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Abstract

The formation of advanced glycation end products (AGEs) is an important biochemical abnormality that accompanies diabetes mellitus

and, likely, inflammation in general. Here we summarize and discuss recent studies indicating that the effects of AGEs on vessel wall

homeostasis may account for the rapidly progressive atherosclerosis associated with diabetes mellitus. Driven by hyperglycemia and oxidant

stress, AGEs form to a greatly accelerated degree in diabetes. Within the vessel wall, collagen-linked AGEs may ‘‘trap’’ plasma proteins,

quench nitric oxide (NO) activity and interact with specific receptors to modulate a large number of cellular properties. On plasma low

density lipoproteins (LDL), AGEs initiate oxidative reactions that promote the formation of oxidized LDL. Interaction of AGEs with

endothelial cells as well as with other cells accumulating within the atherosclerotic plaque, such as mononuclear phagocytes and smooth

muscle cells (SMCs), provides a mechanism to augment vascular dysfunction. Specifically, the interaction of AGEs with vessel wall

components increases vascular permeability, the expression of procoagulant activity and the generation of reactive oxygen species (ROS),

resulting in increased endothelial expression of endothelial leukocyte adhesion molecules. AGEs potently modulate initiating steps in

atherogenesis involving blood-vessel wall interactions, triggering an inflammatory-proliferative process and, furthermore, critically

contribute to propagation of inflammation and vascular perturbation in established disease. Thus, a better understanding of the biochemical

mechanisms by which AGEs contribute to such processes in the vessel wall could be relevant to devise preventive and therapeutic strategies

for diabetic atherosclerosis.

D 2004 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
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1. Introduction disease, long inferred from a variety of animal and clinical
n 16 August 2022
Both type-1 and type-2 diabetes are powerful and inde-

pendent risk factors for coronary artery disease, stroke, and

peripheral arterial disease [1,2]. Accelerated atherosclerosis,

as well as microvascular disease, are the major vascular

complications of diabetes, constituting the main cause of

morbidity and mortality in this common metabolic disorder.

The primary causal factor leading to the pathophysiologic

alterations in the diabetic vasculature is the chronic exposure

to high levels of blood glucose [3]. A causal relationship

between chronic hyperglycemia and diabetic microvascular
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studies [4], has been definitely established by data from the

Diabetes Control and Complications Trial, comprising two

multicenter, randomized, prospective controlled clinical stud-

ies [3,5]. A relationship between chronic hyperglycemia and

diabetic macrovascular disease in non-insulin-dependent

diabetes mellitus patients is also supported by a number of

other reports [6,7].

Although the effects of glucose in adversely modulating

cellular properties occurs by a variety of mechanisms [8,9],

the most important pathway involved in the pathogenesis

of the accelerated atherosclerosis in diabetes is most likely

the increase in nonenzymatic glycation of proteins and

lipids, with the irreversible formation and deposition of

reactive advanced glycation end products (AGEs). This
ed by Elsevier B.V. All rights reserved.
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which AGEs accumulate in the extracellular space and

within cells of the vessel wall and thus contribute to the

accelerated atherosclerosis in diabetes.

AGEs may promote atherogenesis by oxidizing low

density lipoproteins (LDL) and causing changes in the

intimal collagen. A major contribution of AGEs to athero-

genesis however recently emerges from important studies

that have led to the isolation of a receptor for AGEs on cell

surface, termed ‘‘RAGE’’, which functions as a signal

transduction receptor, also binding non-AGE-related pro-

inflammatory molecules such as S100/calgranulins and

amphoterins. The overlapping accumulation and expression

of RAGE and its ligands at sites of tissue lesions sustains

RAGE-mediated cellular activation and the induction of

multiple signaling pathways. The importance of RAGE–

ligand interaction is underscored by the suppression of early

accelerated atherosclerosis and established atherosclerosis in

a glycemia- and lipid-independent manner in diabetic apo-

lipoprotein-E (apo-E) null mice after treatment with the

soluble extracellular domain of the receptor for AGEs. All

such notions will be here reviewed in detail.
Fig. 1. Possible pathways in the formation of advanced glycation end products (A

glucose with any free amino group on proteins creates a Schiff’s base, which spo

changes (not shown) are progressively less reversible, and ultimately lead to th

intermediates such as 3-deoxy-glucosone, glyoxal and methyl-glyoxal can be form

can react again with free amino groups to form AGE products such as imidazo

glyoxal-lysine dimer (GOLD) and methyl-glyoxal-lysine dimer (MOLD).
2. Biochemical mechanisms leading to production of

AGEs

Nonenzymatic glycation occurs through the covalent

binding of aldehyde or ketone groups of reducing sugars

to free amino groups of proteins, forming a labile Schiff’s

base (Fig. 1).

The initial Schiff’s base undergoes rearrangements to a

much more stable ketoamine, called Amadori’s product

(Fig. 1). The reactive free carbonyl group of these Ama-

dori’s products is responsible for some of the biological

consequences of glycation. In addition, Amadori’s products

can be degraded into a variety of other highly reactive

carbonyl compounds such as 3-deoxy-glucosone, which

can react again with free amino groups to form interme-

diate glycation products. Recently, it has been proposed

that the intermediates contributing to AGE formation

include dicarbonyl intermediates such as 3-deoxy-gluco-

sone, glyoxal and methyl-glyoxal [10] (Fig. 1). Glyoxal

and methyl-glyoxal can be also formed by glucose auto-

oxidation and by products from glycolipids [11,12]. These

initial and intermediate glycation products slowly undergo
GEs). The initial interaction between the highly reactive aldehyde group of

ntaneously rearranges itself into an Amadori’s product. Subsequent, slower

e formation of AGEs. In addition, a variety of highly reactive carbonyl

ed by glucose or Schiff’s base or Amadori’s product auto-oxidation, which

lone, N-q-carboxy-methyl-lysine (CML), N-q-carboxy-ethyl-lysine (CEL),
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Fig. 2. Chemical structures of some advanced glycation end products (AGEs). FFI: 2-(2-furoyl)-4(5)-furanyl-1H-imidazole; AFGP: 1-alkyl-2-formyl-3,4-

diglycosyl pyrrole; Pentosidine: pyrraline; CML: N-q-carboxy-methyl-lysine; CEL: N-q-carboxy-ethyl-lysine; Imidazolone; GOLD: glyoxal-lysine dimer;

MOLD: methyl-glyoxal-lysine dimer.

Table 1

Non-receptor-mediated effects of AGEs on atherogenesis

Extracellular matrix

Collagen cross-linking and high resistance to collagenases [29]

Enhanced synthesis of extracellular matrix components [28]

Decreased polymer self-assembly of laminin and impairment of binding to

type-IV collagen, and heparan sulfate proteoglycans [38]

Quenching of nitric oxide by collagen-linked AGEs [80]

Trapping of LDL and IgG in the subendothelium [35,36]

Lipoprotein modifications

Reduced AGE–LDL recognition by cellular LDL receptor [39]

Increased LDL susceptibility to oxidative modifications [39,41]

AGEs: advanced glycation end products; LDL: low density lipoproteins;

IgG: immunoglobulins G.
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a complex series of further chemical rearrangements, to

yield irreversible AGE structures of yellow-brown color

and fluorescence, with a propensity to generate reactive

oxygen species (ROS) and interact with specific cell

surface structures [13]. AGEs comprise a large number

of chemical structures including: 2-(2-furoyl)-4(5)-furanyl-

1H-imidazole (FFI), 1-alkyl-2-formyl-3,4-diglycosyl pyr-

roles (AFGPs), N-q-carboxy-methyl-lysine (CML), pyrra-

line and pentosidine [14] (Fig. 2). Biochemical and

immunohistochemical studies suggested that CML modifi-

cations of proteins are predominant AGEs that accumulate

in vivo [15–17].

Recently, a significant new fraction of total AGEs, with

relevant effects not only on protein structure and function,

but also as mediators of biological responses, have been

characterized in tissues. These compounds include: (1) the

imidazolone adduct formed by reaction of 3-deoxy-gluco-

sone with arginine residues in protein; (2) N-q-carboxy-
ethyl-lysine, an analogue of CML formed by the reaction of

methyl-glyoxal with lysine; (3) glyoxal-lysine dimer

(GOLD); and (4) methyl-glyoxal-lysine dimer (MOLD),

which are imidazolium cross-links formed by the reaction

of glyoxal or methyl-glyoxal with lysine residues in protein

[18–21] (Fig. 2). In addition, the presence of white blood

cell myeloperoxidase can enhance the formation of glyco-

laldehyde and 2-hydroxy-propanal from serine and threo-
nine, respectively, even in the absence of sugars [22],

suggesting a role for AGEs in inflammation [23,24].
3. How AGEs promote atherosclerosis: molecular

mechanisms

In type-2 diabetic patients with coronary heart disease,

elevated levels of AGEs and CML have been reported [25].

Immunohistochemical analyses of human atherosclerotic

lesions using a monoclonal anti-AGE antibody have demon-

strated diffuse extracellular as well as dense intracellular



Table 2

Receptor-mediated effects of AGEs on atherogenesis

Mononuclear phagocytes

Induction of PDGF, IGF-1, IL-1 h and TNF-a [67–69]

Chemotaxis by soluble AGEs [68,71]

Apoptaxis by immobilized AGEs [70,71]

Increased macrophage uptake of AGE–LDL [43]

Smooth muscle cells

Increased proliferative activity [73,74,88]

Increased production of fibronectin [73]

Endothelial cells

Increased permeability [75,76]

Increased intracellular oxidative stress [58,59,63]

Induction of endothelin-1 and increased vasoconstriction [82]

Reduction of thrombomodulin expression and induction of tissue factor

expression [75,77]

Increased expression of adhesion molecules [23,61]

AGEs: advanced glycation end-products; PDGF: platelet-derived growth

factor; IGF-1: insulin-like growth factor-1; TNF-a: tumor necrosis factor-a;

IL-1h: interleukin-1h; LDL: low density lipoproteins.
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cells [26,27]. Tissue AGE concentration correlates with the

severity of atherosclerotic lesions and with the accumulation

of plasma proteins, lipoproteins and lipids in the vessel wall

[25,28].

AGEs can be highly deleterious to the integrity and

function of blood vessel walls in several ways. One possi-

bility is the purely mechanical dysfunction caused by AGE

cross bridges among vessel wall macromolecules [29]. A

second form of damage promoting atherosclerosis is that

AGE accumulation can cause circulating blood cells to

adhere to the vessel wall. A third, nonmechanical source

of damage is the perturbation of cellular function through

binding to a variety of receptors that have been identified on

various cell types, including macrophages, endothelial cells,

smooth muscle cells, renal and neuronal cells [30–33].

AGE formation may thus accelerate the atherosclerotic

process through two general mechanisms which can be

classified as non-receptor-dependent (Table 1) and recep-

tor-mediated (Table 2).
stice user on 16 August 2022
4. Non receptor-mediated effects of AGEs on

atherogenesis

4.1. Effects of AGEs on extracellular matrix

AGE formation alters the functional properties of several

important matrix molecules. Collagen in the blood vessel

wall has a relatively long biological half-life, and with time

undergoes significant nonenzymatic glycation, which may

have a considerable bearing on atherosclerosis [34]. Solu-

ble plasma proteins, such as LDL and immunoglobulins

(Ig)G, are also entrapped and covalently cross-linked by

AGEs on collagen [35,36].

AGE formation on type-IV collagen from the basement

membrane inhibits lateral association of these molecules
into a normal network-like structure [29,37]. Formation of

AGEs on laminin decreases polymer self-assembly, as well

as binding to type-IV collagen and heparan sulfate proteo-

glycans [38].

These AGE-induced abnormalities in the function of

extracellular matrix alter structure and function of intact

vessels.

4.2. Effects of AGEs on lipids

The glycation process occurs both on the apoprotein B

(apoB) and on phospholipid components of LDL, leading to

both functional alterations in LDL clearance and increased

susceptibility to oxidative modifications [39]. In fact, diabetic

LDL samples revealed significantly elevated levels of both

apoB- and lipid-linked AGEs, which correlated with levels of

oxidized LDL [40]. It has been proposed that intermediates

such as glyoxales, glycolaldehydes, hydroxyaldehydes or

other carbonyl group-containing compounds can be formed

in the oxidation of both carbohydrates and polyunsaturated

fatty acids [41]. These common intermediates, as mentioned

above, can in turn react with free amino groups of proteins

(such as LDL apoB) to form AGE products, including imida-

zolone, CML, CEL, GOLD, MOLD and others [19,20,42].

Further, the uptake of glycated LDL by human monocyte-

derived macrophages occurs to a greater extent than for na-

tive LDL by a low-affinity nonspecific (‘‘scavenger’’) recep-

tor with the resulting stimulation of ‘‘foam’’ cell formation,

characteristic of the early atherosclerotic lesion [43].
5. Receptor-mediated effects of AGEs in atherogenesis

5.1. Cellular uptake of AGEs

Cell surface AGE-receptors mediate endocytosis and

degradation of AGE-modified molecules, serving an impor-

tant function in AGE catabolism and turnover. Search for

mechanisms of AGE removal has led to the discovery of

several cellular receptors binding these irreversibly modified

macromolecules. Initially, it was observed that both in vivo-

isolated and in vitro-synthesized AGEs are recognized by a

macrophage AGE receptor that is distinct from previously

described macrophage scavenger receptors [44]. Several

studies have later led to the identification, cloning, and

analysis of a receptor for AGEs (RAGE), which is until

now the best characterized protein mediating cellular effects

of AGEs [45–47]. RAGE, a multi-ligand member of the

immunoglobulin superfamily, is increasingly viewed as an

intracellular signal-transducing peptide rather than as a sim-

ple receptor involved in AGE endocytosis and turnover [48].

5.2. Structure of RAGE protein

RAGE is an approximately 45-kDa protein originally

isolated from bovine lung endothelium on the basis of its
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ability to bind AGE ligands [49]. Subsequent molecular

cloning revealed that RAGE was a newly identified

member of the immunoglobulin superfamily of cell-surface

molecules [50]. The entire mature receptor consists of 403

amino acids in man, rat and mouse. The extracellular

region of RAGE consists of one V-type (variable) immu-

noglobulin domain, followed by two C-type (constant)

immunoglobulin domains, stabilized by internal disulfide

bridges between cysteine residues. The V-type domain

includes two putative N-linked glycation sites. In addition

to the extracellular domain, RAGE displays a single

putative transmembrane-spanning region and a short, high-

ly charged cytosolic tail.

5.3. RAGE tissue expression, ligands and activation

RAGE has been found to be highly conserved across

species and expressed in a wide variety of tissues [50–52].

Its presence in multiple tissues suggests a potential rele-

vance of ligand–RAGE interactions for the modulation of

vascular properties, as well as neural, renal and cardiac

functions, prominently affected in diabetes and aging.

Indeed, the expression of RAGE is upregulated at sites of

diverse diseases, from atherosclerosis to Alzheimer’s dis-

ease and Amyotrophic Lateral Sclerosis [45,53]. In this

context, other ligands for the receptor have been identified

and are linked to homeostatic as well as pro-inflammatory

events. A first example for this is the binding to RAGE of

amphoterin, a developmentally expressed neurite-outgrowth

promoting protein that is, intriguingly, upregulated in

tumors, where its interaction with RAGE facilitates tumor

cell migration and invasion [30,54]. A second example is a

polypeptide of the S100/calgranulin family of pro-inflam-

matory cytokines, S100A12 [55]. This latter, also termed

extracellular newly identified RAGE binding protein (EN-

RAGE), interacts with RAGE in a dose-dependent and

saturable manner, resulting in the activation of cellular

targets and competing with another member of the S100/

calgranulin family, S100B, also capable of binding to

RAGE [55]. Thus, RAGE is a receptor not only for AGEs,

but also for S100/calgranulins, molecules found in any

inflammatory lesion, including the blood vessel wall of

diabetic individuals [56,57]. The overlapping presence of

high levels of AGEs, S100/calgranulins, and RAGE, togeth-

er with dyslipidemia, might conspire to cause the rapid

atherosclerosis observed in diabetes. This property of

RAGE of binding different seemingly diverse ligands

deserves further research.

Another feature of RAGE is an unusual co-expression

with its ligands in tissues. At sites of accumulated AGEs

and S100/calgranulins in the vascular lesions, for example,

there is increased expression of the receptor in cells of the

vessel wall, including the endothelium, vascular smooth

muscle cells and invading mononuclear phagocytes [57].

This overlapping distribution of the receptor and its

ligands is thought to lead to prolonged cellular activation,
resulting in further increased expression of the receptor.

Contrary to other receptors, such as the LDL receptor, which

are downregulated by increased levels of their ligand, the

RAGE–ligand interaction would thus lead to a positive

feedback activation, which further increases receptor ex-

pression. To date, the only way to substantially down-

regulate RAGE expression is to interrupt the cycle of

ligand engagement of the receptor, by means of soluble

RAGE or blocking antibodies.

5.4. Signal transduction pathways activated by RAGE–

ligand interaction

The most important pathological consequences of

RAGE–ligand interaction appear to be cellular activation,

leading to the induction of oxidative stress and a broad

spectrum of signaling mechanisms. Even if AGEs were

nothing more than accidental ligands for RAGE, interaction

of RAGE with other ligands such as amphoterin is likely to

induce similar consequences.

In the vasculature, the principal pathological conse-

quence of AGE interaction with endothelial surface RAGE

is the induction of intracellular reactive oxygen species

(ROS) [58], the generation of which seems to be linked, at

least in part, to the activation of the NAD(P)H-oxidase

system [59] (Fig. 3). These ROS would in turn activate the

redox-sensitive transcription nuclear factor NF-nB, a pleio-

tropic regulator of many ‘‘response-to-injury’’ genes. This

signal transduction cascade can be blocked by antibodies

directed against either RAGE or against AGEs themselves

[59].

Induction of NF-nB in response to oxidative stress in

turn leads to a transcriptional activation of many genes,

many of which are highly relevant for inflammation, im-

munity and atherosclerosis. These include tumor necrosis

factors (TNF-a and TNF-h), interleukins 1, 6 and 8 (IL-1,

IL-6 and IL-8), interferon-g (IFN-g), and cell adhesion

molecules [23,60,61].

It is important to note that the tethering of AGEs to the

cell-surface is not enough to generate ROS and cellular

activation, since the RAGE carboxy-terminal cytosolic tail,

containing known signaling phosphorylation sites, kinase

domains, and other activation sites, is critical for RAGE-

dependent cellular activation. In fact, a truncated form of

RAGE, lacking only the cytosolic tail and expressed in cells,

retains the binding to various ligands identically as wild-

type RAGE, but does not mediate the induction of cellular

activation [55].

Triggering of inflammatory effector mechanisms (gener-

ation of cytokines and chemokines, and expression of cell

adhesion molecules) mediated by the AGE–RAGE interac-

tion involves multiple intracellular signal transduction path-

ways, including p21ras, MAP kinases, PI3 kinase, cdc42/

rac, Jak/STAT, NAD(P)H oxidase and others [59,61–66]

(Fig. 3). Each of these pathways is closely linked to AGE

binding to RAGE, because blockade of the receptor with



Fig. 3. Signal transduction pathways activated by RAGE–ligand interaction. The extracellular region of RAGE consists of one V-type (variable)

immunoglobulin domain, followed by two C-type (constant) immunoglobulin domains, stabilized by internal disulfide bridges between cysteine residues. The

V-type domain includes two putative N-linked glycation sites. In addition to the extracellular domain, RAGE displays a single putative transmembrane-

spanning region and a short, highly charged cytosolic tail. Activation of RAGE by AGEs induces the increased generation of oxygen radicals by an NAD(P)H

oxidase. Free radicals then activate a Ras-MAP kinase pathway eventually leading to the activation and nuclear translocation of NF-nB. A distinct signaling

pathway (cdc42/rac) is responsible for RAGE-mediated neurite outgrowth.

G. Basta et al. / Cardiovascular Research 63 (2004) 582–592 587

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/article/63/4/582/318389 by U

.S. D
epartm

ent of Justice user on 16 August 2022
either anti-RAGE IgG or excess soluble (s)RAGE prevents

their activation.

5.5. Interaction of AGEs with mononuclear phagocytes

The interaction of AGEs with mononuclear phagocytes

MPs has been shown to induce a phenotype of activated

macrophages, manifested by the induction of platelet-de-

rived growth factor, insulin-like growth factor-1, and pro-

inflammatory cytokines, such as IL-1h and TNF-a [67–69].

In MPs, AGE–RAGE interaction prompts cell migration

(chemotaxis). This is mediated by the interaction of soluble

RAGE ligands (AGEs prepared in vitro or isolated from

diabetic subjects, AGE-h2-microglobulin or CML-adducts)

with RAGE. In contrast to the effect of soluble AGEs,

immobilized AGEs, such as those found in basement

membranes, slow down MP migration, a process known

as ‘‘apoptaxis’’. Both chemotactic and apoptactic responses

are blocked by anti-RAGE IgG or sRAGE [70,71].

In a more recent study, EN-RAGE has been utilized as a

stimulus to induce chemotaxis. The induced migration of

MPs has here been shown to be concentration- and RAGE-

dependent. Similarly, the engagement of RAGE by EN-

RAGE in cultured Bv2 cells (murine macrophages) induced

production of IL-1h and TNF-a, in an NF-nB-dependent
fashion [55]. On the other hand, when MPs reach a site of

immobilized AGEs in the tissue, their migration is dimin-

ished, allowing them to bind to the AGE-modified surface

and become activated. This could provide a mechanism for
attracting and retaining MPs at sites of AGE deposition in

tissues.

Recently, in humans diabetic plaque macrophages,

RAGE overexpression has been associated with enhanced

inflammatory reaction, cyclooxygenase-2/prostaglandin E

synthase-1 expression; this effect may contribute to plaque

destabilization through the induction of metalloproteinase

expression [72].

5.6. Interaction of AGEs with vascular smooth muscle cells

Cultured smooth muscle cells (SMCs) in the presence of

AGEs exhibit an increased proliferative activity and pro-

duction of fibronectin [73]. In vivo, the effects promoting

SMC growth are probably—at least in part—indirect, me-

diated by cytokines or growth factors induced by AGEs in

the MPs. Transforming growth factor-h (TGF-h) might act

as an intermediate factor in AGE-induced fibronectin pro-

duction by SMC [73].

In this context, ligand–RAGE interaction in perturbed

SMCs has important implications for the biology of reste-

nosis [74].

5.7. Interactions of AGEs with vascular endothelium:

alterations of vascular permeability and of adhesive

properties

Because of its unique position and numerous properties,

the vascular endothelium is particularly important in the
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regulation of permeability, the maintenance of blood fluidity,

the regulation of vascular growth and tone, andmetabolism of

hormones and vasoactive mediators. The endothelium is

exposed to AGEs localized on circulating proteins or cells

(for example, diabetic red blood cells), as well as those

present in the underlying subendothelial matrix. Receptors

for AGEs have been found on the endothelial cell surface, and

mediate both the uptake and transcytosis of AGEs, as well as

the internal signal transduction. AGE–RAGE interaction

causes alteration of barrier function that has been documented

with an increased permeability of endothelial cells incubated

with AGEs and increased transit of macromolecules through

the endothelial monolayer. The increase in permeability is

accompanied by alterations of the physical integrity of the

endothelium, as shown by the destruction of organized actin

structures and alterations of cellular morphology [75,76].

It has also been demonstrated that AGEs determine

alterations of endothelial anti-hemostatic functions in vitro,

as shown by a reduction of thrombomodulin expression and

the concomitant induction of tissue factor expression

[75,77]. The induction of tissue factor and the reduction in

thrombomodulin activity change the dynamic endothelial

properties with regard to hemostasis from those of an

anticoagulant to those of a procoagulant surface.

Binding of AGEs to endothelial RAGE also results in the

depletion of cellular antioxidant defense mechanisms (e.g.

glutathione, vitamin C) [63] and the generation of ROS [58]

(Fig. 2). As a consequence of the increased cellular oxida-

tive stress, NF-nB activation occurs, thus promoting the

expression of NF-nB-regulated genes including, in addition

to the procoagulant tissue factor, adhesion molecules, such

as E-selectin, intercellular adhesion molecule-1 (ICAM-1)

and vascular adhesion molecule-1 (VCAM-1) [23,75,77];

this past may prime diabetic vasculature towards enhanced

interaction with circulating monocytes [78,79]. Also the

incubation of endothelial cells with EN-RAGE or S100B

causes VCAM-1 induction, in a RAGE-dependent manner,

as confirmed by the inhibitory effect of anti-RAGE IgG or

sRAGE [55].

5.8. Alterations of endothelium-dependent vasodilatation

AGEs linked to the vascular matrix can chemically

interfere with the bioavailability of nitric oxide (NO), an

important regulator of vascular tone inducing SMC relaxa-

tion [80,81]. AGEs, when added to NO in vitro, block NO

activity in a concentration-dependent manner. Studies on

animal models with experimentally induced diabetes dem-

onstrate that an alteration of endothelium-dependent dilata-

tion occurs quickly, within 2 months, from diabetes

induction [80]. Presumably, the inactivation of NO occurs

through a direct reaction of the NO radical with other free

radicals that are formed during the reactions of advanced

glycation. In parallel, AGEs induce the expression of the

potent vasoconstrictor endothelin-1 changing endothelial

function towards vasoconstriction [82].
6. Effects of AGEs in experimental animals

The first evidence of the direct pathogenetic role of

AGEs—independent of hyperglycemia and other possible

contributory factors occurring in diabetes—has been

obtained in animal models, namely healthy euglycemic rats

treated with AGEs. With such treatment, tissue deposition of

AGEs occurs, and this is accompanied by various changes

in vascular function, including alterations of permeability,

subendothelial sequestration of monocytes, and decreased

sensitivity to vasodilatory agents [83,84]. Nondiabetic

rabbits treated for long time with ‘‘physiological’’ amounts

of AGEs also manifest AGE deposition in aortic tissue and

the expression of adhesion molecules such as VCAM-1 and

ICAM-1 [85].

To dissect the contribution of RAGE–ligand interaction

in the pathogenesis of diabetic vasculopathy, an acute

animal model of diabetes-associated hyperpermeability

was tested first, using reagents blocking the receptor itself

or blocking the access of ligands to RAGE, by administer-

ing the decoy protein soluble (s)RAGE [76]. Rats rendered

diabetic with streptozotocin, after 9–11 weeks of diabetes

showed increased vascular permeability in multiple organs,

especially the intestine, the skin and the kidneys. Tissue

permeability was here normalized with RAGE blockade,

using either sRAGE or monospecific antibodies.
7. Lessons from genetically engineered animal models

A major contribution to the understanding of the devel-

opment of accelerated diabetic macrovascular disease has

come from the availability of murine models of atheroscle-

rosis. Since mice are inherently resistant to the development

of atherosclerosis, in part due to their high plasma levels of

high-density lipoproteins (HDL), strains genetically suscep-

tible to atherosclerosis have been used. In mice deficient in

apolipoprotein (apo) E, which develop spontaneous athero-

sclerosis on a normal chow diet, induction of diabetes with

streptozotocin was associated with an approximately five-

fold increase in mean atherosclerotic lesion area at the aortic

sinus after 6 weeks of diabetes compared to euglycemic

apoE null mice of the same age [86]. The administration of

sRAGE in diabetic apoE-null animals suppressed accelerat-

ed diabetic atherosclerosis. Interestingly, in this contest,

euglycemic animals receiving sRAGE also demonstrated a

trend towards diminished atherosclerosis compared to vehi-

cle-treated animals [86,87]. Taken together, these findings

strongly suggest that AGEs, the formation of which certain-

ly occurs even in an euglycemic environment due to normal

levels of glucose and to oxidant stress, or plasma levels of

other ligands, such as EN-RAGE, may be involved in the

initiation and progression of atherosclerosis, at least in part,

in a RAGE-dependent manner [87].

It is well-established that smooth muscle cell prolifera-

tion, migration and the expression of extracellular matrix
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proteins and matrix metalloproteinases contribute to neo-

intimal formation upon vascular injury. It has been demon-

strated that wild-type C57BL/6 mice undergoing arterial

endothelial denudation displayed a striking upregulation of

RAGE in the injured vessel, particularly in activated smooth

muscle cells of the expanding neointima [74]. Blockade of

RAGE, by soluble truncated receptor or antibodies, or the

absence of RAGE in homozygous RAGE null mice, resulted

in significantly decreased neointimal expansion after arterial

injury and decreased smooth muscle cell proliferation,

migration and expression of extracellular matrix proteins

[74]. A critical role for smooth muscle cell RAGE signaling

was demonstrated in mice bearing a transgene encoding a

RAGE cytosolic tail deletion mutant, specifically in smooth

muscle cells, driven by the SM22a promoter. Upon arterial

injury, neointimal expansion was strikingly suppressed

compared to that observed in wild-type littermates. These

data highlight key roles for RAGE in modulating smooth

muscle cell properties after injury [74,88].

Recently, it has been shown that RAGE functions also as

an endothelial adhesion receptor promoting leukocyte re-

cruitment by a direct interaction of RAGE with the leuko-

cyte beta2-integrin Mac-189. In an animal model of

thioglycollate-induced acute peritonitis, leukocyte recruit-

ment was significantly impaired in RAGE-deficient mice as

opposed to wild-type mice. In diabetic wild-type mice

enhanced leukocyte recruitment to the inflamed peritoneum

was observed compared with nondiabetic wild-type mice;

this phenomenon was abrogated in the presence of soluble

RAGE, and was absent in diabetic RAGE-deficient mice

[89]. RAGE–Mac-1 interaction defines a novel pathway of

leukocyte recruitment relevant in inflammatory disorders

associated with increased RAGE expression.
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8. Possible therapeutic interventions on AGE formation,

AGE cross-linking and AGE–RAGE interaction

Pharmacologic agents that specifically inhibit AGE for-

mation have allowed the investigation of the role of AGEs

in the development of diabetic complications in animal

models [90]. The hydrazine compound aminoguanidine

was the first AGE inhibitor discovered [34]. Aminoguani-

dine and other similar AGE inhibitors are thought to

function as nucleophilic traps for reactive carbonyl inter-

mediates in the formation of AGEs [91], rather than inter-

fering with Amadori’s products on proteins. Although the

results in animal models of diabetic complications, demon-

strating a decrease of AGE accumulation [92], are encour-

aging, the place of these AGE inhibitors must be better

defined by clinical studies [93]. Clinical trials with amino-

guanidine have also shown a trend toward reduced renal

dysfunction in human diabetic subjects with advanced

nephropathy [93].

While aminoguanidine prevents AGE formation, it

will probably not be effective in patients with a long
history of disease that already resulted in extensive tissue

AGE accumulation. The need to remove irreversibly

bound AGEs from connective tissues and matrix compo-

nents has led to the development of AGE-cleaving agents

[94]. Studies in animal models and preliminary clinical

trials have shown the ability of the AGE-inhibitor

pimagedine and the cross-link breaker ALT-711 to reduce

the severity of pathological lesions associated with AGEs

[90,95,96].

In clinical settings characterized by enhanced cellular

activation or oxidative stress, such as diabetes, the expres-

sion of RAGE is enhanced, and the prolonged exposure of

AGEs to RAGE-expressing cells determines a chronic

state of cellular activation [97]. In contrast with other

response systems in which a negative feedback stopping

cellular activation is soon established, the binding of

several ligands to RAGE gives rise—as highlighted

above—to a series of cellular mechanisms, including the

activation of NF-nB, leading to an increased expression of

the receptor itself, and therefore perpetuating cellular

perturbations. This suggests that interference with the

vicious cycle established by RAGE–ligand interaction

would interrupt cellular activation, and consequently lead

to an improvement of various chronic disorders [33,98].

Nevertheless, to definitely establish the role of RAGE-

dependent mechanisms in the pathogenesis of chronic

disorders, more experiments in animal models in which

the expression of RAGE has been genetically manipulated

are needed. These would provide insights into potential

physiological functions of this molecule and its ligands,

and also serve the purpose of developing low molecular

weight RAGE inhibitors.
9. Conclusions

The experimental evidence gathered so far unequivocally

demonstrates that AGEs can alter vessel wall homeostasis in

a pro-atherogenic fashion through multiple mechanisms:

alterations of extracellular matrix permeability, release of

inflammatory cytokines and growth factors, alterations of

antithrombotic properties of the endothelium and of the

ability of the vessel wall to modulate vascular tone, and the

increased expression of adhesion molecules and chemokines

on vascular cells. Once initiated, a state of chronic vascular

inflammation ensues, sustained by the migration and acti-

vation of inflammatory cells—mostly mononuclear phago-

cytes and T cells—that infiltrate the altered vessel wall.

These processes thus trigger a cycle of ongoing cellular

injury and vascular dysfunction, in part through the release

of inflammatory peptides, such as S100/calgranulins and

amphoterin, which are also ligands of RAGE. The pivotal

role of RAGE in these processes highlights this ligand-

receptor axis as a logical and attractive candidate for

therapeutic intervention to limit diabetic vascular damage

and its long-term consequences.
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