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Abstract: Two problem solving strategies, forward chaining and backward chaining, were 

compared to see how they affect students’ learning of geometry theorem proving with con-

struction. In order to determine which strategy accelerates learning the most, an intelligent 

tutoring system, the Advanced Geometry Tutor, was developed that can teach either strat-

egy while controlling all other instructional variable. 52 students were randomly assigned 

to one of the two strategies. Although computational modeling suggests an advantage for 

backwards chaining, especially on construction problems, the result shows that (1) the stu-

dents who learned forward chaining showed better performance on proof-writing, espe-

cially on the proofs with construction, than those who learned backward chaining, (2) both 

forward and backward chaining conditions wrote wrong proofs equally frequently, and (3) 

the major reason for the difficulty in applying backward chaining appears to lie in the as-

sertion of premises as unjustified propositions (i.e., subgoaling).  

 

1 Introduction 

Geometry theorem proving is one of the most challenging skills for students to learn in a middle 

school mathematics [1]. When a proof requires construction, the difficulty of the task increases 

drastically, perhaps because deciding which construction to make is an ill-structured problem. 

By “construction,” we mean adding segments and points to a problem figure as a part of a proof. 

Our hypothesis is that teaching a general strategy for solving construction problems should help 

student acquire the skill, and that teaching a more computationally effective problem solving 

strategy might elicit faster learning. 

For theorem proving that does not require construction, there are two common problem 

solving strategies: forward chaining and backward chaining. Forward chaining (FC for short) 

starts from given propositions and continuously applies postulates
1
 forwards, that is, by 

matching the postulates’ premises (antecedents) to proved propositions and instantiating its 

conclusions as newly proved propositions.  This continues until FC generates a proposition that 

matches the goal to be proved. Backward chaining (BC for short) starts from a goal to be proved 

and applies postulates backwards, that is, by matching a conclusion of the postulate to the goal, 

then posting the premises that are not yet proved as new goals to be proved.  

In earlier work [2], we found a semi-complete algorithm for construction that is a natural 

extension of backwards chaining, a common approach to proving theorems that do not involve 

construction. The basic idea is that a construction is done only if it is necessary for applying a 

postulate via backwards chaining. The same basic idea can be applied to the FC strategy. 

We have conjectured that both BC and FC versions of the construction strategy are com-

prehensible enough for students to learn. A question then arises: would FC or BC better 

facilitate learning geometry theorem proving with construction?  Furthermore, if there is any 

difference in the impact of different proof strategies, what would it be?  This study addresses 

these questions.  

                                                 
1
 In this paper, a geometric “postulate” either means a definition, an axiom, or a proven theorem. 

Matsuda, N., & VanLehn, K. (2005, to appear). Advanced Geometry Tutor: An intelligent tutor that 

teaches proof-writing with construction. In Proceedings of the 12th International Conference on 

Artificial Intelligence in Education. 



Earlier work suggests that there are pros and cons to both FC and BC as vehicles for learn-

ing proof-writing. From a cognitive-theories point of view, some claim that novice students 

would find it difficult to work with backward chaining [3, 4]. But others claim that novice to 

expert shift occurs from BC to FC [5, 6].  From a computational point of view, we  found that 

FC is more efficient for theorem proving without construction, but BC is the better strategy for 

theorem proving with construction [2]. Yet we are lacking theoretical support to determine 

which one of these strategies better facilitates learning proof-writing with construction.  

To answer the above questions, we have built two versions of an intelligent tutoring sys-

tem for geometry theorem proving with construction, called the Advanced Geometry Tutor 

(AGT for short). The FC version teaches the construction technique embedded in forward 

chaining search. The BC tutor teaches the construction technique embedded in backward 

chaining search. We then assigned students to each tutoring condition, let them learn proof-

writing under the assistance of AGT, and compared their performance on pre- and post-tests.  

In the remaining sections, we first provide a detailed explanation of AGT. We then show 

the results from the evaluation study. We then discuss lessons learned with some implications 

for a future tutor design.  

2 Advanced Geometry Tutor 

This section describes the architecture of AGT. We first introduce the AGT learning environ-

ment. We then explain the scaffolding strategy implemented in AGT.   

2.1 AGT learning environment 

As shown in Figure 1, AGT has five windows each designed to provide a particular aid for 

learning proof writing.  

Problem Description window:  This window shows a problem statement and a problem 

figure. The problem figure is also used for construction. That is, the student can draw lines on 

the problem figure when it is time to do so.  

Figure 1: Advanced Geometry Tutor 
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Proof window:  Although there are several ways to write a proof, we focus on a proof real-

ized as a two-column table, a standard format taught in American schools, where each row 

consists of a proposition and its justification. A justification consists of the name of a postulate 

and, if the postulate has premises, a list of line numbers for the propositions that match its 

premises. The Proof window shown in Figure 1 shows a complete proof for the problem in the 

Problem Description window.  

Message window:  All messages from the tutor appear in this window. When the tutor 

provides modeling (explained in Section 2.2), the instructions that a student must follow appear 

here. When a student makes an error, feedback from the tutor also appears here. More impor-

tantly, this window is used for the students’ turn in a tutoring dialogue, which sometimes 

consists of merely clicking the [OK] button.  The dialogue history is stored, and the student is 

free to browse back and forth by clicking a backward [<<] and a forward [>>] button. 

Postulate Browser window:  The student can browse the postulates that are available for 

use in a proof. When the student selects a postulate listed in the browser’s pull down menu, the 

configuration of the postulate, its premises, and its consequence are displayed. This window is 

also used by the tutor. As shown in Figure 1, when the tutor provides scaffolding on how to 

apply a particular postulate to a particular proposition, the configuration of the postulate changes 

its shape so that the student can see how the postulate’s configuration should be overlapped with 

the problem figure.  

Inference Step window:  Although applying a postulate may seem like a single step to an 

expert, for a novice, it requires following a short procedure.  The Inference Step window 

displays this procedure as a goal hierarchy of indented texts where each line corresponds to a 

single inference step in the postulate application procedure. The tutor highlights the inference 

step that is about to perform. The Inference Step window in Figure 1 shows inference steps 

performed to fill in the 5th row in the proof table.  

2.2 Scaffolding strategy 

The tutor uses both proactive and reactive scaffolding.  Proactive scaffolding occurs be-

fore the step it addresses, whereas reactive scaffolding (feedback) occurs after the step.   

To adapt the level of proactive scaffolding to the student, we apply Wood, Wood and 

Middleton’s tutoring strategy [7], where the rule is, “If the child succeeds, when next interven-

ing, offer less help; If the child fails, when next intervening, take over more control.”  The 

student’s competence level for a step is maintained as follows. When the student correctly 

performs a step, the tutor increases the competence level. Conversely, when the student commits 

an error on a step, then the competence level for that step is decreased.  Based on the student’s 

competence level for a step, the tutor selects one of three types of proactive scaffolding: Show-

tell: the tutor tells students what to do and actually performs the step. Tell: the tutor tells 

students what to do, but asks the student to perform the step. Prompt: the tutor only prompts the 

student to perform the step. 

Reactive scaffolding (feedback) occurs immediately after a step.  On the first failure to en-

ter the step, the tutor provides minimal feedback (e.g., “Try again”).   If the student fails again to 

enter this step, the tutor’s help varies according to the student’s competence level. For example, 

for an inference step for construction the tutor would say “Draw segments so that the postulate 

has a perfect match with the problem figure.” When the student still fails to draw correct 

segments, the tutor lowers the competence level of that inference step and then provides a “Tell” 

dialogue, which generates a feedback message like “Draw new segments by connecting two 

points.” If the students still can not make a correct construction, then the tutor provides more 

specific “Show-Tell” dialogue that would say “Connect points A and B.” Note that this sequence 

roughly corresponds to a sequence of hints that starting from a general idea and becoming more 

concrete until very specific instruction (a bottom-out hint).  



The tutor only gives hints when the student has made mistakes.  Unlike many other tutors, 

AGT has no “Hint” button that students can press when they are stuck and would like a hint.  

However, the tutor does act like other tutors in keeping the student on a solution path.  For 

instance, when there are several applicable postulates, the tutor will only let the student choose 

one that is part of a correct proof. 

Although we chosen these instructional policies based on pilot testing and personal ex-

perience in tutoring geometry students, and we believe that they are appropriate for this task 

domain and these students, we have not compared them to other policies.  Indeed, they were held 

constant during this study so that we could fairly evaluate the learning differences caused by 

varying the problem solving strategy that the tutor taught.  

3 Evaluation 

An evaluation study was conducted in the spring of 2004 to test the effectiveness of AGT and to 

examine an impact of different proof strategies on learning proof writing.  

3.1 Subjects 

52 students (24 male and 28 female) were recruited for monetary compensation from the 

University of Pittsburgh. The average age of the students was 23.3 (SD = 5.4). The students 

were randomly assigned to one of the tutor conditions where they used AGT individually.  

3.2 Procedure and materials 

Students studied a 9-page Geometry booklet, took a pre-test for 40 minutes, used an assigned 

version of AGT to solve 11 problems, and took a post-test for 40 minutes.  Detailed explana-

tions follow. 

The booklet described basic concepts and skills of geometry theorem proving.  It con-

tained (1) a review of geometry proofs that explains the structure of geometry proofs and the 

way they are written, (2) a technique for making a construction, and (3) explanations of all 11 

postulates used in the study.  For each postulate, the booklet provided a general description of 

the postulate in English, a configuration of the postulate, a list of premises, and the consequence 

of the postulate.  The booklet was available throughout the rest of the experiment, including all 

testing and training.  

Pre- and post-tests consisted of three fill-in-the-blank questions and three proof-writing 

questions. The fill-in-the-blank questions displayed a proof-table with some justifications left 

blank and asked students to supplement those blanks. The proof-writing questions provided 

students with a proof table that was initialized with either a goal to be proven (for the FC 

condition) or given propositions (for the BC condition). There was one problem that did not 

require construction and two that required construction.  

For both tutoring conditions, two tests, Test-A and Test-B, were used for the pre- and 

post-test. Their use was counterbalanced so that the half of the students took Test-A as a pre-test 

and Test-B as a post-test whereas the other half were assigned in a reversed order. Test-A and 

Test-B were designed to be isomorphic in the superficial feature of the questions and their 

solution structures, as well as the order of the questions in the test. Our intention was that 

working the tests would require applying exactly the same geometry knowledge in exactly the 

same order.  

Besides the six problems used in the pre- and post-tests, 11 problems were used during the 

tutoring sessions.  Among the 11 training problems, six required construction that could be done 

by connecting existing two points.  

3.3 Results 

A post evaluation analysis revealed that question 5 (a proof-writing problem) in Test-A and 

Test-B were not exactly isomorphic; question 5 in Test-B required additional application of 



CPCTC (the Corresponding Part of Congruent Triangles are Congruent postulate) and SSS (the 

Side-Side-Side triangle congruent postulate). The students who took Test-B made more errors 

than those who took Test-A on question 5 hence there was a main effect of the test version on 

the pre-test: t(50) = 2.32; p = 0.03. When we excluded question 5 from both Test-A and Test-B, 

the main effect disappeared. Hence the following analyses exclude question 5 from both pre- and 

post-tests unless otherwise stated.  

To evaluate an overall performance on the pre- and post-test, we used following variables 

to calculate individual students’ post-test score.  For fill-in-the-blank questions, the ratio of the 

number of correct answers to the number of blanks was calculated. For proof-writing questions, 

the ratio of correct proof statements to the length of a correct proof was calculated.  

With these scores, students using the FC version of the tutor performed reliably better on 

the post-tests than students using the BC version.  In an ANOVA, there was a main effect for the 

tutor on the post-test: F(1,48) = 10.13; p<0.01.  The regression equation of the post-test score 

upon the pre-test score and the tutor condition was: Post-test = 0.52 * pre-test – 0.14 (if BC) + 

0.50.  Using the pre-test scores as a covariate in an ANCOVA, the adjusted post-test scores of 

0.58 and 0.72 for the BC and FC students were reliably different.  The effect size
2
 was 0.72.   In 

short, the FC students learned more than the BC students by a moderately large amount.  

To see how the FC students outperformed the BC students, we conducted an item analysis 

by comparing scores on the fill-in-the-blank and proof-writing questions separately. For fill-in-

the-blank questions, there were no significant differences between FC and BC students on the 

pre-test scores nor on post test scores.  However, there was a main effect of the test (i.e., pre vs. 

post) on test scores for both FC and BC students: paired-t(25) = 2.74; p = 0.01 for FC, paired-

t(25) = 3.43; p < 0.01 for BC. That is, both FC and BC students performed equally well on fill-

in-blank questions, and they improved their performance equally well.  

On proof-writing questions, the difference in pre-test was not significant (t(50) = 0.91; p = 

0.37), but there was a main effect of tutor conditions for the post-test scores: t(50) = 2.53; p = 

0.02. The effect size was 0.93.  

The difference in the overall post-test scores between BC and FC students was thus mainly 

from the difference in proof-writing questions: the FC students wrote better proofs than BC 

students on the post-test. To understand how the FC students outperformed the BC students in 

proof writing, we further compared their performance on proof-writing with and without 

construction.  

Since we excluded question 5, which was a construction problem, there was only one non-

construction problem (question 4) and one construction problem (question 6). Figure 2 shows 

mean scores on these questions. The 

difference in the non-construction problem 

was not significant: t(50) = 0.66; p = 0.51, 

whereas the difference in the construction 

problem was significant: t(50) = 2.89; p < 

0.01. That is, FC and BC students tied on 

non-construction problem, but FC students 

outperformed BC students on construction 

problem.  

In order to narrow the locus of differ-

ence even further, we conducted 3 further 

analyses of the superiority of FC to BC.  The 

analyses contrasted (1) the type of proof 

                                                 
2
 A ratio of the difference between FC and BC mean adjusted post-test scores to the standard deviation of the BC 

pre-test scores.  
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Figure 2: Mean scores on proof-writing for problem 

with and without construction 



written for each problem, (2) the types of proof statements appeared in each proof, and (3) the 

quality of postulate applications used to compose each proof statement.  

Before discussing these analyses, we need to introduce the scheme used to code proof 

statements.  A proof statement, which is written on a single row in the proof table, consists of a 

proposition, a justification, and premises. A proof statement is said to be on-path when it is a 

part of a correct proof.  An off-path proof statement is not a part of a correct proof, hence its 

proposition may or may not true, but the postulate used as a justification has a consequence that 

unifies with the proposition, and its antecedents unify with the premises listed in the justifica-

tion.  A wrong proof statement is neither on-path nor off-path.  

Figure 4 shows the number of occurrence of each type of proofs. “OD” shows the number 

of proofs that were not written in the strategy taught (called TStrategy). The rest of this section 

excludes OD proofs. The figure clearly shows that FC students wrote more correct proofs, 

which by definition contain a tree of on-path proof statements connecting the givens to the top 

goal. FC and BC students were equally likely to write wrong proofs, which contains a tree of 

proof statements but the tree involves at least one proof statement that is not on-path. Aggregat-

ing stuck proofs where a proof does not contain a tree of proof statement, and blank proofs 

where no attempt for proof was made at all, BC students were more likely than FC students to 

fail in these ways.  

 Moving now to the statement-level analysis, there were 479 proof statements (215 and 

264 in BC and FC conditions) appearing on the post-test. Of those, 400 were reasonable (i.e., 

either on-path or off-path) and 79 were wrong statements. 180 statements (92 in BC and 88 in 

FC) were missing, which means that they are necessary for a correct proof but were not 

mentioned at all. Figure 3 shows the frequency of each type of proof statements.  

GRAMY often made off-path state-

ments, especially when using FC to do 

constructions.  However, the students seldom 

made off-path statements, especially in correct 

proofs, where only 3 off-path statements were 

written by FC students and no off-path 

statements were written by BC students. In 

incorrect proofs, off-path statements were 

slightly more frequent (19 for FC; 7 for BC), 

and FC students wrote more off-path proof 

statements than BC student (χ2
 = 8.52; df = 1; 

p < 0.01). A further analysis revealed that all 

those off-path statements were made for 

postulate applications that did not involve 

construction. That is, when they made a 

construction, the students always write an on-

path proof statement.  

Another interesting phenomenon that 

can be read from Figure 3 is that BC students 

wrote wrong proof statements more frequently 

than FC students. Together with the fact 

mentioned earlier that the BC students tended 

to fail to start writing a proof (i.e., the Blank 

proofs in Figure 4), BC students apparently 

found it more difficult to write reasonable 

proof statements (on- and off-path) than FC 

students.  
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Figure 3: Classification of proof statements 
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Figure 4: Classification of proofs 



As for the analysis on the quality of postulate applications, to investigate a reason for BC 

students having difficulty on writing proof statements, we coded each of the 79 wrong proof 

statements as a triple of independent codes of (1) the proposition, (2) the justification, and (3) 

the premises, which are three constituents of a proof statement. For each proof statement, we 

coded each instance of these constituents as on-path, off-path, wrong, or blank. We then ran 

2 x 4 Contingency table analyses on each constituent to see if there was difference in the 

frequency of these constituents between BC and FC students.  

 For propositions and justifications, FC and BC did not display different frequency distri-

butions.  There was, however, a significant difference in the use of premises between FC and BC 

students.  Figure 5 shows a 2 x 4 Contingency table on the use of premises. A Fisher’s exact test 

on the table was 7.25 (p = 0.04), indicating a significant difference in the distribution of codes 

for premises. The BC students 

tended to leave the premises 

blank more often than the FC 

students.  This tendency of 

leaving the premise blank was 

one reason for the inferiority 

of BC students in writing 

correct proofs compared to the 

FC students.  

4 Discussion and Concluding Remarks 

4.1 Learning proof-writing with construction 

The first major contribution of this study is showing that proof-writing with construction can be 

taught with a technique that is a natural extension of theorem proving without construction.  

Although geometry construction is a difficult skill, perhaps even a creative one, it can be taught 

by conventional ITS technology, given that the tutor has an explicit problem solving strategy to 

teach that will solve construction problems.  

Although there was not a main effect on accuracy of postulate applications measured with 

the fill-in-the-blank questions on the post test, some students (the FC ones) outperformed other 

(the BC ones) in proof-writing. This suggests that understanding domain principles (i.e., the 

concept of geometric postulates) is not sufficient for writing correct proofs.  In addition, one 

must acquire proof-writing skills, and different kinds of instruction are differentially effective at 

facilitating this.  

4.2 Impact of the different proof strategies on learning proof-writing 

Despite the much higher computational demands of the FC version of the construction algorithm 

compared to the BC version, as documented in computational experiments with GRAMY [2], it 

turned out that FC students acquired more skill at construction than BC students. Our finding 

agreed with other empirical studies showing novice students’ difficulty in applying backward 

chaining. It seems that problem solving complexity for a computer does not necessarily imply 

learning complexity for humans.  Indeed, although both GRAMY and the students used both FC 

and BC, GRAMY always produces many off-path proof statements whereas the humans rarely 

did. This suggests that the humans are using knowledge or strategies not represented in 

GRAMY.   

4.3 Difficulty in subgoaling 

The BC students tended to get stuck at providing premises even when they picked a correct 

proposition and a postulate. It seems to be difficult for BC students to specify subgoals as the to-

be-justified propositions that support a postulate application.  

Premises 
 

Blank Off-path On-path Wrong Total 

BC Count 27 2 1 18 48 

 Expected Count 21.9 3.6 .6 21.9 48.0 

FC Count 9 4 0 18 31 

TStrategy 

 Expected Count 14.1 2.4 .4 14.1 31.0 

Count 36 6 1 36 79 Total 

Expected Count 36.0 6.0 1.0 36.0 79.0  

Figure 5: A 2 x 4 Contingency table on the use of premises 



Subgoaling requires that the students write into the table one or more propositions (i.e., to 

satisfy the premises of a justification) that have yet to be proved. At the time they are entered 

into the proof table, those premises are not “true” assertions, but just hypothesis to be proved. 

This uncertainty may increase the chance of failure in backward chaining. Furthermore, those 

propositions are usually new in the proof table. Forward chaining, on the other hand, always 

enters propositions that are derived from known facts. Backward chaining differs mostly from 

forward chaining in this guess-and-try fashion in entering proof statements.  

4.4 Implications for a future tutor design 

A potential way to improve the BC tutor’s efficacy is to intensify modeling and scaffolding on 

subgoaling for backward chaining. Although asserting unjustified propositions into a proof step 

was explicitly stated in the cognitive model of backward chaining utilized in AGT, the model 

was not effective in supporting the BC students in learning subgoaling. 

The inadequacy of the BC tutor may also be due to a lack of instruction on backtracking. 

Backward chaining is essentially nondeterministic. For some goals, there are multiple equally 

plausible postulates whose consequences unify with the goal. Therefore, one must choose one of 

the postulates, try it, and if it does not work well, back-up to the choice point and choose another 

postulate. AGT acted as a more restricted tutor. Instead of allowing students to choose a 

postulate and possibly backup to this choice later, the tutor only allows them to choose an on-

path postulate, so they never had to back up during training. This design principle is supported 

by an observation that the more the students flounder, the less opportunity they have for each 

cognitive skill to be exposed hence they achieve less learning [8]. For subgoaling, however, it 

might be necessary for students to understand that they are asserting hypotheses that could be 

wrong. Moreover, when applying backward chaining during the post-test, students may have had 

to choose among equally plausible postulates. This could cause confusion and consternation. 

Thus, it might be necessary to let students backtrack during training. 

A related issue is to teach students to recover when they get stuck. Since the backward 

chaining strategy may lead them to an impasse, they should be taught what to do when they get 

stuck. AGT did not do this. Perhaps that is why the BC students often got stuck during the post-

tests. AGT should train an ability to analyze the situation to identify an impasse, to diagnose the 

cause of the impasse, and to figure out an alternative way to avoid it by selecting a different 

path.  
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