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Abstract

This paper presents a general approach for obtain-
ing optimal filters as well as filter sequences. A filter
is termed optimal when it minimizes a chosen distance
measure with respect to an ideal filter. The method al-
lows specification of the metric via simultaneous weight-
ing functions in multiple domains, e.g. the spatio-
temporal spaceand the Fourier space. Metric classes
suitable for optimization of localized filters for multi-
dimensional signal processing are suggested and dis-
cussed.

It is shown how convolution kernels for efficient
spatio-temporal filtering can be implemented in prac-
tical situations. The method is based on applying a
set of jointly optimized filter kernels in sequence. The
optimization of sequential filters is performed using a
novel recursive optimization technique. A number of
optimization examples are given that demonstrate the
role of key parameters such as: number of kernel co-
efficients, number of filters in sequence, spatio-temporal
and Fourier space metrics.

The sequential filtering method enables filtering us-
ing only a small fraction of the number of filter coeffi-
cients required using conventional filtering. In multidi-
mensional filtering applications the method potentially
outperforms both standard convolution and FFT based
approaches by two-digit numbers.

Keywords: Filter design, multidimensional filtering,
efficient filtering, filter optimization, localized kernels.

1 Introduction

This paper initially presents a formulation of the basic opti-
mization problem and continues to discuss consequences of
important constraints and choices of appropriate metrics for
the optimization. As an example it is in most applications
important that the filtered signal maintains a high spatio-
temporal resolution. It is shown how, to this end, a spatio-
temporal weighting function can be used to introduce a dis-
tance metric that favors spatio-temporally localized kernels.
This ‘designer metric’ approach is general in that it is im-
plementation independent, i.e. the chosen metric is meant to

‘tell it all’ and consequently the design is equally valid if the
filters are implemented as convolutions, using an FFT based
approach or any other technique. To illustrate the basic fea-
tures of the optimizer and the effect of different metrics some
simple one-dimensional single filter examples are given.

In multidimensional signal processing, the main part of the
computational power often has to be spent on linear filtering
operations. The filters do for natural reasons need to be of
the same ‘outer dimensionality’ as the signal and for 3D and
4D data, such as image sequences and time sequences of vol-
umes, the computational load increases dramatically and in
practise limits the usefulness of the algorithm. In this pa-
per it is shown how efficient spatio-temporal filtering can be
implemented in practical situations.

A theoretical analysis shows that the effect of filters in se-
quence can be incorporated in the single filter optimizer. This
is the basis for a novel method for optimization of general
multidimensional filters where a set of sequentially applied
filters can be jointly optimized by using the single filter opti-
mizer recursively. Finally results of optimized sequential fil-
ters, using only a fraction of the number of filter coefficients
required by conventional filtering methods, are presented and
discussed.

2 Multiple Space Optimization

In this section the basic approach and the used notation is
presented. Descriptions of desired filter features can be
specified simultaneously in multiple linear transform spaces
here referred to as representation spaces. The representation
spaces are defined by:

C0 = {1. . .N}; One set ofkernel
coefficient indices

Ck; k = 1. . .K K sets ofrepresentation
space coordinates

The optimization produces a set of kernel coefficients, or
simply a kernel, f̃0. The optimizer solves a least squares
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problem and can be seen as a function, i.e.

f̃0 = g( {fk},{wk},{Bk} ) ; k = 0. . .K; (1)

The intended use of the arguments is explained by the fol-
lowing table:

f0 = f0(n); n∈ C0 Ideal kernel
function

w0 = w0(n); n∈ C0 Kernel weighting
function

fk = fk(ck); ck ∈ Ck Ideal function in
representation space k

wk = wk(ck); ck ∈ Ck Weighting function in
representation space k

Bk = bk(ck,n); ck ∈ Ck Basis function matrix
n∈ C0 corresponding to

representation space k.

The discrete mapping from kernel space to representation
spacek is defined by:

f̃k ≡ Bk f̃0 (2)

Typical representation space examples are the Fourier space,
the spatio-temporal space and wavelet spaces. (Note that
B0 = I , signifying that the kernel space is mapped onto it-
self.)

2.1 Error measure

The optimizer finds the kernel coefficients that minimizes
a weighted distance measure. The definition of the chosen
measure, the error:ε, is given by:

ε2 =
K

∑
k=0

‖Wk (fk− f̃k)‖2 (3)

where theWk are diagonal weighting matrices. The diagonal
terms given by the corresponding weighting function.

2.2 Minimizing the error

To find the minimum ofε it is convenient to first rewrite equa-
tion (3) making the role of the kernel coefficients,f̃0, explicit.
The raisedT denotes the conjugate transpose.

ε2 =
K

∑
k=0

(fk−Bkf̃0)TW2
k(fk−Bkf̃0) (4)

The error measure is quadratic and finding the minimum can
be done by computing the partial derivatives ofε2 with re-
spect to the real and imaginary parts off̃0 and solving equa-
tion (5).

∂ε2

∂f̃0
≡ ∂ε2

∂Re[f̃0]
+ i

∂ε2

∂Im[f̃0]
= 0 (5)

Differentiating equation (4) and simplifying yields:




∂ε2

∂Re[f̃0]
= 2 Re

[
∑K

k=0

(
BT

k W2
kBkf̃0−BT

k W2
kfk

)]
∂ε2

∂Im[f̃0]
= 2 Im

[
∑K

k=0

(
BT

k W2
kBkf̃0−BT

k W2
kfk

)] (6)

Combining equation 6 with equation (5) results in

K

∑
k=0

BT
k W2

kBkf̃0 =
K

∑
k=0

BT
k W2

kfk (7)

Equation (7) can be simplified to:

A f̃0 = h (8)

where:

A =
K

∑
k=0

BT
k W2

kBk h =
K

∑
k=0

BT
k W2

kfk (9)

Solving for f̃ gives the optimal kernel coefficients. The solu-
tion can be written:

f̃0 = A−1 h (10)

In practise the solution is obtained by solving equation (8)
sinceA−1 is not explicitly needed.

3 Basic Representation Spaces

The kernel domain, the spatio-temporal domain and the
Fourier domain are the three most common representation
spaces. In cases where the input is ‘raw’ spatio-temporal
data the kernel space coordinates are simply a sub-set of the
spatio-temporal coordinates. In general, however, this is not
true and it is in most cases important to consider the desired
properties of the optimized kernel in these three basic spaces.
The role of the different representation spaces is described
and discussed below.

3.1 The kernel space ‘C0’

In most cases the kernel space naturally inherits the spatio-
temporal dimensions of the input signal (the dimensions over
which the convolution is performed). The kernel space may
in addition have extra ‘dimensions’ such as scale, bandwidth
and orientation.

Note that, in general, the kernel space may be quite dif-
ferent from the spatio-temporal space. In extreme cases the
kernel space coordinates may all have just one and the same
spatio-temporal component thus effectively loosing the spa-
tiotemporal dimensions. For this reason a particular coeffi-
cient is referred to by an index,n, rather than a coordinate.
The description of the kernel space can in general only be
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attained through a basis function matrix relating the kernel
space to a ‘standard’ space such as the spatio-temporal or
Fourier space.

The optimized kernel is constituted by a set of optimal co-
efficients, f0(n); n ∈ {1. . .N}. A fundamental constraint
best expressed in the kernel domain is simply that the num-
ber of coordinates,N, is limited. (In fact it is the object of
the present exercise to keep this number as low as possible.)

3.2 The spatio-temporal space ‘C1’

The spatio-temporal space is in most cases given by the input
signal. A fundamental constraint naturally expressed in this
space is that, in all digital applications, the signals are repre-
sented by samples. As a rule the samples are distributed in a
cartesian fashion uniformly in each dimension.

For clarity and to adhere to common convention the spatio-
temporal coordinate,c1, ideal function,f1(c1), and weight-
ing function,w1(c1), will, when appropriate, also be denoted
x, f (x), andw(x) respectively.

3.2.1 Spatio-temporal locality

In most applications it is important that the filtered signal
maintains a high spatio-temporal resolution. Thespatio-
temporal weighting function, w(x), can be used to introduce
a distance metric that favors/forces spatio-temporally local-
ized kernels. An example of a suitable weighting function is
given by:w(x) = |x|γ; γ > 0.

The pro-locality feature is of particular interest in FFT
based implementation where control of spatio-temporal lo-
cality is completely lost using standard approaches. In con-
volution based implementation the feature can be used to in-
troduce a continuous metric as opposed to the ‘hard metric’
introduced by limited spatio-temporal kernel size.

3.3 The Fourier space ‘C2’

For the same reasons as in the spatio-temporal case the
Fourier coordinate,c2, ideal function,f2(c2), and weighting
function,w2(c2), will, when appropriate, also be denotedu,
F(u), andw(u) respectively.

In the present work the discrete Fourier space will be
constructed by an appropriate sampling of the continuous
Fourier space. The sampling topics are discussed in section
3.3.2. First, however, some important features of the Fourier
space that are independent of the sampling will be discussed.
The continuous Fourier space is defined via the Fourier trans-
form and the spatio-temporal space:

F̃(u) =
N

∑
n=1

f̃ (xn) e−i u·xn (11)

Any given distribution of spatio-temporal coordinates,xn,
can be interpreted as fundamental constraints on the Fourier
space representation of attainable filter functions.

Smoothness constraint

The limited kernel size is equivalent to a smoothness con-
straint on the realizable filter functions. Taking the symmetry
of the Fourier transform into account the effect of a limited
spatio-temporal kernel size can be seen as a low pass filter
acting in the frequency domain. Approximation of an ideal
filter function containing rapid changes will, for this reason,
always require a kernel of large spatio-temporal extent.

Repetetivity constraint

If the spatio-temporal space is sampled in a regular cartesian
fashion and the inter sample distance in dimensioni is given
by ∆i , then:

F̃(u) = F̃(u+∑
i

2πki ûi

∆i
) (12)

whereûi is a unit vector in the direction of
the i-th dimension and theki :s are integers.

Equation (12) implies that the Fourier transform of the ker-
nels will be repetitive in all dimensions. If the sampling dis-
tance in all dimensions is normalized to be unity the repeti-
tion period is 2π.

3.3.1 Fourier space metric

TheFourier weighting function w(u) can be used to produce
an appropriate Fourier space metric. The metric will deter-
mine the importance of a close fit for different spatial fre-
quencies. In general the weighting function should be chosen
based on all a-priori information available about the situa-
tions in which the optimized filters are to be used. (Note that
optimizing without using a weighting function is equivalent
to settingw(u) = 1.)

The suggestion made here is that one major factor deter-
mining the importance of a close fit is the expected spectrum
of the signal to be filtered. Below some general arguments
concerning spectra of typical images are considered.

Expected spectra

For purely spatial signals there is, in general, no reason to
expect a non-isotropic spectrum, i.e. the expected spectrum
will only depend on the Fourier domain radius,ρ = ‖u‖. To
find a suitable form for the expected spectrum two observa-
tions can be made. First, there does not seem to be a large
difference in terms of spectrum when imaging the real world
at very different scales, say a microscope image vs a satellite
image. Secondly, for normal images the energy is usually
concentrated around the origin and decreases asρ increases.
It can, based on these observations, be argued that a reason-
able assumption is that the expected spectrum of spatial 2D
or 3D data should be of the following form:

S(ρ) ∝ S(aρ); ∀a (13)
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This means that a scale change does not change the shape of
the spectrum but is reflected as only a change of magnitude.
A class of functions that exhibit both of the above properties
is given by the following equation.

S(ρ) ∝ ρα; α < 0 (14)

Two examples of 2D images having this type of spectrum
are given by:

1. A large number of random lines yields:
S(ρ) ∝ ρ−0.5

2. A large number of random edges yields:
S(ρ) ∝ ρ−1.5

Another fact about digital images is that they have been ob-
tained through a cartesian sampling procedure. Three side
effects influencing the spectrum may be caused by this pro-
cedure:

a) The data may have been band-limited, b) There may
be aliased signal contributions and b) Noise may have been
added,

In most cases it will not be possible to define an ‘op-
timal’ weighting function but the above discussion pro-
vides a useful background for making an appropriate choice.
Equation(15) gives a class of weight functions that provides
a reasonable degree of variability and has been proven use-
ful in practice. The “cosine-terms” relate to the degree of
band limiting of the signal. (The separability of this fac-
tor corresponds to the standard case of cartesian separable
band limiting.) The constantc relates to the expected level
of broadband noise and aliasing.

w(u) = ρα ∏
i

cosβ(ui
2 ) + c (15)

Note thatw(u) → ∞ whenρ → 0, this is equivalent to the
constraint that the sum of the kernel coefficients should be
exactly equal to the value given by the ideal function atρ =
0. In most cases this is a desired feature, in particular for
bandpass or highpass type filters where ideallyF̃(0) = 0 and
even small deviations from zero can cause major problems.

3.3.2 Fourier space sampling

Up til now the Fourier space has been treated as continu-
ous. However, to find an optimal filter in practice implies
sampling the Fourier space. In the present work the Fourier
space sampling is performed in a regular cartesian manner.

In principle the higher the sampling density the ‘closer’
the sampled case solution will be to the continuous case. In
practise using 2-3 times as many points, for each dimension,
as the spatial size in pixels (voxels etc.) has proven to be
adequate. Note that the number of samples does not change
the size of the basic problem, i.e. the size of the matrixA in
equation(8). However, further increasing the sample density
will, as a rule, have an insignificant effect on the solution.

As the Fourier space representation will be repetitive sam-
ples will only be needed in the interval−π/∆i < ui ≤ π/∆i .

Note that specifying the ideal Fourier function only in this
interval may ‘hide’ discontinuities that are present at the in-
terval boarders.

It is important that the sampling is regular in a circular
fashion, i.e. it must hold that the distances between the sam-
ples in Fourier space are 2π/(Ji∆i) whereJi is the number of
samples in dimensioni. Violation of this rule will cause the
metric to deviate from what is specified using the weighting
functions.

Since it is preferable to have one sample point atu = 0,
this Fourier coordinate often having particular significance,
the sampling pattern is completely given by the number of
samples in each dimension,Ji .

4 Distortion Measures

Assessing the quality of an optimized kernel is difficult us-
ing only the distance measure since it is an absolute measure
and not directly related to the kernel quality. For a quick
quality assessment it is helpful to calculate a few distortion
measures.

Normalized error

An overall distortion measure is obtained simply by normal-
izing the error measure, i.e.

δ =

√
∑K

k=0‖Wk (fk− f̃k)‖2

∑K
k=0‖Wk fk‖2

(16)

Distortion in spacek

A somewhat more detailed information about the outcome
of the optimization can be obtained by calculating distortion
measures separately for each representation space. In anal-
ogy with equation(16) the distortion in spacek is defined:

δk =
‖Wk (fk− f̃k)‖

‖Wk fk‖ (17)

Equation (17) gives the distortion in spacek in the metric
given by the weighting function,wk. The distortion gives the
ratio between the RMS error and the RMS value of the ideal
function,fk , and is invariant to scaling ofwk and/orfk.

Shape distortion

A measure that in addition to the invariances of equation (17)
also is invariant to scaling off̃ is given by:

σk = sin(ϕk) =

√√√√1− Re[ f̃ T

k W2
k fk ]2

f̃ T

k W2
k f̃k f T

k W2
k fk

(18)

This measure only depends on the angle,ϕk, between the 1-
D subspaces spanned byfk and f̃ and can be thought of as a
shape distortion measure.
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Figure 1:Optimization result using only a constant Fourier weight-
ing function, i.e effectively equivalent to standard DFT.
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Figure 2:Optimization result using a Fourier weighting function cor-

responding to monotonically decreasing signal spectrum: w(u) ∝
S(u) ∝ |u|−1.

5 Single Filters

In this section a few examples of optimization of simple sin-
gle filters are given. The examples illustrates the basic fea-
tures of the optimizer and the effect of different metrics. To
simplify visualization of the results all optimized kernels are
one-dimensional. Note, however, that the method is com-
pletely ‘invariant’ to spatio-temporal dimensionality.

The ideal Fourier filter used in all four examples is a ‘box’
given by: F(u) = 1 if |u| < π/4 andF(u) = 0 otherwise.
Figures 1 to 4 shows how changing the spatio-temporal and
Fourier weighting functions can be used to design a suitable
metric and obtain a filter having the desired features. The
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Figure 3:Optimization result using a spatiotemporal weighting func-

tion favoring locally concentrated kernels: w(x) ∝ x2.
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Figure 4:Optimization result using both Fourier and spatiotemporal

weighting functions: w(u) ∝ |u|−1, w(x) ∝ x2.

shaded areas indicate the ideal Fourier function, the solid
lines shows the optimization results and the dashed lines
shows the weighting functions.

6 Sequential Filters

Using N coefficients it is always possible to find a best ap-
proximation to a given filter using all coefficients at once for
a single filter. In many cases, however, a far more efficient
way of attaining essentially the same filter is to distribute
coefficients over a number of filters. These filters are then
applied in sequence to obtain the final filter response.
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Using this technique it is in many cases possible to attain
equally good filter approximations using only a fraction of
the the number of coefficients required for the single filter
approach. In many situations it is in this way possible to
reduce computational load by 2-digit numbers.

The proposed method involves the following four steps:

1. Chose the number,M, of filters in sequence that is
likely to be appropriate in the present situation.

2. Chose the number of coefficients,Nm, to be used by
each filter in the sequence,m= 1..M.

3. Chose the spatio-temporal coordinate for each coeffi-
cient in theM filters.

4. Optimize the values of theN = ∑mNm coefficients (dis-
tributed over theM filters) so that the combined effect
of the filter sequence approximates the ideal filter as
closely as possible.

Coefficient distribution

Ideally it would be desirable to optimize all four steps jointly.
This is, however, an extremely complex problem and a
method to for finding an overall optimal solution has not been
found. (and it’s doubtful if it ever will be). For this reason
the choices in steps 1-3 have to be made based on experience.

A general approach for distributing the coefficients is to
let the component filters operate on different ‘scales’. The
coefficients can, for example, be spread equidistantly within
each component filter using different distances for different
filters, e.g. ∆ for the first component filter, 2∆ for the next
etc.

6.1 Products in Fourier space

The final step in the sequential filter optimization procedure
is to find the values of allN coefficients of the sequential fil-
ter such that the difference between the reference function,
F(u), andF̃(u) is minimized according to the distance mea-
sure.

The required analysis is best carried out in the Fourier do-
main as the effect of sequentially applied filters is obtained
by simple multiplication of individual filter responses.

A sequential filter,F̃(u) is to approximate an ideal fil-
ter, F(u), by M sequential filter components,F̃m(u). In the
Fourier domain this is expressed as:

F(u) ≈ F̃(u) =
M

∏
m=1

F̃m(u) (19)

Again, the motivation for this operation is that the filters
Fm(u) can potentially be implemented using a considerable
smaller number of kernel coefficients than a direct (M = 1)
implementation ofF(u). In the spatial domain eq. (19) cor-
responds to:

f̃ (x) = f̃1(x)∗ f̃2(x)∗ . . .∗ f̃M(x) (20)

6.2 Recursive Filter Optimization

Even if the number and spatio-temporal positions of all coef-
ficients are considered given optimizing a sequential filter is
no longer a quadratic problem and finding the optimum must
be done using an iterative search.

A method that has proven to work well in practice is to
optimize a single filter component with respect to the present
value of the otherM−1 components. In this way a ‘rotating’
recursion of the single filter optimization method can be used
to rapidly find a set of close to optimal component filters.
Convergence of the algorithm is fast and typically less than
10 iterations are needed.

6.2.1 Modified weighting function view

To convert the kernel optimizer for recursive use requires
some consideration as the ideal filter function and weight
function for a certain filter component depends on the cur-
rent value of the otherM−1 filter components as well as the
reference functionF(u). The case where the Fourier weight-
ing function is the only non-zero weighting function will be
considered first. The distance measure is then given by:

ε2 = ‖W2 (f2− f̃2)‖2 (21)

or more explicitly,

ε2 = ∑
C2

‖w(u)(F(u)− F̃(u))‖2 (22)

In the ideal case, i.e.ε = 0, the following equation holds:

F(u) =
M

∏
l=1

F̃l (u) (23)

Consider the optimization of filter componentm∈ [1,M]. If
all other filter components are considered given then the ideal
filter function for them:th filter component can be obtained
using equation(23).

Fm(u) =
F(u)

∏
l 6=m

F̃l (u)
(24)

For the weight functionw(u) the relation is not quite as obvi-
ous as for the ideal function. A suitable weight function can,
however, be found if the reasoning for obtaining a weight
function in the single filter case is applied. The signal spec-
trum will, for a component filter, effectively be multiplied
with the filtering effect of all other filters in the sequence.

(If, for example, the other filters cause a zero for some
frequency it is obvious that trying to change this fact in the
optimization of the present component filter would not be a
good idea.) A weight function consistent with this reasoning
is for filter componentm given by:

wm(u) = w(u) ∏
l 6=m

F̃l (u) (25)
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Figure 5: Optimization result for sequential filter consisting of four

component filters. The implementation of the filter requires the equiv-

alent of 18 complex coefficients. The result is shown at two different

scales. The solid lines shows the resulting filter in Fourier space.

The dashed line shows the ideal function (lognormal). The dash dot-

ted line shows the weighting function w(u) ∝ |u|−0.5. Fourier space

distortion: δ2 = 0.1.
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Figure 6:Spatial view of the optimization result in figure 5. Solid line

shows filter magnitude. Dashed line shows real part. Dash dotted line

shows imaginary part

If the ideal component filter, equation(24), and weight func-
tion, equation(25), are inserted in eq. (22) the resulting dis-
tance measure for filter componentf̃m(u) results in:

ε2 = ∑
C2

‖w(u)( ∏
l 6=m

F̃l (u))
[ F(u)

∏
l 6=m

F̃l (u)
− F̃m(u)

]
‖2 (26)

Simplifying eq. (26) yields:

ε2 = ∑
C2

‖w(u) [F(u)−
M

∏
l=1

F̃l (u)]‖2 (27)

showing that the recursive optimization procedure will tend
to minimize the distance between the combined effect of the
component filters,̃Fl (u), and the ideal filterF(u).
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Figure 7: Optimization result for same sequential filter setup as in

figure 5 but including spatial weighting function w(x) ∝ x2
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Figure 8:Spatial view of the optimization result in figure 7. Spatial

weighting function w(x) ∝ x2

6.2.2 Modified basis view

Another way of viewing the situation emerges ifF̃m(u) is
expressed using a more explicit version of equation(2):

F̃m(u) ≡ ∑
n

b2(u,n) f̃0m(n) (28)

The filter product can then be written:

M

∏
l=1

F̃l (u) =
M

∏
l 6=m

F̃l (u) ∑
n

b2(u,n) f̃0m(n) (29)

Moving the summation overn outside the product yields:

M

∏
l=1

F̃l (u) = ∑
n

M

∏
l 6=m

F̃l (u)b2(u,n) f̃0m(n) (30)

Finally, using equations (27), (28), (30) and defining:

b2m(u,n) ≡
M

∏
l 6=m

F̃l (u)b2(u,n) (31)

the error can be written as:

ε2 = ∑
C2

‖w(u) [F(u)−∑
n

b2m(u,n) f̃0m(n)]‖2 (32)
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Figure 9:Fourier space view of optimization result for 2D sequential

filter consisting of 12 component filters. Using this filter requires the

equivalent of 24 complex multiplications per pixel. w(u) ∝ ‖u‖−1

andw(x) = 0.

or equivalently using matrix notation:

ε2 = ‖W2( f2−B2mf̃0m )‖2 (33)

whereB2m is a matrix with elements given byb2m(u,n).

This shows that the effect of the other filters in the sequence
can also be seen as modifiers of the basis function matrix
where the modified matrix is given by equation(31). This
formulation avoids the use of a division, (equation(26)), and
was used for the implementation of the optimizer.

6.2.3 Adding spatially specified metric

Adding a spatial weighting function can now be done by sim-
ply transforming the component filterB2mf̃0m (eq: 33) to the
spatial domain. Denoting the matrix corresponding to this
transformation,B12 yields:

ε2 = ‖W2( f2−B2mf̃0m )‖2 + ‖W1( f1−B12B2m︸ ︷︷ ︸
B1m

f̃0m )‖2

(34)
Thus, in general, the error measure for a component filter

can be written:

ε2 =
K

∑
k=0

‖Wk (fk−Bkmf̃0m)‖2 (35)

Figure 10:Spatial view of optimization result for the filter shown in
figure 9.

whereBkm is the matrix transforming from kernel space to
spacek for component filterm.

This result makes it possible to benefit from the advantages
of multiple domain weighting functions also in the design of
sequential filters.

6.3 Optimization results

To demonstrate the potential of the sequential filtering ap-
proach the result of two optimizations are shown in figures 5
to 10. Figures 5 to 8 show an optimized 1D sequential filter
consisting of four component filters. Each component filter
has five coefficients, the coefficients being spread by 1, 2,
4 and 8 spatio-temporal sample distance units respectively.
Using the filter requires the equivalent of 18 complex multi-
plications per output value. This implies that, for a 20 second
signal sampled at 50kHz, this filter implementation reduces
the number of multiplications compared to standard convo-
lution and FFT based approaches by factors 4 and 5 respec-
tively.

Figures 7 and 8 demonstrate the the effect of using a spa-
tial weighting function to improve spatial locality for the se-
quential filter.

Figures 9 and 10 show an optimized 2D sequential filter
consisting of 12 component filters. Each component filter
has five coefficients. The coefficients are placed along lines
at 0, 45, 90 and 135 degrees each direction spread by 1, 2 and
4 spatio-temporal sample distance units respectively. Most of
the coefficients can be real-valued and using the filter only re-
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quires the equivalent of 24 complex multiplications per out-
put pixel. In other words, for a 512×512 image, the imple-
mentation of the filteroutperforms standard convolution and
FFT by factors exceeding30and10 respectively.

7 Conclusion

A novel method for optimizing efficient filters and filter se-
quences has been presented. The method allows specification
of the metric via simultaneous weighting functions in multi-
ple domains, e.g. the spatio-temporal spaceand the Fourier
space. This ‘designer metric’ approach is general in that it
is implementation independent, i.e. the chosen metric ‘tells
it all’ and consequently the design is equally valid if the fil-
ters are implemented as convolutions, using an FFT based
approach or any other technique. The methods capability to
simultaneously improve spatio-temporal and Fourier domain
filter properties has been demonstrated in a number of exam-
ples.

It was shown how convolution kernels for efficient spatio-
temporal filtering can be implemented in practical situa-
tions. Combining the sequential filtering method and spa-
tially sparse kernels efficient filtering can be performed. It
was demonstrated that the method is capable of outperform-
ing both standard convolution and FFT based approaches by
two-digit numbers.

The presented method is equally applicable to filters of
any dimensionality. Although no 3D or 4D examples has
been presented here, initial results indicate that computa-
tional gain will increase even further for higher filter dimen-
sionality.
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