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aBsTraCT

The SCIER platform is an integrated system of networked sensors and distributed computing facilities, 
aiming to detect and monitor a hazard, predict its evolution and assist the authorities in crisis manage-
ment for hazards occurring at Wildlife Urban Interface (WUI) areas. The goal of SCIER is to make 
the vulnerable WUI zone safer for the citizens and protect their lives and property from environmental 
risks. To achieve its objective, SCIER integrates technologies such as: (1) wireless sensor networks for 
the detection and monitoring of disastrous natural hazards, (2) advanced sensor data fusion and man-
agement for accurately monitoring the dynamics of multiple interrelated risks, (3) environmental risk 
models for simulating and predicting the evolution of hazardous phenomena using Grid-computing. In 
this chapter we present the key software components of the SCIER system architecture, namely the sen-
sor data fusion component and the predictive modeling and simulation component.
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inTroduCTion

The tendency for the development of extensive 
WUI (Wildlife Urban Interface) areas is a rela-
tively new phenomenon. This refers to all types 
of areas where forests, water bodies, and rural 
lands interface with homes, other buildings and 
infrastructures, including first and secondary 
home areas, industrial areas and tourist develop-
ments (Stewart, 2007). The related problems that 
it generated, especially with regards to increasing 
fire and flood risks, started becoming noticeable 
only in the 1990s. The rapid development of WUI 
areas is the result of pollution and overpopulation 
of city centers that grew in the 1970s. However, 
in many cases, the rapid development of such 
WUIs was unplanned, or poorly planned. Settle-
ments were built without efficient road networks, 
and homes and other buildings were developed 
in or near areas that form the flood plain of water 
catchments. Often there is no provision for routes 
of escape in case of a disaster.

The Sensing and Computing Infrastructure for 
Environmental Risks (SCIER) system constitutes 
an integrated sensing and computing platform 
capable of delivering to the authorities and the 
citizens valuable real time information regarding 
natural hazards that may affect the WUI. SCIER 
aims at providing the functionality needed for 
detecting, monitoring and forecasting the hazard’s 
evolution. Sensors deployed in the region moni-
tor environmental parameters (e.g., temperature, 
humidity, wind direction and speed) and feed the 
data to predictive models running in the computing 
infrastructure. The SCIER platform builds upon 
existing technical expertise and recent progress 
in the areas of sensors, communications, Grid 
computing, Geographical Information Systems 
(GIS), data fusion and predictive modeling. 
Indeed, the information produced by the SCIER 
platform can in many cases be a key factor in the 
effective fighting of the hazard’s consequences. 
SCIER predicts the evolution of the main phe-
nomenon as well as the risks associated with any 

secondary phenomena it may trigger. Furthermore, 
for the people living in vulnerable WUI areas, it 
addresses their needs for security and reliable 
alerting services. Finally, SCIER provides Civil 
Protection Authorities with a tool for the effec-
tive management of crisis situations caused by 
natural hazards.

related Work

In this section we briefly discuss prior research 
activities on natural hazard detection and moni-
toring. Most of them deal with fire detection and 
make use of temperature and humidity sensors, 
smoke detectors and infrared cameras. In (Chen, 
2003) a fire-detection system is proposed based 
on multi-sensor technology and neural networks. 
The sensed contextual data includes environmental 
temperature, smoke density and CO density. In 
(Pehrsson, 2000) and (Pehrsson, 2003), the authors 
present a system that is based on various types 
of sensors and use neural networks. However 
such systems require the use of training data and 
most of them are evaluated indoors where the 
weather conditions are fully controllable and, 
surely, completely different in comparison with 
those observed in a WUI. A system for wildfire 
monitoring using a wireless sensor network (WSN) 
that collects temperature, relative humidity and 
barometric pressure is described in (Doolin, 2005). 
The authors in (Calle, 2006) and (Sivathanu, 
1996) propose systems based on infrared (IR) 
technology for the detection of fires. Furthermore, 
(Kucuk, 2008) and (Kosucu, 2009) have proposed 
solutions in which sensors are deployed from an 
aircraft. In (Hefeeda, 2007) the authors propose 
a distributed k-coverage algorithm to balance the 
load across all deployed sensor nodes. However, 
these systems use either in-field or out-field 
sensors, thus rendering them vulnerable to false 
alarms. In addition, aerial or satellite images 
are frequently used for outdoor fire detection 
and monitoring. In (Mandel, 2007) the authors 
present a system architecture which attempts 
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to integrate recent sensing measurements (from 
satellite spectral image data and other sensors) 
with simulation based predictive modelling into 
a closed loop system. The sensor data are used to 
calibrate the predictions of the simulation model 
in order to minimize the evolution prediction er-
ror. These methods are known as Dynamic Data 
Driven Application System (DDDAS) techniques 
and are recently of great interest to the scientific 
community. Satellite based monitoring is used 
for detecting forest fires in (Zhanqing, 2001). 
However, the scan period and the low resolution 
of satellite images make such method incapable 
for early (real-time) fire detection.

sCier system

The SCIER platform is a complex system which 
integrates technologies and techniques from 
different scientific fields. It is customary that 
the architecture of such a large-scale integrated 
system is visualized by a vertical, bi-directional 
flow-chart divided into different layers. Each layer 
performs a specific set of activities. Neighbor-
ing layers contribute to their common interface 
so that all bilateral transactions are reliable and 

safe. In the SCIER case, we identify three (3) 
architectural layers: the Sensing Subsystem, the 
Localized Alerting Subsystem and the Comput-
ing Subsystem.

sensing subsystem

The purpose of the SCIER sensing subsystem is the 
monitoring of the environmental parameters that 
are relevant to the assessment of a natural hazard. 
In the WUI two kinds of sensors are deployed: 
Citizen Owned Sensors (COS), installed by land/
home owners in fixed and registered locations in 
private areas, and Publicly Owned Sensors (POS), 
installed by state authorities in fixed and known 
locations in public areas. The sensor nodes (Fig-
ure 2) are energy efficient and form a multi-hop, 

Figure 2. Sensor nodes used in SCIER system

Figure 1. SCIER system architecture
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self-organized, robust Wireless Sensor Network 
transmitting the raw measurements to a sink 
node via appropriate routing protocols. They are 
enclosed in appropriately designed (temperature 
and water resistant) plastic boxes which isolate 
them from the environment but do not affect the 
radio propagation. Outside the box is only the 
actual sensor (sensing part).The transmission 
range of the nodes is adjustable and can reach 
up to 250 m in open space areas and up to 100 m 
in a forest zone.

In SCIER the following categories of nodes 
are identified.

• In-field sensor nodes. They carry two or 
three sensors, and they are responsible for 
measuring and transmitting values of me-
teorological parameters (e.g., temperature 
and humidity). Since they are battery-pow-
ered, these nodes have high energy-con-
sumption constraints. They transmit their 
readings towards the data sinks, following 
the multi-hop organization of the WSN. 
The WSN can be dynamically deployed 
which means that nodes can be added 
or removed at run-time according to the 
circumstances.

• In-field sensor nodes - cluster heads. 
They are similar to the sensor nodes ex-
cept that they are more powerful and can 
support more complex sensors (e.g. wind 

measurements) as well. They propagate the 
information to the data sinks.

• Out-of-field vision sensors (“smart cam-
eras”). They report data from the scene 
under surveillance.

• Data sinks. They relay the information 
from/to the sensor nodes towards/from the 
SCIER’s higher layers.

The use of out-field vision sensors that monitor 
the same area adds an extra feature to the system 
which contributes to the effective detection of a 
hazardous natural phenomenon. Vision sensors, 
in the case of a fire, transmit information about 
smoke or flame probability corresponding to loca-
tions on which the camera focuses and which are 
different from the location of the vision sensor. 
They provide a very stable representation of the 
scene under uncontrolled illumination conditions. 
Vision sensor nodes are fixed nodes, most likely 
installed on poles or citizens’ homes. A monitored 
area could be covered by one or more vision sen-
sors. Figure 3 depicts the distribution of the nodes 
on the monitored field.

localized alerting subsystem

The Localized Alerting Subsystem (LAS) includes 
the Local Alerting Control Unit (LACU) which 
comprises a computing element of primary impor-
tance to the SCIER system. Each LACU controls 

Figure 3. Distribution of the nodes on the field
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a network of sensors, receives input from them, 
and executes fusion algorithms on the received 
data. Multiple LACUs are deployed in the area 
that needs to be monitored for potential emergency 
situations arising from environmental hazards, 
such as forest fires or floods. Using LACUs can 
be extended to handling different environmental 
risks by adjusting the type of sensors and fusion 
algorithms used. The LACUs self organize into a 
network, where each node (a LACU) has certain 
functional autonomy, but can also be controlled 
by the Computing Subsystem, in certain cases. 
In SCIER, two types of LACUs are identified 
(Figure 1):

• Public LACU (P-LACU). It is installed 
and operated by public authorities and con-
trols a wireless network of Public Owned 
Sensors.

• PRivate LACU (R-LACU). It controls 
Citizen Owned Sensors and is installed by 
individuals in order to protect their private 
properties.

The LACU is a device which mediates be-
tween the Computing Subsystem and the Sensing 
Subsystem. It is a simple computing unit, which 

runs specific software developed in the context 
of the SCIER project. This software is based on 
the OSGI framework (OSGI Alliance, 2009) and 
is highly modular enabling to load/unload or up-
date components on demand. The basic software 
components comprising LACU (Figure 4) have 
the following roles:

• Control of the WSN
• Acquisition of data from the underlying 

WSN. Currently supported sensors in-
clude temperature, humidity, wind speed 
& direction sensors, pluviometers and vi-
sion sensors assessing smoke and flame 
probability

• Administration of the system, which can 
be performed either locally or remotely

• Execution of flood/fire detection algo-
rithms that assess the severity of the read-
ings flowing in the system and produce 
alerts

• Support for various alerting components 
(visible, acoustic, SMS messaging) used to 
provide notifications when potential emer-
gencies are detected

• Communication with external computing 
elements (i.e., the Computing Subsystem)

Figure 4. The Localized Alerting Subsystem of SCIER
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Computing subsystem

The Computing Subsystem (CS) is largely based 
on a GIS where the fused sensor information is 
stored, processed and visualized. Multiple envi-
ronmental models of different time scales are used 
in order to establish an accurate tracking (and 
simulation) of the hazardous phenomenon. The 
risk models are executed in the CS, providing esti-
mates on the spreading of the risk and the expected 
impact and arrival time for settlements, villages 
and farms. Advanced computing infrastructure 
(e.g., a Grid setup) can be used to run “what-if” 
scenarios, thus investigating the consequences of 
potential changes in key environmental parameters 
such as the wind speed and direction. The Grid 
infrastructure offers the capability of parallel 
simulations which allow the exploration of the 
effects of potential changes in such parameters.

The main functionalities of Computing Sub-
system are:

• Collect and store sensor-measurements 
from the area of interest.

• Perform data-fusion-algorithms to assess 
the level of risk.

• Trigger a simulation in case of a perceived 
real alarm, i.e. (a) retrieve geographical 
data from the GIS Database on the terrain 
layout of the area of interest, (b) generate 
different slightly perturbed scenarios on 
the wind speed and wind direction for the 
area of interest, (c) submit to the Grid par-
allel simulations, one for each scenario, (d) 
retrieve results and pass them to the GIS 
module for visualization on a reference 
map

fusion Process in sCier

In SCIER, as discussed in previous sections, data 
derived from various sensors are used for the 
detection and monitoring of hazardous events. 
Such sensors include temperature, humidity, wind 

speed/direction, pluviometry, soil moisture and 
vision sensors. The volume of raw data that are 
generated requires an effective post-processing 
in order to decide on the occurrence (or not) of 
an event. Thus, sensor fusion techniques which 
process and assess the data and reason about an 
event are adopted.

In the case of fire detection one requires mea-
surements derived from in-field sensors that are 
deployed in the area or out-field sensors which 
monitor from a distance the area. In the SCIER 
system temperature, humidity sensors (in-field) 
and vision sensors (out-field) are used. The last are 
based on a high-dynamic range contrast camera 
in which the contrast representation of a scene 
can be used (through appropriate algorithms) to 
detect smoke or flames and estimate/generate 
a probability (confidence level) on this event. 
These two categories of sensors are combined in a 
two-level fusion scheme (Zervas, 2009), (Zervas, 
2007) thus improving the reliability of the system 
in fire detection. At the first level of fusion (data 
fusion) we adopt the cumulative sum technique 
(Gombay, 2005), (Page, 1954) for fusing data 
from in-field sensors and assign a probability of 
fire occurrence in each of them. At the second 
level fusion (information fusion), probability 
values about fire events from the first level are 
combined through evidential theory with prob-
ability values about fire events from the vision 
sensor. The adoption of such a scheme has the 
advantage of early fire detection and, simultane-
ously, eliminates any false alarms in case of no 
fire occurrence. Figure 5 depicts the whole work 
flow regarding the aspect of the fusion process 
(data and information) in SCIER.

first level fusion

In each LACU readings from in-field sensors are 
constantly processed through a sensor data fu-
sion procedure in order to detect any significant 
change in the environmental state. For instance, 
consider the event in which the normal ambient 
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temperature increases in an abnormal way. This 
could indicate the occurrence of a possible fire 
event. The system regularly monitors the data 
distribution that is generated over time. If a change 
in data distribution is detected, this is reflected 
on a specific “metric”. Such “metric” postulates 
a translation of the impact of the evidence to a 
certain amount of belief on a current hypothesis 
(the fire event hypothesis in our case). Such prob-
ability is calculated for each sensor.

In an analogous data fusion procedure, for each 
out-field vision sensor, any significant change in 
the contrast or the luminance of the monitored 
scene is translated, through specific algorithms, 
to a probability of fire (smoke or flame). Accord-
ing to the luminance of the environment which 
depends on the time of the day the vision sensor 
which divides the scene into tiles, generates the 
appropriate probability for each tile. Smoke 
probability in the daylight and flame probability 
at night. Each sensor Si (temperature, humidity, 
vision sensor) produces a confidence level ci for 
fire detection in its monitoring area and reports this 

value to the Computing Subsystem (CS) where the 
second level fusion takes place. The confidence 
levels indicate an order in probability of positive 
detection in the sense that a higher confidence 
level implies a higher probability of fire.

second level fusion

In the second level fusion process vision sensor 
(camera) data and data coming from LACUs are 
combined. Each single fusion process will be 
based on data for a single camera tile together 
with data from the sensors that this camera tile 
oversees. In those cases where a camera tile does 
not oversee any sensor(s), or a/any sensor(s) is/
are not overseen by a camera, a degenerate fusion 
process will be carried out taking into account 
the probabilities of a single camera tile or any 
sensor(s) respectively.

Upon reception of the confidence levels ci, 
i=1,…,M the fusion process at CS evaluates 
a discriminant function f(c1, c2, c3 …,cM) and 
compares it with a threshold t, to decide if a fire 

Figure 5. Fusion process in SCIER
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event is present or not. The fusion methods may 
treat the influence of the confidence levels differ-
ently and this is shown schematically in Figure 
6 where mapping functions are used to scale the 
confidence levels.

Confidence levels are combined through 
Dempster–Shafer (DS) evidential theory (Shafer, 
1976). In DS process for each sensor we need the 
basic probability assignments m(F), m(no − F) 
and the unsigned probability mass m(F U no − F). 
These quantities sum to one, thus only two of them 
need to be specified. The mass m(F) represents 
the belief in fire detection, m(no − F) the belief 
in the no–fire case and m(F U no − F) represents 
the uncertainty of the sensor. Given the confidence 
level of a sensor, ci, and the uncertainty ui, the 
mapping function can be:

m F u c

m noF u c

m F no F u

i i i

i i i

i i

( ) ( )

( ) ( )( )

( )

= −

= − −

∪ − =

1

1 1  

The Dempster – Shafer algorithm for fusing 
two probability masses is

m F
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For fusing the probabilities of three sensors, 
one has first to combine two sensors to obtain 
m12(F), m12(no − F) and m12(F U no − F) and 
then use Dempster-Shafer rule to obtain m123(F), 
m123(no − F) and m123(F U no − F). Once ex-
hausting the sensors we are left with the basic 
probability masses:

m123…M(F), m123…M(noF) and m123…M(F U no − F)

For detection purposes we can use either the 
support m123…M(F) and compare it to a threshold 
t, or the plausibility m123…M(F) + m123…M(F U 
no − F) and compare it to a threshold t, or even 
the average of these two.

Examples of the Fusion Process

Scenario 1. In this scenario we combine the 
maximum probability induced by the in-field 
sensors (in order to minimize the false alarm rate) 
with the fire detection probability of the vision 
sensor. We assume three different fire probabili-
ties for the vision sensor (0.1, 0.5, 0,9), each one 
fused with three different probabilities (0.1, 0.5, 
0.8), inferred by the LACU using in-field sensor 
measurements. Table 1 shows the combination 
results of the DS algorithm. As it is observed, 
unless both fused probabilities exceed the value 

Figure 6. Second level fusion in SCIER
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of 0.5, the final probability is kept in relatively 
small values. Thus, a malfunctioning sensor is not 
able by itself to trigger a fire alarm. Moreover high 
probability values of both sensors will enhance 
our confidence for a fire event.

Scenario 2. In this scenario we combine the 
fused probabilities obtained in the first scenario 
with the fire detection probability of another 
in-field sensor (Sensor 3). For the latter, we as-
sume two values (0.2 and 0.6) and the results are 
depicted in Table 2 and Table 3 respectively. As 
it is observed from the entries of Table 2 (rows 
3 and 5), the value 0.5 when combined with the 

small probability of the in-field sensor i.e., 0.2, 
yields the lowest value, that is 0.2.

On the contrary, as it is observed from Table 
3 (rows 3 and 5), the value 0.5 when fused with a 
higher probability, i.e., 0.6, yields the maximum 
value, that is 0.6. If all constituent probabilities 
are greater than 0.5 (last two rows of Table 3) 
then our belief for a fire event is reinforced as it 
is indicated by the high values of the final fused 
probability.

Table 1. DS algorithm on fusing the probability regarding the fire event of an in-field sensor with the 
vision sensor 

In field Sensor 1 
m1(F)

Vision Sensor 
m2(F) Conflict (K)

Fused Probabilities m12(F)
In field Sensor 1 + Vision 

Sensor

0.1 0.1 0.18 0.0122

0.1 0.5 0.50 0.1000

0.1 0.9 0.82 0.5000

0.5 0.1 0.50 0.1000

0.5 0.5 0.50 0.5000

0.5 0.9 0.50 0.9000

0.8 0.1 0.74 0.3077

0.8 0.5 0.50 0.8000

0.8 0.9 0.26 0.9730

Table 2. DS fusion algorithm with a second in-field sensor (probability 0.2) 

Fused Probabilities m12(F)
In field Sensor 1 + Vision Sensor

In field Sensor 3 
m3(F) Conflict (K) Fused Probabilities m123(F)

0.0122 0.2 0.2073 0.0031

0.1000 0.2 0.2600 0.0270

0.5000 0.2 0.5000 0.2000

0.1000 0.2 0.2600 0.0270

0.5000 0.2 0.5000 0.6000

0.9000 0.2 0.7400 0.6923

0.3077 0.2 0.3846 0.1000

0.8000 0.2 0.6800 0.5000

0.9730 0.2 0.7837 0.9000
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fire fronT eVoluTion 
siMulaTion - grid WorkfloW

The fusion algorithms, described in the previous 
section, decide whether the event constitutes a 
real threat or it is a false alarm. In the former 
case the SCIER Computing Subsystem initiates 
a simulation in the Grid infrastructure consisting 
of several parallel runs. Each run is based on a 
different set of input parameters and computes:

• The expected evolution of the fireline 
for up to 180 minutes after fire detec-
tion. The Fire Spread Engine (FSE) soft-
ware program developed by Technoma 
S.A. (EUFIRELAB, 2006) is used for this 
purpose. The FSE is a computer applica-
tion which estimates the fire front expan-
sion on surface forest fuels, using spatial 
data about the topography, moisture con-
tent, type of the fuel and dynamic envi-
ronmental parameters, such as the wind 
vector field. The software is based on the 
Rothermel-Frandsen theoretical model and 
uses algorithms similar to those found in 
the BEHAVE system (Andrews, 1986). A 
cellular-automata algorithm is used for the 
estimation of the fire spread. However, the 
major limitation of all fire spread simula-

tors (including the FSE) is that their accu-
racy decreases as the span of the prediction 
time increases. An acceptable prediction 
time span for the FSE is usually up to 2-3 
hours after fire detection.

• In addition to the fire front line, a simula-
tion run also estimates the time-evolving 
temperature field it induces as it moves 
through an area. For that purpose we use 
the Temperature Field Modeling (TFM) 
software component that we have devel-
oped (Manolakos, 2008).

At the end of a simulation, the different tem-
perature fields estimated by the parallel TFM 
components are compared to the real temperature 
field measured at the deployed sensor locations 
in order to infer the posterior probabilities of the 
different simulated fire front scenarios given the 
real sensor data. Algorithms for matching (real 
to hypothesized scenarios) and scoring scenarios 
probabilistic similarity have been developed for 
this purpose. The larger the number N of simulated 
fire front evolution scenarios, the more accurate 
the estimated posterior probabilities of the sce-
narios given (sufficient data collected from) the 
real event. Since fire spread is a very complex 
phenomenon influenced by many diverse factors, 
one can hope to estimate accurately the probability 

Table 3. DS fusion algorithm with a second in-field sensor (probability 0.6) 

Fused Probabilities m12(F)
In field Sensor 1 + Vision 

Sensor
In field Sensor 3 

m3(F) Conflict (K) Fused Probabilities m123(F)

0.0122 0.6 0.5975 0.0182

0.1000 0.6 0.5800 0.1429

0.5000 0.6 0.5000 0.6000

0.1000 0.6 0.5800 0.1429

0.5000 0.6 0.5000 0.6000

0.9000 0.6 0.4200 0.9310

0.3077 0.6 0.5384 0.4000

0.8000 0.6 0.4400 0.8571
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of arrival of a fire line to a specific area only if an 
effective sampling mechanism of the very large 
parameter space is in place (Bianchini, 2005). The 
parallel processing capabilities provided by the 
Grid infrastructure, help us complete the simu-
lation of a large number of alternative scenarios 
in a reasonable amount of time, compared to a 
serial execution.

The workflow of a wildfire evolution simula-
tion includes a set of components whose interac-
tion is shown in Figure 7. The workflow starts 
with the generation of the different wind speed 
and direction fire scenarios to be simulated. This 
is the task of a component called the “Perturba-
tor”. The Perturbator uses current wind sensor 
measurements and wind weather forecasts for the 
next few hours to estimate the mean and extend 
of wind parameters and then produces, by random 
sampling from a statistical distribution (Gaussian 
or uniform), a wind speed and wind direction 
combination (WS, WD) to be simulated.

A wind scenario ((speed and direction combi-
nation generated by the Perturbator) is supplied 
as input to an FSE component instance which 
estimates the corresponding fire front’s spatio-
temporal evolution for the next 180 min. The 
number of simulated scenarios depends on the 
number of different wind speed and direction com-

bination pairs (WS, WD) generated and is a user 
controllable parameter. Each scenario corresponds 
to a simulation run and all the runs included in the 
same simulation job are executed in parallel in the 
Grid. In addition to the wind speed and direction 
dynamic data, the FSE needs as input data files 
related to the ground morphology (slope, aspect), 
moisture, fuel type etc. These files are specific to 
a geographic area of interest, do not change from 
run to run (static data) and need to be available 
before a Grid simulation can be launched.

The execution of an FSE component instance 
generates the data needed to launch subsequently 
a Temperature Field Modeling (TFM) component 
instance (Manatakis, 2010, Manolakos 2008). 
This component takes as input the output files 
produced by the FSE (time of arrival of the fire 
line at each geographical cell, fire flame length 
at time of arrival) and the corresponding wind 
speed and direction files and produces in-silico an 
estimate of the temperatures that the in-field tem-
perature sensors located close to the fire front line 
are expected to “feel”. Temperature estimates are 
updated every time the front line is advanced, i.e. 
every minute. Therefore, if a simulation includes 
N (WS,WD) runs, these will simulate in parallel 
N different fire front line evolution scenarios and 
produce their respective N temperature fields. If 

Figure 7. Components of the SCIER forest fire simulation workflow. Most components run inside the 
Grid. The matching and scoring components currently are not GRIDified.
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the FSE is simulated say for 180 minutes, then 
the corresponding temperature field produced by 
the TFM component basically corresponds to a 
“thermal video” with 180 successive “tempera-
ture frames” and as many pixels per frame as the 
deployed SCIER sensors in the field. The TFM 
component is the most computationally demand-
ing in the Grid workflow. At each simulation time 
step its time complexity increases with the product 
of the number of cells newly affected by the fire 
and the number of sensors (monitoring points) 
existing close to the fire front line.

To rank order the simulated scenarios in terms 
of how probable they are, we compare periodically 
the temperature fields, estimated in-silico by the 
different Grid TFM runs, to the set of real sensor 
measurements (temperature readings) as they 
become available from the SCIER sensing sub-
system after the confirmation of a true fire event. 
The process that assesses the degree of similarity 
of the real temperature sensor data to the in-silico 
produced temperature estimates is called field 
matching. It is followed by the scoring process 
which estimates how probable is each one of the 
simulated fire front evolution scenarios based 
on the results of the matching and in light of the 
already collected sensor measurements. Scoring 
also produces a map that shows the probability that 
each geographical cell will be affected by the fire 

for the next up to 180 minutes after fire detection. 
This may be estimated using either all N simulated 
scenarios or the M < N most probable ones iden-
tified by the scoring process. The matching and 
scoring processes can be iterated periodically to 
improve the scoring accuracy by exploiting more 
WSN collected temperature data, as they become 
increasingly available from the SCIER sensing 
subsystem as the fire progresses. The matching 
and scoring SCIER software components run 
outside the Grid (in the CS server) because their 
computational time is not substantial. However 
if N becomes very large, a Grid implementation 
may also be considered for their implementation. 
The visualization of a typical scenario regarding 
the fire front evolution is depicted in Figure 8.

resulTs and disCussion

To evaluate the efficiency of the proposed GRID 
computing workflow, we have performed exten-
sive simulations with different numbers of runs 
(ranging from 5 to 110). Each run corresponds 
to a specific forest fire scenario which simulates 
180 min of fire front evolution and temperature 
field generation for a fire that is started at a spe-
cific ignition point in the area of Stamata, a WUI 
community outside Athens, Greece. Stamata has 
been selected as one of the SCIER project field 
trial areas and a WSN with 20 temperature sensor 
nodes and 2 vision sensors has been deployed in 
order to be able to test and evaluate the overall 
SCIER system’s behavior and performance under 
real world conditions during the summer period, 
when the risk for fire events occurring is higher. 
All the simulated fire front evolution scenarios run 
in one of the sites of the national GRID infrastruc-
ture, where P=40 CPU slots (specint2000=1367) 
have been reserved for SCIER simulations. The 
adopted middleware used was glite version 3.0 
(Hellas Grid, 2008).

Figure 8. Fire front evolution estimation
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simulation setup

For the FSE component to work the area of Sta-
mata has been organized as a geographical grid 
with 501x501 square “cells”, each cell having a 
side of 6 m. The static input files (produced by 
field experts using GIS systems and data bases) 
provide to the FSE information about the ground 
morphology (slope, aspect), the fuel type and 
fuel moisture (dead and live) which dominates 
at each cell.

In order to simulate a fire spread evolution 
scenario, apart from the aforementioned static 
input files, the FSE needs information about the 
prevailing wind speed and direction conditions. 
Running the FSE with different wind speed and 
direction input parameters provides us with dif-
ferent fire front evolutions scenarios. In Figure 
9(a) we observe for a given wind direction, the 
dependence of the burned area (in hectares) on 
the different wind speeds is ranging from 1 m/
sec to 42 m/sec. Since the execution times of the 
FSE and TFM components depend on the burned 
area, which may vary greatly with the wind speed 
and direction for the same geographical area and 
ignition points, we cannot predict a priori the 
execution time of a simulation run.

For the simulation experiments whose results 
are reported here, the Perturbator component used 
as current wind speed and direction the values 10 
m/sec, 270 degrees and as weather forecasted val-
ues 20 m/sec, 360 degrees respectively. To generate 
different wind speed and wind direction scenarios 
the Perturbator sampled a normal distribution with 
mean value the mid-range and standard deviation 
the half-difference between forecasted and current 
values. The number of deployed sensors, whose 
temperature vs. time curves have to be estimated 
by the TFM component for each scenario, was 
20 matching the number of sensors which have 
actually been deployed in the Stamata test site.

evaluation Method

Let N(t) denote the number of parallel runs in-
cluded in a simulation that have been completed 
in the Grid by time t (min) after the simulation’s 
initiation. Let Ts(t) be the aggregate serial execution 
time of all these runs if they were to be executed 
serially (the one after the other) in a single Grid 
worker node. Let Tq(t) be the aggregate Grid 
overhead time spent collectively by all the N(t) 
runs in scheduling queues and other non-execution 
Grid stages. Let S(t) denote the speedup factor 

Figure 9. (a) Burned area (in hectares), under different wind speed and wind direction conditions (b) 
Number of runs completed at each time step (min) of the grid execution time.
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which has been realized using the Grid by time 
t. It can be computed as S(t) = Ts(t) / t. Finally let 
E(t) denote the grid running efficiency, measuring 
deviation from the ideal linear speedup at time t 
and computed as E(t) = S(t) / p, where p is the 
number of slots allocated to the execution of the 
N(t) parallel runs.

experimental results 
and discussion

The experimental results presented next cor-
respond to a simulation consisting of 110 runs 
(i.e. sumulating 110 different fire front evolution 
scenarios) executed using 40 reserved CPU slots 
provided by a single HellasGrid site (Hellas Grid, 
2008). Figure 9(b) shows the number of completed 
N(t) jobs as a function of parallel grid time t. We 
observe that it takes 71 min to complete all 110 
jobs, i.e. the effective grid throughput is approxi-
mately ~1.54 jobs/min, as opposed to ~0.054 job/
min in a single worker node machine.

Figure10(a) shows two curves, the solid and 
dotted curves correspond to the aggregate com-
putation time Ts(t) and the aggregate scheduling 
and in-queue time Tq(t) respectively, of all the 
runs completed by time t. As time progresses, 

we observe that the aggregate time spent by all 
completed runs collectively in the queue increases 
(as expected) and tends to reach the aggregate se-
rial time of the runs. Two factors contribute to the 
rate (slope) of Tq(t), one is the rate of the number 
of completed jobs N(t) (shown in Figure9(b)) and 
the other is the time the corresponding jobs spent 
waiting in the queue. For t < 30 min, the rate of Tq(t) 
is lower as this part of the curve corresponds to the 
first bunch of jobs that are scheduled to CPU slots 
immediately and therefore spend minimum time 
in the queue. Also, as shown in Figure 9(b), the 
rate of N(t) for t>60 min decreases, which explains 
the decrease of the rate of Tq(t), as at this phase 
the rate of N(t) becomes the dominating factor. 
Figure 10(b) shows the grid realizable speedup 
as grid execution time increases. We observe that 
when the number of parallel runs exceeds the 
number of available CPU spots the speedup factor 
levels off, but is sustained at ~30 which is a very 
respectable steady state value considering that 
we are using p=40 CPU slots i.e. the maximum 
theoretical speedup is equal to 40. This indicates 
that for a large number of runs (scenarios) parallel 
computation can be very efficient, exceeding the 
75% efficiency level.

Figure 10. (a) Solid and dotted curves show the aggregate serial computational time Ts(t) and the ag-
gregate time in queue Tq(t) respectively. (b) Computational speedup using the Grid.
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eXPloiTaTion

The definition of the spatial scale and the main 
protected entity will be the cornerstone for the 
design and execution of a strategy towards the 
exploitation of the SCIER system. The main 
objective of the SCIER system implemented in 
a protection cell (a settlement, a small housing 
area, a small town) is to obtain data from that cell, 
monitor the evolution of fire, offer better protec-
tion, and perform more effective deployment of 
forces in the affected areas.

The product to be designed as marketable 
should be based on what has been developed in 
the project, namely network of wireless sensors, 
prediction models, spatial data processing and 
communication technologies. It should follow a 
scalable and inter-operable approach, in this way 
the initial deployment of the SCIER components 
will serve as a system seed around which new nodes 
can be added to the initial protection cell. New 
cells can be aggregated to support co-operative 
monitoring among settlements meening that the 
sensors of remote cells can be used locally, thus 
extending the power and efficiency of all sensors 
deployed in the area. The design of the system 
should count on private homeowners or industrial 
installations, that may also request more specific 
and dense network of sensors for their own pur-
poses, but that can be used within the network to 
protect other properties and infrastructures as well. 
For the definition of the concept, a protection cell 
will include also a buffer zone (e.g. 0.5 km) and, 
depending on the pattern and density of houses/
vegetation, other buffer areas inside the settlement 
where sensors should be deployed. Experience 
shows that, in case of WUI detected fires, the 
protection should focus mainly on the first ring 
of houses that are normally more exposed to the 
incoming risk.

The SCIER system can be adopted by local 
authorities like municipalities and prefectures for 
the protection of varying scales of land against 
fires. Such authorities are strongly interested in 

detecting incidents at the earliest possible time and 
issue early warning alarms to the people living 
in their areas of responsibility. The IT personnel 
of municipalities/prefectures deploys the system 
at designated areas of high risk and assumes the 
responsibility for its maintenance. Moreover, such 
a public system may interoperate with private 
SCIER systems in a collaborative way in order to 
extend system’s coverage and optimize its opera-
tion. Moreover, the vast sensor feed accumulated 
in the SCIER system and the local danger as-
sessment could be of vital importance to central 
government emergency services, such as the Civil 
Protection Authority. Such authority should obtain 
accurate information on the development of haz-
ardous phenomena and centrally orchestrate the 
risk management tasks (e.g., allocate fire fighting 
units, dispatch ambulances etc).

fuTure Work

As a future work, we propose the enhancement of 
the implemented fusion algorithms with alterna-
tive combination rules, e.g., (Yager. 1987) and 
the adoption of the Fuzzy Set theory to deal with 
uncertainty, imprecision and incompleteness of 
the underlying data. Further validation through 
trials with controlled flaming or smoldering fire 
should be conducted to quantify parameters such 
as thresholds, false alarm rates and fusion weights. 
As mentioned in previous sections, 40 CPU slots 
have been reserved for SCIER purposes in the 
GRID infrastructure, therefore the waiting time 
of a simulation job is more predictable. However, 
considering that SCIER jobs are triggered rarely 
but unexpectedly by non-periodic events and that 
sustained CPU reservations may not be practical 
in large-scale deployments, we are investigating 
novel grid resources scheduling models that could 
provide a viable alternative. In addition to the no-
tion of grid CPU slots, which typically have a one 
to one correspondence with the operating system 
CPU slots of the worker nodes, this model intro-
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duces to grid middleware the concept of virtual 
grid CPU slots. Virtual grid CPU slots are made 
available only to specific job types with soft real 
time requirements and short deadlines. According 
to this model SCIER jobs will be neither delayed 
due to other jobs nor queued while waiting for a 
grid CPU slots to be released.

ConClusion

In this chapter we have presented the SCIER 
system which focuses on the detection and 
monitoring of environmental risks. In its current 
form, the SCIER system/architecture can deal 
with forest fires and flash floods, with emphasis 
on the protection of the WUI areas. Throughout 
the chapter, we elaborated on the fire hazard case. 
Detection of fires in SCIER is performed through 
a multi-sensor infrastructure integrating wind-
speed, wind-direction, temperature, humidity 
and smart vision sensors. To cope with all these 
different types of sensors and deliver alarms with 
increased accuracy and confidence a layered 
fusion scheme has been adopted. Different sen-
sor feeds are processed in the two layers of the 
fusion scheme. On the lower layer, the statistical 
behavior of sensor data is constantly assessed. 
On the higher layer, D-S theory of evidence is 
adopted in order to mix the indications coming 
from the lower layer and the out-of-field vision 
sensors. We provide examples to clearly illustrate 
the adopted scheme. Apart from the SCIER fusion 
model, we also discuss the advanced simulation 
architecture developed in the context of the project. 
Specifically, we have developed an end-to-end 
grid workflow which involves the parallel execu-
tion of many alternative fire evolution scenarios. 
The workflow has been evaluated in the area of 
Stamata, Greece. The analysis of our experimental 
results demonstrates the potential speedup that 
can be delivered by the grid infrastructure to the 
application. Parallel simulations allow the inves-
tigation of the effects of perturbations in critical 

environmental variables and the joint assessment 
of probabilistic scenarios to derive meaningful 
predictions and corresponding crisis management 
plans before the disaster strikes.
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