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Abstract

This paper presents advanced formation-keeping guid-
ance algorithms that use linear programming (LP) to
determine fuel-optimal control inputs and state trajecto-
ries. The overall formation-keeping problem is analyzed
in terms of two key issues: (i) what dynamics model
should be used to specify the desired state to maintain a
passive aperture; and (ii) what dynamics model should
be used in the LP to represent the motion about this
state. Several linearized models of the relative dynam-
ics are considered in this analysis, including Hill’s equa-
tions for circular orbits, modified linear dynamics that
partially account for the J2 effects, and Lawden’s equa-
tions for eccentric orbits. A controller is developed for
formation-keeping using each of these models. A mod-
ified LP formulation is presented to include robustness
to sensor noise while ensuring a feasible solution. The
guidance algorithms are implemented in numerous very
detailed nonlinear simulations that demonstrate effective
control in the presence of all expected disturbances and
sensor noises. The average fuel cost for the formation-
keeping maneuvers over a two week simulation is on the
order of 4 mm/s per orbit.

1 Introduction

A large number of future planned space missions are
based on a new approach that will use coordinated
microsatellites to provide flexible, low-cost access to
space [1, 2]. However, to achieve these future mission
goals, several guidance, navigation, and control chal-
lenges must first be addressed. For example, very tight
coordination, control, and monitoring of the distributed
vehicles in the cluster will be required to achieve the
stringent payload pointing requirements for a synthetic
aperture radar mission, such as TechSat 21 [3]. Much
of the research for cluster dynamic modeling and control
has focused on the design of passive apertures, which are
(short baseline) periodic formation configurations that
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provide good, distributed, Earth imaging while reduc-
ing the tendency of the vehicles to drift apart. These
passive apertures can be designed using the closed-form
solutions provided by Hill’s equations [4, 5] (also known
as the Clohessy-Wiltshire equations), which assume a
circular reference orbit. There has been further analysis
to develop apertures that are insensitive to differential
J2 disturbances [6, 7] and reference orbit eccentricity [8].

The purpose of this paper is to present extensions of a
recently proposed approach to formation flying control
that uses linear programming (LP) to solve for both the
fuel-optimal control inputs and trajectories. In particu-
lar, the LP approach is generalized to include various lin-
earized models of the relative spacecraft dynamics. The
model set includes the basic Hill’s equations for circular
orbits, a modified hybrid set of dynamics that partially
account for the J2 disturbances, and Lawden’s equations
for eccentric orbits. Extensive nonlinear simulations are
performed to compare the effectiveness of the control
algorithms based on these different dynamics. Both cir-
cular and eccentric orbits are used in these simulations.
Based on these results, this paper addresses the impor-
tant questions of which dynamics model should be used
to define the desired state to maintain a passive aperture
and which model should be used in the LP algorithm.
The LP algorithm is also modified to add robustness to
sensor noise while ensuring an always feasible solution.
The complete guidance algorithm is implemented in a de-
tailed two-week nonlinear simulation that demonstrates
effective control in the presence of all expected distur-
bance forces with a fuel cost of 4 mm/s per orbit. The
reduction in fuel cost over previous results is achieved
through various improvements, such as reduction in the
level of the sensor noise, improved dynamic models, and
better algorithm formulation and implementation.

2 Relative Dynamics

The linear programming control technique requires lin-
earized relative dynamics between a satellite and some
reference orbit. The reference orbit can be fixed on an-
other satellite in the formation, the formation center,
or a virtual satellite. Three different types of dynamics
are investigated for the LP control approach. The most
commonly used linearized dynamics for relative control



are Hill’s dynamics, which assume a circular reference
orbit and a central gravitational force [9]. The coordi-
nate frame for Hill’s is specified as (x) radial away from
the earth, (y) in-track, perpendicular to x and in the di-
rection of velocity, and (z) crosstrack, which completes
the right-hand system.

The second form of dynamics is very similar to Hill’s,
but has been modified to include linearized effects of the
J2 gravitational perturbations. The dynamics presented
here are actually a combination of the work of Refs. [7,
10]. The linearized dynamics including J2 effects are

ẍ = 2ncẏ + (5c2 − 2)n2x + fx

ÿ = −2ncẋ + fy (1)
z̈ = −(3c2 − 2)n2z+fz+2Ancaref cos α sin θref
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and n is the mean motion, aref is the semi-major axis,
iref is the inclination, and θref is the true anomaly of the
reference orbit. α is the formation phasing angle and ρ is
the formation radius [10]. The f ’s correspond to control
inputs and any other disturbance forces. The crosstrack
J2 disturbance is modeled as an input disturbance, w, in
the LP formulation as shown in [11].

Note that if we set J2 = 0, then s and c also equal zero
and these dynamics simplify to Hill’s equations. The
reason this set of dynamics is composed from two sep-
arate sources is that the in-plane dynamics in Ref. [10]
require an iteration on a parameter to speed up the or-
bital motion in the dynamics where as Ref. [7] provides
a direct calculation for the parameter c to achieve the
same effect. Conversely, the out-of-plane J2 disturbance
in Ref. [7] requires several calculations involving both
relative and absolute measurements to determine the dis-
turbance, whereas the model in Ref. [10] only requires
a relatively straightforward calculation. This combina-
tion appears to give the best fit to the nonlinear orbital
simulations.

The third form of the dynamics, for eccentric reference
orbits, was first developed by Lawden [12]. From [13],
the radius and angular velocity of the formation center
are written as

|�Rfc| =
aref(1 − e2)
1 + e cos θ

and θ̇ =
n(1 + e cos θ)2

(1 − e2)3/2
(3)

With these expressions, the dynamics for elliptical or-

bits can be written in the time domain, but writing the
equations as a function of the true anomaly, θ, provides
a more natural description. This is because both the
radius of the orbit and angular velocity are functions of
the true anomaly. The transition from time domain to
θ-domain requires the following changes in derivatives
˙(·) = (·)′θ̇; (̈·) = (·)′′θ̇2 + θ̇θ̇′(·)′ [8]. Lawden’s equations

of motion are then

d

dθ




x′

x
y′

y


 =




2e sin θ
1+e cos θ

3+e cos θ
1+e cos θ 2 −2e sin(θ)

1+e cos θ

1 0 0 0
−2 2e sin θ

1+e cos θ
2e sin θ

1+e cos θ
e cos θ

1+e cos θ

0 0 1 0







x′

x
y′

y




+
(1 − e2)3

(1 + e cos θ)4n2




1 0
0 0
0 1
0 0




[
fx

fy

]
(4)

d

dθ

[
z′

z

]
=

[
2e sin θ

1+e cos θ
−1

1+e cos θ

1 0

] [
z′

z

]

+
(1 − e2)3

(1 + e cos θ)4n2

[
1
0

] [
fz

]
(5)

Again, the in-plane dynamics are decoupled from the
out-of-plane dynamics. The f ’s represent control as well
as disturbance input forces. Note that the dynamics are
a function of the true anomaly θ, so the system is linear
time-varying.

3 Formation-keeping Control

Disturbances such as differential drag, J2, and errors in
the linearized dynamics will cause the satellite to drift
from the designed periodic motion of passive apertures.
As a result, a control scheme is required to maintain a
state that results in the periodic motion. Linear pro-
gramming can be used to develop fuel-optimal control
inputs to move the satellite from the disturbed state back
to the desired state or to maintain the satellite within
some tolerance of the desired state. The tolerance is
specified by an error box fixed to the desired state for
the satellite. Based on current performance specifica-
tions, the error box size is 10% of the baseline distance
between the satellites [3].

The formation-keeping problem is comprised of two is-
sues. The first issue is what relative dynamics and ini-
tialization procedure should be used to specify the de-
sired state to maintain the passive aperture formation.
The desired state is shown in Fig. 1 as a diamond and the
reference orbit position as a circle. The periodic motion
followed in the absence of disturbances is also shown.
The desired state is determined from the closed form
solutions of the linearized dynamics and the initial con-
ditions. Note that the closed-form solutions and initial
conditions for periodic motion are slightly different (see
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Fig. 1: Satellite motion relative to a reference orbit.
Current position of the reference orbit is denoted with a
circle, and the current desired relative position is with a
diamond. An error box is centered on the diamond.

Refs. [7, 8, 9] for details) for each type of relative dynam-
ics discussed in Section 2. The conditions for periodic
motion for each set of dynamics are

Hill’s:
ẏ(0)
x(0)

= −2n (6)

Lawden’s:
ẏ(0)
x(0)

= − n(2 + e)
(1 + e)1/2(1 − e)3/2

(7)

J2:
ẏ(0)
x(0)

= −2n
√

1 + s (8)

These initial conditions are then used in the correspond-
ing closed-form solutions to determine the desired state
at any other time. Note that each model accounts for
different aspects of the fleet reference orbital motion (ec-
centricity) and disturbances (J2). The desired state for
each spacecraft is specified by a central coordinator, but
the formation-keeping problem is distributed among the
individual spacecraft. The simulations presented in Sec-
tion 4 compare the impact of using each of these models
to predict the desired state for various types of orbits.

The second issue for formation-keeping is which relative
dynamics to use in the actual LP problem. The error
box is fixed to the desired state as in Fig. 1. The desired
state is centered in the error box, but the true state of the
satellite will be disturbed from the desired state by dif-
ferential drag, J2, or other disturbances. The error state
is then the difference between the current state and de-
sired state relative to the reference orbit. The dynamics
used in the LP are the dynamics relative to the desired
state. Ref. [14] implements the time changing dynamics
for eccentric orbits in the LP but shows that Hill’s can be
used with little fuel cost increase for small eccentricities
(e ≤ 0.01). Using the time-varying dynamics does not
increase the size of the LP problem but formulating the
problem is computationally more complex. Further in-
vestigation into the effect of using each form of dynamics
in the LP is in Section 4.

3.1 LP problem formulation
The linear programming trajectory planning approach
was presented in Ref. [11] to design fuel-optimized trajec-
tories. Each of the dynamics presented in the Section 2
can be discretized and manipulated into the following
form

y(k) = A(k)Uk + b(k) (9)
The formation-keeping LP problem is to maintain a de-
sired state to within some tolerance over n steps in time
(or true anomaly), while minimizing a weighted sum
(cj ≥ 0) of the ‖ · ‖1 norm of the control inputs by each
spacecraft. The control inputs are normalized, where 1
means the thruster is on for the entire time step and
anything less is some fraction of the time step. To write
this problem as a linear program, two slack variables are
introduced that define the positive and negative parts of
the control input

Un = U+
n − U−

n , U+
n ≥ 0, U−

n ≥ 0 (10)

Using cij as the weight for the input from the jth actu-
ator at the ith time step, define

CT = [c00 c01 . . . cnm c00 c01 . . . cnm] (11)

as the weights on each of the positive and negative parts
of the control inputs. The formation-keeping problem
can then be written as the linear program

J∗ =min
Un

CT

[
U+

n

U−
n

]

subject to[
A(k) −A(k)

−A(k) A(k)

][
U+

n

U−
n

]
≤

[
ydes(k) − b(k) + ytol

−ydes(k) + b(k) + ytol

]
(12)

where ytol specifies the size of the error box. At each
time step k in the plan where the tolerance constraint is
applied, two sets of constraints are included in the prob-
lem to constrain the satellite position to remain inside
the error box.

3.2 Algorithm Initiation
As discussed previously, the first step in applying the LP
technique in a spacecraft control system is to determine
the desired state. An error box is fixed to the desired
state to provide a position tolerance for the satellite.
Fig. 2 shows an in-plane view of the error box. The de-
viation of the current position from the desired position
(called the error state) is used to initiate the LP algo-
rithm and determine the control inputs and trajectories
to maintain the position tolerance throughout the plan
horizon. At each time step in the controller, the error
position state is calculated and used to determine (i) if
control action is needed when a plan does not exist, (ii)
if the control should continue to use the existing plan,
or (iii) make a new plan. The method for determining
each of these actions is discussed in the following.
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Fig. 2: In-plane view of error box. Three limits: plan
trigger limit, planning error box constraint limit, hard
performance (error box limit) constraint. The desired
state is represented by the diamond while the current
state is the square.
There are three parts to the error box. The error box
limit is the largest box and represents the position tol-
erance not to be exceeded. The planning error box is
slightly smaller and is the limit used in the constraints
of the LP. The planning tolerance is slightly less because
the dynamics used in the LP do not exactly match the
nonlinear orbital dynamics and as a result the path fol-
lowed by the satellite will not exactly match the designed
trajectory. The smaller box allows some deviation in the
path without exceeding the ultimate tolerances. The
planning trigger box is the smallest box. When the state
exceeds the trigger box and no plan exists, then a new
plan is developed. When a plan does exists, the first
half of the plan is implemented regardless of the cur-
rent error position and then, if the position exceeds the
planning error box, a new plan is formed. This limits
the deviation from the designed trajectories. Of course,
the relative sizes of the three boxes is a variable in the
control scheme that can be used to increase or decrease
performance at the expense or relief of fuel cost. The
geometry of the error “box” is also a variable in the con-
trol implementation. The form of the dynamics suggests
that using an oblate sphere rather than a cube could
yield some performance benefits [15]. The sphere can
be approximated in the LP using a polygon with a con-
straint for each side. Using a “sphere” would also avoid
initial conditions to LP problems that result in higher
fuel costs, such as when a satellite is near the corner
of the error box with little room to maneuver. Future
research will investigate this issue in more detail.

3.3 Sensor Noise
Any planned trajectory will rely heavily on the knowl-
edge of the satellite’s initial conditions, but the ini-
tial relative positions and velocities must be measured
and will be noisy. Investigation of the impact of sen-
sor noise on the LP control technique and a method for

making formation-keeping plans robust to sensor noise
is presented in Refs. [11, 16]. By considering several,
mic, different initial conditions, the solution to the LP
is made more robust to measurement errors by plan-
ning for the “worst case” response. This is achieved
by minimizing the right hand side of Eq. 13 over the
set M = {1, . . . , mic} of possible initial conditions [16].
However, planning for the worst case can lead to feasibil-
ity problems. One solution to the feasibility problem is
to reduce the plan horizon until the solution to the LP is
feasible. The plan horizon could be reduced iteratively,
but this would require attempting to solve multiple LP
problems until a solution is achieved.

An alternative approach is to directly include a scaling
of the error box size as a variable in the LP problem.
The error box scaling variable, Bs, is heavily weighted
in the cost function to prevent increasing the error box
to achieve a solution with zero control inputs. Thus Bs

would only be increased to scale the error box to achieve
a feasible solution. The problem formulation is as follows

[
A(k) −A(k) −ytol

−A(k) A(k) −ytol

]U+
n

U−
n

Bs


≤ min

i∈M

[
ydes(k) − bi(k)

−ydes(k) + bi(k)

]
(13)

The scaling variable is constrained to be greater than one
to prevent reducing the position tolerance below the orig-
inal size in an attempt to minimize the heavily weighted
scaling variable at the expense of increased control input
in the cost.

4 Simulations

Several nonlinear simulations were performed using the
FreeFlyerTM orbit simulator [17] in order to compare the
effectiveness of the LP control method based on differ-
ent forms of the dynamics. FreeFlyerTM is used to prop-
agate the absolute states of both satellites. This sim-
ulator allows the option of including or excluding dis-
turbances such as drag, lift, solar radiation pressure,
and J2. FreeFlyerTM easily interfaces with MATLABTM

where the control calculations are performed.

The simulations involve two similar satellites. One satel-
lite acts as the formation center and serves as the ref-
erence orbit and the other satellite is initialized on a
passive aperture. The reference orbit has a semi-major
axis of 6900 km and inclination 35◦. Simulations were
performed for eccentricity e ≈ 0 and e = 0.005. The pas-
sive aperture formed projects a 400×200 m ellipse on the
orbital plane and oscillates with an amplitude of 100 m
in the crosstrack direction, achieved through an inclina-
tion difference between the two satellites. This aperture
is maintained through formation-keeping over two days.
Each satellite is modeled as an Orion spacecraft based on
current specifications for the Orion-Emerald mission [2].



Each satellite has a mass of 45 kg, but slightly different
ballistic coefficients, resulting in a differential drag dis-
turbance. The differential drag is modeled as a constant
5 × 10−8 m/s2 disturbance acceleration in the LP. The
satellite thrusters are restricted to provide a maximum
acceleration of 0.003 m/s2. The maximum thrust corre-
sponds to turning on the thruster for the full time step.
Sensor noise was also included as a true state plus white
noise component. The noise is restricted to values less
than 2 cm on position and 0.5 mm/s on velocity. These
values are consistent with currently predicted noise lev-
els using carrier phase differential GPS as the relative
navigation sensor [18]. All disturbances (J2, drag, solar
radiation pressure, etc.) were included in all simula-
tions, but the dynamics used in the controller are varied
for comparison. The relative dynamics for the satellites
are discretized on a 10.8 seconds time step. The LP
plan horizon is half an orbit (approximately 45 minutes).
Control inputs are allowed and state constraints applied
every 108 seconds in the LP design. This reduces the LP
size and decreases the solution time to 1–5 seconds.

Due to the stochastic nature of the simulations resulting
from the sensor noise, each specific simulation in the fol-
lowing discussion was run three times, for a total of 24,
two day simulations. There are two main parts that were
varied for the simulations. The first part is the dynamics
and resulting closed form-solutions and initialization, la-
beled in the Table as Rel Dyn. Only Lawden’s and the
J2 dynamics are varied in this part because Hill’s does
not provide a fuel efficient desired state in the presence
of J2. In fact, using Hill’s results in a fuel cost of ap-
proximately 300 mm/s per orbit in the presence of J2.
The second part varied is the dynamics used in the LP,
labeled LP Dyn. All three forms of dynamics are used
in the LP.

Table 1 summarizes the average fuel cost for formation-
keeping using the various forms of the dynamics. The
simulation results show that for nearly circular orbits,
the J2 dynamics provide the most fuel efficient results,
with the other combinations of dynamics resulting in
only a minimal increase in fuel cost. The correction of
the mean motion with the parameter c or inclusion of
eccentricity in both the relative dynamics and periodic-
ity conditions in Eq. 8 lead to similar results and similar
fuel cost savings. The improvement in using J2 dynamics
comes mostly from the inclusion of the secular crosstrack
disturbance which is unmodeled in the other dynamics.

However, for a slightly eccentric reference orbit, the J2

dynamics no longer provide an accurate description of
the dynamics for determining the desired state. This
degradation is a result of the fact that the J2 dynamics
still assume a circular reference orbit. Refs. [8, 14] have
shown the significance of ignoring eccentricity. These

Table 1: Formation-keeping fuel comparison us-
ing each set of dynamics.

Rel Dyn LP Dyn e ≈ 0 e = 0.005
mm/s/orbit mm/s/orbit

J2 J2 5.7 ± 0.5 8 ± 2
Lawden Hill’s 7.7 ± 0.5 5 ± 1
Lawden Lawden 7.6 ± 0.5 5 ± 1
Lawden J2 6.1 ± 0.5 4.0 ± 0.5

simulations also confirm the results in Ref. [14] that us-
ing Hill’s in the LP formulation does not significantly
increase fuel cost. For the eccentric orbit, using Law-
den’s equations to specify the desired state and using
the J2 dynamics for the LP provides approximately 50%
fuel cost reduction. This combination captures the or-
bit eccentricity in the prediction of the desired state and
knowledge of the J2 disturbance in the LP. A single sim-
ulation for each case discussed above was performed over
a two week period to verify the control effectiveness over
long time periods. The fuel cost numbers are within the
uncertainty bounds of those presented in Table. 1. An
example simulation over two weeks with e = 0.005 and
using Lawden’s equations to specify the desired state
and the J2 dynamics in the LP is shown in Figs. 3 and 4.
Fig. 3 shows the relative motion between the two satel-
lites while Fig. 4 shows the error box motion for a one
day period during the simulation in order to observe the
motion inside the error box. The average fuel cost for
this simulations was 4.0 mm/s per orbit.

The fuel cost for formation-keeping has been significantly
reduced from previous work in Refs. [11, 14, 16] through
advancements in the guidance algorithm and reduction
in sensor noise. Specific improvements are: 1) selection
of the best dynamics to determine the desired state to
maintain a passive aperture, 2) inclusion of the linearized
J2 effects in LP dynamics model, and 3) relaxation of
the position tolerance variable to allow always feasible
solutions. The inclusion of J2 effects in the dynamics in-
creases the accuracy of the model for developing trajec-
tories. This means less replanning due to deviations from
the designed trajectory, which also reduces fuel cost. The
reduction in the sensor noise level and reformulating the
problem for an always feasible solution allow longer plan
horizons, which also reduces fuel cost. Further examina-
tion of the error box shape and size could lead to even
further fuel savings.

5 Conclusions

This paper presents an advanced formation guidance
and control strategy based on linear programming to de-
termine fuel-optimal trajectories for formation-keeping.
The overall formation-keeping problem is shown to con-
sist of two key issues: (i) the selection of the dynamics
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Fig. 4: Error box motion of satellite during simulation
over a one day period. The diamond in the center of
the box represents the desired state for maintaining the
aperture.

to specify the desired state to maintain a passive aper-
ture; and (ii) what dynamics should be used in the LP to
represent the motion about this state. Several linearized
dynamic models are compared in an extensive set of non-
linear simulations. The simulations indicate that the se-
lection of the dynamics model is critical for determining
the desired state, however the fuel cost is less sensitive to
the dynamics model used in the LP. For nearly circular
orbits, the linearized J2 dynamics provide the lowest fuel
cost. However, for non-circular orbits with e ≈ 0.005, the
J2 dynamics do not provide a sufficiently accurate plant
model and the most effective control uses Lawden’s equa-
tions to specify the desired state and the J2 dynamics in
the LP controller. The simulations show that, with this
combination, the LP guidance method provides an effec-
tive formation-keeping control strategy in the presence
of all disturbances and sensor noise (estimated fuel cost
of 3-5 mm/s per orbit). The paper also discusses mod-
ifications to the LP formulation to increase robustness
to sensor noise while providing always feasible solutions.
The result is a very flexible and effective optimization
framework that addresses many of the control issues as-
sociated with formation flying spacecraft.
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