing-based state exploration. In
[Escobar and Meseguer, 2007], the authors studied narrowing-based state
exploration and POR techniques, which may transform an infinite-state
system into a finite one. However, the Maude-NPA needs a dedicated
POR technique applicable to its specific execution model.

Let us motivate this POR technique with an example before giving a
more detailed explanation.

Example 4.10 Consider again the attack pattern ♣✿q in Page 70

78 Chapter 4. State Space Reduction in the Maude-NPA

:: r✶ :: r✁♣A;B;E✶q,�♣B;A; exp♣g, n♣B, r✶qqq,
✁♣e♣exp♣E✶, n♣B, r✶qq,SRqq ⑤ nils & SS & tSRPI✉ ♣✿q

After a couple of backwards narrowing steps, the Maude-NPA finds the
state ♣❀q of Example 4.4 in Page 72:

r nil ⑤ ✁ ♣exp♣E✶, n♣B, r✶qqq,✁♣SRq,
�♣e♣exp♣E✶, n♣B, r✶qq,SRqq s &

:: r✶ ::

r ✁♣A;B;E✶q,�♣B;A; exp♣g, n♣B, r✶qqq ⑤
✁♣e♣exp♣E✶, n♣B, r✶qq,SRqq s &

♣SRPI, exp♣E✶, n♣B, r✶qqPI, e♣exp♣E✶, n♣B, r✶qq,SRq❘Iq

♣❀q

However, the following state is also generated after a couple of narrowing
steps from the attack pattern, where, thanks to the equational theory,
variable E ✶ is instantiated to exp♣G,Nq for G a generator –indeed the
constant g— and N a nonce variable:

r nil ⑤ ✁♣exp♣G,n♣B, r✶qqq,✁♣Nq,�♣exp♣G,N ✝ n♣B, r✶qqq s &

r nil ⑤ ✁♣exp♣G,N ✝ n♣B, r✶qqq,✁♣SRq,�♣e♣exp♣G,N ✝ n♣B, r✶qq,SRqq s &

:: r✶ :: r ✁♣A;B; exp♣G,Nqq,�♣B;A; exp♣g, n♣B, r✶qqq

⑤ ✁ ♣e♣exp♣G,N ✝ n♣B, r✶qq,SRqq s &

♣SRPI, exp♣G,n♣B, r✶qqPI, NPI,

exp♣G,N ✝ n♣B, r✶qq❘I, e♣exp♣G,N ✝ n♣B, r✶qq,SRq❘Iq

However, the unreachability of the second state is implied (modulo EP)
by the unreachability of the first state; unreachability in the sense of
Definition 4.2. Intuitively, the challenges present in the first state that
are relevant for backwards reachability are included in the second state,
namely, the challenges SRPI and exp♣E ✶, n♣B, r✶qqPI. Indeed, the un-
reachability of the following “kernel” state implies the unreachability of
both states, although this kernel state is never computed by the Maude-
NPA:

4.4. Redundant States 79

:: r✶ ::

r ✁♣A;B;E✶q,�♣B;A; exp♣g, n♣B, r✶qqq ⑤ ✁ ♣e♣exp♣E✶, n♣B, r✶qq,SRqq s &

♣SRPI, exp♣E✶, n♣B, r✶qqPI

Note that the converse is not true, i.e., the second state does not imply the
first one, since it contains one more intruder item relevant for backwards
reachability purposes, namely NPI. �

Let us now formalize this state space reduction and prove its com-
pleteness.

Definition 4.11 Given a topmost rewrite theory RP ✏ ♣ΣP , EP , RBPq
representing protocol P, and two non-initial states St1 and St2, we write
St1 ➍ St2 (or St2 ➌ St1) if each intruder fact of the form tPI in St1
appears in St2 (modulo EP) and each non-initial strand in St1 appears
in St2 (modulo EP and with the vertical bar at the same position).

This is similar to the relation ❸ given in Definition 4.7 in Section
4.4.1, except for the condition that the two states be non-initial. This
condition is imposed because, otherwise, an initial state will imply any
other state, erroneously making the search space finite after an initial
state has been found.

We define the relation St1 ➓ St2 which extends St1 ➍ St2 to the case
where St1 is more general than St2 w.r.t. variable instantiation.

Definition 4.12 (P-subsumption relation) Given a topmost rewrite
theory RP ✏ ♣ΣP , EP , RBPq representing protocol P and two non-initial
states St1, St2, we write St1 ➓ St2 (or St2 ➒ St1) and say that St2 is
P-subsumed by St1 if there is a substitution θ s.t. St1θ ➍ St2.

We now show that, if St1 ➓ St2, then St2 can be discarded without
sacrificing completeness. We do this by showing how every path from
St2 to an initial state can be used to construct a path from St1 to an
initial state, so that unreachability of St1 implies unreachability of St2.

We first show that if St1 ➓ St2, i.e. there is a θ such that St1θ ➍
St2, and a narrowing step St2 ❀σ2,R

✁1
BP

,EP
St✶2 for some state St✶2, then

80 Chapter 4. State Space Reduction in the Maude-NPA

either ♣St1θqσ2 ➍ St✶2 (and so St1 ➓ St✶2), or there is a narrowing step
St1 ❀σ1,R

✁1
BP

,EP
St✶1 for some state St✶1 that is either initial or for which

there is a substitution ρ such that St✶1ρ ➍ St✶2 (and so St✶1 ➓ St
✶
2). Once

we have proven these results, we can then use induction to show that, if
there is a path from St2 to an initial state, there is a path from St1 to
an initial state, and we are done.

The following results provide the appropriate connection between
P-subsumption and narrowing transitions. First, we make use of the
following lemma, whose proof follows directly from the definition of ➍.

Lemma 4.13 Suppose that we have a topmost rewrite theory RP ✏ ♣ΣP ,

EP , RBPq representing protocol P and two non-initial states St1, St2 and
substitution θ such that St1θ➍St2, i.e., St1 ➓St2. If there is a narrowing
step St2 ❀σ2,R

✁1
BP

,EP
St✶2 where St

✶
2 is non-initial such that ♣St1θqσ2➏St✶2,

then either (a) there is an intruder fact of the form tPI in ♣St1θqσ2 that
does not appear in St✶2 (modulo EP), or (b) there is a non-initial strand
in ♣St1θqσ2 that does not appear in St✶2 (modulo EP). In particular, if
conditions (a) and (b) are not satisfied, then St1 ➓ St

✶
2.

Suppose now that ♣St1θqσ2➏St
✶
2 so that we consider both cases of

Lemma 4.13 separately: either an expression tPI in St✶2 or a non-initial
strand in ♣St1θqσ2, not appearing in St✶2. First, the case where an ex-
pression tPI in ♣St1θqσ2 does not appear in St✶2.

Lemma 4.14 Suppose that we have a topmost rewrite theory RP ✏ ♣ΣP ,

EP , RBPq representing protocol P and two non-initial states St1, St2. If
(i) there is a substitution θ s.t. St1θ ➍ St2, i.e., St1 ➓ St✶2, (ii) there is
a narrowing step St2 ❀σ2,R

✁1
BP

,EP
St✶2, and (iii) there is an intruder fact

of the form tPI in ♣St1θqσ2 that does not appear in St✶2 (modulo EP),
then (a) t❘I does appear in St✶2 (modulo EP) and (b) there is a state St✶1
and a substitution σ1 such that St1 ❀σ1,R

✁1
BP

,EP
St✶1 and either St✶1 is an

initial state or there is a substitution ρ s.t. St✶1ρ➍ St✶2, i.e., St
✶
1 ➓ St

✶
2,

Proof. We prove the result by considering the different rules applicable to
St2 (remember that in R, rewriting and narrowing steps always happen
at the top position). Note that property (a) is immediate because rules
in RBP do not remove expressions of the form mPI. Note also that if tPI

4.4. Redundant States 81

does appear in St2 (modulo EP) and t❘I does appear in St✶2 (modulo
EP), then only Rule (3.3) or rules of type (3.4) have been applied to St2
as follows:

• Reversed version of Rule (3.3), i.e., St2 ❀σ2,R
✁1
BP

,EP
St✶2 using the

following rule

rL,M� ⑤ L✶s& SS& ♣MPI, IKq Ñ rL ⑤ M�, L✶s& SS& ♣M❘I, IKq.

Recall that there is an intruder fact in ♣St1θqσ2 of the form tPI
for t a message term that does not appear in St✶2 (modulo EP) and
t ✏EP

Mσ2. Thus, Mσ2PI does appear in ♣St1θqσ2 (modulo EP).
Here we have several cases:

– If the strand ♣rL,M� ⑤ L✶sqσ2 appears in ♣St1θqσ2, then the
very same narrowing step can be performed on St1, i.e., there
exist σ1, ρ such that St1 ❀σ1,R

✁1
BP

,EP
St✶1 with the same rule

and θ ✆ σ2 ✏EP
σ1 ✆ ρ. Thus, either St✶1 is an initial state or

St✶1ρ➍St✶2, since: (i) each positive intruder fact in ♣St1θqσ2 of
the form uPI for u a message term, except Mσ2PI, appears in
St✶1ρ (modulo EP), (ii) Mσ2❘I appears in St✶1ρ (modulo EP),
(iii) each non-initial strand in ♣St1θqσ2, except rL,M

� ⑤ L✶sσ2,
has not been modified and appears in St✶1ρ as well (modulo
EP), and (iv) for rL,M� ⑤ L✶sσ2 in ♣St1θqσ2, rL ⑤ M�, L✶sρ✶

appears in St✶1ρ and in St✶2.

– If the strand rLm,M
� ⑤ L✶sσ2 does not appear in ♣St1θqσ2,

then the strand rL,M� ⑤ L✶sσ2 corresponds to a strand SP in
the protocol specification that had been introduced via a rule
of the set (3.4), where the strand’s bar was clearly more to
the right than in rL,M� ⑤ L✶sσ2. Note that it cannot corre-
spond to a strand included originally in the attack pattern,
because we assume that St1 and St2 are states generated by
backwards narrowing from the same attack state and then
both St1 and St2 should have the strand. Therefore, since the
strand rL,M� ⑤ L✶sσ2 corresponds to a strand in SP and the
set (3.4) contains a rewrite rule for each strand of the form
r l1, u

�, l2 s in SP , there must be a rule α in (3.4) introducing

82 Chapter 4. State Space Reduction in the Maude-NPA

a strand of the form r l1, u�, l2 s and there must be substi-
tutions σ1, ρ such that St1 ❀σ1,R

✁1
BP

,EP
St✶1 using the rule α

and θ ✆ σ2 ✏EP
σ1 ✆ ρ. Thus, either St✶1 is an initial state or

St✶1ρ➍St✶2, since: (i) each positive intruder fact in ♣St1θqσ2 of
the form uPI for u a message term, except Mσ2PI, appears
in St✶1ρ (modulo EP), (ii) Mσ2❘I appears in St✶1ρ (modulo
EP), (iii) each non-initial strand in ♣St1θqσ2 has not been
modified and appears in St✶1ρ as well (modulo EP), and (iv)
r l1 ⑤ u

�, l2 sσ2 appears in St✶1ρ and in St✶2.

• Rules in (3.4), i.e., St2 ❀σ2,R
✁1
BP

,EP
St✶2 using a rule of the form

tSS& ♣uPI, IKq Ñ rl1 ⑤ u
�, l2s& SS& ♣u❘I, IKq ⑤ rl1, u

�, l2s P P✉.

Recall that there is an intruder fact in ♣St1θqσ2 of the form tPI
for t a message term that does not appear in St✶2 (modulo EP)
and t ✏EP

uσ2, where u is the message term used by the rewrite
rule. Thus, uσ2PI does appear in ♣St1θqσ2 (modulo EP). That
is, the same narrowing step is available from ♣St1θqσ2 and there
exist σ1, ρ such that St1 ❀σ1,R

✁1
BP

,EP
St✶1 with the same rule and

θ ✆ σ2 ✏EP
σ1 ✆ ρ. Thus, either St

✶
1 is an initial state or St✶1ρ➍ St✶2.

This concludes the proof. ❧

Second, we examine the case in which a non-initial strand in St✶2 does
not appear in ♣St1θqσ2.

Lemma 4.15 Given a topmost rewrite theory RP ✏ ♣ΣP , EP , RBPq rep-
resenting protocol P and two non-initial states St1, St2. If (i) there is a
substitution θ s.t. St1θ➍St2, (ii) there is a narrowing step St2 ❀σ2,R

✁1
BP

,EP

St✶2, and (iii) there is a non-initial strand rm✟
1 , . . . ,m

✟
i ⑤ m✟

i�1, . . . ,m
✟
n s in

♣St1θqσ2 that does not appear in St✶2 (modulo EP), then (a) σ2⑤Var♣St2q ✏
id, (b) rm✟

1 , . . . ,m
✟
i✁1 ⑤ m

✟
i , . . . ,m

✟
n s does appear in St✶2 (modulo EP) and

(c) there is a state St✶1 such that St1 ❀id,R✁1
BP

,EP
St✶1 and either St✶1 is an

initial state or St✶1 ➍ St✶2.

Proof. We prove the result by considering the different rules applica-
ble to St2 (remember that in R, rewriting and narrowing steps always

4.4. Redundant States 83

happen at the top position). Note that property (a) is immediate be-
cause rules in RBP do not remove strands, only move the vertical bar
to the left of the sequences of messages in the strands. Note also that
if rm✟

1 , . . . ,m
✟
i ⑤ m✟

i�1, . . . ,m
✟
n s appears in ♣St1θqσ2 and rm✟

1 , . . . ,m
✟
i✁1 ⑤

m✟
i , . . . ,m

✟
n s appears in St✶2, then only Rule (3.2) or Rule (4.1) have been

applied to St2 as follows:

• Reversed version of Rule (3.2), i.e., St2 ❀σ2,R
✁1
BP

,EP
St✶2 using the

following rule

rL,M� ⑤ L✶s& SS& IK Ñ rL ⑤ M�, L✶s& SS& IK.

• Reversed version of Rule (4.1), i.e., St2 ❀σ2,R
✁1
BP

,EP
St✶2 using the

following rule

rL,M✁ ⑤ L✶s& SS& IK Ñ rL ⑤ M✁, L✶s& SS& ♣MPI, IKq.

Note, however, that σ2⑤Var♣St2q ✏ id in both possible rewrite steps. Then,
there is a state St✶1 such that St1 ❀id,R✁1

BP
,EP

St✶1 with the same rule and

it is straightforward that either St✶1 is an initial state or St✶1 ➓ St
✶
2, since

only the vertical bar has been moved. ❧

Now we can formally define the relation between P-subsumption and
one narrowing step. In the following, ❀

t0,1✉

σ,R✁1
BP

,EP

denotes zero or one

narrowing steps.

Lemma 4.16 Given a topmost rewrite theory RP ✏ ♣ΣP , EP , RBPq rep-
resenting protocol P and two non-initial states St1, St2. If St1 ➓ St2 and
St2 ❀σ2,R

✁1
BP

,EP
St✶2, then there is a state St✶1 and a substitution σ1 such

that St1 ❀
t0,1✉

σ1,R
✁1
BP

,EP

St✶1 and either St✶1 is an initial state or St✶1 ➓ St
✶
2.

Proof. Since St1 ➓ St2, there is a substitution θ s.t. St1θ ➍ St2. If each
intruder fact of the form tPI in ♣St1θqσ2 appears in St✶2 (modulo EP) and
each non-initial strand in ♣St1θqσ2 appears in St✶2 (modulo EP), then, by
Lemma 4.13, ♣St1θqσ2 ➍ St✶2, i.e., St1 ➓ St✶2. Otherwise, Lemma 4.13
states that either (a) there is an intruder fact of the form tPI in ♣St1θqσ2

that does not appear in St✶2 (modulo EP), or (b) there is a non-initial

84 Chapter 4. State Space Reduction in the Maude-NPA

strand in ♣St1θqσ2 that does not appear in St✶2 (modulo EP). For case
(a), by Lemma 4.14, there is a state St✶1 and a substitution σ1 such
that St1 ❀σ1,R

✁1
BP

,EP
St✶1 and either St✶1 is an initial state or there is a

substitution ρ s.t. St✶1ρ➍St✶2. For case (b), by Lemma 4.15, σ2⑤Var♣St2q ✏
id, and there is a state St✶1 such that St1 ❀id,R✁1

BP
,EP

St✶1 and either St✶1
is an initial state or St✶1 ➍ St✶2, i.e., St

✶
1 ➓ St

✶
2. ❧

Preservation of reachability follows from the following main theorem.
Note that the relation ➓ is applicable only to non-initial states, whereas
the relation ❸EP

of Definition 4.7 is applicable to both initial and non-
initial states.

Theorem 4.17 Given a topmost rewrite theory RP ✏ ♣ΣP , EP , RBPq
representing protocol P and two states St1, St2. If St1 ➓ St2, Stini2 is
an initial state, and St2 ❀

✝
σ2,R

✁1
BP

,EP

Stini2 , then there is an initial state

Stini1 and substitutions σ1 and θ such that St1 ❀
✝
σ1,R

✁1
BP

,EP

Stini1 , and

Stini1 θ ❸EP
Stini2 .

Proof. Consider St2 ✏ U0, St
ini
2 ✏ Un, σ2 ✏ ρ1 ☎ ☎ ☎ ρn, and U0 ❀

n

ρi,R
✁1
BP

,EP

Un. Note that n ✘ 0, since St2 cannot be an initial state because
St1 ➓ St2 implies that both St1 and St2 are not initial states. Then, by
Lemma 4.16, there is j ↕ n such that for each i ➔ j, Ui✁1 ❀ρi,R

✁1
BP

,EP
Ui

and there is a step U ✶
i✁1 ❀ρ✶i,R

✁1
BP

,EP
U ✶
i s.t. U ✶

i ➓ Ui. Note that U ✶
j is an

initial state and there is a substitution θ s.t. U ✶
jθ ❸EP

Uj ❸EP
Un. ❧

This POR technique is used as follows: we keep all the states of the
backwards narrowing-based tree and compare each new node of the tree
produced by the narrowing algorithm with all the states in the tree that
have already been produced. If a node is P-subsumed by a previously
generated node in the tree, we discard the subsumed node.

4.5 The Super-Lazy Intruder

Sometimes terms appear in the intruder’s knowledge that are trivially
learnable by the intruder. These include terms initially available to the
intruder (such as names) and variables. In the case of variables, specially,

4.5. The Super-Lazy Intruder 85

the intruder can substitute any arbitrary term of the same sort as the
variable,1 and so there is no need to try to determine all the ways in
which the intruder can do this. For this reason it is safe to temporarily
drop these terms from the state. We will refer to those terms as (super)
lazy intruder terms, after the name lazy intruder coined by Basin et al.
[2005] to describe another optimization technique that involves delaying
instantiation of variables.

To see how super-lazy terms arise, we consider the following example.

Example 4.18 Consider again the attack pattern ♣✿q in Page 70.

:: r✷ :: r✁♣a; b;Y q,�♣b; a; exp♣g, n♣b, r✷qqq,
✁♣e♣exp♣Y, n♣b, r✷qq,SRqq ⑤ nils & SS & tSRPI✉ ♣✿q

After a couple of backwards narrowing steps, the Maude-NPA finds the
following state that describes how the intruder can learn SR by assuming
he can learn a message e♣K, SRq and the key K:

r nil ⑤ ✁♣Kq, ✁♣e♣K,SRqq, �♣SRq s &

:: r✶ ::

r ✁♣A;B;E✶q,�♣B;A; exp♣g, n♣B, r✶qqq ⑤
✁♣e♣exp♣E✶, n♣B, r✶qq,SRqq s &

♣e♣exp♣E✶, n♣B, r✶qq,SRqPI, KPI, e♣K,SRqqPI,SR❘Iq

♣✻q

Here variable K is a super-lazy term. The intruder can find it by instan-
tiating it by any term of the sort for keys from its initial knowledge, so
we drop KPI from the state description. �

Dropping super-lazy terms is complete by Theorem 4.17; but if we
drop them permanently we lose soundness. If the variables used in creat-
ing those terms appear elsewhere in the state, they may become instan-
tiated as the backwards search continues. In that case, the super-lazy

1This, of course, is subject to the assumption that the intruder can produce at
least one term of that sort. But since the intruder is assumed to have access to the
network and to all the operations available to an honest principal, this is a reasonable
restriction to make.

86 Chapter 4. State Space Reduction in the Maude-NPA

terms that were deleted may no longer be trivial to find. This may result
in the construction of narrowing sequences from the state that has the
super-lazy terms removed to an initial state, that does not correspond
to any narrowing sequence that could be obtained if the terms had been
retained.

Example 4.19 Consider the state ♣✻q described in Example 4.18. After
some more backwards narrowing steps, the tool unifies message e♣K, SRq
with an output message e♣exp♣X,n♣A, r1qq, sec♣A, r2qq of an explicitly
added Alice’s strand of the form:

:: r1, r2 ::

r �♣A;B; exp♣g, n♣A, r1qqq, ✁♣B;A;Xq,�♣e♣exp♣X,n♣A, r1qq, sec♣A, r2qqqs

thus getting an instantiation for the super-lazy term K, namely
tK ÞÑ exp♣X,n♣a, r1qq✉. That is, obtaining the following state by some
backwards narrowing steps from the state ♣✻q of Example 4.18:

r nil ⑤ ✁♣exp♣X,n♣a, r1qqq, ✁♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq,
�♣sec♣a, r2qq s &

:: r✶ ::

r ✁♣A;B;E✶q,�♣B;A; exp♣g, n♣B, r✶qqq ⑤
✁♣e♣exp♣E✶, n♣B, r✶qq, sec♣a, r2qqq s &

:: r1, r2 ::

r �♣a;B; exp♣g, n♣a, r1qqq, ✁♣B; a;Xq ⑤

�♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqqs &

♣e♣exp♣E✶, n♣B, r✶qq, sec♣a, r2qqPI, exp♣X,n♣a, r1qqPI,

♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq❘I, sec♣a, r2q❘Iq

♣✻�q

Now the intruder can no longer construct K out of terms in its initial
knowledge, because n♣a, r1q is not in its initial knowledge. �

Since we intend Maude-NPA to be both sound and complete, we elect
to remove super-lazy terms only temporarily. When super-lazy terms
are deleted from a state, a copy of the original state known as a ghost

4.5. The Super-Lazy Intruder 87

state is retained. The variables in the super-lazy terms are monitored to
determine whether or not they become instantiated during a narrowing
step. If that is the case, the state resulting from this narrowing step
is deleted and replaced with the ghost state with the super-lazy terms
instantiated.

The operation of resuscitating the ghost state is complex; in particular
care must be taken to avoid interaction with subsumption partial order
reduction. Removing super-lazy terms from a state affects its status in
the subsumption partial order, and it is again affected when a ghost is
resuscitated. The result is that, if we wish to allow states with ghosts to
participate in the subsumption partial order reduction, we must proceed
very carefully. In particular, if we apply the subsumption partial order
reduction indiscriminately, a resuscitated ghost state will be dominated
in the partial order by the ancestor that introduced the ghost, and so
will be removed. Thus, we have implemented a procedure for identifying
the ancestor of a resuscitated ghost state when checking the subsumption
partial order. See Sections 4.5.4 and 4.5.5.

The remainder of this section is organized as follows. In Section
4.5.1 we give a formal definition of super-lazy terms. In Section 4.5.2
we describe the procedure for creating and resuscitating ghost states.
In Section 4.5.3 we describe an optimization of the super-lazy intruder
that allows one to identify cases in which super-lazy terms will never be
further instantiated, and thus can be safely removed without creating
a ghost state. Finally, in Sections 4.5.4 and 4.5.5 we describe how the
potentially harmful interaction between the subsumption partial order
and the super-lazy intruder is handled.

4.5.1 Definition of Super-Lazy Terms

The set L♣Stq of super-lazy terms w.r.t. a state St is inductively gen-
erated as a subset L♣Stq ❸ TΩ♣Y ❨ IK0q where IK0 is the basic set of
terms known by the intruder at the beginning of a protocol execution, Y
is a subset of the variables of St, and Ω is the set of operations available
to the intruder. The idea of super-lazy terms is that we also want to
exclude from L♣Stq the set IK❘♣Stq of terms that the intruder does not
know and all its possible combinations with symbols in Ω.

88 Chapter 4. State Space Reduction in the Maude-NPA

Definition 4.20 (Super-lazy terms) Let RP ✏ ♣ΣP , EP , RBPq be a
topmost rewrite theory representing protocol P. Let IK0 be the basic set
of terms known by the intruder at the beginning of a protocol execution,
defined as IK0 ✏ tt✶ ⑤ rt�s P SP , t✶ ✏EP

t✉ Let Ω be the set of operations
available to the intruder, defined indirectly as follows:

Ω ✏ tf : s1 ☎ ☎ ☎ sn Ñ s ⑤ r♣X1:s1q
✁, . . . , ♣Xk:skq

✁, ♣f♣X1:s1, . . . , Xk:skqq
�s P SP✉.

Let St be a state (with logical variables). Let IK❘♣Stq be the set of terms
that the intruder does not known at state St, defined as IK❘♣Stq ✏ tm✶ ⑤
♣m❘Iq P St, m✶ ✏EP

m✉. The set L♣Stq of super-lazy terms w.r.t. St

(or simply super-lazy terms) is defined inductively as follows:

1. IK0 ❸ L♣Stq,

2. Var♣Stq ✁ IK❘♣Stq ❸ L♣Stq,

3. for each f : s1 ☎ ☎ ☎ sn Ñ s P Ω and for all t1:s1, . . . , tk:sk P L♣Stq, if
f♣t1:s1, . . . , tk:skq ❘ IK❘♣Stq, then f♣t1:s1, . . . , tk:skq P L♣Stq.

The idea behind the super-lazy intruder is that, given a term made out
of lazy intruder terms, such as “a; e♣K, Y q”, where a is a public name
and K and Y are variables, the term “a; e♣K, Y q” is also a (super) lazy
intruder term by applying the public operations e and ; available to the
intruder.

4.5.2 The Super-Lazy Intruder and Ghost States

Let us first briefly explain how the ghost state mechanism works before
formally describing it. A ghost state is a state extended to allow expres-
sions of the form ghost♣mq in the intruder’s knowledge, where m is a
super-lazy term. When, during the backwards reachability analysis, we
detect a state St having a super lazy term t in an expression tPI in the
intruder’s knowledge, we replace the intruder fact tPI in St by ghost♣tq
and keep the ghost version of St in the history of states used by the
transition subsumption of Section 4.4.3.

Example 4.21 The state ♣✻q of Example 4.18 with a super-lazy intruder
termK would be represented as follows, where we have just replacedKPI
by ghost♣Kq:

4.5. The Super-Lazy Intruder 89

r nil ⑤ ✁♣Kq, ✁♣e♣K,SRqq, �♣SRq s &

:: r✶ ::

r ✁♣A;B;E✶q,�♣B;A; exp♣g, n♣B, r✶qqq ⑤
✁♣e♣exp♣E✶, n♣B, r✶qq,SRqq s &

♣ghost♣Kq, e♣exp♣E✶, n♣B, r✶qq,SRqPI,
e♣K,SRqqPI, SR❘Iq

♣✻q

Similarly, the state ♣✻�q of Example 4.19 would be represented as follows,
where we have just added the expression ghost♣exp♣X,n♣a, r1qqq to the
intruder knowledge:

r nil ⑤ ✁♣exp♣X,n♣a, r1qqq, ✁♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq,
�♣sec♣a, r2qq s &

:: r✶ ::

r ✁♣A;B;E✶q,�♣B;A; exp♣g, n♣B, r✶qqq ⑤
✁♣e♣exp♣E✶, n♣B, r✶qq, sec♣a, r2qqq s &

:: r1, r2 ::

r �♣a;B; exp♣g, n♣a, r1qqq, ✁♣B; a;Xq ⑤

�♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqqs &

♣ghost♣exp♣X,n♣a, r1qqq, e♣exp♣E✶, n♣B, r✶qq, sec♣a, r2qqPI,

exp♣X,n♣a, r1qqPI, ♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq❘I, sec♣a, r2q❘Iq

♣✻�q

�

Suppose that later in the backwards search tree we find a descendant
state St✶ in which ghost♣uq has been instantiated to ghost♣tq, where t

is not a super lazy intruder term as in the state ♣✻�q of Example 4.21.
For the intruder to learn such a term t, it may be necessary for certain
actions to occur before St✶ was produced. That is, we must “roll back”
and replace the current state St✶, containing expression ghost♣tq, by an
instantiated version of its ancestor state St, namely Stθ, where t ✏EP

uθ.
This is explained in detail in Definition 4.28 below.

A complication is introduced if the substitution θ binding variables in
u includes variables of sort Fresh. These must have been introduced by
strands indexed by these fresh variables. If the strand indexed by a fresh

90 Chapter 4. State Space Reduction in the Maude-NPA

variable in t already appears in St, then there is no problem. However, if
the strand was introduced later in the backwards narrowing process, and
we do not include them in St, then this will result in difficulties. If such a
strand is not in the reactivated version of St, it will not be re-introduced
in the backwards narrowing search, because the fresh variables in newly
introduced strands are non-unifiable with any of the fresh variables al-
ready present. Therefore, the strands indexed by these fresh variables
must also be included in the “rolled back” state, even if they were not
there originally. Moreover, they must have the bar at the place where it
was when the strands were originally introduced. We show below how
this is accomplished. Furthermore, if any of the strands thus introduced
have other variables of sort Fresh as subterms, then the strands indexed
by those variables must be included too, and so on. That is, when a
state St✶ properly instantiating a ghost expression ghost♣tq is found, the
procedure of rolling back to the original state St that gave rise to that
ghost expression implies not only applying the bindings for the variables
of t to St, but also introducing in St all the strands from St✶ that pro-
duced fresh variables and that either appear in the variables of t or are
recursively connected with them.

Example 4.22 Consider the states ♣✻q and ♣✻�q of Example 4.21. After
the tool finds an instantiation for variable K in the narrowing step from
state ♣✻q to state ♣✻�q, the tool rolls back to the state (✻), originating
the super-lazy term K, as follows; where we have transformed state ♣✻�q
by moving the vertical bar of Alice’s strand at the rightmost position
because it is the strand generating the Fresh variable r2:

r nil ⑤ ✁♣exp♣X,n♣a, r1qqq, �♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq,
�♣sec♣a, r2qq s &

:: r✶ ::

r ✁♣A;B;E✶q,�♣B;A; exp♣g, n♣B, r✶qqq ⑤
✁♣e♣exp♣E✶, n♣B, r✶qq, sec♣a, r2qqq s &

:: r1, r2 ::

r �♣a;B; exp♣g, n♣a, r1qqq, ✁♣B; a;Xq,

�♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq ⑤ nils &

♣e♣exp♣E✶, n♣B, r✶qq, sec♣a, r2qqPI, exp♣X,n♣a, r1qqPI,

e♣exp♣X,n♣a, r1qq, sec♣a, r2qqPI, sec♣a, r2q❘Iq

♣✻öq

4.5. The Super-Lazy Intruder 91

�

In order for the super-lazy intruder mechanism to be able to tell where
the bar was when a strand was introduced, we must modify the set of
rules of type (3.4) introducing new strands:

t r l1 ⑤u
�s& tu❘I, K✉ Ñ tuPI, K✉ ⑤ r l1, u

�, l2 s P SP✉ (4.2)

Note that rules of type (3.4) introduce strands r l1 ⑤ u
�, l2 s, whereas here

rules of type (4.2) introduce strands r l1 ⑤ u
� s. This slight modification

makes it possible to safely move the position of the bar back to the place
where the strand was introduced. However, now the strands added may
be partial, since the whole sequence of actions performed by the principal
is not directly recorded in the strand. Therefore, the set of rewrite rules
used by narrowing in reverse are now❶RBP ✏ t(4.1), (3.2), (3.3)✉❨t(4.2)✉;
note that (4.2) represents a set of rules.

First, we define a new relation ❸EP
between states, which is similar

to ❸EP
of Definition 4.7 but considers partial strands.

Definition 4.23 (Partial Inclusion) Given two states St1, St2, we
abuse notation and write St1 ❸EP

St2 to denote that every intruder fact
in St1 appears in St2 (modulo EP) and that every strand rm✟

1 , . . . ,m
✟
k s

in St1, either appears in St2 (modulo EP) or there is i P t1, . . . , k✉ s.t.
m✟

i ✏ m�
i and rm✟

1 , . . . ,m
�
i s appears in St2 (modulo EP).

The following result ensures that if a state is reachable via backwards
reachability analysis using RBP , then it is also reachable using❶RBP . Its
proof is straightforward, and we omit it.

Proposition 4.24 Let RP ✏ ♣ΣP , EP , RBPq be a topmost rewrite the-
ory representing protocol P. Let St ✏ ss& SS& ♣ik, IKq where ss is a
term representing a set of strands, ik is a term representing a set of in-
truder facts, SS is a variable for strands, and IK is a variable for intruder
knowledge. If there is an initial state Stini and a substitution σ such that
St ❀

✝
σ,R✁1

BP
,EP

Stini, then there is an initial state St✶ini and two sub-

stitutions σ✶, ρ such that St ❀
✝

σ✶,❶RBP

✁1
,EP

St✶ini, σ ✏EP
σ✶ ✆ ρ, and

♣St✶iniqρ ❸EP
Stini.

Now, we describe how to reactivate a state. First, we formally define
a ghost state.

92 Chapter 4. State Space Reduction in the Maude-NPA

Definition 4.25 (Ghost State) Given a topmost rewrite theory
RP ✏ ♣ΣP , EP , RBPq representing protocol P and a state St contain-
ing an intruder fact tPI such that t is a super-lazy term, we define the
ghost version of St, written St, by replacing tPI in St by ghost♣tq in St.

Now, in order to resuscitate a state, we need to formally compute the
strands that are generating Fresh variables relevant to the instantiation
found for the super-lazy term.

Definition 4.26 (Strand Reset) Given a strand s of the form
:: r1, . . . , rk :: rm✟

1 , . . . ⑤ . . . ,m
✟
n s, when we want to move the bar to the

rightmost position (denoting a final strand), we write s✧ ✏:: r1, . . . , rk ::
rm✟

1 , . . . ,m
✟
n ⑤ nils.

Definition 4.27 (Fresh Generating Strands) Given a state St con-
taining an intruder fact ghost♣tq for some term t with variables, we define
the set of strands associated to t, denoted strandsSt♣tq, as the least set
satisfying the following two conditions:

• for each strand s in St of the form :: r1, . . . , rk :: rm✟
1 , . . . ⑤

. . . ,m✟
n s, if there is i P t1, . . . , k✉ s.t. ri P Var♣tq, then s✧ is

included into strandsSt♣tq; or

• for each strand s in St of the form :: r1, . . . , rk :: rm✟
1 , . . . ⑤

. . . ,m✟
n s, if there is another strand s✶ of the form :: r✶1, . . . , r

✶
k✶ ::

rw✟
1 , . . . ⑤ . . . , w✟

n✶s in strandsSt♣tq, and there are i P t1, . . . , k✉
and j P t1, . . . , n✶✉ s.t. ri P Var♣wjq, then s✧ is included into
strandsSt♣tq.

Now, we formally define how to resuscitate a state.

Definition 4.28 (Resuscitation) Given a topmost rewrite theory

RP ✏ ♣ΣP , EP ,❶RBPq representing protocol P and a state St contain-
ing an intruder fact tPI such that t is a super-lazy term, i.e., St ✏
ss& ♣tPI, ikq where ss is a term denoting a set of strands and ik is a
term denoting the rest of the intruder knowledge. Let St be the ghost
version of St. Let St✶ be a state such that St ❀

✝

σ,❶RBP

✁1
,EP

St✶ and tσ

is not a super-lazy term. Let σt ✏ σ⑤Var♣tq. The reactivated (or resus-
citated) version of St w.r.t. state St✶ and substitution σt is defined as①St ✏ ssσt & ♣tPI, ikqσt &strandsSt✶♣tσtq.

4.5. The Super-Lazy Intruder 93

Example 4.29 Consider the state ♣✻öq in Example 4.22. We can check
that state ♣✻öq is the resuscitated version of state ♣✻q w.r.t. state ♣✻�q
and the substitution tK ÞÑ exp♣X,n♣a, r1qq, A ÞÑ a✉. �

Let us now prove the completeness of this state space reduction tech-
nique.

Theorem 4.30 Given a topmost rewrite theory RP ✏ ♣ΣP , EP ,❶RBPq
representing protocol P and a state St containing an intruder fact tPI
such that t is a super-lazy term, if there exist an initial state Stini and
substitution θ such that St ❀✝

θ,❶RBP

✁1
,EP

Stini , then (i) there exist a state

St✶ and substitutions τ, τ ✶ such that St ❀✝

τ,❶RBP

✁1
,EP

St✶, θ ✏EP
τ ✆τ ✶, and

tτ is not a super-lazy term, and (ii) there exist a reactivated version ①St
of St w.r.t. St✶ and τ , an initial state St✶ini , and substitutions θ✶, ρ such

that ①St ❀✝

θ✶,❶RBP

✁1
,EP

St✶ini , θ ✏EP
θ✶ ✆ ρ, and ♣St✶iniqρ ❸EP

Stini .

Proof. The sequence from St to Stini can be decomposed into two frag-
ments, computing substitutions τ and τ ✶, respectively, such that there
is a state St✶ and substitutions τ , τ ✶ such that tτ is not a super-lazy
term, θ ✏ τ ✆ τ ✶, St ❀

✝

τ,❶RBP

✁1
,EP

St✶ ❀
✝

τ ✶,❶RBP

✁1
,EP

Stini , and the se-

quence St ❀
✝

τ,❶RBP

✁1
,EP

St✶ can be viewed as St ✏ St0 ❀
τ1,❶RBP

✁1
,EP

☎ ☎ ☎ ❀
τk,❶RBP

✁1
,EP

Stk ✏ St✶ such that for all i P t1, . . . , k ✁ 1✉, tτi is

a super-lazy term. However, using the completeness results of narrow-
ing, Theorem 2.5, there must be a narrowing sequence from St com-
puting such substitution τ . That is, there is a state St✷ such that
St ❀

✝

τ,❶RBP

✁1
,EP

St✷ and St✷ differs from St✶ (modulo EP-equivalence

and variable renaming) only in that tτPI is replaced by ghost♣tτq. Let

τt ✏ τ ⑤Var♣tq, there exists a substitution τ ✷ s.t. τ ✏EP
τt ✆ τ

✷. Let ①St be
the resuscitated version of St w.r.t. state St✷ and substitution τt. Then,
by narrowing completeness, i.e., Theorem 2.5, there exist a state St✶ini
and substitutions σ, ρ such that ①St ❀✝

σ,❶RBP

✁1
,EP

St✶ini , τ
✷ ✆ τ ✶ ✏EP

σ ✆ ρ,

and ♣St✶iniqρ ✏EP
Stini . ❧

94 Chapter 4. State Space Reduction in the Maude-NPA

4.5.3 Optimizing the Super-Lazy Intruder

When we detect a state St with a super lazy term t, we may want to
analyze whether the variables of t may be eventually instantiated or not
before creating a ghost state. The following definition provides the key
idea.

Definition 4.31 (Void Super-Lazy Term) Given a topmost rewrite

theory RP ✏ ♣ΣP , EP ,❶RBPq representing protocol P, and a state St con-
taining an intruder fact tPI such that t is a super-lazy term, if for each
strand rm✟

1 , . . . ,m
✟
j✁1 ⑤ m✟

j , . . . ,m
✟
k s in St and each i P t1, . . . , j ✁ 1✉,

Var♣tq ❳ Var♣miq ✏ ❍, and for each term wPI in the intruder’s knowl-
edge, Var♣tq ❳ Var♣wq ✏ ❍, then, t is called a void super-lazy term.

Proposition 4.32 Given a topmost rewrite theory RP ✏ ♣ΣP , EP ,❶RBPq
representing protocol P and a state St containing an intruder fact tPI
such that t is a void super-lazy term, let St be the ghost version of St
w.r.t. the void super-lazy term t. If there exist an initial state Stini
and a substitution θ such that St ❀✝

θ,❶RBP

✁1
,EP

Stini , then there exist an

initial state St✶ini and substitutions σ, ρ such that St ❀✝

σ,❶RBP

✁1
,EP

St✶ini ,

θ ✏EP
σ ✆ ρ, and ♣St✶iniqρ ❸EP

Stini .

Proof. Since t is a super-lazy term, Stini contains a sequence of intruder
strands of SP generating t. Let θt ✏ θ⑤Var♣tq, there exists a substitution θ✶

s.t. θ ✏EP
θt ✆ θ

✶. Since t is a void super-lazy term, there is a state St✷ini
such that Stθ✶ Ñ✝

❶RBP

✁1
,EP

St✷ini . Then, by narrowing completeness, i.e.,

Theorem 2.5, there are an initial state St✶ini and substitutions σ, ρ such
that St ❀✝

σ,❶RBP

✁1
,EP

St✶ini , θ
✶ ✏EP

σ ✆ ρ, and ♣St✶iniqρ ❸EP
St✷ini . Finally,

St✷ini ❸EP
Stini , since Stini simply has the strands generating t that St✷ini

does not contain. ❧

4.5.4 Transition Subsumption and the Super-Lazy
Intruder

Transition subsumption in the presence of the lazy intruder is computed
for the most part as if the lazy intruder did not exist. That is, we

4.5. The Super-Lazy Intruder 95

♣✿q
✝

♣✻q

ghost term
��

♣✻q

σ
!!

♣✻�q

roll back ✻ using σ ""

♣✻öq

##

♣✻ö�q

Figure 4.2: States obtained using the super-lazy intruder optimization

define a partial order on states with ghosts that extends the relation ➓
of Section 4.4.3:

Definition 4.33 Let St1 ✏ ss1 & ♣ghost♣t1q, . . . , ghost♣tnq, ik1q and let
St2 ✏ ss2 & ♣ghost♣t✶1q, . . . , ghost♣t

✶
mq, ik2q. Let St✶1 ✏ ss1 & ♣t1PI, . . . ,

tnPI, ik1q and let St✶2 ✏ ss2 & ♣t✶1PI, . . . , t
✶
mPI, ik2q. We say that St1➓0St2

if St✶1➓St
✶
2.

However, we cannot use this definition without modification. If we
do, then when a ghost state is reactivated, we see from Definition 4.33
that such a reactivated state will be P-subsumed by the original state
that raised the ghost expression, as shown in the following example.

Example 4.34 As explained in Example 4.29, the state ♣✻öq is the re-
suscitated version of state ♣✻q w.r.t. state ♣✻�q. But, since the state ♣✻�q
is obtained after one backwards narrowing step from state ♣✻q, then a
state ♣✻ö�q, described below, is obtained after one backwards narrowing
step from state ♣✻öq, where ♣✻ö�q is similar to ♣✻�q except that the ghost
expression is transformed into a proper intruder fact. That is, we will
find state ♣✻�q twice in the search space, one as the descendant ♣✻�q of
♣✻q and again as the descendant ♣✻ö�q of ♣✻

öq. This situation is depicted
in Figure 4.2. �

Therefore, we modify the relation ➓0 into a new relation ✡, given in
Proposition 4.37 below, by excluding resuscitated descendants which are
defined by a new relation ñ as follows.

96 Chapter 4. State Space Reduction in the Maude-NPA

Definition 4.35 (Resuscitated Descendant) Given a topmost

rewrite theory RP ✏ ♣ΣP , EP ,❶RBPq representing protocol P, and three
non-initial states St0, St, and St✶ such that St0 contains an intruder fact
tPI, and t is a super-lazy term, we say that state St✶ is a resuscitated
descendant of St, written Stñ St✶, if:

1. given the ghost version St0 of St0 w.r.t. the super-lazy term t, then
there exist k ➙ 1, states St1, . . . , Stk, substitutions τ1, . . . , τk, and
i P t1, . . . , k✉ such that St0 ❀τ1,❶RBP

✁1
,EP

St1 ☎ ☎ ☎Sti✁1 ❀τi,❶RBP

✁1
,EP

Sti ☎ ☎ ☎Stk✁1 ❀τk,❶RBP

✁1
,EP

Stk, St ✏EP
Stk, tτ1 ✆ ☎ ☎ ☎ ✆ τj is a super-

lazy term for 1 ↕ j ↕ i ✁ 1, and tτ1 ✆ ☎ ☎ ☎ ✆ τi is not a super-lazy
term, and

2. given the reactivated version ⑨St0 of St0 w.r.t. Sti and τ ✏ τ1 ✆
☎ ☎ ☎ ✆ τi, and let τt ✏ τ ⑤Var♣tq, then there exist states St✶1, . . . , St

✶
k,

substitutions τ ✶1, . . . , τ
✶
k such that τj ✏ τt ✆ τ

✶
j for 1 ↕ j ↕ k, and a

narrowing sequence

⑨St ❀
τ ✶1,
❶RBP

✁1
,EP

St✶1 ☎ ☎ ☎St
✶
k✁1 ❀τ ✶

k
,❶RBP

✁1
,EP

St✶k

such that St✶ ✏EP
St✶k.

Example 4.36 As explained in Example 4.34, state ♣✻�q is a descendant
of state ♣✻q and state ♣✻ö�q is a descendant of state ♣✻öq where ♣✻�q and
♣✻ö�q are the same state. It is very easy to check that any descendant
of ♣✻öq is a resuscitated descendant of an appropriate descendant of ♣✻q
according to Definition 4.35, e.g. ♣✻ö�q is a resuscitated descendant of
♣✻�q. �

Proposition 4.37 (P-subsumption relation I) Given a topmost

rewrite theory RP ✏ ♣ΣP , EP ,❶RBPq representing protocol P, let ✡ be
a partial order on states such that St ✡ St✶ implies that St➓0St

✶ and
St ⑧ñ St✶. Then the partial order reduction imposed by ✡ preserves com-
pleteness of reachability as defined in Theorem 4.17.

4.5. The Super-Lazy Intruder 97

4.5.5 Implementing Subsumption Partial Order
Reduction in the Presence of the Super-Lazy
Intruder

In this section we describe how the subsumption partial order is actually
implemented in Maude-NPA in the presence of the super-lazy intruder.
Proposition 4.37 gives a simple way of doing this, but is not very effi-
cient if implemented in a straightforward way, since it requires extensive
examination of the search tree, examining not only the two states being
compared but the narrowing path between them. Instead, we use an
approximation of the ñ relation that can be computed directly via a
syntactic check on the state information.

This section is quite technical and depends heavily on details about
Maude-NPA. The reader who is interested mainly in understanding the
basic principles of the super-lazy intruder, and is not concerned about
how it is actually implemented in Maude-NPA, can safely skip it. How-
ever, we believe that it is valuable to include there these technical de-
tails because it not only documents what actually is implemented in the
tool, but demonstrates how one can use approximation to maximize state
space reduction while minimizing the amount of search tree examination
required.

In order make the presentation easier to follow, we describe our ap-
proximation in terms of a series of approximations, relations 99K, ։,
and ։

�, where 99K and ։
� are over-approximations of the relation

ñ (and thus preserve completeness of reachability) but ։ is an under-
approximation of the relation ñ (and thus does not preserve complete-
ness of reachability though it helps us to define the relation ։

�).

To begin with, we extend protocol states to include the actual message
exchange sequence between principal or intruder strands and add a new
expression resuscitated♣mq to indicate when a state has been resuscitated.
This information, except for resuscitated♣mq, was already included in
Maude-NPA states, but its purpose before had been to assist the user in
reconstructing attacks, not in performing the search itself.

The set of rewrite rules is extended to compute the exchange sequence
as follows, where X is a variable denoting an exchange sequence:

98 Chapter 4. State Space Reduction in the Maude-NPA

rL ⑤ M✁, L✶s & SS & ♣MPI, IKq & ♣M✁, Xq

Ñ rL,M✁ ⑤ L✶s & SS & ♣MPI, IKq & X

rL ⑤ M�, L✶s & SS & IK & ♣M�, Xq

Ñ rL,M� ⑤ L✶s & SS & IK & X

rL ⑤ M�, L✶s & SS & ♣M❘I, IKq & ♣M�, Xq

Ñ rL,M� ⑤ L✶s & SS & ♣MPI, IKq & X

for each r l1, u�, l2 s P SP :

r l1 ⑤ u�, l2 s&SS & ♣u❘I, IKq & ♣u�, Xq Ñ SS& ♣uPI, IKq & X

Completeness reachability and soundness is clearly preserved for this set
of rules and for the obvious extensions to RBP and ⑨RP .

Example 4.38 The state ♣✻q of Example 4.21 will be written as the
following state ♣✻q by adding the message exchange sequence:

r nil ⑤ ✁♣Kq, ✁♣e♣K,SRqq, �♣SRq s &

:: r✶ ::

r ✁♣A;B;E✶q,�♣B;A; exp♣g, n♣B, r✶qqq ⑤
✁♣e♣exp♣E✶, n♣B, r✶qq,SRqq s &

♣ghost♣Kq, e♣exp♣E✶, n♣B, r✶qq,SRqPI,
e♣K,SRqqPI, SR❘Iq &

♣✁♣Kq, ✁♣e♣K,SRqq, �♣SRq,
✁♣e♣exp♣E✶, n♣b, r✶qq,SRqqq

♣✻q

The state ♣✻�q of Example 4.21 will be written as the following state ♣✻�q
by adding the message exchange sequence:

4.5. The Super-Lazy Intruder 99

r nil ⑤ ✁♣exp♣X,n♣a, r1qqq, ✁♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq,
�♣sec♣a, r2qq s &

:: r✶ ::

r ✁♣A;B;E✶q,�♣B;A; exp♣g, n♣B, r✶qqq ⑤
✁♣e♣exp♣E✶, n♣B, r✶qq, sec♣a, r2qqq s &

:: r1, r2 ::

r �♣a;B; exp♣g, n♣a, r1qqq, ✁♣B; a;Xq ⑤

�♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqqs &

♣ghost♣exp♣X,n♣a, r1qqq, e♣exp♣E✶, n♣B, r✶qq, sec♣a, r2qqPI,

exp♣X,n♣a, r1qqPI, ♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq❘I,
sec♣a, r2q❘Iq &

♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qq
�, exp♣X,n♣a, r1qq

✁,

e♣exp♣X,n♣a, r1qq, sec♣a, r2qq
✁, sec♣a, r2q

�,

e♣exp♣E✶, n♣b, r✶qq, sec♣a, r2qq
✁q

♣✻�q

The resuscitated state ♣✻öq of Example 4.22 will be written as the fol-
lowing state ♣✻öq, where the resuscitated message is the first item in the
exchange sequence:

r nil ⑤ ✁♣exp♣X,n♣a, r1qqq, �♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq,
�♣sec♣a, r2qq s &

:: r✶ ::

r ✁♣A;B;E✶q,�♣B;A; exp♣g, n♣B, r✶qqq ⑤
✁♣e♣exp♣E✶, n♣B, r✶qq, sec♣a, r2qqq s &

:: r1, r2 ::

r �♣a;B; exp♣g, n♣a, r1qqq, ✁♣B; a;Xq,

�♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq ⑤ nils &

♣e♣exp♣E✶, n♣B, r✶qq, sec♣a, r2qqPI, exp♣X,n♣a, r1qqPI,

e♣exp♣X,n♣a, r1qq, sec♣a, r2qqPI, sec♣a, r2❘Iq &

♣resuscitated♣exp♣X,n♣a, r1qqq, ✁♣exp♣X,n♣a, r1qqq,

✁♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq, �♣sec♣a, r2qq,
✁♣e♣exp♣E✶, n♣b, r✶qq, sec♣a, r2qqqq

♣✻öq

100 Chapter 4. State Space Reduction in the Maude-NPA

And the state ♣✻ö�q of Example 4.19 will be given as follows:

r nil ⑤ ✁♣exp♣X,n♣a, r1qqq, ✁♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq,
�♣sec♣a, r2qq s&

:: r✶ ::

r ✁♣A;B;E✶q,�♣B;A; exp♣g, n♣B, r✶qqq ⑤
✁♣e♣exp♣E✶, n♣B, r✶qq, sec♣a, r2qqq s&

:: r1, r2 ::

r �♣a;B; exp♣g, n♣a, r1qqq, ✁♣B; a;Xq ⑤

�♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqqs&

♣e♣exp♣E✶, n♣B, r✶qq, sec♣a, r2qqPI, exp♣X,n♣a, r1qqPI,

♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq❘I, sec♣a, r2q❘Iq &

♣�♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq,

resuscitated♣exp♣X,n♣a, r1qqq, ✁♣exp♣X,n♣a, r1qqq,

✁♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq, �♣sec♣a, r2qq,
✁♣e♣exp♣E✶, n♣b, r✶qq, sec♣a, r2qqqq

♣✻ö�q

where ♣✻ö�q is obtained from ✻ö by one backwards narrowing step. �

In [Escobar et al., 2008], we provided a very simple rule for approxi-
mating the relation ñ.

Definition 4.39 Given a topmost rewrite theory RP ✏ ♣ΣP , EP ,❶RBPq
representing protocol P and two non-initial states St1, St2, we write
St1 99K St2 if there exists a message term m such that St1 contains an
expression ghost♣mq and St2 contains the expression resuscitated♣mq.

Example 4.40 Consider the state ♣✻q, the state ♣✻�q, the state ♣✻
öq, the

state ♣✻ö�q, and the substitution ρ ✏ tK ÞÑ exp♣X,n♣a, r1qq, r
✷ ÞÑ r2✉.

It is clear now that ♣✻qρ 99K ♣✻öq, ♣✻qρ 99K ♣✻ö�q, ♣✻�qρ 99K ♣✻öq, and

♣✻�qρ 99K ♣✻ö�q because all have ghost♣exp♣X,n♣a, r1qqq in one side and

resuscitated♣exp♣X,n♣a, r1qqq on the other side. However, it is a rough
approximation of the relation ñ, since we only have ♣✻qρ ñ ♣✻öq and

♣✻�qρñ ♣✻ö�q. �

4.5. The Super-Lazy Intruder 101

The following result establishes that 99K is an over-approximation of
ñ, as shown in the previous example.

Lemma 4.41 Given a topmost rewrite theory RP ✏ ♣ΣP , EP ,❶RBPq rep-
resenting protocol P and two non-initial states St1, St2, if St1 ñ St2,
then there is a substitution ρ such that St1ρ 99K St2.

Proof. Immediate, since St1 ñ St2 implies that there is a substitution
ρ such that St1ρ contains ghost♣mq and St2 contains resuscitated♣mq. ❧

Now, we can provide a better transition subsumption relation.

Proposition 4.42 (P-subsumption relation II) Given a topmost

rewrite theory RP ✏ ♣ΣP , EP ,❶RBPq representing protocol P, let ✡II be
a partial order on states such that St ✡II St

✶ implies that St➓0St
✶ and

there is a substitution θ s.t. Stθ ⑧99K St✶. Then the partial order reduc-
tion imposed by ✡II preserves completeness of reachability as defined in
Theorem 4.17.

Though this method solves the problem, since it is safe when a state
St✶ is discarded by St ✡II St

✶, and St ✡II St
✶ implies St ✡ St✶ but not

vice versa, it disables almost completely the benefits of transition sub-
sumption for those states after a resuscitation, since the relation ✡ is
able to remove many more states than ✡II in that case. Consider just
Figure 4.2, then for any narrowing sequence from ♣✻q to a state St, there
is a narrowing sequence from ♣✻öq to a similar state St✶ but the transition
subsumption would never be attempted between St and St✶. Here, we
provide a more concise definition of the interaction between the transition
subsumption and the super-lazy intruder reduction techniques.

We characterize those states after a resuscitation that are truly linked
to the parent state. First, we identify those states that are resuscitated
versions of a former state. Intuitively, by comparing the exchange se-
quences of the two states, we can see whether the exchange sequence
of the former is ♣L1,M

✁
1 , L2q and it has a ghost expression ghost♣M1q,

whereas the exchange sequence of the resuscitated version is ♣L1,

resuscitated♣M1q,M
✁
1 , L2q.

102 Chapter 4. State Space Reduction in the Maude-NPA

Definition 4.43 Given a topmost rewrite theory RP ✏ ♣ΣP , EP ,❶RBPq
representing protocol P and two non-initial states St1, St2, we say that
St2 is a resuscitated version of St1, written St1 ։ St2, if there are
messages M1 and M2 and a substitution ρ such that:

1. state St1 has a ghost of the form ghost♣M1q,

2. the exchange sequence of state St1 is of the form

♣L1,M
✁
1 , L2q

3. the exchange sequence of state St2 is of the form

♣L✶
1, resuscitated♣M2q,M

✁
2 , L

✶
2q,

4. and ♣L1,M
✁
1 , L2qρ ✏EP

♣L✶
1,M

✁
2 , L

✶
2q.

Example 4.44 Consider again the state ♣✻q, the state ♣✻�q, the state

♣✻öq, the state ♣✻ö�q, and the substitution ρ ✏ tK ÞÑ exp♣X,n♣a, r1qq, r
✷ ÞÑ

r2✉. It is easy to check that ♣✻qρ ։ ♣✻öq and ♣✻�qρ ։ ♣✻ö�q, whereas in

Example 4.40, we had ♣✻qρ 99K ♣✻öq, ♣✻qρ 99K ♣✻ö�q, ♣✻�qρ 99K ♣✻öq, and

♣✻�qρ 99K ♣✻ö�q. Indeed, the relation ։ has approximated the relation

ñ, where we have only ♣✻qρñ ♣✻öq and ♣✻�qρñ ♣✻ö�q. �

Relation ։ tries to approximateñ better than 99K, but it fails, since
it is an under-approximation, as shown by the following example, rather
than an over-approximation, which is necessary for completeness.

Example 4.45 With one backwards narrowing step from the state ♣✻ö�q,

we get the following state where message exp♣X,n♣a, r1qq is learned, e.g.
by extracting it from a longer message ♣Y ; exp♣X,n♣a, r1qqq:

4.5. The Super-Lazy Intruder 103

r ✁♣Y ; exp♣X,n♣a, r1qqq ⑤ �♣exp♣X,n♣a, r1qqq s&

r nil ⑤ ✁♣exp♣X,n♣a, r1qqq, ✁♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq,
�♣sec♣a, r2qq s&

:: r✶ ::

r ✁♣A;B;E✶q,�♣B;A; exp♣g, n♣B, r✶qqq ⑤
✁♣e♣exp♣E✶, n♣B, r✶qq, sec♣a, r2qqq s&

:: r1, r2 ::

r �♣a;B; exp♣g, n♣a, r1qqq, ✁♣B; a;Xq ⑤

�♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqqs&

♣e♣exp♣E✶, n♣B, r✶qq, sec♣a, r2qqPI, exp♣X,n♣a, r1qq❘I,

♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq❘I, sec♣a, r2q❘Iq &

♣exp♣X,n♣a, r1qq
�,�♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq,

resuscitated♣exp♣X,n♣a, r1qqq, ✁♣exp♣X,n♣a, r1qqq,

✁♣e♣exp♣X,n♣a, r1qq, sec♣a, r2qqq, �♣sec♣a, r2qq,
✁♣e♣exp♣E✶, n♣b, r✶qq, sec♣a, r2qqqq

♣γq

We have that ✻� ⑧։ γ because γ contains one more action in the mes-

sage exchange sequence than ✻� does, namely exp♣X,n♣a, r1qq
�. How-

ever, ✻� ➓0 γ, since ✻� has only two challenges in the intruder knowledge:

e♣exp♣E ✶, n♣B, r✶qq, sec♣a, r2qqPI and exp♣X,n♣a, r1qqPI, and so the tran-
sition subsumption is applied, discarding state γ as unreachable whereas
it should not be discarded. �

We cannot prove completeness of reachability but we can prove sound-
ness of the relation ։.

Lemma 4.46 Given a topmost rewrite theory RP ✏ ♣ΣP , EP ,❶RBPq rep-
resenting protocol P and two non-initial states St1, St2, if St1 ։ St2,
then St1 ñ St2.

Proof. Immediate by the fact that St1 ։ St2 implies there is a sub-
stitution ρ such that St1ρ has a term ghost♣mq and St2 has a term
resuscitated♣mq, and the exchange sequence of both states is identical
except the message resuscitated♣mq. ❧

104 Chapter 4. State Space Reduction in the Maude-NPA

We need to go even further and restrict ։ to obtain a closer char-
acterization of ñ, namely a new relation ։

�. Relation St1 ։ St2
takes into account only whether St2 is a resuscitated version of St1, but
does not consider what happens beyond the state that produced the
instantiation that reactivated the ghost state. That is, descendants of
the state that produced the ghost state that are instantiations of de-
scendants St1. Intuitively, in the following definition below, we com-
pare the exchange sequences of the two states to see whether the ex-
change sequence of the first is ♣L1, L2,M

✁
1 , L3q and it has a ghost ex-

pression ghost♣M1q, whereas the exchange sequence of the second is
♣L1,M

�
1 , L2, resuscitated♣M1q,M

✁
1 , L3q. Indeed, a recursive definition

can be given here that becomes extremely useful when several resus-
citations have happened in a concrete state.

Definition 4.47 Given a topmost rewrite theory RP ✏ ♣ΣP , EP ,❶RBPq
representing protocol P and two non-initial states St1, St2, we say that
St2 is a resuscitated version of St1, written S1 ։

� St2, if either S1 ։

St2 or there are messages M1 and M2, a substitution ρ, and sequences
L✶
1, L

✷
1 such that:

1. state St1 has a ghost of the form ghost♣M1q,

2. the exchange sequence of state St1 is of the form

♣L1, L2,M
✁
1 , L3q

3. the exchange sequence of state St2 is of the form

♣L✶
1,M

�
2 , L

✶
2, resuscitated♣M2q,M

✁
2 , L

✶
3q

4. ♣L2,M
✁
1 , L3qρ ✏EP

♣L✶
2,M

✁
2 , L

✶
3q

5. and either

(a) there is a subsequence L✸
1 of L✶

1 such that L1ρ ✏Ep
♣L✸

1 q or

(b) St✶1 ։
� St✶2 where St

✶
1 is St1 without the ghost♣M1q expression

and St✶2 is St2 with the shorter exchange sequence ♣L✶
1, L

✶
2,M

✁
2 ,

L✶
3q.

4.5. The Super-Lazy Intruder 105

The following result establishes that ։� is a better approximation of
ñ than 99K.

Lemma 4.48 Given a topmost rewrite theory RP ✏ ♣ΣP , EP ,❶RBPq rep-
resenting protocol P and two non-initial states St1, St2, if St1 ñ St2,
then St1 ։

� St2.

Proof. If St1 ñ St2, then state St1 has at least one ghost expression of
the form ghost♣M1q for a message M1, the exchange sequence of state St1
is of the form ♣L1,M

✁
1 , L2q for two message sequences L1 and L2, the ex-

change sequence of state St2 is of the form ♣L✶
1, resuscitated♣M2q,M

✁
2 , L

✶
2q

for a message M2 and two message sequences L✶
1 and L✶

2, and there is a
substitution ρ such that ♣M✁

1 , L2qρ ✏EP
♣M✁

2 , L
✶
2q. Now, we prove the

result by induction on the number of ghost expressions in St1.
If there is only one ghost expression in St1, then we consider whether

L1 and L✶
1 match or not. If there is a substitution σ1 such that L1σ1 ✏EP

L✶
1, then we are done, since ♣L1σ1, ♣M1ρq

✁, L2ρq ✏EP
♣L✶

1,M
✁
2 , L

✶
2q and

this implies St1 ։ St2. Otherwise, L✶
1 contains at least one action

M�
2 that does not appear in L1 which could never be done from St1

because M1ρ appeared in St1 as a ghost expression instead of an ex-
pression M1ρPI. That is, L✶

1 is of the form ♣L✶
1,1,M

�
2 , L

✶
1,2q for mes-

sage sequences L✶
1,1 and L✶

1,2, i.e., the message sequence of St2 is of the
form ♣L✶

1,1,M
�
2 , L

✶
1,2, resuscitated♣M2q,M

✁
2 , L

✶
2q, and L1 is of the form

♣L1,1, L1,2q for message sequences L1,1, L1,2, i.e., the message sequence of
St1 is of the form ♣L1,1, L1,2, ♣M1ρq

✁, L2ρq. Then, there is a substitution
σ2 such that ♣L1,2qσ2 ✏EP

L✶
1,2, since L1,2 and L✶

1,2 correspond to actions
related to M✁

1 and not related to M�
2 . Furthermore, since St1 ։

� St2,
there is a subsequence of L✶

1,1 containing all the elements of ♣L1,1qσ2, so
that the remaining elements of L✶

1,1, which are not contained in ♣L1,1qσ2,
are related to M�

2 . This concludes the case for one ghost expression.
If there are more than one ghost expression in St1, then there is no

subsequence of L✶
1,1 containing all the elements of L1,1 in the previous

case because there is more than one resuscitation between St1 and St2.
In this case, we remove all the material from St1 and St2 connected to
the ghost term M2 (and M1ρ) obtaining terms St✶1 and St✶2 and, since
St1 ñ St2, we have that St✶1 ñ St✶2 because only the message exchange
sequence is altered and, by induction hypothesis, St✶1 ։

� St✶2 concluding
that St1 ։

� St2. ❧

106 Chapter 4. State Space Reduction in the Maude-NPA

Protocol none All optimizations %
Needham-Shroeder Public Key 5 19 142 727 4904 4 6 4 2 1 99
Needham-Shroeder Lowe’s fix 5 19 142 727 4902 4 7 6 2 - 81

SecReT06 1 6 22 111 312 2 3 2 - - 98
SecReT07 8 24 212 902 8047 5 1 1 1 - 99

Diffie-Hellman 3 24 72 316 1884 4 6 10 9 12 98
Homo-hpc 1 8 22 100 533 2 2 1 1 1 98
Homo-NSL 4 15 92 418 2409 4 9 10 9 11 98

Amended Needham-Shroeder 1 8 24 121 781 2 4 9 20 41 91
Carlsen’s Secret Key Initiator Protocol 5 19 145 764 5931 4 7 10 18 12 99

Denning-Sacco 6 16 65 357 1628 1 2 3 5 7 99
ISO-5-Pass Authentication 5 19 145 766 5982 5 5 13 19 20 99

Kao Chow Repeated Authentication 5 19 144 795 6059 4 7 9 11 5 99
Kao Chow Repeated Authentication-Handshake Key 1 7 22 99 555 2 2 6 12 18 94

Kao Chow Repeated Authentication-Ticket 5 19 139 715 5382 8 35 33 27 118 96
NSL-ECB-homo 5 18 116 532 3006 3 8 15 16 10 98

NSL-XOR-modified 1 10 42 442 6184 4 5 5 5 2 99
Otway-Rees 1 7 18 55 237 2 6 14 34 84 55

Wide Mouthed Frog 6 31 226 1492 11788 6 13 27 44 65 98
Woo-Lam 1 8 24 115 936 3 5 6 5 6 97

Table 4.1: Number of new states produced in each of 1,2,3,4 and 5
backwards narrowing steps comparing each optimization of Sections
4.3.1,4.3.2,4.4.2,4.4.3, and 4.5.

Now, we can provide a better transition subsumption relation.

Proposition 4.49 (P-subsumption relation III) Given a topmost

rewrite theory RP ✏ ♣ΣP , EP ,❶RBPq representing protocol P, let ✡III be
a partial order on states such that St ✡III St

✶ implies that St➓0St
✶ and

St ⑧։� St✶. Then the partial order reduction imposed by ✡III preserves
completeness of reachability as defined in Theorem 4.17.

4.6 Experimental Evaluation

In order to measure the contribution that the various optimization tech-
niques make to improve the Maude-NPA protocol analysis, we ran Maude-
NPA on several example protocols, with no reduction method in place,
with only one reduction method in place, and with all the reduction
methods in place. Note that Maude-NPA was never intended to run
without these optimizations. Maude-NPA will never terminate unless at
least the grammars or the subsumption relation are used and, thus, we

4.7. Conclusions 107

also provide information on whether or not we were able to achieve ter-
mination, that is, if we reached a depth at which all states are initial. In
our experiments, we use the results for the case with no optimizations as
a baseline that allows us to compare the different optimization techniques
with each other.

In Table 4.1 we summarize the experimental evaluation of the im-
pact of the different state space reduction techniques for these example
protocols searching up to depth 5. We also provide tables for each sin-
gle reduction method. Table 4.3 analyzes the most powerful reduction
method, grammars, of Section 4.3.1. Table 4.4 shows the comparison of
the reduction method of Section 4.3.2. Table 4.5 analyzes the transition
subsumption of Section 4.4.3, which is one of the most powerful reduction
methods. And Table 4.6 analyzes the also powerful super-lazy intruder
reduction method of Section 4.5. Note that the label “-” means that the
reachability analysis finished some levels before. The source files of the
protocol specifications are available at:

http://www.dsic.upv.es/~sescobar/Maude-NPA/redTechniques.html

The overall percentage of state-space reduction for each protocol and
the average of nearly 95% suggest that our combined techniques are re-
markably effective (the reduced number of states is almost only 5% or
less of the original number of states).

Table 4.2 shows whether the protocols have a finite state space or not.
We show the different techniques yielding a finite space for each protocol,
when it is the case. The use of grammars and the transition subsumption
are clearly the most useful techniques in general. Note that grammars
are insufficient to achieve termination for the SecReT07 example, while
subsumption and the super lazy intruder are essential in this case.

4.7 Conclusions

The Maude-NPA can analyze the security of cryptographic protocols,
modulo given algebraic properties of the protocol’s cryptographic func-
tions in executions with an unbounded number of sessions and with no
approximations or data abstractions. In this full generality, protocol se-
curity properties are well-known to be undecidable. The Maude-NPA

http://www.dsic.upv.es/~sescobar/Maude-NPA/redTechniques.html

108 Chapter 4. State Space Reduction in the Maude-NPA

Protocol Is State Space Finite?
Needham-Shroeder Public Key Yes, by Grammars and Subsumption
Needham-Shroeder Lowe’s fix Yes, by Grammars and Subsumption

SecReT06 Yes, by Subsumption or (Grammars and
Lazy)

SecReT07 Yes, by Subsumption and Lazy
Diffie-Hellman Yes, by Grammars and Subsumption
Homo-hpc Yes, by Grammars and Subsumption
Homo-NSL Yes, by Grammars, Subsumption and Lazy

Amended Needham-Shroeder No and no attack is found
Carlsen’s Secret Key Initiator Protocol No and no attack is found

Denning-Sacco Yes, by Grammars, Subsumption and Lazy
ISO-5-Pass Authentication No and no attack is found

Kao Chow Repeated Authentication Yes, Grammars, Subsumption and Lazy
Kao Chow Repeated Authentication-Handshake Key No and no attack is found

Kao Chow Repeated Authentication-Ticket Yes, by Grammars, Subsumption and Lazy
NSL-ECB-homo Yes, by Grammars and Subsumption

NSL-XOR-modified Yes, by Grammars, Subsumption and Lazy
Otway-Rees No, but an authentication attack is found

Wide Mouthed Frog No, but a secrecy attack is found
Woo-Lam Yes, Grammars and Subsumption

Table 4.2: Finite state space achieved by reduction techniques

uses backwards narrowing-based search from a symbolic description of a
set of attack states by means of patterns to try to reach an initial state
of the protocol. If an attack state is reachable from an initial state, the
Maude-NPA’s complete narrowing methods are guaranteed to prove it.
But if the protocol is secure, the backwards search may be infinite and
never terminate.

It is therefore very important, both for efficiency, and to achieve full
verification whenever possible when a protocol is secure, to use state-
space reduction techniques that: (i) can drastically cut down the number
of states to be explored; and (ii) have in practice a good chance to make
the, generally infinite, search space finite without compromising the com-
pleteness of the analysis; that is, so that if a protocol is indeed secure,
failure to find an attack in such a finite state space guarantees the pro-
tocol’s security for that attack relative to the assumptions about the in-
truder actions and the algebraic properties. We have presented a number
of state-space reduction techniques used in combination by the Maude-
NPA for exactly these purposes. We have given precise characterizations
of theses techniques and have shown that they preserve soundness and
completeness, so that: 1) any attack that is found is valid, and 2) if no
attack is found and the state space is finite, full verification of the given

4.7. Conclusions 109

Protocol none Grammars %
Needham-Shroeder Public Key 5 19 142 727 4904 4 12 49 185 769 82
Needham-Shroeder Lowe’s fix 5 19 142 727 4902 4 12 50 190 804 81

SecReT06 1 6 22 111 312 1 2 6 15 36 86
SecReT07 8 24 212 902 8047 7 21 181 747 6713 16

Diffie-Hellman 3 24 72 316 1884 3 12 30 80 233 84
Homo-hpc 1 8 22 100 533 1 2 4 10 23 93
Homo-NSL 4 15 92 418 2409 4 14 78 336 1671 28

Amended Needham-Shroeder 1 8 24 121 781 1 3 7 24 96 85
Carlsen’s Secret Key Initiator Protocol 5 19 145 764 5931 4 13 62 265 1322 75

Denning-Sacco 6 16 65 357 1628 2 4 10 27 54 95
ISO-5-Pass Authentication 5 19 145 766 5982 4 14 73 322 1562 71

Kao Chow Repeated Authentication 5 19 144 795 6059 4 13 63 271 1336 75
Kao Chow Repeated Authentication-Handshake Key 1 7 22 99 555 1 5 13 40 152 69

Kao Chow Repeated Authentication-Ticket 5 19 139 715 5382 5 19 139 715 5382 0
NSL-ECB-homo 5 18 116 532 3006 2 6 21 75 295 89

NSL-XOR-modified 1 10 42 442 6184 1 8 34 353 5193 16
Otway-Rees 1 7 18 55 237 1 3 6 13 44 78

Wide Mouthed Frog 6 31 226 1492 11788 4 18 93 458 2357 78
Woo-Lam 1 8 24 115 936 1 3 7 23 135 84

Table 4.3: Number of new states produced in each of 1,2,3,4 and 5 back-
wards narrowing steps with and without the optimization of Section 4.3.1.

security property is achieved.
Using several representative examples we have also given an exper-

imental evaluation of these techniques. Our experiments support the
conclusion that, when used in combination, these techniques: (i) typ-
ically provide drastic state space reductions, removing as much as 95
percent of the states that would otherwise be generated; and (ii) they
can often yield a finite state space, so that whether the desired security
property holds or not can in fact be decided automatically, in spite of
the general undecidability of such problems.

110 Chapter 4. State Space Reduction in the Maude-NPA

Protocol none Inconsistency %
Needham-Shroeder Public Key 5 19 142 727 4904 5 18 96 318 1663 63
Needham-Shroeder Lowe’s fix 5 19 142 727 4902 5 18 97 318 1664 63

SecReT06 1 6 22 111 312 1 6 22 107 290 5
SecReT07 8 24 212 902 8047 8 22 178 697 6210 22

Diffie-Hellman 3 24 72 316 1884 3 21 27 132 342 77
Homo-hpc 1 8 22 100 533 1 8 22 91 427 17
Homo-NSL 4 15 92 418 2409 4 14 60 190 883 60

Amended Needham-Shroeder 1 8 24 121 781 1 7 8 59 162 74
Carlsen’s Secret Key Initiator Protocol 5 19 145 764 5931 5 18 100 348 2182 61

Denning-Sacco 6 16 65 357 1628 5 5 29 74 439 73
ISO-5-Pass Authentication 5 19 145 766 5982 5 18 100 349 2206 61

Kao Chow Repeated Authentication 5 19 144 795 6059 5 18 99 362 2186 61
Kao Chow Repeated Authentication-Handshake Key 1 7 22 99 555 1 7 22 93 476 12

Kao Chow Repeated Authentication-Ticket 5 19 139 715 5382 5 19 135 677 4589 13
NSL-ECB-homo 5 18 116 532 3006 5 17 90 281 1291 54

NSL-XOR-modified 1 10 42 442 6184 1 7 10 143 1422 76
Otway-Rees 1 7 18 55 237 1 6 6 33 65 65

Wide Mouthed Frog 6 31 226 1492 11788 6 29 189 1183 8591 26
Woo-Lam 1 8 24 115 936 1 8 24 108 812 12

Table 4.4: Number of new states produced in each of 1,2,3,4 and 5 back-
wards narrowing steps with and without the optimization of Section 4.3.2.

Protocol none Subsumption %
Needham-Shroeder Public Key 5 19 142 727 4904 5 15 61 107 237 92
Needham-Shroeder Lowe’s fix 5 19 142 727 4902 5 15 61 107 237 92

SecReT06 1 6 22 111 312 1 6 15 31 40 79
SecReT07 8 24 212 902 8047 6 15 61 165 506 91

Diffie-Hellman 3 24 72 316 1884 2 14 26 102 288 81
Homo-hpc 1 8 22 100 533 1 8 15 72 174 59
Homo-NSL 4 15 92 418 2409 4 12 41 68 181 89

Amended Needham-Shroeder 1 8 24 121 781 1 8 15 70 203 68
Carlsen’s Secret Key Initiator Protocol 5 19 145 764 5931 5 15 69 192 825 83

Denning-Sacco 6 16 65 357 1628 6 11 44 102 393 73
ISO-5-Pass Authentication 5 19 145 766 5982 5 15 69 194 837 83

Kao Chow Repeated Authentication 5 19 144 795 6059 5 15 68 194 792 84
Kao Chow Repeated Authentication-Handshake Key 1 7 22 99 555 1 7 13 53 144 68

Kao Chow Repeated Authentication-Ticket 5 19 139 715 5382 5 15 69 204 858 81
NSL-ECB-homo 5 18 116 532 3006 5 14 55 129 410 83

NSL-XOR-modified 1 10 42 442 6184 1 8 16 71 152 96
Otway-Rees 1 7 18 55 237 1 7 12 43 104 47

Wide Mouthed Frog 6 31 226 1492 11788 6 20 76 212 721 92
Woo-Lam 1 8 24 115 936 1 8 15 67 246 68

Table 4.5: Number of new states produced in each of 1,2,3,4 and 5 back-
wards narrowing steps with and without the optimization of Section 4.4.3.

4.7. Conclusions 111

Protocol none Super-lazy Intruder %
Needham-Shroeder Public Key 5 19 142 727 4904 5 19 142 726 4822 1
Needham-Shroeder Lowe’s fix 5 19 142 727 4902 5 19 142 726 4820 1

SecReT06 1 6 22 111 312 1 6 22 111 306 1
SecReT07 8 24 212 902 8047 8 22 62 199 648 89

Diffie-Hellman 3 24 72 316 1884 3 24 72 297 1307 25
Homo-hpc 1 8 22 100 533 1 8 22 100 533 0
Homo-NSL 4 15 92 418 2409 4 15 92 417 2335 2

Amended Needham-Shroeder 1 8 24 121 781 1 8 24 95 573 25
Carlsen’s Secret Key Initiator Protocol 5 19 145 764 5931 5 15 59 266 1291 76

Denning-Sacco 6 16 65 357 1628 6 16 63 237 1014 35
ISO-5-Pass Authentication 5 19 145 766 5982 5 15 59 268 1307 76

Kao Chow Repeated Authentication 5 19 144 795 6059 5 15 59 269 1321 76
Kao Chow Repeated Authentication-Handshake Key 1 7 22 99 555 1 1 1 6 13 96

Kao Chow Repeated Authentication-Ticket 5 19 139 715 5382 5 15 57 243 1115 77
NSL-ECB-homo 5 18 116 532 3006 5 18 116 531 2896 3

NSL-XOR-modified 1 10 42 442 6184 1 10 42 311 2077 63
Otway-Rees 1 7 18 55 237 1 7 18 49 193 15

Wide Mouthed Frog 6 31 226 1492 11788 6 23 113 663 3872 65
Woo-Lam 1 8 24 115 936 1 8 24 90 331 57

Table 4.6: Number of new states produced in each of 1,2,3,4, and 5 back-
wards narrowing steps with and without the optimization of Section 4.5.

Chapter 5

A Rewriting-based Forwards
Semantics for Maude-NPA

In this chapter we define a novel rewriting-based forwards semantics ap-
propiate for the Maude-NPA protocol analysis tool that can be safely
integrated with its narrowing-based backwards semantics.

Section 5.1 gives an overview of our approach. More details on how
to perform a foward execution of a protocol are given in Section 5.2. The
rules of Maude-NPA’s forwards operational semantics are described in
Section 5.3. In Section 5.4 we prove the soundness and completeness of
the backwards semantics with respect to the forwards semantics. Section
5.5 presents the experimental results obtained with our forwards rewrit-
ing tool. Finally, Section 5.6 concludes the chapter and discusses some
of the issues that comparing the backwards with the forwards semantics
helped us resolve.

These results have been published in [Escobar et al., 2014b].

5.1 Overview

Over the years a number of different techniques have been applied to
security analysis of cryptographic protocols via state space exploration.
These techniques can either rely on an explicit-state model-cheking using
forward search, or on a symbolic-state model-checking, typically using
backward search. As explained in Chapter 1, each approach is more
appropiated than the other for certain purposes. Therefore, one may

114 Chapter 5. A Rewriting-based Forwards Semantics for Maude-NPA

prefer not to limit oneself to one approach, but to switch back and forth
between these two. By integrating the two approaches we can obtain
the best of both worlds, using each technique where it works best. But
for such an integration to be correct and useful two requirements should
be met: (1) the forwards and backwards tools should share the same
semantic model and language; and (2) the operational semantics used in
the forwards and backwards analyses should agree with each other.

Although Maude-NPA already has an intuitive forwards semantics
obtained by reversing the rewrite rules defining the backwards seman-
tics, it is not suitable for model checking. Designing a suitable forwards
semantics requires much more than simply reversing the transition rules
of the backwards semantics. There are three main facts that make such
forwards semantics unsuitable for model-checking purposes. First, the
rewrite rules in the backwards semantics can introduce extra variables.
This is unproblematic for narrowing-based symbolic analysis, but unac-
ceptable for rewriting-based forwards execution. Second, in the back-
wards semantics a state contains explicit information about events oc-
curring in the future (since they were observed “earlier” in the backwards
search). Reversing rules of type (3.1), (3.2), and (3.3) (see Section 3.4,
in Page 50) allow the definition of an intuitive forwards semantics associ-
ated to Maude-NPA but it works only for validation of a given execution
sequence, where the initial state must contain all the strands, and not for
searching for an attack, where the initial state must be empty and strands
would have to be added during forwards search. This information must
be removed in the forwards semantics, while still ensuring that reach-
ability is not affected. Third, in the backwards semantics fresh values
(nonces, session keys, etc.) are represented by special variables. These
must be replaced by constants in the forwards semantics, again without
affecting reachability. In the following, we explain how these three is-
sues have been approached in the rewriting-based forwards semantics for
Maude-NPA presented in this chapter.

In a forwards semantics we also specify protocols and states in Maude-
NPA using the strand space model, similarly as in the backwards seman-
tics (see Section 3.2). However, there are some minor differences, which
we explain in the following.

In contrast to the backwards semantics, we explore concrete states
in the forwards semantics, That is, a state is an EP-equivalence class

5.1. Overview 115

rtsEP
P TΣP④EP

with t a ground ΣP-term.
Similarly as the backwards semantics, a state consists of a multiset of

partially executed strands Si and a set of terms in the intruder’s knowl-
edge, i.e., a state is a term of the form tS1 & ☎ ☎ ☎ &Sn & tIK✉✉ where & is
an associative-commutative union operator. However, in the forward se-
mantics, & cannot be idempotent, since there will be situations where two
occurrences of the same strand will lead to completely different strands
later on but their current partial representation in the state makes them
equal. So keeping only one occurrence of the partial strand is wrong.

In the forwards semantics intruder’s knowledge facts are all of the
form mPI (the intruder knows m) where m is a message expression.
Moreover, strands do not evolve over time; that is, a strand is a term
of the form rmsg✟1 , . . . ,msg✟k✁1,msg✟k s, with no vertical bar ⑤ separating
past and future messages. A strand represents the exchange of message
performed up to the present moment of the protocol execution.

Similarly as in the backwards semantics, variables of each positive
message in a strand must appear in previous input messages (see Foot-
note 3 in Page 44). However, in the forwards semantics, this restriction
must be applied to variables denoting principal names and variables of
sort Fresh created by each strand too, unlike the backwards semantics.
This requirement is essential in the rewriting-based forwards semantics
for obtaining rewrite rules without extra variables, i.e., rewrite rules l Ñ r

where Var♣rq ❸ Var♣lq, which allows for effectively executable rewriting
computations.

Our solution is based on two ideas. First, to match input terms in
a strand always with the intruder’s knowledge. Let us illustrate this
with the intruder encryption capability r✁♣Kq,✁♣Mq,�♣e♣K,Mqs. In
the backward semantics of Section 3.4 the encryption strand above pro-
duces the following rewrite rule adding a new strand (when the rules are
executed backwards) if a message of the form e♣K,Mq appears in the
intruder knowledge:

tSS& r✁♣Kq,✁♣Mq ⑤ �♣e♣K,Mqs& t♣e♣K,Mq❘I, IK✉✉

Ñ tSS& te♣K,MqPI, IK✉✉

whereas in the new forward semantics that rule is defined differently:

116 Chapter 5. A Rewriting-based Forwards Semantics for Maude-NPA

tSS& tKPI,MPI, IK✉✉
Ñ tSS& r✁♣Kq,✁♣Mq,�♣e♣K,Mqqs& tKPI,MPI, e♣K,MqPI, IK✉✉

Second, principal names as well as new fresh variables are treated as
numeric constants by using a global counter ①N② that will be appropri-
ately incremented. For instance, the Dolev-Yao strand for new nonces
:: r :: r�♣n♣i, rqqs will be represented by a transition rule of the form:

tSS & tIK✉ & ①N②✉ Ñ tSS & r�♣n♣i, Nqqs & tIK✉ & ①N � 1②✉

where the global counter N is incremented by one. The formal definition
of how forwards transition rules are generated from the strand specifi-
cation now requires some notation to indicate how the global counter is
increased. Given a message u and a counter ①i②, we write uÒni , to denote
that those principal names and fresh variables appearing in term u that
are identified as new have been numbered starting with i and ending in
n✁ 1, with n the next available value of the counter. For example, given
the term u ✏ exp♣g, n♣0, 1q ✝ n♣A, rqq where 0 corresponds to a princi-
pal name already replaced and 1 to a fresh variable already replaced,
but A is a new principal name and r is a new fresh variable, we write
uÒ1210 ✏ exp♣g, n♣0, 1q ✝ n♣10, 11qq, i.e., the substitution tA ÞÑ 10, r ÞÑ 11✉
has been applied. In the forwards semantics, we remove the list of fresh
variables at the beginning of each strand and the vertical bar, since they
are no longer necessary.

5.2 Forward Reachability Analysis

In a forward execution of a protocol we begin with an empty initial
state containing no information in the intruder knowledge and, since we
consider the unbounded session case, no strand in the initial state. The
execution of the protocol implies searching for a final state which is an
instance of the pattern denoting the desired class of attack states.

Example 5.1 Given the protocol with Diffie-Hellman exponentiation of
Example 3.1 in Page 45, the initial state is just the empty state:

5.2. Forward Reachability Analysis 117

t❍ & tempty✉ & ①0②✉

The final state pattern where the intruder has learned the secret is as
follows, where Y , SR, SS , IK , and r are variables and a and b represent
the actual names of Alice and Bob:

t r✁♣a; b;Y q,�♣b; a; exp♣g, n♣b, rqqq,✁♣e♣exp♣Y, n♣b, rqq,SRqqs

& SS & tSRPI, IK ✉ ✉

The forwards analysis is easily performed in the Maude system by
using Maude’s search command, which receives the initial term and the
final pattern as input and generates the search state space. Similar to
the backwards analysis, the solution to the forwards reachability analysis
is as follows. The principal strands are (where ca, cb, cb✶, r1, r2, r3, r4
are natural numbers but the actual value is irrelevant):

r�♣ca; cb✶; exp♣g, n♣ca, r2qqq,
✁♣cb✶; ca; exp♣g, n♣i, r4qqq,
�♣e♣exp♣g, n♣i, r4q ✝ n♣ca, r2qq, sec♣ca, r1qqqsq &

r✁♣ca; cb; exp♣g, n♣i, r4qqq,
�♣cb; ca; exp♣g, n♣cb, r3qqq,
✁♣e♣exp♣g, n♣i, r4q ✝ n♣cb, r3qq, sec♣ca, r1qqqs &

The Dolev-Yao intruder strands are as follows:

118 Chapter 5. A Rewriting-based Forwards Semantics for Maude-NPA

r�♣n♣i, r4qqs &

r✁♣ca; cb✶; exp♣g, n♣ca, r2qqq,�♣cb✶; exp♣g, n♣ca, r2qqqs &

r✁♣cb✶; exp♣g, n♣ca, r2qqq,�♣exp♣g, n♣ca, r2qqqs &

r✁♣exp♣g, n♣ca, r2qqq,✁♣n♣i, r4qq,
�♣exp♣g, n♣i, r4q ✝ n♣ca, r2qqqs &

r✁♣exp♣g, n♣i, r4q ✝ n♣ca, r2qqq,
✁♣e♣exp♣g, n♣i, r4q ✝ n♣ca, r2qq, sec♣ca, r1qqq,
�♣sec♣ca, r1qqs &

r✁♣exp♣g, n♣cb, r3qqq,✁♣n♣i, r4qq,
�♣exp♣g, n♣i, r4q ✝ n♣cb, r3qqqs &

r✁♣exp♣g, n♣i, r4q ✝ n♣cb, r3qqq,✁♣sec♣ca, r1qq,

� ♣e♣exp♣g, n♣i, r4q ✝ n♣cb, r3qq, sec♣ca, r1qqqs &

r✁♣cb; ca; exp♣g, n♣cb, r3qqq,�♣ca; exp♣g, n♣cb, r3qqqs &

r✁♣ca; exp♣g, n♣cb, r3qqq,�♣exp♣g, n♣cb, r3qqqs

�

It is also possible to specify authentication attacks in Maude for the
forwards semantics by using again Maude’s search command (see Sec-
tion 2.3, Page 37) to search for an attack, but making it conditional to
the never patterns not having been encountered. Note that the forwards
semantics is monotonic in the sense that for s, s✶ concrete states such
that s Ñ✝ s✶, then s✶ “stores” s as a “substate.” This means that if a
never pattern is avoided by s✶ it is also avoided by s. Therefore, given
an attack pattern S and never patterns S1, . . . , Sn, we can search for an
attack avoiding such patterns by giving to Maude the conditional search
command:

search initÑ✝ S such that

pS1
♣Sq ✏ false ❫ . . .❫ pSn

♣Sq ✏ false .

where each predicate pSi
holds for a concrete state s iff s is an instance of

the pattern Si. When a never pattern Si shares variables v0, . . . , vki with
S, the predicate pSi

is extended in the form pSi
♣S, v0, . . . , vkiq; if a never

5.3. Forwards Operational Semantics 119

pattern has variables not appearing in S, these will be created and used
within the predicate. This method has allowed us to analyze by forward
model checking all the examples in Section 5.5.

Example 5.2 Given the following attack S, and never patterns Alice1
and Alice2 (not sharing variables with S) of the Diffie-Hellman protocol
in Example 3.2:

S ✏ t :: r✷ :: r✁♣a; b;Y q,�♣b; a; exp♣g, n♣b, r✷qqq,
✁♣e♣exp♣Y, n♣b, r✷qq, SRqq ⑤ nils

& SS & tIK✉✉

Alice1 ✏ :: r, r✶ :: r�♣a; b; exp♣g, n♣a, rqqqs

Alice2 ✏ :: r, r✶ :: r�♣a; b; exp♣g, n♣a, rqqq,✁♣b; a;Xq,
�♣e♣exp♣X,n♣a, rqq, sec♣a, r✶qqqs

The Maude conditional search command to search for the attack S avod-
ing the never patterns for Alice’s strand, is as follows:

search initÑ✝ S such that

pAlice1♣Sq ✏ false ❫ pAlice2♣Sq ✏ false .

where the predicates pAlice1 and pAlice2 check whether any strand of the
concrete state S is an instance of the strands Alice1 and Alice2, respec-
tively. �

5.3 Forwards Operational Semantics

In a forward reachability analysis, we define state changes by means of a
set RFP of rewrite rules, so that the rewrite theory ♣ΣP , EP , RFPq char-
acterizes the behavior of protocol P modulo the equations EP . Here
we do not have generic transition rules, as in the backwards semantics,
and all the rules are generated from principal and intruder strands. The
intuitive idea is that a state consists of a multiset of partially executed
strands and a set of terms in the intruder’s knowledge. Unlike the back-
wards semantics, only the part of the strand that has already executed
is present in the state, and each such partial strand instantiates a prefix

120 Chapter 5. A Rewriting-based Forwards Semantics for Maude-NPA

of a strand in P . One progresses by either: (i) adding a positive term
m� to an existing strand and either adding or not adding m to the in-
truder’s knowledge, (ii) adding a negative term m✁ to an existing strand
only if it is already present in the intruder’s knowledge, or (iii) starting
a new strand, and if it starts with a m� that either adds or not to the
intruder’s knowledge. For example, the intruder encryption capability
r✁♣Kq,✁♣Mq,�♣e♣K,Mqs produces the following three rewrite rules:

tSS& tKPI, IK✉& ①N②✉
Ñ tSS& r✁♣Kqs& tKPI, IK✉& ①N②✉

tSS& r✁♣Kqs& tMPI, IK✉& ①N②✉
Ñ tSS& r✁♣Kq,✁♣Mqs& tMPI, IK✉& ①N②✉

tSS& r✁♣Kq,✁♣Mqs& tIK✉& ①N②✉
Ñ tSS& r✁♣Kq,✁♣Mq,�♣e♣K,Mqs&

te♣K,MqPI, IK✉& ①N②✉

The sets of rewrite rules for output messages are generated as follows,
note that some rewrite rules are conditional:

✩✬✬✬✬✬✫✬✬✬✬✬✪

❅ ru✟1 , . . . , u
✟
j✁1, u

�
j , u

✟
j�1, . . . , u

✟
n s P P ❫ j → 1 :

tSS& tIK✉& ru✟1 , . . . , u
✟
j✁1s& ①N②✉

Ñ
tSS& tujÒ

M
N PI, IK✉& ru✟1 , . . . , u

✟
j✁1, ♣ujÒ

M
N q�s& ①M②✉

IF ♣ujÒ
M
N PIq ❘ IK

✱✴✴✴✴✴✳✴✴✴✴✴✲
(5.1)

✩✬✫✬✪
❅ ru✟1 , . . . , u

✟
j✁1, u

�
j , u

✟
j�1, . . . , u

✟
n s P P ❫ j → 1 :

tSS& tIK✉& ru✟1 , . . . , u
✟
j✁1s& ①N②✉

Ñ tSS& tIK✉& ru✟1 , . . . , u
✟
j✁1, ♣ujÒ

M
N q�s& ①M②✉

✱✴✳✴✲ (5.2)

✩✬✬✬✫✬✬✬✪
❅ ru�1 , . . . , u

✟
n s P P :

tSS& tIK✉& ①N②✉
Ñ tSS& r♣u1Ò

M
N q�s& tu1Ò

M
N PI, IK✉& ①M②✉

IF ♣u1PIÒ
M
N q ❘ IK

✱✴✴✴✳✴✴✴✲ (5.3)

★
❅ ru�1 , . . . , u

✟
n s P P :

tSS& tIK✉& ①N②✉ Ñ tSS& r♣u1Ò
M
N q�s& tIK✉& ①M②✉

✰
(5.4)

5.3. Forwards Operational Semantics 121

Each transition rule of type (5.1) accepts output messages and the
intruder’s knowledge is positively increased, while each transition rule
of type (5.2) simply accepts output messages without modifying the in-
truder’s knowledge. Each transition rule in (5.3) and (5.4) introduces a
new strand beginning with an output message. Similarly, rules of type
(5.3) introduce a new strand and the intruder’s knowledge is positively
increased, whereas rules of type (5.4) introduce a new strand but the
intruder’s knowledge is not increased 1 .

The following set of rewrite rules describes the general state transition
for a negative message, generating specific rewrite rules according to the
protocol strands:

✩✬✫✬✪
❅ ru✟1 , . . . , u

✟
j✁1, u

✁
j , u

✟
j�1, . . . , u

✟
n s P P ❫ j → 1 :

tSS &tujPI, IK✉& ru✟1 , . . . , u
✟
j✁1s& ①N②✉

Ñ tSS& tujPI, IK✉& ru✟1 , . . . , u
✟
j✁1, u

✁
j s& ①N②✉

✱✴✳✴✲ (5.5)

✩✬✫✬✪
❅ ru✁1 , u

✟
2 , . . . , u

✟
n s P P :

tSS& tu1PI, IK✉& ①N②✉
Ñ tSS & ru✁1 s& tu1PI, IK✉& ①N②✉

✱✴✳✴✲ (5.6)

Each transition rule in (5.5) and (5.6) accepts input messages if the
intruder’s knowledge matches them. Note that in (5.6) a new strand is
introduced.

Definition 5.3 Let P be a protocol with signature ΣP and equational
theory EP . We define the forward rewrite theory characterizing P to be
♣ΣP , EP , RFPq where RFP ✏ t(5.1)❨ (5.2)❨ (5.3)❨ (5.4)❨ (5.5)❨ (5.6)✉.

The forwards execution of a protocol induces a transition system as
follows.

1Note that the use of the global counter for new principal names in previous rules
has to take into account when one of those principals is indeed the intruder; see
Example 5.5 for the case in which the intruder impersonates Bob.

122 Chapter 5. A Rewriting-based Forwards Semantics for Maude-NPA

Definition 5.4 (Transition System induced by a Protocol) Given
a protocol P characterized by the forward rewrite theory ♣ΣP , EP , RFPq
such that ♣ΣP , B, E0q is a decomposition of ♣Σ, EPq, we can associate to
it a transition system LP whose states are B-equivalence classes of terms
in E0, B-canonical form and whose transitions are of the form:

rtsB Ñ rt✶sB

where t ÑRFP ,B u and t✶ ✏B uÓE0,B.

Unlike the case with process calculi, no information is removed from
a state and the history of previous actions can be recovered from a state.
Therefore there is no need to record this information in the transition
system through labels in order to obtain a labeled transition system.
However, labels can be added if desired (e.g. as a compact way of encod-
ing essential information).

Example 5.5 Let us show the rewrite rules generated for the proto-
col with Diffie-Hellman exponentation of Example 3.1 in Page 45. The
rewrite rules associated to Alice’s strand in the forwards semantics of
our running example are as follows, where the increment of the global
counter can be clearly identified. Alice’s strand is defined as

::: r, r✶ ::: r�♣A;B; exp♣g, n♣A, rqqq,✁♣B;A;Xq,
�♣e♣exp♣X,n♣A, rqq, sec♣A, r✶qqqs

and the rewrite rules associated to it are as follows:

tSS & tIK✉ & ①N②✉
Ñ tSS & r�♣N ;N � 1; exp♣g, n♣N,N � 2qqqs &

t♣N ;N � 1; exp♣g, n♣N,N � 2qqqPI, IK✉ & ①N � 3②✉

tSS & r�♣A;B; exp♣g, n♣A,Rqqqs &t♣B;A;XqPI, IK✉ & ①N②✉
Ñ tSS & r�♣A;B; exp♣g, n♣A,Rqqq,✁♣B;A;Xqs &

t♣B;A;XqPI, IK✉ & ①N②✉

tSS & r�♣A;B; exp♣g, n♣A,Rqqq,✁♣B;A;Xqs &tIK✉ & ①N②✉
Ñ tSS & r�♣A;B; exp♣g, n♣A,Rqqq,✁♣B;A;Xq,

�♣e♣exp♣X,n♣A,Rqq, sec♣A,Nqqqs &
te♣exp♣X,n♣A,Rqq, sec♣A,NqqqPI, IK✉ & ①N � 1②✉

5.3. Forwards Operational Semantics 123

When the intuder impersonates Bob, the first rule is:

tSS & tIK✉ & ①N②✉
Ñ tSS & r�♣N ; i; exp♣g, n♣N,N � 1qqqs &

t♣N ; i; exp♣g, n♣N,N � 1qqqPI, IK✉ & ①N � 2②✉

where i is a constant denoting the intruder’s name. Note that it is not
necessary to duplicate the other two rules.

Bob’s strand is defined as

::: r, r✶ ::: r✁♣A;B;Y q,�♣B;A; exp♣g, n♣B, r✷qqq,
✁♣e♣exp♣Y, n♣B, r✷qq, Srqqs

and the rewrite rules associated to it are as follows:

tSS & tA;B;Y PI, IK✉ & ①N②✉
Ñ tSS & r✁♣A;B;Y q,�♣B;A; exp♣g, n♣B,Nqqqs &

tA;B;Y PI, ♣B;A; exp♣g, n♣B,NqqqPI, IK✉ & ①N � 1②✉

tSS & r✁♣A;B;Y q,�♣B;A; exp♣g, n♣B, Jqqqs &
te♣exp♣g,NS ✝ n♣B, Jqq, SrqPI, IK✉ & ①N②✉

Ñ tSS & r✁♣A;B;Y q,�♣B;A; exp♣g, n♣B, Jqqq,
✁♣e♣exp♣g,NS ✝ n♣B, Jqq, Srqqs &

te♣exp♣g,NS ✝ n♣B, Jqq, SrqPI, IK✉ & ①N②✉

Let us now show the rewrite rules generated for each intruder action.
The strands denoting the intruder’s ability to perform the inverses of the
concatenation are defined as follows:

:: nil :: r✁♣M1;M2q,�♣M1qs
:: nil :: r✁♣M1;M2q,�♣M2qs

We show below the rewrite rules associated to these two strands:

tSS & t♣M1;M2qPI, IK✉ & ①N②✉
Ñ tSS & r✁♣M1;M2q,�♣M1qs & t♣M1;M2qPI,M1PI, IK✉ & ①N②✉

tSS & t♣M1;M2qPI, IK✉ & ①N②✉
Ñ tSS & r✁♣M1;M2q,�♣M2qs & t♣M1;M2qPI,M2PI, IK✉ & ①N②✉

124 Chapter 5. A Rewriting-based Forwards Semantics for Maude-NPA

The intruder strand denoting its ability to concatenate two messages
M1 and M2 is defined as follows:

:: nil :: r✁♣M1q,✁♣M2q,�♣M1;M2qs

and its associated rewrite rules are as shown below:

tSS & tM1PI, IK✉ & ①N②✉
Ñ tSS & r✁♣M1qs & tM1PI, IK✉ & ①N②✉

SS & r✁♣M1qs & tM2PI, IK✉ & ①N②✉
Ñ tSS & r✁♣M1q,✁♣M2qs & tM2PI, IK✉ & ①N②✉

tSS & r✁♣M1q,✁♣M2qs & tIK✉ & ①N②✉
Ñ tSS & r✁♣M1q,✁♣M2q,�♣M1;M2qs & t♣M1;M2qPI, IK✉ & ①N②✉

In this protocol the intruder is allowed to encrypt and decrypt a
message M with a given key Ke, which is denoted by the strands shown
below:

:: nil :: r✁♣Mq,✁♣Keq,�♣e♣Ke,Mqqs
:: nil :: r✁♣Mq,✁♣Keq,�♣d♣Ke,Mqqs

The rewrite rules generated for these two strands are as follows:

tSS & tMPI, IK✉ & ①N②✉
Ñ tSS & r✁♣Mqs & tMPI, IK✉ & ①N②✉

tSS & r✁♣Mqs & tKePI, IK✉ & ①N②✉
Ñ tSS & r✁♣Mq,✁♣Keqs & t♣KePIq, IK✉ & ①N②✉

tSS & r✁♣Mq,✁♣Keqs & tIK✉ & ①N②✉
Ñ tSS & r✁♣Mq,✁♣Keq,�♣e♣Ke,Mqqs & te♣Ke,MqPI, IK✉ & ①N②✉

tSS & t♣MqPI, IK✉ & ①N②✉
Ñ tSS & r✁♣Mqs & tMPI, IK✉ & ①N②✉

tSS & r✁♣Mqs & tKePI, IK✉ & ①N②✉
Ñ tSS & r✁♣Mq,✁♣Keqs & t♣KePIq, IK✉ & ①N②✉

tSS & r✁♣Mq,✁♣Keqs & tIK✉ & ①N②✉
Ñ tSS & r✁♣Mq,✁♣Keq,�♣e♣Ke,Mqqs & td♣Ke,MqPI, IK✉ & ①N②✉

5.3. Forwards Operational Semantics 125

The intruder’s ability to perform the product of two exponentsNS1 ,and
NS2 is denoted by the strand shown below:

:: nil :: r✁♣NS1 q,✁♣NS2 q,�♣NS1 ✝ NS2 qqs

The rewrite rules associated to this strand are as follows:

tSS & t♣NS1 qPI, IK✉ & ①N②✉
Ñ tSS & r✁♣NS1 qs & tNS1PI, IK✉ & ①N②✉

SS & r✁♣NS1 qs & t♣NS2 qPI, IK✉ & ①N②✉
Ñ tSS & r✁♣NS1 q,✁♣NS2 qs & tNS2PI, IK✉ & ①N②✉

tSS & r✁♣NS1 q,✁♣NS2 qs & tIK✉ & ①N②✉
Ñ tSS & r✁♣NS1 q,✁♣NS2q,�♣NS1 ✝ NS2 qs &

t♣NS1 ✝ NS2 qPI, IK✉ & ①N②✉

The strand denoting the intruder’s ability to perform a Diffie-Hellman
exponentiation of GE to the power of NS is as shown below:

:: nil :: r✁♣GE q,✁♣NS q,�♣exp♣GE ,NS qqs

The rewrite rules associated to this strand are as follows:

tSS & tGEPI, IK✉ & ①N②✉
Ñ tSS & r✁♣GE qs & tGEPI, IK✉ & ①N②✉

SS & r✁♣GE qs & tNSPI, IK✉ & ①N②✉
Ñ tSS & r✁♣GE q,✁♣NS qs & tNSPI, IK✉ & ①N②✉

tSS & r✁♣GE q,✁♣NS qs & tIK✉ & ①N②✉
Ñ tSS & r✁♣GE q,✁♣NSq,�♣exp♣GE ,NS qqs &

texp♣GE ,NS qPI, IK✉ & ①N②✉

The intruder capability to generate the g constant, denoted by the
strand shown below:

:: nil :: r�♣gqs

has associated the following rewrite rule:

126 Chapter 5. A Rewriting-based Forwards Semantics for Maude-NPA

tSS & tIK✉ & ①N②✉ Ñ tSS & r�♣gqs & tgPI, IK✉ & ①N②✉

Finally, for the intruder’s capability to generate nonces and any ar-
bitray name A, denoted by the two strands shown below, respectively:

:: r :: r�♣n♣i, rqqs
:: r :: r�♣Aqs

the following rewrite rules are generated, respectively

tSS & tIK✉ & ①N②✉
Ñ tSS & r�♣n♣i, Nqqs & tn♣i, NqPI, IK✉ & ①N � 1②✉

tSS & tIK✉ & ①N②✉
Ñ tSS & r�♣name♣Nqqs & tname♣NqPI, IK✉ & ①N � 1②✉

Note that, as explained above, names and fresh variables are treated as
numeric constants.

�

5.4 Soundness and Completeness of the

Forwards Semantics

In the previous section we defined the rewriting-based forwards semantics
for Maude-NPA. Now we need to prove that the backwards operational
semantics of Maude-NPA given in Section 3.4 is sound and complete
w.r.t. this semantics. Note that throughout this section s Ñ s✶ denotes
a (forward) rewriting step using a rule of RFP , whereas S

✶
❀ S denotes

a backwards narrowing step using a rule of RBP . We first introduce some
definitions and concepts that will be used in these proofs.

First, we define what a symbolic state is, i.e., a state with variables.

Definition 5.6 (Symbolic P-state) Given a protocol P, a symbolic

5.4. Soundness and Completeness of the Forwards Semantics 127

P-state S is a term of the form:

S ✏ t :: r11 , . . . , rm1
:: ru✟11 , . . . u

✟
i1✁1 ⑤ u✟i1 , . . . , u

✟
n1
s &

...

:: r1k , . . . , rmk
:: ru✟1k , . . . , u

✟
ik✁1 ⑤ u✟ik , . . . , u

✟
nk
s & SS

tw1PI, . . . , wmPI, w✶
1❘I, . . . , w

✶
m✶❘I, IK✉✉

where for each 1 ↕ j ↕ k, there exists a strand rm✟
1j
, . . .m✟

ij✁1,

m✟
ij
, . . . ,m✟

nj
s P P and a substitution ρj : X Ñ TΣ♣X q such that m1jρj ✏EP

u1j , . . . , mnj
ρj ✏EP

unj
, SS is a variable denoting a (possibly empty)

set of strands, and IK is a variable denoting a (possibly empty) set of
intruder’s knowledge facts.

Second, we define what a ground state is, i.e., a state without vari-
ables.

Definition 5.7 (Ground P-state) Given a protocol P, a ground P-
state s is a term without variables of the form:

s ✏ tru✟11 , . . . u
✟
i1✁1s & ☎ ☎ ☎& ru✟1k , . . . , u

✟
ik✁1s &

tw1PI, . . . , wmPI✉ & ①J②✉

where for each 1 ↕ j ↕ k, there exists a strand rm✟
1j
, . . .m✟

ij✁1,

m✟
ij
, . . . ,m✟

nj
s P P and a substitution ρj : X Ñ TΣ such that m1jρj ✏EP

u1j , . . . , mijρj ✏EP
uij .

Third, we define a suitable instantiation relation between symbolic
and ground states.

Definition 5.8 (Lifting relation) Given a symbolic P-state S and a
ground state s we say that s lifts to S, or that S instantiates to s with a
grounding substitution θ : ♣Var♣Sq ✁ tSS , IK ✉q Ñ TΣ, writen S →θ s iff

• for each strand :: r1, . . . , rm :: ru✟1 , . . . u
✟
i✁1 ⑤ u

✟
i , . . . , u

✟
n s in S, there

exists a strand rv✟1 , . . . v
✟
i✁1s in s such that ❅1 ↕ j ↕ i ✁ 1, vj ✏EP

ujθ.

• for each positive intruder fact wPI in S, there exists a positive
intruder fact w✶PI in s such that w✶ ✏EP

wθ, and

128 Chapter 5. A Rewriting-based Forwards Semantics for Maude-NPA

• for each negative intruder fact w❘I in S, there is no positive in-
truder fact w✶PI in s such that w✶ ✏EP

wθ.

Let us now prove that narrowing with the backwards
rewrite theory ♣ΣP , EP , R

✁1
BP

q is complete with respect to rewriting with
the forwards rewrite theory ♣ΣP , EP , RFPq. First, the lemma below shows
how the lifting of a ground term to a symbolic state induces a lifting of
a forward rewriting step in the forwards semantics to a backwards nar-
rowing step in the backwards semantics. This will be used to prove The-
orem 5.10, which allows us to lift a rewriting sequence in the forwards
semantics to a narrowing sequence in the backwards semantics.

Lemma 5.9 (Lifting Lemma) Given a protocol P, two states s and
s✶, a P-symbolic state S ✶ and a substitution θ✶ s.t. s Ñ s✶ and S ✶ →θ✶

s✶,
then there exist a P-symbolic state S and a substitution θ s.t S →θ s and
either S ✶ ❀ S or S ✏ S ✶.

Proof. First of all, all the forward rewriting rules act on the ground state
s✶ by either adding one more element to an existing strand (rules (5.1),
(5.2), and (5.5)), adding a positive fact to the intruder knowledge (rules
(5.1), and (5.3)), adding a new strand (rules (5.3), (5.4), and (5.5)), or
repeating a positive intruder fact that is already in s✶ (rules (5.5) and
(5.6)). This allows us to identify six cases for the grounding substitution
θ✶ of S ✶ into s✶, depending upon whether the grounding substitution of S
under θ contains the relevant strands and positive intruder facts.

a) There is a strand ru✟1 , . . . , u
✟
i✁1, u

✟
i , . . . , u

✟
n s in P , n ➙ 1, 1 ↕ i ↕ n,

and a substitution ρ such that ru✟1 , . . . , u
✟
i✁1, u

✟
i sρ is a strand in s✶,

ru✟1 , . . . , u
✟
i✁1 ⑤ u

✟
i , . . . , u

✟
n sρ is a strand in S ✶θ✶, and uiρPI appears

in the intruder knowledge of S ✶θ✶. This is valid for rules in sets
(5.1), (5.3), (5.5), and (5.6). If i → 1, then we also know that
ru✟1 , . . . , u

✟
i✁1sρ is a strand in s.

b) There is a strand ru✟1 , . . . , u
✟
i✁1, u

✟
i , . . . , u

✟
n s in P , n ➙ 1, 1 ↕ i ↕ n,

and a substitution ρ such that ru✟1 , . . . , u
✟
i✁1, u

✟
i sρ is a strand in s✶,

ru✟1 , . . . , u
✟
i✁1 ⑤ u

✟
i , . . . , u

✟
n sρ is a strand in S ✶θ✶, but uiρPI does not

appear in the intruder knowledge of S ✶θ✶. This is valid for rules in
sets (5.1), (5.3), (5.5), and (5.6). If i → 1, then we also know that
ru✟1 , . . . , u

✟
i✁1sρ is a strand in s.

5.4. Soundness and Completeness of the Forwards Semantics 129

c) There is a strand ru✟1 , . . . , u
✟
i✁1, u

✟
i , . . . , u

✟
n s in P , n ➙ 1, 1 ↕ i ↕ n,

and a substitution ρ such that ru✟1 , . . . , u
✟
i✁1, u

✟
i sρ is a strand in s✶,

uiρPI appears in the intruder knowledge of S ✶θ✶, but ru✟1 , . . . , u
✟
i✁1 ⑤

u✟i , . . . , u
✟
n sρ is not a strand in S ✶θ✶. This is valid for rules in sets

(5.1), (5.3), (5.5), and (5.6). If i → 1, then we also know that
ru✟1 , . . . , u

✟
i✁1sρ is a strand in s.

d) There is a strand ru✟1 , . . . , u
✟
i✁1, u

✟
i , . . . , u

✟
n s in P , n ➙ 1, 1 ↕ i ↕ n,

and a substitution ρ such that ru✟1 , . . . , u
✟
i✁1, u

✟
i sρ is a strand in s✶

but uiρPI does not appear in the intruder knowledge of S ✶θ✶ and
ru✟1 , . . . , u

✟
i✁1 ⑤ u✟i , . . . , u

✟
n sρ is not a strand in S ✶θ✶. This is valid

for rules in sets (5.1), (5.3), (5.5), and (5.6). If i → 1, then we also
know that ru✟1 , . . . , u

✟
i✁1sρ is a strand in s.

e) There is a strand ru✟1 , . . . , u
✟
i✁1, u

✟
i , . . . , u

✟
n s in P , n ➙ 1, 1 ↕ i ↕ n,

and a substitution ρ such that ru✟1 , . . . , u
✟
i✁1, u

✟
i sρ is a strand in s✶

and ru✟1 , . . . , u
✟
i✁1 ⑤ u✟i , . . . , u

✟
n sρ is a strand in S ✶θ✶. This is valid

for rules in sets (5.2) and (5.4). If i → 1, then we also know that
ru✟1 , . . . , u

✟
i✁1sρ is a strand in s.

f) There is a strand ru✟1 , . . . , u
✟
i✁1, u

✟
i , . . . , u

✟
n s in P , n ➙ 1, 1 ↕ i ↕ n,

and a substitution ρ such that ru✟1 , . . . , u
✟
i✁1, u

✟
i sρ is a strand in s✶

but ru✟1 , . . . , u
✟
i✁1 ⑤ u

✟
i , . . . , u

✟
n sρ is not a strand in S ✶θ✶. This is valid

for rules in sets (5.2) and (5.4). If i → 1, then we also know that
ru✟1 , . . . , u

✟
i✁1sρ is a strand in s.

Now, we consider each forward rewrite rule application in the step s Ñ s✶.

• Given states s and s✶ such that s Ñ s✶ using a rule in set (5.1), then
there exist a substitution τ , variables SS ✶ and IK ✶, and a strand
ru✟1 , . . . , u

✟
j✁1, u

�
j , u

✟
j�1, . . . , u

✟
n s in P such that s ✏ tSS ✶τ & tIK ✶τ✉

& r♣u1τq
✟, . . . , ♣uj✁1τq

✟s✉, and s✶ ✏ tSS ✶τ & t♣ujτqPI, IK
✶τ✉&

r♣u1τq
✟, . . . , ♣uj✁1τq

✟, ♣ujτq
�s✉ and ♣ujτqPI appears in IK ✶τ . Since

there exists a substitution θ✶ s.t S ✶ →θ✶
s✶, we consider the four ap-

plicable cases for substitution θ✶:

– Case a) Both the strand and the intruder fact appear in S ✶θ✶

and thus we can perform a backwards narrowing step from
S ✶ with rule (3.3) to obtain a state S, i.e., S ✶ ❀ S. Since

130 Chapter 5. A Rewriting-based Forwards Semantics for Maude-NPA

there is no extra variable in the rule, we have that the same
substitution θ✶ is valid for S and S →θ✶

s.

– Case b) The strand appears in S ✶θ✶ but not the intruder fact.
We also perform a backwards narrowing step from S ✶ with
rule (3.3) to obtain a state S, i.e., S ✶ ❀σ S. But the variable
IK in state S ✶ gets instantiated σ ✏ tIK ÞÑ wPI, IK✷✉ in
such a way that wθ✶ ✏EP

ujτ . Since there is no extra variable
in the rule, again S →θ✶

s.

– Case c) The intruder fact appears in S ✶θ✶ but not the strand.
Here we perform a backwards narrowing step from S ✶ with a
rule in set (3.4) to obtain a state S, i.e., S ✶ ❀ S. This rule
introduces a new strand into the symbolic state S, i.e., there
is a substitution γ such that r♣u1γq

✟, . . . , ♣uj✁1γq
✟ ⑤ ♣ujγq

�,

♣uj�1γq
✟, . . . , ♣unγq

✟s is a strand in S.

Note that this new strand contains variables but there is a sub-
stitution θ such that S →θ s, since r♣u1γθq

✟, . . . , ♣uj✁1γθq
✟s

corresponds to r♣u1τq
✟, . . . , ♣uj✁1τq

✟s.

– Case d) The strand and the intruder fact do not appear in
S ✶θ✶. This case is very simple, since θ✶ makes valid S ✶ as a
symbolic state of s, i.e., S ✏ S ✶ and S ✶ →θ✶

s.

• Given states s and s✶ such that s Ñ s✶ using a rule in set (5.2), then
there exist a substitution τ , variables SS ✶ and IK ✶, and a strand
ru✟1 , . . . , u

✟
j✁1, u

�
j , u

✟
j�1, . . . , u

✟
n s in P such that s ✏ tSS ✶τ & tIK ✶τ✉

& r♣u1τq
✟, . . . , ♣uj✁1τq

✟s✉, and s✶ ✏ tSS ✶τ & tIK ✶τ✉& r♣u1τq
✟, . . . ,

♣uj✁1τq
✟, ♣ujτq

�s✉. Since there exists a substitution θ✶ s.t S ✶ →θ✶
s✶,

we consider the two applicable cases for substitution θ✶:

– Case e) The strand appears in S ✶θ✶ and thus we can perform
a backwards narrowing step from S ✶ with rule (3.2) to obtain
a state S, i.e., S ✶ ❀ S. Since there is no extra variable in the
rule, we have that the same substitution θ✶ is valid for S and
S →θ✶

s.

– Case f) The strand does not appear in S ✶θ✶. This case is very
simple, since θ✶ makes valid S ✶ as a symbolic state of s, i.e.,
S ✏ S ✶ and S ✶ →θ✶

s.

5.4. Soundness and Completeness of the Forwards Semantics 131

• Given states s and s✶ such that s Ñ s✶ using a rule in set (5.3),
then there exist a substitution τ , variables SS ✶ and IK ✶, and a
strand ru✟1 , . . . , u

✟
n s in P such that s✶ ✏ tSS ✶τ & t♣u1τqPI, IK

✶τ✉&
r♣u1τq

✟s✉ and ♣ujτqPI does not appear in IK ✶τ . This is similar to
the case above of a rule in set (5.1).

• Given states s and s✶ such that s Ñ s✶ using a rule in set (5.4), then
there exist a substitution τ , variables SS ✶ and IK ✶, and a strand
ru✟1 , . . . , u

✟
n s in P such that s✶ ✏ tSS ✶τ & tIK ✶τ✉& r♣u1τq

✟s✉. This
is similar to the case above of a rule in set (5.2).

• Given states s and s✶ such that s Ñ s✶ using a rule in set (5.5),
then there exist a substitution τ , variables SS ✶ and IK ✶, and a
strand ru✟1 , . . . , u

✟
j✁1, u

�
j , u

✟
j�1, . . . , u

✟
n s in P such that s ✏ tSS ✶τ &

t♣ujτqPI, IK
✶τ✉& r♣u1τq

✟, . . . , ♣uj✁1τq
✟s✉, and s✶ ✏ tSS ✶τ &

t♣ujτqPI, IK
✶τ✉& r♣u1τq

✟, . . . , ♣uj✁1τq
✟, ♣ujτq

✁s✉. Since there ex-
ists a substitution θ✶ s.t S ✶ →θ✶

s✶, we consider the four applicable
cases for substitution θ✶:

– Case a) Both the strand and the intruder fact appear in S ✶θ✶

and thus we can perform a backwards narrowing step from
S ✶ with rule (3.1) to obtain a state S, i.e., S ✶ ❀ S. Since
there is no extra variable in the rule, we have that the same
substitution θ✶ is valid for S and S →θ✶

s.

– Case b) The strand appears in S ✶θ✶ but not the intruder fact.
We also perform a backwards narrowing step from S ✶ with
rule (3.1) to obtain a state S, i.e., S ✶ ❀σ S. But the variable
IK in state S ✶ gets instantiated σ ✏ tIK ÞÑ wPI, IK✷✉ in
such a way that wθ✶ ✏EP

ujτ . Since there is no extra variable
in the rule, again S →θ✶

s.

– Case c) The intruder fact appears in S ✶θ✶ but not the strand.
This case is very simple, since θ✶ makes valid S ✶ as a symbolic
state of s, i.e., S ✏ S ✶ and S ✶ →θ✶

s.

– Case d) The strand and the intruder fact do not in S ✶θ✶. This
case is very simple, since θ✶ makes valid S ✶ as a symbolic state
of s, i.e., S ✏ S ✶ and S ✶ →θ✶

s.

132 Chapter 5. A Rewriting-based Forwards Semantics for Maude-NPA

• Given states s and s✶ such that s Ñ s✶ using a rule in set (5.6),
then there exist a substitution τ , variables SS ✶ and IK ✶, and a
strand ru✟1 , . . . , u

✟
n s in P such that s✶ ✏ tSS ✶τ & t♣u1τqPI, IK

✶τ✉&
r♣u1τq

✁s✉. This is similar to the case above of a rule in set (5.5).

This concludes the proof. ❧

The following theorem states that the symbolic reachability analysis
is complete with respect to the forwards rewriting-based semantics, i.e.,
any concrete attack state s, matching an attack pattern S and reachable
by the forwards semantics from a concrete initial state s0 can be found
by backwards symbolic reachability analysis from the attack pattern S.
Its proof is a straightforward corollary of Lemma 5.9.

Theorem 5.10 (Completeness) Given a protocol P, two ground states
s, s0, a symbolic P-state S, a substitution θ s.t. (i) s0 is an initial state,
(ii) s0 Ñ

n s, and (iii) S →θ s then there exist a symbolic initial P-state

S0, two substitutions µ and θ✶, and k ↕ n, s.t. S
k
❀µ S0, and S0 →

θ✶
s0.

In the following we prove that the backwards rewrite theory ♣ΣP , EP ,

R✁1
BP

q is sound with respect to the forward rewrite theory ♣ΣP , EP , RFPq.
That is, we need to show that if we find a symbolic initial state S0 from
a symbolic attack pattern S then, for any concrete initial state s0 such
that S0 →

θ s0, there is a reachable concrete attack states such that s0 Ñ
✝
s

with S →θ✶
s. We first provide a lemma that says that for any backwards

narrowing step there exist a corresponding sequence of forwards rewriting
steps.

Lemma 5.11 Given a protocol P, two symbolic P-states S, S ✶, a ground
state s and a substitution θ, if S ✶ µ

❀ S and S →θ s, then there exist a
state s✶ and a substitution θ✶ such that s Ñ s✶, and S ✶ →θ✶

s✶.

Proof. Since rewriting is simply a special case of narrowing, the proof
of this lemma is simpler than that of Lemma 5.9. We take into account
that S →θ s implies the strand and intruder facts used in the narrowing
step S ✶ µ

❀ S are present in s.

• If we use rule (3.1) in S ✶ µ
❀ S, then there are associated rules in

the sets (5.5) and (5.6).

5.5. Experimental Evaluation 133

• If we use rule (3.2) in S ✶ µ
❀ S, then there are associated rules in

the sets (5.2) and (5.4).

• If we use rule (3.3) in S ✶ µ
❀ S, then there are associated rules in

the sets (5.1) and (5.3).

• And if we use a rule in set (3.4) in S ✶ µ
❀ S, then there are associated

rules in the sets (5.1) and (5.3).

Note that substitution θ✶ is just a restriction of substitution θ, since each
backwards narrowing step instantiates some variable or add new terms
(possibly with new variables) but never removes any term or variable
already present. This concludes the proof. ❧

The following theorem is a straightforward corollary of Lemma 5.11.
It proves that the symbolic reachability analysis is sound with respect to
the forwards rewriting-based semantics,

Theorem 5.12 (Soundness) Given a protocol P, two symbolic P-states
S0, S

✶, an initial ground state s0 and a substitution θ s.t. (i) S0 is a sym-
bolic initial state, and (ii) S ✶

❀
✝S0 , and (iii) S0 →

θ s0 then there exist a
ground state s✶ and a substitution θ✶, s.t. (i) s0 Ñ

✝ s✶, and (ii) S ✶ →θ✶
s✶.

5.5 Experimental Evaluation

We have performed several experiments to evaluate the feasibility of the
rewriting-based forwards semantics defined in Section 5.3. We have used
four protocols to perform five experiments: (i) the standard Needham-
Schroeder protocol (NSPK) [Needham and Schroeder, 1978], (ii) a ver-
sion of the Needham-Schroeder-Lowe protocol in which one of the con-
catenation operators is replaced by an exclusive-or, presented in [Sasse
et al., 2010] (NSL-XOR), (iii) the Denning-Sacco Symmetric Key proto-
col [Denning and Sacco, 1981], and (iv) a protocol with Diffie-Hellman
exponentiation. More specifically, we have verified both secrecy and au-
thentication properties for NSPK, secrecy properties for XOR-NSL and
Diffie-Hellman, and authentication properties for Denning-Sacco. Since
the forwards rewrite-based semantics defined in this chapter does not
include optimizations to reduce the search space and, therefore, is not

134 Chapter 5. A Rewriting-based Forwards Semantics for Maude-NPA

currently possible to obtain a finite search space, we have analyzed inse-
cure protocols, i.e., protocols with known secrecy and/or authentication
attacks. The specifications of these protocols can be found at:

http://www.dsic.upv.es/~sescobar/Maude-NPA/forwards-semantics.html

In Table 5.1 we compare the results obtained when analyzing the
example protocols with the implementation in Maude of the forwards
semantics defined in this paper, and the symbolic backwards reachability
analysis performed by Maude-NPA. More specifically, in the second and
third columns we show the number of rewrite or narrowing steps gener-
ated during the forwards or backwards search, respectively. Note that
these results provide an experimental validation of the implementation
of the forwards semantics defined in this chapter in Maude w.r.t. the
symbolic backwards operational semantics of Maude-NPA, since for each
protocol the forwards search found the same authentication or secrecy
attacks that are found by Maude-NPA.

Results gathered in Table 5.1 show that the length of the forwards
semantics analysis is longer than with Maude-NPA. The reason is that
Maude-NPA performs very efficient state space reduction optimizations
(see Chapter 4) that do not only reduce the search space in terms of
the number of generated states, but also in terms of the analysis length.
These state space reduction optimizations have not yet been added to the
forwards semantics. For example, the Super-Lazy intruder optimization
technique (see Chapter 4) allows Maude-NPA to detect that the intruder
can trivially learn some messages, making it unnecessary to perform the
analysis steps required to generate those messages. Instead, in the current
forwards semantics it is necessary to perform each (rewriting) step to
generate those messages making the analysis longer.

Table 5.2 gathers for each experiment the number of states generated
during the first five steps of the forwards search. The reader can check
that the number of generated states is the same for both experiments
of the NSPK protocol, since the search space is the same and only the
attack being searched is different. We used experimental heuristics to
decrease the size of the state space. However systematic study of state
space reduction techniques in the forwards semantics is left for future
work.

http://www.dsic.upv.es/~sescobar/Maude-NPA/forwards-semantics.html

5.6. Conclusions 135

Protocol Length Forwards Length Maude-NPA
NSPK-sec 9 7
NSPK-auth 9 7
NSL-XOR 13 8

Denning-Sacco 11 7
Diffie-Hellman 22 12

Table 5.1: Rewrite and Narrowing steps until finding the attack

Protocol 1 2 3 4 5
NSPK-sec 6 20 116 604 3026
NSPK-auth 6 20 116 604 3026
NSL-XOR 7 21 72 218 594

Denning-Sacco 7 28 132 596 2624
Diffie-Hellman 7 22 65 162 354

Table 5.2: States generated in each rewrite step

Summarizing, the results of our early experimental evaluation sug-
gest that, even though its implementation is still at an early stage, the
forwards semantics presented in this chapter is feasible and encourag-
ing. However, much work needs to be done, specially with respect to the
efficiency of the analysis.

5.6 Conclusions

We realized several benefits from developing the forwards semantics. One
is that the forwards semantics can be executed and model checked in
Maude. We have taken advantage of this feature to implement a proto-
type explicit-state cryptographic protocol model-checker in Maude that,
like Maude-NPA, can be used to reason in the presence of different equa-
tional theories. Although we have not yet implemented any state space
reduction techniques for it —so there is no current way of achieving
termination— it has nevertheless been able to automatically find attacks
on some simple protocols that use various equational theories. We sum-

136 Chapter 5. A Rewriting-based Forwards Semantics for Maude-NPA

marize the experimental results for this prototype in Section 5.5. This
work also reduces the gap between the Maude-NPA and the realm of
standard model checking, shedding some light on how its internal se-
mantics and the logical reachability analysis correspond to an intuitive
forward execution of a protocol with the intruder model.

The definition of this novel rewriting-based protocol analysis is rel-
evant, since the new forwards semantics is directly implementable in
rule-based programming languages such as Maude without any need for
constraint solving or unification procedures as it is done in most current
approaches (see [Chevalier and Rusinowitch, 2008]), including Maude-
NPA, allowing us to explore applications such as the simulation of pro-
totypes and reasoning about theories without the finite variant property,
which we leave for future work.

Chapter 6

Sequential Protocol
Composition in Maude-NPA

In this chapter we provide two different techniques for Maude-NPA to
support dynamic sequential composition of protocols, i.e., protocols are
specified in a modular way and can be composed when desired during the
verification process. The first technique does not require modifying the
tool, since the sequential composition is performed via a simple program
transformation. The second technique consists of extending Maude-NPA
with special transition rules, which allows a more efficient verification
analysis. Below we explain in more detail the advantages of each tech-
nique w.r.t the other.

First, Section 6.1 motivates the analysis of protocol compositions. In
Section 6.2 we present some motivating examples of sequential protocol
composition, which will be used throughout this chapter as running ex-
amples. Section 6.3 provides a formal definition of sequential protocol
composition in Maude-NPA. In Section 6.4 we describe protocol compo-
sition via protocol transformation, whereas in Section 6.5 we explain the
direct implementation of protocol composition. In Section 6.6 we show
the results of the experiments we have performed using our motivating
protocol compositions and compare both techniques. Finally, Section 6.7
concludes this chapter.

These results have been published in [Escobar et al., 2010], and
in [Santiago et al., 2014a].

138 Chapter 6. Sequential Protocol Composition in Maude-NPA

6.1 Motivation

It is well known that many problems in the security of cryptographic
protocols arise when the protocols are composed. This is true whether the
composition is parallel, in which two different protocols are executed in
an interleaved fashion, or sequential, in which one or more child protocols
use information from executing a parent protocols. Protocols that work
correctly in one environment may fail when they are composed with
new protocols in new environments, either because the properties they
guarantee are not quite appropriate for the new environment, or because
the composition itself is mishandled. Security of parallel composition
can generally be achieved by avoiding ambiguity about which protocol
a message belongs to (as in, e.g. [Guttman and Thayer, 2000; Ştefan
Ciobâcă and Cortier, 2010]). The necessary conditions for security of
sequential composition are harder to pin down, since they depend on the
guarantees offered and needed by the particular protocols being analyzed.

The importance of understanding composition has long been acknowl-
edged, and there are a number of logical systems that support it, as de-
scribed in detail in Section 1.4. These logical systems and tools support
reasoning about the properties guaranteed by the protocols. One uses
the logic to determine whether the properties guaranteed by the proto-
cols are adequate. This is a natural way to approach composition, since
one can use these tools to determine whether the properties guaranteed
by one protocol are adequate for the needs of another protocol that relies
upon it.

Less attention has been given to handling composition when model
checking protocols. However, model-checking can provide considerable
insight into the way composition succeeds or fails. Often the desired
properties of a composed protocol can be clearly stated, while the prop-
erties of the components may be less well understood. Using a model
checker to experiment with different compositions and their results helps
us to get a better idea of what the requirements on both the subprotocols
and the compositions actually are.

The problem is in providing a specification and verification environ-
ment that supports composition. In general, it is tedious to hand-code
compositions. This is especially the case when one protocol is com-
posed with other protocols in several different ways. For example, in

6.2. Examples of Sequential Protocol Compositions 139

the Internet Key Exchange Protocol [Harkins and Carrel, 1998] there are
sixteen different one-to-many parent-child compositions of Phase One
and Phase Two protocols. The ability to synthesize compositions auto-
matically would greatly simplify the specification and analysis of proto-
cols like these. However, very little work has been done to address this
problem. Indeed, to the best of our knowledge, most protocol analysis
model-checking tools simply use concatenation of protocol specifications
to express sequential composition. However, we believe that the problem
we are addressing is an important one that tackles a widely acknowledged
source of protocol complexity.

6.2 Examples of Sequential Protocol

Compositions

In this section we provide several motivating examples of sequential com-
position. These examples give a flavor for the variants of sequential com-
position that are used in constructing cryptographic protocols. A single
parent protocol instance can be composed with either many instances
of a child protocol, or with only one such child instance. Likewise, par-
ent protocol roles can determine child protocol roles, or child protocol
roles can be unconstrained. In Section 6.2.1 we provide an example of a
one-parent, one-child protocol composition, which appeared in [Guttman
et al., 2008] and which is subject to an unexpected attack not noticed
before; we also provide a corrected version that is proved secure. In Sec-
tion 6.2.2 we provide an example of a one-parent, many-children protocol
composition which is proved secure by our tool.

6.2.1 NSL Distance Bounding Protocol

In this example of a one-parent, one-child protocol composition, appeared
in [Guttman et al., 2008], the participants first use NSL to agree on a
secret nonce. We reproduce the NSL protocol below using textbook
Alice-and-Bob notation where A Ñ B : m means participant with name
A sending the message m to the participant with name B:

1. AÑ B : tNA, A✉pk♣Bq

140 Chapter 6. Sequential Protocol Composition in Maude-NPA

2. B Ñ A : tNA, NB, B✉pk♣Aq

3. A Ñ B : tNB✉pk♣Bq

where tM✉pk♣Aq means message M encrypted using the public key of
principal with nameA, NA andNB are nonces generated by the respective
principals, and we use the comma as message concatenation.

The agreed nonce NA is then used in a distance bounding proto-
col described below. This is a type of protocol, originally proposed by
[Desmedt, 1988] for smart cards, which has received new interest in re-
cent years for its possible application in wireless environments [Capkun
and Hubaux, 2006]. The idea behind the protocol is that Bob uses the
round trip time of a challenge-response protocol with Alice to compute
an upper bound on her distance from him according to the following
protocol:

4. B Ñ A : N ✶
B

Bob records the time at which he sent N ✶
B

5. A Ñ B : NA ❵N ✶
B

Bob records the time he receives the response and checks
the equivalence NA ✏ NA ❵N ✶

B ❵N ✶
B. If it is equal, he

uses the round-trip time of his challenge and response
to estimate his distance from Alice

where ❵ is the exclusive-or operator satisfying associativity (i.e., X ❵
♣Y ❵ Zq ✏ ♣X ❵ Y q ❵ Z) and commutativity (i.e., X ❵ Y ✏ Y ❵ X)
plus the self-cancellation property X❵X ✏ 0 and the nilpotent property
X ❵ 0 ✏ X. Note that Bob is the initiator and Alice is the responder of
the distance bounding protocol, in contrast to the NSL protocol.

This protocol must satisfy two requirements. The first is that it must
guarantee that NA ❵ N ✶

B was sent after N ✶
B was received, or Alice will

be able to pretend that she is closer than she is. Note that if Alice and
Bob do not agree on NA beforehand, then Alice will be able to mount
the following attack: B Ñ A : N ✶

B and then A Ñ B : N . Of course,
N ✏ N ✶

B ❵ X for some X. But Bob has no way of telling if Alice
computed N using N ✶

B and X, or if she just sent a random N . Using
NSL to agree on a X ✏ NA in advance prevents this type of attack.

6.2. Examples of Sequential Protocol Compositions 141

Bob also needs to know that the response comes from whom it is sup-
posed to be. In particular, an attacker should not be able to impersonate
Alice. Using NSL to agree on NA guarantees that only Alice and Bob
can know NA, so the attacker cannot impersonate Alice. However, it
should also be the case that an attacker cannot pass off Alice’s response
as his own. This is not the case for the NSL distance bounding protocol,
which is subject to a form of what has come to be known as the Distance
Hijacking Attack [Cremers et al., 2012] 1:

a) Intruder I runs an instance of NSL with Alice as the initiator and
I as the responder, obtaining a nonce NA.

b) I then runs an instance of NSL with Bob with I as the initiator
and Bob as the responder, using NA as the initiator nonce.

c) B Ñ I : N ✶
B where I does not respond, but Alice, seeing this,

thinks it is for her.

d) A Ñ I : N ✶
B❵NA where Bob, seeing this thinks this is I’s response.

If Alice is closer to Bob than I is, then I can use this attack to
appear closer to Bob than he is. This attack is a textbook example of a
composition failure. NSL has all the properties of a good key distribution
protocol, but fails to provide all the guarantees that are needed by the
distance bounding protocol. However, in this case we can fix the problem,
not by changing NSL, but by changing the distance bounding protocol
so that it provides a stronger guarantee:

4. B Ñ A : tN ✶
B✉

5. A Ñ B : th♣NA, Aq❵N ✶
B✉ where h is a collision-resistant

hash function.

As we show in our analysis in Section 6.6, this prevents the attack. I

cannot pass off Alice’s nonce as his own because it is now bound to her
name.

The distance bounding example is a case of a one parent, one child
protocol composition. Each instance of the parent NSL protocol can have

1This is not meant as a denigration of [Guttman et al., 2008], whose main focus is
on timing models in strand spaces, not the design of distance bounding protocols.

142 Chapter 6. Sequential Protocol Composition in Maude-NPA

only one child distance bounding protocol, since the distance bounding
protocol depends upon the assumption that NA is known only by A and
B. But since the distance bounding protocol reveals NA, it cannot be
used with the same NA more than once.

6.2.2 NSL Key Distribution Protocol

Our next example is a one parent, many children protocol composition,
also using NSL. This type of composition arises, for example, in key
distribution protocols in which the parent protocol is used to generate a
master key, and the child protocol is used to generate a session key. In
this case, one wants to be able to run an arbitrary number of instances
of the child protocol with the same master key.

In the distance bounding example the initiator of the distance bound-
ing protocol was always the child of the responder of the NSL protocol
and vice versa. In the key distribution example, the initiator of the ses-
sion key protocol can be the child of either the initiator or responder of
the NSL protocol. So, we have two possible child executions after NSL:

4. AÑ B : tSkA✉h♣NA,NBq

5. B Ñ A : tSkA;N
✶
B✉h♣NA,NBq

6. AÑ B : tN ✶
B✉h♣NA,NBq

4. B Ñ A : tSkB✉h♣NA,NBq

5. AÑ B : tSkB;N
✶
A✉h♣NA,NBq

6. B Ñ A : tN ✶
A✉h♣NA,NBq

where SkA is the session key generated by principal A and h is again a
collision-resistant hash function. This protocol is proved secure by our
tool in Section 6.6.

6.3 Abstract Definition of Sequential

Protocol Composition in Maude-NPA

Sequential composition of two protocols describes a situation in which
one protocol (the child) can only execute after another protocol (the
parent) has completed its execution, which allows the child protocol to
use information generated during the execution of the parent protocol.
The underlying idea of such a situation is that the end of the parent’s pro-

6.3. Abstract Sequential Composition in Maude-NPA 143

tocol execution is synchronized with the beginning of the child’s protocol
execution. In Section 6.3.1 we first explain in detail the syntactic and
semantic features necessary to express the synchronization among both
protocols. Then, in Section 6.3.2 we provide an abstract definition of se-
quential composition of two or more protocols in Maude-NPA. Finally, in
Section 6.3.3 we define a concrete execution model for the one-to-one and
one-to-many protocol compositions by extending the basic Maude-NPA
execution model. Throughout this chapter, we will refer to the syntax
and semantics explained in this section as abstract composition syntax
and semantics.

6.3.1 Input/Output Parameters and Roles

In this section we describe in more detail the new features we need to
make explicit in each protocol to later define abstract sequential protocol
compositions. Each strand in a protocol specification in the Maude-NPA
is now extended with input and output parameters. Input parameters
are a sequence of variables of different sorts placed at the beginning of a
strand. Output parameters are a sequence of terms placed at the end of
a strand. Any variable contained in an output parameter must appear
either in the body of the strand, or as an input parameter. The strand
notation we will now use is rt

ÝÑ
I ✉,

ÝÑ
M, t

ÝÑ
O✉s where

ÝÑ
I is a list of input pa-

rameter variables,
ÝÑ
M is a list of positive and negative terms in the strand

notation of the Maude-NPA, and
ÝÑ
O is a list of output terms, all of whose

variables appear in
ÝÑ
M or

ÝÑ
I . The input and output parameters describe

the exact assumptions about each principal. Note that we allow each
honest or Dolev-Yao strand to be labeled (e.g. NSL.init or NSL.resp)
to denote the “role” of that strand in the protocol, in contrast to the
standard Maude-NPA syntax for strands. These strand labels play an
important role in our protocol composition method.

Example 6.1 The following description of the NSL protocol contains
more technical details than the informal description of NSL in Section 6.2.
A nonce generated by principal A is denoted by n♣A, rq, where r is a
unique variable of sort Fresh. Concatenation of two messages, e.g., NA

and NB, is denoted by the operator ; , e.g., n♣A, rq ; n♣B, r✶q. Encryp-
tion of a message M with the public key KA of principal A is denoted by

144 Chapter 6. Sequential Protocol Composition in Maude-NPA

pk♣A,Mq, e.g., tNB✉pk♣Bq is denoted by pk♣B, n♣B, r✶qq. Encryption with
a secret key is denoted by sk♣A,Mq. The public/private encryption can-
cellation properties are described using the equations pk♣X, sk♣X,Zqq ✏
Z and sk♣X, pk♣X,Zqq ✏ Z. The protocol P with two strands associated
to the three protocol steps shown in Section 6.2.1 is described as follows:

♣NSL.initq :: r :: rtA,B✉,� ♣pk♣B, n♣A, rq;Aqq,

✁ ♣pk♣A, n♣A, rq;N ;Bqq,

� ♣pk♣B,Nqq,

tA,B, n♣A, rq, N✉s.

♣NSL.respq :: r :: rtA,B✉,✁ ♣pk♣B,N ;Aqq,

� ♣pk♣A,N ;n♣B, rq;Bqq,

✁ ♣pk♣B, n♣B, rqqq,

tA,B, N, n♣B, rq✉s.

�

Example 6.2 Similarly to the NSL protocol, there are several techni-
cal details missing in the previous informal description of the Distance
Bounding (DB) protocol. The exclusive-or operator is ✝ and its equa-
tional properties are as described in Example 2.3 in Page 28. Since
Maude-NPA does not yet include timestamps, we do not include all the
actions relevant to calculating time intervals, sending timestamps, and
checking them. The protocol P with two strands associated to the two
protocol steps shown in Section 6.2.1 is described as follows:

♣DB.initq :: r :: rtA,B,NA✉,� ♣n♣B, rqq,✁♣n♣B, rq ✝NAq,

tA,B,NA, n♣B, rq✉s.

♣DB.respq :: nil :: rtA,B,NA✉,✁ ♣NBq,�♣NB ✝NAq,

tA,B,NA, NB✉s.

This protocol specification makes clear that the nonce NA used by the
initiator is a parameter and is never generated by A during the run of
DB. However, the initiator B does generate a new nonce. �

6.3. Abstract Sequential Composition in Maude-NPA 145

Example 6.3 The previous informal description of the Key Distribution
(KD) protocol also lacks several technical details, which we supply here.
Encryption of a message M with key K is denoted by e♣K,Mq, e.g.,
tN ✶

B✉h♣NA,NBq is denoted by e♣h♣n♣A, rq, n♣B, r✶qq, n♣B, r✷qq. Cancellation
properties of encryption and decryption are described using the equations
e♣X, d♣X,Zqq ✏ Z and d♣X, e♣X,Zqq ✏ Z. Session keys are written
skey♣A, rq, where A is the principal’s name and r is a Fresh variable.
The protocol P with two strands associated to the KD protocol steps
shown above is described as follows:

♣KD.initq :: r :: rtA,B,K✉,� ♣e♣K, skey♣A, rqq,

✁ ♣e♣K, skey♣A, rq;Nqq,�♣e♣K,Nqq,

tA,B,K, skey♣A, rq, N✉s.

♣KD.respq :: r :: rtA,B,K✉,✁ ♣e♣K,SKqq,

� ♣e♣K,SK;n♣B, rqqq,✁♣e♣K,n♣B, rqqq,

tA,B,K, SK, n♣B, rq✉s.

�

In the rest of this chapter we remove irrelevant parameters (i.e. in-
put parameters for strands with no parents, and output parameters for
strands with no children) in order to simplify the exposition. Therefore,
a strand is now a term of one of the following forms:

1. rnil,
ÝÑ
M,nils, i.e. a standard strand that cannot be connected to

either a parent or a child strand,

2. rt
ÝÑ
I ✉,

ÝÑ
M,nils, i.e. a child strand that can be connected to a parent

strand,

3. rnil,
ÝÑ
M, t

ÝÑ
O✉s, i.e. a parent strand that can be connected to a child

strand,

4. rt
ÝÑ
I ✉,

ÝÑ
M, t

ÝÑ
O✉s, i.e. a strand that can be connected to both a parent

and a child strand, or

5. rt
ÝÑ
I ✉, t

ÝÑ
O✉s, i.e. a strand that can be connected to both a parent

and a child strand, but without sending or receiving any message,
called a void strand.

146 Chapter 6. Sequential Protocol Composition in Maude-NPA

6.3.2 Strand and Protocol Composition

In this section we formally define sequential protocol composition in
Maude-NPA. We first define the sequential composition of two strands,
since this will help us to define sequential protocol composition in general.
Intuitively, sequential composition of two strands describes a situation in
which one strand (the child), can only execute after another strand (the
parent) has completed its execution. Each composition of two strands is
obtained by matching the output parameters of the parent strand with the
input parameters of the child strand in a user-specified way. Note that it
may be possible for a single parent strand to have more than one child
strand.

Definition 6.4 (Sequential Strand Composition) Given two
strands ♣aq :: ÝÑra :: rt

ÝÑ
Ia✉,

ÝÑ
Ma, t

ÝÑ
Oa✉s and ♣bq :: ÝÑrb :: rt

ÝÑ
Ib ✉,

ÝÑ
Mb, t

ÝÑ
Ob✉s that

are properly renamed to avoid variable sharing, a sequential strand com-
position is a triple of the form ♣a, b,Modeq where a and b denote the
parent and child roles, respectively, and Mode is either 1-1 or 1-*, indi-
cating a one-to-one or one-to-many composition. This triple satisfies the
following conditions for consistency:

1. both
ÝÑ
Oa and

ÝÑ
Ib have the same length, i.e.

ÝÑ
Oa ✏ m1, . . . ,mn and

ÝÑ
Ib ✏ m✶

1, . . . ,m
✶
n, and

2. there exists at least one substitution σ such that
ÝÑ
Oa ✏EP

ÝÑ
Ibσ.

Example 6.5 Let us consider again our two examples of sequential pro-
tocol composition. The composition of the NSL initiator strand and the
DB responder strand is specified by the triple ♣NSL.init,DB.resp,1-1q,
where both strands are as shown below:

♣NSL.initq :: r :: rtA,B✉,� ♣pk♣B, n♣A, rq;Aqq,

✁ ♣pk♣A, n♣A, rq;N ;Bqq,�♣pk♣B,Nqq,

tA,B, n♣A, rq✉s.

♣DB.respq :: nil :: rtA,B,NA✉,✁ ♣NBq,�♣NB ✝NAq,

tA,B,NA, NB✉s.

6.3. Abstract Sequential Composition in Maude-NPA 147

The composition of the NSL initiator strand with the KD responder
strand is specified by the triple ♣NSL.init,KD.resp,1-*q, where both
strands are as shown below:

♣NSL.initq :: r :: rtA,B✉,� ♣pk♣B, n♣A, rq;Aqq,

✁ ♣pk♣A, n♣A, rq;N ;Bqq,�♣pk♣B,Nqq,

tA,B, h♣n♣A, rq, Nq✉s.

♣KD.respq :: r :: rtA,B,K✉,✁ ♣e♣K,SKqq,

� ♣e♣K,SK;n♣B, rqqq,✁♣e♣K,n♣B, rqqq,

tA,B,K, SK, n♣B, rq✉s.

such that the term h♣n♣A, rq, Nq has the same sort as that of the input
parameter K. �

Intuitively, we can now define the sequential composition of two pro-
tocols as a set of sequential strand compositions.

Definition 6.6 (Sequential Composition of Two Protocols) Gi-
ven two protocols P1 and P2 that are properly renamed to avoid vari-
able sharing, a sequential composition of both protocols, written P1 ;S P2,
is defined as a triple of the form ♣P1, S,P2q where S denotes a set of
strand compositions between a parent strand of P1 and a child strand of
P2 of the form described in Definition 6.4. Note that the signature of
such protocol composition is the union2 of the signature of both proto-
cols, i.e., ΣP1;SP2

✏ ΣP1
❨ΣP2

. Similarly, the set of equations specifying
the algebraic properties of such protocol composition is the union of the
equations of both protocols, i.e., EP1;SP2

✏ EP1
❨ EP2

.

Example 6.7 Let us consider again both the NSL and DB protocols
and their composition. The composition of both protocols, which is an
example of a one-to-one composition, is specified as follows, indicating
that the initiator of NSL can be composed with the responder of DB and
the responder of NSL with the initiator of DB:

2Note that we allow shared items but require the user to solve any possible con-
flict. Operator and sort renaming is an option, as in the Maude module importation
language, but we do not consider those details in this chapter.

148 Chapter 6. Sequential Protocol Composition in Maude-NPA

NSL ;S DB ✏ ♣NSL, t♣NSL.init ,DB .resp, 1✁1q,

♣NSL.resp,DB .init , 1✁1q✉,DBq

where the strands are as shown below:

♣NSL.initq :: r :: r � ♣pk♣B, n♣A, rq;Aqq,

✁ ♣pk♣A, n♣A, rq;N ;Bqq,�♣pk♣B,Nqq, tA,B, n♣A, rq✉s

♣NSL.respq :: r :: r ✁ ♣pk♣B,N ;Aqq,

� ♣pk♣A,N ;n♣B, rq;Bqq,✁♣pk♣B, n♣B, rqqq, tA,B,N✉s

♣DB.initq :: r :: rtA,B,NA✉,�♣n♣B, rqq,✁♣n♣B, rq ✝NAqs

♣DB.respq :: nil :: rtA,B,NA✉,✁♣NBq,�♣NB ✝NAqs

Note that we have removed irrelevant input and output parameters for
clarity and simplicity. �

Example 6.8 Let us now consider the NSL and KD protocols and their
composition. The composition of both protocols, which is an example of
a one-to-many composition, is specified as follows, indicating that there
are four possible compositions: the initiator of NSL composed with either
the initiator or the responder of KD, and the responder of NSL composed
with either the initiator or the responder of KD:

NSL ;S KD ✏ ♣ NSL,♣NSL.init,KD.init, 1✁✝q,

♣NSL.init,KD.resp, 1✁✝q,

♣NSL.resp,KD.init, 1✁✝q,

♣NSL.resp,KD.resp, 1✁✝q✉,KDq

and the strands are as follows:

6.3. Abstract Sequential Composition in Maude-NPA 149

♣NSL.initq :: r :: r � ♣pk♣B, n♣A, rq;Aqq,✁♣pk♣A, n♣A, rq;N ;Bqq,

� ♣pk♣B,Nqq, tA,B, h♣n♣A, rq, Nq✉s

♣NSL.respq :: r :: r ✁ ♣pk♣B,N ;Aqq,�♣pk♣A,N ;n♣B, rq;Bqq,

✁ ♣pk♣B, n♣B, rqqq, tA,B, h♣N,n♣B, rqq✉s

♣KD.initq :: r :: rtA,B,K✉,�♣e♣K, skey♣A, rqq,

✁ ♣e♣K, skey♣A, rq;Nqq,�♣e♣K,Nqqs

♣KD.respq :: r :: rtA,B,K✉,✁♣e♣K,SKqq,�♣e♣K,SK;n♣B, rqqq,

✁ ♣e♣K,n♣B, rqqs

such that terms h(n(A,r),N) and h(N,n(B,r)) are of the same sort as
variable K. Note that, again, we have removed irrelevant input and
output parameters for clarity. �

Remark 1 As we shall see in Sections 6.4.2 and 6.5.4, composition via
protocol transformation and composition via synchronization messages
implement most of our abstract composition semantics. There is one
important exception though in the case of one-to-many composition. In
the abstract semantics there is nothing preventing a single instantiation
of a parent role from having two or more children belonging to different
roles, assuming both child roles are allowed by the specification. In com-
position via protocol transformation and composition via synchronization
messages, a particular instantiation of a role can have children belonging
to only one role, although that role may be one of any of the roles allowed
by the specification. Thus, in the NSL-KD case, the case in which an
instantiation of an NSL strand has both a KD-initiator child and a KD-
responder child is never reachable via the protocol transformation or the
synchronization message syntaxes and semantics. However, the case in
which one instantiation of a parent NSL strand has a KD-initiator child,
and another instantiation has a KD-responder child, may be reachable.
This can be implemented by requiring that parents only compose with
children of the sort that they have composed with before.

In our proof of the soundness and completeness result in Sections 6.4.2
and 6.5.4, we thus make the further restriction on the abstract semantics
that any instantiation of a strand only has children of a single role. We

150 Chapter 6. Sequential Protocol Composition in Maude-NPA

do not make this restriction a permanent part of the definition of the
abstract semantics however, since allowing greater freedom in the abstract
semantics allows us to explore further options in the future.

Finally, we need to define the sequential composition of more than
two protocols. Intuitively, the sequential composition of n protocols
P1, . . . ,Pn is a set of two-protocol compositions, such that each pro-
tocol is composed with the previous protocol (except P1) and with the
next protocol (except Pn).

Definition 6.9 (Sequential Composition of n Protocols) Given n

protocols P1, . . . ,Pn that are properly renamed to avoid variable sharing,
the sequential composition of all of them is denoted by:

P1 ;S1
P2 ;S2

P3 ;S3
. . . ;Sn✁2

Pn✁1 ;Sn✁1
Pn

iff P1 ;S1
P2, P2 ;S2

P3, . . . , Pn✁1 ;Sn✁1
Pn are sequential protocol compo-

sitions as explained in Definition 6.6.

6.3.3 Abstract Operational Semantics

As explained in Section 3.4, the operational semantics of protocol exe-
cution and analysis is based on rewrite rules denoting state transitions
which are applied modulo the algebraic properties EP of the given pro-
tocol P . Therefore, in the one-to-one and one-to-many cases we must
add new state transition rules to the rewrite theory ♣ΣP , EP , RBPq that
characterizes the behavior of protocol P modulo the equations EP for
backwards execution in order to deal with protocol composition.

In the one-to-one composition, we add the state transition rules of
Figure 6.1 to the rewrite theory ♣ΣP , EP , RBPq. Note that these transi-
tion rules are written in a forwards way but will be executed backwards,
as the Maude-NPA’s basic transition rules RBP . Rule (6.1) composes a
parent and a child strand already present in the current state. Rule (6.2)
adds, in a backwards execution, a parent strand to the current state and
composes it with an existing child strand. For example, given the com-
position of the NSL initiator’s strand with the DB responder’s strand
♣NSL.init ,DB .resp, 1✁1q where NSL.init and DB.resp were defined in
Example 6.7 in Page 147, we add the following transition rule for Rule

6.3. Abstract Sequential Composition in Maude-NPA 151

For each one-to-one strand composition ♣a, b, 1✁1q with

strand ♣aqr
ÝÑ
Ma, t

ÝÑ
Oa✉s for protocol P1,

strand ♣bqrt
ÝÑ
Ib ✉,

ÝÑ
Mbs for protocol P2,

and for each substitution σ s.t.
ÝÑ
Ibσ ✏EP

ÝÑ
Oa

we add the following rules:

SS& ♣aq r
ÝÑ
Ma ⑤ t

ÝÑ
Oa✉s & ♣bq rnil ⑤ t

ÝÑ
Ibσ✉,

ÝÑ
Mbσs& IK

Ñ SS& ♣aq r
ÝÑ
Ma, t

ÝÑ
Oa✉ ⑤ nils & ♣bq rt

ÝÑ
Ibσ✉ ⑤

ÝÑ
Mbσs& IK (6.1)

SS& ♣aq r
ÝÑ
Ma ⑤ t

ÝÑ
Oa✉s & ♣bq rnil ⑤ t

ÝÑ
Ibσ✉,

ÝÑ
Mbσs& IK

Ñ SS& ♣bq rt
ÝÑ
Ibσ✉ ⑤

ÝÑ
Mbσs& IK (6.2)

Figure 6.1: Forward semantics for one-to-one composition

(6.1) where both the parent and the child strands are present and thus
synchronized.

♣NSL.initq :: r ::

r�♣pk♣B, n♣A, rq;Aqq,✁♣pk♣A, n♣A, rq;N ;Bqq,�♣pk♣B,Nqq ⑤

tA,B, n♣A, rq✉ s&

♣DB.respq :: nil ::

rnil ⑤ tA,B, n♣A, rq✉,✁♣NBq,�♣NB ✝ n♣A, rqq s & SS & IK

ÝÑ

♣NSL.initq :: r ::

r�♣pk♣B, n♣A, rq;Aqq,✁♣pk♣A, n♣A, rq;N ;Bqq,�♣pk♣B,Nqq,

tA,B, n♣A, rq✉ ⑤ nil s&

♣DB.respq :: nil ::

r tA,B, n♣A, rq✉ ⑤ ✁ ♣NBq,�♣NB ✝ n♣A, rqq s & SS & IK

One-to-many composition uses the rules in Figure 6.1 for the first
child, plus an additional rule for subsequent children, described in Fig-
ure 6.2. Rule (6.3) composes a parent strand and a child strand but the

152 Chapter 6. Sequential Protocol Composition in Maude-NPA

For each one-to-many strand composition ♣a, b, 1✁✝q with

strand ♣aqr
ÝÑ
Ma, t

ÝÑ
Oa✉s for protocol P1,

strand ♣bqrt
ÝÑ
Ib ✉,

ÝÑ
Mbs for protocol P2,

and for each substitution σ s.t.
ÝÑ
Ibσ ✏EP

ÝÑ
Oa

we add one Rule (6.1), one Rule (6.2), and the following rule :

SS& ♣aq r
ÝÑ
Ma ⑤ t

ÝÑ
Oa✉s & ♣bq rnil ⑤ t

ÝÑ
Ibσ✉,

ÝÑ
Mbσs& IK

Ñ SS& ♣aq r
ÝÑ
Ma ⑤ t

ÝÑ
Oa✉s & ♣bq rt

ÝÑ
Ibσ✉ ⑤

ÝÑ
Mbσs& IK (6.3)

Figure 6.2: Forward semantics for one-to-many composition

bar in the parent strand is not moved, in order to allow further backwards
child compositions. For example, given the composition of the NSL re-
sponder’s strand with the KD initiator’s strand ♣NSL.resp,KD.init,1-*q
where NSL.resp and KD.init are as defined in Example 6.8 in Page 148
we add the following transition rule for Rule (6.3):

♣NSL.respq :: r ::

r✁♣pk♣B,NA;Aqq,�♣pk♣A,NA;n♣B, rq;Bqq,✁♣pk♣B, n♣B, rqqq ⑤

tA,B, h♣NA,n♣B, rqq✉ s &

♣KD.initq :: r✶ ::

rnil ⑤ tA,B, h♣NA,n♣B, rqq✉,�♣e♣h♣NA,n♣B, rqq, skey♣A, r✶qq,

✁ ♣e♣h♣NA,n♣B, rqq, skey♣A, r✶q;Nqq,�♣e♣h♣NA,n♣B, rqq, Nqq s

& SS & IK

ÝÑ

♣NSL.respq :: r ::

r✁♣pk♣B,NA;Aqq,�♣pk♣A,NA;n♣B, rq;Bqq,✁♣pk♣B, n♣B, rqqq ⑤

tA,B, h♣NA,n♣B, rqq✉, nil s &

♣KD.initq :: r✶ ::

r tA,B, h♣NA,n♣B, rqq✉ ⑤ � ♣e♣h♣NA,n♣B, rqq, skey♣A, r✶qq,

✁ ♣e♣h♣NA,n♣B, rqq, skey♣A, r✶q;Nqq,�♣e♣h♣NA,n♣B, rqq, Nqq s

& SS & IK

6.4. Protocol Composition via Protocol Transformation 153

Thus, for a protocol composition P1;S P2, the rewrite rules governing
protocol execution are RP1;SP2

✏ t(3.1), (3.2), (3.3)✉ ❨ t(3.4)✉ ❨ t(6.1),
(6.2)✉ ❨ t(6.3)✉.

6.4 Protocol Composition via Protocol

Transformation

In Section 6.3 we have provided an abstract syntax and a semantics for
protocol composition in Maude-NPA. However, implementing this means
a significant modification of Maude-NPA to support the new composition
data type. In this section we show that sequential protocol composition
can be implemented using communication between strands via messages
sent over the Dolev-Yao channel. This approach, which will be referred
to as composition by protocol transformation, does not require to mod-
ify the Maude-NPA since composition is performed by a simple protocol
transformation, as explained in Section 6.4.1. In Section 6.4.2 we prove
soundness and completeness of the composition by protocol transforma-
tion with respect to the abstract operational semantics of Section 6.3.3.
We illustrate our results on our two running examples.

6.4.1 Protocol Transformation

Instead of implementing a new version of the Maude-NPA generating
new transition rules for each protocol composition, we have defined a
protocol transformation that achieves the same effect using the current
Maude-NPA tool.

Given two protocols P1 and P2, its sequential composition performed
via the protocol transformation given in Figure 6.3, written Φ♣P1 ;S P2q,
is a single, composed protocol specification where:

1. Sorts, symbols, and equational properties of both protocols are put
together into a single specification. As explained in Footnote 6.6
in Page 147, we allow shared items but require the user to solve
any possible conflict. A new sort Param is defined to denote input
and output parameters. Strands of both protocols are transformed

154 Chapter 6. Sequential Protocol Composition in Maude-NPA

Φ♣P1 ;S P2q ✏

✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

add strand r
ÝÑ
Ma,✁♣b♣rqq,�♣a♣rq . ✾Ibqqs, and

strand r�♣b♣rqq,✁♣a♣rq . ✾Ibq,
ÝÑ
Mbs

whenever
♣a, b, 1✁1q in P1 ;S P2,

strand ♣aqrt
ÝÑ
Ia✉,

ÝÑ
Ma, t

ÝÑ
Oa✉s for protocol P1,

strand ♣bqrt
ÝÑ
Ib ✉,

ÝÑ
Mb, t

ÝÑ
Ob✉s for protocol P2,

and r is a fresh variable

add strand r
ÝÑ
Ma,�♣a♣rq . ✾Ibqs, and

strand r✁♣a♣rq . ✾Ibq,
ÝÑ
Mbs

whenever
♣a, b, 1✁✝q in P1 ;S P2,

strand ♣aqrt
ÝÑ
Ia✉,

ÝÑ
Ma, t

ÝÑ
Oa✉s for protocol P1,

strand ♣bqrt
ÝÑ
Ib ✉,

ÝÑ
Mb, t

ÝÑ
Ob✉s for protocol P2,

and r is a fresh variable

Figure 6.3: Protocol Transformation

and added to this single specification as described in Figure 6.3.
Note that this protocol transformation removes the strand labels
since this information is now included in the input and output
parameters.

2. For each composition we transform the input parameters t
ÝÑ
Ib ✉ into

an input message exchange of the form ✁♣
ÝÑ
Ib q, and the output

parameters t
ÝÑ
Oa✉ into an output message exchange of the form

�♣σab♣
ÝÑ
Ib qq. The sort Param of these messages is disjoint from the

sort Msg used by the protocol in the honest and intruder strands.
This ensures that they are harmless, since no intruder strand will
be able to use them. In order to avoid type conflicts, we use a dot
for concatenation within protocol composition exchange messages,
e.g. input parameters

ÝÑ
I ✏ tA,B,NA✉ are transformed into the

sequence ✾I ✏ A . B . NA.

3. Each composition is uniquely identified by using a composition
identifier (a variable of sort Fresh). Strands exchange such composi-
tion identifier by using input/output messages of the form rolej ♣rq,
which make the role explicit. The sort Role of these messages is

6.4. Protocol Composition via Protocol Transformation 155

disjoint from the sorts Param and Msg.

(a) In a one-to-one protocol composition, the child strand uniquely
generates a fresh variable that is added to the area of fresh
identifiers at the beginning of its strand specification. This
fresh variable must be passed from the child to the parent be-
fore the parent generates its output parameters and sends it
back again to the child.

(b) In a one-to-many protocol composition, the parent strand
uniquely generates a fresh variable that is passed to the child.
Since an (a priori) unbounded number of children will be com-
posed with it, no reply of the fresh variable is expected by the
parent from the children.

The rewrite theory defining the protocol execution of a protocol compo-
sition Φ♣P1 ;S P2q is denoted by RΦ♣P1 ;SP2q.

As explained in Remark 1 in Page 149 in composition via protocol
transformation we assume that in a one-to-many composition a particular
instantiation of a parent role can have children belonging to only one
role, although that role may be one of any of the roles allowed by the
specification. Therefore, note that the protocol composition ♣P1 ;S P2q
may contain two or more strands specifying the same role which basically
differ in the input message that corresponds to the composition identifier
message sent by the parent strand.

Let us now illustrate this protocol transformation with our examples
of protocol compositions.

Example 6.10 The transformed strands of the one-to-one protocol com-
position NSL;S DB of Example 6.7 are as shown below:

:: r ::

[nil | +(NSL-init),

+(pk(B,n(A,r) ; A)) ,

-(pk(A, n(A,r) ; NB ; B)),

+(pk(B, NB)),

-(DB-resp(r#)),

+({NSL-init(r#) . A . B . n(A,r)}), nil] &

:: r ::

156 Chapter 6. Sequential Protocol Composition in Maude-NPA

[nil | +(NSL-resp),

-(pk(B,NA ; A)),

+(pk(A, NA ; n(B,r) ; B)),

-(pk(B,n(B,r))),

-(DB-init(r#)),

+({NSL-resp(r#) . A . B . NA }), nil] &

:: r’, r# ::

[nil | +(DB-init(r#)),

-({NSL-resp(r#) . A . B . NA }),

+(n(B,r’)), -(NA * n(B,r’)), nil] &

:: r# ::

[nil | +(DB-resp(r#)),

-({NSL-init(r#) . A . B . NA }),

-(N), +(NA * N), nil]

The transformed strands of the one-to-many composition NSL;S KD
of Example 6.8 are as shown below:

--- NSL protocol

:: r , r# ::

[nil | +(NSL-init),

+(pk(B,n(A,r) ; A)) ,

-(pk(A, n(A,r) ; NB ; B)),

+(pk(B, NB)),

+({NSL-init(r#) . A . B . h(n(A,r) , NB) }), nil] &

:: r , r# ::

[nil | +(NSL-resp),

-(pk(B,NA ; A)),

+(pk(A, NA ; n(B,r) ; B)),

-(pk(B,n(B,r))),

+({NSL-resp(r#) . A . B . h(NA , n(B,r))}), nil] &

---- KD protocol

:: r’ ::

[nil | +(KD-init),

-({NSL-init(r#) . A . B . MKe }),

+(e(MKe, skey(A, n(A,r’)))) ,

-(e(MKe, skey(A, n(A,r’)) ; N)),

+(e(MKe, N)), nil] &

:: r’ ::

6.4. Protocol Composition via Protocol Transformation 157

[nil | +(KD-resp),

-({NSL-resp(r#) . A . B . MKe }),

-(e(MKe, skey(A,NA’))),

+(e(MKe, skey(A,NA’) ; n(B,r’))),

-(e(MKe, n(B,r’))), nil] &

:: r’ ::

[nil | +(KD-init),

-({NSL-resp(r#) . A . B . MKe }),

+(e(MKe, skey(B, n(B,r’)))),

-(e(MKe, skey(B, n(B,r’)) ; N)),

+(e(MKe, N)), nil] &

:: r’ ::

[nil | +(KD-resp),

-({NSL-init(r#) . A . B . MKe }),

-(e(MKe, skey(B,NB’))),

+(e(MKe, skey(B,NB’) ; n(A,r’))),

-(e(MKe, n(A,r’))), nil]

�

6.4.2 Soundness and Completeness of the Protocol
Transformation

In this section we prove soundness and completeness of the composition
by protocol transformation with respect to the abstract operational se-
mantics of Section 6.3.3 subject to the assumption described in Remark 1,
that any given instantiation of a parent role can have children of only one
type of role, although it may have multiple choices for the one role. First,
in Section 6.4.2.1 we relate protocol states using the protocol composi-
tion rewrite rules of Section 6.3.3 and protocol states in the transformed
protocol composition. Then, in Section 6.4.2.2 we prove soundness and
completeness of one backwards narrowing step using the rewrite theory
associated to the transformed protocol (i.e., RΦ♣P1 ;SP2q) w.r.t. one back-
wards narrowing step using the rewrite theory associated to the protocol
composition of Section 6.3.3 (i.e., RP1 ;SP2

). Finally, Section 6.4.2.3 ex-
tends the soundness and completeness results of Section 6.4.2.2 for one
narrowing step to a complete backwards reachability analysis.

158 Chapter 6. Sequential Protocol Composition in Maude-NPA

In the remainder of this chapter, when we can avoid confusion, a state
St is called valid according to a rewrite theory R if it is a valid term of
sort State with respect to the order-sorted signature of R. We call a state
initial if there are no backwards narrowing steps from it.

6.4.2.1 Relating States from Protocol Composition and Pro-
tocol Transformation

First, we must relate protocol states using the protocol composition
rewrite rules of Section 6.3.3 and protocol states in the transformed pro-
tocol composition.

Definition 6.11 (Functions transΦ and invΦ) Let P1 and P2 be two
protocols and P1 ;S P2 their composition. Let RP1 ;SP2

be the rewrite the-
ory associated in Section 6.3.3 to the protocol composition P1 ;S P2 and
RΦ♣P1 ;SP2q be the rewrite theory associated in Section 6.4.1 to the trans-
formed protocol. We define the following:

1. the relation transΦ between states valid according to the rewrite
theory RP1 ;SP2

and states valid according to the rewrite theory
RΦ♣P1 ;SP2q as specified in Figure 6.4.

2. the function invΦ from states valid according to the rewrite theory
RΦ♣P1 ;SP2q into states valid according to the rewrite theory RP1 ;SP2

as specified in Figure 6.5.

The following auxiliary results become crucial and ensure that there
is an appropriate connection between states of both rewrite theories.

Lemma 6.12 The function invΦ is total and relation transΦ is the in-
verse of invΦ. Let P1 and P2 be two protocols and P1 ;S P2 their com-
position. Let RP1 ;SP2

be the rewrite theory associated in Section 6.3.3
to the protocol composition P1 ;S P2 and RΦ♣P1 ;SP2q be the rewrite theory
associated in Section 6.4.1 to the transformed protocol.

The function invΦ defined in Definition 6.11 defines a total function
from terms of sort State in RΦ♣P1 ;SP2q back to terms of sort State in
RP1 ;SP2

. The function transΦ defined in Definition 6.11 is the inverse of
invΦ.

6.4. Protocol Composition via Protocol Transformation 159

transΦ♣Stq ✏

✩✬✬✫
✬✬✪

r�♣b♣rqq,✁♣a♣rq . ✾Ibq,
ÝÑ
b1 ⑤

ÝÑ
b2 s & St✶ if ♣bqrt

ÝÑ
Ib✉,

ÝÑ
b1 ⑤

ÝÑ
b2 s P St,

♣a, b, 1✁1q P P1 ;S P2,

transΦ♣St✁ ♣bqq ✏ St✶

r�♣b♣rqq ⑤ ✁♣a♣rq . ✾Ibq,
ÝÑ
Mbs & St✶ if ♣bqrt

ÝÑ
Ib✉ ⑤

ÝÑ
Mbs P St,

♣a, b, 1✁1q P P1 ;S P2,

transΦ♣St✁ ♣bqq ✏ St✶

rnil ⑤ �♣b♣rqq,✁♣a♣rq . ✾Ibq,
ÝÑ
Mbs &

rÝÑa1 ⑤ ÝÑa2,✁♣b♣rqq,�♣a♣rq . ✾Ibqs & St✶ if ♣bqrnil ⑤ t
ÝÑ
Ib✉,

ÝÑ
Mbs P St,

♣aqrÝÑa1 ⑤ ÝÑa2, t
ÝÑ
Oa✉s P St,

♣a, b, 1✁1q P P1 ;S P2,

transΦ♣St✁ ♣aq ✁ ♣bqq ✏ St✶

r✁♣a♣rq . ✾Ibq,
ÝÑ
b1 ⑤

ÝÑ
b2 s & St✶ if ♣bqrt

ÝÑ
Ib✉,

ÝÑ
b1 ⑤

ÝÑ
b2 s P St,

♣a, b, 1✁✝q P P1 ;S P2,

transΦ♣St✁ ♣bqq ✏ St✶

rnil ⑤ ✁♣a♣rq . ✾Ibq,
ÝÑ
Mbs & St✶ if ♣bqrt

ÝÑ
Ib✉ ⑤

ÝÑ
Mbs P St,

♣a, b, 1✁✝q P P1 ;S P2,

transΦ♣St✁ ♣bqq ✏ St✶,

r
ÝÑ
Ma ⑤ � ♣a♣rq . ✾Ibqs ❘ St✶

rnil ⑤ ✁♣a♣rq . ✾Ibq,
ÝÑ
Mbs &

rÝÑa1 ⑤ ÝÑa2,�♣a♣rq . ✾Ibqs & St✶ if ♣bqrnil ⑤ t
ÝÑ
Ib✉,

ÝÑ
Mbs P St,

♣aqrÝÑa1 ⑤ ÝÑa2, t
ÝÑ
Oa✉s P St,

♣a, b, 1✁✝q P P1 ;S P2,

transΦ♣St✁ ♣aq ✁ ♣bqq ✏ St✶,

St otherwise

plus every element mPI and m❘I in the intruder knowledge of St appears in the
intruder knowledge of St✶

Figure 6.4: Relation transΦ between states valid according to the rewrite
theoryRP1 ;SP2

and states valid according to the rewrite theoryRΦ♣P1 ;SP2q

160 Chapter 6. Sequential Protocol Composition in Maude-NPA

invΦ♣Stq ✏

✩✬✬✬✫
✬✬✬✪

♣bqrt
ÝÑ
Ib✉,

ÝÑ
b1 ⑤

ÝÑ
b2 s & St✶ if Sb ✏ r�♣b♣rqq,✁♣a♣rq . ✾Ibq,

ÝÑ
b1 ⑤

ÝÑ
b2 s P St,

♣a, b, 1✁1q P P1 ;S P2,

invΦ♣St✁ Sbq ✏ St✶

♣bqrt
ÝÑ
Ib✉ ⑤

ÝÑ
Mbs & St✶ if Sb ✏ r�♣b♣rqq ⑤ ✁♣a♣rq . ✾Ibq,

ÝÑ
Mbs P St,

♣a, b, 1✁1q P P1 ;S P2,

invΦ♣St✁ Sbq ✏ St✶

♣bqrnil ⑤ t
ÝÑ
Ib✉,

ÝÑ
Mbs&

♣aqrÝÑa1 ⑤ ÝÑa2, t
ÝÑ
Oa✉s & St✶ if Sb ✏ rnil ⑤ �♣b♣rqq,✁♣a♣rq . ✾Ibq,

ÝÑ
Mbs P St

Sa ✏ rÝÑa1 ⑤ ÝÑa2,✁♣b♣rqq,�♣a♣rq . ✾Ibqs P St

♣a, b, 1✁1q P P1 ;S P2,

invΦ♣St✁ Sa ✁ Sbq ✏ St✶

♣bqrt
ÝÑ
Ib✉,

ÝÑ
b1 ⑤

ÝÑ
b2 s & St✶ if Sb ✏ r✁♣a♣rq . ✾Ibq,

ÝÑ
b1 ⑤

ÝÑ
b2 s P St

♣a, b, 1✁✝q P P1 ;S P2,

invΦ♣St✁ Sbq ✏ St✶

♣bqrt
ÝÑ
Ib✉ ⑤

ÝÑ
Mbs & St✶ if Sb ✏ rnil ⑤ ✁♣a♣rq . ✾Ibq,

ÝÑ
Mbs P St,

r
ÝÑ
Ma ⑤ � ♣a♣rq . ✾Ibqs ❘ St✶

♣a, b, 1✁✝q P P1 ;S P2,

invΦ♣St✁ Sbq ✏ St✶,

♣bqrnil ⑤ t
ÝÑ
Ib✉,

ÝÑ
Mbs&

♣aqrÝÑa1 ⑤ ÝÑa2, t
ÝÑ
Oa✉s & St✶ if Sb ✏ rnil ⑤ ✁♣a♣rq . ✾Ibq,

ÝÑ
Mbs P St,

Sa ✏ rÝÑa1 ⑤ ÝÑa2,�♣a♣rq . ✾Ibqs P St,

♣a, b, 1✁✝q P P1 ;S P2,

invΦ♣St✁ Sa ✁ Sbq ✏ St✶

St otherwise

plus every element mPI and m❘I in the intruder knowledge of St such that m is
not of sort Param or Role appears in the intruder knowledge of St✶.

Figure 6.5: Function invΦ mapping from states valid according to the
rewrite theoryRΦ♣P1 ;SP2q onto states valid according to the rewrite theory
RP1 ;SP2

6.4. Protocol Composition via Protocol Transformation 161

Proof. By structural induction on the definitions of Figure 6.4 and 6.5.
❧

Note that invΦ is not injective, since two states that differ only by
the fact that some strands have different child roles defined in the out-
put parameters (respectively, different parent roles defined in the input
parameters), will be mapped to the same state by invΦ. Thus its inverse
transΦ is not a function.

Another relevant property is ensuring that one-to-one protocol com-
positions are indeed one-to-one in the transformed protocol composition.
We define this result in terms of one strand composition ♣a, b, 1✁1q, which
is easily extensible to the whole protocol composition P1 ;S P2.

Lemma 6.13 (Unique One-to-one Composition) Let P1 and P2 be
two protocols and P1 ;S P2 be a one-to-one composition. Let RΦ♣P1 ;SP2q

be the rewrite theory associated in Section 6.4.1 to the transformed pro-
tocol and RP1 ;SP2

be the rewrite theory associated in Section 6.3.3 to the
protocol composition P1 ;S P2. If St

✶ is a protocol state valid according to
the rewrite theory RΦ♣P1 ;SP2q, then, for each parent strand, there is only
one child composed with it.

Proof. Recall that a fresh variable r# is uniquely generated by each child
strand, sent to the prospective parent strand, and sent back to the child
strand by the input/output exchange messages. Therefore, each parent
uses only one fresh variable r#. Now, the Maude-NPA restriction that
two strands cannot generate the same fresh variable ensures that there
are no two children generating the same r#. ❧

6.4.2.2 Soundness and Completeness for One Narrowing Step

We introduce our main results for soundness and completeness. First, we
consider soundness of one backwards narrowing step using the rewrite
theory associated to the transformed protocol (i.e., RΦ♣P1 ;SP2q) w.r.t.
backwards narrowing using the rewrite theory associated to protocol com-
position (i.e., RP1 ;SP2

). We write R✁1 to denote the reverse form of all
the rules in R.

162 Chapter 6. Sequential Protocol Composition in Maude-NPA

Theorem 6.14 (One-step Soundness) Let P1 and P2 be two proto-
cols and P1 ;S P2 their composition. Let RP1 ;SP2

be the rewrite theory
associated in Section 6.3.3 to the protocol composition P1 ;S P2 subject to
the restrictions of Remark 1 in Page 149, and RΦ♣P1 ;SP2q be the rewrite
theory associated in Section 6.4.1 to the transformed protocol. Let St✶1 and
St✶2 be two protocol states valid according to the rewrite theory RΦ♣P1 ;SP2q.
If St✶1 ❀σ,R✁1

Φ♣P1 ;SP2q
,EP1 ;SP2

St✶2, then either

1. there is a protocol state St1 valid according to the rewrite theory
RP1 ;SP2

and two substitutions ρ and ρ✶ such that invΦ♣St
✶
1q ✏ St1,

invΦ♣St
✶
2q ✏ St1ρ, and σ ✏EP1 ;SP2

ρ ✆ ρ✶. or

2. there are two protocol states St1 and St2 valid according to the
rewrite theory RP1 ;SP2

and two substitutions ρ and ρ✶ such that
invΦ♣St

✶
1q ✏ St1ρ, invΦ♣St

✶
2q ✏ St2, St1 ❀ρ✶,R✁1

P1 ;SP2
,EP1 ;SP2

St2,

and ρ✶ ✏EP1 ;SP2
ρ ✆ σ.

Proof. We prove the result by case analysis of the rewrite rules applicable
to term St✶1.

Let us consider first the second case of the theorem statement where
one rewrite step in R✁1

Φ♣P1 ;SP2q
corresponds to one rewrite step in R✁1

P1 ;SP2
.

This case corresponds to two situations: (i) the standard uses of the rule-
base semantics (i.e. Rules (3.1),(3.2), (3.3), and (3.4)) for dealing with
regular incoming and outcoming messages in the strand; and (ii) the
following transitions dealing with the messages associated to the input
and output parameters:

1. In the case in which a rule of the form Rule (3.4) in RΦ♣P1 ;SP2q is

applied in order to produce St✶2 by adding a strand r
ÝÑ
Ma ⑤ �♣a♣rq. ✾Ibqs

to St✶1 by unification with a term ♣a♣rq . ✾IbqPI in the intruder
knowledge of St✶1, this corresponds to the application of Rule (6.2)
in RP1 ;SP2

, in which the state St2 is created by adding the strand

r
ÝÑ
Ma ⑤ t

ÝÑ
Oa✉s to a state St1 by unification with the input parameters

of a child strand. In this case, the substitution ρ above is the
identity, since both rule applications produce the same unifier.

2. In the case in which the state St✶2 is created by applying Rule (3.3)
inRΦ♣P1 ;SP2q to unify the term �♣a♣r✶q . ✾Ibq of a strand r

ÝÑ
Ma,�♣a♣r

✶q

6.4. Protocol Composition via Protocol Transformation 163

. ✾Ibq ⑤ nils in St✶1 with a term ♣a♣rq . ✾IbqPI in the intruder knowl-
edge of St✶1, this corresponds to the creation of St2 from St1 via the
application of Rule (6.1) in RP1 ;SP2

, in which the output parame-

ters t
ÝÑ
Oa✉ of the strand associated to protocol P1 are synchronized

with the input parameters t
ÝÑ
Ib ✉ of the strand associated to protocol

P2. Similarly, in this case the substitution ρ above is the identity,
since both rule applications produce the same unifier.

3. In the case in which the state St✶2 is created from St✶1 via application
of Rule (3.3) in RΦ♣P1 ;SP2q to unify the term �♣b♣rqq of a strand

r�♣b♣rqq ⑤ ✁♣a♣rq . ✾Ibq,
ÝÑ
Mbs in St✶1 with a term b♣rqPI in the intruder

knowledge of St✶1, this corresponds to the application of Rule (6.1)
in RP1 ;SP2

to create St2 from St1, in which the output parameters

t
ÝÑ
Oa✉ of the strand associated to protocol P1 are synchronized with
the input parameters t

ÝÑ
Ib ✉ of the strand associated to protocol P2.

In this case, the substitution ρ above may be different from the
identity, since the concrete unifier computed by Rule (6.1) was
computed before, when the term ♣a♣rq . ✾IbqPI was unified with a
concrete parent strand.

Now, let us consider the first case of the theorem statement where
one rewrite step in R✁1

Φ♣P1 ;SP2q
does not correspond to one rewrite step

in R✁1
P1 ;SP2

and an instantiation is just computed for St1. This case
corresponds to the rule applications in RΦ♣P1 ;SP2q manipulating the input
and output messages associated to the protocol composition such that
the same state is valid according to RP1 ;SP2

by the relation invΦ. Such
rule applications in RΦ♣P1 ;SP2q are as follows:

1. In a one-to-one composition, the child transition from strand
r�♣b♣rqq,✁♣a♣rq . ✾Ibq ⑤

ÝÑ
Mbs in St✶1 to strand r�♣b♣rqq ⑤ ✁♣a♣rq . ✾Ibq,ÝÑ

Mbs in St✶2. Here, states St
✶
1 and St✶2 have the same state St1 given

by invΦ.

2. In a one-to-one composition, the parent transition from strand
r
ÝÑ
Ma,✁♣b♣rqq,�♣a♣rq . ✾Ibq ⑤ nils in St✶1 to strand r

ÝÑ
Ma,✁♣b♣rqq ⑤

�♣a♣rq . ✾Ibqs in St✶2. Here, state St✶1 has a state St1 given by invΦ,
St✶2 has a state St2 given by invΦ and states St1 and St2 differ only
in that St2 is an instance of St1.

164 Chapter 6. Sequential Protocol Composition in Maude-NPA

3. In a one-to-one composition, the addition of parent strand r
ÝÑ
Ma,

✁♣b♣rqq ⑤ �♣a♣rq . ✾Ibqs to St✶1, yields St✶2. Here, state St✶1 has a
state St1 given by invΦ, St✶2 has a state St2 given by invΦ and
states St1 and St2 differ only in that St2 is an instance of St1.

4. In a one-to-one composition, the parent transition from strand r
ÝÑ
Ma,

✁♣b♣rqq ⑤ �♣a♣rq . ✾Ibqs in St✶1 to strand r
ÝÑ
Ma ⑤ ✁♣b♣rqq,

�♣a♣rq . ✾Ibqs in St✶2. Here, states St✶1 and St✶2 have the same state
St1 given by invΦ.

5. In a one-to-many composition, the child transition from strand
r✁♣a♣rq . ✾Ibq ⑤

ÝÑ
Mbs in St✶1 to strand rnil ⑤ ✁♣a♣rq . ✾Ibq,

ÝÑ
Mbs in

St✶2. Here, states St✶1 and St✶2 have the same state St1 given by
invΦ.

This concludes the proof. ❧

Now, we consider completeness of one backwards narrowing step us-
ing the rewrite theory associated to protocol composition (i.e., RP1 ;SP2

)
w.r.t. backwards narrowing using the rewrite theory associated to the
transformed protocol (i.e., RΦ♣P1 ;SP2q). We write St1 Ñ

1,2,4
R St2 to denote

that either St1 ÑR St2, or there is a term St✶ such that St1 ÑR St✶ ÑR

St2, or there are terms St✶, St✷, St✸ such that St1 ÑR St✶ ÑR St✷ ÑR

St✸ ÑR St2.

Theorem 6.15 (One-step Completeness) Let P1 and P2 be two pro-
tocols and P1 ;S P2 their composition. Let RP1 ;SP2

be the rewrite theory
associated in Section 6.3.3 to the protocol composition P1 ;S P2 subject to
the restrictions of Remark 1 in Page 149, and RΦ♣P1 ;SP2q be the rewrite
theory associated in Section 6.4.1 to the transformed protocol. Let St1 and
St2 be two protocol states valid according to the rewrite theory RP1 ;SP2

. If
St1 ❀σ,R✁1

P1 ;SP2
,EP1 ;SP2

St2, then there are two protocol states St✶1 and St✶2

valid according to the rewrite theory RΦ♣P1 ;SP2q such that transΦ♣St1q ✏
St✶1, transΦ♣St2q ✏ St✶2, and
St✶1 ❀

1,2,4

σ,R✁1
Φ♣P1 ;SP2q

,EP1 ;SP2

St✶2.

Proof. We prove the result by case analysis of the rewrite rules applicable
to term St1. Since the proof of this theorem is very similar to the proof
of Theorem 6.14, we present the cases only in broad outline.

6.4. Protocol Composition via Protocol Transformation 165

When the Rules (3.1),(3.2), (3.3), and (3.4) are applied to regular
incoming and outcoming messages in the strands, we have just one nar-
rowing step from state St✶1.

When we have a one-to-many composition and Rules (6.1), (6.2), or
(6.3) are applied, we have two narrowing steps from state St✶1 as follows:

1. Rule (6.1) corresponds to an application of Rule (3.1) (accepting
the input parameters of the child strand) followed by an application
of Rule (3.3) (synchronizing the input of the child strand with the
output parameters of the parent strand);

2. Rule (6.2) corresponds to an application of Rule (3.1) followed by
an application of Rule (3.4) (introducing a new strand); and

3. Rule (6.3) corresponds to an application of Rule (3.3) (synchroniz-
ing the output parameters of the parent strand with the already
accepted input parameters of the child strand). Given that our
requirement that the restrictions of Remark 1 hold, Rule (6.3) can
be applied if and only if the corresponding rule of the form (3.3)
can be applied.

When we have a one-to-one composition and Rules (6.1) or (6.2) are
applied, we have four narrowing steps from the state St✶1 as follows:

1. Rule (6.1) corresponds to an application of Rule (3.1) (accepting
the input parameters of the child strand) followed by an appli-
cation of Rule (3.3) (synchronizing the input of the child strand
with the output parameters of the parent strand), and two further
applications of Rules (3.1) and (3.3) for the b♣rq message; and

2. Rule (6.2) corresponds to an application of Rule (3.1) followed by
an application of Rule (3.4) (introducing a new strand), and two
further applications of Rules (3.1) and (3.3) for the b♣rq message.

This concludes the proof. ❧

6.4.2.3 Soundness and Completeness for Reachability Analysis

Now, we extend the previous results of soundness and completeness of
one narrowing step to backwards reachability analysis.

166 Chapter 6. Sequential Protocol Composition in Maude-NPA

Theorem 6.16 (Reachability Soundness) Let P1 and P2 be two pro-
tocols and P1 ;S P2 their composition. Let RΦ♣P1 ;SP2q be the rewrite theory
associated in Section 6.4.1 to the transformed protocol and RP1 ;SP2

be
the rewrite theory associated in Section 6.3.3 to the protocol composition
P1 ;S P2, subject to the restrictions of Remark 1 in Page 149. If St✶1 and
St✶2 are two protocol states valid according to the rewrite theory RΦ♣P1 ;SP2q

such that St✶2 is an initial state, and St✶1❀
✝
σ,R✁1

Φ♣P1 ;SP2q
,EP1 ;SP2

St✶2, then

there are two protocol states St1 and St2 valid according to the rewrite
theory RP1 ;SP2

and two substitutions ρ and ρ✶ such that St2 is an initial
state, invΦ♣St

✶
1q ✏ St1ρ, invΦ♣St

✶
2q ✏ St2, St1❀

✝
ρ✶,R✁1

P1 ;SP2
,EP1 ;SP2

St2, and

ρ✶ ✏EP1 ;SP2
ρ ✆ σ.

Proof. By successive application of Theorem 6.14. Let us consider

St✶1 ❀
n

σ,R✁1
Φ♣P1 ;SP2q

,EP1 ;SP2

St✶2.

If n ✏ 0, then the conclusion is immediate. If n → 0, then there is a state
St✶ s.t.

St✶1 ❀σ1,R
✁1
Φ♣P1 ;SP2q

,EP1 ;SP2
St✶ ❀

n✁1

σ✶,R✁1
Φ♣P1 ;SP2q

,EP1 ;SP2

St✶2.

Then, by Theorem 6.15, either

1. there is a protocol state St1 valid according to the rewrite theory
RP1 ;SP2

and a substitution ρ such that invΦ♣St
✶
1q ✏ St1, invΦ♣St

✶q ✏
St1ρ and σ1 and ρ are EP1 ;SP2

-compatible; or

2. there are two protocol states St1 and St valid according to the
rewrite theory RP1 ;SP2

and two substitutions ρ1 and ρ✶1 such that
invΦ♣St

✶
1q ✏ St1ρ1, invΦ♣St

✶q ✏ St, St1 ❀ρ✶1,R
✁1
P1 ;SP2

,EP1 ;SP2
St and

ρ✶1 ✏ ρ1 ✆ σ1.

In the first case, we can apply the induction hypothesis saying that
there are two protocol states ①St and St2 valid according to the rewrite
theory RP1 ;SP2

and two substitutions ♣ρ and ♣ρ✶ such that St2 is an initial

state, invΦ♣St
✶q ✏ ①St♣ρ, invΦ♣St✶2q ✏ St2, ①St ❀✝

♣ρ✶,R✁1
P1 ;SP2

,EP1 ;SP2

St2, and♣ρ✶ ✏ ♣ρ ✆ σ✶. Since invΦ♣St
✶q ✏ St1ρ and invΦ♣St

✶q ✏ ①St♣ρ, we can con-
clude by definition of the relation invΦ that there is a substitution σ✷ s.t

6.4. Protocol Composition via Protocol Transformation 167

St1 ❀
✝
σ✷,R✁1

P1 ;SP2
,EP1 ;SP2

St2 and σ✷ ✏ ρ ✆ ♣ρ✶. This concludes this part of

the proof.
In the second case, we can apply the induction hypothesis saying that

there are two protocol states ①St and St2 valid according to the rewrite
theory RP1 ;SP2

and two substitutions ♣ρ and ♣ρ✶ such that St2 is an initial

state, invΦ♣St
✶q ✏ ①St♣ρ, invΦ♣St✶2q ✏ St2, ①St ❀✝

♣ρ✶,R✁1
P1 ;SP2

,EP1 ;SP2

St2, and♣ρ✶ ✏ ♣ρ✆σ✶. Here the conclusion follows because we can build the sequence

St1 ❀ρ✶1,R
✁1
P1 ;SP2

,EP1 ;SP2
St ❀✝

♣ρ✶,R✁1
P1 ;SP2

,EP1 ;SP2

St2.

such that invΦ♣St
✶
1q ✏ St1ρ invΦ♣St

✶
2q ✏ St2, and ρ✶

1 ✆ ♣ρ✶ ✏ ρ1 ✆σ1 ✆ ♣ρ ✆σ✶.
This concludes this part of the proof. ❧

Theorem 6.17 (Reachability Completeness) Let P1 and P2 be two
protocols and P1 ;S P2 their composition. Let RΦ♣P1 ;SP2q be the rewrite
theory associated in Section 6.4.1 to the transformed protocol, and RP1 ;SP2

be the rewrite theory associated in Section 6.3.3 to the protocol compo-
sition P1 ;S P2, subject to the restrictions of Remark 1 in Page 149. If
St1 and St2 are two protocol states valid according to the rewrite theory
RP1 ;SP2

such that St2 is an initial state, and St1❀
✝
σ,R✁1

P1 ;SP2
,EP1 ;SP2

St2,

then there are two protocol states St✶1 and St✶2 valid according to the
rewrite theory RΦ♣P1 ;SP2q such that St✶2 is an initial state, transΦ♣St1q ✏
St✶1, transΦ♣St2q ✏ St✶2, and St✶1❀

✝
σ,R✁1

Φ♣P1 ;SP2q
,EP1 ;SP2

St✶2.

Proof. By successive application of Theorem 6.15. Let us consider

St1 ❀
n

σ,R✁1
P1 ;SP2

,EP1 ;SP2

St2.

If n ✏ 0, then the conclusion follows. If n → 0, then there is a state St

such that

St1 ❀σ1,R
✁1
P1 ;SP2

,EP1 ;SP2
St ❀n

σ✶,R✁1
P1 ;SP2

,EP1 ;SP2

St2.

By Theorem 6.15, there are two protocol states St✶1 and St✶ valid ac-
cording to the rewrite theory RΦ♣P1 ;SP2q such that transΦ♣St1q ✏ St✶1,

168 Chapter 6. Sequential Protocol Composition in Maude-NPA

transΦ♣Stq ✏ St✶, and St✶1 ❀
1,2,4

σ1,R
✁1
Φ♣P1 ;SP2q

,EP1 ;SP2

St✶. Then, by induc-

tion hypothesis, there are two protocol states ①St✶ and St✶2 valid accord-
ing to the rewrite theory RΦ♣P1 ;SP2q such that St✶2 is an initial state,

transΦ♣Stq ✏ ①St✶, transΦ♣St2q ✏ St✶2, and ①St✶ ❀✝
σ✶,R✁1

Φ♣P1 ;SP2q
,EP1 ;SP2

St✶2.

Since transΦ♣Stq ✏ ①St✶ and transΦ♣Stq ✏ St✶, by definition of the rela-

tion transΦ we can assume that St✶ ✏ ①St✶. The conclusion follows because
we can build the sequence

St✶1 ❀
1,2,4

σ1,R
✁1
Φ♣P1 ;SP2q

,EP1 ;SP2

St✶ ❀✝
σ✶,R✁1

Φ♣P1 ;SP2q
,EP1 ;SP2

St✶2.

❧

Finally, we put everything together into one result.

Theorem 6.18 (Soundness and Completeness) Let P1 and P2 be
two protocols and P1 ;S P2 their composition, as defined in Section 6.3.2.
Let RΦ♣P1 ;SP2q be the composition rewrite theory defined above in Sec-
tion 6.4.1, and let RP1 ;SP2

be the rewrite theory associated to the abstract
composition semantic described in Section 6.3.3, subject to the restric-
tions of Remark 1 in Page 149.

Given a state St valid according to RP1 ;SP2
and an initial state Stini

reachable from St by backwards narrowing in RP1 ;SP2
, then there are

two states St✶ and St✶ini valid according to RΦ♣P1 ;SP2q such that ♣St, St✶q,
♣Stini, St

✶
iniq P transΦ, and St✶ini is reachable from St✶ by backwards nar-

rowing in RΦ♣P1 ;SP2q.

Given a state St✶ valid according to RΦ♣P1 ;SP2q and an initial state
St✶ini reachable from St✶ by backwards narrowing in RΦ♣P1 ;SP2q, then
invΦ♣St

✶q ✏ St, invΦ♣St
✶
iniq ✏ Stini, and Stini is reachable from St by

backwards narrowing in RP1 ;SP2
.

Proof. By Theorems 6.16 and 6.17. ❧

6.5. Protocol Composition via Synchronization Messages 169

6.5 Protocol Composition via Synchroniza-

tion Messages

In Section 6.4 we showed that sequential protocol composition can be
implemented using communication between strands via messages sent
over the Doler-Yao channel, by performing a protocol transformation.
However, as we will show in Section 6.6 this had a serious impact on
performance, as well as making it more difficult to write specifications
and attack states.

In this section we give a direct implementation of a semantic for
protocol composition slightly different to the abstract semantics of Sec-
tion 6.3. There are two reasons for this, having to do with the fact that
the rules in Figures 6.1 and 6.2 are parametrized by the strands in the
two composed protocols. First of all, this means that implementing the
rules would require a significant modification of Maude-NPA to support
the new composition data type. Secondly, the fact that each strand com-
position produces a new rule means that the number of rewrite rules is
significantly increased. Increasing the number of rewrite rules can affect
efficiency, since each rewrite rule must be tried at each narrowing step.
Here, we present a modified version of Maude-NPA in which composi-
tion is achieved via synchronization messages that are passed directly
between a parent and child strand without going through the Dolev-Yao
channel. Although, as in the case of composition with respect to proto-
col transformation, it is necessary to add new rewrite rules, the rules are
very similar to those of the basic Maude-NPA semantics in Section 3.4,
and require the addition of fewer parametrized rules than for protocol
transformation. Communication between strands is achieved using only
slight modifications of constructs already present in Maude-NPA.

In Section 6.5.1 we introduce the notion of synchronization of proto-
col strands, a key idea underlying sequential protocol composition. In
Section 6.5.2 we explain in detail the new Maude-NPA syntax for the
specification of protocol composition via synchronization messages. Sec-
tion 6.5.3 provides detailed information about the operational semantics
of this direct implementation of protocol composition in Maude-NPA.
Throughout this chapter we will refer to these syntax and semantics as
composition via synchronization messages syntax and semantics, respec-
tively. Finally, Section 6.5.4 proves the soundness and completeness of

170 Chapter 6. Sequential Protocol Composition in Maude-NPA

the semantics in Section 6.5.3 with respect to the abstract semantics in
Section 6.3.3, assuming some restrictions on the states reachable via that
semantics, thus proving that the semantics in Section 6.5.3 is a correct
implementation of protocol composition in Maude-NPA. We use our two
running examples (NSL-DB and NSL-KD) to illustrate our technique.

6.5.1 Synchronization Data Type Extension

As explained above, the underlying idea of a sequential protocol compo-
sition is that the end of the parent’s protocol execution is synchronized
with the beginning of the child’s protocol execution. Since in Maude-
NPA a protocol execution is denoted by a set of strands, we actually
need to provide an infrastructure to express the notion of synchroniza-
tion among strands, so that the strands of the parent protocol can be in
fact “connected” with the strands of the child protocol.

Synchronization of strands can be achieved in Maude-NPA by extend-
ing its syntax to define a special type of message that we call synchro-
nization message. Several sorts are added, Synch for the synchronization
message, Role for user-definable constants denoting the roles in the pro-
tocol, RoleConnection for establishing which role strand is the parent
and which role is the child, and Mode for choosing between one-to-one
composition, denoted by constant 1-1, and one-to-many composition,
denoted by 1-*. The synchronization message is defined by the following
operator:

op {_;;_;;_} -> RoleConnection Mode Msg -> Synch .

The sort Role contains some constants defined by the user for role names,
e.g. NSL.init or NSL.resp. The sort RoleConnection contains just one
operator Ñ , so that A Ñ B indicates that role A is the parent and
role B is the child, e.g.“NSL.init -> DB.resp”. The synchronization
message is indeed the third parameter, which is just a term of sort Msg,
allowing the user to construct any message representing the information
exchanged in the synchronization.

6.5. Protocol Composition via Synchronization Messages 171

6.5.2 Syntax for Protocol Composition via
Synchronization Messages

In this section we explain in detail how the Maude-NPA’s syntax has
been extended with synchronization messages (see Section 6.5.1) in or-
der to support the input and output parameters of Section 6.3.1 and
the abstract definition of protocol composition provided in Section 6.3.2.
Synchronization messages are actually used to represent protocol compo-
sitions directly in the strand specification of the parent and child strands
without any protocol transformation. A mapping from the notation for
protocol composition of Section 6.3.2 into synchronization messages is
described as follows.

Definition 6.19 (Strand Synchronization) Given two protocols P1

and P2 and a strand composition of the form ♣a, b,Modeq where a and
b are role identifiers of strands in P1 and P2, respectively, Mode is 1-1
or 1-*, and the strands of a and b are of the form ♣aq r

ÝÑ
M, to1, . . . , on✉s

and ♣bq rti✶1, . . . , i
✶
n✉,

ÝÑ
M ✶s, where i✶1, . . . , i

✶
n are the input parameters of b’s

strand, and o1, . . . , on are the output parameters of a’s strand, we define

synch♣a, b,Modeq ✏

★
♣aq r

ÝÑ
M, ta Ñ b ; ; Mode ; ; ♣o1; ☎ ☎ ☎ ; onq✉s,

♣bq rta Ñ b ; ; Mode ; ; ♣i✶1; ☎ ☎ ☎ ; i
✶
nq✉,

ÝÑ
M ✶s

✰

Definition 6.20 (Protocol Synchronization) Given two protocols P1

and P2 that are properly renamed to avoid variable sharing, and a sequen-
tial protocol composition P1 ;S P2 ✏ ♣P1, S,P2q where S denotes a set of
strand compositions of the form ♣a, b,Modeq, the protocol synchroniza-
tion, denoted sync♣P1 ;S P2q is a single protocol which: (i) has signature
ΣP1

❨ ΣP2
❨ ΣSynch, where ΣSynch is the new signature described in Sec-

tion 6.5.1, (ii) the equational theory is EP1
❨ EP2

and (iii) the set of
strands is synch♣Sq, which is, by definition, the set of strands of the
form synch♣a, b,Modeq for each strand composition ♣a, b,Modeq in S.

As explained in Remark 1 in Page 149, in composition via synchro-
nization messages we assume that in a one-to-many composition a par-
ticular instantiation of a parent role can have children belonging to only
one role, although that role may be one of any of the roles allowed by the
specification. Therefore, note that in that case the protocol composition

172 Chapter 6. Sequential Protocol Composition in Maude-NPA

♣P1 ;S P2q may contain two or more strands specifying the same role, the
only difference being that these strands may be given different parents
or children in their synchronization messages. This is not a problem,
since the names of the different parent and child roles disambiguate the
different strands. However, for readability it may often be desirable to
provide some “syntactic sugar” distinguishing the different role names
from each other. We do this in the NSL-DB protocol defined below. One
is simply to extend the identifiers of the different parents and/or children
so that they become different. This is done for the child strands in NSL-
KD, as shown below. The other is to use variables in place of constants,
so that two or more strands playing the same role can be represented
by a single strand having the same parents (or children). This is also
more economical to specify, since the strand only has to be written once.
This approach is used to specify the parent strands in NSL-KD, as shown
below.

In the following we provide the specification of our two examples
of protocol composition, namely the NSL Distance Bounding protocol
(NSL-DB) and the NSL Key Distribution protocol (NSL-KD), presented
in Sections 6.2.1 and 6.2.2, respectively, using the new synchronization
message representation described above. The relevant fact in the DB
protocol is that both nonces are required to be unknown to an attacker
before they are sent, but the nonce originating from the responder must
be previously agreed upon between the two principals. Therefore, this
protocol is usually composed with another protocol ensuring secrecy and
authentication of nonces. Furthermore, according to [Guttman et al.,
2008], there are two extra issues related to the DB protocol that must be
considered: (i) the initiator of the previous protocol plays the role of the
responder in DB and viceversa, and (ii) nonces generated by the parent
protocol cannot be shared by more than one child, so that an initiator
of NSL will be connected to one and only one responder of DB. In our
working example, we use the NSL protocol to provide these capabilities.

Example 6.21 We begin with our example of one-to-one protocol com-
position, i.e., the NSL-DB protocol. As explained in Section 6.2.1, the
initiator of the DB protocol is always the child of the responder of the
NSL protocol. The specification of the protocol strands using this syntax
is as follows where the symbol ✝ denotes the exclusive-or operator:

6.5. Protocol Composition via Synchronization Messages 173

*** NSL protocol

:: r ::

[nil | +(pk(B, n(A,r) ; A)) ,

-(pk(A, n(A,r) ; NB ; B)),

+(pk(B, NB)),

{NSL-init -> DB-resp ;; 1-1 ;; A ; B ; n(A,r)}, nil] &

:: r ::

[nil | -(pk(B,NA ; A)),

+(pk(A, NA ; n(B,r) ; B)),

-(pk(B,n(B,r))),

{NSL-resp -> DB-init ;; 1-1 ;; A ; B ; NA}, nil] &

*** Distance Bounding protocol

:: r’ ::

[nil | {NSL-resp -> DB-init ;; 1-1 ;; A ; B ; NA},

+(n(B,r’)),

-(NA * n(B,r’)), nil] &

:: nil ::

[nil | {NSL-init -> DB-resp ;; 1-1 ;; A ; B ; NA },

-(N),

+(NA * N), nil]

�

Example 6.22 Let us now continue with our example of a one-to-many
protocol composition, i.e., the NSL-KD protocol. As explained in Sec-
tion 6.2.2, the initiator of the session key protocol can be the child of
either the initiator or responder of the NSL protocol. These two possi-
ble compositions for each KD protocol need to be specified by different
synchronization messages and, therefore, it is necessary to duplicate each
strand, as shown below. In this case, we also change the names of the
roles to improve the readability of the specification. The specification
of the strands of the NSL-KD protocol using the syntax for protocol
composition via synchronization messages is as follows:

*** NSL protocol

:: r ::

[nil | +(pk(B, n(A,r) ; A)) ,

-(pk(A, n(A,r) ; NB ; B)),

+(pk(B, NB)),

174 Chapter 6. Sequential Protocol Composition in Maude-NPA

{NSL-init -> ROLE ;;

1-* ;; A ; B ; h(n(A,r) , NB) }, nil] &

:: r ::

[nil | -(pk(B,NA ; A)),

+(pk(A, NA ; n(B,r) ; B)),

-(pk(B,n(B,r))),

{NSL-resp -> ROLE ;;

1-* ;; A ; B ; h(NA , n(B,r))}, nil] &

*** KD protocol

:: r’ ::

[nil | {NSL-init -> initA-kd ;; 1-* ;; A ; B ; MKe },

+(e(MKe, skey(A, n(A,r’)))) ,

-(e(MKe, skey(A, n(A,r’)) ; N)),

+(e(MKe, N)), nil] &

:: r’ ::

[nil | {NSL-resp -> respB-kd ;; 1-* ;; A ; B ; MKe },

-(e(MKe, skey(A, NA’))),

+(e(MKe, skey(A, NA’) ; n(B,r’))),

-(e(MKe, n(B,r’))), nil] &

:: r’ ::

[nil | {NSL-resp -> initB-kd ;; 1-* ;; A ; B ; MKe },

+(e(MKe, skey(B, n(B,r’)))),

-(e(MKe, skey(B, n(B,r’)) ; N)),

+(e(MKe, N)), nil] &

:: r’ ::

[nil | {NSL-init -> respA-kd ;; 1-* ;; A ; B ; MKe },

-(e(MKe, skey(B, NB’))),

+(e(MKe, skey(B, NB’) ; n(A,r’))),

-(e(MKe, n(A,r’))), nil]

where ROLE is a variable denoting a role. �

6.5.3 Operational Semantics of Composition via Syn-
chronization Messages

In Section 6.3.3 we provided an operational semantics based on extra
transitions rules generated for each possible protocol composition and we
differentiated between rules generated for one-to-one compositions and

6.5. Protocol Composition via Synchronization Messages 175

rules generated for one-to-many compositions. However, in this section
we propose a simplified version of that operational semantics, which we
call composition via message synchronization semantics, so that now we
just have two generic transition rules and a set of generated transition
rules for each strand in the same spirit of Rule (3.1) and Rules (3.4).

The two generic transition rules for protocol composition via synchro-
nization messages are described in Figure 6.6. Note that these transition
rules are written in a forwards way but will be executed backwards, as
the basic transition rules of Section 3.4 and the abstract composition
semantics of Section 6.3.3. The first generic transition Rule (6.4) is ap-
plicable to both one-to-one compositions and one-to-many compositions.
This rule achieves the synchronization between both strands by means of
the synchronization message. The second generic Rule (6.5) is applicable
only to one-to-many compositions and represents the synchronization of
a parent and a child without disabling the synchronization message of
the parent.

These two generic rules synchronize an output parameter of an ex-
isting parent strand with an input message of an existing child strand.
Both strands must be present in the state. The difference between a
one-to-one and one-to-many composition is that the output parameter
of the parent strand is kept in the same position of the parent strand for
further synchronizations with other children strands.

As it happens in the basic Maude-NPA operational semantics of Sec-
tion 3.4, we generate extra transitions rules from strands, in this case
for protocol composition, as shown in Figure 6.7. Transition rules of
the form (6.6), when executed backwards, allow adding to the state a
new parent strand, whose output parameters will be synchronized with
the input parameters of an already existing child strand. Note that the
generated transitions rules (6.6) are apply to both of the one-to-one or
one-to-many composition cases. In each case, they describe a parent
synchronizing with its first child.

For example, given the composition of the NSL initiator’s strand and
the DB responder’s strand, where both strands were defined in Exam-
ple 6.21, for Alice’s strand

:: r ::

[nil | +(pk(B, n(A,r) ; A)),

-(pk(A, n(A,r) ; NB ; B)),

176 Chapter 6. Sequential Protocol Composition in Maude-NPA

SS& rL ⑤ ta Ñ b ; ; Mode ; ;Message✉s &

rnil ⑤ ta Ñ b ; ; Mode ; ;Message✉, L✶s& IK

ÑSS& rL, ta Ñ b ; ; Mode ; ;Message✉ ⑤ nils &

rta Ñ b ; ; Mode ; ;Message✉ ⑤ L✶s& IK (6.4)

SS& rL ⑤ ta Ñ b ; ; 1-*; ;Message✉s &

rnil ⑤ ta Ñ b ; ; 1-*; ;Message✉, L✶s& IK

ÑSS& rL ⑤ ta Ñ b ; ; 1-*; ;Message✉s &

rta Ñ b ; ; 1-*; ;Message✉ ⑤ L✶s& IK (6.5)

where:

L,L✶ are variables of the sort for lists of input and output messages

(+m,-m),

IK is a variable of the sort for sets of intruder facts ♣mPI,m❘Iq,

SS is a variable of the sort for sets of strands,

Message is a variable of sort Msg,

a, b are variables of sort Role, and

Mode is a variable of sort Mode

Figure 6.6: Generic forward transition rules for composition via synchro-
nization messages

+(pk(B, NB)),

{NSL-init -> DB-resp ;; 1-1 ;; A ; B ; n(A,r)}, nil] &

we add the following transition rule generated by Rules (6.6)

6.5. Protocol Composition via Synchronization Messages 177

For each strand definition r
ÝÑ
Ma, ta Ñ b ; ; Mode ; ;Message✉s,

we add a rule of the form:

SS& r
ÝÑ
Ma ⑤ ta Ñ b ; ; Mode ; ;Message✉s &

rnil ⑤ ta Ñ b ; ; Mode ; ;Message✉, L✶s& IK

ÑSS& rta Ñ b ; ; Mode ; ;Message✉ ⑤ L✶s& IK (6.6)

where:

L✶ are variables of the sort for lists of input and output messages

(+m,-m),

IK is a variable of the sort for sets of intruder facts ♣mPI,m❘Iq,

SS is a variable of the sort for sets of strands,

Message is a variable of sort Msg,

a, b are variables of sort Role, and

Mode is a variable of sort Mode

Figure 6.7: Generated forward transition rules for composition via syn-
chronization messages

:: r ::

rnil,� ♣pk♣B, n♣A, rq;Aqq,

✁ ♣pk♣A, n♣A, rq;NB;Bqq,

� ♣pk♣B,NBqq,

⑤ tNSL✁ init Ñ DB ✁ resp; ; 1✁ 1; ;A;B;n♣A, rq✉, nil s &

:: RR ::

rnil ⑤ tNSL✁ init Ñ DB ✁ resp; ; 1✁ 1; ;A;B;n♣A, rq✉, L s &

SS & IK

ÝÑ

:: RR ::

rnil, tNSL✁ init Ñ DB ✁ resp; ; 1✁ 1; ;A;B;n♣A, rq✉ ⑤ L s &

SS & IK

178 Chapter 6. Sequential Protocol Composition in Maude-NPA

Thus, for a protocol composition P1;S P2, the rewrite rules govern-
ing protocol execution in composition via synchronization messages are
Rsynch♣P1;SP2q ✏ t(3.1), (3.2), (3.3)✉ ❨ (3.4)❨ t(6.4), (6.5)✉ ❨ (6.6).

Here, the reader can realize that this synchronization semantics for
protocol composition contains two generic transition rules and one tran-
sition rule for each protocol composition, whereas the protocol compo-
sition presented in Section 6.3 produces several transition rules for each
protocol composition. Indeed, this simpler semantics for protocol com-
position requires fewer rules distinguishing one-to-one and one-to-many
compositions than the abstract semantics.

6.5.4 Soundness and Completeness

In this section we prove soundness and completeness of the operational
semantics composition via synchronization messages presented in Sec-
tion 6.5.3 with respect to the abstract compositional operational Seman-
tics of Section 6.3.3, subject to the assumption described in Remark 1,
that any given instantiation of a parent role can have children of only
one type of role, although it may have multiple choices for the one role.

First, we must relate protocol states using the protocol composition
rewrite rules of Section 6.3.3 and protocol states in the composition via
synchronization messages.

Definition 6.23 (Functions trans and inv) Let P1 and P2 be two
protocols and P1 ;S P2 their composition. Let RP1 ;SP2

be the rewrite
theory associated in Section 6.3.3 to the abstract protocol composition
P1 ;S P2 and Rsynch♣P1 ;SP2q be the rewrite theory associated in Section 6.5.3
to composition via synchronization messages. We define the following:

1. the relation trans between states valid according to the rewrite the-
ory RP1 ;SP2

and states valid according to the rewrite theory
Rsynch♣P1 ;SP2q as specified in Figure 6.8.

2. the function inv from states valid according to the rewrite the-
ory Rsynch♣P1 ;SP2q into states valid according to the rewrite theory
RP1 ;SP2

as specified in Figure 6.9.

6.5. Protocol Composition via Synchronization Messages 179

trans♣Stq ✏

✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

♣bqrta Ñ b ; ;Mode ; ; I ✼
b
✉,

ÝÑ
b1 ⑤

ÝÑ
b2 s & St✶ if ♣bqrt

ÝÑ
Ib✉,

ÝÑ
b1 ⑤

ÝÑ
b2 s P St,

♣a, b,Modeq P P1 ;S P2,

trans♣St✁ ♣bqq ✏ St✶

♣bqrnil ⑤ ta Ñ b ; ;Mode ; ; I ✼
b
✉,

ÝÑ
b1 s & St✶ if ♣bqrnil ⑤ t

ÝÑ
Ib✉,

ÝÑ
b1 s P St,

♣a, b,Modeq P P1 ;S P2,

trans♣St✁ ♣bqq ✏ St✶

♣aqrÝÑa1 ⑤ ÝÑa2, ta Ñ b ; ;Mode ; ; O ✼
a✉s & St✶ if ♣aqrÝÑa1 ⑤ ÝÑa2, t

ÝÑ
Oa✉s P St,

♣a, b,Modeq P P1 ;S P2,

trans♣St✁ ♣aqq ✏ St✶

♣aqrÝÑa1, ta Ñ b ; ;Mode ; ; O ✼
a✉ ⑤ nils & St✶ if ♣aqrÝÑa1, t

ÝÑ
Oa✉ ⑤ nils P St,

♣a, b,Modeq P P1 ;S P2,

trans♣St✁ ♣aqq ✏ St✶

St otherwise

where I✼ (resp. O✼) is equal to
ÝÑ
I (resp.

ÝÑ
O) by replacing the comma “,” by a

semicolon “;” to denote concatenation of input and output parameters, e.
g. input parameters

ÝÑ
I ✏ tA , B , NA✉ is written as the sequence I✼ ✏

A ; B ; NA.

Figure 6.8: Relation trans between states valid according to the
rewrite theory RP1 ;SP2

and states valid according to the rewrite theory
Rsynch♣P1 ;SP2q

The following auxiliary results become crucial and ensure that there
is an appropriate connection between states of both rewrite theories.

Lemma 6.24 The function inv is total and relation trans is the inverse
of inv. Let P1 and P2 be two protocols and P1 ;S P2 their composition. Let
RP1 ;SP2

be the rewrite theory associated in Section 6.3.3 to the protocol
composition P1 ;S P2 and Rsynch♣P1 ;SP2q be the rewrite theory associated
in Section 6.5.3 to the composition via synchronization messages.

The function inv defined in Definition 6.23 defines a total function
from terms of sort State in Rsynch♣P1 ;SP2q back to terms of sort State in
RP1 ;SP2

. The function trans defined in Definition 6.23 is the inverse of
inv.

Proof. By structural induction on the definitions of Figure 6.8 and 6.9.
❧

Note that inv is not injective, since two states that differ only by the
fact that some strands have different child roles defined in the output

180 Chapter 6. Sequential Protocol Composition in Maude-NPA

inv♣Stq ✏

✩✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✪

♣bqrt
ÝÑ
Ib✉,

ÝÑ
b1 ⑤

ÝÑ
b2 s & St✶ if ♣bqrta Ñ b ; ;Mode ; ; I ✼

b
✉,
ÝÑ
b1 ⑤

ÝÑ
b2 s P St,

inv♣St✁ ♣bqq ✏ St✶

♣bqrnil ⑤ t
ÝÑ
Ib✉,

ÝÑ
b1 s & St✶ if ♣bqrnil ⑤ ta Ñ b ; ;Mode ; ; I ✼

b
✉,
ÝÑ
b1 s P St,

inv♣St✁ ♣bqq ✏ St✶

♣aqrÝÑa1 ⑤ ÝÑa2, t
ÝÑ
Oa✉s & St✶ if ♣aqrÝÑa1 ⑤ ÝÑa2, ta Ñ b ; ;Mode ; ; O ✼

a✉s P St,

inv♣St✁ ♣aqq ✏ St✶

♣aqrÝÑa1, t
ÝÑ
Oa✉ ⑤ nils & St✶ if ♣aqrÝÑa1, ta Ñ b ; ;Mode ; ; O ✼

a✉ ⑤ nils P St,

inv♣St✁ ♣aqq ✏ St✶

St otherwise

Figure 6.9: Function inv mapping from states valid according to the
rewrite theory Rsynch♣P1 ;SP2q onto states valid according to the rewrite
theory RP1 ;SP2

parameters (respectively, different parent roles defined in the input pa-
rameters), will be mapped to the same state by inv. Thus its inverse
trans is not a function.

Let us now relate backwards narrowing steps using the rewrite the-
ory associated to the composition via synchronization messages of Sec-
tion 6.5.3 (i.e., Rsynch♣P1 ;SP2q) w.r.t. backwards narrowing using the
rewrite theory associated to the abstract protocol composition of Sec-
tion 6.3.3 (i.e., RP1 ;SP2

). Note that in this case a backwards narrowing
step performed with a rule of Rsynch♣P1 ;SP2q always corresponds to one
backwards narrowing step with a rule of RP1 ;SP2

, since no extra messages
are introduced to synchronize parent and child strands.

Lemma 6.25 (One-step correspondence) Let P1 and P2 be two pro-
tocols and P1 ;S P2 their composition. Let RP1 ;SP2

be the rewrite theory
associated in Section 6.3.3 to the abstract protocol composition P1 ;S P2,
subject to the restrictions of Remark 1 in Page 149, and Rsynch♣P1 ;SP2q

be the rewrite theory associated in Section 6.5.3 to composition via syn-
chronization messages.

If there are two protocol states St1 and St2 valid according to the

rewrite theory RP1 ;SP2
and St1

1
❀ρ,R✁1

P1 ;SP2
,EP1 ;SP2

St2, then there exists

St✶1 and St✶2 valid according to the rewrite theory Rsynch♣P1 ;SP2q such that

trans♣St1q ✏ St✶1, trans♣St2q ✏ St✶2, and St✶1
1
❀σ,R✁1

synch♣P1 ;SP2q
,EP1 ;SP2

St✶2.

If there are two protocol states St✶1 and St✶2 valid according to the
rewrite theory Rsynch♣P1 ;SP2q such that inv♣St✶1q ✏ St1, inv♣St

✶
2q ✏ St2,

6.5. Protocol Composition via Synchronization Messages 181

and St✶1
1
❀σ,R✁1

synch♣P1 ;SP2q
,EP1 ;SP2

St✶2, then St1
1
❀ρ,R✁1

P1 ;SP2
,EP1 ;SP2

St2.

Proof. (Sketch) We prove the result by case analysis of the rewrite rules
applicable to terms St1 and St2 (resp. St✶1 and St✶2).

(a) When the Rules (3.1),(3.2),(3.3), and (3.4) are applied to regular
incoming and outcoming messages in the strands of St1 (resp. St

✶
1),

we have one narrowing step from the associated state St✶1 (resp.
St1) applying the same type of rule.

(b) Rule (6.1) corresponds to an application of Rule (6.4) (synchro-
nizing the input parameters of the child strand with the output
parameters of the parent strand).

(c) Rule (6.2) corresponds to an application of Rule (6.6) (introduc-
ing a new parent strand and composing it with an existing child
strand).

(d) Rule (6.3) corresponds to an application of a rule of the form (6.5)
(synchronizing the output parameters of the parent strand with the
already accepted input parameters of the child strand, but without
moving the bar in the parent strand). Given that our requirement
that the restrictions of Remark 1 hold, Rule (6.3) can be applied if
and only if the corresponding rule of the form (6.5) can be applied.
❧

Finally, we can put everything together into the following result.

Theorem 6.26 (Soundness and Completeness) Let P1 and P2 be
two protocols and P1 ;S P2 their composition, as defined in Section 6.3.2.
Let Rsynch♣P1 ;SP2q be the rewrite theory associated to composition via syn-
chronization messages defined above in Section 6.5.3, and let RP1 ;SP2

be the rewrite theory associated to the abstract protocol composition, as
described in Section 6.3.3, subject to the restrictions of Remark 1 in
Page 149.

Given a state St valid according to RP1 ;SP2
and an initial state Stini

reachable from St by backwards narrowing in RP1 ;SP2
, then there are two

182 Chapter 6. Sequential Protocol Composition in Maude-NPA

states St✶ and St✶ini valid according to Rsynch♣P1 ;SP2q such that ♣St, St✶q,
♣Stini, St

✶
iniq P trans, and St✶ini is reachable from St✶ by backwards nar-

rowing in Rsynch♣P1 ;SP2q.
Given a state St✶ valid according to Rsynch♣P1 ;SP2q and an initial state

St✶ini reachable from St✶ by backwards narrowing in Rsynch♣P1 ;SP2q, then
inv♣St✶q ✏ St, inv♣St✶iniq ✏ Stini, and Stini is reachable from St by
backwards narrowing in RP1 ;SP2

.

Proof. By successive applications of Lemma 6.25. ❧

6.6 Experimental Evaluation

In this section we further explore composition via protocol transforma-
tion versus composition via synchronization messages comparing them
for ease of use and simplicity. Furthermore, we present some experi-
mental results about the performance the two approaches. First, in Sec-
tion 6.6.1 we show the attack for the NSL-DB explained in Section 6.2.1.
Then we fix the NSL-DB protocol using a hash function, as explained
in Section 6.2.1, and show that the protocol is verified as secure by our
tool, i.e., the search space is finite and no attack is found. Moreover,
in Section 6.6.2 we show that the NSL-KD protocol presented in Sec-
tion 6.2.2 is also verified as secure by the Maude-NPA. Each time we
show a protocol secure, we also show that a regular execution can be
performed, proving that the search space is not empty a priori; however,
these regular execution proofs have not been included in this chapter,
though they are available online (see below).

In Section 6.6.3 we provide more details of the experiments and com-
pare the results obtained using both techniques. All the experiments,
including the source Maude-NPA files and the generated outputs, can be
found at:

http://www.dsic.upv.es/~sescobar/Maude-NPA/composition.html

6.6.1 The NSL-DB Protocol

We start with the NSL-DB protocol composition. As explained in Sec-
tion 6.2.1, this protocol has an attack in which the honest principal B

http://www.dsic.upv.es/~sescobar/Maude-NPA/composition.html

6.6. Experimental Evaluation 183

thinks that he has heard from a principal D (who may or may not be
honest), but who has actually heard from an honest principal A. This
covers, for example, the case in which D is dishonest, and tries to pass on
an honest principal’s authenticated response as his own. This attack is
represented in Maude-NPA by an attack state pattern, according to the
protocol specification of Example 6.21, where: (i) the first strand is Alice
talking to some principal C acting as NSL initiator and connecting to a
DB responder, (ii) the second strand is Bob talking to some principal D
acting as DB initiator and receiving data from NSL responder, and (iii)
we include disequalities constraints for principal names, namely a ✘ D

and C ✘ b.
More specifically, the attack state pattern using the protocol trans-

formation technique is as follows:

eq ATTACK-STATE(0)

= :: r ::

[nil, +(NSL-init),

+(pk(C,n(a,r) ; a)),

-(pk(a, n(a,r) ; NC ; C)),

+(pk(C, NC)) |

-(DB-resp(r#)),

+({NSL-init(r#) . a . C . n(a,r)}), nil] &

:: r’, r# ::

[nil, +(DB-init(r#)),

-({NSL-resp(r#) . D . b . n(a,r) }),

+(n(b,r’)), -(n(b,r’) * n(a,r)) | nil]

|| (a != D) , (C != b)

|| nil

|| nil

|| nil

[nonexec] .

whereas in the composition via synchronization messages the attack pat-
tern is as shown below:

eq ATTACK-STATE(0)

= :: r ::

[nil, +(pk(C,n(a,r) ; a)),

-(pk(a, n(a,r) ; NC ; C)),

184 Chapter 6. Sequential Protocol Composition in Maude-NPA

+(pk(C, NC)) |

{NSL-init -> DB-resp ;; 1-1 ;; a ; C ; n(a,r)}, nil] &

:: r’ ::

[nil, {NSL-resp -> DB-init ;; 1-1;; D ; b ; n(a,r)},

+(n(b,r’)), -(n(a,r) * n(b,r’)) | nil]

|| (a != D) , (C != b)

|| nil

|| nil

|| nil

[nonexec] .

Here the reader can see that the attack state pattern for the transformed
protocol is more complex and hence more error prone than the attack
state pattern for composition via synchronization messages, since the
introduction of fresh variables for protocol composition has to be done
manually. Also, the attack state pattern looks more artificial in the
protocol transformation because of the back and forth messages.

The backwards search from the the NSL-DB attack state using com-
position via synchronization messages finds an initial state from which
it is reachable, and thus demonstrates a distance hijacking attack. The
exchange of messages of this attack is as explained in Section 6.2.1 in
Page 141. The backwards search from the corresponding attack state for
protocol transformation does not terminate3 due to a state space explo-
sion, and no initial state is found up to the depth reached by the analysis.
We then considered other attacks similar to the distance hijacking attack
which however produced a smaller search space. In the following attack,
we asked whether it is possible for an attacker to use an initiator A’s
nonce to participate in the distance-bounding part of the protocol with-
out Alice having completed the corresponding NSL strand. This, besides
being simpler, required only that the bar move one step forward in the
NSL strand, and produced a smaller search space in which the protocol
transformation version was able to find an attack, and to terminate on
the corrected version of the protocol, giving us a better opportunity to
compare the performance of the two approaches.

The attack state is given below:

3In [15] we reported termination, but this turned out to be a result of a bug in
Maude-NPA’s management of disequality constraints, which has since been corrected.
The development of new semantics and implementation helped us to discover this bug.

6.6. Experimental Evaluation 185

eq ATTACK-STATE(1)

= :: r ::

[nil, +(NSL-init),

+(pk(C,n(a,r) ; a)) |

-(pk(a, n(a,r) ; NC ; C)),

+(pk(C, NC)),

-(DB-resp(r#)),

+({NSL-init(r#) . a . C . n(a,r)}), nil] &

:: r’, r# ::

[nil, +(DB-init(r#)),

-({NSL-resp(r#) . D . b . n(a,r) }),

+(n(b,r’)), -(n(b,r’) * n(a,r)) | nil]

|| (a != D) , (C != b)

|| nil

|| nil

|| nil

[nonexec] .

As explained in Section 6.2.1, the distance hijacking attack can be
avoided using a hash function. The protocol strands of the fixed version
of the DB protocol following the protocol transformation are as follows:

:: r’, r# ::

[nil | +(DB-init(r#)),

-({NSL-resp(r#) . A . B . NA }),

+(n(B,r’)), -(NA * n(B,r’)), nil] &

:: r# ::

[nil | +(DB-resp(r#)),

-({NSL-init(r#) . A . B . NA }),

-(N), +(NA * N), nil]

whereas in the composition via synchronization messages the strands are
of the form shown below:

:: r’ ::

[nil | {NSL-resp -> DB-init ;; 1-1 ;; A ; B ; NA},

+(n(B,r’)),

-(h(A, NA) * n(B,r’)), nil] &

:: nil ::

[nil | {NSL-init -> DB-resp ;; 1-1 ;; A ; B ; NA },

-(N),

+(h(A, NA) * N), nil]

186 Chapter 6. Sequential Protocol Composition in Maude-NPA

The previous property for the NSL-DB is specified in the new version
of the protocol with the following attack state pattern using the protocol
transformation:

eq ATTACK-STATE(0)

= :: r ::

[nil, +(NSL-init),

+(pk(C,n(a,r) ; a)),

-(pk(a, n(a,r) ; NC ; C)),

+(pk(C, NC)) |

-(DB-resp(r#)),

+({NSL-init(r#) . a . C . n(a,r)}), nil] &

:: r’, r# ::

[nil, +(DB-init(r#)),

-({NSL-resp(r#) . D . b . n(a,r) }),

+(n(b,r’)), -(n(b,r’) * h(D,n(a,r))) | nil]

|| (a != D) , (C != b)

|| nil

|| nil

|| nil

[nonexec] .

whereas in the composition via synchronization messages the attack state
pattern is as follows:

eq ATTACK-STATE(0)

= :: r ::

[nil, +(pk(C, n(a,r) ; a)),

-(pk(a, n(a,r) ; NC ; C)),

+(pk(C, NC)) |

{NSL-init -> DB-resp ;; 1-1 ;; a ; C ; n(a,r)}, nil] &

:: r’ ::

[nil, {NSL-resp -> DB-init ;; 1-1 ;; D ; b ; n(a,r)},

+(n(b,r’)), -(h(D, n(a,r)) * n(b,r’)) | nil]

|| (a != D) , (C != b)

|| nil

|| nil

|| nil

[nonexec] .

6.6. Experimental Evaluation 187

The analysis of this protocol composition using the composition via
synchronization messages, terminates finding no attack (see Table 6.1
below). Thus, the protocol is secure for such an attack state pattern.
However, as in the case NSL-DB protocol, the analysis using the protocol
transformation does not terminate due to state space explosion and, thus,
the security of the protocol for such an attack state pattern cannot be
proved. Therefore, we proceed in a similar way as we did in the NSL-DB
protocol. That is, we considered an attack state pattern of the form:

eq ATTACK-STATE(1)

= :: r ::

[nil, +(NSL-init),

+(pk(C,n(a,r) ; a)) |

-(pk(a, n(a,r) ; NC ; C)),

+(pk(C, NC)),

-(DB-resp(r#)),

+({NSL-init(r#) . a . C . n(a,r)}), nil] &

:: r’, r# ::

[nil, +(DB-init(r#)),

-({NSL-resp(r#) . D . b . n(a,r) }),

+(n(b,r’)), -(n(b,r’) * h(D,n(a,r))) | nil]

|| (a != D) , (C != b)

|| nil

|| nil

|| nil

[nonexec] .

The analysis of the protocol using the protocol transformation termi-
nates, finding no initial state from which this more specific attack state
pattern is reachable. The same result is obtained when using composition
via synchronization messages.

6.6.2 The NSL-KD Protocol

For the NSL-KD protocol presented in Section 6.2.2 we may wish to
guarantee that a dishonest principal is not able to learn the secret key
of an honest principal. This property is represented by an attack state,
according to the protocol of Example 6.22, where the first strand is an
initiator of the KD protocol generating the session key skey(a,n(a,r’)),

188 Chapter 6. Sequential Protocol Composition in Maude-NPA

the second strand is a responder of the KD protocol using the same
session key skey(a,n(a,r’)), and we ask whether the intruder can learn
this session key by adding the fact skey(a,n(a,r’)) to the intruder
knowledge.

More specifically, in the protocol tranformation the attack pattern is
of the following form:

eq ATTACK-STATE(0)

= :: r’ ::

[nil, +(KD-init),

-({NSL-init(r#) . A . B . MKe }),

+(e(MKe, skey(a, n(a,r’)))) ,

-(e(MKe, skey(a, n(a,r’)) ; n(b,r))),

+(e(MKe, n(b,r))) | nil]

&

:: r ::

[nil, +(KD-resp),

-({NSL-resp(r#) . a . B . MKe }),

-(e(MKe, skey(a, n(a,r’)))),

+(e(MKe, skey(a, n(a,r’)) ; n(b,r))),

-(e(MKe, n(b,r))) | nil]

|| skey(a, n(a,r’)) inI

|| nil

|| nil

|| nil

[nonexec] .

whereas for the composition via synchronization message is specified as
follows:

eq ATTACK-STATE(0)

= :: r’ ::

[nil, {NSL-init -> initA-kd ;; 1-* ;; a ; b ; MKe },

+(e(MKe, skey(a, r’))),

-(e(MKe, skey(a,r’) ; N)),

+(e(MKe, N)) | nil]

&

:: r ::

[nil, {NSL-resp -> respB-kd ;; 1-* ;; a ; b ; MKe },

-(e(MKe, skey(a, r’))),

6.6. Experimental Evaluation 189

+(e(MKe, skey(a, r’) ; n(B,r))),

-(e(MKe, n(b,r))) | nil]

|| skey(a, r’) inI

|| nil

|| nil

|| nil

[nonexec] .

Here again the reader can see that the attack state pattern for the trans-
formed protocol lacks visual information about what is really happening,
since we have two strands but each is for a different protocol composition.
Instead, the attack state pattern for the composition via synchronization
messages clearly shows that there are two different one-to-many strand
compositions.

In this case, the desired property is satisfied by the NSL-KD, since
the analysis terminates using both the protocol transformation and the
composition via synchronization messages techniques, finding no initial
state for the attack state pattern described above.

6.6.3 Performance Comparison

In this section we show in detail the results of the experiments explained
in Sections 6.6.1 and 6.6.2. Table 6.1 gathers the results of the analysis of
these protocol compositions, i.e., (i) the composition of the NSL and DB
protocols (NSL-DB), (ii) the composition of the NSL and the fixed version
of the DB protocol (NSL-DB-fix), and (iii) the composition of the NSL
and the KD protocols (NSL-KD). Note that for the NSL-DB and NSL-
DB-fix protocols we consider the two attack state patterns shown above:
the more generic, denoted as “a0”, e.g. NSL-DB-a0; and the more spe-
cific, denoted as “a1”, e.g. NSL-DB-a1. For each protocol composition
we provide the following information. For each technique, i.e., protocol
transformation and composition via synchronization messages (referred
as composition via DSM in the table header), the column “Sec?” shows
whether the technique sucessfully proved the protocol composition is se-
cure, i.e. Maude-NPA generated a finite search space finding no attacks,
or insecure, i.e, Maude-NPA found an attack. When Maude-NPA did not
obtain a concluding result, i.e., when the analysis did not terminate (e.g.
because of an state space explosion) and no initial state was found up

190 Chapter 6. Sequential Protocol Composition in Maude-NPA

Protocol Transformation Composition via DSM
Protocol Sec? Finite? Depth States Sec? Finite? Depth States DSM / PT

NSL-DB-a0 ? No 10 3434 No Yes 16 1337 -
NSL-DB-a1 No No 16 1526 No Yes 13 259 0.17

NSL-DB-fix-a0 ? No 10 2650 Yes Yes 19 1690 -
NSL-DB-fix-a1 Yes Yes 17 273 Yes Yes 16 103 0.38

NSL-KD Yes Yes 19 1192 Yes Yes 16 517 0.44

Table 6.1: Experiments with sequential protocol compositions

to the depth reached by the analysis, we write in this column ”?”. The
column “Finite?” indicates whether Maude-NPA generated a finite state
search space or not, i.e. whether the analysis of such protocol composi-
tion terminated or not. The column “Depth” provides the depth of the
analysis, i.e., the number of reachability steps performed by Maude-NPA
until: (i) it generates a finite search space with no attacks in the case of a
secure composition, (ii) it finds the attack in the case of an insecure com-
position, or (iii) the analysis finished before obtaining a concluding result;
whereas the column “States” shows the total number of states generated
during the analysis up to the indicated depth. For the composition via
synchronization messages, the column “DSM / PT” shows the state space
reduction as the number of states explored by the synchronization mes-
sages method (DSM) divided by the number of states explored by the
protocol transformation method (PT). When Maude-NPA did not obtain
concluding results using the protocol transformation technique we write
“-” in this column.

As mentioned above, the results gathered in Table 6.1 show that the
analysis of a protocol composition performed with the composition via
synchronization messages has better performance than when it is car-
ried out via protocol transformation. On the one hand, the protocol
transformation fails to provide a conclusive result about the security of
two of our experiments, namely the analysis of the NSL-DB and NSL-
DB-fixed protocol compositions for the distance hijacking attack state
pattern, whereas this problem does not occur with the composition via
synchronization messages. On the other hand, the composition via syn-
chronization messages generates a finite state search space in all cases,
whereas with the protocol transformation this happens in only two cases.

Furthermore, when both techniques obtain concluding results, the

6.7. Conclusions 191

analysis performed with the composition via synchronization messages
is more efficient and with a much smaller state space than when it is
performed with the protocol transformation. The composition via syn-
chronization messages also requires less reachability analysis steps than
the protocol transformation. For example, the analysis of the NSL-DB
composition with the protocol transformation terminates after 16 steps,
whereas with the composition via synchronization messages it terminates
after 13 steps. Moreover, the number of states generated with the com-
position via synchronization messages is also smaller than with the proto-
col transformation (a 0.33 factor on average). For example, the analysis
of the NSL-DB composition with the protocol transformation generates
1526 states, whereas with the composition via synchronization messages
generates 259 states, i.e. it reduces the search space to 17% of the search
space generated with the protocol transformation. The reason for this
behavior is not only because the depth of an analysis with synchroniza-
tion messages is lower than with the protocol transformation, but also
because the composition via synchronization messages does not require
the exchange of extra messages to perform strand composition that is
used in the protocol transformation, and thus avoids state space expan-
sion due to interleaving.

6.7 Conclusions

In this chapter we have provided a framework to support dynamic sequen-
tial protocol compositions in Maude-NPA, i.e., protocols are specified in a
modular way and can be composed when desired during the verification
process. More specifically, we have presented two different techniques to
support sequential protocol compositions: namely protocol composition
via a protocol transformation, which does not require to modify the tool,
and the direct implementation of protocol composition in Maude-NPA,
which requires extending its operational semantics, but allows a more
straightforward protocol specification. Moreover, we have performed sev-
eral experiments to compare both techniques, and the results obtained
show that the direct implementation allows a more efficient analysis of
protocol compositions in Maude-NPA.

Our work addresses a somewhat different problem than most existing

192 Chapter 6. Sequential Protocol Composition in Maude-NPA

work on cryptographic protocol composition, which generally does not
address model-checking. Indeed, to the best of our knowledge, most pro-
tocol analysis model-checking tools simply use concatenation of protocol
specifications to express sequential composition. However, we believe
that the problem we are addressing is an important one that tackles a
widely acknowledged source of protocol complexity. For example, in the
Internet Key Exchange Protocol [Harkins and Carrel, 1998] there are six-
teen different one-to-many parent-child compositions of Phase One and
Phase Two protocols. The ability to synthesize compositions automat-
ically would greatly simplify the specification and analysis of protocols
like these.

Chapter 7

Protocol Indistinguishability
in Maude-NPA

In this chapter we explain how indistinguishability properties can be
specified and verified in Maude-NPA. This kind of properties are used to
verify whether an attacker who interacts with two different instances of
a protocol involving different data is able or not to tell the difference.

First, in Section 7.1 we motivate the specification and verification
of indistinguishability properties in Dolev-Yao models, and provide an
overview of our approach. We then present our formal definition of in-
distinguishability in Section 7.2 using the fowards semantics given in
Chapter 5 (see Section 5.3) as a reference model, and prove that it can
be analyzed in Maude-NPA assuming that the equational theory used
for P1 and P2 has a finite variant decomposition. Section 7.3 explains
how to analyze indistinguishability properties in Maude-NPA. In Sec-
tion 7.4 we discuss the results of the preliminary experiments we have
performed to verify indistinguishability properties in Maude-NPA, fol-
lowing the method presented in this chapter. Finally, we summarize our
conclusions in Section 7.5.

These results have been published in [Santiago et al., 2014b].

7.1 Motivation

Traditionally, properties proved about Dolev-Yao specifications of proto-
cols fall into two classes: secrecy and correspondence. Correspondence

194 Chapter 7. Protocol Indistinguishability in Maude-NPA

holds if, whenever certain actions have occurred, one can guarantee that
certain other actions have occurred in a specified order; correspondence
properties are thus used to reason about authentication. Secrecy (also
called simple secrecy) holds for a term if the attacker never sees that
term in the clear. This is a much weaker property than secrecy in the
computational model, which usually relies on proving that an adversary
cannot distinguish between two versions of the protocol: for example,
one using one secret and one using another, or one using an encrypted
secret and one using random data.

Recently the interest in formulating and applying indistinguishability
properties for Dolev-Yao models has been growing. There are a number
of reasons for this. The first is that cryptography has advanced to the
point at which it is not only possible to provide computational proofs of
security for algorithms, but for the protocols that use those algorithms
as well. If Dolev-Yao tools can be extended to prove indistinguishability,
this increases the likelihood that both approaches can be used together
in an effective way to ensure protocol security. The second is that there is
a growing class of privacy-protection protocols for which simple secrecy
is clearly inadequate. Such protocols protect low-entropy data such as
votes, medical records, or network routes; even partial leakage of this
information could be harmful. The third is the result of recent work on
automatic generation of cryptographic algorithms. In this work, multiple
possible algorithms are generated out of a library of components and then
checked for security. This may involve the use of Dolev-Yao like tools to
weed out insecure algorithms or even verify the security of correct ones,
as in [Barthe et al., 2013].

When a Dolev-Yao tool is used to check for subtle properties such as
indistinguishability, it is important that it offers as detailed a picture of
the properties of the cryptographic operations as possible. This is done
by including information about the algebraic properties of the operations,
that is, the equations obeyed by the function symbols. For example, if
a cryptographic system uses exclusive-or, one should be able to take
into account the associative-commutative, identity, and self-cancellation
properties of exclusive-or. Such algebraic properties have been studied
extensively in the literature, although there are still some classes of prop-
erties that are not that well understood.

At this point, there are four main problems being explored in relation

7.1. Motivation 195

to Dolev-Yao indistinguishability. The first is how best to formulate
in the Dolev-Yao model a property such as indistinguishability that in
its broadest sense is not a reachability property. The second is, how
to incorporate equational theories in this reasoning. The third is, how
to increase the range and complexity of the types of protocols we can
reason about. The fourth is, when and how to ensure that Dolev-Yao
indistinguishability implies computational indistinguishability. In this
chapter we address the first two of these problems, although we note that
the second is closely related to the fourth, and can be used to facilitate
its solution. In the following, we provide a high level explanation of how
we address these two problems.

Formulating Indistinguishability in Dolev-Yao. We propose an
intuitive notion of indistinguishability related to the notion of unifor-
mity used in ProVerif [Blanchet et al., 2008] in that it is defined, not in
terms of equivalence between two protocols, but of equivalence between
roles of two protocols. In this case roles from the two protocol versions
P1 and P2 are paired together and executed in a synchronous fashion
(called a synchronous product in our case). We then define our notion as
the conjunction of two more basic properties, namely Indistinguishable
Messages (IM) and Indistinguishable Attacker Event Sequences (IAES).

Intuitively, the IM property says that the attacker, when performing
the same actions for P1 and for P2, can never reach two corresponding
stages in such action sequences such that it can learn the same message
from P1 at both stages, but different messages from P2 at those same
stages, or viceversa. The IM property assumes the existence of traces in
both protocols and simply compares the messages. Thus, IM is closer
to static equivalence than trace equivalence, where you need to prove
the existence of such traces. The IAES property says that the attacker
can perform the same interaction steps with P1 and P2, which requires a
bisimulation between the two protocols. It ensures the existence of traces
with the same behavior in both protocols. Indeed, IM does not imply
IAES, since the latter is tested after the former is proved.

In our approach, we use an unmodified Dolev-Yao intruder with no
ability to evaluate predicates. This is motivated by our preference to
avoid increasing the complexity of Maude-NPA’s Dolev-Yao model un-
less absolutely necessary, and thus to express our security requirements

196 Chapter 7. Protocol Indistinguishability in Maude-NPA

in the original Maude-NPA framework. In particular, the IM property
implicitly includes a test on equality, but it is expressed as a property of
the attack state, not as an intruder predicate.

We prove a result with respect to the semantics of the Maude-NPA
protocol analysis tool (see Chapter 3), showing that the conjunction of
IM and IAES can be formulated in terms of reachability properties in
Maude-NPA.

Incorporating Equational Theories. Our approach extends natu-
rally to any algebraic theory E that can be decomposed as E ✏ E0 ❨B,
with the equations E0 oriented as rewrite rules modulo B, and the de-
composition ♣B,E0q satisfying the finite variant (FV) property. In this
case we prove theorems showing that the IM and IAES properties can
be checked by the Maude-NPA tool. The class of theories with finite
variant decompositions contains a large number of theories of interest to
cryptographic protocol analysis, including exclusive-or, Abelian groups,
and a number of theories describing the properties of modular exponen-
tiation. Thus our previous work on analysis of protocols modulo finite
variant decompositions is naturally extended to the verification of indis-
tinguishability under many possible equational theories.

Finally, let us illustrate the IM and IAES properties mentioned above
with two examples.

Example 7.1 Consider two protocols P1 and P2 using the exclusive-or
(XOR) operator “❵”. Below we reproduce the exchange of messages of
each protocol in Alice-Bob notation:

♣P1q AÑ B : m1 ❵m1 ♣P2q AÑ B : m1 ❵m2

where m1 and m2 are two constants denoting different messages. Since
the attacker can perform the XOR cancellation (i.e. M ❵M ✏ 0), and
can generate the XOR unit element 0, then it can distinguish P1 and P2

by performing the following actions:

♣P1q 1. AÑ I♣Bq : m1 ❵m1 ♣✏XOR 0q ♣P2q 1. AÑ I♣Bq : m1 ❵m2

Thus these protocols do not satisfy the IM property, since in P1 the
attacker generates 0 from two different action sequences, whereas in P2

it does not. �

7.2. Formal Definition of Indistinguishability in Maude-NPA 197

Example 7.2 Consider a protocol similar to the first step of the En-
cryption Key Exchange (EKE) protocol [Bellovin and Merritt, 1992] in
which, unlike the original EKE, the attacker can distinguish whether a
decryption succeeds or not. The algebraic properties of this protocol con-
sist of the cancellation of encryption and decryption. In this protocol,
Alice sends to Bob her name (A) concatenated with the encryption of
her public key pkey(A) with a password pw(A,B) they have agreed on
before.

A Ñ B : A ; tpkey♣Aq✉pw♣A,Bq

Consider two cases in which the honest principals perform the same
step shown above, but in P1 the attacker knows the right password
pw(A,B), whereas in P2 it knows a random password pg(i) 1. The in-
truder can distinguish between P1 and P2 by performing the following
actions, where steps 2, 3, and 4 denote deductions performed by the
intruder:

♣P1q 1. A Ñ I♣Bq : A ; tpkey♣Aq✉pw♣A,Bq ♣P2q 1. A Ñ I♣Bq : A ; tpkey♣Aq✉pw♣A,Bq

♣P1q 2. I : tpkey♣Aq✉pw♣A,Bq ♣P2q 2. I : tpkey♣Aq✉pw♣A,Bq

♣P1q 3. I : pw♣A,Bq ♣P2q 3. I : pg♣iq
♣P1q 4. I : decryption succeeds ♣P2q 4. I : decryption fails

That is, in step 4 in P1 the attacker can obtain the message pkey(A) in
the clear, by decrypting the message sent in step 2 with the password
it knows, i.e. pw(A,B), whereas in P2 such decryption fails. Hence the
protocols are not bisimilar and so fail to satisfy IAES. �

7.2 Formal Definition of Indistinguishabil-

ity in Maude-NPA

Intuitively, two protocols are indistinguishable if an intruder cannot tell
the difference between them. In this section we provide the framework

1This is the approach followed by Lowe [2004]. However, there is also an equiv-
alent version of the protocol specification, more in line with the convention used in
cryptographic definitions of security, in which the attacker knows the same password
pw(A,B) in both protocols and Alice uses a password pw(A,B) to encrypt her public
key in P1 but a different password pg(i) in P2. Either of these can be expressed in
our system.

198 Chapter 7. Protocol Indistinguishability in Maude-NPA

that will allow the definition and verification of indistinguishability in
Maude-NPA. In order to provide such framework, in Section 7.2.1 we
first formalize, by the concept of a protocol pairing, the notion of pairs
of protocols that are similar enough to each other so that the issue of
their indistinguishability can arise. Then, in Section 7.2.2 we formalize
the idea of similar interactions of the attacker with a protocol pairing
P1,P2 by the concept of the synchronous product P1 ❜ P2. Finally, in
Section 7.2.3 we define the indistinguishability of a protocol pairing in
Maude-NPA as the conjunction of two simpler properties called IM and
IAES.

7.2.1 Protocol Pairing

The notion of indistinguishability implies comparing two protocols P1

and P2 to ensure that an intruder cannot distinguish the behaviors of
P1 and P2. In practical applications P1 and P2 are somewhat different
versions of a given protocol with some significant differences. In this
section, we formalize, by the concept of a protocol pairing, the notion of
such pair of protocols in Maude-NPA.

Definition 7.3 (Protocol Pairing) A protocol pairing P1,P2 is a pair
of protocol specifications of the form ♣♣ΣP1

, E0P1
❨ BP1

q,HPSP1
, ISP1

q,
♣♣ΣP2

, E0P2
❨ BP2

q,HPSP2
, ISP2

q, where HPSPX
and ISPX

are the set of
honest strands and the set of Dolev-Yao strands denoting the attacker’s
abilities of protocol PX , respectively, such that:

1. P1 and P2 share the same algebraic signature and equations, i.e.
♣ΣP1

, E0P1
❨ BP1

q ✏ ♣ΣP2
, E0P2

❨ BP2
q ✏ ♣Σ, E0 ❨ Bq having a

decomposition ♣Σ, B, E0q.

2. HPSP1
and HPSP2

have strands for the same roles, with the same
length and the same polarities (� or ✁) at each position in the
strand.

3. ISP1
and ISP2

have strands for the same operations, with the same
length and the same polarities (� or ✁) at each position in the
strand.

7.2. Formal Definition of Indistinguishability in Maude-NPA 199

We assume both HPSP1
and HPSP2

, and ISP1
and ISP2

have disjoint
variables.

We will also require that strands in certain pairs both be identical up
to change of variables, depending on the indistinguishability model used.
For example, in the standard model based on cryptographic definitions
of indistinguishability the same attacker interacts with two different ver-
sions of the protocol, so any two paired intruder strands must be identical
up to change of variables. In Lowe’s password guessing model the same
attacker with different password guesses interacts with the same version
of the protocol, so we require that any two paired strands be identical
up to change of variables, except that describing the attacker’s guess of
the password.

The differences between P1 and P2 can be specified by having different
messages in the same j-th strands of P1 and P2, at the same positions in
the strands. Below we illustrate the notion of protocol pairing using the
following example.

Example 7.4 Let us consider the two protocols P1 and P2 of Exam-
ple 7.1 shown above. Note that both P1 and P2 share the same alge-
braic signature and equations (XOR), and have the same set of intruder
strands, and differ only in the set of honest principal strands, as explained
below. More specifically, the sets HPSP1

and HPSP2
of honest strands of

P1 and P2, respectively, are as follows:

HPSP1
✏ t r ♣m1 ❵m1q

� s✉ HPSP2
✏ t r ♣m1 ❵m2q

� s✉

where m1 and m2 are two constants denoting different messages, and ❵
is the exclusive-or operator. Therefore, P1,P2 is a protocol pairing. �

7.2.2 Synchronous Product of Protocols

Given a protocol pairing P1,P2 as explained above, the analysis of its
indistinguishability assumes that the attacker interacts in an analogous
way with both protocols at each step. That is, if it performs an action a

in P1, then it does so in P2 too. In this section we formalize the idea of
similar interactions of the attacker with a protocol pairing P1,P2 by the
concept of the synchronous product P1 ❜ P2. Intuitively, a synchronous

200 Chapter 7. Protocol Indistinguishability in Maude-NPA

product is a new protocol obtained from a protocol pairing in which both
protocols from the pairing are executed in a synchronous manner.

In order to provide a formal definition of a synchronous product of
protocols, we first define the synchronous product of strands.

Definition 7.5 (Synchronous Product of Strands) Given two
strands Str1 ✏ rm1

✟, . . . ,mn
✟s, and Str2 ✏ rm✶

1
✟
, . . . ,m✶

n
✟s correspond-

ing to the same protocol role or intruder action, and with the same po-
larities at each position in the strand, the synchronous product of Str1
and Str2, written Str1 ❜ Str2, is a strand of the form r♣m1 ❜m✶

1q
✟, . . . ,

♣mn ❜m✶
nq
✟s.

Let SS1 and SS2 be two sets of strands that have n strands corre-
sponding to the same protocol roles or intruder actions. The synchronous
product of SS1 and SS2, written SS1 ❜ SS2, is a set of strands of the
form tStr1i❜Str2j✉0↕i,j↕n, such that Str1i P SS1, Str2j P SS2, and Str1i
and Str2j correspond to the same protocol role or intruder action.

Let us now define the synchronous product of protocols as follows.

Definition 7.6 (Synchronous Product of Protocols) Given a pro-
tocol pairing P1,P2, its synchronous product, denoted by P1 ❜ P2, is a
new protocol as explained below. Basically, the signature is extended with
new sorts and symbols to support the specification of a pair of protocols.

• First, the theory decomposition ♣Σ, B, E0q shared by P1 and P2 is

renamed to ♣♣Σ, ♣B,①E0q, just by a renaming s ÞÑ ♣s (where s P S and♣s P ♣S), of the poset of sorts so that: ②Msg ✏ SingleMsg, and ♣s ✏ s

otherwise, and with s ➔ s✶ iff ♣s ➔ ♣s✶. The operators ♣Σ are renamed
accordingly, so that f : s1 ☎ ☎ ☎ sn Ñ s is renamed to f : ♣s1 ☎ ☎ ☎ ♣sn Ñ ♣s,
and the equations B and E0 are renamed to ♣B and ①E0 just by
renaming the sorts of their variables by the mapping s ÞÑ ♣s.

• A new sort Msg is added as the new top sort of the connected com-
ponent for messages, so that SingleMsg ➔ Msg.

• A new operator ❜ : SingleMsg SingleMsg Ñ Msg is added to Σ❜.

• Its protocol specification is the triple P1 ❜ P2 ✏ ♣♣Σ❜,①E0 ❨ ♣Bq,
HPSP1

❜ HPSP2
, ISP1

❜ ISP2
q, where HPSP1

, HPSP2
, ISP1

, and
ISP2

are renamed to have disjoint variables.

7.2. Formal Definition of Indistinguishability in Maude-NPA 201

Therefore, if ♣Σ, B, E0q is the original theory decomposition, then the

theory of the synchronous product is ♣Σ❜, ♣B,①E0q.

Example 7.7 For example, given the protocol pairing P1,P2 of Exam-
ple 7.4, the synchronous product P1 ❜ P2 is specified as follows. In this
protocol we only need sorts to denote messages. Therefore, the poset of
sorts S is defined as S = {Msg, SingleMsg}, such that SingleMsg ➔ Msg.

The set of operators Σ❜ contains the following operators:

❜ : SingleMsg SingleMsgÑ Msg

❵ : SingleMsg SingleMsgÑ SingleMsg [assoc comm]

where [assoc comm] denotes that the operator ❵ is associative and
commutative. In this protocol we also define the following constants:

m1 : Ñ SingleMsg

m2 : Ñ SingleMsg

0 : Ñ SingleMsg

where 0 denotes the XOR unit element. The equational theory of the
synchronous product is specified as follows. First, the set of axioms ♣B
consists of the associativity and commutativy of the ❵ operator, whereas
the set ①E0 is a set of rewrite rules for the properties denoted by the equa-
tions below, which correspond to the identity and nilpotence properties
of the ❵ operator2:

M ❵M ✏ 0

M ❵ 0 ✏M

M ❵M ❵M ✶ ✏M ✶

2Note that the first two equations are not AC-coherent, but adding the third
equation is sufficient to recover that property (see Section 2.1).

202 Chapter 7. Protocol Indistinguishability in Maude-NPA

where M is a variable of sort SingleMsg.
The set HSPP1❜P2

of protocol strands of the synchronous product
P1 ❜ P2 is as follows:

HSPP1❜P2
✏ t r ♣♣m1 ❵m1q ❜ ♣m1 ❵m2qq

� s ✉

The set ISP1❜P2
of intruder strands is as shown below:

ISP1❜P2
✏ t r ♣0❜ 0q� s &

r ♣M1 ❜M ✶
1q
✁
, ♣M2 ❜M ✶

2q
✁
, ♣♣M1 ❵M2q ❜ ♣M ✶

1 ❵M ✶
2qq

�
s✉

denoting the intruder’s capability to generate the XOR unit element 0,
and to perform the XOR of two received messages, respectively. �

The indistinguishability of a protocol pairing P1,P2 in Maude-NPA
is characterized in terms of the synchronous product P1 ❜ P2, as we ex-
plain in Section 7.2.3 which is analyzed in Maude-NPA. Therefore, the
equational theory of the synchronous product P1❜P2 must have a finite
variant decomposition. The following result states that, if the rewrite
theory used by two protocols P1 and P2 has a finite variant decomposi-
tion, then so does the rewrite theory of P1 ❜ P2.

Theorem 7.8 For a synchronous product P1 ❜ P2, the rewrite theory
♣Σ❜, ♣B,①E0q has the finite variant property iff the rewrite theory ♣Σ, B, E0q
does also.

Proof. Since ♣♣Σ, ♣B,①E0q is just a sort-renamed copy of ♣Σ, B, E0q it

has the FV property. Note that ♣♣Σ, ♣B,①E0q ❸ ♣Σ❜, ♣B,①E0q is a theory

inclusion, and Σ❜ terms are either ♣Σ-terms, which have all a finite set of
variants, or terms in TΣ❜

♣X q ✁ T
♣Σ
♣X q, which are either variables, whose

only variant is itself, or terms of the form t ❜ t✶, with t, t✶ P T
♣Σ
♣X q. Let

bd♣tq and bd♣t✶q be the bounds (see [Escobar et al., 2012b]) on reduction
sequences to their normal forms for t and t✶, respectively. Then bd♣t❜t✶q ↕

bd♣tq � bd♣t✶q, and thus ♣Σ❜, ♣B, ♣Eq has the FV property. ❧

Following Definition 5.4 in Page 122 the forward analysis of a syn-
chronous product P1 ❜ P2 induces a transition system LP1❜P2

.

7.2. Formal Definition of Indistinguishability in Maude-NPA 203

In the following, we define two projection functions that will be used
below to connect the behavior of a synchronous product of protocols with
the behavior of both protocols separately.

Definition 7.9 (Projection Functions) Let Σ and Σ❜ be as in Def-

inition 7.6, and let ♣X ✏ tX
♣s✉

♣sP♣S, and X ✏ tXs✉sPS. We then define

functions π1, π2 : TΣ❜♣ ♣X q Ñ TΣ♣X q recursively as follows:

π1♣x:♣sq ✏ π2♣x:♣sq ✏ x:s

π1♣t1 ❜ t2q ✏ t1 π2♣t1 ❜ t2q ✏ t2

π1♣f♣t1, . . . , tnqq ✏ f♣π1♣t1q, . . . , π1♣tnqq for f ✘ ❜

π2♣f♣t1, . . . , tnqq ✏ f♣π2♣t1q, . . . , π2♣tnqq for f ✘ ❜

These projection functions are homomorphically extended to states, tran-
sitions and transition systems.

Proposition 7.10 Given two protocols P1 and P2, and its synchronous
product P1 ❜ P2 and their associated transition systems LP1

, LP2
, and

LP1❜P2
as defined above, and the projection functions explained in Defi-

nition 7.9, π1 : LP1❜P2
Ñ LP1

, and π2 : LP1❜P2
Ñ LP2

are both simula-
tions.

Proof. Easy from analysis of the rules RFP1
, RFP2

, and RF ♣P1❜P2q. ❧

7.2.3 Indistinguishability in Maude-NPA

After explaining protocol pairing, synchronous product of protocols, and
the projection functions, we define IM and IAES as follows.

Definition 7.11 (Indistinguishable Messages (IM)) A protocol pair-
ing P1,P2 with underlying equational theory ♣Σ, E0 ❨ Bq satisfies the
indistinguishable messages (IM) property iff for any initial state St0 of
LP1❜P2

, there exists no sequence of transitions St0 Ñ St1 ☎ ☎ ☎Stn✁1 Ñ Stn
such that the intruder knowledge in Stn contains two facts ♣m1 ❜m2qPI
and ♣m✶

1 ❜m✶
2qPI such that either (i) m1 ✏E m✶

1 but m2 ✘E m✶
2, or (ii)

m2 ✏E m✶
2 but m1 ✘E m✶

1, where E ✏ E0 ❨B.

204 Chapter 7. Protocol Indistinguishability in Maude-NPA

Example 7.12 The protocol pairing P1,P2 of Example 7.1 in Page 196
does not satisfy the IM property. More specifically, there is an initial
state of the form

t r ♣0❜ ♣m1 ❵m2qq
� ⑤ nil s & r ♣0❜ 0q� ⑤ nil s &

t ♣0❜ ♣m1 ❵m2qqPI, ♣0❜ 0qPI ✉ ✉

such that 0❜ ♣m1 ❵m2q ✘E 0❜ 0. �

Definition 7.13 Indistinguishable Attack Event Sequences
(IAES) Given P1,P2 a protocol pairing and two mappings π1 : LP1❜P2

Ñ
LP1

and π2 : LP1❜P2
Ñ LP2

, we say that P1,P2 have indistinguishable
attack event sequences (IAES) iff π1 and π2 are bisimulations.

Corollary 7.14 Given P1,P2 a protocol pairing and two mappings π1 :
LP1❜P2

Ñ LP1
and π2 : LP1❜P2

Ñ LP2
, if π1 and π2 are bisimulations

then protocols P1 and P2 are bisimilar.

Example 7.15 The protocol pairing P1,P2 of Example 7.2 in Page 197
does not satisfy the IAES property. More specifically, π1 and π2 are not
bisimulations, because in P1 the decryption performed in step 4 suceeds,
whereas it fails in P2. �

In Section 7.3 we explain in detail how the IAES and IM properties
explained above are analyzed in practice in Maude-NPA.

7.3 Indistinguishability Verification in

Maude-NPA

In this section we explain how the theoretical framework for indistin-
guishability verification presented in Section 7.2 can be implemented in
Maude-NPA. In Section 5.3 we presented the rewriting-based forwards
operational semantics of Maude-NPA, which is used as a reference model
to define our notion of indistinguishability in Maude-NPA as the con-
junction of two more basic properties, namely, Indistinguishable Mes-
sages (IM) and Indistinguishable Attacker Event Sequences (IAES), as

7.3. Indistinguishability Verification in Maude-NPA 205

explained in Section 7.2. However, Maude-NPA performs a backward
narrowing-based reachability analysis (see Chapter 3 for further details).
In this section we prove a result with respect to the symbolic backwards
semantics of the Maude-NPA protocol analysis tool presented in Sec-
tion 3.4, showing that the conjunction of IM and IAES of a protocol
pairing P1,P2 can be expressed as the unreachability of several different
attack patterns for the synchronous product P1 ❜ P2.

In the following, for each property we describe a set of attack pat-
terns in Maude-NPA’s syntax denoting states in which such property is
violated. The idea is that Maude-NPA performs a symbolic backwards
analysis of those attack patterns. Intuitively, if Maude-NPA proves that
at least one of such attack patterns is reachable from an initial state, then
it proves that the protocol pairing violates the property and, therefore,
the intruder can distinguish between both protocol variants. Instead,
if the tool proves that no attack pattern is reachable (by generating a
finite search space finding no initial state), then it proves that the proto-
col pairing satisfies the property. If a protocol pairing satisfies both IM
and IAES, then the intruder cannot distinguish between both protocol
variants.

The following theorem shows how to prove in Maude-NPA whether a
given protocol pairing satisfies the IM property.

Theorem 7.16 Let P1,P2 be a protocol pairing. Then P1 and P2 satisfy
the IM property iff no initial state can be symbolically backwards reached
from an attack state of P1 ❜ P2 of either one of the following forms:

(1) tSS & t♣m1 ❜m2qPI, ♣m1 ❜m✶
2qPI, ♣m2 ✘E m✶

2q, IK✉✉, or

(2) tSS & t♣m1 ❜m2qPI, ♣m✶
1 ❜m2qPI, ♣m1 ✘E m✶

1q, IK✉✉

Proof. Immediate consequence of the soundness and completeness of the
backwards operational semantics w.r.t. the forwards operational seman-
tics (see Theorems 5.10 and 5.12 in Page 132) ❧

Theorem 7.17 Let P1,P2 be a protocol pairing satisfying the IM prop-
erty. Then P1,P2 satisfy the IAES property iff no initial state can be sym-
bolically backwards reached from any attack state of either of the forms:

206 Chapter 7. Protocol Indistinguishability in Maude-NPA

(1) t SS & r L ⑤ ✁♣m1 ❜m2q, L✶ s & t♣m1 ❜m✶
2qPI,

♣m2 ✘E m✶
2q, IK✉✉, or

(2) t SS & r L ⑤ ✁♣m1 ❜m2q, L✶ s & t♣m✶
1 ❜m2qPI,

♣m1 ✘E m✶
1q, IK✉✉

Proof. (ñ) We reason by contradiction. Suppose P1,P2 satisfy IAES and
an attack of type (1) exists. By the soundness and completeness of the
backwards narrowing performed by Maude-NPA there is a ground substi-
tution θ such that from an initial state of P1❜P2 we can reach a ground

state, via the forwards semantics, of the form t ✏ t
∼

SS θ& rLθs& t♣m1θ❜

m✶
2θqPI,

∼

IK θ✉✉, where
∼

SS are instances of already executed strand frag-

ments in SS, and
∼

IK θ are the instances of positive knowledge facts in
IK, and with m✶

2θ ✘E m2θ.

Because ♣m1θ ❜m2θqPI, P1 can make a transition

π1♣tq Ñ tπ1♣
∼

SS θq& rπ1♣Lθq,✁m1θs& tm1θPI, π1♣
∼

IK θq✉✉ (†)

But, since π1 is a bisimulation, this means that P1 ❜ P2 can make a
transition

t Ñ tSSθ& rL,✁♣m1θ ❜m2θqs& t♣m1θ ❜m2θqPI, IK✉✉ (‡)

which is only possible if there is a fact ♣m1θ ❜m2θqPI in IK, violating
the IM assumption. The proof for an attack of type (2) is entirely similar.

(ð) Suppose no attacks of type (1) or (2) exist but, say π1 : P1❜P2 Ñ
P1 (the case for π2 is similar) is not a bisimulation. Thus there is a ground
state t reachable from the initial state via the forwards semantics such
that P1 can make a transition π1♣tq Ñ u but there is no transition t Ñ v

in P1 ❜ P2 with π1♣vq ✏ u. This can only happen for a message receive
transition in a user strand. Therefore, the transition must be of the form
(†) above, but there is no transition of the form (‡) above. Thus the
received message m1θPI in π1♣tq comes from a pair ♣m1θ ❜m✶

2θqPI in t

such that m✶
2θ ✘E m2θ, contradicting the assumption that no attack of

type (1) exists. ❧

7.4. Experimental Evaluation 207

7.4 Experimental Evaluation

We have begun exploring the implementation of indistinguishability ver-
ification in Maude-NPA following the method presented in this chapter,
and performed a preliminary evaluation. For example, we have proved
in Maude-NPA the non-indistinguishability of some pairs of protocols
such as the protocol involving an XOR operator of Example 7.1 and a
complete version of the EKE protocol following the style of Example 7.2.
We have analysed some other protocols but we were unable to achieve
a finite state space due to state explosion. In the following, we describe
in more detail the analyses of the pairs of protocols corresponding to
Examples 7.1 and 7.2 in Maude-NPA.

The source files of the protocol specifications and the output of the
analyses of these examples are available at:

http://www.dsic.upv.es/~sescobar/Maude-NPA/indist.html

Example 7.18 Let us first consider the pair of protocols P1 and P2

involving the XOR operator of Example 7.1 in Page 196, which violate
the IM property. The analysis of P1 ❜ P2 in Maude-NPA proves that
P1 and P2 violate the IM property. More specifically, when Maude-NPA
searches backwards from the attack state shown below:

vars X Y Z : SingleMsg .

eq ATTACK-STATE(0)

= empty

|| pair(X,Y) inI, pair(X,Z) inI, pair(X,Y) != pair(X,Z)

|| nil

|| nil

|| nil

[nonexec] .

it generates a finite search space finding an initial state after 2 backwards
reachability steps. Below we show the output of this analysis:

==

reduce in MAUDE-NPA : summary(0) .

rewrites: 54 in 0ms cpu (0ms real) (~ rewrites/second)

result Summary: States>> 1 Solutions>> 0

http://www.dsic.upv.es/~sescobar/Maude-NPA/indist.html

208 Chapter 7. Protocol Indistinguishability in Maude-NPA

==

reduce in MAUDE-NPA : summary(1) .

rewrites: 140387 in 588ms cpu (586ms real) (238738 rewrites/second)

result Summary: States>> 2 Solutions>> 0

==

reduce in MAUDE-NPA : summary(2) .

rewrites: 22778 in 128ms cpu (128ms real) (177942 rewrites/second)

result Summary: States>> 1 Solutions>> 1

The initial state found by Maude-NPA is as shown below:

< 1 . 1 . 2 > (

:: nil ::

[nil | +(pair(0, 0)), nil] &

:: nil ::

[nil | +(pair(0, m1 * m2)), nil])

||

pair(0, 0) !inI,

pair(0, m1 * m2) !inI

||

+(pair(0, m1 * m2)),

+(pair(0, 0))

||

nil

||

nil

where 0 is the XOR unit element. The initial state shown above corre-
sponds to the exchange of messages explained in Example 7.1 in Page 196.

�

Let us now explain in more detail the specification and analysis of a
complete version of the EKE protocol following the style of Example 7.2
in Page 197, which is an example of two protocols violating the IAES
property.

Example 7.19 We consider a version of the Encryption Key Exchange
(EKE) protocol [Bellovin and Merritt, 1992] in which, unlike the original
version of the protocol, the attacker can distinguish whether a decryption
succeeds or not. In the EKE protocol a party encrypts an ephemeral

7.4. Experimental Evaluation 209

(one-time) public key using a password, and sends it to a second party,
who decrypts it and uses it to negotiate a shared key with the first party.

This protocol involves asymmetric encryption, using public and pri-
vate keys, and two kinds of symmetric encryption using shared keys and
passwords, respectively. A public key is represented as pkey♣Aq, whereas
the private key corresponding to a public key pkey♣Aq, is represented
as inv♣pkey♣Aqq. Asymmetric encryption of a message M with a pub-
lic key is written as penc♣pkey♣Aq,M q, whereas asymmetric encryption
with a private key is written as pdec♣inv♣pkey♣Keqq,M q. Symmetric
encryption/decryption with a shared key skey♣A,Bq between two princi-
pals A and B, is written as senc♣skey♣Keq,M q and sdec♣skey♣A,Bq,M q,
respectively. Finally, symmetric encryption/decryption of M using a
password pw♣A,Bq agreed between two principals A and B, is denoted
by enc♣pw♣A,Bq,M q and dec♣pw♣A,Bq,M q, respectively.

Similarly to Example 7.2, we consider two protocols P1 and P2 in
which the honest principals perform the same exchange of messages, and
the difference is in the attacker’s guess of the password, as explained
below. The exchange of messages among the honest principals in both
protocols is as follows:

1. A Ñ B : A ; enc♣pw♣A,Bq, pkey♣Aqq

2. B Ñ A : enc♣pw♣A,Bq, penc♣PKA, skey♣A,Bqqq

3. A Ñ B : senc♣skey♣A,Bq, NAq

4. B Ñ A : senc♣skey♣A,Bq, NA;NBq

5. A Ñ B : senc♣skey♣A,Bq, NBq

where A and B denote Alice and Bob’s names, respectively, and NA and
NB represent nonces generated by Alice and Bob, respectively.

The analysis of P1 ❜ P2 in Maude-NPA proves that P1 and P2 vi-
olate the IAES property. More specifically, when Maude-NPA searches
backwards from the attack state shown below:

var Z : SingleMsg .

var PK : PKey .

eq ATTACK-STATE(0)

210 Chapter 7. Protocol Indistinguishability in Maude-NPA

= :: nil ::

[nil | -(pair(pw(a,b), Z)),

-(pair(enc(pw(a,b),PK),enc(pw(a,b),PK))),

+(pair(PK,PK)), nil]

|| pair(pw(a,b), Z) inI, Z != pw(a,b)

|| nil

|| nil

|| nil

[nonexec] .

it generates a finite search space finding an initial state after 1 backwards
reachability step. Note that this attack pattern is more instantiated
than the attack patterns of the form shown in Theorem 7.17 for IAES.
However, it provides a faster analysis. Below we show the output of this
analysis:

==

reduce in MAUDE-NPA : summary(0) .

rewrites: 16689 in 72ms cpu (71ms real) (231778 rewrites/second)

result Summary: States>> 1 Solutions>> 0

==

reduce in MAUDE-NPA : summary(1) .

rewrites: 7669886 in 7848ms cpu (7848ms real) (977243 rewrites/second)

result Summary: States>> 1 Solutions>> 1

The initial state found by Maude-NPA is as shown below:

< 1 . 1 > (

:: nil ::

[nil |

+(pair(pw(a, b),pg(i))), nil] &

:: nil ::

[nil |

-(pair(pw(a, b), pg(i))),

-(pair(enc(pw(a, b), #1:PKey), enc(pw(a, b), #1:PKey))),

+(pair(#1:PKey, #1:PKey)), nil])

||

pair(pw(a, b),pg(i)) !inI

||

+(pair(pw(a, b),pg(i)))

||

7.5. Conclusions 211

nil

||

nil

denoting that in P1 the intruder guessed the right password and, there-
fore, it can obtain the message #1:PKey in the clear, by decrypting mes-
sage enc♣pw♣a, bq,#1 : PKeyq, whereas in P2 it guessed a wrong password,
and therefore, the decryption failed. �

As explained before, we performed some other analyses, but we were
unable to achieve a finite state space for those protocols. We have inves-
tigated reasons for non-termination due to state space explosion. One is
that the attack states used are quite general. As future work, we plan to
study sound and complete ways to replace them by more specific attack
states, following the style of the attack state used in Example 7.19.

Another is that these analyses make a heavy use of inequalities mod-
ulo equational theories. Currently, in Maude-NPA inequality constraints
are not checked until an initial state is reached. ProVerif, for example,
includes methods for solving inequality constraints earlier (see [Blanchet
et al., 2008]). Basically, this tool includes a predicate call “nounif” which
allows the intruder to check if two terms do not unify. However, such
inequatlity predicate is beyond unification, because it requires to com-
pute all the possible negative cases of an equality predicate, that is,
those evaluating to true, and those terms evaluating to false. Indeed,
ProVerif’s “nounif” predicate can only be applied to pairs of constructor
symbols, and does not support AC operators. A similar procedure could
be implemented in Maude-NPA but this implies computing all the vari-
ants of the inequality predicate. The problem is that inequality for AC
symbols is not as easy to define as equality. Indeed, work on evaluating
inequality constraints for theories with AC is beginning to appear (see
e.g. [Gutiérrez et al., 2012]). We expect to explore this issue further in
our future work.

7.5 Conclusions

We have formalized an intuitive notion of indistinguishability as the con-
juntion of the IM and IAES properties. This is a bisimulation-type prop-
erty. But it is significantly simplified by the fact that, since we model all

212 Chapter 7. Protocol Indistinguishability in Maude-NPA

possible actions of the attacker by intruder strands and by the intruder
knowledge, we do not need to consider arbitrary contexts —used, say, in
the π-calculus to model the attacker— on which to place the protocols
(which are modeled in our terms by the honest principal strands).

Our formalization of IM and IAES in terms of the synchronous prod-
uct of two protocols in a pairing has been shown to be checkable automat-
ically by Maude-NPA. This is a significant step-forward in indistinguisha-
bility research, because, for the first time, there is a tool that can perform
such automatic checks modulo a very wide class of theories, namely, all
theories with the finite variant property that can have axioms B such as
AC or C, which include theories like Abelian Groups, several theories
of homomorphic encryption, exclusive-or, and modular exponentiations
essential for many privacy-preserving protocols. We have also illustrated
with concrete examples how this kind of indistinguishability analysis can
be performed by Maude-NPA.

Chapter 8

Asymmetric Unification:
A New Unification Paradigm
for Cryptographic Protocol
Analysis

In this chapter we provide a tool-independent methodology for state ex-
ploration, called contextual symbolic reachability analysis. This method-
ology is based on unification and narrowing, and generates states that
obey certain irreducibility constraints w.r.t. the protocol equational the-
ory. Contextual symbolic reachability analysis also introduces a new
type of unification mechanism, called asymmetric unification, in which
any solution must leave the right side of the solution irreducible.

First, Section 8.1 motivates contextual symbolic reachability analysis,
showing a problem that arises in cryptographic protocol analysis when
the equational properties of the cryptosystem are taken into account: in
many situations it is necessary to guarantee that certain terms generated
during a state exploration are in normal form with respect to the equa-
tional theory. In Section 8.2 we introduce contextual symbolic reachabil-
ity analysis and give a formal definition of asymmetric unification, illus-
trating their use in Maude-NPA. Section 8.3 outlines a general procedure
for converting a symmetric algorithm to an asymmetric one, and applies
it to exclusive-or with uninterpreted function symbols. In Section 8.4, we
(i) show experiments illustrating the benefits, in Maude-NPA, of using

214 Chapter 8. Asymmetric Unification

contextual symbolic reachability and asymmetric unification to integrate
reachability analysis modulo exclusive-or with optimizations based on
syntactic checks, and (ii) the experimental results on an implementa-
tion of the asymmetric XOR algorithm of Section 8.3 in Maude-NPA,
comparing its performance with an asymmetric variant-based unification
algorithm.

These results have been published in [Erbatur et al., 2012, 2013].

8.1 Motivation

In many cases, equational reasoning is integrated with syntactic reason-
ing. There are a number of reasons for doing this, but one reason is that
optimizations that are done to eliminate redundant or nonsensical states
may need to be done via syntactic checking, as in Maude-NPA. We il-
lustrate the issues that can arise with the following protocol, which we
will use as a running example. It uses an exclusive-or (XOR) operator
❵, which is associative and commutative (AC) and self-canceling with
identity 0, and a function pk, where pk♣A,Xq stands for encryption of
message X with A✶s (standing for Alice’s) public key; below, B stands
for Bob.

Example 8.1 Upon receiving the final message, Alice verifies that she
received X ❵NA for some X received in the first message pk♣A,Xq. The
protocol is seen differently by Bob and Alice, as shown in the second and
third columns.

Alice and Bob

1. B Ñ A : pk♣A,NBq

2. AÑ B : pk♣B,NAq

3. B Ñ A : NA ❵NB

Bob

1. B Ñ A : pk♣A,NBq

2. AÑ B : pk♣B,Zq

3. B Ñ A : Z ❵NB

Alice

1. B Ñ A : pk♣A,Xq

2. AÑ B : pk♣B,NAq

3. B Ñ A : NA ❵X
�

We find an instance of the protocol from Alice’s perspective by ap-
plying the substitution X ÞÑ NA ❵ Y to achieve the left-hand column
of Example 8.2. Maude-NPA could identify this instance as infeasible
and discard it, since Alice cannot receive a message NA ❵ Y before she
generates the nonce NA.

8.1. Motivation 215

Example 8.2 But further instantiating Y (perhaps as a result of further
unifications elsewhere) to NA ❵NB causes problems.

Alice after X ÞÑ NA ❵ Y

1. B Ñ A : pk♣A,NA ❵ Y q

2. AÑ B : pk♣B,NAq

3. B Ñ A : NA ❵NA ❵ Y

Alice after Y ÞÑ NA ❵NB .

1. B Ñ A : pk♣A,NA❵NA❵NBq ✏ pk♣A,NBq

2. AÑ B : pk♣B,NAq

3. B Ñ A : NA ❵NA ❵NA ❵NB ✏ NA ❵NB

�

This makes NA❵Y reduce to NB and NA❵NA❵Y reduce to NA❵NB,
giving the right-hand side of Example 8.2: the intended legal execution
of the protocol! Thus, Maude-NPA’s syntactic check inadvertently could
have ruled out a legal execution.

We avoid this problem as follows. We first decompose the XOR theory
into ♣B,E0q, where B is the AC theory and E0 is a set of rewrite rules for
the properties tX ❵ 0 ✏ X, X ❵ X ✏ 0, X ❵ X ❵ Y ✏ Y ✉. We then
divide the possible instantiations of tpk♣A,Xq, NA ❵X✉ into two cases,
each of which are constrained to remain irreducible under substitution.
One is tpk♣A,Xq, NA❵X✉, and the other is tpk♣A, Y ❵NAq, Y ✉ obtained
by the substitution X ÞÑ Y ❵ NA. Every other reduced instantiation of
NA ❵X is an instance of either one or the other modulo AC. The case
obtained by X ÞÑ Y ❵NA can now be safely deleted, because due to the
irreducibility constraint that Y cannot contain NA and 0, the NA will
never vanish from NA ❵ Y under any substitution.

This strategy works for several reasons. One is that Maude-NPA
syntactic checks require that irreducibility constraints only be put on
received messages. Another, and more important, is that the exclusive-
or theory has the finite variant property [Comon-Lundh and Delaune,
2005] modulo AC. Thus, for every term s there is a finite set s✶

1, . . . , s
✶
k of

reduced instances of s such that any other reduced instance of s is equal
modulo AC to a substitution instance of one of the s✶

i. These two features
mean that it is possible to integrate syntactic checks that are invariant
under AC together with unification-based reachability modulo a richer
theory, allowing us to improve efficiency without sacrificing soundness
and completeness. Indeed, this is vital for Maude-NPA and other tools,
because almost all of the checks used for optimization require the received
messages to be in normal form.

216 Chapter 8. Asymmetric Unification

Another capability that is needed for our strategy to work opens
up a new area of research, namely, developing a sound and complete,
tool-independent symbolic state exploration algorithm that preserves ir-
reducibility constraints. In Maude-NPA state exploration is implemented
via equational unification of sent messages with received messages, which
means that the equational unification algorithm used should preserve the
irreducibility of the received messages. Indeed, it was experimentation
with a unification algorithm that did not have this property, the algo-
rithm of [Liu and Lynch, 2011], that produced the example we described
above. Variant narrowing unification (the algorithm currently used by
Maude-NPA) has the properties that we need, but our search of the liter-
ature has produced no other examples. This has led us to define a class of
unification algorithms known as asymmetric unification algorithms mod-
ulo a theory ♣B,E0q, which produce a most general set of unifiers which
leave the right hand side irreducible. We have worked on techniques for
converting standard equational unification algorithms into asymmetric
algorithms, and have produced an asymmetric version of the exclusive-or
algorithm in [Liu and Lynch, 2011].

We are not the only ones to use an approach that integrates syntactic
and equational reasoning: this has also been done by other researchers for
other reasons, as we have described in Section 1.2. However, most work
in this area has concentrated on specific applications of this approach,
and not on how to implement the approach itself. This chapter is de-
voted to providing a general procedure for doing this, called contextual
symbolic reachability analysis modulo a theory ♣B,E0q, where E0 is a set
of rewrite rules. This employs a technique called contextual unification in
which some subterms of the two terms being unified are constrained to be
irreducible. In Maude-NPA these are input terms, which, since they are
unified with output terms, create the opportunity for exploiting asym-
metric unification. However, this is not the only way contextual symbolic
reachability analysis could be implemented. For example, we could follow
the approach of OFMC [Basin et al., 2005; Mödersheim and Viganò, 2009]
which requires that both input and output terms are irreducible. Thus,
our tool-independent framework should have many applications beyond
Maude-NPA, allowing for experimentation with different techniques.

8.2. Contextual Symbolic Reachability Analysis 217

8.2 Contextual Symbolic Reachability

Analysis

As we have explained in Section 8.1, the symbolic reachability approach
presented in Section 2.2 does not really work in practice, since the par-
ticular way that a representative is chosen for each equivalence class may
be crucial for the correct behavior, and in many cases the termination
of a tool crucially depends on state space reduction techniques based on
checking such representatives, as we illustrated for the case of nonces
that cannot have been generated yet at a given point. Therefore, we
now present a general, tool-independent framework for symbolic reach-
ability analysis which refines narrowing modulo equations by imposing
irreducibility conditions on representatives of equivalence classes. First,
we give a way of imposing these irreducibility conditions on a rewrite
theory, expressed by the notion of contextual rewrite theory.1

Definition 8.3 (Contextual Rewrite Theory) A contextual rewrite
theory is a tuple ♣Σ, B, E0, T, φq where:

• ♣Σ, E0 ❨B, T q is an order-sorted topmost rewrite theory,

• ♣Σ, B, E0q is a decomposition of the equational theory ♣Σ, E0 ❨Bq,
and

• φ, called the irreducibility conditions, is a function mapping each
f P Σ to a set of its arguments, i.e., φ♣fq ❸ t1, . . . , ar♣fq✉, where
ar♣fq is the number of arguments of f . The set of maximal irre-
ducible positions of a term t is denoted by φ♣tq.

A term t is called φ,E0, B-irreducible (or just φ-irreducible) if for
each p P φ♣tq, t⑤pÓE0,B ✏B t⑤p, and strongly φ-irreducible if for any
E0, B-normalized substitution σ, tσ is φ-irreducible.

1Our use of “contextual” should be distinguished from : (i) “contextual rewrit-
ing,” e.g., [Zhang and Remy, 1985], and (ii) “context-sensitive rewriting,” e.g., [Lu-
cas, 1998]. Our use is unrelated to contextual rewriting, which is a form of condi-
tional rewriting with constraints, but is closely related to context-sensitive rewrit-
ing, where the rewritable argument positions of a function symbol f are specified
by a function µ♣fq ❸ t1, . . . , ar♣fq✉ similar to our irreducibility conditions function
φ♣fq ❸ t1, . . . , ar♣fq✉. However, φ-irreducibility is a strictly stronger requirement
than µ-irreducibility when φ ✏ µ.

218 Chapter 8. Asymmetric Unification

Example 8.4 For the protocol of Example 8.1 the contextual rewrite
theory ♣Σ, B, E0, T, φq is formed of T containing the reversed version of
the generic rewrite rules (3.1)–(3.3) plus the rewrite rules for introducing
new strands (rules (3.4)), i.e. T ✏ R✁1

BP
, and the equational theory

♣Σ, E0❨Bq for exclusive-or is decomposed into ♣Σ, B, E0q where B and E0

are as described in Example 2.3 in Page 28. The irreducibility conditions
φ are imposed on two operators: ✁♣ q for input messages in a strand, and
PI for each positive fact in the intruder knowledge. That is, φ♣✁♣ qq ✏
t1✉, φ♣ PIq ✏ t1✉, and φ♣fq ✏ ❍ otherwise. �

We extend the notion of a reachability goal to the contextual case.

Definition 8.5 (Contextual Reachability goal) Given a contextual
rewrite theory ♣Σ, B, E0, T, φq, we define a contextual reachability goal

as t
?
Ñ✝

T,E0,B,φ t
✶, where t, t✶ P TΣ♣X qs. We write t

?
Ñ✝

φ t
✶ when the the-

ory is clear. A substitution σ is a solution of the contextual reachabil-

ity goal t
?
Ñ✝

T,E0,B,φ t
✶ iff there is a sequence tσ ÑT,♣E0❨Bq u1σ ÑT,♣E0❨Bq

☎ ☎ ☎ ÑT,♣E0❨Bq ♣uk✁1qσ ÑT,♣E0❨Bq t✶σ such that tσ, u1σ, . . . , ♣uk✁1qσ, t
✶σ

are all φ,E0, B-irreducible.

As for reachability goals, a contextual version of narrowing provides
a mechanism to find solutions to contextual reachability goals. However,
we have to first define a new equational unification mechanism, called
contextual unification, as the basis for contextual narrowing, where the
E0 ❨ B-unification is extended to the contextual case, which has some
asymmetry due to the irreducibility restrictions only on the right hand
side.

Definition 8.6 (Contextual Unification) Given a contextual rewrite
theory ♣Σ, B, E0, T, φq, a substitution σ is a contextual E0, B-unifier of
a set P of contextual equations of the form P ✏ tt1✏Óφ t

✶
1, . . . , tn✏Óφ t

✶
n✉

iff for every contextual equation ti✏Óφ t
✶
i in P , the substitution σ is an

♣E0 ❨Bq-unifier of the equation ti ✏ t✶i and, furthermore, t✶iσ is φ,E0,B-
irreducible.

A set of substitutions Ω is a complete set of contextual E0, B-unifiers
of P , denoted by CSU E0,B,φ♣P q, iff: (i) every member of Ω is a contextual
E0, B-unifier of P , and (ii) for every contextual E0, B-unifier θ of P there
exists σ P Ω such that σ ❹B θ.

8.2. Contextual Symbolic Reachability Analysis 219

Example 8.7 Consider the protocol of Example 8.1, and the state pat-
tern shown below, with Alice and Bob’s strands with the vertical bar at
the end, and an empty intruder knowledge.

t :: r2 :: rnil,✁♣pk♣A,Xqq,�♣pk♣B, n♣A, r2qqq,✁♣X ❵ n♣A, r2qq ⑤ nils &

:: r1 :: rnil,�♣pk♣A, n♣B, r1qqq,✁♣pk♣B, Y qq,�♣Y ❵ n♣B, r1qq ⑤ nils &

SS & tIK✉✉

The contextual unification problem found by Maude-NPA is t✏Óφ t
✶ where

t is tSS & rL,M� ⑤ L✶s & tMPI, IK✉✉ i.e., the right-hand side of Rule
(3.3), and t✶ is the following state, found by Maude-NPA after one back-
wards narrowing step from the state pattern shown above.

t :: r2 :: rnil,✁♣pk♣A,Xqq,�♣pk♣B, n♣A, r2qqq ⑤ ✁ ♣X ❵ n♣A, r2qq, nils &

:: r1 :: rnil,�♣pk♣A, n♣B, r1qqq,✁♣pk♣B, Y qq,�♣Y ❵ n♣B, r1qq ⑤ nils &

SS & t♣X ❵ n♣A, r2qqPI, IK✉✉

The two key terms are Y ❵n♣B, r1q and X❵n♣A, r2q. Note that term X❵
n♣A, r2q appears in two positions in t✶, under symbols ✁♣ q and PI, both
required to be irreducible by φ. The singleton most general contextual
unifier is σ1 ✏ tY ÞÑ X ❵ n♣B, r1q ❵ n♣A, r2q✉, whereas the substitution
σ2 ✏ tX ÞÑ Y ❵ n♣B, r1q ❵ n♣A, r2q✉ is not a valid contextual unifier:
term X❵n♣A, r2q is under the irreducibility condition of symbol ✁♣ q and
the substitution σ2 would make it reducible, whereas term Y ❵ n♣B, r1q
is under symbol �♣ q, which does not have any irreducibility condition
and the substitution σ1 makes it reducible. �

Contextual unification can be reduced to the simpler notion of asym-
metric unification.

Definition 8.8 (Asymmetric Unification) Given a decomposition
♣Σ, B, E0q of an equational theory ♣Σ, E0 ❨ Bq, a substitution σ is an
asymmetric E0, B-unifier of a set P of asymmetric equations tt1✏Ó t✶1,

. . . , tn✏Ó t✶n✉ iff for every asymmetric equation ti✏Ó t✶i in P , σ is an
♣E0❨Bq-unifier of the equation ti ✏ t✶i and ♣t✶iÓE0,Bqσ is in E0,B-normal
form.

A set of substitutions Ω is a complete set of asymmetric E0,B-unifiers
of P iff: (i) every member of Ω is an asymmetric E0,B-unifier of P , and

220 Chapter 8. Asymmetric Unification

(ii) for every asymmetric E0,B-unifier θ of P there exists a σ P Ω such
that σ ❹B θ (over Var♣P q).

In the following, we always assume that in every asymmetric equation
t✏Ó t✶, t✶ is in normal form; otherwise, we can always normalize t✶.

Example 8.9 Consider the asymmetric unification problem
Y ❵ n♣B, r✶q✏Ó X ❵ n♣A, rq arising in Example 8.7. Then, there is a
most general ❵-unifier X ÞÑ Y ❵ n♣B, r✶q ❵ n♣A, rq. However, this is not
an asymmetric unifier; but an equivalent ❵-unifier is Y ÞÑ X❵n♣B, r✶q❵
n♣A, rq, which is the singleton most general asymmetric unifier. �

For any ♣E0 ❨ Bq-unifier θ of P and substitution τ , θτ is also an
♣E0❨Bq-unifier of P . But this is not necessarily the case for asymmetric
E0,B-unifiers.

Example 8.10 Consider Example 8.9 and the most general exclusive-
or asymmetric unifier Y ÞÑ X ❵ n♣B, r✶q ❵ n♣A, rq. If we apply the
substitution X ÞÑ n♣A, rq to the above unifier, the resulting substitution
is no longer an asymmetric unifier of the original asymmetric unification
problem. �

Indeed, nothing can be said about the asymmetric unifiers of a prob-
lem from its set of unifiers. The unification problem could have a nonempty
set of unifiers, whereas the asymmetric unification problem need not have
any asymmetric unifier. Or, the unification problem could have a single
most general unifier, whereas the asymmetric unification problem has ex-
ponentially many solutions, as illustrated using the following asymmetric
unification problem:

x1 ❵ . . .❵ xn✏Ó a1 ❵ . . . an, x1 ❵ . . .❵ xn✏Ó x1 ❵ . . .❵ xn

which has a single unifier x1 ÞÑ x2❵ ...❵ xn❵ a1❵ ...❵ an, and n! asym-
metric unifiers. The complexity and decidability results of asymmetric
unification given in [Erbatur et al., 2013, Theorems 5 and 6] state that
there are theories for which symmetric unification is decidable and asym-
metric unification is undecidable

The reduction of contextual unification to the simpler asymmetric
unification is provided by the following lemma.

8.2. Contextual Symbolic Reachability Analysis 221

Lemma 8.11 Given a contextual rewrite theory ♣Σ, B, E0, T, φq and a
set of contextual equations P ✏ tt1✏Óφ t

✶
1, . . . , tn✏Óφ t

✶
n✉, σ is a contextual

E0, B-unifier of P iff there is a substitution θ such that θ is an asymmet-
ric E0, B-unifier of Γ♣P q and σ ✏E θ⑤Var♣P q, where

Γ♣P q ✏tti✏Ó X, t✶i✏Ó X ⑤ ti✏Óφ t
✶
i P P,X fresh variable✉❨

tt✶i⑤p.j ✏Ó t✶i⑤p.j ⑤ ti✏Óφ t
✶
i P P, f P Σ, p P Posf ♣t

✶
iq, j P φ♣fq✉

Proof. Immediate.

Using a contextual unification algorithm, we can modify the standard
notion of narrowing so that it uses contextual unification to solve sym-
bolic contextual reachability goals. Note that the following definition dif-
fers from the definition of narrowing modulo an equational theory given
in Section 2.2 only in using contextual unification CSU E0,B,φ♣l✏Óφ t⑤pq
instead of regular unification CSU E0❨B♣l ✏ t⑤pq and carrying a set of ir-
reducible terms Π passed to the contextual unification algorithm, where
Π is the set of irreducible terms that have been computed earlier in the
narrowing sequence.

Definition 8.12 (Contextual Narrowing modulo E0, B) Given a
contextual rewrite theory ♣Σ, B, E0, T, φq, the contextual narrowing re-
lation modulo E0, B on pairs ①t,Π② for t a term and Π a set of irre-
ducible terms is defined as ①t,Π②

σ
❀T,E0,B,φ ①t✶,Πσ② (or

σ
❀φ if T,E0, B

are understood) iff there is p P PosΣ♣tq, a rule l Ñ r in T such that
Var♣tq ❳ ♣Var♣lq ❨ Var♣rqq ✏ ❍, a substitution σ P CSU V

E0,B,φ♣P q for
P ✏ tl✏Óφ t⑤p✉ ❨ tu✏Óφ u ⑤ u P Π✉ and a set V of variables containing
Var♣tq, Var♣lq, and Var♣rq, and t✶ ✏ ♣trrspqσ.

The essential equivalence between contextual reachability analysis
and standard narrowing-based reachability analysis is proved as follows:

given a standard goal t
?
Ñ✝

T,E0❨B t✶, any solution to it can be computed
by contextual narrowing ❀T,E0,B,φ under some extra conditions involving
variants. Let us motivate the issues involved by an example.

Example 8.13 Let us consider the protocol of Example 8.1 and a state
pattern with Alice and Bob’s strands with the vertical bar at the end,
and the requirement that the intruder learns n♣A, r2q:

222 Chapter 8. Asymmetric Unification

t :: r2 :: rnil,✁♣pk♣A,Xqq,�♣pk♣B, n♣A, r2qqq,✁♣X ❵ n♣A, r2qq ⑤ nils &

:: r1 :: rnil,�♣pk♣A, n♣B, r1qqq,✁♣pk♣B, Y qq,�♣Y ❵ n♣B, r1qq ⑤ nils &

SS & tn♣A, r2qPI, IK✉✉

This attack pattern should be possible in Maude-NPA by just applying
the substitution X ÞÑ 0, where 0 is the XOR unit element. However,
the term X ❵ n♣A, r2q becomes reducible under such substitution and
the attack would not be reachable because of our irreducibility condition
on X ❵ n♣A, r2q. To solve this problem, the key idea is that the pattern
X ❵ n♣A, r2q should be replaced by its variants before each contextual
narrowing step, i.e., by the possible instance patterns of it which are
irreducible, namely: (i) the pattern X❵n♣A, r2q itself, (ii) the pattern Y ,
which is the normal form after applying substitution X ÞÑ Y ❵ n♣A, r2q,
(iii) the pattern 0, which is the normal form after applying substitution
X ÞÑ n♣A, r2q, and (iv) the pattern n♣A, r2q, which is the normal form
after applying substitutionX ÞÑ 0. Only after replacement of the original
term by these variants, can we impose the irreducibility conditions for
reducing the search space. That is, for contextual reachability analysis,
we need to first compute what we call the φ,E0, B-variants of a term. �

Definition 8.14 (φ,E0, B-variants) Given a contextual rewrite theory
♣Σ, B, E0, T, φq, the set of E0,B,φ-variants of a pair ①t,Π② for t a term
and Π a set of irreducible terms is defined as rr①t,Π②ssφE0,B

✏ t♣tσrv1, . . . ,
vnsp1,...,pn , σq ⑤ ♣g♣v1, . . . , vnq, σq P rrg♣t⑤p1 , . . . , t⑤pnqssE0,B

❫ ❅u P Π : uσ
is φ,E0, B-irreducible✉ where φ♣tq ✏ tp1, . . . , pn✉ and g is an auxiliary
function symbol not appearing in E0 and B. For readability, we write
①t,Π② ։

θ
E0,B

①w,Π② to denote that ♣w, θq P rr①t,Π②ssφE0,B
and Π ✏ Πθ ❨

tw✉.

Example 8.15 Let us consider the state t✶ shown in Example 8.7:

t :: r2 :: rnil,✁♣pk♣A,Xqq,�♣pk♣B, n♣A, r2qqq ⑤ ✁ ♣X ❵ n♣A, r2qq, nils &

:: r1 :: rnil,�♣pk♣A, n♣B, r1qqq,✁♣pk♣B, Y qq,�♣Y ❵ n♣B, r1qq ⑤ nils &

SS & t♣X ❵ n♣A, r2qqPI, IK✉✉

We generate the four variants associated to X ❵ n♣A, r2q in subterms
rooted by ✁♣ q and PI, since these are the symbols with irreducibility
constraints: (i) the original one but with the assumption that X will

8.2. Contextual Symbolic Reachability Analysis 223

never contain either n♣A, r2q or 0, (ii) the pattern n♣A, r2q where X ❵
n♣A, r2q has been collapsed into the nonce, (iii) the pattern Z where
X ❵n♣A, r2q has been collapsed into a new variable Z by assuming X ÞÑ
Z ❵ n♣A, r2q, and (iv) the term 0 where X ❵ n♣A, r2q has been collapsed
into 0 by assuming X ÞÑ n♣A, r2q:

t :: r2 :: rnil,✁♣pk♣A,Xqq,�♣pk♣B, n♣A, r2qqq ⑤ ✁ ♣X ❵ n♣A, r2qq, nils &

:: r1 :: rnil,�♣pk♣A, n♣B, r1qqq,✁♣pk♣B, Y qq,�♣Y ❵ n♣B, r1qq ⑤ nils &

SS & t♣X ❵ n♣A, r2qqPI, IK✉✉

t :: r2 :: rnil,✁♣pk♣A, 0qq,�♣pk♣B, n♣A, r2qqq ⑤ ✁ ♣n♣A, r2qq, nils &

:: r1 :: rnil,�♣pk♣A, n♣B, r1qqq,✁♣pk♣B, Y qq,�♣Y ❵ n♣B, r1qq ⑤ nils &

SS & tn♣A, r2qPI, IK✉✉

t :: r2 :: rnil,✁♣pk♣A,Z ❵ n♣A, r2qqq,�♣pk♣B, n♣A, r2qqq ⑤ ✁ ♣Zq, nils &

:: r1 :: rnil,�♣pk♣A, n♣B, r1qqq,✁♣pk♣B, Y qq,�♣Y ❵ n♣B, r1qq ⑤ nils &

SS & tZPI, IK✉✉

t :: r2 :: rnil,✁♣pk♣A, n♣A, r2qqq,�♣pk♣B, n♣A, r2qqq ⑤ ✁ ♣0q, nils &

:: r1 :: rnil,�♣pk♣A, n♣B, r1qqq,✁♣pk♣B, Y qq,�♣Y ❵ n♣B, r1qq ⑤ nils &

SS & t0PI, IK✉✉

The reader can check that only the variants of the terms in the intruder
knowledge (which are indeed coming from messages of the form ✁♣Mq)
are generated. �

The key idea to achieve the desired semantic equivalence between con-
textual narrowing and ordinary narrowing is to precede each contextual
narrowing step by a φ-variant computation step, which we prove in the
following lemma.

Lemma 8.16 Given a contextual rewrite theory ♣Σ, B, E0, T, φq, and a
term t, and a (possibly empty) set of irreducible terms Π, we have a

narrowing step t
θ
❀T,E0❨B t✶ iff there are substitutions θ✶, θ✷, τ and terms

t✷ and w such that ①t,Π② ։θ✶

E0,B
①w,Π✶②, ①w,Π✶②

θ✷

❀T,E0,B,φ ①t
✷,Π✶②, t✶ ✏B

t✷τ , Π✶ ✏ Π ❨ tw✉, and Π✶ ✏ Π✶θ✷. Furthermore, tθ ✏E0❨B tθ✶ ✆ θ✷ ✆ τ ,
and tθ Ñ✝

E0,B
wθ✷ ✆ τ .

224 Chapter 8. Asymmetric Unification

Proof. The narrowing step t
θ
❀T,E0❨B t✶ implies θ P CSUE0❨B♣t ✏ lq for

some rule l Ñ r P T . But then, θ P CSUE0❨B♣t ✏ lq iff there is ♣u, αq P
rr①t,Π②ssφE0,B

such that ♣u, αq ❹E0,B ♣t, θ⑤Var♣tqq, i.e., there is a substitution
τ s.t. ♣tθq Ñ✝

E0,B
uτ and ♣θÓE0,Bq⑤Var♣tq ✏B ♣α✆ τq⑤Var♣tq. Therefore, there

is a substitution ρ P CSU V
E0❨B♣l✏Óφ uq with Var♣uq ❨ Ran♣αq ❸ V such

that ρ⑤Var♣uq ✏B τ ⑤Var♣uq and, thus, θ⑤Var♣tq ✏E0❨B ♣α ✆ ρq⑤Var♣tq. ❧

Now, we provide the main result of this chapter.

Theorem 8.17 (Contextual Soundness and Completeness) Given

a contextual rewrite theory ♣Σ, B, E0, T, φq, a reachability goal t
?
Ñ✝ t✶, and

a solution σ of it, there are a set of terms u1, . . . , un, w1, . . . , wn�1, t
✷ and

a set of substitutions θ1, . . . , θn�1, θ
✶
1, . . . , θ

✶
n�1 such that

①t,Π0② ։
θ1
E0,B

①w1,Π1②
θ✶1
❀T,E0,B,φ ①u1,Π1②

։
θ2
E0,B

①w2,Π2②
θ✶2
❀T,E0,B,φ ①u2,Π2②

...

։
θn
E0,B

①wn,Πn②
θ✶n
❀T,E0,B,φ ①un,Πn②

։
θn�1

E0,B
①wn�1,Πn�1②

θ✶n�1
❀ T,E0,B,φ ①t

✷,Πn�1②

and also: (i) Π0 ✏ ❍, Π1 ✏ tw1✉, Π1 ✏ θ✶1♣Π1q, Π2 ✏ θ2♣Π1q ❨ tw2✉,
Π2 ✏ θ✶2♣Π2q, . . ., Πn�1 ✏ Πn ❨ twn�1✉, Πn�1 ✏ θ✶n�1♣Πn�1q, (ii) for
each i P t1, . . . , n � 1✉, the term wiθ

✶
i ✆ θi�1 ✆ θ✶i�1 ✆ ☎ ☎ ☎ ✆ θn�1 ✆ θ✶n�1 is

φ,E0, B-irreducible, (iii) there is a substitution τ such that σ ✏B θ1 ✆ θ
✶
1 ✆

θ2 ✆ θ
✶
2 ☎ ☎ ☎ θn�1 ✆ θ

✶
n�1 ✆ τ , and (iv) t✶ ✏B t✷τ .

Conversely, any substitution σ for which there is a sequence as above

satisfying conditions (i)-(iv) is a solution of t
?
Ñ✝ t✶.

Proof. By successive application of Lemma 8.16.

Example 8.18 Continuing Example 8.15, we have four state patterns
after variant generation. Contextual narrowing follows from the first vari-
ant state pattern as described in Example 8.19 below. The second variant
state pattern will lead to an initial state where the intruder provides mes-
sage pk♣A, 0q. and the vertical bar of Bob’s strand is at the beginning of
the strand. And the third and the fourth variant state patterns will be

8.2. Contextual Symbolic Reachability Analysis 225

discarded by Maude-NPA, since they do not satisfy the syntactic check
explained in the Motivation discarding states sending a nonce before it
is generated. The state space reduction achieved in Maude-NPA is huge
by using the irreducibility conditions on symbols ✁♣ q and PI and other
state space reduction techniques based on such conditions (we further
discuss experiments on this topic in Section 8.4.1). �

Condition (ii) in Theorem 8.17 for terms wi to be (φ-)irreducible after
substitution application ensures that variants are not computed more
than once for each irreducible subterm in term t or irreducible subterms
introduced by right-hand sides of rules. This is very important to further
reduce the search space.

Example 8.19 Let us consider the state t✶ shown in Example 8.7. Af-
ter several variant generation and contextual narrowing steps using the
reversed form of rewrite rules (3.1)–(3.4), the following state is found

t :: r2 :: rnil,✁♣pk♣A,Xqq,�♣pk♣B, n♣A, r2qqq ⑤ ✁ ♣X ❵ n♣A, r2qq, nils &

:: r1 :: rnil,�♣pk♣A, n♣B, r1qqq ⑤ ✁♣pk♣B,X ❵ n♣A, r2q ❵ n♣B, r1qqq,
�♣X ❵ n♣A, r2q ❵ n♣B, r1q ❵ n♣B, r1q, nils

& SS & t pk♣B,X ❵ n♣A, r2q ❵ n♣B, r1qqPI, ♣X ❵ n♣A, r2qq❘I, IK ✉✉

We can check that there is no contextual unifier that allows terms
pk♣B, n♣A, r2qq and pk♣B,X ❵ n♣A, r2q ❵ n♣B, r1qq to be unifiable ac-
cording to the reversed form of rewrite rule (3.3), since the second term
is under a symbol with irreducibility restrictions and the substitution
X ÞÑ n♣B, r1q would make it reducible.

However, another protocol session can be used, since the term
pk♣B,X ❵ n♣A, r2q ❵ n♣B, r1qq can be unified with term pk♣B, n♣A✶, r✶

2qq
coming from another session, using the contextual unifierX ÞÑ n♣A✶, r✶

2q❵
n♣A, r2q ❵ n♣B, r1q. The resulting state is as follows

226 Chapter 8. Asymmetric Unification

t :: r✶
2 :: rnil,✁♣pk♣A✶, X ✶qq ⑤ � ♣pk♣B, n♣A✶, r✶

2qqq,✁♣X ✶ ❵ n♣A✶, r✶
2qq, nils &

:: r2 :: rnil, ✁♣pk♣A, n♣A✶, r✶
2q ❵ n♣A, r2q ❵ n♣B, r1qqq,

�♣pk♣B, n♣A, r2qqq ⑤
✁♣n♣A✶, r✶

2q ❵ n♣A, r2q ❵ n♣B, r1q ❵ n♣A, r2qq, nils &

:: r1 :: rnil, �♣pk♣A, n♣B, r1qqq ⑤
✁♣pk♣B, n♣A✶, r✶

2q ❵ n♣A, r2q ❵ n♣B, r1q ❵ n♣A, r2q ❵ n♣B, r1qqq,
�♣n♣A✶, r✶

2q ❵ n♣A, r2q ❵ n♣B, r1q ❵ n♣A, r2q
❵ n♣B, r1q ❵ n♣B, r1q, nils &

SS & t pk♣B, n♣A✶, r✶
2q ❵ n♣A, r2q ❵ n♣B, r1q ❵ n♣A, r2q ❵ n♣B, r1qq❘I,

♣n♣A✶, r✶
2q ❵ n♣A, r2q ❵ n♣B, r1q ❵ n♣A, r2qq❘I, IK ✉✉

However, although the two contextual narrowing steps have computed
contextual unifiers, the combination of both unifiers does not satisfy the
irreducibility conditions of the original term ✁♣X ❵ n♣A, r2qq, since now
it is reducible, i.e., the term ✁♣n♣A✶, r✶

2q❵n♣A, r2q❵n♣B, r1q❵n♣A, r2qq is
reducible. Therefore, this narrowing sequence is discarded, since it does
not fulfill the conditions for solutions of contextual reachability goals
given in Theorem 8.17, further reducing search. �

The question now arises of how to produce such asymmetric algo-
rithms that improve upon the generic variant-based algorithm described
above. We discuss one such approach in Section 8.3, using as example
a special-purpose asymmetric unification algorithm for exclusive-or that
has been used to perform the experiments presented in Section 8.4.

8.3 An Asymmetric Unification Algorithm

for the Theory of Exclusive-OR with

Uninterpreted Function Symbols

There are two metrics to be considered when optimizing asymmetric
unification algorithms for cryptographic protocol analysis. One of course
is speed of execution. The other is the size of the most general set of
unifiers (mgu). Each such unifier results in the production of a new state,
so minimizing the size of this set helps to keep the size of the state space
down.

8.3. An Asymmetric Unification Algorithm for Exclusive-OR 227

One way of minimizing both execution time and mgu size is to con-
vert a symmetric algorithm that has already been optimized for these
features. In that case, we need to keep unifiers produced by the orig-
inal algorithm whenever possible. We outline a general approach and
illustrate it for the exclusive-or (XOR) theory given in Section 8.1, to-
gether with uninterpreted function symbols, chosen because it is the sim-
plest theory appearing in cryptographic protocol analysis that combines
both cancellation rules and a non-trivial theory B in the decomposition
♣Σ, B, E0q

Given a decomposition ♣Σ, B, E0q of the equational theory ♣Σ, Eq,
and an asymmetric unification problem Γ ✏ tt1 ✏Ó t✶1, . . . , tn ✏Ó t✶n✉, the
key steps of the approach are:

1. First compute a complete finite set S of B-unifiers using a fini-
tary unification algorithm for B. If S is empty, then there are no
asymmetric unifiers.

2. For each such unifier σ from the previous step, check whether every
t✶iσ is in E0,B-normal form. All such unifiers are retained also as
asymmetric unifiers.

3. For a unifier σ such that some t✶iσ is not in E0,B-normal form,
compute an equivalent asymmetric unifier if possible.

4. If both of the previous steps fail, this implies that σ or its equiv-
alents cannot be asymmetric unifiers in their full generality. How-
ever, there may be some instances obtained by instantiating vari-
ables in them which are asymmetric unifiers. A complete set of
instances of a given unifier is generated by suitably instantiating
variables. This step may be expensive, so it is employed only as a
last resort (as demonstrated in Table 8.6 of Section 8.4.2 using uni-
fication problems manually chosen to stress this point). For each
such instance the above steps are repeated.

We explain below how steps (1)–(4) yield an asymmetric unification
algorithm for exclusive-or with uninterpreted symbols (XOR) from a
symmetric one. Variables appearing in Γ are called original variables
to distinguish them from new variables, called support variables by the
inference rules. For a unification problem Γ and an XOR unifier σ we say

228 Chapter 8. Asymmetric Unification

in the assignment x ÞÑ t ❵ T P σ some original variable x has a conflict
at some simple term t if

• there exists u ✏Ó vrx❵ ss P Γ and

• there exists T ✶ such that sσ ✏ t❵ T ✶

where s and t are simple terms (i.e., a term that does not have ❵ as its
outermost symbol) and T ✶ might be empty. The significance of conflicts
is that a substitution of x cannot include t as a subterm, in order to
ensure the irreducibility of the right side of equations in Γ.

We present the algorithm as a collection of inference rules on a triple
of sets:

σ⑥Υ⑥∆

σ✶⑥Υ✶⑥∆✶
,

where σ is an XOR unifier of Γ, Υ is a set of constraint pairs in which
each member has the form ♣v, sq (to mean that a substitution of v cannot
include s as a subterm to ensure the irreducibility of the right side of
equations in Γ), and ∆ is a set of disequations of the form s ❵ t ✘? 0,
with s and t having the same topmost uninterpreted function symbol.

A complete set of XOR-unifiers is first generated using an XOR-
unification algorithm. For each XOR unifier σ, the algorithm starts with
a triple σ⑥❍⑥❍. The algorithm may generate numerous branches, some
of which lead to a dead end because either (i) no inference rule is ap-
plicable or (ii) the candidate for an XOR unifier violates a constraint in
the second component or a disequation in the third component. Differ-
ent branches can generate equivalent asymmetric unifiers or asymmetric
unifiers which are instances of other asymmetric unifiers.

We use the following notation. The result of applying a substitution
θ to Υ ✏ t♣v1, s1q, ☎ ☎ ☎ , ♣vn, snq✉ is Υθ ✏ t♣vi, siθ Óq⑤♣vi, siq P Υ✉; we will
rewrite ♣vi, t1 ❵ ☎ ☎ ☎ ❵ tnq to ♣vi, t1q, ☎ ☎ ☎ , ♣vi, tnq. A substitution δ satisfies
Υ iff δ satisfies every constraint pair in Υ, i.e., given a pair ♣v, sq P Υ,
δ satisfies ♣v, sq iff vδ ❵ sδ is irreducible using E0, B, were E0 are the
rewrite rules for the XOR theory given in Section 8.1,. If δ does not
satisfy Υ, then δ violates Υ. Similarly, δ satisfies ∆ iff δ satisfies every
disequation s ❵ t ✘ 0 P ∆, in other words ♣sδ ❵ tδq does not rewrite to
0.

8.3. An Asymmetric Unification Algorithm for Exclusive-OR 229

8.3.1 The Inference System

All inference rules below are don’t care nondeterministic rules. They are
grouped as: Splitting, Branching and Instantiation. The algorithm
runs in two phases. In the first phase, the Splitting and Branching
rules are applied, attempting to generate an asymmetric XOR unifier
equivalent to the original XOR unifier. The Splitting rule is applied
as much as possible to (i) move all toplevel original variables out of the
range of an XOR unifier, while (ii) eliminating conflicts between original
variables and subterms with which they appear in t✶is in Γ. Once it is
no longer applicable, an XOR unifier equivalent to the original unifier is
constructed such that its range only includes new variables at top levels.
Then, branching rules are repeatedly applied attempting to eliminate
conflicts between support variables with other variables and nonvariable
subterms The Non-Variable Branching rule, which eliminates a con-
flict between a support variable and a nonvariable subterm, is repeatedly
applied first. This is followed by (i) the Auxiliary Branching rule and
(ii) the Variable Branching rule. The last two rules may not eliminate
any conflicts; however they are helpful later during the second phase. In
this first phase, if any of the branches yields an asymmetric XOR unifier,
the algorithm terminates; it is not necessary to consider other branches
as all asymmetric XOR unifiers from various branches are equivalent.

If the first phase does not succeed in generating an equivalent asym-
metric XOR unifier, all branches generated from the first phase must
be considered in the second phase. Instantiation rules are now applied
to generate instances of equivalent XOR unifiers. The Decomposition
Instantiation rule generates instances of an XOR unifier so that the
rules x ❵ x ❵ y ÞÑ y and x ❵ x ÞÑ 0 are applicable, whereas the Elimi-
nation Instantiation rule generates instances by setting some support
variables to 0. It is possible that an XOR unifier generated by the Elim-
ination Instantiation rule is equivalent to the original XOR unifier
(since it may have been generated by instantiating a support variable to
0 implying that it was unnecessary to introduce that support variable).

If along a branch, a result of Decomposition Instantiation is not
an asymmetric XOR unifier, the algorithm moves again to the first phase
and applies Splitting, since some of the original variables underneath
interpreted function symbols may get elevated to the top level in substi-

230 Chapter 8. Asymmetric Unification

tutions of original variables. Elimination Instantiation is repeatedly
applied only after Decomposition cannot be applied any further. If the
result is not an asymmetric XOR unifier, then the Branching rules are
applied by returning to the first phase (Splitting is not applicable in
this case).

8.3.2 The Splitting Rule

This rule transforms an XOR unifier σ into an equivalent XOR unifier σ✶

such that all the top variables in Range♣σ✶q are support variables.

rx ÞÑ y ❵ S ❵ T s ❨ σ⑥Υ⑥∆

♣rx ÞÑ y ❵ S ❵ T s ❨ σq ✆ θ⑥Υθ⑥∆θ

where θ ✏ ty ÞÑ v ❵ S✉ and v is a fresh support variable. The rule is
applied only if (i) x, y P Var♣Γq and (ii) y ❘ Var♣Sq.

Even though S and T can be chosen in any way, if x has a conflict at
some simple term s in S ❵ T , then for efficiency in our implementation,
we will put s into S, unless y P Var♣sq. After Splitting there will be no
top level original variables in the range of σ. So from now on, we assume
that all the top variables which appear in the range of σ are support
variables.

8.3.3 The Branching Rules

The main objective in applying the two branching rules is to try to trans-
form an XOR unifier into an equivalent one without conflicts.

Non-Variable Branching. This rule considers the case that some
original variable x has a conflict at some non-variable simple term s.

σ⑥Υ⑥∆

σ ✆ θ⑥♣Υrv✶④vs ❨ ♣v✶, sqqθ⑥∆θ
➎

σ⑥Υ❨ t♣v, sq✉⑥∆θ

where there exists an assignment rx ÞÑ v❵s❵Ss P σ and θ ✏ rv ÞÑ v✶❵ss
with v✶ being a fresh support variable, under the conditions that x has
a conflict at a simple nonvariable terms s in Γ where (i) v ❘ Var♣sq and
(ii) ♣v, sq ❘ Υ.

8.3. An Asymmetric Unification Algorithm for Exclusive-OR 231

Above, Υrv✶④vs means: replace all occurrences of the variable v in the
first component of every pair in Υ by the variable v✶. The first branch
is used when the conflict between x and s is successfully resolved using
v by introducing a new support variable v✶; the second branch is used
when that is not possible, thus leading to an additional constraint ♣v, sq
implying that v and s are in conflict.

Auxiliary Branching. This rule is applied when an original variable
conflict with another original variable in Γ and their substitutions in an
XOR unifier share a common part.

σ⑥Υ⑥∆

σ ✆ θ⑥♣Υrv✶④vs ❨ ♣v✶, sqqθ⑥∆θ
➎

σ⑥Υ❨ t♣v, sq✉⑥∆

where θ ✏ tv ÞÑ v✶ ❵ s✉ with v✶ being a fresh support variable, and there
exist two assignments rx ÞÑ v ❵ s ❵ S, y ÞÑ v ❵ S ✶s in σ. This rule is
applied only if (i) x, y are in conflict in Γ, (ii) s is a simple non-variable
term and v ❘ Var♣sq and (iii) ♣v, sq ❘ Υ.

The additional simple nonvariable term s in the substitution for x

in an XOR unifier is used to possibly eliminate the conflict with a new
variable v✶, which stands for the common shared part of x and y. The
reader will notice that unlike the Non-Variable Branching rule, both
branches after this rule still have conflicts in the substitutions of x and y

which are in conflict in Γ. So this rule does not solve the conflict directly;
it is preparing for the instantiation part.

Variable Branching. This rule is similar to the Auxiliary Branch-
ing rule and is applied when two original variables x and y have a conflict
in Γ and share a common support variable v1 in their substitutions in an
XOR unifier. The key difference from the Auxiliary Branching rule is
that instead of the substitution for x having a simple nonvariable term
that is not in conflict with v1, it has another support variable v2. The
common support variable v1 is then split into two parts: the common
part of x and y, represented by v12, and the remaining parts of x and y,
represented by v✶

1 and v✶
2, respectively.

σ⑥Υ⑥∆

σ ✆ θ⑥Υ✶θ⑥∆θ
➎

σ⑥Υ❨ t♣v1, v2q✉⑥∆

232 Chapter 8. Asymmetric Unification

where σ includes rx ÞÑ v1 ❵ v2 ❵ S, y ÞÑ v1 ❵ S ✶s, θ ✏ rv1 ÞÑ v12 ❵
v✶
1, v2 ÞÑ v12 ❵ v✶

2s, v12, v
✶
1 and v✶

2 are fresh support variables, and Υ✶ ✏
♣Υrv12④v1qrv12④v2s ❨ Υrv✶

1④v1s ❨ Υrv✶
2④v2s ❨ t♣v12, v

✶
1q, ♣v12, v

✶
2q, ♣v

✶
1, v

✶
2q,

♣v✶
1, v12q, ♣v

✶
2, v12q, ♣v

✶
2, v

✶
1q✉. This rule is applied only if (i) x and y have a

conflict in Γ and (ii) ♣v1, v2q ❘ Υ.
The first branch is the case when v1 and v2 have a common part,

whereas the second branch is the case when v1 and v2 have nothing in
common.

8.3.4 Instantiation Rules

The following instantiation rules are used for solving conflicts by instan-
tiating support variables based on the equations x�x Ñ 0 and x�0 Ñ x

Decomposition Instantiation. This rule is used to solve the case
that some original variable x has a conflict with a simple nonvariable
term t.

σ⑥Υ⑥∆

σ ✆ θ1⑥Υθ1⑥∆θ1
➎

☎ ☎ ☎
➎

⑥σ ✆ θn⑥Υθn⑥∆θn
➎

σ⑥Υ⑥∆✷

where there exists an assignment rx ÞÑ s❵t❵Ss in σ, x has a conflict with
a simple nonvariable subterm s in Γ and s and t have the same topmost
uninterpreted symbol; tθ1, ☎ ☎ ☎ , θn✉ is a complete set of XOR unifiers of

s
?
✏ t and ∆✷ ✏ ∆❨ ts❵ t ✘? 0✉.

Elimination Instantiation. This rule is used to solve the case that
some original variable x has a conflict at some support variable v.

rx ÞÑ v ❵ Ss ❨ σ⑥Υ⑥∆

♣rx ÞÑ Ss ❨ σq ✆ θ⑥Υθ⑥∆θ

where θ ✏ tv ÞÑ 0✉, x and y are in conflict in Γ for some y. The rule is
applied only if yσ ✏ v ❵ S ✶ with S ✶ having at least one subterm.

Because v maps to 0, all pairs ♣v, sq in Υ will be removed from Υ.
The following result proves that the asymmetric unification algorithm

for the theory of XOR theory presented in this section satisfies the de-
sirable properties.

8.4. Experimental Evaluation 233

Theorem 8.20 (Soundness, completeness, and termination) [Liu,
2012] The asymmetric unification algorithm described above is sound, ter-
minating, and complete.

8.4 Experimental Evaluation

In this section we present the result of the experimental evaluation we
have performed comparing asymmetric unification with other standard
unification techniques for two different purposes: as a mechanism used
for cryptographic protocol analysis, and as a mechanism to solve uni-
fication problems. More specifically, in Section 8.4.1 we first compare
the contextual symbolic reachability approach presented in Section 8.2
w.r.t other standard approaches, for the analysis of three cryptographic
protocols involving the exclusive-or theory. Then, in Section 8.4.2 we
compare the results obtained with an asymmetric XOR unification al-
gorithm (implemented as explained in Section 8.3), and a variant-based
XOR algorithm, when solving several unification problems arising in the
analysis of the three protocols used for the experiments of Section 8.4.1.

We have used three protocols using exclusive-or: (i) the running pro-
tocol (RP) of Example 8.1, (ii) the Wired Equivalent Privacy Protocol
(WEPP) of [MAC, 1999], and (iii) the TMN protocol of [Tatebayashi
et al., 1990; Lowe and Roscoe, 1997].

8.4.1 Experiments of Contextual Symbolic Analysis
of Cryptographic Protocols

We have performed several experiments to compare the contextual sym-
bolic reachability approach presented in Section 8.2 with other approaches.

In Table 8.1, we compare the standard reachability analysis of Sec-
tion 2.2, which uses the XOR unification algorithm developed in [Liu
and Lynch, 2011], and the contextual reachability analysis of Section 8.2,
which uses the asymmetric XOR unification algorithm of Section 8.3. We
show the number of states generated from one level to the next one of
the backwards reachability tree with the indicated number of steps as
the maximum depth. We also include the execution time from one level
to the next one. We write “timeout” when the tool did not finish within

234 Chapter 8. Asymmetric Unification

states/seconds 1 step 2 steps 3 steps 4 steps 5 steps

RP - Standard 2/0.08 5/0.16 13/0.86 49/3.09 267/17.41
RP - Contextual 1/0.03 45/1.08 114/2.26 1175/37.25 13906/4144.30

WEPP - Standard 5/0.09 9/0.42 26/1.27 106/5.80 503/ 34.76
WEPP - Contextual 4/0.05 9/0.12 26/0.64 257/144.65 2454/612.08

TMN - Standard 5/0.11 15/ 0.55 99/3.82 469/ 25.68 timeout
TMN - Contextual 4/0.06 24/0.53 174/3.63 1079/170.29 9737/1372.55

Table 8.1: Experiments with standard reachability analysis using regu-
lar XOR unification algorithm vs contextual reachability analysis using
asymmetric XOR unification algorithm. A pair n④t means: n = number
of states, and t = time in seconds.

a time interval of two hours.

As shown in Table 8.1, contextual reachability analysis is not better
than the standard reachability analysis because of variant generation,
which creates many more states than may be necessary for rule applica-
tion. However, although typically many more states are created, the use
of variants and irreducibility constraints is crucial (as explained in the
Motivation) for further optimizations of the search space, as shown in Ta-
ble 8.2 below, which shows that contextual reachability analysis enables
several Maude-NPA optimizations, including grammars (see Chapter 4
for details) and drastically reduces the search space.

For the three cryptographic protocols mentioned above, we are able to
find the associated attacks in Table 8.2 below. Table 8.2 shows that, al-
though, due to the extra computations needed for the optimization, the
execution time without optimizations (-Opt) is sometimes better than
with optimizations (+Opt), this only happens up to Step 3. The impor-
tant point is that from Step 2 on, the total number of states is drastically
reduced when optimizations are added (the only exception at Step 1 is
RP, due to some differences on how variants are generated). In fact,
the crucial point is not just the great reduction in the number of states,
but the finiteness of the analysis for all the examples with optimization,
whereas no such finiteness is even theoretically possible without opti-
mizations. This is particularly important when an attack does not exist,
since then finiteness of the analysis proves that the protocol is secure
against such an attack. Therefore, the above performance results val-
idate experimentally the main thesis of this chapter, namely that: (i)

8.4. Experimental Evaluation 235

states/seconds 1 step 2 steps 3 steps 4 steps 5 steps Finite?

RP-Opt 1/0.03 45/1.08 114/2.26 1175/37.25 13906/4144.30 No, timeout
with 6 steps

RP+Opt 4/0.59 7/0.59 7/1.92 7/1.89 7/3.02 Yes, at
step 10

WEPP-Opt 4/0.05 9/0.12 26/0.64 257/144.65 2454/612.08 No, timeout
with 7 steps

WEPP+Opt 2/0.36 2/0.20 1/0.80 2/1.42 1/0.03 Yes,
at step 5

TMN-Opt 4/0.06 24/0.53 174/3.63 1079/170.29 9737/1372.55 No, timeout
with 7 steps

TMN+Opt 3/0.42 6/9.85 9/1.78 9/4.43 8/3.20 Yes, at
step 21

Table 8.2: Experiments for contextual reachability analysis using asym-
metric XOR unification algorithm with and without optimizations

support of irreducibility conditions in symbolic reachability is essential
for effective protocol analysis, since crucial optimizations depend on such
conditions; and (ii) contextual reachability analysis supports irreducibil-
ity conditions in a sound and complete way and makes such optimizations
possible.

The integration of this framework into Maude-NPA is still under test-
ing and optimization is needed to increase performance. Indeed, the cur-
rent experiments have been performed with a version of the contextual
narrowing simpler than the conditions of Theorem 8.17 (irreducibility
constraints on Π are not enforced), but is still valid for the benchmarked
protocols, i.e., in these protocols, each strand contains only one expres-
sion using the XOR operator, and thus Π remains irreducible by default.

8.4.2 Experiments with Unification Problems Aris-
ing in Protocol Analysis

We implemented a variant-based algorithm for XOR and an algorithm
produced by applying the procedure outlined in Section 8.3 to the special-
purpose XOR algorithm of [Liu and Lynch, 2011] in Maude-NPA and
experimentally compared their performance.

Tables 8.3, 8.4 and 8.5 gather the results of unification problems from
the RP, WEPP, and TMN protocols, respectively. Table 8.6 gathers the
results of some more complex problems manually defined by the authors

236 Chapter 8. Asymmetric Unification

Unif. Problem T. A-V # A-V T. D-A # D-A % T. % #
NS1 ❵NS2✏ÓNS3 ❵NA 153 12 153 1 0 91
NS1 ❵NA✏ÓNS2 ❵NS3 137 5 121 1 11 80

NS1 ❵NS2✏ÓNS3 ❵NS4 ❵NS5 286 54 116 1 59 98
NS1 ❵NS2✏ÓNS3 ❵NS4 ❵NA 159 36 115 1 27 97

NS1 ❵NS2✏ÓNA 127 4 114 1 10 75
NS1 ❵NS2✏Ó null 128 1 105 1 17 0

NS1 ❵NS2✏Ó null❵NS3 130 7 105 1 20 85

Table 8.3: Unification Problems in RP protocol.

Unif. Problem T. A-V # A-V T. D-A # D-A % T. % #

M1 ❵ M2 ✏Ó M3 ❵ pair♣V1,M4q 51 12 44 1 13 91

pair♣V, rc4♣V1, kABq ❵ ♣rNA, c♣NAqsqq
✏Ó pair♣V1,M1q 30 1 29 1 3 0

M1 ❵ M2 ✏Ó M3 ❵ V1 33 12 32 1 3 91

M1 ❵ M2 ✏Ó M3 ❵ ♣rN1, c♣N2qsq 34 12 30 1 11 91

M1 ❵ M2

✏Ó M3 ❵ pair♣V1, pair♣V2,M4qq 36 12 30 1 16 91

Table 8.4: Unification Problems in WEPP protocol.

to stress the algorithms. Here each unification problem combines several
subproblems, shown below the table. The RP, WEPP and TMN proto-
cols were used in the experiments presented in 8.4.1, in order to compare
the contextual symbolic reachability approach presented in that paper
with other approaches. However, the experiments presented in this Sec-
tion are more focused on concrete unification problems that occur during
the analysis of these protocols and the efficiency of asymmetric unifica-
tion algorithms when solving them in terms of number of unifiers and
execution time.

In each table the second and third columns show, respectively, the ex-
ecution time (in milliseconds) and the number of unifiers obtained using
the asymmetric variant-based unification algorithm. The fourth and fifth
columns show, respectively, the execution time (in milliseconds) and the
number of unifiers obtained using the special-purpose asymmetric unifi-
cation algorithm for exclusive-or. Finally, the two last columns present
a percentage that reflects the performance improvement of the special-
purpose asymmetric unification algorithm with respect to the asymmet-
ric variant-based algorithm in terms of execution time and number of
unifiers obtained, respectively.

On the average the special-purpose asymmetric unification algorithm

8.4. Experimental Evaluation 237

Unif. Problem T. A-V # A-V T. D-A # D-A % T. % #
M1 ❵M2✏Ó M3 ❵M4 115 18 105 1 8 94

M1 ❵M2✏Ó M3 ❵M4 ❵M5 5749 1 74 1 98 0
M1 ❵M2✏Ó M3 ❵ pair♣M4,M5q 71 12 71 1 0 91
pair♣M1,M2q✏Ó pair♣M3,M4q 65 1 70 1 -1 0

M1 ❵M2✏Ó pair♣M3,M4q 67 4 71 1 0 91
M1 ❵M2✏Ó null❵M3 66 7 70 1 -6 85

Table 8.5: Unification Problems in TMN protocol.

Unif. Problem T. A-V # A-V T. D-A # D-A % T. % #
SP4❫ SP1❫ SP2 422 4 68 3 83 25
SP5❫ SP1❫ SP2 408 24 131 7 67 70
SP6❫ SP1❫ SP2 416 100 491 15 -18 85
SP7❫ SP1❫ SP2 454 360 3732 31 -722 91

SP8❫ SP1❫ SP2❫ SP3 151387 3 47 1 99 66
SP9❫ SP1❫ SP2❫ SP3 153913 33 80 3 99 66

SP10❫ SP1❫ SP2❫ SP3 154137 201 157 7 99 96
SP11❫ SP1❫ SP2❫ SP3 154534 1053 349 15 99 98
SP12❫ SP1❫ SP2❫ SP3 160114 5073 829 31 99 99

Table 8.6: Other Unification Problems

SP1 = M1 ❵M2✏Ó M1 ❵M2

SP2 = M1 ❵M3✏Ó M1 ❵M3

SP3 = M1 ❵M4✏Ó M1 ❵M4

SP4 = M1 ❵M2 ❵M3✏Ó a❵ b

SP5 = M1 ❵M2 ❵M3✏Ó a❵ b❵ c

SP6 = M1 ❵M2 ❵M3✏Ó a❵ b❵ c❵ d

SP7 = M1 ❵M2 ❵M3✏Ó a❵ b❵ c❵ d❵ e

SP8 = M1 ❵M2 ❵M3 ❵M4✏Ó a

SP9 = M1 ❵M2 ❵M3 ❵M4✏Ó a❵ b

SP10 = M1 ❵M2 ❵M3 ❵M4✏Ó a❵ b❵ c

SP11 = M1 ❵M2 ❵M3 ❵M4✏Ó a❵ b❵ c❵ d

SP12 = M1❵M2❵M3❵M4✏Ó a❵ b❵ c❵d❵ e

is about 8% faster than the variant-based one, and generates about 71%
fewer unifiers. Note, however, that in many cases the reduction in the
number of unifiers is more than 90%. Moreover the asymmetric variant-
based unification algorithm does not provide a minimal set of unifiers,
whereas the special-purpose asymmetric algorithm does in all our ex-
amples. Indeed, all the asymmetric unification problems extracted from
protocols have a singleton most general asymmetric unifier, as shown in
Tables 8.3, 8.4, and 8.5. However, as shown in Table 8.6, the special-
purpose algorithm can sometimes be slower than the variant-based one,
even when it generates a smaller most general set of asymmetric unifiers.
The reason is that the post-processing step of the algorithm explained in
Section 8.3 in which appropriate asymmetric unifiers are only instances
of the computed unifiers is sometimes very expensive.

238 Chapter 8. Asymmetric Unification

8.5 Conclusions

In this chapter we have defined contextual symbolic reachability analysis,
a tool-independent methodology for state exploration, based on unifica-
tion and narrowing that allows to guarantee that certain terms generated
during a state exploration are in normal form with respect to the equa-
tional theory. Moreover, we have defined asymmetric unification, a new
unification paradigm with irreducibility constraints on one side of the
problem and shown how asymmetric unification arises in a natural way
when analyzing cryptographic protocols. We have also outlined an ap-
proach for converting symmetric algorithms to asymmetric ones and ap-
plied it to an exclusive-or algorithm. Finally, we have performed several
experiments in order to (i) show the benefits of using contextual symbolic
reachability and asymmetric unification in Maude-NPA, and (ii) compare
the performance of Maude-NPA when using both, the asymmetric XOR
algorithm of Section 8.3, and an asymmetric variant-based unification
algorithm. The experimental results obtained are encouraging, not only
for increasing speed but for reducing the number of unifiers.

Chapter 9

Conclusion

In this thesis we have tackled problems regarding the three main pillars
of protocol verification: modelling capabilities, verifiable properties, and
efficiency. We have investigated advanced features in the analysis of
cryptographic protocols regarding these three main pillars tailored to the
Maude-NPA tool. Indeed, all the techniques presented in this thesis were
implemented in Maude-NPA and their feasability has been validated via
experimental evaluation. In the following, we conclude this thesis and
point out the directions for future work amongst the different topics
presented.

First, we have studied theoretical aspects such as the definition of
Maude-NPA’s forwards operational semantics in Chapter 5, and the for-
malization of contextual symbolic reachability analysis and asymmetric
unification, in Chapter 8.

The rewriting-based forwards operational semantics described in Chap-
ter 5 is directly implementable in rule-based programming languages such
as Maude, without any need for constraint solving or unification proce-
dures as it is done in most current approaches, allowing us to explore
applications such as the simulation of prototypes and reasoning about
theories without the finite variant property. This forwards semantics
reduces the gap between the Maude-NPA and the realm of standard
model checking, shedding some light on how its internal semantics and
the logical reachability analysis correspond to an intuitive forward ex-
ecution of a protocol with the intruder model. This opens up several
research directions: the integration of Maude-NPA state space reduc-

240 Chapter 9. Conclusion

tion techniques into the forwards semantics, clarification of the relation
of equational theories in the forward semantics, and investigation of how
standard model-checking techniques can improve the protocol analysis in
the forwards semantics. Also, there is a vast literature in term rewriting
and tree automata on forwards and backwards reachability analysis that
should be very useful for improving the forwards analysis.

The contextual symbolic reachability analysis explained in Chapter 8
defines a methodology for state exploration that allows to guarantee that
certain generated terms are in normal form with respect to the equational
theory. These ideas have been applied to define asymmetric unification,
where the right-hand sides of a unification problem are enforced to be
irreducible. Incorporating such irreducibility constraints allows us to
obtain a more efficient equational unification procedure. Since both con-
textual symbolic reachability analysis and asymmetric unification are
tool-independent methodologies, they can be applied to any other tool
performing symbolic reachability analysis, modulo equational theories.
Furthermore, the benefits of asymmetric unification can be applied to
the rest of the topics discussed in this thesis. For example, adapting
Maude-NPA’s state space reduction techniques to consider irreducibil-
ity constraints might probably discard many more states and, therefore,
generate smaller state spaces. This seems to be specially interesting for
the verification of indistinguishability properties, where equational uni-
fication and inequalities modulo equational theories are heavily used.

Second, we have extended Maude-NPA capabilities in two ways. On
the one hand, the tool now handles a wider class of protocols since it sup-
ports the specification and analysis of sequential protocol compositions
in a modular and natural style, as explained in Chapter 6. On the other
hand, indistinguishability properties can now be specified and analyzed
in Maude-NPA as explained in Chapter 7.

Regarding the protocol composition presented in Chapter 6, property
composition, called additive composition in [Datta et al., 2003], seems
to be an interesting research direction. This would give us the benefits
of both model checking (for finding errors and debugging), and logical
derivations (for building complex systems out of properties of simple
components), allowing to switch between one and the other as needed.
Furthermore, we have discovered that sequential protocol composition is
a key idea for several other applications in protocol specification such as

241

protocol branching, secure communication channels, group protocols and
protocols with global state memory. Our belief is that these applications
can be supported in Maude-NPA. We have performed a preliminary study
of these applications but we leave for future work a deeper investigation
on these topics.

Our work on protocol indistinguishability of Chapter 7 is a signifi-
cant step-forward in indistinguishability research, because, for the first
time, there is a tool that can perform such automatic checks modulo a
very wide class of theories, namely, all theories with the finite variant
property, which include theories like Abelian groups, several theories of
homomorphic encryption, exclusive-or, and modular exponentiations es-
sential for many privacy-preserving protocols. Much work remains ahead
in the definition and verification of indistinguishability in Maude-NPA.
First of all, our indistinguishability notion can be further strengthened in
various ways that should also be formalized and mechanized in Maude-
NPA. For example, our notion of indistinguishability can be extended to
cover other issues that may allow the intruder to distinguish two pro-
tocols, such as the sorts of the messages. Second, an interesting line of
future work in this sense is the handling of protocols with branching,
which would allow Maude-NPA to check indistinguishability properties
for a wider class of protocols. Third, a more detailed comparison with
other indistinguishability notions should be carried out. This is not en-
tirely trivial, since they depend on different models. Fourth, much more
experimentation is needed to test the capacity of Maude-NPA to prove
indistinguishability for many protocol pairings, and to improve such a
capacity.

Finally, in Chapter 4 we have also advanced the research in improving
the efficiency of protocol analyses by developing several state space re-
duction techniques in Maude-NPA. However, more techniques can be de-
veloped, e.g. a partial order reduction technique in the standard model-
checking style has not been defined in Maude-NPA yet. Moreover, the
existing state space reduction techniques can be specialized for protocol
composition and indistinguishability properties, thus allowing a more ef-
ficient analysis of a wider class of protocols and security properties. Such
specialized state space reduction techniques would probably mitigate the
state space explosion experienced in the verification of indistinguishabil-
ity properties for some protocol pairings.

Bibliography

[MAC, 1999] IEEE 802.11 Local and Metropolitan Area Networks: Wire-
less LAN Medium Access Control (MAC) and Physical (PHY) Specifi-
cations. 1999.

[Abadi and Cortier, 2006] Mart́ın Abadi and Véronique Cortier. Decid-
ing knowledge in security protocols under equational theories. Theoret-
ical Computer Science, 367(1-2):2–32, 2006.

[Abadi and Fournet, 2001] Mart́ın Abadi and Cédric Fournet. Mobile
values, new names, and secure communication. In Chris Hankin and
Dave Schmidt, editors, POPL, pages 104–115. ACM, 2001. ISBN 1-
58113-336-7.

[Amadio and Lopez, 2000] R. Amadio and V. Lopez. On the reachability
problem in cryptographic protocols. In Concur ’00, pages 380–394.
Springer, 2000.

[Anantharaman et al., 2010] Siva Anantharaman, Hai Lin, Christopher
Lynch, Paliath Narendran, and Michaël Rusinowitch. Cap unification:
application to protocol security modulo homomorphic encryption. In
Dengguo Feng, David A. Basin, and Peng Liu, editors, ASIACCS, pages
192–203. ACM, 2010. ISBN 978-1-60558-936-7.

[Anlauff et al., 2006] M. Anlauff, D. Pavlovic, R. Waldinger, and
S. Westfold. Proving authentication properties in the protocol deriva-
tion assistant. In Proc. of Joint Workshop on Foundations of Computer
Security and Automated Reasoning for Security Protocol Analysis, 2006.

[Arapinis et al., 2012] Myrto Arapinis, Sergiu Bursuc, and Mark Dermot
Ryan. Reduction of equational theories for verification of trace equiv-

244 Bibliography

alence: Re-encryption, associativity and commutativity. In Pierpaolo
Degano and Joshua D. Guttman, editors, POST, volume 7215 of Lec-
ture Notes in Computer Science, pages 169–188. Springer, 2012. ISBN
978-3-642-28640-7.

[Armando et al., 2005] Alessandro Armando, David A. Basin, Yohan
Boichut, Yannick Chevalier, Luca Compagna, Jorge Cuéllar, Paul Han-
kes Drielsma, Pierre-Cyrille Héam, Olga Kouchnarenko, Jacopo Man-
tovani, Sebastian Mödersheim, David von Oheimb, Michaël Rusinow-
itch, Judson Santiago, Mathieu Turuani, Luca Viganò, and Laurent
Vigneron. The AVISPA tool for the automated validation of internet
security protocols and applications. In CAV, pages 281–285, 2005.

[Armando et al., 2014] Alessandro Armando, Roberto Carbone, and
Luca Compagna. Satmc: A SAT-based model checker for security-
critical systems. In Erika Ábrahám and Klaus Havelund, editors,
TACAS, volume 8413 of Lecture Notes in Computer Science, pages 31–
45. Springer, 2014. ISBN 978-3-642-54861-1.

[Arora and Turuani, 2009] Charu Arora and Mathieu Turuani. Validat-
ing integrity for the ephemerizer’s protocol with cl-atse. In Véronique
Cortier, Claude Kirchner, Mitsuhiro Okada, and Hideki Sakurada, ed-
itors, Formal to Practical Security, volume 5458 of Lecture Notes in
Computer Science, pages 21–32. Springer, 2009. ISBN 978-3-642-02001-
8.

[Baader and Schulz, 1992] Franz Baader and Klaus U. Schulz. Unifica-
tion in the union of disjoint equational theories: Combining decision
procedures. In Deepak Kapur, editor, CADE, volume 607 of Lecture
Notes in Computer Science, pages 50–65. Springer, 1992. ISBN 3-540-
55602-8.

[Baader and Snyder, 2001] Franz Baader and Wayne Snyder. Unification
theory. In John Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning (in 2 volumes), pages 445–532. Elsevier and
MIT Press, 2001. ISBN 0-444-50813-9, 0-262-18223-8.

[Barthe et al., 2013] Gilles Barthe, Juan Manuel Crespo, Benjamin
Grégoire, César Kunz, Yassine Lakhnech, Benedikt Schmidt, and San-

Bibliography 245

tiago Zanella Béguelin. Fully automated analysis of padding-based en-
cryption in the computational model. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, ACM Conference on Computer
and Communications Security, pages 1247–1260. ACM, 2013. ISBN
978-1-4503-2477-9.

[Basin et al., 2005] D. Basin, S. Mödersheim, and L. Viganò. OFMC: A
symbolic model checker for security protocols. International Journal of
Information Security, 4(3):181–208, 2005.

[Basin et al., 2013] David Basin, Cas Cremers, and Catherine Mead-
ows. Model checking security protocols, 2013. To ap-
pear in Handbook of Model Checking, Springer, available at
http://www.cs.ox.ac.uk/people/cas.cremers/publications/.

[Basin et al., 2003] David A. Basin, Sebastian Mödersheim, and Luca
Viganò. An on-the-fly model-checker for security protocol analysis. In
Einar Snekkenes and Dieter Gollmann, editors, ESORICS, volume 2808
of Lecture Notes in Computer Science, pages 253–270. Springer, 2003.
ISBN 3-540-20300-1.

[Baudet, 2005] Mathieu Baudet. Deciding security of protocols against
off-line guessing attacks. In Vijay Atluri, Catherine Meadows, and Ari
Juels, editors, ACM Conference on Computer and Communications Se-
curity, pages 16–25. ACM, 2005. ISBN 1-59593-226-7.

[Baudet et al., 2013] Mathieu Baudet, Véronique Cortier, and Stéphanie
Delaune. YAPA: A generic tool for computing intruder knowledge. ACM
Trans. Comput. Log., 14(1):4, 2013.

[Bellovin and Merritt, 1992] S. Bellovin and M. Merritt. Encrypted key
exchange: Password-based protocols secure against dictionary attacks.
In Proceedings of the 1992 Symposium on Research in Security and Pri-
vacy, pages 72–84. IEEE, 1992.

[Blanchet, 2001] Bruno Blanchet. An Efficient Cryptographic Protocol
Verifier Based on Prolog Rules. In 14th IEEE Computer Security Foun-
dations Workshop (CSFW-14), pages 82–96, Cape Breton, Nova Scotia,
Canada, June 2001. IEEE Computer Society.

246 Bibliography

[Blanchet et al., 2008] Bruno Blanchet, Mart́ın Abadi, and Cédric Four-
net. Automated verification of selected equivalences for security proto-
cols. J. Log. Algebr. Program., 75(1):3–51, 2008.

[Boichut et al., 2004] Y. Boichut, P.-C. Héam, O. Kouchnarenko, and
F. Oehl. Improvements on the Genet and Klay technique to automati-
cally verify security protocols. In Proceedings of Automated Verification
of Infinite States Systems (AVIS’04). ENTCS, 2004.

[Bursuc and Comon-Lundh, 2009] Sergiu Bursuc and Hubert Comon-
Lundh. Protocol security and algebraic properties: Decision results
for a bounded number of sessions. In Ralf Treinen, editor, RTA, volume
5595 of Lecture Notes in Computer Science, pages 133–147. Springer,
2009. ISBN 978-3-642-02347-7.

[Canetti et al., 2002] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky,
and Amit Sahai. Universally composable two-party and multi-party
secure computation. In STOC, pages 494–503, 2002.

[Capkun and Hubaux, 2006] S. Capkun and J. P. Hubaux. Secure posi-
tioning in wireless networks. IEEE Journal on Selected Areas in Com-
munication, 24(2), February 2006.

[Cervesato et al., 2005] I. Cervesato, C. Meadows, and D. Pavlovic. An
encapsulated authentication logic for reasoning about key establishment
protocols. In IEEE Computer Security Foundations Workshop, 2005,
2005.

[Chadha et al., 2012] Rohit Chadha, Ştefan Ciobâcă, and Steve Kremer.
Automated verification of equivalence properties of cryptographic pro-
tocols. In Helmut Seidl, editor, ESOP, volume 7211 of Lecture Notes
in Computer Science, pages 108–127. Springer, 2012. ISBN 978-3-642-
28868-5.

[Cheval et al., 2010] Vincent Cheval, Hubert Comon-Lundh, and
Stéphanie Delaune. Automating security analysis: symbolic equiva-
lence of constraint systems. In Jürgen Giesl and Reiner Haehnle, ed-
itors, Proceedings of the 5th International Joint Conference on Auto-
mated Reasoning (IJCAR’10), volume 6173 of Lecture Notes in Ar-
tificial Intelligence, pages 412–426, Edinburgh, Scotland, UK, July

Bibliography 247

2010. Springer-Verlag. doi: 10.1007/978-3-642-14203-1 35. URL http:

//www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CCD-ijcar10.pdf.

[Cheval et al., 2011] Vincent Cheval, Hubert Comon-Lundh, and
Stéphanie Delaune. Trace equivalence decision: negative tests and non-
determinism. In Yan Chen, George Danezis, and Vitaly Shmatikov,
editors, ACM Conference on Computer and Communications Security,
pages 321–330. ACM, 2011. ISBN 978-1-4503-0948-6.

[Cheval et al., 2013] Vincent Cheval, Véronique Cortier, and Antoine
Plet. Lengths may break privacy - or how to check for equivalences
with length. In CAV, pages 708–723, 2013.

[Chevalier and Rusinowitch, 2008] Yannick Chevalier and Michaël Rusi-
nowitch. Hierarchical combination of intruder theories. Inf. Comput.,
206(2-4):352–377, 2008.

[Chevalier et al., 2007] Yannick Chevalier, Denis Lugiez, and Michaël
Rusinowitch. Verifying cryptographic protocols with subterms con-
straints. In LPAR, LNCS vol. 4790, pages 181–195. Springer, 2007.

[Chevalier et al., 2008] Yannick Chevalier, Ralf Küsters, Michaël Rusi-
nowitch, and Mathieu Turuani. Complexity results for security pro-
tocols with Diffie-Hellman exponentiation and commuting public key
encryption. ACM Trans. Comput. Log., 9(4), 2008.

[Clarke et al., 2000] Edmund M. Clarke, Somesh Jha, and Wilfredo R.
Marrero. Verifying security protocols with brutus. ACM Trans. Softw.
Eng. Methodol., 9(4):443–487, 2000.

[Clarkson and Schneider, 2010] Michael R. Clarkson and Fred B. Schnei-
der. Hyperproperties. Journal of Computer Security, 18(6):1157–1210,
2010.

[Clavel et al., 2007] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lin-
coln, N. Mart́ı-Oliet, and C. Talcott. All About Maude – A High-
Performance Logical Framework. Springer LNCS Vol. 4350, 2007.

[Comon-Lundh and Delaune, 2005] Hubert Comon-Lundh and
Stéphanie Delaune. The finite variant property: How to get rid

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CCD-ijcar10.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CCD-ijcar10.pdf

248 Bibliography

of some algebraic properties. In Jürgen Giesl, editor, Term Rewriting
and Applications, 16th International Conference, RTA 2005, Nara,
Japan, April 19-21, 2005, Proceedings, volume 3467 of Lecture Notes
in Computer Science, pages 294–307. Springer, 2005.

[Comon-Lundh and Shmatikov, 2003] Hubert Comon-Lundh and Vitaly
Shmatikov. Intruder deductions, constraint solving and insecurity deci-
sion in presence of exclusive or. In LICS, pages 271–. IEEE Computer
Society, 2003. ISBN 0-7695-1884-2.

[Comon-Lundh et al., 2011] Hubert Comon-Lundh, Stéphanie Delaune,
and Jonathan Millen. Constraint solving techniques and enriching the
model with equational theories. In Véronique Cortier and Steve Kremer,
editors, Formal Models and Techniques for Analyzing Security Proto-
cols, volume 5 of Cryptology and Information Security Series, pages 35–
61. IOS Press, 2011. URL http://www.lsv.ens-cachan.fr/Publis/

PAPERS/PDF/CDM-fmtasp11.pdf.

[Cortier and Delaune, 2009a] Véronique Cortier and Stéphanie Delaune.
Safely composing security protocols. Formal Methods in System Design,
34(1):1–36, 2009a.

[Cortier and Delaune, 2009b] Véronique Cortier and Stéphanie Delaune.
A method for proving observational equivalence. In CSF, pages 266–276,
2009b.

[Cremers, 2006] C. J. F. Cremers. Scyther - Semantics and Verification
of Security Protocols. PhD thesis, Eindhoven University of Technology,
2006.

[Cremers, 2008a] Cas J. F. Cremers. The Scyther tool: Verification,
falsification, and analysis of security protocols. In CAV, pages 414–418,
2008a.

[Cremers, 2008b] Cas J. F. Cremers. Unbounded verification, falsifica-
tion, and characterization of security protocols by pattern refinement.
In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM Confer-
ence on Computer and Communications Security, pages 119–128. ACM,
2008b. ISBN 978-1-59593-810-7.

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CDM-fmtasp11.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CDM-fmtasp11.pdf

Bibliography 249

[Cremers et al., 2012] Cas J. F. Cremers, Kasper Bonne Rasmussen, and
Srdjan Capkun. Distance hijacking attacks on distance bounding pro-
tocols. In 19th Annual Network and Distributed System Security Sym-
posium, NDSS 2012, San Diego, California, USA, February 5-8, 2012.
The Internet Society, 2012. URL http://www.internetsociety.org/

distance-hijacking-attacks-distance-bounding-protocols.

[Ştefan Ciobâcă and Cortier, 2010] Ştefan Ciobâcă and Véronique
Cortier. Protocol composition for arbitrary primitives. In CSF, pages
322–336. IEEE Computer Society, 2010. ISBN 978-0-7695-4082-5.

[Ştefan Ciobâcă et al., 2012] Ştefan Ciobâcă, Stéphanie Delaune, and
Steve Kremer. Computing knowledge in security protocols under con-
vergent equational theories. J. Autom. Reasoning, 48(2):219–262, 2012.

[Datta et al., 2003] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic.
Secure protocol composition. In Proc. Mathematical Foundations of
Programming Semantics, volume 83 of Electronic Notes in Theoretical
Computer Science, 2003.

[Denning and Sacco, 1981] Dorothy E. Denning and Giovanni Maria
Sacco. Timestamps in key distribution protocols. Commun. ACM, 24
(8):533–536, 1981.

[Desmedt, 1988] Y. Desmedt. Major security problems with the “un-
forgeable” (Feige-)Fiat-Shamir proofs of identity and how to overcome
them. In Securicom 88, 6th worldwide congress on computer and
communications security and protection, pages 147–159, Paris France,
March 1988.

[Doghim et al., 2007] S. Doghim, J. Guttman, and F. J. Thayer. Search-
ing for Shapes in Cryptographic Protocols. In TACAS 2007. Springer
LNCS 4424, March 2007.

[Dolev and Yao, 1983] D. Dolev and A. Yao. On the security of public
key protocols. IEEE Transaction on Information Theory, 29(2):198–
208, 1983.

http://www.internetsociety.org/distance-hijacking-attacks-distance-bounding-protocols
http://www.internetsociety.org/distance-hijacking-attacks-distance-bounding-protocols

250 Bibliography

[Durán and Meseguer, 2010] Francisco Durán and José Meseguer. A
Maude coherence checker tool for conditional order-sorted rewrite the-
ories. In Peter Csaba Ölveczky, editor, WRLA, volume 6381 of Lecture
Notes in Computer Science, pages 86–103. Springer, 2010. ISBN 978-3-
642-16309-8.

[Durgin et al., 2001] N. Durgin, J. Mitchell, and D. Pavlovic. A Compo-
sitional Logic for Program Correctness. In Fifteenth Computer Security
Foundations Workshop — CSFW-14, Cape Breton, NS, Canada, 11–13
June 2001. IEEE Computer Society Press.

[Durgin et al., 2004] N.A. Durgin, P.D. Lincoln, J.C. Mitchell, and
A. Scedrov. Multiset rewriting and the complexity of bounded secu-
rity. Journal of Computer Security, pages 677–722, 2004.

[Erbatur et al., 2012] Serdar Erbatur, Santiago Escobar, Deepak Kapur,
Zhiqiang Liu, Christopher Lynch, Catherine Meadows, José Meseguer,
Paliath Narendran, Sonia Santiago, and Ralf Sasse. Effective sym-
bolic protocol analysis via equational irreducibility conditions. In Sara
Foresti, Moti Yung, and Fabio Martinelli, editors, ESORICS, volume
7459 of Lecture Notes in Computer Science, pages 73–90. Springer, 2012.
ISBN 978-3-642-33166-4.

[Erbatur et al., 2013] Serdar Erbatur, Santiago Escobar, Deepak Kapur,
Zhiqiang Liu, Christopher Lynch, Catherine Meadows, José Meseguer,
Paliath Narendran, Sonia Santiago, and Ralf Sasse. Asymmetric unifi-
cation: A new unification paradigm for cryptographic protocol analysis.
In Maria Paola Bonacina, editor, CADE, volume 7898 of Lecture Notes
in Computer Science, pages 231–248. Springer, 2013. ISBN 978-3-642-
38573-5.

[Escobar and Meseguer, 2007] Santiago Escobar and José Meseguer.
Symbolic model checking of infinite-state systems using narrowing. In
Proceedings of the 18th International Conference on Rewriting Tech-
niques and Applications (RTA’07), volume 4533 of Lecture Notes in
Computer Science, pages 153–168, 2007.

[Escobar et al., 2006] Santiago Escobar, Catherine Meadows, and José
Meseguer. A rewriting-based inference system for the NRL Protocol

Bibliography 251

Analyzer and its meta-logical properties. Theor. Comput. Sci., 367(1-
2):162–202, 2006. doi: 10.1016/j.tcs.2006.08.035. URL http://dx.doi.

org/10.1016/j.tcs.2006.08.035.

[Escobar et al., 2008] Santiago Escobar, Catherine Meadows, and José
Meseguer. State space reduction in the Maude-NRL Protocol Ana-
lyzer. In Sushil Jajodia and Javier López, editors, Computer Security
- ESORICS 2008, 13th European Symposium on Research in Computer
Security, Málaga, Spain, October 6-8, 2008. Proceedings, volume 5283
of Lecture Notes in Computer Science, pages 548–562. Springer, 2008.

[Escobar et al., 2009a] Santiago Escobar, Catherine Meadows, and José
Meseguer. Maude-NPA: Cryptographic protocol analysis modulo equa-
tional properties. In Foundations of Security Analysis and Design V,
FOSAD 2007/2008/2009 Tutorial Lectures, volume 5705 of Lecture
Notes in Computer Science, pages 1–50. Springer, 2009a.

[Escobar et al., 2009b] Santiago Escobar, Catherine Meadows, and Jose
Meseguer. Maude-NPA manual version 2.0. http://maude.cs.uiuc.

edu/tools/Maude-NPA/, 2009b.

[Escobar et al., 2010] Santiago Escobar, Catherine Meadows, José
Meseguer, and Sonia Santiago. Sequential protocol composition in
Maude-NPA. In Dimitris Gritzalis, Bart Preneel, and Marianthi Theo-
haridou, editors, ESORICS, volume 6345 of Lecture Notes in Computer
Science, pages 303–318. Springer, 2010. ISBN 978-3-642-15496-6.

[Escobar et al., 2011] Santiago Escobar, Deepak Kapur, Christopher
Lynch, Catherine Meadows, José Meseguer, Paliath Narendran, and
Ralf Sasse. Protocol analysis in Maude-NPA using unification modulo
homomorphic encryption. In PPDP, pages 65–76, 2011.

[Escobar et al., 2012a] Santiago Escobar, Catherine Meadows, and José
Meseguer. Maude-NPA, version 2.0. University of Illinois at Urbana-
Champaign, 2012a. Available at http://maude.cs.uiuc.edu/tools/
Maude-NPA.

[Escobar et al., 2012b] Santiago Escobar, Ralf Sasse, and José Meseguer.
Folding variant narrowing and optimal variant termination. J. Log.
Algebr. Program., 81(7-8):898–928, 2012b.

http://dx.doi.org/10.1016/j.tcs.2006.08.035
http://dx.doi.org/10.1016/j.tcs.2006.08.035
http://maude.cs.uiuc.edu/tools/Maude-NPA/
http://maude.cs.uiuc.edu/tools/Maude-NPA/
http://maude.cs.uiuc.edu/tools/Maude-NPA
http://maude.cs.uiuc.edu/tools/Maude-NPA

252 Bibliography

[Escobar et al., 2014a] Santiago Escobar, Catherine Meadows, José
Meseguer, and Sonia Santiago. State space reduction in the Maude-NRL
Protocol Analyzer. Inf. Comput., 238:157–186, 2014a. doi: 10.1016/j.ic.
2014.07.007. URL http://dx.doi.org/10.1016/j.ic.2014.07.007.

[Escobar et al., 2014b] Santiago Escobar, Catherine Meadows, José
Meseguer, and Sonia Santiago. A rewriting-based forwards semantics
for Maude-NPA. In proc. I Symposium and Bootcamp on the Science of
Security (HotSoS 2014). IEEE Digital Library, 2014b. To appear.

[Fabrega et al., 1999] F. J. Thayer Fabrega, J. Herzog, and J. Guttman.
Strand Spaces: What Makes a Security Protocol Correct? Journal of
Computer Security, 7:191–230, 1999.

[Gong and Syverson, 1998] L. Gong and P. Syverson. Fail-stop protocols:
An approach to designing secure protocols. In R. K. Iyer, M. Morganti,
W. K. Fuchs, and V. Gligor, editors, Proc. of the 5th IFIP International
Working Conference on Dependable Computing for Critical Applications
(Urbana-Champaign, IL, Sept. 1995), pages 79–99. IEEE Computer So-
ciety Press, Los Alamitos, CA, 1998.

[Groß and Mödersheim, 2011] Thomas Groß and Sebastian Mödersheim.
Vertical protocol composition. In CSF, pages 235–250. IEEE Computer
Society, 2011. ISBN 978-1-61284-644-6.

[Gutiérrez et al., 2012] Raúl Gutiérrez, José Meseguer, and Camilo
Rocha. Order-sorted equality enrichments modulo axioms. In Fran-
ciso Durán, editor, WRLA, volume 7571 of Lecture Notes in Computer
Science, pages 162–181. Springer, 2012. ISBN 978-3-642-34004-8.

[Guttman, 2001] J. Guttman. Security protocol design via authentica-
tion tests. In Proc. Computer Security Foundations Workshop. IEEE
Computer Society Press, 2001.

[Guttman et al., 2008] J. D. Guttman, J. C. Herzog, V. Swarup, and
F. J. Thayer. Strand spaces: From key exchange to secure loca-
tion. In Carolyn Talcott, editor, Workshop on Event-Based Semantics,
2008. Position papers available at http://blackforest.stanford.

edu/eventsemantics/.

http://dx.doi.org/10.1016/j.ic.2014.07.007
http://blackforest.stanford.edu/eventsemantics/
http://blackforest.stanford.edu/eventsemantics/

Bibliography 253

[Guttman and Thayer, 2000] Joshua D. Guttman and F. Javier Thayer.
Protocol independence through disjoint encryption. In CSFW, pages
24–34. IEEE Computer Society, 2000. ISBN 0-7695-0671-2.

[Harkins and Carrel, 1998] D. Harkins and D. Carrel. The Internet Key
Exchange (IKE), November 1998. IETF RFC 2409.

[Huima, 1999] Antti Huima. Efficient infinite-state analysis of security
protocols. In Proc. FLOCÕ99 Workshop on Formal Methods and Secu-
rity Protocols (FMSPÕ99), 1999.

[Jouannaud and Kirchner, 1986] Jean-Pierre Jouannaud and Hélène
Kirchner. Completion of a set of rules modulo a set of equations. SIAM
J. Comput., 15(4):1155–1194, 1986.

[Kremer and Ryan, 2005] Steve Kremer and Mark D. Ryan. Analysing
the vulnerability of protocols to produce known-pair and chosen-text at-
tacks. In Riccardo Focardi and Gianluigi Zavattaro, editors, Proceedings
of the 2nd International Workshop on Security Issues in Coordination
Models, Languages and Systems (SecCo’04), Electronic Notes in Theo-
retical Computer Science, pages 84–107, London, UK, May 2005. Else-
vier Science Publishers. doi: 10.1016/j.entcs.2004.11.043. URL http://

www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/Kremer-secco04.pdf.

[Küsters and Truderung, 2009] Ralf Küsters and Tomasz Truderung. Us-
ing ProVerif to Analyze Protocols with Diffie-Hellman Exponentia-
tion. In Proceedings of the 22nd IEEE Computer Security Founda-
tions Symposium, CSF 2009, Port Jefferson, New York, USA, July
8-10, 2009, pages 157–171, 2009. doi: 10.1109/CSF.2009.17. URL
http://doi.ieeecomputersociety.org/10.1109/CSF.2009.17.

[Küsters and Truderung, 2011] Ralf Küsters and Tomasz Truderung.
Reducing protocol analysis with XOR to the XOR-free case in the Horn
theory based approach. J. Autom. Reasoning, 46(3-4):325–352, 2011.
doi: 10.1007/s10817-010-9188-8. URL http://dx.doi.org/10.1007/

s10817-010-9188-8.

[Liu, 2012] Zhiqiang Liu. Dealing Efficiently with Exclusive OR, Abelian
Groups and Homomorphism in Cryptographic Protocol Analysis. PhD
thesis, Clarkson University, 2012.

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/Kremer-secco04.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/Kremer-secco04.pdf
http://doi.ieeecomputersociety.org/10.1109/CSF.2009.17
http://dx.doi.org/10.1007/s10817-010-9188-8
http://dx.doi.org/10.1007/s10817-010-9188-8

254 Bibliography

[Liu and Lynch, 2011] Zhiqiang Liu and Christopher Lynch. Efficient
general unification for xor with homomorphism. In Nikolaj Bjørner and
Viorica Sofronie-Stokkermans, editors, CADE, volume 6803 of Lecture
Notes in Computer Science, pages 407–421. Springer, 2011. ISBN 978-
3-642-22437-9.

[Lowe, 1996] G. Lowe. Breaking and fixing the Needham-Schroeder pub-
lic key protocol using FDR. In Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS ’96), volume 1055 of Lecture
Notes in Computer Science, pages 147–166. Springer-Verlag, 1996.

[Lowe, 2004] Gavin Lowe. Analysing protocol subject to guessing at-
tacks. Journal of Computer Security, 12(1):83–98, 2004.

[Lowe and Roscoe, 1997] Gavin Lowe and A. W. Roscoe. Using CSP to
detect errors in the TMN protocol. IEEE Trans. Software Eng., 23(10):
659–669, 1997.

[Lucas, 1998] S. Lucas. Context-sensitive computations in functional and
functional logic programs. J. Functl. and Log. Progr., 1(4):446–453,
1998.

[Lynch and Meadows, 2005] Christopher Lynch and Catherine Mead-
ows. On the relative soundness of the free algebra model for public
key encryption. Electr. Notes Theor. Comput. Sci., 125(1):43–54, 2005.

[Meadows, 1996a] C. Meadows. The NRL Protocol Analyzer: An
overview. Journal of logic programming, 26(2):113–131, 1996a.

[Meadows, 1996b] Catherine Meadows. Language generation and verifi-
cation in the NRL Protocol Analyzer. In Ninth IEEE Computer Secu-
rity Foundations Workshop, March 10 - 12, 1996, Dromquinna Manor,
Kenmare, County Kerry, Ireland, pages 48–61. IEEE Computer Society,
1996b.

[Meier et al., 2013] Simon Meier, Benedikt Schmidt, Cas Cremers, and
David A. Basin. The Tamarin prover for the symbolic analysis of secu-
rity protocols. In Natasha Sharygina and Helmut Veith, editors, CAV,
volume 8044 of Lecture Notes in Computer Science, pages 696–701.
Springer, 2013. ISBN 978-3-642-39798-1.

Bibliography 255

[Merritt, 1984] Michael Merritt. Cryptographic Protocols. PhD thesis,
Georgia Institute of Technology, 1984.

[Meseguer, 1992] J. Meseguer. Conditional rewriting logic as a unified
model of concurrency. Theoretical Computer Science, 96(1):73–155,
1992.

[Meseguer, 1997] José Meseguer. Membership algebra as a logical frame-
work for equational specification. In Francesco Parisi-Presicce, editor,
WADT, volume 1376 of Lecture Notes in Computer Science, pages 18–
61. Springer, 1997. ISBN 3-540-64299-4.

[Meseguer and Thati, 2007] José Meseguer and Prasanna Thati. Sym-
bolic reachability analysis using narrowing and its application to verifi-
cation of cryptographic protocols. Higher-Order and Symbolic Compu-
tation, 20(1-2):123–160, 2007.

[Millen, 2003] Jonathan K. Millen. On the freedom of decryption. Inf.
Process. Lett., 86(6):329–333, 2003.

[Millen and Shmatikov, 2001] Jonathan K. Millen and Vitaly
Shmatikov. Constraint solving for bounded-process cryptographic
protocol analysis. In Michael K. Reiter and Pierangela Samarati,
editors, ACM Conference on Computer and Communications Security,
pages 166–175. ACM, 2001. ISBN 1-58113-385-5.

[Millen et al., 1987] Jonathan K. Millen, Sidney C. Clark, and Sheryl B.
Freedman. The Interrogator: Protocol security analysis. IEEE Trans.
Software Eng., 13(2):274–288, 1987.

[Mitchell et al., 1997] J. Mitchell, M. Mitchell, and U. Stern. Automated
analysis of cryptographic protocols using Murphi. In IEEE Symposium
on Security and Privacy. IEEE Computer Society, 1997.

[Mödersheim, 2007] Sebastian Mödersheim. Models and methods for the
automated analysis of security protocols. PhD thesis, ETH Zurich, 2007.

[Mödersheim and Viganò, 2009] Sebastian Mödersheim and Luca Vi-
ganò. The open-source fixed-point model checker for symbolic analysis
of security protocols. In Alessandro Aldini, Gilles Barthe, and Roberto

256 Bibliography

Gorrieri, editors, FOSAD, volume 5705 of Lecture Notes in Computer
Science, pages 166–194. Springer, 2009. ISBN 978-3-642-03828-0.

[Mödersheim et al., 2010] Sebastian Mödersheim, Luca Viganò, and
David A. Basin. Constraint differentiation: Search-space reduction for
the constraint-based analysis of security protocols. Journal of Computer
Security, 18(4):575–618, 2010.

[Needham and Schroeder, 1978] Roger M. Needham and Michael D.
Schroeder. Using encryption for authentication in large networks of
computers. Commun. ACM, 21(12):993–999, 1978.

[Newcomb and Lowe, 2005] Tom Newcomb and Gavin Lowe. A compu-
tational justification for guessing attack formalisms. Technical report,
Oxford University Computing Laboratory, 2005.

[Paulson, 1998] Lawrence C. Paulson. The inductive approach to ver-
ifying cryptographic protocols. Journal of Computer Security, 6(1-2):
85–128, 1998.

[Rusinowitch and Turuani, 2001] Michael Rusinowitch and Mathieu Tu-
ruani. Protocol insecurity with a finite number of sessions and composed
keys is NP-complete. In 14th IEEE Computer Security Foundations
Workshop, pages 174–190, 2001.

[Ryan and Schneider, 1998] Peter Y. A. Ryan and Steve A. Schneider.
An attack on a recursive authentication protocol. a cautionary tale.
Inf. Process. Lett., 65(1):7–10, 1998.

[Santiago et al., 2014a] Sonia Santiago, Santiago Escobar, Catherine
Meadows, and José Meseguer. Sequential protocol composition in
Maude-NPA. Journal of Computer Security, 2014a. Under review.

[Santiago et al., 2014b] Sonia Santiago, Santiago Escobar, Catherine
Meadows, and José Meseguer. A formal definition of protocol indistin-
guishability and its verification using maude-npa. In Sjouke Mauw and
Christian Damsgaard Jensen, editors, Security and Trust Management -
10th International Workshop, STM 2014, Wroclaw, Poland, September
10-11, 2014. Proceedings, volume 8743 of Lecture Notes in Computer
Science, pages 162–177. Springer, 2014b. ISBN 978-3-319-11850-5.

Bibliography 257

[Sasse et al., 2010] Ralf Sasse, Santiago Escobar, Catherine Meadows,
and José Meseguer. Protocol analysis modulo combination of theories:
A case study in Maude-NPA. In Jorge Cuéllar, Javier Lopez, Gilles
Barthe, and Alexander Pretschner, editors, STM, volume 6710 of Lec-
ture Notes in Computer Science, pages 163–178. Springer, 2010. ISBN
978-3-642-22443-0.

[Schmidt-Schauß, 1989] Manfred Schmidt-Schauß. Unification in a com-
bination of arbitrary disjoint equational theories. J. Symb. Comput., 8
(1/2):51–99, 1989.

[Shmatikov and Stern, 1998] V. Shmatikov and U. Stern. Efficient finite-
state analysis for large security protocols. In 11th Computer Security
Foundations Workshop — CSFW-11. IEEE Computer Society Press,
1998.

[Stubblebine and Meadows, 2000] Stuart Stubblebine and Catherine
Meadows. Formal characterization and automated analysis of known-
pair and chosen-text attacks. IEEE Journal on Selected Areas in Com-
munications, 18(4):571–581, 2000.

[Tatebayashi et al., 1990] Makoto Tatebayashi, Natsume Matsuzaki, and
David Newman. Key distribution protocol for digital mobile commu-
nication systems. In Gilles Brassard, editor, Advances in Cryptology
- CRYPTO’89 Proceedings, volume 435 of Lecture Notes in Computer
Science, pages 324–334. Springer Berlin / Heidelberg, 1990. ISBN 978-0-
387-97317-3. URL http://dx.doi.org/10.1007/0-387-34805-0_30.

[TeReSe, 2003] TeReSe, editor. Term Rewriting Systems. Cambridge
University Press, Cambridge, 2003.

[Thati and Meseguer, 2007] P. Thati and J. Meseguer. Symbolic reacha-
bility analysis using narrowing and its application verification of crypto-
graphic protocols. J. Higher-Order and Symbolic Computation, 20(1–2):
123–160, 2007.

[Turuani, 2006] Mathieu Turuani. The CL-Atse protocol analyser. In
Frank Pfenning, editor, RTA, volume 4098 of Lecture Notes in Computer
Science, pages 277–286. Springer, 2006. ISBN 3-540-36834-5.

http://dx.doi.org/10.1007/0-387-34805-0_30

258 Bibliography

[Viry, 2002] Patrick Viry. Equational rules for rewriting logic. Theor.
Comput. Sci., 285(2):487–517, 2002.

[Weidenbach, 1999] Christoph Weidenbach. Towards an automatic anal-
ysis of security protocols in first-order logic. In Harald Ganzinger, edi-
tor, CADE, volume 1632 of Lecture Notes in Computer Science, pages
314–328. Springer, 1999. ISBN 3-540-66222-7.

[Yang et al., 2014] Fan Yang, Santiago Escobar, Catherine Meadows,
José Meseguer, and Paliath Narendran. Theories of homomorphic en-
cryption, unification, and the finite variant property. In proc. PPDP,
2014. to appear.

[Zhang and Remy, 1985] Hantao Zhang and Jean-Luc Remy. Contextual
rewriting. In RTA, pages 46–62, 1985.

	Introduction
	Formal Analysis of Cryptographic Protocols
	Protocol Analysis modulo Equational Theories
	Reducing the State Search Space
	Protocol Composition
	Security Properties
	Contributions
	Plan of the Thesis

	Preliminaries
	Rewriting Logic and Term Rewriting
	Symbolic Reachability Analysis by Narrowing
	Maude

	Maude-NPA
	Overview
	Maude-NPA's Strand Space Model
	Backwards Reachability Analysis
	Backwards Operational Semantics
	General Requirements for Algebraic Theories
	Protocol Specification in Maude-NPA
	Protocol States
	Attack States

	Maude-NPA Commands

	State Space Reduction in the Maude-NPA
	Motivation
	Overview of State Space Reduction Techniques
	Identifying Unreachable States
	Grammars
	Early Detection of Inconsistent States

	Redundant States
	Limiting Dynamic Introduction of New Strands
	Partial Order Reduction Giving Priority to Input Messages
	Subsumption Partial Order Reduction

	The Super-Lazy Intruder
	Definition of Super-Lazy Terms
	The Super-Lazy Intruder and Ghost States
	Optimizing the Super-Lazy Intruder
	Transition Subsumption and the Super-Lazy Intruder
	Implementing Subsumption Partial Order Reduction in the Presence of the Super-Lazy Intruder

	Experimental Evaluation
	Conclusions

	A Rewriting-based Forwards Semantics for Maude-NPA
	Overview
	Forward Reachability Analysis
	Forwards Operational Semantics
	Soundness and Completeness of the Forwards Semantics
	Experimental Evaluation
	Conclusions

	Sequential Protocol Composition in Maude-NPA
	Motivation
	Examples of Sequential Protocol Compositions
	NSL Distance Bounding Protocol
	NSL Key Distribution Protocol

	Abstract Sequential Composition in Maude-NPA
	Input/Output Parameters and Roles
	Strand and Protocol Composition
	Abstract Operational Semantics

	Protocol Composition via Protocol Transformation
	Protocol Transformation
	Soundness and Completeness of the Protocol Transformation

	Protocol Composition via Synchronization Messages
	Synchronization Data Type Extension
	Syntax for Protocol Composition via Synchronization Messages
	Operational Semantics of Composition via Synchronization Messages
	Soundness and Completeness

	Experimental Evaluation
	The NSL-DB Protocol
	The NSL-KD Protocol
	Performance Comparison

	Conclusions

	Protocol Indistinguishability in Maude-NPA
	Motivation
	Formal Definition of Indistinguishability in Maude-NPA
	Protocol Pairing
	Synchronous Product of Protocols
	Indistinguishability in Maude-NPA

	Indistinguishability Verification in Maude-NPA
	Experimental Evaluation
	Conclusions

	Asymmetric Unification
	Motivation
	Contextual Symbolic Reachability Analysis
	An Asymmetric Unification Algorithm for Exclusive-OR
	The Inference System
	The Splitting Rule
	The Branching Rules
	Instantiation Rules

	Experimental Evaluation
	Experiments of Contextual Symbolic Analysis of Cryptographic Protocols
	Experiments with Unification Problems Arising in Protocol Analysis

	Conclusions

	Conclusion
	Bibliography

