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Abstract

Background: Clinical chemistry tests for autism spectrum disorder (ASD) are currently unavailable. The aim of this

study was to explore the diagnostic utility of proteotoxic biomarkers in plasma and urine, plasma protein glycation,

oxidation, and nitration adducts, and related glycated, oxidized, and nitrated amino acids (free adducts), for the

clinical diagnosis of ASD.

Methods: Thirty-eight children with ASD (29 male, 9 female; age 7.6 ± 2.0 years) and 31 age-matched healthy

controls (23 males, 8 females; 8.6 ± 2.0 years) were recruited for this study. Plasma protein glycation, oxidation, and

nitration adducts and amino acid metabolome in plasma and urine were determined by stable isotopic dilution

analysis liquid chromatography-tandem mass spectrometry. Machine learning methods were then employed to

explore and optimize combinations of analyte data for ASD diagnosis.

Results: We found that children with ASD had increased advanced glycation endproducts (AGEs), Nε-carboxymethyl-

lysine (CML) and Nω-carboxymethylarginine (CMA), and increased oxidation damage marker, dityrosine (DT), in plasma

protein, with respect to healthy controls. We also found that children with ASD had increased CMA free adduct in plasma

ultrafiltrate and increased urinary excretion of oxidation free adducts, alpha-aminoadipic semialdehyde and glutamic

semialdehyde. From study of renal handling of amino acids, we found that children with ASD had decreased renal

clearance of arginine and CMA with respect to healthy controls. Algorithms to discriminate between ASD and healthy

controls gave strong diagnostic performance with features: plasma protein AGEs—CML, CMA—and 3-deoxyglucosone-

derived hydroimidazolone, and oxidative damage marker, DT. The sensitivity, specificity, and receiver operating

characteristic area-under-the-curve were 92%, 84%, and 0.94, respectively.
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Conclusions: Changes in plasma AGEs were likely indicative of dysfunctional metabolism of dicarbonyl metabolite

precursors of AGEs, glyoxal and 3-deoxyglucosone. DT is formed enzymatically by dual oxidase (DUOX); selective increase

of DT as an oxidative damage marker implicates increased DUOX activity in ASD possibly linked to impaired gut mucosal

immunity. Decreased renal clearance of arginine and CMA in ASD is indicative of increased arginine transporter activity

which may be a surrogate marker of disturbance of neuronal availability of amino acids. Data driven combination of these

biomarkers perturbed by proteotoxic stress, plasma protein AGEs and DT, gave diagnostic algorithms of high sensitivity

and specificity for ASD.

Keywords: Autism spectrum disorder (ASD), Advanced glycation endproducts (AGEs), Oxidative stress, Amino acid

metabolome, Machine learning

Background

Autism spectrum disorders (ASD) are defined as develop-

mental disorders mainly affecting social interactions and

range of interests and causing a wide spectrum of other

disabilities, such as speech disturbances, repetitive and/or

compulsive behaviors, hyperactivity, anxiety, and difficulty

to adapt to new environments, with or without cognitive

impairment [1]. The high heterogeneity of the clinical

presentation makes diagnosis of ASD difficult and uncer-

tain, particularly at the early stages of development. Dis-

covery and development of robust biomarkers for

diagnosis and progression of severity of ASD is expected

to facilitate earlier diagnosis and intervention. It will also

likely reveal new causative factors [2, 3]. In particular, al-

teration in the metabolome and specific damaging bio-

chemical modifications may reveal the presence of a

shared metabolic impairment in children with an other-

wise highly heterogeneous background, thus shedding

some light on the etiopathogenesis of ASD. Genetic causes

of ASD are evident in about 30–35% of cases. For the

remaining 65–70% of patients, it is generally agreed that

ASD results from the combination of environmental fac-

tors with multiple de novo mutations, copy number vari-

ation, and rare genetic variants, each possibly lending to

additive effects. Environmental factors may also be in-

volved and reflected in epigenetic modifications [4]. Tran-

scriptomic, proteomic, and metabolomic profiling have

been proposed for diagnosis of ASD, with diagnostic per-

formance judged by area under-the-curve of receiver oper-

ating characteristic (AUROC) plot of 0.73–0.91 [5–7]. It is

expected that improved diagnostic performance may be

achieved with a relatively small number of biomarker ana-

lytes linked to the pathogenic mechanism of ASD.

Impairment of protein homeostasis leading to proteotoxic

stress and activation of the unfolded protein response

(UPR) has been implicated in ASD [8]. Drivers of impaired

protein quality are increased spontaneous modifications by

glycation, oxidation, and nitration [9]. Glycation of proteins

occurs by spontaneous reaction of proteins with glucose,

reactive dicarbonyl metabolites, glyoxal, methylglyoxal

(MG), and 3-deoxyglucosone (3-DG), and other saccharides

and saccharide derivatives. Protein glycation adducts are

classified as early stage glycation adducts—such as Nε-fruc-

tosyl-lysine (FL) residues formed by glycation of proteins by

glucose—and late-stage adducts, advanced glycation end-

products (AGEs)—such as Nε-carboxymethyl-lysine (CML)

and glucosepane (GSP) residues—formed by the degrad-

ation of FL residues, hydroimidazolones G-H1, MG-H1,

and 3DG-H formed by the modification of arginine resi-

dues by glyoxal, MG and 3-DG, respectively, Nω-carboxy-

methylarginine (CMA)—also formed by the reaction of

glyoxal with arginine residues, and methylglyoxal-derived

lysine crosslink (MOLD). Protein oxidation occurs by the

reaction of proteins with reactive oxygen species (ROS) and

is increased in oxidative stress. Examples of protein oxida-

tion adducts are dityrosine (DT), N-formylkynurenine

(NFK), α-aminoadipic semialdehyde (AASA), and glutamic

semialdehyde (GSA) residues. Oxidative stress has been im-

plicated as a contributory factor in the development of

ASD [10–12]. Increased oxidative damage associated with

oxidative stress and neuroinflammation may be common

features of ASD in children. Protein nitration occurs by the

reaction of proteins with reactive nitrogen species such as

peroxynitrite. The main adduct formed by protein nitration

is 3-nitrotyrosine (3-NT) residues (Fig. 1). Increased protein

damage by these mechanisms may lead to activation of the

UPR to counter the proteotoxic threat and related inflam-

matory response [13, 14].

Glycated, oxidized, and nitrated proteins undergo prote-

olysis to form related glycated, oxidized, and nitrated

amino acids—also called glycation, oxidation, and nitration

free adducts. Glycated, oxidized, and nitrated amino acids

are released into plasma and are excreted in urine. Urinary

excretion of glycation, oxidation, and nitration free adducts

are approximate measures of whole body fluxes of protein

glycation, oxidation, and nitration, respectively. There are

also minor contributions to the pool of these metabolites

by direct glycation, oxidation, and nitration of amino acids

and absorption from food after digestion of damaged pro-

teins therein [9]. Insight into renal handling of amino acids

by the kidney is gained by deducing the renal clearance

(CL) of amino acids from plasma to urine. For low
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molecular weight metabolites such as amino acids, CL is

mainly influenced by renal tubule reuptake of amino acids

mediated by amino acid membrane transporters. ASD has

been previously associated with homozygous mutations in

gene solute carrier family 7, member 5 (SLC7A5) which

encodes the large neutral amino acid transporter subunit-1

(hLAT-1); and in males, with rare holomorphic variants of

cationic amino acid transporter-3 (CAT-3) mediating up-

take of arginine, ornithine, and lysine. These transporters

mediate amino acid uptake into the cells, including neu-

rons [15].

In this study, we explore the association of proteotoxic

damage with ASD by quantifying levels of protein

glycation, oxidation, and nitration adducts in plasma

protein and related free adducts in plasma and urine of

children with ASD and healthy controls. We also quan-

tify the conventional plasma amino acid metabolome

[16] and CL of glycation, oxidation, and nitration free

adducts and unmodified amino acids. We then explore

the diagnostic potential of these biomarkers by develop-

ment of diagnostic algorithms with optimum combina-

tions of analyte features. We found evidence of increase

of selected plasma protein AGEs and DT in children

with ASD and also decreased CL of arginine and CMA.

These findings implicate a disturbance of metabolism of

dicarbonyl precursors of AGEs and activation of dual

Fig. 1 Protein glycation, oxidation, and nitration free adducts. Ionization status at physiological pH is shown. For related adduct residues

of proteins, alpha-amino-NH3
+ and terminal carboxylate –CO2

− groups are moieties of as peptide bonds –NH–CO– with amino acid residues

immediately before and after in the peptide backbone
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oxidase (DUOX) in ASD. The initial evidence given

herein suggests combination of plasma protein AGE and

DT levels may provide a blood-based test for diagnosis

of ASD. Decreased CL of arginine and CMA is proposed

to be linked to amino acid transporter dysfunction in

ASD, building on increasing evidence of neuronal amino

acid availability as a driver in ASD development.

Methods

Subject recruitment

A total of 69 children were recruited. Of these, 38 had a

diagnosis of ASD (29 males and 9 females) and 31 were

classified as typically developing (TD) children (23 males

and 8 females)—Fig. 2. The age of the two subject groups

was not significantly different. Subject age was as follows:

ASD group, 7.6 years ±2.0 years, range 5–12 years and TD

group, 8.6 ± 2.0 years, range 5–12 years. All ASD subjects

received a diagnosis of ASD by two child development ex-

perts at the Child Neurology and Psychiatry Unit of the

Bellaria Hospital of Bologna (IRCCS Institute of Neuro-

logical Sciences), according to the Diagnostic and Statis-

tical Manual of Mental Disorders V (DSM 5 [1] criteria,

Autism Diagnostic Observation Schedule (ADOS) [10],

Childhood Autism Rating Scale (CARS) [17] and charac-

teristics of onset pattern of ASD defined according to

Ozonoff et al. [18]. Developmental and cognitive levels

were assessed by Psychoeducational Profile-3 (PEP-3) [19]

and Leiter International Performance Scale–Revised (Lei-

ter-R) [20]. For both ASD and TD subjects, exclusion cri-

teria were presence of inflammatory or infective disease

and taking antioxidant supplements at the time of study.

No subject underwent any surgery intervention in the

4 months prior to blood and urine collection. None of the

ASD subjects had active epilepsy at the time of blood and

urine sampling. Subjects with ascertained medical and

neurological comorbidity were excluded, through a med-

ical work up including electroencephalography (recorded

during awake and sleep), cerebral magnetic resonance im-

aging, standard clinical and neurological examination,

neurometabolic, and genetic investigations (including

comparative genomic hybridization array, molecular assay

for Fragile X and MECP2). Subjects recruited for this

study were not taking any medication. TD children were

recruited in the local community, with no sign of cogni-

tive, learning, and psychiatric involvement. They were at-

tending mainstream school and had not been subjected to

stressful events. Dietary habits were assessed by a Food

Questionnaire, built according to the guidelines issued by

the Emilia-Romagna Health Authority. No ASD child was

on a diet free of gluten or casein. Both patients and con-

trols were on a typical Mediterranean diet, as defined by

the prevalence of both simple and complex carbohydrates,

use of olive oil, and plenty of fruit [21]. The consumption

of vegetables was less than desirable in both patients and

controls, although vegetable intake was more limited in

ASD patients. Demographic and clinical features of ASD

are summarized in Table 1. All subjects were recruited at

the Child Neurology and Psychiatry Unit of the Bellaria

Hospital of Bologna, Bologna, Italy.

Blood and urine sampling

Blood was withdrawn in the morning from fasting

children. Spot urine samples were the first ones in the

morning. Blood samples were collected using

ethylenediaminetetra-acetic acid (EDTA) as anticoagu-

lant. Plasma and blood cells were separated immediately

by centrifugation (2000g, 10 min) and plasma samples

stored at − 80 °C until analysis and transferred between

collaborating laboratories on dry ice.

Assay of markers of protein glycation, oxidation, and

nitration

The content of glycated, oxidized, and nitrated adduct res-

idues in plasma protein was quantified in exhaustive en-

zymatic digests by stable isotopic dilution analysis liquid

chromatography-tandem mass spectrometry (LC-MS/

MS), with correction for autohydrolysis of hydrolytic en-

zymes [22]. The concentrations of related glycated, oxi-

dized, and nitrated amino acids related free adducts

(glycated, oxidized, and nitrated amino acids) in plasma

and urine were determined similarly in plasma and urine

ultrafiltrate, respectively. Ultrafiltrate of plasma (50 μL)

was collected by microspin ultrafiltration (10 kDa cut-off)

at 4 °C. Retained protein was diluted with water to 500 μL

and washed by 4 cycles of concentration to 50 μL and di-

lution to 500 μL with water over the microspin ultrafilter

at 4 °C. The final washed protein (100 μL) was delipidated

and hydrolysed enzymatically as described [22, 23]. Ultra-

filtrate of urine (50 μL) was collected by microspin ultrafil-

tration (3 kDa cut-off) at 4 °C.

Protein hydrolysate (25 μL, 32 μg equivalent) or ultra-

filtrate (5 μL) was mixed with stable isotopic standard

analytes (amounts as given previously [24]) and analyzed

by LC-MS/MS using an Acquity™ UPLC system with a

Xevo-TQS tandem mass spectrometer (Waters, Man-

chester, UK). Samples are maintained at 4 °C in the

Fig. 2 Training and validation subject groups of diagnostic algorithms

for detection of autistic spectrum disorder
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Table 1 Demographic and clinical features of the autistic children group

No Age
(years)

Gender ADOS
score

CARS
total
score

CARS activity
level item
score
(hyperactivity)

CARS body
use item
score
(stereotypes)

CARS
total
number
of items
with
score ≥

3

Autism
severity
level

Cognitive/
developmental
impairment

Onset
pattern (1,
early; 2,
regressive;
3, mixed)†

Probability of autism‡ from
algorithm no.

1 2 3 4

1 6.0 m 22 41.0 2.0 3.0 9 Severe Severe 1 0.93 0.79 0.82 0.80

2 5.6 m 14 34.0 2.0 2.0 2 Mild Mild 1 1.00 0.71 0.99 0.77

3 5.5 m 18 40.5 2.5 3.5 9 Severe Moderate 1 1.00 0.86 1.00 0.29

4 5.4 f 17 31.5 2.0 2.0 1 Mild Mild 3 0.88 0.69 0.55 0.27

5 8.5 m 22 36.5 2.0 2.5 6 Mild Mild 3 0.98 0.64 1.00 0.88

6 8.7 m 19 44.5 3.0 3.0 11 Severe Moderate 2 1.00 0.69 1.00 0.74

7 6.8 m 19 36.5 2.5 2.0 7 Mild Normal IQ 1 1.00 0.63 1.00 0.91

8 5.5 f 15 41.5 2.5 2.0 9 Severe Borderline IQ 1 0.73 0.77 0.72 0.92

9 11.9 m 22 44.5 2.5 3.0 11 Severe Severe 2 0.20 0.91 0.34 0.45

10 9.2 f 15 47.5 3.5 3.0 13 Severe Moderate 1 0.84 0.88 0.94 0.36

11 12.0 m 20 39.0 3.0 3.5 8 Severe Severe 3 0.94 0.68 0.82 0.63

12 6.2 m 22 42.5 3.0 2.5 10 Severe Severe 1 1.00 0.69 1.00 0.98

13 6.7 m 21 40.5 2.5 3.0 9 Severe Severe 2 0.83 0.51 0.85 0.56

14 6.6 m 19 37.0 2.5 3.0 7 Severe Moderate 1 0.83 0.63 0.74 0.97

15 5.5 m 22 40.5 3.0 3.0 9 Severe Moderate 3 0.68 0.57 0.82 0.98

16 5.7 m 20 41.5 2.5 3.0 11 severe severe 1 0.98 0.81 0.98 0.81

17 7.8 m 21 46.0 3.5 4.0 11 Severe Severe 1 0.83 0.35 0.52 0.79

18 5.7 f 20 43.5 2.5 3.0 10 Severe Normal IQ 3 0.85 0.39 0.58 0.68

19 7.8 m 20 48.5 3.0 4.0 12 Severe Severe 2 0.95 0.58 0.93 0.57

20 6.8 m 19 42.0 3.0 3.0 9 Severe Moderate 2 0.67 0.61 0.54 0.77

21 9.6 m 19 39.5 3.0 3.0 7 Severe Severe 1 0.55 0.44 0.62 0.51

22 6.2 m 19 41.0 2.5 3.0 9 Severe Severe 3 0.81 0.32 0.78 0.73

23 8.3 m 16 35.0 2.5 2.0 3 Moderate Moderate 1 0.70 0.35 0.63 0.56

24 7.1 m 22 41.0 2.5 2.0 7 Severe Moderate 1 0.83 1.00 0.99 1.00

25 6.2 f 17 38.0 2.0 2.5 7 Severe Severe 1 0.28 0.82 0.15 0.79

26 10.3 f 21 33.5 2.0 2.0 4 Moderate Normal IQ 3 0.89 0.55 0.82 0.86

27 10.7 m 19 39.0 2.0 2.5 7 Moderate Normal IQ 1 0.89 0.60 0.97 0.52

28 6.5 m 17 39.0 3.0 2.5 6 Moderate Normal IQ 3 ND ND ND 0.76

29 8.0 m 22 44.0 2.5 3.0 11 Severe Moderate 1 ND ND ND 0.54

30 7.0 m 18 39.5 2.5 3.0 8 Moderate Normal IQ 1 ND ND ND 0.96

31 9.5 m 21 47.0 3.0 3.5 13 Severe Severe 1 ND ND ND 0.29

32 8.6 m 16 41.5 4.0 2.0 10 Severe Moderate 3 ND ND ND 0.33

33 10.9 m 18 35.0 2.0 3.0 3 Mild Normal IQ 1 ND ND ND 0.28

34 5.8 f 18 43.0 2.5 3.0 11 Severe Moderate 2 ND ND ND 0.30

35 5.3 f 17 39.5 2.5 2.5 6 Moderate Normal IQ 1 ND ND ND 0.62

36 5.3 f 17 41.0 2.5 2.5 7 Severe Normal IQ 1 ND ND ND 0.77

37 8.2 m 20 41.0 2.0 3.5 9 Severe Moderate 1 ND ND ND 0.58

38 11.1 m 13 34.0 2.0 1.5 2 Mild Normal IQ 3 ND ND ND 0.87

†Onset pattern was defined according to Ozonoff et al. [18]

‡Probability the subject has autism estimated from diagnostic algorithms derived from experimental biomarker data—see Table 7
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autosampler during batch analysis. The columns were

2.1 × 50 mm and 2.1 mm × 250 mm, 5 μm particle size

Hypercarb™ (Thermo Scientific), in series with pro-

grammed switching, at 30 °C. Chromatographic reten-

tion was necessary to resolve oxidized analytes from

their amino acid precursors to avoid interference from

partial oxidation of the latter in the electrospray

ionization source of the mass spectrometric detector.

Analytes were detected by electrospray positive

ionization and mass spectrometry multiple reaction

monitoring (MRM) mode where analyte detection re-

sponse was specific for mass/charge ratio of the analyte

molecular ion and major fragment ion generated by

collision-induced dissociation in the mass spectrometer

collision cell. The ionization source and desolvation gas

temperatures were 120 and 350 °C, respectively; cone

gas and desolvation gas flow rates were 99 and 900 L/h;

and the capillary voltage was 0.60 kV. Argon gas (5.0 ×

10−3 mbar) was in the collision cell. For MRM detection,

molecular ion and fragment ion masses and collision en-

ergies optimized to ± 0.1 Da and ± 1 eV, respectively,

were programmed [22]—Additional file 1: Table S1.

Analytes determined were glycation adducts—FL, and

AGEs, CML, Nε-(1-carboxyethyl)lysine (CEL), pyrraline,

CMA, G-H1, MG-H1, 3DG-H, MOLD and GSP; oxida-

tion adducts—DT, NFK, AASA, GSA; nitration adduct,

3-NT; and all major amino acids. Oxidation, nitration,

and glycation adduct residues are normalized to their

amino acid residue precursors and given as millimoles/

mole amino acid modified, and related free adducts are

given in nanomolar. Chemical structures and biochem-

ical and clinical significance of these analytes have been

described elsewhere [9, 25]. Renal clearance (CL) of gly-

cation, oxidation, and nitration free adducts and un-

modified amino acids was deduced from plasma and

spot urine collections: CL (μL/mg creatinine or mL/mg

creatinine) = [analyte]Urine (nmol/mg creatinine)/[analy-

te]Plasma (pmol/mL or nmol/mL).

Machine learning analysis

The objective was to distinguish between children with

ASD and healthy controls. In all cases, the diagnostic al-

gorithms were trained on 50% of the cases and controls

(training subset) before being used to predict the disease

class for each sample in the remaining subjects (test set),

twofold cross-validation. The outcome was to assign, for

each test set sample, a set of probabilities corresponding

to each of the ASD/control groups—the group assign-

ment being that for which the probability is highest. Test

data were held separate from algorithm training; algo-

rithm settings were not adjusted once we began to

analyze the test set data—thereby guarding against over-

fitting and hence providing a rigorous estimate of pre-

dictive performance. Four algorithm types were tested

for performance: random forests, logistic regression, en-

semble classifier, and support vector machines (SVMs)

[26–28]. During the algorithm training, we used the

complete panel of protein glycation, oxidation, and ni-

tration adducts as features and developed algorithms for

each analyte type: plasma protein adduct residues,

plasma free adducts, and urinary free adducts. For the

latter two, unmodified amino acids were also included as

features. The aim during the training was to select the

set of features that accomplishes the highest perform-

ance. The machine learning experiments initially ex-

plored using all metabolite features. Subsequent

selection of a subset of discriminant biomarker features

improved the algorithm performance. For the biomarker

selection, we used a sequential feature selection ap-

proach. The biomarker feature selection and classifier

selection were made on the basis of algorithm perform-

ance defined by classification accuracy, sensitivity, speci-

ficity, area under-the-curve of the receiver operating

characteristic curve (AUROC), positive likelihood ratio,

negative likelihood ratio, positive predictive value, nega-

tive predictive value, and F-measure. For each perform-

ance metric, the mean and 95% CI was determined and

reported. The algorithm training and testing was re-

peated 10 times, without altering the algorithm parame-

ters, with 50% data split, to test for algorithm’s

robustness against any bias towards data split. We devel-

oped our computer programs using Statistics and Ma-

chine Learning Toolbox of MATLAB® (MathWorks,

Inc., Natick, USA), with a linear kernel SVM and se-

quential minimal optimization (SMO).

Statistical analysis

Data are presented as mean ± SD for parametric distribu-

tions and median (lower–upper quartile) for non-

parametric distributions. The test for normality of data

distribution applied was the Kolmogorov–Smirnov test.

Significance was evaluated by Student’s t test or by

Mann–Whitney U test for parametrically or non-

parametrically distributed data, respectively. Bonferroni

correction was made for analysis of multiple analytes

without preconceived hypothesis. Correlation analysis was

performed by Spearman’s rho method with continuous

variables. For clinical categorical variables with ≥ 6 cat-

egories, Spearman correlation was performed—assuming

approximation to a continuous variable [29]; for other cat-

egorical variables, significance of difference of biomarker

data distributions between categories was assessed by one-

way ANOVA for parametric data and Kruskal—Wallis H

test. Data were analyzed using SPSS, version 24.0.

For power analysis in the study design, we chose the

level of the irreversible oxidative damage marker DT in

plasma protein. In healthy human subjects, plasma pro-

tein DT was 0.0287 ± 0.0027 mmol/mol tyr (n = 29) in
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previous studies [30]. We designed our study to detect a

50% increase in plasma protein DT at the 0.01% signifi-

cance level, for which ≥ 18 case and control samples

were required. Post hoc analysis revealed an 88% in-

crease with P = 0.00017, after Bonferroni correction of

14, 15 or 20 as appropriate with 27 cases and 21 con-

trols, suggesting the study was adequately powered for

this key target analyte.

Results
Children with autistic spectrum disorder recruited for this

study

Thirty-eight children with ASD were recruited for this

study. The distribution of severity of ASD in this subject

group recruited was (number of cases) mild (6), moder-

ate (6), and severe (26). The distribution of cognitive/de-

velopmental impairment was (number of cases) normal/

borderline IQ (11), mild (3), moderate (12), and severe

(12). The distribution of onset pattern of ASD was

(number of cases) early (22), regressive (6), and mixed

(10). The ADOS score ranged from 13 to 22 and the

CARS total score from 31.5 to 48.5.

Plasma protein glycation, oxidation, and nitration

In plasma protein, protein content of AGEs—CML, MG-

H1 and CMA—were increased in children with ASD, with

respect to healthy controls, whereas plasma protein con-

tent of AGE, 3DG-H, was decreased in children with

ASD, with respect to healthy controls. Plasma protein

content of the oxidative damage adduct, DT, was in-

creased in children with ASD, with respect to healthy con-

trols. Only changes in CML, CMA, and DT remained

significant after Bonferroni correction for measurement of

multiple analytes (Table 2). In correlation analysis, highly

significant positive correlations (P < 0.01, Spearman) were

of CML with DT, G-H1 with MG-H1 and DT, MG-H1

with CMA, CMA with DT, and AASA with GSA—Addi-

tional file 1: Table S2. No correlation or association of gly-

cation, oxidation, and nitration adduct residues was found

with demographic and clinical features. There was no sig-

nificant difference of these variables between subject

groups of different genders with and without ASD.

Plasma glycated, oxidized, and nitrated amino acids and

amino acid metabolome

For glycated, oxidized, and nitrated amino acid concen-

tration in plasma, FL, G-H1, and NFK were decreased

whereas CMA, AASA, and GSA were increased in chil-

dren with ASD, with respect to healthy controls. Only

increase in CMA remained significant after Bonferroni

correction (Table 3). In correlation analysis, highly sig-

nificant positive correlations were of pyrraline with MG-

H1 and 3DG-H, FL with CML, G-H1 and MG-H1, CEL

with MG-H1 and CMA, MG-H1 with 3DG-H, and

CMA with AASA. There were highly significant negative

correlations of pyrraline with NFK, CMA with MOLD,

and MOLD with AASA—Additional file 1: Table S3.

For the conventional amino acid metabolome, there

were increases in arg, gln, glu, and thr and decrease

in trp in children with ASD, with respect to healthy

controls. None of these changes remained significant

after Bonferroni correction (Table 4). There were

many highly significant positive correlations between

plasma amino acid concentrations—Additional file 1:

Table S4. No correlation or association of glycation,

oxidation, and nitration free adducts and amino acids

Table 2 Glycation, oxidation, and nitration adduct residue content of plasma protein

Glycation markers Healthy controls ASD P value

FL (mmol/mol lys) 1.27 ± 0.39 1.41 ± 0.53 NS

CML (mmol/mol lys) 0.158 ± 0.026 0.190 ± 0.038 0.0018*

CEL (mmol/mol lys) 0.117 ± 0.044 0.092 ± 0.054 NS

G-H1 (mmol/mol arg) 0.012 ± 0.005 0.016 ± 0.011 NS

MG-H1 (mmol/mol arg) 0.473 ± 0.074 0.535 ± 0.100 0.021

3DG-H (mmol/mol arg) 0.165 ± 0.037 0.138 ± 0.027 0.0052

CMA (mmol/mol arg) 0.054 (0.043–0.067) 0.077 (0.066–0.101) 0.000082**

MOLD (mmol/mol lys) 0.027 ± 0.011 0.025 ± 0.016 NS

GSP (mmol/mol lys) 0.514 ± 0.111 0.571 ± 0.206 NS

DT (mmol/mol tyr) 0.025 (0.019–0.031) 0.047 (0.035–0.094) 0.000012***

NFK (mmol/mol trp) 15.6 ± 1.7 15.0 ± 1.5 NS

AASA (mmol/mol lys) 0.154 ± 0.048 0.152 ± 0.081 NS

GSA (mmol/mol arg) 0.639 ± 0.327 0.713 ± 0.350 NS

3-NT (mmol/mol tyr) 0.0056 (0.0045–0.0069) 0.0053 (0.0045–0.0064) NS

Data are median (lower–upper quartile); healthy controls, n = 21, and ASD, n = 27. Significance (Mann–Whitney U)

*P < 0.05, **P < 0.01, and ***P < 0.001 after Bonferroni correction of 14 applied
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Table 3 Plasma and urinary glycation, oxidation, and nitration free adduct in plasma filtrate

Amino
acid

Plasma (nM) Urine (nmol/mg creatinine)

Healthy controls ASD P value Healthy controls ASD P value

FL 1489 (987–1863) 751 (361–1.570) 0.047 56.7 (33.8–128.7) 90.8 (42.4–167.9)

CML 807 (587–1051) 853 (219–1222) 26.2 (19.7–34.7) 33.1 (26.6–42.6) 0.016

CEL 402 (298–477) 420 (310–599) 0.435 (0.202–0.848) 0.472 (0.180–0.940)

G-H1 0.819 (0.553–1.26) 0.527 (0.366–0.959) 0.037 1.88 (1.11–3.04) 2.57 (1.53–3.75) 0.024

MG-H1 271 (176–475) 335 (213–500) 18.6 (8.00–27.4) 24.5 (9.14–37.6)

3DG-H 413 (303–637) 360 (280–434) 2.06 (0.587–4.38) 2.92 (1.09–6.26)

CMA 9.18 (6.67–12.5) 17.7 (13.2–24.8) 0.00052** 1.46 (0.636–1.97) 1.78 (1.14–2.91) 0.037

GSP 12.8 (7.4–17.1) 12.9 (9.3–22.0) 1.58 (1.15–1.98) 1.53 (1.20–1.98)

MOLD 1.79 (0.800–3.42) 1.10 (0.503–0.2.21) 0.025 (0.013–0.050) 0.040 (0.017–0.068) 0.027

Pyrraline 22.0 (12.2–30.4) 24.2 (19.4–40.6) 20.6 (14.9–44.2) 34.2 (22.7–72.5) 0.047

DT 0.501 (0.286–0.771) 0.676 (0.500–0.847) 0.070 (0.058–0.085) 0.086 (0.075–0.109) 0.0022*

NFK 15.2 (12.5–18.1) 11.3 (6.23–14.3) 0.030 0.117 (0.084–0.231) 0.179 (0.107–0.238) 0.037

AASA 19.7 (16.9–29.1) 30.6 (21.1–46.4) 0.0063 1.08 (0.805–2.76) 1.80 (1.13–2.89) 0.040

GSA 73.9 (53.2–129) 109 (80.1–203) 0.039 17.3 (13.2–22.7) 34.5 (12.7–48.0) 0.0018*

3-NT 1.10 (0.90–1.26) 1.17 (0.79–1.58) 0.0044 (0.001–0.010) 0.0077 (0.003–0.014)

Data are median (lower – upper quartile); healthy controls, n = 21–31, and ASD, n = 27–38. Significance (Mann-Whitney U)

*P < 0.05 after Bonferroni correction of 15 applied

Table 4 Plasma and urinary amino acid metabolome

Amino
acid

Plasma (μM) Urine (nmol/mg creatinine)

Healthy controls ASD P value Healthy controls ASD P value

Ala 294 ± 71.5 330 ± 98.3 301 (224–432) 392 (305–533) 0.030

Arg 39.4 ± 10.3 48.4 ± 16.6 0.016 52.1 ± 17.1 64.0 ± 18.0 0.014

Asn 33.2 ± 4.57 34.3 ± 10.6 92.4 (72.1–132) 169 (123–236) 0.0012*

Asp 35.5 ± 7.37 37.0 ± 10.0 142 (112–179) 160 (117–241)

Cys (total) 41.7 ± 10.4 46.1 ± 15.0 25.3 (20.4–35.9) 28.3 (21.1–43.3)

Gln 463 ± 38.6 496 ± 61.2 0.024 529 (452–704) 741 (609–876) 0.0048

Glu 1672 ± 324 1999 ± 619 0.034 373 (254–495) 475 (367–690) 0.010

Gly 272 (187–1061) 241 (121–515) 1.12 (1.19–2.78) 2.58 (1.84–3.45) 0.019

His 68.0 ± 8.51 72.8 ± 9.96 2.19 ± 0.88 2.90 ± 1.21 0.027

IIe 50.7 ± 15.3 51.6 ± 12.4 13.0 ± 4.37 18.1 ± 6.50 0.0059

Leu 126 ± 34.4 132 ± 25.6 43.1 ± 13.6 52.0 ± 13.5 0.028

Lys 132 ± 20.3 146 ± 36.7 136 (83.3–264) 171 (117–352)

Met 23.1 ± 6.41 26.2 ± 5.84 17.9 ± 7.98 23.1 ± 7.20 0.0037

Phe 68.9 ± 11.3 68.8 ± 16.8 101 ± 38.9 110 ± 32.9

Pro 195 ± 65.4 223 ± 94.7 14.5 ± 6.21 20.7 ± 5.37 0.00073**

Ser 128 ± 23.5 132 ± 18.7 461 (413–621) 677 (519–910) 0.0021*

Thr 116 ± 36.0 141 ± 46.8 0.041 216 (170–265) 283 (221–405) 0.0039

Trp 5.22 ± 1.26 3.92 ± 2.40 0.0055 114 ± 73.6 164 ± 48.6 0.0043

Tyr 84.4 ± 21.3 87.9 ± 26.8 204 (133–255) 240 (173–317)

Val 125 ± 31.3 120 ± 26.0 25.6 ± 9.52 34.8 ± 10.9 0.00073**

Data are Mean ± SD or median (lower–upper quartile); healthy controls, n = 21, and ASD, n = 27. Significance: t test for parametric data and Mann-Whitney U for

non-parametric data

*P < 0.05 and **P < 0.01 after Bonferroni correction of 20 applied
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was found with demographic and clinical features.

There was no significant difference of these variables

between genders.

Urinary glycated, oxidized, and nitrated amino acids and

amino acid metabolome and renal clearance

For the urinary flux of glycated, oxidized, and nitrated

amino acids, children with ASD showed increased urin-

ary excretion of CML, G-H1, CMA, MOLD, pyrraline,

DT, NFK, AASA, and GSA. Only urinary excretions of

DT and GSA remained significant after Bonferroni cor-

rection (Table 3). For the urinary flux of unmodified

amino acids, children with ASD showed increased urin-

ary excretion of all amino acids except asp, cys, lys, phe,

and tyr. Only increases in urinary excretion of asn, pro,

ser, and val remained significant after Bonferroni correc-

tion (Table 4). There were several highly significant posi-

tive correlations between urinary excretions of glycation,

oxidation, and nitration adducts and amino acids—see

Additional file 1: Table S5 and Table S6.

Renal clearance of CMA, GSP, DT, arg, glu, leu, phe,

and thr were decreased and renal clearance of NFK and

trp were increased in children with ASD, with respect to

healthy controls. Only decreases in renal clearance of

arg and CMA remained significant after Bonferroni cor-

rection: CLarg decreased 32% and CLCMA decreased 50%

in children with ASD, compared to healthy control; P <

0.001 (Tables 5 and 6). No correlation or association of

these glycation, oxidation, and nitration free adduct and

amino acid variables was found with demographic and

clinical features. There was no significant difference of

these variables between genders.

Changes of glycation, oxidation, and nitration adducts

and amino acid metabolome in plasma and urine are sum-

marized in heat maps (Fig. 3a, b). Data distributions of

biomarker with significantly different change in the ASD

study group after Bonferroni correction are given in Fig. 4.

Development of diagnostic algorithms for ASD

To explore diagnostic utility of protein glycation, oxidation,

and nitration measurements for ASD, we analyzed plasma

and urinary amino acid analyte data by a machine learning

approach. SVMs was the best-performing method out of

the four algorithms that were investigated. Algorithm opti-

mized from twofold cross-validation were as below.

(i) Algorithm-1, developed from plasma protein

glycation, oxidation, and nitration adduct residue

analytes.

It has the following features: CML, 3DG-H, CMA,

and DT. Classification accuracy was 88%, sensitivity

92%, specificity 84%, and AUROC 0.94. A random

outcome is 0.50.

(ii)Algorithm-2, developed from plasma glycated,

oxidized, and nitrated amino acids and conventional

amino acid metabolome.

It has the following features: CML and CMA. Classifi-

cation accuracy was 75%, sensitivity 81%, and specificity

67% and AUROC 0.80.

(iii)Algorithm-3, developed from plasma protein

glycation, oxidation, and nitration adduct residues

and plasma glycated, oxidized, and nitrated amino

acids and conventional amino acid metabolome

combined.

It has the following features: plasma protein CML,

3DG-H, CMA and DT residues, and plasma G-H1 and

GSA free adducts. Classification accuracy was 89%, sen-

sitivity 90%, specificity 87%, and AUROC 0.95.

(iv)Algorithm-4, developed from urinary glycated,

oxidized, and nitrated amino acids.

It has the following features: GSA and pyrraline free

adducts. Classification accuracy was 77%, sensitivity

77%, specificity 76%, and AUROC 0.79 (Fig. 5, Table 7,

and Additional file 1: Table S7).

The diagnostic algorithms were used to deduce the

probability of having ASD for each patient diagnosed with

ASD by clinical symptoms (Table 1). The association and

Table 5 Renal clearance of glycation, oxidation, and nitration

free adducts

Amino
acid

Renal clearance (μL/mg creatinine)

Healthy controls ASD P value

FL# 0.696 (0.375–1.16) 0.866 (0.384–2.31)

CML 0.297 (0.249–0.387) 0.259 (0.171–0.782)

CEL 0.0068 (0.003–0.019) 0.0042 (0.002–0.011)

G-H1 21.2 (13.1–34.7) 23.9 (15.0–57.7)

MG-H1# 0.718 (0.496–1.04) 0.628 (0.363–0.912)

3DG-H 0.067 (0.033–0.163) 0.087 (0.042–0.131)

CMA 1.57 (0.997–2.08) 0.791 (0.465–1.36) 0.0011*

GSP 0.121 (0.083–0.274) 0.112 (0.067–0.195)

MOLD 0.214 (0.075–0.487) 0.269 (0.153–0.656)

Pyrraline 0.81 (0.58–1.17) 1.07 (0.64–1.96)

DT 0.119 (0.657–2.02) 0.747 (0.545–0.107) 0.0025

NFK 0.062 (0.038–0.109) 0.096 (0.049–0.139) 0.030

GSA 29.9 (11.1–45.8) 17.8 (1.96–26.1)

3-NT 0.068 (0.034–0.100) 0.042 (0.036–0.129)

Data are mean ± SD or median (lower–upper quartile); healthy controls, n = 21,

and ASD, n = 27. Significance: t-test for parametric data and Mann-Whitney U

for non-parametric data

*P < 0.05, after Bonferroni correction of 14 applied
#mL/mg creatinine
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correlation of these probabilities with clinical features was

explored. No significant association or correlation of these

probabilities with clinical features (age, ADOS, total

CARS, CARS hyperactivity and CARS body use scores,

autism severity, cognitive/developmental impairment, and

ASD onset pattern) was found.

Discussion

In this study, we identified changes in plasma protein

AGE and oxidation adducts, increased CML, CMA, and

DT and decreased 3DG-H in ASD. Combined in an algo-

rithm, these features provided diagnostic performance im-

proved over that previously achieved in transcriptomic,

proteomic, and metabolomic studies [5–7]—with AUROC

0.94 and classification efficiency 88%. This was slightly im-

proved by combination with plasma G-H1 and GSA free

adducts, with AUROC 0.95 and classification efficiency

89%. This novel biomarker approach focused to protein

damage or proteotoxic stress may lead to biochemical-

based diagnosis of ASD and suggests that protein AGE

and oxidation may be linked to ASD pathogenesis.

Change in AGE and oxidation adduct content of plasma

proteins relates to the rate of protein modification in the

plasma compartment and, to a lesser extent, to modifica-

tions of plasma proteins in interstitial fluid. The major

plasma protein albumin makes repeated cycles from

plasma to interstitial fluid and lymph before degradation

[31]. CML residues in plasma protein are mainly produced

by the oxidative degradation of FL with a usually minor

contribution from glycation by glyoxal. CML is also con-

sidered to be a marker of oxidative damage [32]. CMA is

Fig. 3 Heat map of changes in glycated, oxidized, and nitrated proteins and amino acids in plasma and urine of subjects with autistic spectrum

disorder. a Trace level protein glycation, oxidation, and nitration adducts. b Amino acid metabolome. Key: CTRL control, PP plasma protein

(adduct residues), PF plasma filtrate (free adducts), and UF urine filtrate (free adducts). Data are given in Tables 2, 3, 4, and 5

Table 6 Renal clearance of amino acids

Amino
acid

Renal clearance (mL/mg creatinine)

Healthy controls ASD P value

Ala 1.03 (0.746–1.712) 1.27 (0.890–1.65)

Arg 0.011 (0.009–0.015) 0.008 (0.006–0.010) 0.0019*

Asn 2.80 (2.22–4.76) 4.30 (3.05–7.14) 0.0055

Asp 3.81 (3.04–4.96) 4.73 (2.92–7.82)

Cys (total) 0.646 (0.518–0.812) 0.629 (0.452–1.133)

Gln 1.18 (0.913–1.53) 1.54 (1.14–1.96) 0.025

Glu 0.210 (0.158–0.304) 0.243 (0.179–0.357 0.049

Gly 0.0050 (0.002–0.009) 0.0067 (0.004–0.029) 0.018

His 0.029 (0.024–0.040) 0.040 (0.027–0.053)

IIe 0.262 (0.192–0.347) 0.354 (0.256–0.441) 0.0116

Leu 0.358 ± 0.135 0.402 ± 0.105

Lys 0.011 (0.005–0.018) 0.0071 (0.005–0.011)

Met 0.0066 ± 0.0015 0.0056 ± 0.0023

Phe 1.32 (0.959–2.02) 1.65 (1.33–1.95)

Pro 0.077 ± 0.031 0.104 ± 0.039 0.0138

Ser 3.66 (2.95–4.79) 5.22 (3.99–6.78) 0.0081

Thr 2.023 ± 0.765 2.44 ± 1.05

Trp 0.209 (0.155–0.242) 0.287 (0.166–0.497) 0.010

Tyr 0.0209 (0.016–0.025) 0.015 (0.012–0.025)

Val 0.0017 (0.0014–0.0022) 0.0016 (0.0013–0.0026)

Data are mean ± SD or median (lower–upper quartile); healthy controls, n = 21,

and ASD, n = 27. Significance: t test for parametric data and Mann-Whitney U

for non-parametric data

*P < 0.05, after Bonferroni correction of 20 applied
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produced exclusively by the glycation of proteins by

glyoxal [9]. Increased formation of glyoxal, mainly sourced

from lipid peroxidation, in ASD may explain increases in

plasma protein CML and CMA (Fig. 6a). Markers of lipid

peroxidation, plasma and red blood cell malondialdehyde,

urinary 8-isoprostane-F2a, and hexanoyl-lysine adduct

were elevated in ASD [33–35].

DT residue content of plasma proteins was increased in

subjects with ASD whereas other oxidative damage

markers, NFK, AASA, and GSA, were not. DT residue

formation occurs by reaction of tyrosine residues in pro-

teins with ROS and DUOX [36]. The selective increase in

DT may suggest a role of increased DUOX activity in

subjects with ASD. DUOX expression is increased

through activating transcription factor 2 in inflammatory

signaling [37]. DUOX has an important role in gut muco-

sal immunity, host–microbe homeostasis, and signaling

for neutrophil recruitment into allergic airways [38, 39].

Gut microbiota may be influential in the development of

the behavioral phenotype in ASD children [40] (Fig. 6a).

Decrease of 3DG-H content of plasma protein in subjects

with ASD likely reflects decreased concentration of plasma

3-DG. 3-DG is formed by degradation of fructosamine-3-

phosphate in the repair of early glycated proteins and deg-

radation of fructose-3-phosphate formed by fructosamine-

3-phosphokinase [41, 42] and the slow, non-enzymatic

Fig. 4 Scatter plots for protein damage biomarker variables changed in children with ASD. Protein adduct residues: a CML, b CMA, and c DT.

Plasma free adduct: d CMA. Urine free adduct and amino acids: e DT, f GSA, g Asn, h Pro, i Ser, and j Val. Renal clearance: k CMA and l Arg (an

outlier point, 0.0565, was excluded from the ASD data). Significance: One asterisk, two asterisks, and three asterisks indicate P < 0.05, P < 0.01, and

P < 0.001, respectively
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oxidative degradation of glucose and proteins glycated by

glucose [43]. It is metabolized to 3-deoxyfructose by aldo-

keto reductases 1A4, 1B1, and 1B3 which together consti-

tute 3-DG reductase activity [44]. Since FL residue content

of subjects with ASD was unchanged, with respect to

healthy controls, there is unlikely to be decreased activity of

fructosamine-3-phosphokinase in ASD. Rather, increased

3-DG reductase activity may explain decrease in plasma

protein 3DG-H residue content in ASD (Fig. 6a).

Combination of markers of oxidative metabolism,

DNA oxidation, and methylation in multivariate statis-

tical models was recently found to distinguish between

children with ASD and healthy controls [12]. Herein,

oxidative damage markers, plasma protein CML and DT

and plasma GSA free adduct, emerged as features of

diagnostic algorithms for ASD. Measurement of multiple

chemically defined markers of protein oxidative damage

in plasma and urine compartments in subjects with and

Fig. 5 Receiver operating characteristic plots of diagnostic algorithms for detection of autistic spectrum disorder by protein glycation and oxidation

adducts. a Algorithm-1, plasma protein adduct residues. AUROC = 0.96. b Algorithm-2, plasma free adducts. AUROC= 0.78. c Algorithm-3, plasma

protein adduct residues and free adducts. AUROC = 0.99. d Algorithm-4, urine free adducts. AUROC= 0.78. ROC plots are representative results from

one run of the classification experiment. A random outcome is AUROC = 0.50

Table 7 Diagnostic algorithms developed for autistic spectrum disorder from plasma and urinary analytes

Algorithm no 1 2 3 4

Compartment and
analyte

Plasma protein adduct
residues

Plasma amino
acids

Plasma protein adduct residues and amino acids Urinary amino acids

Features CML, 3DG-H, CMA, and
DT

CML and CMA CML, 3DG-H, CMA, and DT residues with G-H1 and
GSA free adducts

GSA and pyrraline free
adducts

Accuracy (%) 88.3 (85.5–91.2) 74.8 (71.7–77.9) 89.0 (87.0–91.0) 76.8 (74.6–79.0)

Sensitivity (%) 91.9 (89.1–94.6) 80.5 (75.1–86.0) 90.4 (87.7–93.1) 77.1 (73.4–80.8)

Specificity (%) 83.9 (79.3–88.4) 67.1 (58.9–75.4) 87.3 (84.1–90.5) 76.4 (72.0–80.8)

AUROC 0.94 (0.91–0.96) 0.80 (0.77–0.83) 0.95 (0.94–0.96) 0.79 (0.76–0.81)

Positive likelihood ratio 5.69 (4.49–6.89) 2.85 (2.16–3.55) 7.23 (6.09–8.38) 4.16 (2.88–5.44)

Negative likelihood
ratio

0.10 (0.07–0.13) 0.28 (0.21–0.35) 0.11 (0.08–0.14) 0.30 (0.25–0.34)

Positive predictive
value (%)

88.2 (85.0–91.4) 77.1 (72.9–81.4) 90.2 (87.9–92.5) 80.6 (77.6–83.5)

Negative predictive
value (%)

89.1 (85.5–92.6) 75.0 (70.6–79.4) 88.0 (85.1–91.0) 73.7 (71.0–76.5)

F score 0.90 (0.87–0.92) 0.78 (0.75–0.81) 0.90 (0.88–0.92) 0.78 (0.76–0.81)

Algorithm outcomes for twofold cross-validation (10 randomized repeat trials for robustness) using SVMs (95% CI given in brackets)

Anwar et al. Molecular Autism  (2018) 9:3 Page 12 of 16



without ASD has provided evidence of changes specific

to oxidative damage marker type and sample compart-

ment that likely contributed to algorithm development

for ASD with improved diagnostic performance.

For unmodified amino acids, we found no changes

after correction for multiple measurements in plasma

but there were significant increases in urinary excretion

of asn, pro, ser, and val. This may relate to impaired tis-

sue uptake and retention of these amino acids in ASD.

For modified amino acids, only increased CMA

remained significantly increased in plasma for children

with ASD. This may relate to proteolysis of plasma pro-

teins and potentially other proteins of increased CMA

residue content in ASD. For modified amino acids in

urine, urinary excretions of oxidative damage markers,

DT and GSA free adducts, were increased in children

with ASD after correction for multiple analytes. This

may relate to proteolysis of plasma proteins and other

proteins with increased oxidative damage and DUOX-

catalyzed modification in ASD. The amino acid metabo-

lome in plasma and urine has been explored previously

for biomarkers of ASD [7, 45–47]. We confirmed the re-

ported minor increase in plasma arg in ASD, compared

to healthy controls, but significance was lost after cor-

rection for multiple measurements [48].

Pyrraline is an AGE sourced only from food [49]. In-

creased urinary pyrraline is indicative of increased food

consumption and/or permeability of the gastrointestinal

tract to pyrraline. The positive correlation of pyrraline

with CML, MG-H1, CMA, DT, and GSA free adducts in

urine suggests that increase of these free adducts may be

partly due to food consumption.

Exploring changes in renal CL of amino acids provides

insight in functional activity of amino acid transporters in

the renal tubular epithelium. The deduction of CL herein

was an indirect measure based on estimates of urinary an-

alyte/creatinine ratio rather than urinary analyte excretion

rate determined in urine collection made over a fixed time

interval, usually 24 h. This was done because of difficulties

in timed collection of urine in children [50]. Decreased

CL relates to increased tubular reuptake and increased

amino acid transporter activity. Decreased CL of arg and

CMA likely reflects increased reuptake of arg and CMA.

Arg uptake by the tubular epithelium is mediated by neu-

tral and basic amino acid transport protein rBAT and sol-

ute carrier 7, member 9 (b0,+AT) [apical uptake] and

CD98 heavy subunit (CD98hs)/y+LAT-2 (solute carrier

family 7 member 6) and CD98hs/y+LAT-1 (solute carrier

family 7 member 7) complexes [basolateral transport] [51]

and this likely mediates renal tubule uptake of arginine de-

rivative CMA too (Fig. 6b). Homozygous mutations of

SLC7A5 gene were associated with ASD. SLC7A5 encodes

protein hLAT-1 which, together with CD98hs, form the

large neutral amino acid transporter involved in maintain-

ing normal levels of brain branched chain amino acids in

the brain [52]. Dysfunction of hLAT-1, also found in the

renal tubular epithelium in complex with CD98hs [51],

may leave the latter more available for complexation with

y+LAT-1 and y+LAT-2 and drive increased reuptake and

decreased CL of arginine and CMA. In addition, rare

holomorphic variants in males of amino acid transporter

CAT-3 were associated with ASD [15]. Disturbance in ar-

ginine transporter function may be a common feature of

ASD and measure of CL of arginine is an accessible bio-

marker of this.

Combination of AGE and DT residue content of plasma

protein in Algorithm-1 and this combined with G-H1 and

GSA free adducts in Algorithm-3 gave the best diagnostic

performance for detection of ASD from the analytes de-

termined herein. The absence of conventional, unmodified

amino acids from optimum features of the diagnostic al-

gorithms suggests that assay of trace level, AGE and oxi-

dised amino acid residues of plasma protein and free

adducts in plasma provides a diagnostic advantage which

has not been hitherto explored. It also suggests that AGE

and oxidation proteotoxic stress may underly the develop-

ment of ASD, at least in part. Protein glycation and oxida-

tion adducts from dietary protein contribute to levels of

Fig. 6 Schematic explanation for changes found in protein damage and amino acids in ASD. a Proposed mechanism for observed changes

found in plasma protein glycation and oxidation adducts. b Transport of arg and CMA across the renal tubular epithelium and proposed

mechanism for increased renal CL (increased arg and CMA reuptake). Key: yellow-filled arrows show processes; black-filled arrows show changes

observed (a) and changes expected (b) in ASD
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plasma and urinary glycation and oxidation free adducts;

whereas glycation and oxidation adduct residues of pro-

tein reflect rates of endogenous glycation and oxidation of

protein in mainly the vascular compartment. The domin-

ance of plasma protein AGE and oxidation adducts in

Algorithm-1 and the modest improvement by addition of

plasma G-H1 and GSA free adducts (Algorithm-3) may

indicate that there is limited influence of dietary glycated

and oxidized proteins to the development of ASD. Rather,

challenge to proteostasis by changes in endogenous pro-

tein modification by AGEs and DT may contribute to the

development of ASD.

Conclusions

We identified changes in plasma protein glycation and

oxidation markers; increased CML, CMA, and DT and de-

creased 3DG-H that combined in an algorithm gave im-

proved diagnostic performance over other approaches.

Increased levels of DT may indicate induction of increased

DUOX activity linked to gut mucosa dysfunction. Disturb-

ance of renal handling of arginine and CMA may indicate

dysfunctional arginine transporter function common in

ASD. Further clinical validation of plasma protein CML,

CMA, DT, and 3DG-H may provide improved diagnosis

of ASD. For future studies, we suggest firstly validation of

the current findings in an independent clinical study

group. Thereafter, priorities are investigation of the bio-

markers in children younger than 5 years old to assess

their ability to improve diagnosis at earlier stages of ASD

development, assessment of the biomarkers in prospective

studies for prediction of risk of progression to severe

symptoms, study of the association of genetic polymor-

phisms of DUOX and arginine transporters with clinical

ASD, preclinical functional genomics of DUOX and argin-

ine transporters with an ASD-like phenotype, and assess-

ment of the specificity of the algorithms for ASD versus

other psychiatric conditions.
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plasma protein glycation, oxidation and nitration free adducts. Table S4.

Correlation analysis – plasma amino acids. Table S5. Correlation analysis –

urinary protein glycation, oxidation and nitration free adducts. Table S6.

Correlation analysis – Urinary amino acids. Table S7. Confusion matrix of

algorithm to identify autistic spectrum disorder. (DOCX 80 kb)
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