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Abstract

This paper presents a general approach for obtain-
ing optimal filters as well as filter sequences. A filter
is termed optimal when it minimizes a chosen distance
measure with respect to an ideal filter. The method al-
lows specification of the metric via simultaneous weight-
ing functions in multiple domains, e.g. the spatio-
temporal spacand the Fourier space. Metric classes
suitable for optimization of localized filters for multi-
dimensional signal processing are suggested and dis-
cussed.

It is shown how convolution kernels for efficient
spatio-temporal filtering can be implemented in prac-
tical situations. The method is based on applying a
set of jointly optimized filter kernels in sequence. The
optimization of sequential filters is performed using a
novel recursive optimization technique. A number of
optimization examples are given that demonstrate the
role of key parameters such as: number of kernel co-
efficients, number of filters in sequence, spatio-temporal
and Fourier space metrics.

The sequential filtering method enables filtering us-
ing only a small fraction of the number of filter coeffi-
cients required using conventional filtering. In multidi-
mensional filtering applications the method potentially
outperforms both standard convolution and FFT based
approaches by two-digit numbers.

‘tell it all’ and consequently the design is equally valid if the
filters are implemented as convolutions, using an FFT based
approach or any other technique. To illustrate the basic fea-
tures of the optimizer and the effect of different metrics some
simple one-dimensional single filter examples are given.

In multidimensional signal processing, the main part of the
computational power often has to be spent on linear filtering
operations. The filters do for natural reasons need to be of
the same ‘outer dimensionality’ as the signal and for 3D and
4D data, such as image sequences and time sequences of vol-
umes, the computational load increases dramatically and in
practise limits the usefulness of the algorithm. In this pa-
per it is shown how efficient spatio-temporal filtering can be
implemented in practical situations.

A theoretical analysis shows that the effect of filters in se-
guence can be incorporated in the single filter optimizer. This
is the basis for a novel method for optimization of general
multidimensional filters where a set of sequentially applied
filters can be jointly optimized by using the single filter opti-
mizer recursively. Finally results of optimized sequential fil-
ters, using only a fraction of the number of filter coefficients
required by conventional filtering methods, are presented and
discussed.

2 Multiple Space Optimization

Keywords: Filter design, multidimensional filtering,

efficient filtering, filter optimization, localized kernels.
In this section the basic approach and the used notation is

presented. Descriptions of desired filter features can be
specified simultaneously in multiple linear transform spaces

_ o _ _ _here referred to as representation spaces. The representation
This paper initially presents a formulation of the basic optispaces are defined by:

mization problem and continues to discuss consequences of
important constraints and choices of appropriate metrics for
the optimization. As an example it is in most applications
important that the filtered signal maintains a high spatio-
temporal resolution. It is shown how, to this end, a spatio- Cy;
temporal weighting function can be used to introduce a dis-
tance metric that favors spatio-temporally localized kernels.
This ‘designer metric’ approach is general in that it is im-The optimization produces a set of kernel coefficients, or
plementation independent, i.e. the chosen metric is meantsimply akerne| fo. The optimizer solves a least squares

1 Introduction

Co={1...N}; One set okernel

coefficient indices

k=1...K K sets ofrepresentation

space coordinates
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problem and can be seen as a function, i.e. Differentiating equation (4) and simplifying yields:

fo = o({f},{wi},{Bk}); k=0..Ki (1 ,
02 _ K TW2R 5. RT\W2
The intended use of the arguments is explained by the fol- | oR€f] 2 Re[ ko (B WicBifo — B Wi

lowing table: ~ (6)
e o = 21m 51 (BTWEBKo — B WEH)]

almffo]
fo = fo(n); neCo Ideal kernel
function
Wo = Wo(N); ne Co Kernel weighting Combining equation 6 with equation (5) results in
function K K
Tw2r £, _ Typ/2
fk = fu(ck); ck € Cyx Ideal function in kZOBkakaO - kZO By Wik @)

representation space k
Equation (7) can be simplified to:

Wy = Wi (Ck); ck € Cy Weighting function in
representation space k Afy = h (8)
Bk = bk(ck,n); ok € Ck Basis function matrix here:
ne Co corresponding to where:
representation space k. K K
A= %BIW&BK h= %B{Wﬁfk 9)
K= K=

The discrete mapping from kernel space to representation .
spacek is defined by: Solving forf gives the optimal kernel coefficients. The solu-
~ - tion can be written:
fk = Bkfo
oAl
Typical representation space examples are the Fourier space, fo=A"h (10)

the spatio-temporal space and wavelet spaces. (Note thatyractise the solution is obtained by solving equation (8)

Bo = I, signifying that the kernel space is mapped onto it cea -1 is not explicitly needed.
self.)
2.1 Error measure 3 Basic Representation Spaces

The optimizer finds the kernel coefficients that minimizeghe kernel domain, the spatio-temporal domain and the
a weighted distance measure. The definition of the chos@ourier domain are the three most common representation

measure, the errog, is given by: spaces. In cases where the input is ‘raw’ spatio-temporal
K data the kernel space coordinates are simply a sub-set of the

2 — z Wi (fi— i) |2 (3) spatlo—tempo_ral coordmate;. In general, how'ever, this is not

K=o true and it is in most cases important to consider the desired

roperties of the optimized kernel in these three basic spaces.
he role of the different representation spaces is described
and discussed below.

where theVy are diagonal weighting matrices. The diagon
terms given by the corresponding weighting function.

2.2 Minimizing the error 3.1 The kernel space Cy

To find the minimum ot itis convenient to first rewrite equa-
tion (3) making the role of the kernel coefficierfig,explicit.
The raised” denotes the conjugate transpose.

In most cases the kernel space naturally inherits the spatio-
temporal dimensions of the input signal (the dimensions over
which the convolution is performed). The kernel space may
5 K 2 Tuo . in addition have extra ‘dimensions’ such as scale, bandwidth

e = Zo(fk — Byfo) " Wi (fi — Bifo) (4)  and orientation.

k= Note that, in general, the kernel space may be quite dif-

The error measure is quadratic and finding the minimum cderrent from the spatio-temporal space. In extreme cases the

be done by computing the partial derivativesedfwith re- kernel space coordinates may all have just one and the same
spect to the real and imaginary partsf@find solving equa- spatio-temporal component thus effectively loosing the spa-
tion (5). tiotemporal dimensions. For this reason a particular coeffi-

0¢? 0g? g2 cient is referred to by an index, rather than a coordinate.

oy = oRelfo] +i amffo] 0 ) The description of the kernel space can in general only be
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attained through a basis function matrix relating the kern@moothness constraint

space to a ‘standard’ space such as the spatio-temporal_l%r - . .
Fourier space. e limited kernel size is equivalent to a smoothness con-

straint on the realizable filter functions. Taking the symmetry

The optimized kernel is constituted by a set of optimal co- . . -
efficientg fo); ne{l..N}. A fundgmental coFr)IStraint of the Fourier transform into account the effect of a limited

best expressed in the kernel domain is simply that the nurﬁp&_\tio-_temporal kernel size can be seen as a low pass filter
ber of coordinatedy, is limited. (In fact it is the object of acting in the frequency domain. Approximation of an ideal

the present exercise to keep this number as low as possiblglgjr funct|0|_1 containing rapid chang_es will, for this reason,
altvays require a kernel of large spatio-temporal extent.

3.2 The spatio-temporal space C;’ Repetetivity constraint

The spatio-temporal space is in most cases given by the ingifhe spatio-temporal space is sampled in a regular cartesian

signal. A fundamental constraint naturally expressed in thiﬁshion and the inter sample distance in dimensigiven
space is that, in all digital applications, the signals are repres

o ,%yAi,then:

sented by samples. As a rule the samples are distributed ina

cartesian fashion uniformly in each dimension. - ~ 21k; G
For clarity and to adhere to common convention the spatio- F(u) = F(u+ Z A )

temporal coordinateg, ideal function,fi(c1), and weight-

ing function,w1(c1), will, when appropriate, also be denoted  where(; is a unit vector in the direction of

X, f(x), andw(x) respectively. thei-th dimension and thlg:s are integers.

Equation (12) implies that the Fourier transform of the ker-
3.2.1 Spatio-temporal locality nels will be repetitive in all dimensions. If the sampling dis-
ance in all dimensions is normalized to be unity the repeti-

In most applications it is important that the filtered agna[ion period is 2t

maintains a high spatio-temporal resolution. Tdmatio-
temporal weighting functigrw(x), can be used to introduce ) )
a distance metric that favors/forces spatio-temporally locap-3-1 Fourier space metric

i;ed kernels. An example of a suitable weighting function ishe Fourier weighting function ) can be used to produce
given by:w(x) = [x[Y; y> 0. _ . . an appropriate Fourier space metric. The metric will deter-
The pro-locality feature is of particular interest in FFTmine the importance of a close fit for different spatial fre-
based implementation where control of spatio-temporal IQj,encies. In general the weighting function should be chosen
cality is completely lost using standard approaches. In CORseq on all a-priori information available about the situa-
volution based implementation the feature can be used {0 ifigns in which the optimized filters are to be used. (Note that

troduce a continuous metric as opposed to the *hard metrig(imizing without using a weighting function is equivalent
introduced by limited spatio-temporal kernel size. to settingw(u) = 1.)

The suggestion made here is that one major factor deter-
3.3 The Fourier space Cy mining the importance of a close fit is the expected spectrum

of the signal to be filtered. Below some general arguments

For the same reasons as in the spatio-temporal case Whcerning spectra of typical images are considered.
Fourier coordinategy, ideal function,f(cz), and weighting

function,wy(cy), will, when appropriate, also be denoted
F (u), andw(u) respectively.

In the present work the discrete Fourier space will b&or purely spatial signals there is, in general, no reason to
constructed by an appropriate sampling of the continuouskpect a non-isotropic spectrum, i.e. the expected spectrum
Fourier space. The sampling topics are discussed in secti@ll only depend on the Fourier domain radigs= ||u||. To
3.3.2. First, however, some important features of the Fourigihd a suitable form for the expected spectrum two observa-
space that are independent of the sampling will be discusseidns can be made. First, there does not seem to be a large
The continuous Fourier space is defined via the Fourier trangifference in terms of spectrum when imaging the real world

Expected spectra

form and the spatio-temporal space: at very different scales, say a microscope image vs a satellite
N image. Secondly, for normal images the energy is usually
lf(u) _ Z f(xn) o iU (11) concentrated around the origin z_ind decreasgsiasreases.
& It can, based on these observations, be argued that a reason-

able assumption is that the expected spectrum of spatial 2D
Any given distribution of spatio-temporal coordinates, or 3D data should be of the following form:
can be interpreted as fundamental constraints on the Fourier

space representation of attainable filter functions. S(p) O S(ap); Va (13)
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This means that a scale change does not change the shapNate that specifying the ideal Fourier function only in this
the spectrum but is reflected as only a change of magnitudaterval may ‘hide’ discontinuities that are present at the in-
A class of functions that exhibit both of the above propertieterval boarders.

is given by the following equation. It is important that the sampling is regular in a circular
a. fashion, i.e. it must hold that the distances between the sam-
Sp) 0 p%; a<0 (14) " ples in Fourier space arat2(JA;) wherel; is the number of

Two examples of 2D images having this type of spectrurﬁamples in dimension Violation of this rule will cause the
metric to deviate from what is specified using the weighting

are given by: )
) ) functions.
1. Alarge rllgr;nber of random lines yields: Since it is preferable to have one sample point at 0,
Sp)Op™ this Fourier coordinate often having particular significance,
2. Alarge number of random edges yields: the sampling pattern is completely given by the number of
Sip)Op*° samples in each dimensiah,

Another fact about digital images is that they have been ob-

tained through a cartesian sampling procedure. Three si . .
effects influencing the spectrum may be caused by this pr(%ga Distortion Measures

cedure: . . - -
a) The data may have been band-limited, b) There mébxssessmg th(_e quality of an opt|_m|ze_d_kernel is difficult us-
. . - . ] r9 only the distance measure since it is an absolute measure
be aliased signal contributions and b) Noise may have bee : . .
added and not directly related to the kernel quality. For a quick
' L . ) . _quality assessment it is helpful to calculate a few distortion
In most cases it will not be possible to define an ‘op-
Lo : : . measures.
timal’ weighting function but the above discussion pro-
vides a useful background for making an appropriate choice. ,
Equation(15) gives a class of weight functions that providedormalized error
a reasonable degree of variability and has been proven ugg; overall distortion measure is obtained simply by normal-
ful in practice. The “cosine-terms” relate to the degree ofjng the error measure, i.e.
band limiting of the signal. (The separability of this fac-
tor corresponds to the standard case of cartesian separable K o IWi (Fie—F) |12
e 5 — k=0 Wk (Tk =Tk
band limiting.) The constant relates to the expected level = ZK Wi fil|2
k=0

of broadband noise and aliasing.

(16)

w(u) = p° HCOSB(%) +c (15) Distortion in spacek
i

o _ A somewhat more detailed information about the outcome
Note thatw(u) — c whenp — O, this is equivalent to the of the optimization can be obtained by calculating distortion
constraint that the sum of the kernel coefficients should qﬂeasures separate]y for each representation space. In anal-

exactly equal to the value given by the ideal functiopat  ogy with equation(16) the distortion in spakcés defined:
0. In most cases this is a desired feature, in particular for .
W (=Tl

bandpass or highpass type filters where idefall§) = 0 and 5

s . = 17
even small deviations from zero can cause major problems. [Wi fi]| an

Equation (17) gives the distortion in spakén the metric
given by the weighting functionyy. The distortion gives the
Up til now the Fourier space has been treated as contintatio between the RMS error and the RMS value of the ideal
ous. However, to find an optimal filter in practice impliesfunction,fy , and is invariant to scaling afy and/orfy.
sampling the Fourier space. In the present work the Fourier
space sampling is performed in a regular cartesian manneiShape distortion

In principle the higher the sampling density the ‘closer’ i . ) _ )
the sampled case solution will be to the continuous case. fyMeasure thatin addition to the invariances of equation (17)
practise using 2-3 times as many points, for each dimensiofS° iS invariant to scaling dfis given by:
as the spatial size in pixels (voxels etc.) has proven to be o
adequate. Note that the number of samples does not change o _ Re[ f, WEfy |2

: . : . . ok = sin(fx) = | 1—s7—=—75 (18)

the size of the basic problem, i.e. the size of the mairir i W%fk fi Wﬁfk
equation(8). However, further increasing the sample density
will, as a rule, have an insignificant effect on the solution. This measure only depends on the anglg,between the 1-

As the Fourier space representation will be repetitive san® subspaces spanned fyyandf and can be thought of as a
ples will only be needed in the intervalr/A; < u; < /4. shape distortion measure.

3.3.2 Fourier space sampling
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Spatial domain Spatial domain
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Frequency domain Frequency domain
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Figure 1: Optimization result using only a constant Fourier weight-
ing function, i.e effectively equivalent to standard DFT.

Spatial domain

Figure 3:Optimization result using a spatiotemporal weighting func-
tion favoring locally concentrated kernels: W(X) O X2

Spatial domain

-7 -6 -5-4-3-2-1 0 1 2
Frequency domain

34567 1 1 1 1 1 1 1 1 1
-7 -6 -5-4-3-2-1 0 1 2

Frequency domain

w
NE

34 T

- -3w4 -w2 -4 0 w4 T2
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Figure 2:Optimization result using a Fourier weighting function cor-
responding to monotonically decreasing signal spectrum: W(u) a

S(u) O Jul .

Figure 4:0ptimization result using both Fourier and spatiotemporal
weighting functions: W(u) O [u| =%, w(x) O x°.

shaded areas indicate the ideal Fourier function, the solid
lines shows the optimization results and the dashed lines

In this section a few examples of optimization of simple sinsShows the weighting functions.

gle filters are given. The examples illustrates the basic fea-

tures of the optimizer and the effect of different metrics. To ) ]

simplify visualization of the results all optimized kernels aréb Sequentlal Filters

one-dimensional. Note, however, that the method is com-

pletely ‘invariant’ to spatio-temporal dimensionality. Using N coefficients it is always possible to find a best ap-
The ideal Fourier filter used in all four examples is a ‘box’proximation to a given filter using all coefficients at once for

given by: F(u) =1 if |u] < /4 andF (u) = O otherwise. a single filter. In many cases, however, a far more efficient

Figures 1 to 4 shows how changing the spatio-temporal aneay of attaining essentially the same filter is to distribute

Fourier weighting functions can be used to design a suitabtmefficients over a number of filters. These filters are then

metric and obtain a filter having the desired features. Thapplied in sequence to obtain the final filter response.

5 Single Filters
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Using this technique it is in many cases possible to attaia.2 Recursive Filter Optimization

equally good filter approximations using only a fraction of

the the number of coefficients required for the single filte -ven if the numb_er and s_ano-ternp_o_raI positions O.f aII_ coe_f-
approach. In many situations it is in this way possible t icients are considered given optimizing a sequential filter is

reduce computational load by 2-digit numbers no longer a quadratic problem and finding the optimum must

The proposed method involves the following four steps: be done using an iterative search. . L
A method that has proven to work well in practice is to

1. Chose the numbeM, of filters in sequence that is gptimize a single filter component with respect to the present

likely to be appropriate in the present situation. value of the otheM — 1 components. In this way a ‘rotating’
2. Chose the number of coefficientsy, to be used by recursion of the single filter optimization method can be used
each filter in the sequence,= 1..M. to rapidly find a set of close to optimal component filters.

fﬁgonvergence of the algorithm is fast and typically less than

3. Chose the spatio-temporal coordinate for each coeffj*;". .
10 iterations are needed.

cient in theM filters.

4. Optimize the values of the = 5 ;N coefficients (dis-
tributed over theM filters) so that the combined effect
of the filter sequence approximates the ideal filter a$o convert the kernel optimizer for recursive use requires

6.2.1 Modified weighting function view

closely as possible. some consideration as the ideal filter function and weight
function for a certain filter component depends on the cur-
Coefficient distribution rent value of the othavl — 1 filter components as well as the

) ) o ~ reference functiofr (u). The case where the Fourier weight-

This is, however, an extremely complex problem and @onsidered first. The distance measure is then given by:
method to for finding an overall optimal solution has not been

found. (and it's doubtful if it ever will be). For this reason e = ||W2(f2—T2)|2 (21)
the choices in steps 1-3 have to be made based on experience. o

A general approach for distributing the coefficients is t§" more explicitly,
let the component filters operate on different ‘scales’. The 2 = 2
coefficients can, for example, be spread equidistantly within &= Zz IwCu)(F (u) = F(u)l (22)
each component filter using different distances for different
filters, e.g. A for the first component filter, 2 for the next In the ideal case, i.& = 0, the following equation holds:
etc.

M
_ | Fw =AW (23)
6.1 Products in Fourier space =
The final step in the sequential filter optimization procedur&©nsider the optimization of filter componente [1,M]. If

is to find the values of all coefficients of the sequential fil- all other filter components are considered given then the ideal

ter such that the difference between the reference functiotfter function for them:th filter component can be obtained
F(u), andF (u) is minimized according to the distance mea.YSing equation(23).

sure. F (u)
The required analysis is best carried out in the Fourier do- Fn(u) = ——— (24)
main as the effect of sequentially applied filters is obtained |7IZIm F(u)

by simple multiplication of individual filter responses.

A sequential filter,F (u) is to approximate an ideal fil- For the weight function(u) the relation is not quite as obvi-
ter, F(u), by M sequential filter componentbm(u). Inthe  gys as for the ideal function. A suitable weight function can,

Fourier domain this is expressed as: however, be found if the reasoning for obtaining a weight
M function in the single filter case is applied. The signal spec-
F(u)~F(u)= |—| Fm(u) (19) trum will, for a component filter, effectively be multiplied
m=1 with the filtering effect of all other filters in the sequence.

Aaain. th vation for thi ion is that the fil (If, for example, the other filters cause a zero for some
Fgaln, the mot|vfatlllonb or t IIS opera(tjlon s that t ed'teLSIfrequency it is obvious that trying to change this fact in the
m(u) can potentially be implemented using a considera Sptimization of the present component filter would not be a

§maller numper of kernel coefﬂmepts than a diredt=c 1) good idea.) A weight function consistent with this reasoning
implementation of (u). In the spatial domain eq. (19) cor- is for filter componentn given by:
responds to: '

f(x) = fu(x) % fo(X) % .. % fu (%) (20) Win(u) =w(u) L] “F(u) (25)
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Fourier domain Fourier domain
-m  -3w4 -2 -4 0 w4 12 34 m -m =34 -2 -4 0 w4 12 34 1
-T78 0 /8 w4 38 -T78 0 U8 4 38

Figure 5: Optimization result for sequential filter consisting of four
component filters. The implementation of the filter requires the equiv-
alent of 18 complex coefficients. The result is shown at two different
scales. The solid lines shows the resulting filter in Fourier space.
The dashed line shows the ideal function (lognormal). The dash dot-
ted line shows the weighting function W(u) [ |u| =5, Fourier space
distortion: & = 0.1.

Spatial domain

0.05

093, -20 -10 0 10 20 30

Figure 6:Spatial view of the optimization result in figure 5. Solid line
shows filter magnitude. Dashed line shows real part. Dash dotted line
shows imaginary part

Figure 7: Optimization result for same sequential filter setup as in
figure 5 but including spatial weighting function w(x) O x?

Spatial domain

0.05

-0.05 I I I I I
-30 -20 -10 0 10 20 30

Figure 8: Spatial view of the optimization result in figure 7. Spatial
weighting function w(x) O x?

6.2.2 Modified basis view

Another way of viewing the situation emergeshf(u) is
expressed using a more explicit version of equation(2):

Fm zbz U n f()m( ) (28)

If the ideal component filter, equation(24), and weight funcy N€ filter product can then be written:

tion, equation(25), are inserted in eq. (22) the resulting dis-

tance measure for filter componeni(u) results in:

= 3 W@, AW [ - Fw)]I? @9)

Simplifying eq. (26) yields:

€2 = ZHW
2

(27)

|'!H I

) Y ba(u,nfom(n)  (29)

r! R(u
I;ém
Moving the summation ovar outside the product yields:

|'lF| |'|F|

I#m
Finally, using equations (27), (28), (30) and defining:

b2 U n me( ) (30)

showing that the recursive optimization procedure will tendh€ error can be written as:

to minimize the distance between the combined effect of the

component filtersiy (u), and the ideal filteF (u).

M

me(uvn) = |_| ﬁ(U)bz(U,n) (31)
I#m

(32)

=S bam(u, ) fom(n)] |2

e = an(u) [F(u
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Frequency domain Spatial domain real part

L5, - f 4.

20
20

—T/2

-T2

y-axis x-axis y-axis g
Figure 9:Fourier space view of optimization result for 2D sequential  Figure 10:Spatial view of optimization result for the filter shown in
filter consisting of 12 component filters. Using this filter requires the  figure 9.

equivalent of 24 complex multiplications per pixel. W(u) O |[uf| =%

andw(x) =0. whereBy, is the matrix transforming from kernel space to
spacek for component filtem.
or equivalently using matrix notation: This result makes it possible to benefit from the advantages
of multiple domain weighting functions also in the design of
€2 = ||W2(f2—Bamfom )|I? (33) sequential filters.

whereB,, is a matrix with elements given bym(u, n). 6.3 Optimization results

This shows that the effect of the other filters in the sequence

can also be seen as modifiers of the basis function matrh demonstrate the potential of the sequential filtering ap-
where the modified matrix is given by equation(31). Thifroach t.he result of two optimizatipn_s are shown in figurgs 5
formulation avoids the use of a division, (equation(26)), antP 10. Figures 5 to 8 show an optimized 1D sequential filter
was used for the implementation of the optimizer. consisting of four component filters. Each component filter

has five coefficients, the coefficients being spread by 1, 2,

4 and 8 spatio-temporal sample distance units respectively.
Using the filter requires the equivalent of 18 complex multi-

Adding a spatial weighting function can now be done by simplications per output value. This implies that, for a 20 second
ply transforming the component fiItEmeOm (eq: 33) to the signal sampled at 50kHz, this filter implementation reduces

spatial domain. Denoting the matrix corresponding to thithe number of multiplications compared to standard convo-
transformationB;, yields: lution and FFT based approaches by factors 4 and 5 respec-

tively.
Figures 7 and 8 demonstrate the the effect of using a spa-
€2 = ||Wa(f2—Bamfom )||>+ [W1(f1 —B12Bomfom )||>  tial weighting function to improve spatial locality for the se-
— quential filter.

(34) Figures 9 and 10 show an optimized 2D sequential filter

Thus, in general, the error measure for a component filt@ensisting of 12 component filters. Each component filter
can be written: has five coefficients. The coefficients are placed along lines
at 0, 45, 90 and 135 degrees each direction spread by 1, 2 and
4 spatio-temporal sample distance units respectively. Most of
the coefficients can be real-valued and using the filter only re-

6.2.3 Adding spatially specified metric

Bim

K
& = Z)||Wk(fk— Birmfom) | (35)
k=
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