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Preface

Optimization models and methods play an increasingly important role in financial de-
cisions. Many computational finance problems ranging from asset allocation to risk
management, from option pricing to model calibration can be solved efficiently using
modern optimization techniques. This manuscript discusses several classes of optimiza-
tion problems (including linear, quadratic, conic, robust, and stochastic programming
problems) encountered in financial models. For each problem class, after introducing
the relevant theory (optimality conditions, duality, etc.) and efficient solution meth-
ods, we discuss several problems of mathematical finance that can be modeled within
this problem class. In addition to classical and well-known models such as Markowitz’
mean-variance optimization formulation we present some newer optimization models
for a variety of financial problems.

This manuscript is derived from a set of course notes I prepared for the course
Advanced Lecture on Mathematical Science and Information Science I: Optimization
in Finance that I taught at the Department of Mathematical and Computing Sciences
at Tokyo Institute of Technology between April 18, 2003 and July 18, 2003, during
my sabbatical visit to Tokyo Tech. Parts of these notes are based on the lectures I
presented at the University of Coimbra, Portugal in the Summer of 2002 as part of
a short course I taught there. I gratefully acknowledge the financial support of these
two institutions during my stays. I also thank the attendants of these courses and, in
particular, my hosts Lúıs N. Vicente in Coimbra and Masakazu Kojima in Tokyo, for
their feedback and for many stimulating discussions.

Reha H. Tütüncü
August 2003, Tokyo

xi



xii PREFACE



Chapter 1

Introduction

Optimization is a branch of applied mathematics that derives its importance both from
the wide variety of its applications and from the availability of advanced algorithms for
the efficient and robust solution of many of its problem classes. Mathematically, it refers
to the minimization (or maximization) of a given objective function of several decision
variables that have to satisfy some functional constraints. A typical optimization model
addresses the allocation of scarce resources among a set of alternative activities in order
to maximize an objective function–a measure of the modeler’s satisfaction with the
solution, for example, the total profit.

Decision variables, the objective function, and constraints are three essential ele-
ments of any optimization problem. Some problems may lack constraints so that any
set of decision variables (of appropriate dimension) are acceptable as alternative solu-
tions. Such problems are called unconstrained optimization problems, while others are
often referred to as constrained optimization problems. There are problem instances
with no objective functions–the so-called feasibility problems, and others with multiple
objective functions. Such problems are often addressed by reduction to a single or a
sequence of single-objective optimization problems.

If the decision variables in an optimization problem are restricted to integers, or to
a discrete set of possibilities, we have an integer or discrete optimization problem. If
there are no such restrictions on the variables, the problem is a continuous optimization
problem. Of course, some problems may have a mixture of discrete and continuous
variables. Our focus in these lectures will be on continuous optimization problems. We
continue with a short classification of the problem classes we will encounter during our
lectures.

1



2 CHAPTER 1. INTRODUCTION

1.1 Continuous Optimization: A Brief Classifica-

tion

We start with a generic description of an optimization problem. Given a function
f(x) : <n → < and a set S ⊂ <n, the problem of finding an x∗ ∈ <n that solves

(OP0) minx f(x)
s.t. x ∈ S

(1.1)

is called an optimization problem (OP). We refer to f as the objective function and
to S as the feasible region. If S is empty, the problem is called infeasible. If it is
possible to find a sequence xk such that xk ∈ S, ∀k and f(xk) diverges to −∞, then
the problem is unbounded. If the problem is neither infeasible nor unbounded, then it
is often possible to find a solution x∗ that satisfies

f(x∗) ≤ f(x), ∀x ∈ S.

Such an x∗ is called a global minimizer of the problem (OP). If

f(x∗) < f(x), ∀x ∈ S, x 6= x∗,

then x∗ is a strict global minimizer. In other instances, we may only find an x∗ that
satisfies

f(x∗) ≤ f(x), ∀x ∈ S ∩Bx∗(ε)

for some ε > 0 where Bx∗(ε) is the open ball with radius ε centered at x∗, i.e.,

Bx∗(ε) = {x : ‖x− x∗‖ < ε}.

Such an x∗ is called a local minimizer of the problem (OP). A strict local minimizer is
defined similarly.

In most cases, the feasible set S is described explicitly using functional constraints
(equalities and inequalities). For example, S may be given as

S := {x : gi(x) = 0, i ∈ E , gi(x) ≥ 0, i ∈ I},

where E and I are the index sets for equality and inequality constraints. Then, our
generic optimization problem takes the following form:

(OP) minx f(x)
gi(x) = 0, i ∈ E
gi(x) ≥ 0, i ∈ I.

(1.2)

There are many factors that affect the efficient solvability of optimization problems.
For example, n–the number of decision variables in the problem, and |E|+ |I|–the total
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number of constraints, are generally good predictors of how easy or difficult it would be
to solve a given optimization problem. Other factors are related to the properties of the
functions f and gi’s that define the problem. Problems with a linear objective function
and linear constraints are easier, so are problems with convex objective functions and
convex feasible sets. Therefore, instead of general purpose optimization algorithms,
researchers have developed different algorithms for problems with special characteris-
tics. This approach requires a proper classification of optimization problems. We list
a few of these optimization problem classes that we will encounter in this manuscript.
A more complete classification can be found, for example, on the Optimization Tree
available from http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/.

1.1.1 Linear Optimization

One of the most common and easiest optimization problems is the linear optimization
(LO) or the linear programming (LP) problem: the problem of optimizing a linear ob-
jective function subject to linear equality and inequality constraints. This corresponds
to the case where f and all gi’s are linear in (OP). If either f or one of the gi’s is not
linear, then the resulting problem is a nonlinear programming (NLP) problem.

The standard form of the LP is given below:

(LP) minx cT x
Ax = b

x ≥ 0,
(1.3)

where A ∈ IRm×n, b ∈ IRm, c ∈ IRn are given, and x ∈ IRn is the variable vector to be
determined as the solution to the problem.

As with (OP), the problem LP is said to be feasible if its constraints are consistent
and it is called unbounded if there exists a sequence of feasible vectors {xk} such that
cT xk → −∞. When LP is feasible but not unbounded it has an optimal solution, i.e.,
a vector x that satisfies the constraints and minimizes the objective value among all
feasible vectors.

The best known (and most successful) methods for solving LPs are interior-point
methods and the simplex method.

1.1.2 Quadratic Optimization

A more general optimization problem is the quadratic optimization (QO) or the quadratic
programming (QP) problem, where the objective function is now a quadratic function
of the variables. The standard form QP is defined as follows:

(QP) minx
1
2
xT Qx + cT x

Ax = b
x ≥ 0,

(1.4)
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where A ∈ IRm×n, b ∈ IRm, c ∈ IRn, Q ∈ IRn×n are given, and x ∈ IRn. Since
xT Qx = 1

2
xT (Q + QT )x, Q can be assumed to be symmetric without loss of generality.

The objective function of the problem QP is a convex function of x when Q is a
positive semidefinite matrix, i.e., when yT Qy ≥ 0 for all y (see the Appendix for a dis-
cussion on convex functions). This condition is equivalent to Q having all nonnegative
eigenvalues. When this condition is satisfied, the QP problem is a convex optimization
problem and can be solved in polynomial time using interior-point methods.

1.1.3 Conic Optimization

Another generalization of the linear optimization problem is obtained by replacing the
nonnegativity constraints with general conic inclusion constraints, resulting in a so-
called conic optimization problem. For this purpose, we consider a closed convex cone
C (see the Appendix for a brief discussion on cones) in a finite-dimensional vector space
X and the following conic optimization problem:

(CO) minx cT x
Ax = b

x ∈ C.
(1.5)

When X = <n and C = <n
+, this problem is the standard form LP. However, much

more general nonlinear optimization problems can also be formulated in this way.
Furthermore, some of the most efficient and robust algorithmic machinery developed
for linear optimization problems can be modified to solve these general optimization
problems. Two important subclasses of conic optimization problems we will address
are: (i) second-order cone optimization, and (ii) semidefinite optimization. These
correspond to the cases when C is the second-order cone:

Cq := {x = (x0, x1, . . . , xn) ∈ <n+1 : x0 ≥ ‖(x1, . . . , xn)‖},

and the cone of symmetric positive semidefinite matrices:

Cs :=

X =


x11 · · · x1n
...

. . .
...

xn1 · · · xnn

 ∈ <n×n : X = XT , X is positive semidefinite

 .

When we work with the cone of positive semidefinite matrices, the standard inner
products used in cT x and Ax in (1.5) are replaced by an appropriate inner product for
the space of n-dimensional square matrices.

1.2 Optimization with Data Uncertainty

In all the problem classes we discussed so far, we made the implicit assumption that
the data of the problem, namely the parameters that describe the problem such as Q,
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A, b and c in (QP) are all known. This is not always the case. Often, the problem
parameters correspond to quantities that will only be realized in the future, or can
not be known exactly at the time the problem has to be formulated and solved. Such
situations are especially common in the models that involve financial quantities such
as returns on investments, risks, etc. We will discuss two fundamentally different
approaches that address optimization with data uncertainty. Stochastic programming
is an approach used when the data uncertainty is random and can be explained by some
probability distribution. Robust optimization is used when the uncertainty structure is
not random and/or a solution that can behave well in all possible realizations of the
uncertain data is desired. These two alternative approaches are not problem classes
(as in LP, QP, etc.) but rather modeling techniques for addressing data uncertainty.

1.2.1 Stochastic Optimization

The term stochastic optimization or stochastic programming refers to an optimization
problem in which some problem data are random. The underlying optimization prob-
lem might be a linear program, an integer program, or a nonlinear program. An
important case is that of stochastic linear programs.

A stochastic program with recourse arises when some of the decisions (recourse
actions) can be taken after the outcomes of some (or all) random events have become
known. For example, a two-stage stochastic linear program with recourse can be written
as follows:

max (c1)T x1 + E[max c2(ω)T x2(ω)]
A1x1 = b1

B2(ω)x1 + A2(ω)x2(ω) = b2(ω)
x1 ≥ 0, x2(ω) ≥ 0,

(1.6)

where the first-stage decisions are represented by vector x1 and the second-stage deci-
sions by vector x2(ω), which depend on the realization ω of a random event. A1 and b1

define deterministic constraints on the first-stage decisions x1, whereas A2(ω), B2(ω),
and b2(ω) define stochastic linear constraints linking the recourse decisions x2(ω) to the
first-stage decisions. The objective function contains a deterministic term (c1)T x1 and
the expectation of the second-stage objective c2(ω)T x2(ω) taken over all realization of
the random event ω.

Note that, once the first-stage decisions x1 have been made and the random event
ω has been realized, one can compute the optimal second-stage decisions by solving
the following linear program:

f(x1, ω) = max c2(ω)T x2(ω)
A2(ω)x2(ω) = b2(ω)−B2(ω)x1

x2(ω) ≥ 0,
(1.7)

Let f(x1) = E[f(x1, ω)] denote the expected value of the optimal value of this problem.
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Then, the two-stage stochastic linear program becomes

max (c1)T x1 + f(x1)
A1x1 = b1

x1 ≥ 0,
(1.8)

So, if the (possibly nonlinear) function f(x1) is known, the problem reduces to a non-
linear programming problem. When the data c2(ω), A2(ω), B2(ω), and b2(ω) are
described by finite distributions, one can show that f is piecewise linear and concave.
When the data are described by probability densities that are absolutely continuous
and have finite second moments, one can show that f is differentiable and concave. In
both cases, we have a convex optimization problem with linear constraints for which
specialized algorithms are available.

1.2.2 Robust Optimization

Robust optimization refers to the modeling of optimization problems with data uncer-
tainty to obtain a solution that is guaranteed to be “good” for all possible realizations
of the uncertain parameters. In this sense, this approach departs from the random-
ness assumption used in stochastic optimization for uncertain parameters and gives
the same importance to all possible realizations. Uncertainty in the parameters is de-
scribed through uncertainty sets that contain all (or most) possible values that may be
realized for the uncertain parameters.

There are different definitions and interpretations of robustness and the resulting
models differ accordingly. One important concept is model robustness; this refers to
solutions that remain feasible for all possible values of the uncertain inputs–we prefer
to call such solutions constraint robust solutions. This type of solutions are required
in many engineering applications. Here is an example adapted from Ben-Tal and
Nemirovski: Consider a multi-phase engineering process (a chemical distillation pro-
cess, for example) and a related process optimization problem that includes balance
constraints (materials entering a phase of the process can not be more than what is
produced/left over from the previous phase). Often, the quantities of the end prod-
ucts of a particular phase depend on external, uncontrollable factors and therefore are
uncertain. However, no matter what the values of these uncontrollable factors are, the
balance constraints must be satisfied. Therefore, our solution must be model robust
with respect to the uncertainties of the problem. Here is a mathematical model for
finding constraint robust solutions: Consider an optimization problem of the form:

(OPuc) minx f(x)
G(x, p) ∈ K.

(1.9)

Here, x are the decision variables, f is the (certain) objective function, G and K are
the structural elements of the constraints that are assumed to be certain and p are
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the possibly uncertain parameters of the problem. Consider an uncertainty set U that
contains all possible values of the uncertain parameters p. Then, a constraint robust
optimal solution can be found by solving the following problem:

(CROP) minx f(x)
G(x, p) ∈ K, ∀p ∈ U .

(1.10)

Another important robustness concept is solution robustness. This refers to solu-
tions that will remain close to optimal for all possible realizations of the uncertain
problem parameters, and for this reason we prefer the alternative term objective robust
for such solutions. Since such solutions may be difficult to obtain, especially when un-
certainty sets are relatively large, an alternative goal for objective robustness is to find
solutions whose worst-case behavior is optimized. Worst-case behavior of a solution
corresponds to the value of the objective function for the worst possible realization of
the uncertain data for that particular solution. Here is a mathematical model that
addresses objective robustness: Consider an optimization problem of the form:

(OPuo) minx f(x, p)
x ∈ S.

(1.11)

Here, S is the (certain) feasible set and f is the objective function that depends on
uncertain parameters p. Assume as above that U is the uncertainty set that contains
all possible values of the uncertain parameters p. Then, an objective robust solution
can be obtained by solving:

(OROP) minx∈S maxp∈U f(x, p). (1.12)

Note that solution robustness is a special case of model robustness–it is easy to see
that by introducing a new variable t (to be minimized) into (OPuo and imposing the
constraint f(x, p) ≤ t, we get an equivalent problem to (OPuo; the constraint robust
formulation of the resulting problem is equivalent to OROP .

Model robustness and solution robustness are concepts that arise in conservative
decision making and are not always appropriate for optimization problems with data
uncertainty.

1.3 Financial Mathematics

Modern finance has become increasingly technical, requiring the use of sophisticated
mathematical tools in both research and practice. Many find the roots of this trend in
the portfolio selection models and methods described by Markowitz in the 1950’s and
the option pricing formulas developed by Black, Scholes, and Merton in the late 1960’s.
For the enormous effect these works produced on modern financial practice, Markowitz
was awarded the Nobel prize in Economics in 1990, while Scholes and Merton won the
Nobel prize in Economics in 1997.
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Below, we list a number of topics in finance that are especially suited for mathe-
matical analysis and involve sophisticated tools from mathematical sciences.

1.3.1 Portfolio Selection and Asset Allocation

The theory of optimal selection of portfolios was developed by Harry Markowitz in the
1950’s. His work formalized the diversification principle in portfolio selection and, as
mentioned above, earned him the 1990 Nobel prize for economics. We will discuss his
model in more detail later. Here we give a brief description of the model and relate it
to QPs.

Consider an investor who has a certain amount of money to be invested in a number
of different securities (stocks, bonds, etc.) with random returns. For each security i, i =
1, . . . , n, estimates of its expected return, µi, and variance, σ2

i , are given. Furthermore,
for any two securities i and j, their correlation coefficient ρij is also assumed to be
known. If we represent the proportion of the total funds invested in security i by
xi, one can compute the expected return and the variance of the resulting portfolio
x = (x1, . . . , xn) as follows:

E[x] = x1µ1 + . . . + xnµn = µT x,

and
V ar[x] =

∑
i,j

ρijσiσjxixj = xT Qx

where ρii ≡ 1, Qij = ρijσiσj for i 6= j, Qii = σ2
i , and µ = (µ1, . . . , µn).

The portfolio vector x must satisfy
∑

i xi = 1 and there may or may not be additional
feasibility constraints. A feasible portfolio x is called efficient if it has the maximal
expected return among all portfolios with the same variance, or alternatively, if it has
the minimum variance among all portfolios that have at least a certain expected return.
The collection of efficient portfolios form the efficient frontier of the portfolio universe.

Markowitz’ portfolio selection problem, also called the mean-variance optimization
(MVO) problem can be formulated in three different but equivalent ways. One formu-
lation results in the problem of finding a minimum variance portfolio of the securities
1 to n that yields at least a target value of expected return (say b). Mathematically,
this formulation produces a convex quadratic programming problem:

minx xT Qx
eT x = 1
µT x ≥ b

x ≥ 0,

(1.13)

where e is a n-dimensional vector of ones. The first constraint indicates that the
proportions xi should sum to 1. The second constraint indicates that the expected
return is no less than the target value and as we discussed above, the objective function
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corresponds to the total variance of the portfolio. Nonnegativity constraints on xi are
introduced to disallow short sales (selling a security that you do not have). Note that
the matrix Q is positive semidefinite since xT Qx, the variance of the portfolio, must
be nonnegative for every portfolio (feasible or not) x.

The model (1.13) is rather versatile. For example, if short sales are permitted on
some or all of the securities then this can be incorporated into the model simply by
removing the nonnegativity constraint on the corresponding variables. If regulations
or the investor’s considerations limit the amount of investment in a subset of the
securities, the model can be augmented with a linear constraint to reflect such a limit.
In principle, any linear constraint can be added to the model without making it much
harder to solve.

Asset allocation problems have an identical mathematical structure to portfolio
selection problems. In these problems, the objective is not to choose a portfolio of
stocks (or other securities), but to determine the optimal investment among a set of
asset classes. Examples of these asset classes are large capitalization stocks, small
capitalization stocks, foreign stocks, government bonds, corporate bonds, etc. Since
there are many mutual funds focusing on each one of these different asset classes, one
can conveniently invest in these asset classes by purchasing the corresponding mutual
fund. After estimating the expected returns, variances, and covariances for different
asset classes, one can formulate a QP identical to (1.13) and obtain efficient portfolios
of these asset classes.

The formulation (1.13) we presented above makes several simplifying assumptions
and much of the literature on asset allocation/portfolio selection focuses on solving this
problem without some of these assumptions. We will address some of these variations
and some other problems related to portfolio selection throughout the manuscript.

1.3.2 Pricing and Hedging of Options

We first start with a description of some of the well-known financial options. A Euro-
pean call option is a contract with the following conditions:

• At a prescribed time in the future, known as the expiration date, the holder of
the option has the right, but not the obligation to

• purchase a prescribed asset, known as the underlying, for a

• prescribed amount, known as the strike price or exercise price.

A European put option is like the call option, except that it gives the right to sell an
asset. An American call/put option is like a European option, except that it may be
exercised on or before the expiration date.

Since the payoff from an option depends on the value of the underlying security,
its price is also related to the current value and expected behavior of this underlying
security. To find the fair value of a given option, we need to solve a pricing problem and
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this problem can often be solved using sophisticated mathematical techniques, provided
that there is a good model for the stochastic behavior of the underlying security.

Option pricing problems are often solved using the following strategy: We try to
determine a portfolio of assets with known prices which, if updated properly through
time, will produce the same payoff as the option. Since the portfolio and the option
will have the same eventual payoffs, we conclude that they must have the same value
today (otherwise, there is arbitrage) and we can easily obtain the price of the option. A
portfolio of other assets that produces the same payoff as a given financial instrument
is called a replicating portfolio (or a hedge) for that instrument. Finding the right
portfolio, of course, is not always easy and leads to a replication (or hedging) problem.

Let us consider a simple example to illustrate these ideas. Let us assume that one
share of stock XYZ is currently valued at $40. The price of XYZ a month from today
is random: Assume that its value will either double or halve with equal probabilities.

S0=$40 ���*

HHHj

80=S1(u)

20=S1(d)
.

Today, we purchase a European call option to buy one share of XYZ stock for $50 a
month from today. What is the fair price of this call option?

Let us assume that we can borrow or lend money with no interest between today
and next month, and that we can buy or sell any amount of the XYZ stock without
any commissions, etc. These are part of the “frictionless market” assumptions we will
address later in the manuscript. Further assume that XYZ will not pay any dividends
within the next month.

To solve the pricing problem, we consider the following hedging problem: Can we
form a portfolio of the underlying stock (bought or sold) and cash (borrowed or lent)
today, such that the payoff from the portfolio at the expiration date of the option will
match the payoff of the option? Note that the option payoff will be $30 if the price of
the stock goes up and $0 if it goes down. Say, this portfolio has ∆ shares of XYZ and
$B cash. This portfolio would be worth 40∆+B today. Next month, payoffs for this
portfolio will be:

P0=40∆+B ���*

H
HHj

80∆+B=P1(u)

20∆+B=P1(d)
.

Let us choose ∆ and B such that

80∆ + B = 30

20∆ + B = 0,

so that the portfolio replicates the payoff of the option at the expiration date. This
gives ∆ = 1

2
and B = −10, which is the hedge we were looking for. This portfolio is

worth P0 = 40∆ + B =$10 today, therefore, the fair price of the option must also be
$10.
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1.3.3 Risk Management

Risk is an inevitable consequence of productive activity. This is especially true for
financial activities of companies and individuals where results of most decisions will
be observed or realized in the future, in unpredictable circumstances. Since companies
can not ignore such risks and can not insure themselves completely against risks, they
have to manage it. This is a hard task even with the support of advanced mathemat-
ical techniques–poor risk management practices led to several spectacular failures in
the financial industry during the last decade (e.g., Barings Bank, Long Term Capital
Management, Orange County).

The development of a coherent risk management practice requires quantitative risk
measures that adequately reflect the vulnerabilities of a company. Examples of these
risk measures include portfolio variance as in the Markowitz MVO model, the Value-
at-Risk (VaR) and the expected shortfall (also known as conditional VaR, or CVaR)).
Furthermore, risk control techniques need to be developed and implemented to adapt to
the rapid changes in the values of these risk measures. Government regulators already
mandate that financial institutions control their holdings in certain ways and place
margin requirements for “risky” positions.

Optimization problems encountered in financial risk management often take the
following form: optimize a performance measure (such as expected investment return)
subject to the usual operating constraints and the constraint that a particular risk
measure for the companies financial holdings does not exceed a prescribed amount.
Mathematically, we may have the following problem:

maxx µT x
RM[x] ≤ γ

eT x = 1
x ≥ 0,

(1.14)

As in the Markowitz MVO model, xi represent the proportion of the total funds invested
in security. The objective is the expected portfolio return and µ is the expected return
vector for the different securities. RM[x] denotes the value of a particular risk measure
for portfolio x and γ is the prescribed upper limit on this measure. Since RM[x]
is generally a nonlinear function of x, (1.14) is a nonlinear programming problem.
Alternatively, we may optimize the risk measure while requiring that expected return
of the portfolio is at least a certain amount. This would produce a problem very similar
to (1.13).

1.3.4 Asset Liability Management

How should a financial institution manage its assets and liabilities? A static mean-
variance optimizing model such as the one we discussed for asset allocation fails to
incorporate the multivariate nature of the liabilities faced by financial institutions.



12 CHAPTER 1. INTRODUCTION

Furthermore, it equally penalizes returns above the expected returns and shortfalls. A
multi-period model that emphasizes the need to meet liabilities in each period for a
finite (or possibly infinite) horizon is often required. Since liabilities and asset returns
usually have random components, their optimal management requires tools of “Opti-
mization under Uncertainty” and most notably, stochastic programming approaches.

Let Lt be the liability of the company in period t for t = 1, . . . , T . Here, we
assume that Lt’s are random with known distributions. A typical problem to solve in
asset/liability management is to determine which assets (and in what quantities) the
company should hold in each period to maximize its expected wealth at the end of
period T. We can further assume that the asset classes the company can choose from
have random returns (again, with known distributions) denoted by Rit for asset class
i in period t. Since the company can make the holding decisions for each period after
observing the asset returns and liabilities in the previous periods, the resulting problem
can be cast as a stochastic program with recourse:

maxx E[
∑

i xi,T ]∑
i(1 + Rit)xi,t−1 −

∑
i xi,t = Lt, t = 1, . . . , T
xi,t ≥ 0 ∀i, t.

(1.15)

The objective function represents the expected total wealth at the end of the last
period. The constraints indicate that the surplus left after liability Lt is covered will
be invested as follows: xi,t invested in asset i. In this formulation, x0,t are the fixed,
and possibly nonzero initial positions in the different asset classes.



Chapter 2

Linear Programming: Theory and
Algorithms

2.1 The Linear Programming Problem

One of the most common and fundamental optimization problems is the linear pro-
gramming problem (LP), the problem of optimizing a linear objective function subject
to linear equality and inequality constraints. A generic linear optimization problem
has the following form:

(LOP) minx cT x
aT

i x = bi, i ∈ E
aT

i x ≥ bi, i ∈ I,
(2.1)

where E and I are the index sets for linear equality and inequality constraints, respec-
tively. For algorithmic purposes, it is often desirable to have the problems structured
in a particular way. Since the development of the simplex method for LPs the following
form has been a popular standard and is called the standard form LP:

(LP) minx cT x
Ax = b

x ≥ 0.
(2.2)

Here A ∈ <m×n, b ∈ <m, c ∈ <n are given, and x ∈ <n is the variable vector to be
determined as the solution of the problem. The matrix A is assumed to have full row
rank. This is done without loss of generality because if A does not have full row rank,
the augmented matrix [A|b] can be row reduced, which either reveals that the problem
is infeasible or that one can continue with the reduced full-rank matrix.

This form is not restrictive: Inequalities (other than non-negativity) can be rewrit-
ten as equalities after the introduction of a so-called slack or surplus variable that is
restricted to be nonnegative. For example,

13
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min −x1 − x2

2x1 + x2 ≤ 12
x1 + 2x2 ≤ 9
x1, x2 ≥ 0

(2.3)

can be rewritten as

min −x1 − x2

2x1 + x2 + x3 = 12
x1 + 2x2 + x4 = 9
x1, x2, x3, x4 ≥ 0.

(2.4)

Variables that are not required to be nonnegative can be expressed as the difference
of two new nonnegative variables. Simple transformations are available to rewrite any
given LP in the standard form above. Therefore, in the rest of our theoretical and
algorithmic discussion we assume that the LP is in the standard form.

Recall the following definitions from the introductory chapter: LP is said to be
feasible if its constraints are consistent and it is called unbounded if there exists a
sequence of feasible vectors {xk} such that cT xk → −∞. When we talk about a
solution (without any qualifiers) to LP we mean any candidate vector x ∈ <n. A
feasible solution is one that satisfies the constraints, and an optimal solution is a vector
x that satisfies the constraints and minimizes the objective value among all feasible
vectors. When LP is feasible but not unbounded it has an optimal solution.

2.2 Duality

The most important questions we will address in this chapter are the following: How
do we recognize an optimal solution and how do we find such solutions? Consider the
standard form LP in (2.4) above. Here are a few alternative feasible solutions:

(x1, x2, x3, x4) = (0,
9

2
,
15

2
, 0) Objective value = −9

2
(x1, x2, x3, x4) = (6, 0, 0, 3) Objective value = −6

(x1, x2, x3, x4) = (5, 2, 0, 0) Objective value = −7

Since we are minimizing, the last solution is the best among the three feasible solutions
we found, but is it the optimal solution? We can make such a claim if we can, somehow,
show that there is no feasible solution with a smaller objective value.

Note that the constraints provide us some bounds on the value of the objective
function. For example, for any feasible solution, we must have

−x1 − x2 ≥ −2x1 − x2 − x3 = −12



2.2. DUALITY 15

using the first constraint of the problem. The inequality above must hold for all feasible
solutions since xi’s are all nonnegative and the coefficient of each variable on the LHS
are at least as large as the coefficient of the corresponding variable on the RHS. We
can do better using the second constraint:

−x1 − x2 ≥ −x1 − 2x2 − x4 = −9

and even better by adding a negative third of each constraint:

−x1 − x2 ≥ −x1 − x2 −
1

3
x3 −

1

3
x4

= −1

3
(2x1 + x2 + x3)−

1

3
(x1 + 2x2 + x4) = −1

3
(12 + 9) = −7.

This last inequality indicates that for any feasible solution, the objective function value
can not be smaller than -7. Since we already found a feasible solution achieving this
bound, we conclude that this solution, namely (x1, x2, x3, x4) = (5, 2, 0, 0) is an optimal
solution of the problem.

This process illustrates the following strategy: If we find a feasible solution to the
LP problem, and a bound on the optimal value of problem such that the bound and
the objective value of the feasible solution coincide, then we can confidently recognize
our feasible solution as an optimal solution. We will comment on this strategy shortly.
Before that, though, we formalize our approach for finding a bound on the optimal
objective value.

Our strategy was to find a linear combination of the constraints, say with multipliers
y1 and y2 for the first and second constraint respectively, such that the combined
coefficient of each variable forms a lower bound on the objective coefficient of that
variable. In other words, we tried to choose y1 and y2 such that

y1(2x1+x2+x3)+y2(x1+2x2+x4) = (2y1+y2)x1+(y1+2y2)x2+y1x3+y2x4 ≤ −x1−x2

or,

2y1 + y2 ≤ −1

y1 + 2y2 ≤ −1

y1 ≤ 0

y2 ≤ 0.

Naturally, to obtain the best possible bound, we would like to find y1 and y2 that
achieve the maximum combination of the right-hand-side values:

max 12y1 + 9y2.
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This process results in a linear programming problem that is strongly related to the
LP we are solving. We want to

max 12y1 + 9y2

2y1 + y2 ≤ −1
y1 + 2y2 ≤ −1
y1 ≤ 0

y2 ≤ 0.

(2.5)

This problem is called the dual of the original problem we considered. The original
LP in (2.2) is often called the primal problem. For a generic primal LP problem in
standard form (2.2) the corresponding dual problem can be written as follows:

(LD) maxy bT y
AT y ≤ c,

(2.6)

where y ∈ <m. Rewriting this problem with explicit dual slacks, we obtain the
standard form dual linear programming problem:

(LD) maxy,s bT y
AT y + s = c

s ≥ 0,
(2.7)

where s ∈ <n.
Next, we make some observations about the relationship between solutions of the

primal and dual LPs. The objective value of any primal feasible solution is at least as
large as the objective value of any feasible dual solution; this fact is known as the weak
duality theorem:

Theorem 2.1 (Weak Duality Theorem) Let x be any feasible solution to the pri-
mal LP (2.2) and y be any feasible solution to the dual LP (2.7). Then,

cT x ≥ bT y.

Proof:
Since x ≥ 0 and c − AT y = s ≥ 0, the inner product of these two vectors must be
nonnegative:

xT s = sT x = (c− AT y)T x = cT x− yT Ax = cT x− yT b ≥ 0.

The quantity xT s = cT x − yT b is often called the duality gap. The following three
results are immediate consequences of the weak duality theorem:

Corollary 2.1 If the primal LP is unbounded, then the dual LP must be infeasible.

Corollary 2.2 If the dual LP is unbounded, then the primal LP must be infeasible.

Corollary 2.3 If x is feasible for the primal LP, y is feasible for the dual LP, and
cT x = bT y, then x must be optimal for the primal LP and y must be optimal for the
dual LP.
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2.3 Optimality Conditions

The last corollary of the previous section identified a sufficient condition for optimality
of a primal-dual pair of feasible solutions, namely that their objective values coincide.
One natural question to ask is whether this is a necessary condition. The answer is
yes, as we illustrate next.

Theorem 2.2 (Strong Duality Theorem) If both the primal LP problem and the
dual LP have feasible solutions than they both have optimal solutions and for any primal
optimal solution x and dual optimal solution y we have that cT x = bT y.

We will omit the (elementary) proof of this theorem since it requires some additional
tools. The reader can find a proof of this result on most standard linear programming
textbooks.

The strong duality theorem provides us with conditions to identify optimal solutions
(called optimality conditions): x ∈ <n is an optimal solution of (2.2) if and only if

1. x is primal feasible: Ax = b, x ≥ 0, and there exists a y ∈ <m and s ∈ <n such
that

2. (y, s) is dual feasible: AT y + s = c, s ≥ 0, and

3. there is no duality gap: cT x = bT y.

Further analyzing the last condition above, we can obtain an alternative set of
optimality conditions. Recall from the proof of the weak duality theorem that cT x −
bT y = (c−AT y)T x ≥ 0 for any feasible primal-dual pair of solutions, since it is given as
an inner product of two nonnegative vectors. This inner product is 0 (cT x = bT y) if and
only if the following statement holds: For each i = 1, . . . , n, either xi or (c−AT y)i = si

is zero. This equivalence is easy to see. All the terms in the summation on the RHS
of the following equation are nonnegative:

0 = (c− AT y)T x =
n∑

i=1

(c− AT y)ixi

Since the sum is zero, each term must be zero. Thus we found an alternative set of
optimality conditions: x ∈ <n is an optimal solution of (2.2) if and only if

1. x is primal feasible: Ax = b, x ≥ 0, and there exists a y ∈ <m and s ∈ <n such
that

2. (y, s) is dual feasible: AT y ≤ c, s ≥ 0, and

3. complementary slackness: for each i = 1, . . . , n we have xisi = 0.

The best known (and most successful) methods for solving LPs are interior-point
methods and the simplex method. We discuss the latter here and postpone our discus-
sion of interior-point methods till we study quadratic programming problems.
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2.4 The Simplex Method

To motivate our discussion of the simplex method, we consider the following example
from the book Introduction to Mathematical Programming by R. Walker:

Example 2.1 Farmer Jones has 100 acres of land to devote to wheat and corn and
wishes to plan his planting to maximize the expected revenue. Jones has only $800 in
capital to apply to planting the crops, and it costs $5 to plant an acre of wheat and $10
for an acre of corn. Their busy social schedule leaves the Jones family only 150 days
of labor to devote to the crops. Two days will be required for each acre of wheat and
one day for an acre of corn. If past experience indicates a return of $80 from each acre
of wheat and $60 for each acre of corn, how many acres of each should be planted to
maximize his revenue?

Lettng variables x1 and x2 denote the number of acres used for wheat and corn
respectively, we obtain the following formulation for Farmer Jones’ problem:

Max Z = 80x1 + 60x2

subject to:
x1 + x2 ≤ 100

2x1 + x2 ≤ 150
5x1 + 10x2 ≤ 800
x1 , x2 ≥ 0.

After we add slack variables to each of the functional constraints we obtain a represen-
tation of the problem in the standard form, suitable for the simplex method1:

Max Z = 80x1 + 60x2

subject to:
x1 + x2 + x3 = 100

2x1 + x2 + x4 = 150
5x1 + 10x2 + x5 = 800
x1 , x2 , x3 , x4 , x5 ≥ 0.

2.4.1 Basic Solutions

Let us consider a general LP problem in the following form:

max c x

Ax ≤ b

x ≥ 0,

1This representation is not exactly in the standard form since the objective is maximization rather
than minimization. However, any maximization problem can be transformed into a minimization
problem by multiplying the objective function by -1. Here, we avoid such a transformation to leave
the objective function in its natural form–it should be straightforward to adapt the steps of the
algorithm in the following discussion to address minimization problems.
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where A is an m×n matrix with full row rank and b is an m-dimensional column vector
and c is an n-dimensional row vector. The n-dimensional column vector x represents
the variables of the problem. (In the Farmer Jones example we have m = 3 and n = 5.)
Here is how we can represent these vectors and matrices:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 , b =


b1

b2
...

bm

 , c =
[

c1 c2 . . . cn

]
,x =


x1

x2
...

xn

 , 0 =


0
0
...
0

 ,

Next, we add slack variables to each of the functional constraints to get the augmented
form of the problem. Let xs denote the vector of slack variables

xs =


xn+1

xn+2
...

xn+m


and let I denote the m ×m identity matrix. Now, the constraints in the augmented
form can be written as

[
A, I

] [ x
xs

]
= b,

[
x
xs

]
≥ 0. (2.8)

To find basic solutions we consider partitions of the augmented matrix [A, I]:[
A, I

]
=
[

B, N
]
,

where B is an m ×m square matrix that consists of linearly independent columns of

[A, I]. If we partition the variable vector

[
x
xs

]
in the same way

[
x
xs

]
=

[
xB

xN

]
,

we can rewrite the equality constraints in (2.8) as

[
B,N

] [ xB

xN

]
= BxB + NxN = b,

or by multiplying both sides by B−1 from left,

xB + B−1NxN = B−1b.
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So the following systems of equations are equivalent; any solution to the first will be a
solution for the next two, and vice versa:[

A, I
] [ x

xs

]
= b,

BxB + NxN = b
xB + B−1NxN = B−1b

Indeed, the linear systems in the second and third form are just re-representations of
the first one with respect to a fixed matrix B. An obvious solution to the last system
(and therefore, for the other two) is xN = 0, xB = B−1b. In fact, for any fixed values
of the components of xN we can obtain a solution by simply setting

xB = B−1b−B−1NxN.

The reader may want to think of xN as the independent variables that we can choose
freely, and once they are chosen, the dependent variables xB are determined uniquely.
We call a solution of the systems above a basic solution if it is of the form

xN = 0, xB = B−1b,

for some basis matrix B. If in addition, xB = B−1b ≥ 0, the solution xB = B−1b,
xN = 0 is a basic feasible solution of the LP problem above. The variables xB are
called the basic variables, while xN are the nonbasic variables.

The objective function Z = c x can be represented similarly using the basis parti-
tion. Let c =

[
cB, cN

]
be the represent the partition of the objective vector. Now,

we have the following sequence of equivalent representations of the objective function
equation:

Z = c x ⇔ Z− c x = 0

Z−
[

cB, cN

] [ xB

xN

]
= 0

Z− cB xB − cN xN = 0
Z− cB (B−1b−B−1NxN)− cN xN = 0

Z− (cN − cBB−1N) xN = cBB−1b

(2.9)

Note that the last one of the list of equations above does not contain the basic variables,
which is exactly what we want to be able to figure out the net effect of changing a
nonbasic variable on the objective function.

A key observation is that when a linear programming problem has an optimal solu-
tion, it must have an optimal basic feasible solution. The significance of this result lies
in the fact that when we are looking for a solution of a linear programming problem
what we really need to check is the objective value of each basic solution. There are
only finitely many of them, so this reduces our search space from an infinite space to
a finite one.
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2.4.2 Simplex Iterations

The simplex method solves a linear programming problem by moving from one basic
feasible solution to another. Since one of these solutions is optimal, presumably, the
method will eventually get there. But first, it has to start at a basic feasible solution.
For the Farmer Jones problem, this is a trivial task, choosing

B =

 1 0 0
0 1 0
0 0 1

 , xB =

 x3

x4

x5

 , N =

 1 1
2 1
5 10

 , xN =

[
x1

x2

]

we get an initial basic feasible solution (BFS) with xB = B−1b = [100, 150, 800]T . The
objective value for this BFS is 80 · 0 + 60 · 0 = 0.

We first need to determine whether this solution is optimal. We observe that both
x1 and x2 would improve the objective value if they were introduced to the basis. Why?
Our initial basic feasible solution has x1 = x2 = 0 and we can get other solutions by
varying the value of one of these two nonbasic variables. Furthermore, we know that
we could increase either of these two nonbasic variables and balance the equality con-
ditions by changing the basic variables x3, x4, and x5. None of these variables appear
in the objective row. As a matter of fact, these variables do not appear anywhere other
than the row where they are the basic variable, so changes in the values of basic vari-
ables do not effect the objective, we only have to look at the coefficient of the nonbasic
variable we would increase to see what effect this would have on the objective value.
The rate of improvement in the objective value for x1 is 80 and for x2 this rate is only
60. We pick the variable x1 to enter the basis since it has a faster rate of improvement.

Next, we need to find a variable to leave the basis, because the basis holds only 3
variables2. We know that nonbasic variables of a basic solution, so we need to determine
how much to increase x1 so that one of the current basic variables becomes zero. The
important issue here is to maintain the non-negativity of all basic variables. As we
increase x1, all current basic variables will decrease since x1 has positive coefficients in
each row3. We guarantee the non-negativity of the basic variables of the next iteration
by using the ratio test. We observe that

increasing x1 beyond 100/1=100 ⇒ x3 < 0,
increasing x1 beyond 150/2=75 ⇒ x4 < 0,
increasing x1 beyond 800/5=160 ⇒ x5 < 0,

23 is the number of equations here. For a general LP, the size of the basis will be equal to the
number of equations in the standard form representation of the problem.

3If x1 had a zero coefficient in a particular row, then increasing it would not effect the basic variable
in that row. If, x1 had a negative coefficient in a row, then as x1 was being increased the basic variable
of that row would need to be increased to maintain the equality in that row; but then we would not
worry about that basic variable becoming negative.
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so we should not increase x1 more than min{100, 75, 800} = 75, if we want to maintain
the non-negativity of the basic variables. On the other hand if we increase x1 exactly
by 75, x4 will become zero, and we can choose it as the leaving variable.

Now we have a new basis: {x3, x1, x5}. For this basis we have the following basic
feasible solution:

B =

 1 1 0
0 2 0
0 5 1

 , xB =

 x3

x1

x5

 = B−1b =

 1 −1/2 0
0 1/2 0
0 −5/2 1


 100

150
800

 =

 25
75
425

 ,

N =

 1 0
1 1
10 0

 , xN =

[
x2

x4

]
=

[
0
0

]
.

As always, after finding a new feasible solution, we ask ourselves ‘Is this the optimal
solution, or can we still improve it?’. Answering that question was easy when we
started, because none of the basic variables were in the objective function. Now that
we have introduced x1 into the basis, the situation is more complicated. If we now
decide to increase x2, the objective row coefficient of x2 would not necessarily tell
us how much the objective value change per unit change in x2, because changing x2

would necessitate changing x1, a basic variable that appears in the objective row. It
may happen that, increasing x2 by 1 unit does not increase the objective value by
60 units, because x1 may need to be decreased, pulling down the objective function.
Indeed, it may happen that increasing x2 actually decreases the objective value, while
it had a positive coefficient in the objective function at the beginning. So, what do we
do? We could do what we did with the initial basic solution if x1 did not appear in
the objective row and the rows where it is not the basic variable. But this is not very
hard to achieve: we can use the row where x1 is the basic variable (in this case the
second row) to solve for x1 in terms of the nonbasic variables and then substitute this
expression for x1 in the objective row and other equations. So, the second equation

2x1 + x2 + x4 = 150

would give us:

x1 = 75− 1

2
x2 −

1

2
x4.

Substituting this value in the objective function we get:

Z = 80x1 + 60x2 = 80(75− 1

2
x2 −

1

2
x4) + 60x2 = 6000 + 20x2 − 40x4.

Continuing the substitution we get the following representation of the original Farmer
Jones problem:
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Maximize Z
subject to:
Z −20x2 + 40x4 = 6000

1
2
x2 − 1

2
x4 + x3 = 25

1
2
x2 + 1

2
x4 + x1 = 75

15
2
x2 − 5

2
x4 + x5 = 425

x2 , x4 , x3 , x1 , x5 ≥ 0.

We now achieved what we wanted to; once again, the objective row is free of basic
variables and basic variables only appear with a coefficient of 1 in the row that they
are basic. This representation looks exactly like the initial system. Therefore, we now
can tell how a change in the nonbasic variables would effect the objective function:
increasing x2 by 1 unit will increase the objective function by 20 units (not 60!) and
increasing x4 by 1 unit will decrease the objective function by 40 units.

Now that we represented the problem in a form identical to the original, we can
repeat what we did before, until we find a representation that gives the optimal solution.
If we repeat the steps of the simplex method , we find that x2 will be introduced into the
basis next, and the leaving variable will be x3. If we solve for x1 using the first equation
and substitute for it in the remaining ones, we get the following representation:

Maximize Z
subject to:
Z +40x3 + 20x4 = 7000

2x3 − x4 + x2 = 50
−x3 + x4 + x1 = 50

−15x3 + 5x4 + x5 = 50
x3 , x4 , x2 , x1 , x5 ≥ 0.

Once again, notice that this representation is very similar to the tableau we got at
the end of the previous section. The basis and the basic solution that corresponds to
the system above is:

B =

 1 1 0
1 2 0
10 5 1

 , xB =

 x2

x1

x5

 = B−1b =

 2 −1 0
−1 1 0
−15 5 1


 100

150
800

 =

 50
50
50

 ,

N =

 1 0
0 1
0 0

 , xN =

[
x3

x4

]
=

[
0
0

]
.

At this point we can conclude that this basic solution is the optimal solution. Let
us try to understand why this last basic solution is optimal. From our discussion at
the beginning of this section, recall that any feasible solution to a linear programming
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problem in the standard form can be expressed relative to a basis matrix B by xB =
B−1b−B−1NxN , where xN ≥ 0 because of the non-negativity restrictions. Then, if we
decide to use the basis B above to express the system, any feasible solution to Farmer
Jones’ problem can be found by choosing certain nonnegative values for x3 and x4 and
setting

xB =

 x2

x1

x5

 = B−1b−B−1NxN =

 50
50
50

 −
 2 −1 0
−1 1 0
−15 5 1


 1 0

0 1
0 0

 [ x3

x4

]
.

Since x3 and x4 are currently zero and must stay nonnegative, the only way to obtain a
different feasible solution is to increase one (or both) of these two variables. However,
if we look at the objective function in this last representation, we see that increasing
either of these variables would only decrease the objective function. Putting these two
observations together, we see that any other feasible solution to this problem must
have an objective value smaller than the current basic feasible solution, which means
that the current solution is the best, the optimal.

2.4.3 The Tableau Form of the Simplex Method

In most linear programming textbooks, the simplex method is described using tableaus
that summarize the information in the different representations of the problem we
saw above. Since the reader will likely encounter simplex tableaus if s/he studies
optimization problems, we include a brief discussion for the purpose of completeness.
To study the tableau form of the simplex method, we will recall the Farmer Jones
example. We begin by rewriting the objective row as

Z − 80 x1 − 60 x2 = 0

and represent this system using the following tableau:

⇓
Basic
var. x1 x2 x3 x4 x5

Z -80 -60 0 0 0 0
x3 1 1 1 0 0 100

⇐ x4 2∗ 1 0 1 0 150
x5 5 10 0 0 1 800

This tableau is often called the simplex tableau. The columns labeled by each variable
contain the coefficients of that variable in each equation, including the objective row
equation. The leftmost column is used to keep track of the basic variable in each row.
The arrows and the asterisk will be explained below.
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Step 0. Form the initial tableau.

Once we have formed this tableau we look for an entering variable, i.e., a vari-
able that has a negative coefficient in the objective row and will improve the objective
function if it is introduced into the basis. In this case, two of the variables, namely
x1 and x2, have negative objective row coefficients. Since x1 has the most negative
coefficient we will pick that one (this is indicated by the arrow pointing down on x1),
but in principle any variable with a negative coefficient in the objective row can be
chosen to enter the basis.

Step 1. Find a variable with a negative coefficient in the first row (the objective
row). If all variables have nonnegative coefficients in the objective row, STOP, the
current tableau is optimal.

After we choose x1 as the entering variable, we need to determine a leaving vari-
able (sometimes called a departing variable). The leaving variable is found by per-
forming a ratio test. In the ratio test, one looks at the column that corresponds to the
entering variable, and for each positive entry in that column computes the ratio of
that positive number to the right hand side value in that row. The minimum of these
ratios tells us how much we can increase our entering variable without making any of
the other variables negative. The basic variable in the row that gives the minimum
ratio becomes the leaving variable. In the tableau above the column for the entering
variable, the column for the right-hand-side values, and the ratios of corresponding
entries are

x1 1
2
5

 ,

RHS 100
150
800

 ,

ratio
100/1
150/2
800/5

, min{100

1
,
150

2

∗
,
800

5
} = 75,

and therefore x4, the basic variable in the second row, is chosen as the leaving variable,
as indicated by the left arrow in the tableau.

One important issue here is that, we only look at the positive entries in the column
when we perform the ratio test. Notice that if some of these entries were negative,
then increasing the entering variable would only increase the basic variable in those
rows, and would not force them to be negative, therefore we need not worry about
those entries. Now, if all of the entries in a column for an entering variable turn out
to be zero or negative, then we conclude that the problem must be unbounded ; we
can increase the entering variable (and the objective value) indefinitely, the equalities
can be balanced by increasing the basic variables appropriately, and none of the non-
negativity constraints will be violated.



26 CHAPTER 2. LINEAR PROGRAMMING: THEORY AND ALGORITHMS

Step 2. Consider the column picked in Step 1. For each positive entry in this
column, calculate the ratio of the right-hand-side value to that entry. Find the row
that gives minimum such ratio and choose the basic variable in that row as the leaving
variable. If all the entries in the column are zero or negative, STOP, the problem is
unbounded.

Before proceeding to the next iteration, we need to update the tableau to reflect the
changes in the set of basic variables. For this purpose, we choose a pivot element,
which is the entry in the tableau that lies in the intersection of the column for the
entering variable (the pivot column), and the row for the leaving variable (the pivot
row). In the tableau above, the pivot element is the number 2, marked with an asterisk.
The next job is pivoting. When we pivot, we aim to get the number 1 in the position
of the pivot element (which can be achieved by dividing the entries in the pivot row by
the pivot element), and zeros elsewhere in the pivot column (which can be achieved by
adding suitable multiples of the pivot row to the other rows, including the objective
row). All these operations are row operations on the matrix that consists of the numbers
in the tableau, and what we are doing is essentially Gaussian elimination on the pivot
column. Pivoting on the tableau above yields:

⇓
Basic
var. x1 x2 x3 x4 x5

Z 0 -20 0 40 0 6000
⇐ x3 0 1/2∗ 1 -1/2 0 25

x1 1 1/2 0 1/2 0 75
x5 0 15/2 0 -5/2 1 425

Step 3. Find the entry (the pivot element) in the intersection of the column picked
in Step 1 (the pivot column) and the row picked in Step 2 (the pivot row). Pivot on that
entry, i.e., divide all the entries in the pivot row by the pivot element, add appropriate
multiples of the pivot row to the others in order to get zeros in other components of the
pivot column. Go to Step 1.

If we repeat the steps of the simplex method, this time working with the new
tableau, we first identify x2 as the only candidate to enter the basis. Next, we do the
ratio test:

min{ 25

1/2
,

75

1/2
,

425

15/2
} = 50,

so x3 leaves the basis. Now, pivoting produces the optimal tableau:
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Basic
var. x1 x2 x3 x4 x5

Z 0 0 40 20 0 7000
x2 0 1 2 -1 0 50
x1 1 0 -1 1 0 50
x5 0 0 -15 5 1 50

This solution is optimal since all the coefficients in the objective row are nonnega-
tive.

2.5 Exercises

1. Consider the following linear programming problem:

max 4x1 + 3x2

3x1 + x2 ≤ 9

3x1 + 2x2 ≤ 10

x1 + x2 ≤ 4

x1, x2 ≥ 0.

First, transform this problem into the “standard form”. How many basic solu-
tions does the standard form problem have? How many basic feasible solutions?
What are the basic feasible solutions and what are the extreme points of the
feasible region?

2. We say that two linear programming problems are equivalent if one can be ob-
tained from the other by (i) multiplying the objective function by -1 and changing
it from min to max, or max to min, and/or (ii) multiplying some or all constraints
by -1. For example, {min cTx : s.t.Ax ≥ b} and {max−cTx : s.t.− Ax ≤ −b} are
equivalent problems. Find a linear program which is equivalent to its own dual.
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Chapter 3

LP Models and Tools in Finance

3.1 Derivative Securities and The Fundamental The-

orem of Asset Pricing

One of the most widely studied problems in financial mathematics is the pricing of
derivative securities, also known as contingent claims. These are securities whose price
depend on the value of another underlying security. Financial options are the most
common examples of derivative securities. For example, a European call option on a
particular underlying security gives the holder the right to purchase this underlying
security for a prescribed amount (called the strike price) at a prescribed time in the
future, known as the expiration or exercise date. The exercise date is also known as the
maturity date of the derivative security. Recall the definitions of European put options
as well as American call and put options from Section 1.3.2.

Options are used mainly for two purposes: speculation and hedging. By speculating
on the direction of the future price movements of the underlying security, investors can
take (bare) positions in options on this security. Since options are often much cheaper
than their underlying security, this gamble results in much larger earnings if the price
movements happen in the expected direction compared to what one might earn by
taking a similar position in the underlying. Of course, if one guesses the direction of
the price movements incorrectly, the losses are also much more severe.

Hedging refers to the reduction of risk in an investor’s overall position by forming
a suitable portfolio of the underlying and an option, or multiple options, on it. For
example, if an investor holds a share of XYZ and is concerned that the price of this
security may fall significantly, she can purchase a put option on XYZ and protect herself
against price levels below a certain threshold (the strike price of the put option).

Recall the option example in the simple one-period binomial model of Section 1.3.2.
Below, we summarize some of the information from that example:

We considered the share price of XYZ stock which is currently valued at $40. A
month from today, we expect the share price of XYZ to either double or halve, with

29
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equal probabilities. We also considered a European call option on XYZ with a strike
price of $50 which will expire a month from today. We assumed that interest rates for
cash borrowing or lending are zero and that any amount of XYZ shares can be bought
or sold with no commission.

S0=$40 ��
�*

H
HHj

80=S1(u)

20=S1(d)
and C0=? ��

�*

H
HHj

(80− 50)+ = 30

(20− 50)+ = 0
.

We obtained a fair price of $10 for the option using a replication strategy and the
no-arbitrage principle which essentially means that two portfolios of securities that
have identical future payoffs under all possible realizations of the random states must
have the same value today. In the example, the first “portfolio” is the option while
the second one is the portfolio of 1

2
share of XYZ and -$10 in cash. Since we knew the

current value of the second portfolio, we could deduce the fair price of the option. Let
us give a formal definition of arbitrage:

Definition 3.1 An arbitrage is a trading strategy

• that has a positive initial cash flow and has no risk of a loss later (type A), or

• that requires no initial cash input, has no risk of a loss, and a positive probability
of making profits in the future (type B).

In the example, any price other than $10 for the call option would lead to a type A
arbitrage–guaranteed profits at the initial time point and no future obligations. We do
not need to have a guarantee of profits for type B arbitrage–all we need is a guarantee
of no loss, and a positive probability of a gain. Prices adjust quickly so that arbitrage
opportunities can not persist in the markets. Therefore, in mathematical arguments it
is often assumed that arbitrage opportunities do not exist.

3.1.1 Replication

Consider the following question: Given an option on a particular underlying security,
can one form a portfolio of the underlying security (bought or sold) and cash (borrowed
or lent) today, such that the payoff from the portfolio at the expiration date of the
option will match the payoff of the option? In other words, can we replicate the option
using a portfolio of the underlying and cash? This is the problem we formulated and
solved to determine the fair price of the option in our example above.

Let us work in a slightly more general setting. Let S0 be the current price of the
underlying security and assume that there are two possible outcomes at the end of the
period: Su

1 = S0 · u and Sd
1 = S0 · d. (Assume u > d.) We also assume that there

is a fixed interest paid on cash borrowed or lent at rate r for the given period. Let
R = 1 + r.

Finally, we consider a derivative security which has payoffs of Cu
1 and Cd

1 in the up
and down states respectively:
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S0
��

�*

H
HHj

Su
1 = S0 · u

Sd
1 = S0 · d

C0 =? ��
�*

H
HHj

Cu
1

Cd
1

To price the derivative security, we will try to replicate it. For replication consider a
portfolio of ∆ shares of the underlying and $B cash. For what values of ∆ and B does
this portfolio has the same payoffs at the expiration date as the derivative security?

We need to solve the following simple system of equations:

∆S0 · u + BR = Cu
1

∆S0 · d + BR = Cd
1 .

We obtain:

∆ =
Cu

1 − Cd
1

S0(u− d)

B =
uCd

1 − dCu
1

R(u− d)

This portfolio is worth S0∆ + B today, which should be the price of the derivative
security as well:

C0 =
Cu

1 − Cd
1

u− d
+

uCd
1 − dCu

1

R(u− d)

=
1

R

[
R− d

u− d
Cu

1 +
u−R

u− d
Cd

1

]
.

3.1.2 Risk-Neutral Probabilities

Let

pu =
R− d

u− d
and pd =

u−R

u− d
.

Note that we must have d < R < u to avoid arbitrage opportunities (see Exercises).
An immediate consequence of this observation is that both pu > 0 and pd > 0. Noting
also that pu +pd = 1 one can interpret pu and pd as probabilities. In fact, these are the
so-called risk-neutral probabilities (RNPs) of up and down states, respectively. Note
that they are completely independent from the actual probabilities of these states.

The price of any derivative security can now be calculated as the present value of
the expected value of its future payoffs where the expected value is taken using the
risk-neutral probabilities.

In our example above u = 2, d = 1
2

and r = 0 so that R = 1. Therefore:

pu =
1− 1/2

2− 1/2
=

1

3
and pd =

2− 1

2− 1/2
=

2

3
.
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As a result, we have

S0 = 40 =
1

R
(puS

u
1 + pdS

d
1) =

1

3
80 +

2

3
20,

C0 = 10 =
1

R
(puC

u
1 + pdC

d
1 ) =

1

3
30 +

2

3
0,

as expected. Using risk neutral probabilities we can also price other derivative securities
on the XYZ stock. For example, consider a European put option on the XYZ stock
struck at $60 (this is another way to say “with a strike price of $60”) and with the
same expiration date as the call of the example.

P0 =? �
��*

HHHj

P u
1 = max{0, 60− 80} = 0

P d
1 = max{0, 60− 20} = 40

.

We can easily compute:

P0 =
1

R
(puP

u
1 + pdP

d
1 ) =

1

3
0 +

2

3
40 =

80

3
,

without needing to replicate the option again.
Next we move from our binomial setting to a more general setting and let

Ω = {ω1, ω2, . . . , ωm} (3.1)

be the (finite) set of possible future “state”s. For example, these can be the possible
prices for a security in a future date.

For securities Si for i = 0 . . . n, let Si
1(ωj) denote the price of this security in state ωj

at time 1. Also let Si
0 denote the current (time 0) prices of each one of these securities.

We use i = 0 for the “riskless” security that pays the interest rate r ≥ 0 between time
0 and time 1. It is convenient to assume that S0

0 = 1 and that S0
1(ωj) = R := 1+ r,∀j.

Definition 3.2 A risk-neutral probability measure is a vector of positive numbers (p1, p2, . . . , pm)
such that

m∑
j=1

pj = 1

and for every security Si for i = 0, . . . , n,

Si
0 =

1

R

 m∑
j=1

pjS
i
1(ωj)

 =
1

R
Ê[Si

1].

Above, Ê[S] denotes the expected value of the random variable S under the prob-
ability distribution (p1, p2, . . . , pm).

We complete this section by stating and proving the first fundamental theorem
of asset pricing. For finite Ω this proof is a simple exercise in linear programming
duality that also utilizes the following well-known result of Goldman and Tucker on
the existence of strictly complementary optimal solutions of LPs:
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Theorem 3.1 When both the primal and dual linear programming problems

(LP) minx cT x
Ax = b

x ≥ 0.
(3.2)

and
(LD) maxy bT y

AT y ≤ c,
(3.3)

have feasible solutions, they have optimal solutions satisfying strict complementarity,
i.e., there exists x∗ and y∗ optimal for the respective problems such that

x∗ + (c− AT y∗) > 0.

Now, we are ready to prove the following theorem:

Theorem 3.2 (The First Fundamental Theorem of Asset Pricing) A risk-neutral
probability measure exists if and only if there is no arbitrage.

Proof:
We assume that the state space Ω is finite and is given by (3.1). Given the current
prices Si

0, and future prices Si
1(ωj) in each one of the states ωj of securities 0 to n,

consider the following linear programming problem with variables xi, for i = 0, . . . , n:

minx
∑n

i=0 Si
0xi∑n

i=0 Si
1(ωj)xi ≥ 0, j = 1, . . . ,m.

(3.4)

Note that, type-A arbitrage corresponds to a feasible solution to this LP with a neg-
ative objective value. Since xi ≡ 0 is always a feasible solution for this problem, the
optimal objective value is always non-positive. Furthermore, since all the constraints
are homogeneous, if there exists a feasible solution such that Si

0xi < 0 (this corresponds
to type-A arbitrage), the problem is unbounded. In other words, there is no type-A
arbitrage if and only if the optimal objective value of this LP is 0.

Suppose that there is no type-A arbitrage. Then, there is no type-B arbitrage if
and only if all constraints are tight for all optimal solutions of (3.4). Note that these
solutions must have objective value 0.

Consider the dual of (3.4):

maxp
∑m

j=1 0pj∑m
j=1 Si

1(ωj)pj = Si
0, i = 0, . . . , n,

pj ≥ 0, j = 1, . . . ,m.
(3.5)

Since the dual has a constant (0) objective function, any dual feasible solution is also
dual optimal.
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When there is no type-A arbitrage (3.4) has an optimal solution, and the Strong
Duality Theorem indicates that the dual must have a feasible solution. If there is no
type-B arbitrage also, Goldman and Tucker’s theorem indicates that, there exists a
feasible (and therefore optimal) dual solution p∗ such that p∗ > 0 (from strict comple-
mentarity with tight primal constraints

∑n
i=1 Si

1(ωj)xi ≥ 0). From the dual constraint
corresponding to i = 0, we have that

∑m
j=1 p∗j = 1

R
. Multiplying p∗ by R one obtains

a risk-neutral probability distribution. Therefore, “no arbitrage” assumption implies
the existence of RNPs.

The converse direction is proved in an identical manner. The existence of a RNP
measure implies that (3.5) is feasible, and therefore its dual, (3.4) must be bounded,
which implies that there is no type-A arbitrage. Furthermore, since we have a strictly
feasible (and optimal) dual solution, any optimal solution of the primal must have tight
constraints, indicating that there is no type-B arbitrage.

3.2 Arbitrage Detection Using Linear Programming

The linear programming problems (3.4) and (3.4) we formulated for the proof of The-
orem 3.2 can naturally be used for detection of arbitrage opportunities. However, as
we discussed above, this argument works only for finite state spaces. In this section,
we discuss how LP formulations can be used to detect arbitrage opportunities with-
out limiting consideration to finite state spaces. The price we pay for this flexibility
is the restriction on the selection of the securities: we only consider the prices of a
set of derivative securities written on the same underlying with same maturity. This
discussion is based on [7].

Consider an underlying security whose current (time 0) price is given by S0 and its
(random) price at time 1 is denoted by S1. Consider n derivative securities written on
this security that mature at time 1, and have piecewise linear payoff functions with a
single breakpoint. The obvious motivation for such a consideration is the the collection
of calls and puts written on this security. Let us denote these piecewise linear payoff
function of i-th derivative security with Ψi(S1) and its breakpoint with Ki. If, for
example, the i-th derivative security were a European call with strike price Ki, we
would have Ψi(S1) = (S1−Ki)

+. We assume that Ki’s are in increasing order, without
loss of generality. Finally, let Si

0 denote the current price of the i-th derivative security.
Consider a portfolio x = (x1, . . . , xn) of the derivative securities 1 to n and let

Ψx(S1) denote the payoff function of the portfolio:

Ψx(S1) =
n∑

i=1

Ψi(S1)xi. (3.6)

The cost of the portfolio x is given by

n∑
i=1

Si
0xi. (3.7)
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To determine whether there exists a static arbitrage opportunity in the current prices
Si

0, we consider the following problem: What is the smallest cost portfolio of the deriva-
tive securities 1 to n whose payoff function Ψx(S1) is nonnegative for all S1 ∈ [0,∞)?
Non-negativity of Ψx(S1) corresponds to “no future obligations”. If the minimum
initial cost of such a portfolio is negative, then we have type-A arbitrage.

Since all Ψi(S1)’s are piecewise linear, so is Ψx(S1) with breakpoints in K1 through
Kn. Note that a piecewise linear function is nonnegative over [0,∞) if and only if it is
nonnegative at 0 and all the breakpoints and if the slope of the function is nonnegative
to the right of the largest breakpoint. From this observation, it easily follows that
Ψx(S1) is nonnegative for all non-negative values of S1 if and only if

1. Ψx(0) ≥ 0,

2. Ψx(Kj) ≥ 0, ∀j,

3. and [(Ψx)′+(Kn)] ≥ 0.

Now consider the following linear programming problem:

minx
∑n

i=0 Si
0xi∑n

i=0 Ψi(0)xi ≥ 0∑n
i=0 Ψi(Kj)xi ≥ 0, j = 1, . . . , n∑n

i=0(Ψi(Kn + 1)−Ψi(Kn))xi ≥ 0

(3.8)

Since all Ψi(S1)’s are piecewise linear, the quantity Ψi(Kn + 1) − Ψi(Kn) gives the
right-derivative of Ψi(S1) at Kn and the expression in the last constraint is the right
derivative of Ψx(S1) at Kn. The following observation follows from our arguments
above:

Proposition 3.1 There is no type-A arbitrage in prices Si
0 if and only if the optimal

objective value of (3.8) is zero.

Similar to the previous section, we have the following result:

Proposition 3.2 Suppose that there are no type-A arbitrage opportunities in prices
Si

0. Then, there are no type-B arbitrage opportunities if and only if the dual of the
problem (3.8) has a strictly feasible solution.

Proof:
Left as an exercise.

Next, we focus on the case where the derivative securities under consideration are
European call options with strikes at Ki for i = 1, . . . , n, so that Ψi(S1) = (S1 −Ki)

+

and

Ψi(Kj) = (Kj −Ki)
+.
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In this case, the problem (3.8) reduces to the following problem:

minx cT x
Ax ≥ 0,

(3.9)

where c = [S1
0 , . . . , Sn

0 ]
T

and

A =



K2 −K1 0 0 · · · 0
K3 −K1 K3 −K2 0 · · · 0

...
...

...
. . .

...
Kn −K1 Kn −K2 Kn −K3 · · · 0

1 1 1 · · · 1

 . (3.10)

This formulation is obtained by removing the first two constraints of (3.8) which are
redundant in this particular case.

Using this formulation and our earlier results, one can prove the following theorem
giving necessary and sufficient conditions on a set of call option prices to prevent static
arbitrage opportunities:

Theorem 3.3 Let K1 < K2 < · · · < Kn denote the strike prices of European call
options written on the same underlying security with the same maturity. There are no
arbitrage opportunities if and only if the prices Si

0 satisfy the following conditions:

1. Si
0 > 0, i = 1, . . . , n

2. Si
0 > Si+1

0 , i = 1, . . . , n− 1

3. The function C(Ki) := Si
0 defined on the set {K1, K2, . . . , Kn} is a strictly convex

function.

3.3 Risk Measures: Conditional Value-at-Risk

Financial activities involve risk. Our stock or mutual fund holdings carry the risk
of losing value due to market conditions. Even money invested in a bank carries a
risk–that of the bank going bankrupt and never returning the money let alone some
interest. While individuals generally just have to live with such risks, financial and
other institutions can and very often must manage risk using sophisticated mathemat-
ical techniques. Managing risk requires a good understanding of risk which comes from
quantitative risk measures that adequately reflect the vulnerabilities of a company.

Perhaps the best-known risk measure is Value-at-Risk (VaR) developed by financial
engineers at J.P. Morgan. VaR is a measure related to percentiles of loss distributions
and represents the predicted maximum loss with a specified probability level (e.g., 95%)
over a certain period of time (e.g., one day). Consider, for example, a random variable
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X that represents loss from an investment portfolio over a fixed period of time. A
negative value for X indicates gains. Given a probability level α, α-VaR of the random
variable X is given by the following relation:

VaRα(X) := min{γ : P (X ≤ γ) ≥ α}. (3.11)

The following figure illustrates the 0.95-VaR on a portfolio loss distribution plot:
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VaR is widely used by people in the financial industry and VaR calculators are
common features in most financial software. Despite this popularity, VaR has one
important undesirable property–it lacks subadditivity. Risk measures should respect
the maxim “diversification reduces risk” and therefore, satisfy the following property:
“The total risk of two different investment portfolios does not exceed the sum of the
individual risks.” This is precisely what we mean by saying that a risk measure should
be a subadditive function, i.e., for a risk measure f , we should have

f(x1 + x2) ≤ f(x1) + f(x2),∀x1, x2.

Consider the following simple example that illustrates that diversification can actually
increase the risk measured by VaR:

Example 3.1 Consider two independent investment opportunities each returning a $1
gain with probability 0.96 and $2 loss with probability 0.04. Then, 0.95-VaR for both
investments are -1. Now consider the sum of these two investment opportunities. Be-
cause of independence, this sum has the following loss distribution: $4 with probability
0.04.04 = 0.0016, $1 with probability 2× 0.96× 0.04 = 0.0768, and -$2 with probability
0.96× 0.96 = 0.9216. Therefore, the 0.95-VaR of the sum of the two investments is 1,
which exceeds -2, the sum of the 0.95-VaR values for individual investments.
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An additional difficulty with VaR is in its computation and optimization. When
VaR is computed by generating scenarios, it turns out to be a non-smooth and non-
convex function of the positions in the investment portfolio. Therefore, when one tries
to optimize VaR computed in this manner, multiple local optimizers are encountered,
hindering the global optimization process.

Another criticism on VaR is that it pays no attention to the magnitude of losses
beyond the VaR value. This and other undesirable features of VaR led to the devel-
opment of alternative risk measures. One well-known modification of VaR is obtained
by computing the expected loss given that the loss exceeds VaR. This quantity is often
called conditional Value-at-Risk or CVaR. There are several alternative names for this
measure in the finance literature including Mean Expected Loss, Mean Shortfall, and
Tail VaR. We now describe this risk measure in more detail and discuss how it can be
optimized using linear programming techniques when the loss function is linear in the
portfolio positions. Our discussion follows parts of articles by Rockafellar and Uryasev
[12, 17].

We consider a portfolio of assets with random returns. We denote the portfolio
choice vector with x and the random events by the vector y. Let f(x, y) denote the
loss function when we choose the portfolio x from a set X of feasible portfolios and y
is the realization of the random events. We assume that the random vector y has a
probability density function denoted by p(y).

For a fixed decision vector x, we compute the cumulative distribution function of
the loss associated with that vector x:

Ψ(x, γ) :=
∫

f(x,y)≤γ
p(y)dy. (3.12)

Then, for a given confidence level α, the α-VaR associated with portfolio x is given as

VaRα(x) := min{γ ∈ < : Ψ(x, γ) ≥ α}. (3.13)

Similarly, we define the α-CVaR associated with portfolio x:

CVaRα(x) :=
1

1− α

∫
f(x,y)≥VaRα(x)

f(x, y)p(y)dy. (3.14)

Note that,

CVaRα(x) =
1

1− α

∫
f(x,y)≥VaRα(x)

f(x, y)p(y)dy

≥ 1

1− α

∫
f(x,y)≥VaRα(x)

VaRα(x)p(y)dy

=
VaRα(x)

1− α

∫
f(x,y)≥VaRα(x)

p(y)dy

= VaRα(x),
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i.e., CVaR of a portfolio is always at least as big as its VaR. Consequently, portfolios
with small CVaR also have small VaR. However, in general minimizing CVaR and VaR
are not equivalent.

Since the definition of CVaR involves the VaR function explicitly, it is difficult
to work with and optimize this function. Instead, we consider the following simpler
auxiliary function:

Fα(x, γ) := γ +
1

1− α

∫
f(x,y)≥γ

(f(x, y)− γ) p(y)dy. (3.15)

Alternatively, we can write Fα,x(γ) as follows:

Fα(x, γ) = γ +
1

1− α

∫
(f(x, y)− γ)+ p(y)dy, (3.16)

where a+ = max{a, 0}. For a fixed x ∈ X, we also consider the following function of γ
only:

Fα,x(γ) := Fα(x, γ) = γ +
1

1− α

∫
f(x,y)≥γ

(f(x, y)− γ) p(y)dy. (3.17)

This final function of γ has the following important properties that makes it useful for
the computation of VaR and CVaR:

1. Fα,x(γ) is a convex function of γ.

2. VaRα(x) is a minimizer of Fα,x(γ).

3. The minimum value of the function Fα,x(γ) is CVaRα(x).

As a consequence of the listed properties of the function Fα,x(γ) we immediately
deduce that CVaR can be optimized via optimization of the function Fα(x, γ) with
respect to x and γ simultaneously:

min
x∈X

CVaRα(x) = min
x∈X

min
γ

Fα,x(γ) = min
x∈X,γ

Fα(x, γ). (3.18)

Consequently, we can optimize CVaR directly, without needing to compute VaR first.
If the loss function f(x, y) is a convex (linear) function of the portfolio variables x,
then Fα(x, γ) is also a convex (linear) function of x. In this case, provided the feasible
portfolio set X is also convex, the optimization problems in (3.18) are smooth convex
optimization problems that can be solved using well known optimization techniques
for such problems.

Often it is not possible or desirable to compute/determine the joint density function
p(y) of the random events in our formulation. Instead, we may have a number of
scenarios, say ys for s = 1, . . . , S, which may represent some historical values of the
random events or some values obtained via computer simulation. In this case, we
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obtain the following approximation to the function Fα(x, γ) by using the empirical
distribution of the random events based on the available scenarios:

F̃α(x, γ) := γ +
1

(1− α)S

S∑
s=1

(f(x, ys)− γ)+ . (3.19)

Compare this definition to (3.16). Now, the problem minx∈X CVaRα(x) can be approx-
imated by replacing Fα(x, γ) with F̃α(x, γ) in (3.18):

min
x∈X,γ

γ +
1

(1− α)S

S∑
s=1

(f(x, ys)− γ)+ (3.20)

To solve this optimization problem, we introduce artificial variables zs to replace
(f(x, ys)− γ)+. This is achieved by imposing the constraints zs ≥ f(x, ys) − γ and
zs ≥ 0:

min γ + 1
(1−α)S

∑S
s=1 zs

s.t. zs ≥ 0, s = 1, . . . , S,
zs ≥ f(x, ys)− γ, s = 1, . . . , S,

x ∈ X

(3.21)

Note that the constraints zs ≥ f(x, ys) − γ and zs ≥ 0 alone can not ensure that
zs = (f(x, ys)− γ)+ = max{f(x, ys) − γ, 0} since zs can be larger than both right-
hand-sides and be still feasible. However, since we are minimizing the objective function
which involves a positive multiple of zs, it will never be optimal to assign zs a value
larger than the maximum of the two quantities f(x, ys)− γ and 0, and therefore, in an
optimal solution zs will be precisely (f(x, ys)− γ)+, justifying our substitution.

In the case that f(x, y) is linear in x, all the expressions zs ≥ f(x, ys)− γ represent
linear constraints and therefore the problem (3.21) is a linear programming problem
that can be solved using the simplex method or alternative LP algorithms.

Alternative optimization problems are often formulated within the context of risk
management. For example, risk managers often try to optimize some performance
measure (e.g., expected return) while making sure that certain risk measures do not
exceed some threshold values. We may have the following problem when the risk
measure is CVaR:

max µT x
s.t. CVaRαj(x) ≤ Uαj , j = 1, . . . , J.

(3.22)

Above, J is an index set for different confidence levels used for CVaR computations and
Uαj represents the maximum tolerable CVaR value at the confidence level αj. As above,
we can replace the CVaR functions in the constraints of this problem with the function
Fα(x, γ) as above and then approximate this function using the scenarios for random
events. This approach results in the following approximation of the CVaR-constrained
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problem (3.22):

max µT x
s.t. γ + 1

(1−αj)S

∑S
s=1 zs ≤ Uαj , j = 1, . . . , J,

zs ≥ 0, s = 1, . . . , S,
zs ≥ f(x, ys)− γ, s = 1, . . . , S,

x ∈ X

(3.23)

3.4 Exercises

1. Let S0 be the current price of a security and assume that there are two possible
prices for this security at the end of the current period: Su

1 = S0 ·u and Sd
1 = S0 ·d.

(Assume u > d.) Also assume that there is a fixed interest paid on cash borrowed
or lent at rate r for the given period. Let R = 1 + r. Show that if u > R > d is
not satisfied there is an arbitrage opportunity.

2. Recall the linear programming problem (3.9) that we developed to detect arbi-
trage opportunities in the prices European call options with a common underlying
security and common maturity (but different strike prices). This formulation im-

plicitly assumes that the ith call can be bought or sold at the same current price
of Si

0. In real markets, there is always a gap between the price a buyer pays
for a security and the amount the seller collects called the bid-ask spread. For a
security purchase/sale to happen, a market intermediary collects purchase bids
from potential buyers and ask prices from potential sellers. Then, the highest bid
price is matched with the lowest ask price. Since all this happens in a transpar-
ent manner, bidders never bid more than the lowest asking price and the sellers
never ask for less than the highest bid price. Therefore, the highest bid price is
always less than the lowest ask price. The buyer pays the lowest ask price and
the seller collects the highest bid price. The difference is collected by the marker
intermediary that performs this transaction.

Assume now that the ask price of the ith call is given by Si
a while its bid price

is denoted by Si
b with Si

a > Si
b. Develop an analogue of the LP (33) in the case

where we can purchase the calls at their ask prices or sell them at their bid prices.
Consider using two variables for each call option in your new LP.

3. Prove Theorem 3.3.

4. Consider all the call options on the S&P 500 index that are expiring n June 2003.
Their current prices can be downloaded from the website of the Chicago Board
of Options Exchange at www.cboe.com or several other market quote websites.
Delayed data is available for free, so do not use the sites that charge fees for
real-time data. Formulate the linear programming problem (33) (or, rather the
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version you developed for Problem 4 since market quotes will include bid and ask
prices) to determine whether these prices contain any arbitrage opportunities.
Solve this linear programming problem using an LP software. Here are some
suggestions:

• MATLAB has a linear programming solver that can be accessed with the
command linprog. Type help linprog to find out details.

• If you do not have access to any linear programming software, you can use
the website http://www-neos.mcs.anl.gov/neos/ to access the Network
Enable Optimization Server. Using this site, and their JAVA submission
tool, you can submit a linear programming problem (in some standard for-
mat) and have a remote computer solve your problem using one of the several
solver options. You will then receive the solution by e-mail.

Sometimes, illiquid securities (those that are not traded very often) can have
misleading prices since the reported price corresponds to the last transaction in
that security which may have happened several days ago, and if there were to be
a new transaction, this value would change dramatically. As a result, it is quite
possible that you will discover false “arbitrage opportunities” because of these
misleading prices. Repeat the LP formulation and solve it again, this time only
using prices of the call options that have had a trading volume of at least 100 on
the day you downloaded the prices.



Chapter 4

Quadratic Programming: Theory
and Algorithms

4.1 The Quadratic Programming Problem

As we discussed in the introductory chapter, quadratic programming (QP) refers to the
problem of minimizing a quadratic function subject to linear equality and inequality
constraints. In its standard form, this problem is represented as follows:

(QP) minx
1
2
xT Qx + cT x

Ax = b
x ≥ 0,

(4.1)

where A ∈ IRm×n, b ∈ IRm, c ∈ IRn, Q ∈ IRn×n are given, and x ∈ IRn.
Quadratic programming problems are encountered frequently in optimization mod-

els. For example, ordinary least squares problems are QPs with no constraints. Mean-
variance optimization problems developed by Markowitz for the selection of efficient
portfolios are QP problems. In addition, and perhaps more importantly, QP problems
are solved as subproblems in the solution of general nonlinear optimization problems
via sequential quadratic programming (SQP) approaches.

Recall that, when Q is a positive semidefinite matrix, i.e., when yT Qy ≥ 0 for
all y, the objective function of the problem QP is a convex function of x. Since the
feasible set is a polyhedral set (i.e., a set defined by linear constraints) it is a convex
set. Therefore, when Q is positive semidefinite, the QP (4.1) is a convex optimization
problem. As such, its local optimal solutions are also global optimal solutions.

As in linear programming, we can develop a dual of quadratic programming prob-
lems. The dual of the problem (4.1) is given below:

(QD) maxx,y,s bT y − 1
2
xT Qx

AT y − Qx + s = c
x , s ≥ 0.

(4.2)

43
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Note that, unlike the case of linear programming, the variables of the primal quadratic
programming problem also appear in the dual QP.

4.2 Optimality Conditions

One of the fundamental tools in the study of optimization problems is the Karush-
Kuhn-Tucker theorem that gives a list of conditions which are necessarily satisfied at
any (local) optimal solution of a problem, provided that some mild regularity assump-
tions are satisfied. These conditions are commonly called KKT conditions and are
provided in the Appendix.

Applying the KKT theorem to the QP problem (4.1), we obtain the following set
of necessary conditions for optimality:

Theorem 4.1 Suppose that x is a local optimal solution of the QP given in (4.1) so
that it satisfies Ax = b, x ≥ 0 and assume that Q is a positive semidefinite matrix.
Then, there exists vectors y and s such that the following conditions hold:

AT y −Qx + s = c (4.3)

s ≥ 0 (4.4)

xisi = 0,∀i. (4.5)

Furthermore, x is a global optimal solution. In addition, if Q is positive definite, then
x is uniquely determined.

Note that the positive definiteness condition related to the Hessian of the La-
grangian function in the KKT theorem is automatically satisfied for convex quadratic
programming problems, and therefore is not included in Theorem 4.1. In the case that
Q is positive definite, the objective function of (4.1) is strictly convex, and therefore,
must have a unique minimizer.

Moreover, if vectors x, y, and s satisfy conditions (4.3)-(4.5) as well as primal
feasibility conditions

Ax = b (4.6)

x ≥ 0 (4.7)

then, x is a global optimal solution of (4.1). In other words, conditions (4.3)-(4.7) are
both necessary and sufficient for x, y, and s to describe a global optimal solution of
the QP problem.

In a manner similar to linear programming, optimality conditions (4.3)-(4.7) can
be seen as a collection of conditions for

1. primal feasibility: Ax = b, x ≥ 0,

2. dual feasibility: AT y −Qx + s = c, s ≥ 0, and
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3. complementary slackness: for each i = 1, . . . , n we have xisi = 0.

Using this interpretation, one can develop modifications of the simplex method
that can also solve convex quadratic programming problems. Here, we will describe
an alternative algorithm that is based on Newton’s method. Before describing the
algorithm, let us write the optimality conditions in matrix form:

F (x, y, s) =

 AT y −Qx + s− c
Ax− b
XSe

 =

 0
0
0

 , (x, s) ≥ 0. (4.8)

Above, X and S are diagonal matrices with the entries of the x and s vectors, respec-
tively, on the diagonal, i.e., Xii = xi, and Xij = 0, i 6= j, and similarly for s. Also, as
before, e is an n-dimensional vector of ones.

4.3 Interior-Point Methods

We have seen that simplex method can be used to solve linear programming problems
efficiently and its variants can be used for quadratic programming problems. Although
these methods demonstrate satisfactory performance for the solution of most practi-
cal problems, they have the disadvantage that, in the worst case, the amount of time
required to solve a given problem (the so-called worst-case complexity) can grow expo-
nentially in the size of the problem. Here size refers to the number of variables and
constraints in the problem.

One of the important concepts in the theoretical study of optimization algorithms is
the concept of polynomial-time algorithms. This refers to an algorithm whose running
time can be bounded by a polynomial function of the input size for all instances of the
problem class that it is intended for.

After it was discovered in 1970s that the worst case complexity of the simplex
method is exponential (and, therefore, that simplex method is not a polynomial-time
algorithm) there was an effort to identify alternative methods for linear programming
with polynomial time complexity. The first such method, called the ellipsoid method
was developed by Yudin and Nemirovski in 1979. But the more exciting and endur-
ing development was the announcement by Karmarkar in 1984 that an interior-point
method can solve LPs in polynomial time. What distinguished Karmarkar’s IPM from
the ellipsoid method was that, in addition to having this desirable theoretical property,
it could solve some LPs much faster than the simplex method.

The two decades that followed the publication of Karmarkar’s paper has seen a
very intense effort by the optimization research community to study theoretical and
practical properties of IPMs. One of the early discoveries was that IPMs can be
viewed as methods based on Newton’s method but are modified to handle the inequality
constraints. Some of the most important contributions were made by Nesterov and
Nemirovski who showed that the IPM machinery can be applied to a much larger class
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of problems than just LPs. Convex quadratic programming problems, for example,
can be solved in polynomial time, as well as many other convex optimization problems
using IPMs.

Here, we will describe a variant of IPMs for convex quadratic programming. Recall
the optimality conditions of the QP problem in (4.1):

F (x, y, s) =

 AT y −Qx + s− c
Ax− b
XSe

 =

 0
0
0

 , (x, s) ≥ 0. (4.9)

The system of equations F (x, y, s) = 0 has n + m + n variables and as many
constraints. Because of the nonlinear equations xisi = 0 we can not solve this system
using Gaussian elimination type methods. But, since the system is square we can
apply Newton’s method. If there were no nonnegativity constraints, finding (x, y, s)
satisfying these optimality conditions would be a straightforward exercise by applying
Newton’s method.

The existence of nonnegativity constraints creates a difficulty. In fact, the existence
and the number of inequality constraints are among the most important factors that
contribute to the difficulty of the solution of any optimization problem. Interior-point
approach follows the following strategy to handle these inequality constraints: We
first identify an initial solution (x0, y0, s0) that satisfies the first two (linear) blocks of
equations in F (x, y, s) = 0 (but not necessarily the third block XSe = 0), and also
satisfies the nonnegativity constraints strictly, i.e., x0 > 0 and s0 > 01.

Once we find such an (x0, y0, s0) we try to generate new points (xk, yk, sk) that also
satisfy these same conditions and get progressively closer to satisfying the third block
of equations. This is achieved via careful application of a modified Newton’s method.

Let us start by defining two sets related to the conditions (4.9):

F := {(x, y, s) : Ax = b, AT y −Qx + s = c, x ≥ 0, s ≥ 0} (4.10)

is the set of feasible points, or simply the feasible set. Note that, we are using a primal-
dual feasibility concept here. More precisely, since x variables come from the primal
QP and (y, s) come from the dual QP, we impose both primal and dual feasibility
conditions in the definition of F . If (x, y, s) ∈ F also satisfy x > 0 and s > 0 we say
that (x, y, s) is a strictly feasible solution and define

Fo := {(x, y, s) : Ax = b, AT y −Qx + s = c, x > 0, s > 0} (4.11)

to be the strictly feasible set. In mathematical terms, Fo is the relative interior of the
set F .

1Notice that a point satisfying some inequality constraints strictly lies in the interior of the region
defined by these inequalities–rather than being on the boundary. This is the reason why the method
we are discussing is called an interior-point method.
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IPMs we discuss here will generate iterates (xk, yk, sk) that all lie in Fo. Since we are
generating iterates for both the primal and dual problems, this version of IPMs are often
called primal-dual interior-point methods. Using this approach, we will obtain solutions
for both the primal and dual problems at the end of the solution procedure. Solving
the dual may appear to be a waste of time since we are only interested in the solution
of the primal problem. However, years of computational experience demonstrated that
primal-dual IPMs lead to the most efficient and robust implementations of the interior-
point approach. This happens, because having some partial information on the dual
problem (in the form of the dual iterates (yk, sk)) helps us make better and faster
improvements on the iterates of the primal problem.

Iterative optimization algorithms have two essential components:

• a measure that can be used to evaluate the quality of alternative solutions and
search directions

• a method to generate a better solution from a non-optimal solution.

As we stated before, IPMs rely on Newton’s method to generate new estimates of
the solutions. Let us discuss this more in depth. Ignore the inequality constraints in
(4.9) for a moment, and focus on the nonlinear system of equations F (x, y, s) = 0.
Assume that we have a current estimate (xk, yk, sk) of the optimal solution to the
problem. The Newton step from this point is determined by solving the following
system of linear equations:

J(xk, yk, sk)

 ∆xk

∆yk

∆sk

 = −F (xk, yk, sk), (4.12)

where J(xk, yk, sk) is the Jacobian of the function F and [∆xk, ∆yk, ∆sk]T is the
search direction. First, observe that

J(xk, yk, sk) =

 −Q AT I
A 0 0
Sk 0 Xk

 (4.13)

where, Xk and Sk are diagonal matrices with the components of the vectors xk and sk

along their diagonals. Furthermore, if (xk, yk, sk) ∈ Fo, then

F (xk, yk, sk) =

 0
0

XkSke

 (4.14)

and the Newton equation reduces to −Q AT I
A 0 0
Sk 0 Xk


 ∆xk

∆yk

∆sk

 =

 0
0

−XkSke

 . (4.15)
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In standard Newton’s method, once a Newton step is determined in this manner,
one updates the current iterate with the Newton step to obtain the new iterate. In our
case, this may not be permissible, since the Newton step may take us to a new point
that does not necessarily satisfy the nonnegativity constraints x ≥ 0 and s ≥ 0. In our
modification of Newton’s method, we want to avoid such violations and therefore will
seek a step-size parameter αk ∈ (0, 1] such that xk + αk∆xk > 0 and sk + αk∆sk > 0.
Note that the largest possible value of αk satisfying these restrictions can be found
using a procedure similar to the ratio test in simplex method. Once we determine the
step-size parameter, we choose the next iterate as

(xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(∆xk, ∆yk, ∆sk).

If a value of αk results in a next iterate (xk+1, yk+1, sk+1) that is also in Fo, we say that
this value of αk is permissible.

A naive modification of Newton’s method as we described above is, unfortunately,
not very good in practice since the permissible values of αk are often too small and
we can make very little progress toward the optimal solution. Therefore, one needs to
modify the search direction as well as adjusting the step size along the direction. The
usual Newton search direction obtained from (4.15) is called the pure Newton direction
and we will consider centered Newton directions. To describe such directions, we first
need to discuss the concept of the central path.

4.4 The Central Path

The central path C is a trajectory in the relative interior of the feasible region Fo that
is very useful for both the theoretical study and also the implementation of IPMs. This
trajectory is parametrized by a scalar τ > 0, and the points (xτ , yτ , sτ ) on the central
path are obtained as solutions of the following system:

F (xτ , yτ , sτ ) =

 0
0
τe

 , (xτ , sτ ) > 0. (4.16)

Then, the central path C is defined as

C = {(xτ , yτ , sτ ) : τ > 0}. (4.17)

The third block of equations in (4.16) can be rewritten as

(xτ )i(sτ )i = τ, ∀i.

In other words, we no longer require that x and s are complementary vectors as in the
optimality conditions, but we require the component products for these two vectors to
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be equal for all components. Note that as τ → 0, the conditions (4.16) defining the
points on the central path approximate the set of optimality conditions (4.9) more and
more closely.

The system (4.16) has a unique solution for every τ > 0, provided that Fo is
nonempty. Furthermore, when Fo is nonempty, the trajectory (xτ , yτ , sτ ) converges to
an optimal solution of the problem (4.1). The following figure depicts a sample feasible
set and its central path.

Feasible 
region

The Central
    Path

Optimal 
solution

Figure 4.1: The Central Path

4.5 Interior-Point Methods

4.5.1 Path-Following Algorithms

As we mentioned above, when Fo, the interior of the primal-dual feasible set is non-
empty, the system (4.16) defining the central path has a unique solution for each
positive τ . These solutions are called (primal-dual) central points and form the tra-
jectory that we called the central path. Moreover, these solutions converge to optimal
solutions of the primal-dual pair of quadratic programming problems. This observation
suggests the following strategy for finding a solution of the system

F (x, y, s) =

 AT y −Qx + s− c
Ax− b
XSe

 =

 0
0
0

 , (x, s) ≥ 0. (4.18)

that describes the optimality conditions for our QP: In an iterative manner, generate
points that approximate central points for decreasing values of the parameter τ . Since
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the central path converges to an optimal solution of the QP problem, these approxi-
mations to central points should also converge to a desired solution. This simple idea
is the basis of interior-point path-following algorithms for optimization problems.

The strategy we outlined in the previous paragraph may appear confusing in a first
reading. For example, one might wonder, why we would want to find approximations to
central points, rather than central points themselves. Or, one might ask why we do not
approximate or find the solutions of the optimality system (4.18) directly rather than
generating all these intermediate iterates leading to such a solution. Let us respond to
these potential questions. First of all, there is no good and computationally cheap way
of solving (4.18) directly since it involves nonlinear equations of the form xisi = 0. As
we discussed above, if we apply Newton’s method to the equations in (4.18), we run
into trouble because of the additional nonnegativity constraints. In contrast, central
points, being somewhat safely away from the boundaries defined by nonnegativity
constraints, can be computed without most of the difficulties encountered in solving
(4.18) directly. This is why we use central points for guidance. We are often satisfied
with an approximation to a central point for reasons of computational efficiency. As
the equations (xτ )i(sτ )i = τ indicate, central points are also defined by systems of
nonlinear equations and additional nonnegativity conditions. Solving these systems
exactly (or very accurately) can be as hard as solving the optimality system (4.18) and
therefore would not be an acceptable alternative for a practical implementation. It
is, however, relatively easy to find a well-defined approximation to central points (see
the definition of the neighborhoods of the central path below), especially those that
correspond to larger values of τ . Once we identify a point close to a central point on
C, we can do a clever and inexpensive search to find another point which is close to
another central point on C, corresponding to a smaller value of τ . Furthermore, this
idea can be used repeatedly, resulting in approximations to central points with smaller
and smaller τ values, allowing us to approach an optimal solution of the QP we are
trying to solve. This is the essence of the path-following strategies.

4.5.2 Centered Newton directions

We will say that a Newton step used in an interior-point method is a pure Newton
step if it is a step directed toward the optimal point satisfying F (x, y, s) = [0, 0, 0]T .
As we mentioned, these pure steps may be of poor quality in that they point toward
the exterior of the feasible region. Instead, following the strategy we discussed in the
previous paragraphs, most interior-point methods take a step toward points on the
central path C corresponding to predetermined value of τ . Since such directions are
aiming for central points, they are called centered directions. Figure 4.5.2 depicts a
pure and centered Newton direction from a sample iterate.
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Feasible 
region

The Central
    Path

Optimal 
solution

Current
iterate

  direction
pure Newton

centered
direction

Figure 4.2: Pure and centered Newton directions

A centered direction is obtained by applying Newton update to the following system:

F̂ (x, y, s) =

 AT y −Qx + s− c
Ax− b

XSe− τe

 =

 0
0
0

 . (4.19)

Since the Jacobian of F̂ is identical to the Jacobian of F , proceeding as in equations
(4.12)–(4.15), we obtain the following (modified) Newton equation for the centered
direction:

 −Q AT I
A 0 0
Sk 0 Xk


 ∆xk

c

∆yk
c

∆sk
c

 =

 0
0

τe−XkSke

 . (4.20)

We used the subscript c with the direction vectors to note that they are centered
directions. Notice the similarity between (4.15) and (4.20).

One critical choice we need to make is the value of τ to be used in determining the
centered direction. For this purpose, we first define the following measure often called
the duality gap, or the average complementarity:

µ = µ(x, s) :=

∑n
i=1 xisi

n
=

xT s

n
. (4.21)

Note that, when (x, y, s) satisfy the conditions Ax = b, x ≥ 0 and AT y − Qx + s =
c, s ≥ 0, then (x, y, s) are optimal if and only if µ(x, s) = 0. If µ is large, then we are
far away from the solution. Therefore, µ serves as a measure of optimality for feasible
points–the smaller the duality gap, the closer the point to optimality.
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For a central point (xτ , yτ , sτ ) we have

µ(xτ , sτ ) =

∑n
i=1(xτ )i(sτ )i

n
=

∑n
i=1 τ

n
= τ.

Because of this, we associate the central point (xτ , yτ , sτ ) with all feasible points (x, y, s)
satisfying µ(x, s) = τ . All such points can be regarded as being at the same “level”
as the central point (xτ , yτ , sτ ). When we choose a centered direction from a current
iterate (x, y, s), we have the possibility of choosing to target a central point that is (i)
at a lower level than our current point (τ < µ(x, s)), (ii) at the same level as our current
point (τ = µ(x, s)), or (iii) at a higher level than our current point (τ > µ(x, s)). In
most circumstances, the third option is not a good choice as it targets a central point
that is “farther” than the current iterate to the optimal solution. Therefore, we will
always choose τ ≤ µ(x, s) in defining centered directions. Using a simple change of
variables, the centered direction can now be described as the solution of the following
system:  −Q AT I

A 0 0
Sk 0 Xk


 ∆xk

c

∆yk
c

∆sk
c

 =

 0
0

σkµke−XkSke

 , (4.22)

where µk := µ(xk, sk) = (xk)T sk

n
and σk ∈ [0, 1] is a user defined quantity describing the

ratio of the duality gap at the target central point and the current point.
When σk = 1 (equivalently, τ = µk in our earlier notation), we have a pure centering

direction. This direction does not intend to improve the duality gap and targets the
central point whose duality gap is the same as our current iterate. Despite the lack
of progress in terms of the duality gap, these steps are often desirable since large step
sizes are permissible along such directions and points get well-centered so that the next
iteration can make significant progress toward optimality. At the other extreme, we
have σk = 0. This, as we discussed before, corresponds to the pure Newton step, also
called the affine-scaling direction. Practical implementations often choose intermediate
values for σk.

We are now ready to describe a generic interior-point algorithm that uses centered
directions:

Algorithm 4.1 Generic Interior Point Algorithm

0. Choose (x0, y0, s0) ∈ Fo. For k = 0, 1, 2, . . . repeat the following steps.

1. Choose σk ∈ [0, 1], let µk = (xk)T sk

n
. Solve −Q AT I

A 0 0
Sk 0 Xk


 ∆xk

∆yk

∆sk

 =

 0
0

σkµke−XkSke

 .
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2. Choose αk such that

xk + αk∆xk > 0, and sk + αk∆sk > 0.

Set

(xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(∆xk, ∆yk, ∆sk),

and k = k + 1.

4.5.3 Neighborhoods of the Central Path

Variants of interior-point methods differ in the way they choose the centering parameter
σk and the step-size parameter αk in each iteration. Path-following methods, as we have
been discussing, aim to generate iterates that are approximations to the central points.
This is achieved by a careful selection of the centering and step-size parameters. Before
we discuss the selection of these parameters let us make the notion of “approximate
central points” more precise.

Recall that central points are those in the set Fo that satisfy the additional con-
ditions that xisi = τ,∀i, for some positive τ . Consider a central point (xτ , yτ , sτ ). If
a point (x, y, s) approximates this central point, we would expect that the Euclidean
distance between these two points is small, i.e.,

‖(x, y, s)− (xτ , yτ , sτ )‖

is small. Then, the set of approximations to (xτ , yτ , sτ ) may be defined as:

{(x, y, s) ∈ Fo : ‖(x, y, s)− (xτ , yτ , sτ )‖ ≤ ε}, (4.23)

for some ε ≥ 0. Note, however, that it is difficult to obtain central points explicitly.
Instead, we have their implicit description through the system (4.19). Therefore, a
description such as (4.23) is of little practical/algorithmic value when we do not know
(xτ , yτ , sτ ). Instead, we consider descriptions of sets that imply proximity to central
points. Such descriptions are often called the neighborhoods of the central path. Two
of the most commonly used neighborhoods of the central path are:

N2(θ) := {(x, y, s) ∈ Fo : ‖XSe− µe‖ ≤ θµ, µ =
xT s

n
}, (4.24)

for some θ ∈ (0, 1) and

N−∞(γ) := {(x, y, s) ∈ Fo : xisi ≥ γµ ∀i, µ =
xT s

n
}, (4.25)

for some γ ∈ (0, 1). The first neighborhood is called the 2-norm neighborhood while
the second one the one-sided ∞-norm neighborhood (but often called the −∞-norm
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neighborhood, hence the notation). One can guarantee that the generated iterates are
“close” to the central path by making sure that they all lie in one of these neighbor-
hoods. Note that if we choose θ = 0 in (4.24) or γ = 1 in (4.25), the neighborhoods
we defined degenerate to the central path C.

For typical values of θ and γ, the 2-norm neighborhood is often much smaller than
the −∞-norm neighborhood. Indeed,

‖XSe− µe‖ ≤ θµ ⇔

∥∥∥∥∥∥∥∥∥∥∥

x1s1

µ
− 1

x2s2

µ
− 1
...

xnsn

µ
− 1

∥∥∥∥∥∥∥∥∥∥∥
≤ θ, (4.26)

which, in turn, is equivalent to

n∑
i=1

(
xisi

µ
− 1

)2

≤ θ2.

In this last expression, the quantity xisi

µ
− 1 = xisi−µ

µ
is the relative deviation of xisi’s

from their average value µ. Therefore, a point is in the 2-norm neighborhood only if
the sum of the squared relative deviations is small. Thus, N2(θ) contains only a small
fraction of the feasible points, even when θ is close to 1. On the other hand, for the
−∞-norm neighborhood, the only requirement is that each xisi should not be much
smaller than their average value µ. For small (but positive) γ, N−∞(γ) may contain
almost the entire set Fo.

In summary, 2-norm neighborhoods are narrow while the −∞-norm neighborhoods
are relatively wide. The practical consequence of this observation is that, when we
restrict our iterates to be in the 2-norm neighborhood of the central path as opposed
to the −∞-norm neighborhood, we have much less room to maneuver and our step-
sizes may be cut short. The next figure illustrates this behavior. For these reasons,
algorithms using the narrow 2-norm neighborhoods are often called short-step path-
following methods while the methods using the wide−∞-norm neighborhoods are called
long-step path-following methods

The price we pay for the additional flexibility with wide neighborhoods come in
the theoretical worst-case analysis of algorithms using such neighborhoods. When
the iterates are restricted to the 2-norm neighborhood, we have a stronger control
of the iterates as they are very close to the central path– a trajectory with many
desirable theoretical features. Consequently, we can guarantee that even in the worst
case the iterates that lie in the 2-norm neighborhood will converge to an optimal
solution relatively fast. In contrast, iterates that are only restricted to a −∞-norm
neighborhood can get relatively far away from the central path and may not possess its
nice theoretical properties. As a result, iterates may “get stuck” in undesirable corners
of the feasible set and the convergence may be slow in these worst-case scenarios. Of
course, the worst case scenarios rarely happen and typically (on average) we see faster
convergence with long-step methods than with short-step methods.
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Figure 4.3: Narrow and wide neighborhoods of the central path

4.5.4 A Long-Step Path-Following Algorithm

Next, we formally describe a long-step path following algorithm that specifies some of
the parameter choices of the generic algorithm we described above.

Algorithm 4.2 Long-Step Path-Following Algorithm

0. Given γ ∈ (0, 1), 0 < σmin < σmax < 1, choose (x0, y0, s0) ∈ N−∞(γ). For
k = 0, 1, 2, . . . repeat the following steps.

1. Choose σk ∈ [σmin, σmax], let µk = (xk)T sk

n
. Solve −Q AT I

A 0 0
Sk 0 Xk


 ∆xk

∆yk

∆sk

 =

 0
0

σkµke−XkSke

 .

2. Choose αk such that

(xk, yk, sk) + αk(∆xk, ∆yk, ∆sk) ∈ N−∞(γ).

Set

(xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(∆xk, ∆yk, ∆sk),

and k = k + 1.
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4.5.5 Starting from an Infeasible Point

Both the generic interior-point method and the long-step path-following algorithm we
described above require that one starts with a strictly feasible iterate. This require-
ment is not practical since finding such a starting point is not always a trivial task.
Fortunately, however, we can accommodate infeasible starting points with a small
modification of the linear system we solve in each iteration.

For this purpose, we only require that the initial point (x0, y0, s0) satisfy the non-
negativity restrictions strictly: x0 > 0 and s0 > 0. Such points can be generated
trivially. We are still interested in solving the following nonlinear system:

F̂ (x, y, s) =

 AT y −Qx + s− c
Ax− b

XSe− τe

 =

 0
0
0

 , (4.27)

as well as x ≥ 0, s ≥ 0. As in (59), the Newton step from an infeasible point (xk, yk, sk)
is determined by solving the following system of linear equations:

J(xk, yk, sk)

 ∆xk

∆yk

∆sk

 = −F̂ (xk, yk, sk), (4.28)

which reduces to −Q AT I
A 0 0
Sk 0 Xk


 ∆xk

∆yk

∆sk

 =

 c + Qxk − AT yk − sk

b− Axk

τe−XkSke

 . (4.29)

We no longer have zeros in the first and second blocks of the right-hand-side vector
since we are not assuming that the iterates satisfy Axk = b and AT yk −Qxk + sk = c.
Replacing the linear system in the two algorithm descriptions above with (4.29) we
obtain versions of these algorithms that work with infeasible iterates. In these versions
of the algorithms, search for feasibility and optimality are performed simultaneously.

4.6 QP software

As for linear programs, there are several software options for solving practical quadratic
programming problems. Many of the commercial software options are very efficient and
solve very large QPs within seconds or minutes. A somewhat dated survey of nonlinear
programming software, which includes software designed for QPs, can be found at

http://www.lionhrtpub.com/orms/surveys/nlp/nlp.html.
The “Optimization Software Guide” website we mentioned when we discussed LP

software is also useful for QP solvers. You can reach this guide at
http://www-fp.mcs.anl.gov/otc/Guide/SoftwareGuide/index.html.
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LOQO is a very efficient and robust interior-point based software for QPs and other
nonlinear programming problems. It is available from

http://www.orfe.princeton.edu/~loqo/.
OOQP is an object-oriented C++ package, based on a primal-dual interior-point

method, for solving convex quadratic programming problems (QPs). It contains code
that can be used ”out of the box” to solve a variety of structured QPs, including general
sparse QPs, QPs arising from support vector machines, Huber regression problems, and
QPs with bound constraints. It is available for free from the following website:

http://www.cs.wisc.edu/~swright/ooqp/

4.7 Exercises

1. In the study of interior-point methods for solving quadratic programming prob-
lems we encountered the following matrix:

M :=

 −Q AT I
A 0 0
Sk 0 Xk

 ,

where (xk, yk, sk) is the current iterate, Xk and Sk are diagonal matrices with
the components of the vectors xk and sk along their diagonals. Recall that M
is the Jacobian matrix of the function that defines the optimality conditions of
the QP problem. This matrix appears in linear systems we need to solve in each
interior-point iteration. We can solve these systems only when M is nonsingular.
Show that M is necessarily nonsingular when A has full row rank and Q is
positive semidefinite. Provide an example with a Q matrix that is not positive
semidefinite (but A matrix has full row rank) such that M is singular. (Hint: To
prove non-singularity of M when Q is positive semidefinite and A has full row
rank, consider a solution of the system −Q AT I

A 0 0
Sk 0 Xk


 ∆x

∆y
∆s

 =

 0
0
0

 .

It is sufficient to show that the only solution to this system is ∆x = 0, ∆y =
0, ∆s = 0. To prove this, first eliminate ∆s variables from the system, and then
eliminate ∆x variables.)

2. When we discussed path-following methods for quadratic programming problems,
we talked about the central path and the following two (classes of) neighborhoods
of the central path:

N2(θ) := {(x, y, s) ∈ Fo : ‖XSe− µe‖ ≤ θµ, µ =
xT s

n
},
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for some θ ∈ (0, 1) and

N−∞(γ) := {(x, y, s) ∈ Fo : xisi ≥ γµ ∀i, µ =
xT s

n
},

for some γ ∈ (0, 1).

(i) Show that N2(θ1) ⊂ N2(θ2) when 0 < θ1 ≤ θ2 < 1, and that N−∞(γ1) ⊂
N−∞(γ2) for 0 < γ2 ≤ γ1 < 1.

(ii) Show that N2(θ) ⊂ N−∞(γ) if γ ≤ 1− θ.

3. Consider the following quadratic programming formulation obtained from a small
portfolio selection model:

minx [x1 x2 x3 x4]


0.01 0.005 0 0

0.005 0.01 0 0
0 0 0.04 0
0 0 0 0




x1

x2

x3

x4


x1 + x2 + x3 = 1

−x2 + x3 + x4 = 0.1

x1, x2, x3, x4 ≥ 0.

We have the following iterate for this problem:

x =


x1

x2

x3

x4

 =


1/3
1/3
1/3
0.1

 , y =

[
y1

y2

]
=

[
0.001

−0.001

]
, s =


s1

s2

s3

s4

 =


0.004
0.003
0.0133
0.001

 .

Verify that (x, y, s) ∈ Fo. Is this point on the central path? Is it on N−∞(0.1)?
How about N−∞(0.05)? Compute the pure centering (σ = 1) and pure Newton
(σ = 0) directions from this point. For each direction, find the largest step-
size α that can be taken along that direction without leaving the neighborhood
N−∞(0.05)? Comment on your results.



Chapter 5

QP Models and Tools in Finance

5.1 Mean-Variance Optimization

In the introductory chapter, we have discussed Markowitz’ theory of mean-variance
optimization (MVO) for the selection of portfolios of securities (or asset classes) in
a manner that trades off the expected returns and the perceived risk of potential
portfolios.

Consider assets S1, S2, . . . , Sn (n ≥ 2) with random returns. Let µi and σi denote
the expected return and the standard deviation of the return of asset Si. For i 6= j,
ρij denotes the correlation coefficient of the returns of assets Si and Sj. Let µ =
[µ1, . . . , µn]T , and Q be the n × n symmetric covariance matrix with Qii = σ2

i and
Qij = ρijσiσj for i 6= j. Denoting the proportion of the total funds invested in security
i by xi, one can represent the expected return and the variance of the resulting portfolio
x = (x1, . . . , xn) as follows:

E[x] = x1µ1 + . . . + xnµn = µT x,

and
V ar[x] =

∑
i,j

ρijσiσjxixj = xT Qx,

where ρii ≡ 1.
Since variance is always nonnegative, it follows that xT Qx ≥ 0 for any x, i.e., Q

is positive semidefinite. We will assume that it is in fact positive definite, which is
essentially equivalent to assuming that there are no redundant assets in our collection
S1, S2, . . . , Sn. We further assume that the set of admissible portfolios is a nonempty
polyhedral set and represent it as X := {x : Ax = b, Cx ≥ d}, where A is an m × n
matrix, b is an m-dimensional vector, C is a p × n matrix and d is a p-dimensional
vector. This representation lets us treat any linear portfolio constraint such as short-
sale restrictions or limits on asset/sector allocations in a unified manner.

Recall that a feasible portfolio x is called efficient if it has the maximal expected
return among all portfolios with the same variance, or alternatively, if it has the min-

59
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imum variance among all portfolios that have at least a certain expected return. The
collection of efficient portfolios form the efficient frontier of the portfolio universe. The
efficient frontier is often represented as a curve in a two-dimensional graph where the
coordinates of a plotted point corresponds to the expected return and the standard
deviation on the return of an efficient portfolio.

Since we assume that Q is positive definite, the variance is a strictly convex function
of the portfolio variables and there exists a unique portfolio in X that has the minimum
variance. Let us denote this portfolio with xmin and its return µT xmin with Rmin. Note
that xmin is an efficient portfolio. We let Rmax denote the maximum return for an
admissible portfolio which can be +∞.

Markowitz’ mean-variance optimization (MVO) problem can be formulated in three
different but equivalent ways. We have seen one of these formulations in the first
chapter: Find the minimum variance portfolio of the securities 1 to n that yields
at least a target value of expected return (say b). Mathematically, this formulation
produces a quadratic programming problem:

minx
1
2
xT Qx

µT x ≥ R
Ax = b
Cx ≥ d.

(5.1)

The first constraint indicates that the expected return is no less than the target value
R. Solving this problem for values of R ranging between Rmin and Rmax one obtains
all efficient portfolios. As we discussed above, the objective function corresponds to
(one half) the total variance of the portfolio. The constant 1

2
is added for convenience

in the optimality conditions–it obviously does not affect the optimal solution.
This is a convex quadratic programming problem for which the first order conditions

are both necessary and sufficient for optimality. We present these conditions next. xR

is an optimal solution of problem (5.1) if and only if there exists λR ∈ <, γE ∈ <m,
and γI ∈ <p satisfying the following conditions:

QxR − λRµ− AT γE − CT γI = 0,
µT xR ≥ R, AxR = b, CxR ≥ d,

λR ≥ 0, λR(µT xR −R) = 0,
γI ≥ 0, γT

I (CxR − d) = 0.

(5.2)

5.2 Maximizing the Sharpe Ratio

Consider the setting in the previous subsection. Let us define the function σ(R) :
[Rmin, Rmax] → < as σ(R) := (xT

RQxR)1/2, where xR denotes the unique solution of
problem (5.1). Since we assumed that Q is positive definite, it is easily shown that
the function σ(R) is strictly convex in its domain. As mentioned before, the efficient
frontier is the graph E = {(R, σ(R)) : R ∈ [Rmin, Rmax]}.
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We now consider a riskless asset whose expected return is rf ≥ 0. We will assume
that rf < Rmin, which is natural since the portfolio xmin has a positive risk associated
with it while the riskless asset does not.

Return/risk profiles of different combinations of a risky portfolio with the riskless
asset can be represented as a straight line—a capital allocation line (CAL)—on the
mean vs. standard deviation graph. The optimal CAL is the CAL that lies below
all the other CALs for R > rf since the corresponding portfolios will have the lowest
standard deviation for any given value of R > rf . Then, it follows that this optimal
CAL goes through a point on the efficient frontier and never goes above a point on the
efficient frontier. In other words, the slope of the optimal CAL is a sub-derivative of
the function σ(R) that defines the efficient frontier. The point where the optimal CAL
touches the efficient frontier corresponds to the optimal risky portfolio.

Alternatively, one can think of the optimal CAL as the CAL with the smallest slope.
Mathematically, this can be expressed as the portfolio x that maximizes the quantity

h(x) =
µT x− rf

(xT Qx)1/2
,

among all x ∈ S. This quantity is precisely the reward-to-variability ratio introduced by
Sharpe to measure the performance of mutual funds [15]. Now more commonly known
as the Sharpe measure, or Sharpe ratio, this quantity measures the expected return
per unit of risk (standard deviation) for a zero-investment strategy. The portfolio that
maximizes the Sharpe ratio is found by solving the following problem:

maxx
µT x−rf

(xT Qx)1/2

Ax = b
Cx ≥ d.

(5.3)

In this form, this problem is not easy to solve. Although it has a nice, polyhedral
feasible region, its objective function is somewhat complicated, and worse, is possibly
non-concave. Therefore, (5.3) is not a convex optimization problem. The standard
strategy to find the portfolio maximizing the Sharpe ratio, often called the optimal
risky portfolio, is the following: First, one traces out the efficient frontier on a two
dimensional return vs. standard deviation graph. Then, the point on this graph
corresponding to the optimal risky portfolio is found as the tangency point of the line
going through the point representing the riskless asset and is tangent to the efficient
frontier. Once this point is identified, one can recover the composition of this portfolio
from the information generated and recorded while constructing the efficient frontier.

Here, we describe a direct method to obtain the optimal risky portfolio by construct-
ing a convex quadratic programming problem equivalent to (5.3). The only assumption
we need is that

∑n
i=1 xi = 1 for any feasible portfolio x. This is a natural assumption

since xi’s correspond to the proportions of the portfolio in different securities/asset
classes.
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First, observe that using the relation eT x = 1 with e = [1 1 . . . 1]T , h(x) can be
rewritten as a homogeneous function of x–we call this function g(x):

h(x) =
µT x− rf√

xT Qx
=

(µ− rfe)
T x√

xT Qx
=: g(x) = g(

x

κ
), ∀κ > 0.

The vector µ− rfe is the vector of returns in excess of the risk-free lending rate.
Next, we homogenize X = {x : Ax = b, Cx ≥ d} applying the lifting technique to

it, i.e., we consider a set X+ that lives in a one higher dimensional space than X and
is defined as follows:

X+ := {x ∈ <n, κ ∈ <|κ > 0,
x

κ
∈ X} ∪ (0, 0). (5.4)

We add the vector (0, 0) to the set to achieve a closed set. Note that X+ is a cone. For
example, when X is a circle, X+ resembles an ice-cream cone. When X is polyhedral,
e.g., X = {x|Ax ≥ b, Cx = d}, we have X+ = {(x, κ)|Ax−bκ ≥ 0, Cx−dκ = 0, κ ≥ 0}.
Now, using the observation that h(x) = g(x),∀x ∈ X and that g(x) is homogeneous,
we conclude that (5.3) is equivalent to

max g(x) s.t. (x, κ) ∈ X+. (5.5)

Again, using the observation that g(x) is homogeneous in x, we see that adding the nor-
malizing constraint (µ− rfe)

T x = 1 to (5.5) does not affect the optimal solution–from
among a ray of optimal solutions, we will find the one on the normalizing hyperplane.
Note that for any x ∈ X with (µ − rfe)

T x > 0, the normalizing hyperplane will in-
tersect with an (x+, κ+) ∈ X+ such that x = x+/κ+–in fact, x+ = x

(µ−rf e)T x
and

κ+ = 1
(µ−rf e)T x

. The normalizing hyperplane will miss the rays corresponding to points

in X with (µ − rfe)
T x ≤ 0, but since they can not be optimal, this will not affect

the optimal solution. Therefore, substituting (µ− rfe)
T x = 1 into g(x) we obtain the

following equivalent problem:

max
1√

xT Qx
s.t. (x, κ) ∈ X+, (µ− rfe)

T x = 1. (5.6)

Thus, we proved the following result:

Proposition 5.1 Given a set X of feasible portfolios with the property that eT x =
1, ∀x ∈ X , the portfolio x∗ with the maximum Sharpe ratio in this set can be found by
solving the following problem with a convex quadratic objective function

min xT Qx s.t. (x, κ) ∈ X+, (µ− rfe)
T x = 1, (5.7)

with X+ as in (5.4). If (x̂, κ̂) is the solution to (5.7), then x∗ = x̂
κ̂
.

This last problem can be solved using the techniques we discussed for convex quadratic
programming problems.
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5.3 Returns-Based Style Analysis

In two ground-breaking articles, Sharpe described how constrained optimization tech-
niques can be used to determine the effective asset mix of a fund using only the return
time series for the fund and a number of carefully chosen asset classes [13, 14]. Often,
passive indices or index funds are used to represent the chosen asset classes and one
tries to determine a portfolio of these funds/indices whose returns provide the best
match for the returns of the fund being analyzed. The allocations in the portfolio can
be interpreted as the fund’s style and consequently, this approach has become to known
as returns-based style analysis, or RBSA.

RBSA provides an inexpensive and timely alternative to fundamental analysis of a
fund to determine its style/asset mix. Fundamental analysis uses the information on
actual holdings of a fund to determine its asset mix. When all the holdings are known,
the asset mix of the fund can be inferred easily. However, this information is rarely
available, and when it is available, it is often quite expensive and/or several weeks or
months old. Since RBSA relies only on returns data which is immediately available,
and well-known optimization techniques, it can be employed in circumstances where
fundamental analysis cannot be used.

The mathematical model for RBSA is surprisingly simple. It uses the following
generic linear factor model: Let Rt denote the return of a security–usually a mutual
fund, but can be an index, etc.–in period t for t = 1, . . . , T where T corresponds to the
number of periods in the modeling window. Further, let Fit denote the return on factor
i in period t, for i = 1, . . . , n, t = 1, . . . , T . Then, Rt can be represented as follows:

Rt = w1tF1t + w2tF2t + . . . + wntFnt + εt (5.8)

= Ftwt + εt, t = 1, . . . , T.

In this equation, wit quantities represent the sensitivities of Rt to each one of the n fac-

tors, and εt represents the non-factor return. We use the notation wt =
[

w1t, . . . , wnt

]T
and Ft =

[
F1t, . . . , Fnt

]
.

The linear factor model (5.8) has the following convenient interpretation when the
factor returns Fit correspond to the returns of passive investments, such as those in
an index fund for an asset class: One can form a benchmark portfolio of the passive
investments (with weights wit) and the difference between the fund return Rt and the
return of the benchmark portfolio Ftwt is the non-factor return contributed by the
fund manager using stock selection, market timing, etc. In other words, εt represents
the additional return resulting from active management of the fund. Of course, this
additional return can be negative.

The benchmark portfolio return interpretation for the quantity Ftwt suggests that
one should choose the sensitivities (or weights) wit such that they are all nonnegative
and sum to zero. With these constraints in mind, Sharpe proposes to choose wit to
minimize the variance of the non-factor return εt. In his model, Sharpe restricts the
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weights to be constant over the period in consideration so that wit does not depend on

t. In this case, we use w =
[

w1, . . . , wn

]T
to denote the time-invariant factor weights

and formulate the following quadratic programming problem:

minw∈<n var(εt) = var(Rt − Ftw)
s.t.

∑n
i=1 wi = 1

wi ≥ 0,∀i.
(5.9)

The objective of minimizing the variance of the non-factor return εt deserves some
comment. Since we are essentially formulating a tracking problem, and since εt rep-
resents the “tracking error”, one may be tempted to minimize the magnitude of this
quantity rather than its variance. Since the Sharpe model interprets the quantity εt as
a consistent management effect, the objective is to determine a benchmark portfolio
such that the difference between fund returns and the benchmark returns is as close
to constant (i.e., variance 0) as possible. So, we want the fund return and benchmark
return graphs to show two almost parallel lines with the distance corresponding to
manager’s consistent contribution to the fund return. This objective is almost equiv-
alent to choosing weights in order to maximize the R2 of this regression model. The
equivalence is not exact since we are using constrained regression and this may lead to
correlation between εt and asset class returns.

The objective function of this QP can be easily computed:

var(Rt − wT Ft) =
1

T

T∑
t=1

(Rt − wT Ft)
2 −

(∑T
t=1(Rt − wT Ft)

T

)2

=
1

T
‖R− Fw‖2 −

(
eT (R− Fw)

T

)2

=

(
‖R‖2

T
− (eT R)2

T 2

)
− 2

(
RT F

T
− eT R

T 2
eT F

)
w

+wT
(

1

T
F T F − 1

T 2
F T eeT F

)
w.

Above, we introduced and used the notation

R =


R1
...

RT

 , and F =

 F1

· · ·
FT

 =


F11 . . . Fn1
...

. . .
...

F1T · · · FnT


and e denotes a vector of ones of appropriate size. Convexity of this quadratic function
of w can be easily verified. Indeed,

1

T
F T F − 1

T 2
F T eeT F =

1

T
F T

(
I − eeT

T

)
F, (5.10)
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and the symmetric matrix M = I− eeT

T
in the middle of the right-hand-side expression

above is a positive semidefinite matrix with only two eigenvalues: 0 (multiplicity 1) and
1 (multiplicity T − 1). Since M is positive semidefinite, so is F T MF and therefore the
variance of εt is a convex quadratic function of w. Therefore, the problem (5.9) is convex
quadratic programming problem and is easily solvable using well-known optimization
techniques such as interior-point methods.

5.4 Recovering Risk-Neural Probabilities from Op-

tions Prices

Recall our discussion on risk-neutral probability measures in Section 3.1.2. There,
we considered a one-period economy with are n securities. Current prices of these
securities are denoted by Si

0 for i = 1, . . . , n. At the end of the current period, the
economy will be in one of the states from the state space Ω. If the economy reaches
state ω ∈ Ω at the end of the current period, security i will have the payoff Si

1(ω).
We assume that we know all Si

0’s and Si
1(ω)’s but do not know the particular terminal

state ω, which will be determined randomly.
Let r denote the one-period (riskless) interest rate and let R = 1+r. A risk neutral

probability measure (RNPM) is defined as the probability measure under which the
present value of the expected value of future payoffs of a security equals its current
price. More specifically,

• (discrete case:) on the state space Ω = {ω1, ω2, . . . , ωm}, an RNPM is a vector
of positive numbers p1, p2, . . . , pm such that

1.
∑m

j=1 pj = 1,

2. Si
0 = 1

R

∑m
j=1 pjS

i
1(ωj), ∀i.

• (continuous case:) on the state space Ω = (a, b) an RNPM is a density function
p : Ω → <+ such that

1.
∫ b
a p(ω)dω = 1,

2. Si
0 = 1

R

∫ b
a p(ω)Si

1(ω)dω, ∀i.

Also recall the following result from Section 3.1.2 that is often called the First
Fundamental Theorem of Asset Pricing:

Theorem 5.1 A risk-neutral probability measure exists if and only if there are no
arbitrage opportunities.

If we can identify a risk-neutral probability measure associated with a given state
space and a set of observed prices we can price any security for which we can determine



66 CHAPTER 5. QP MODELS AND TOOLS IN FINANCE

the payoffs for each state in the state space. Therefore, a fundamental problem in asset
pricing is the identification of a RNPM consistent with a given set of prices. Of course,
if the number of states in the state space is much larger than the number of observed
prices, this problem becomes under-determined and we can not obtain a unique or
sensible solution without introducing some additional structure into the RNPM we
seek. In this section, we outline a strategy that guarantees the smoothness of the
RNPM by constructing it through cubic splines. We first describe spline functions
briefly:

Consider a function f : [a, b] → < to be estimated using its values fi = f(xi) given
on a set of points {xi}, i = 0, . . . ,m. It is assumed that x0 = a and xm = b.

A spline function, or spline, is a piecewise polynomial approximation S(x) to the
function f such that the approximation agrees with f on each node xi, i.e., S(xi) =
f(xi),∀i.

The graph of a spline function S contains the data points (xi, fi) (called knots) and
is continuous on [a, b].

A spline on [a, b] is of order n if (i) its first n− 1 derivatives exist on each interior
knot, (ii) the highest degree for the polynomials defining the spline function is n.

A cubic (third order) spline uses cubic polynomials of the form fi(x) = αix
3+βix

2+
γix + δi to estimate the function in each interval [xi−1, xi] for i = 1, . . . ,m. A cubic
spline can be constructed in such a way that it has second derivatives at each node.
For m+1 knots (x0, . . . xm) there are m intervals and, therefore 4m unknown constants
to evaluate. To determine these 4m constants we use the following 4m equations:

1. fi(xi) = f(xi), i = 1, . . . (n− 1). (n− 1 eqns)

2. f1(a) = f(a) and fm(b) = f(b). (2 eqns)

3. fi(xi) = fi+1(xi), i = 1, . . . (n− 1). (n− 1 eqns)

4. f ′i(xi) = f ′i+1(xi), i = 1, . . . (n− 1). (n− 1 eqns)

5. f ′′i (xi) = f ′′i+1(xi), i = 1, . . . (n− 1). (n− 1 eqns)

6. f ′′1 (a) = 0 and f ′′m(b) = 0. (2 eqns)

The last condition leads to a so-called natural spline that is linear at both ends.
We now formulate a quadratic programming problem with the objective of finding

a risk-neutral probability density function (described by cubic splines) for future values
of an underlying security that fits the observed option prices on this security.

We fix the security under consideration, say a stock or an index. We also a fix
an exercise date–this is the date for which we will obtain a pdf of the price of our
security. Finally, we fix a range [a, b] for possible terminal values of the price of the
underlying security at the exercise date of the options and an interest rate r for the
period between now and the exercise date. The inputs to our optimization problem
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are current market prices CK of call options and PK for put options on the chosen
underlying security with strike price K and the chosen expiration date. This data is
freely available from newspapers and the Internet. Let C and P , respectively, denote
the set of strike prices K for which reliable market prices CK and PK are available.
For example, C may denote the strike prices of call options that were traded on the
day the problem is formulated.

Next, we fix a super-structure for the spline approximation to the risk-neutral
density, meaning that we choose how many knots to use, where to place the knots and
what kind of polynomial (quadratic, cubic, etc.) functions to use. For example, we
may decide to use cubic splines and m + 1 equally spaced knots. The parameters of
the polynomial functions that comprise the spline function will be the variables of the
optimization problem we are formulating. For cubic splines with m + 1 knots, we will
have 4m variables (αi, βi, γi, δi) for i = 1, . . . ,m. Collectively, we will represent these
variables with y. For all y chosen so that the corresponding polynomial functions fi

satisfy the equations 3–6 above, we will have a particular choice of a natural spline
function defined on the interval [a, b]1. Let py(·) denote this function. Imposing the
following additional restrictions we make sure that py is a probability density function:

py(x) ≥ 0,∀x ∈ [a, b] (5.11)∫ b

a
py(ω)dω = 1. (5.12)

Next, we define the discounted expected value of the terminal value of each option
using py as the risk-neutral density function:

CK(y) :=
1

1 + r

∫ b

a
(ω −K)+py(ω)dω, (5.13)

PK(y) :=
1

1 + r

∫ b

a
(K − ω)+py(ω)dω. (5.14)

Then,
(CK − CK(y))2

measures the difference between the actual and theoretical values of the option if Sy

was the actual RNPM. Now consider the aggregated error function for a given y:

E(y) :=
∑
K∈C

(CK − CK(y))2 +
∑

K∈P
(PK − PK(y))2

The objective now is to choose y such that conditions 3–6 of spline function descrip-
tion as well as (5.11)–(5.12) are satisfied and E(y) is minimized. This is essentially a
constrained least squares problem and we can ensure that E(y) is a convex quadratic
function of y using the following strategy.

1Note that we do not impose the conditions 1 and 2, because the values of the pdf we are approx-
imating are unknown and will be determined as a solution of an optimization problem.
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We choose the number of knots and their locations so that the knots form a superset
of C ∪P. Let x0 = a, x1, . . . , xm = b denote the locations of the knots. Now, consider a
call option with strike K and assume that K coincides with the location of the jth knot,
i.e., xj = K. Recall that y denotes collection of variables (αi, βi, γi, δi) for i = 1, . . . ,m.
Now, we can derive a formula for CK(y):

(1 + r)CK(y) =
∫ b

a
Sy(ω)(ω −K)+dω

=
m∑

i=1

∫ xi

xi−1

Sy(ω)(ω −K)+dω

=
m∑

i=j+1

∫ xi

xi−1

Sy(ω)(ω −K)dω

=
m∑

i=j+1

∫ xi

xi−1

(
αiω

3 + βiω
2 + γiω + δi

)
(ω −K)dω.

It is easily seen that this expression for CK(y) is a linear function of the components
(αi, βi, γi, δi) of the y variable. A similar formula can be derived for PK(y). The reason
for choosing the knots at the strike prices is the third equation in the sequence above—
we can immediately ignore some of the terms in the summation and the (·)+ function
is linear (and not piecewise linear) in each integral.

Now, it is clear that the problem of minimizing E(y) subject to spline function
conditions and (5.11)–(5.12) is a quadratic optimization problem2.

5.5 Exercises

1. Recall the mean-variance optimization problem we considered in Section 5.1:

minx xT Qx
µT x ≥ R
Ax = b
Cx ≥ d.

(5.15)

Now, consider the problem of finding the feasible portfolio with smallest overall
variance, without imposing any expected return constraint:

minx xT Qx
Ax = b
Cx ≥ d.

(5.16)

2The formulation we outlined above does not guarantee that the spline approximation willbe non-
negative in its domain and therefore can result in an inproper solution since we are estimating a
probability distribution function. If this occurs, one could subdivide the intervals where the spline
functions become negative by introducing additional knots and continue in this manner until a non-
negative approximation is obtained .
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(i) Does the optimal solution to (5.16) give an efficient portfolio? Why?

(ii) Let xR, λR ∈ <, γE ∈ <m, and γI ∈ <p satisfy the optimality conditions of
(5.15) (see system (5.2)). If λR = 0, show that xR is an optimal solution to
(5.16). (Hint: What are the optimality conditions for (5.16)? How are they
related to (5.2)?)

2. Implement the returns-based style analysis approach to determine the effective
asset mix of your favorite mutual fund. Use the following asset classes as your
“factors”: Large growth stocks, large value stocks, small growth stocks, small
value stocks, international stocks, and fixed income investments. You should ob-
tain time series of returns representing these asset classes from on-line resources.
You should also obtain a corresponding time series of returns for the mutual
fund you picked for this exercise. Solve the problem using 30 periods of data
(i.e., T = 30).

3. Classification problems are among the important classes of problems in financial
mathematics that can be solved using optimization models and techniques. In
a classification problem we have a vector of “feature”s describing an entity and
the objective is to analyze the features to determine which one of the two (or
more) “classes” each entity belongs to. For example, the classes might be “growth
stocks” and “value stocks”, and the entities (stocks) may be described by a feature
vector that may contain elements such as stock price, price-earnings ratio, growth
rate for the previous periods, growth estimates, etc.

Mathematical approaches to classification often start with a “training” exercise.
One is supplied with a list of entities, their feature vectors and the classes they
belong to. From this information, one tries to extract a mathematical struc-
ture for the entity classes so that additional entities can be classified using this
mathematical structure and their feature vectors. For two-class classification, a
hyperplane is probably the simplest mathematical structure that can be used to
“separate” the feature vectors of these two different classes. Of course, a hyper-
plane is often not sufficient to separate two sets of vectors, but there are certain
situations it may be sufficient.

Consider feature vectors ai ∈ <n for i = 1, . . . , k1 corresponding to class 1, and
vectors bi ∈ <n for i = 1, . . . , k2 corresponding to class 2. If these two vector sets
can be linearly separated, there exists a hyperplane wT x = γ with w ∈ <n, γ ∈ <
such that

wT ai ≥ γ, for i = 1, . . . , k1

wT bi ≤ γ, for i = 1, . . . , k2.

To have a “strict” separation, we often prefer to obtain w and γ such that

wT ai ≥ γ + 1, for i = 1, . . . , k1

wT bi ≤ γ − 1, for i = 1, . . . , k2.
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In this manner, we find two parallel lines (wT x = γ + 1 line and wT x = γ − 1)
that form the boundary of the class 1 and class 2 portion of the vector space.
There may be several such parallel lines that separate the two classes. Which one
should one choose? A good criterion is to choose the lines that have the largest
margin (distance between the lines).

a) Consider the following quadratic problem:

minw,γ ‖w‖2
2

aT
i w ≥ γ + 1, for i = 1, . . . , k1

bT
i w ≤ γ − 1, for i = 1, . . . , k2.

(5.17)

Show that the objective function of this problem is equivalent to maximizing
the margin between the lines wT x = γ + 1 and wT x = γ − 1.

b) The linear separation idea we presented above can be used even when the
two vector sets {ai} and {bi} are not linearly separable. (Note that linearly
inseparable sets will result in an infeasible problem in formulation (5.17).)
This is achieved by introducing a nonnegative “violation” variable for each
constraint of (5.17). Then, one has two objectives: to minimize the total of
the violations of the constraints of (1) and to maximize the margin. Develop
a quadratic programming model that combines these two objectives using
an adjustable parameter that can be chosen in a way to put more weight on
violations or margin, depending on one’s preference.

4. The classification problems we discussed in the previous exercise can also be
formulated as linear programming problems, if one agrees to use 1-norm rather
than 2-norm of w in the objective function. Recall that ‖w‖1 =

∑
i |wi|. Show

that if we replace ‖w‖2
2 with ‖w‖1 in the objective function of (1), we can write

the resulting problem as an LP. Show also that, this new objective function is
equivalent to maximizing the distance between wT x = γ + 1 and wT x = γ − 1 if
one measures the distance using ∞-norm (‖g‖∞ = maxi |gi|).



Chapter 6

Stochastic Programming Models

6.1 Introduction to Stochastic Programming

In the Introduction and elsewhere, we argued that many optimization problems are
described by uncertain parameters. When these uncertain parameters can be consid-
ered as random variables and have known probability distributions, new optimization
problems can be formulated that involve expected values of these random variables.
In this manner, one obtains a new problem (called the deterministic equivalent) that
removes the uncertainty and results in a deterministic optimization problem. This is
the approach of stochastic programming.

While stochastic programming models have existed for several decades, computa-
tional technology has only recently allowed the solution of realistic size problems. The
field continues to develop with the advancement of available algorithms and compu-
tational power. It is a popular modeling tool for problems in a variety of disciplines
including financial engineering.

In analogy to the generic optimization problem (OP) we considered in the Intro-
duction, a generic stochastic programming problem can be formulated as follows:

(SP) minx E[f(x, p)]
E[gi(x, p)] = 0, i ∈ E
E[gi(x, p)] ≥ 0, i ∈ I,

x ∈ S.

(6.1)

In this formulation, x represents our n-dimensional decision variable vector and p
represents the uncertain parameters of the optimization problem. As we mentioned,
in the stochastic programming approach we assume that uncertain parameters are
random, therefore, p is a random vector. Let k denote the dimension of p and let P be
its probability distribution function on <k.

S represents (implicitly) the constraints that do not depend on the random param-
eters p. gi’s are the equality and inequality constraints that depend on p. In contrast
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to (OP), the functions f and gi in (6.1) are from <n+k to < (instead of being from <n

to <). However, the expectation functionals are from <n to <:

(Ef)(x) := E[f(x, p)] =
∫
<k

f(x, p)dP (p),

(Egi)(x) := E[gi(x, p)] =
∫
<k

gi(x, p)dP (p).

Stochastic programming models can include both anticipative and adaptive decision
variables. Anticipative variables correspond to those decisions that must be made
here-and-now and can not depend on the future observations/partial realizations of
the random parameters. Adaptive variables correspond to wait-and-see decisions that
can be made after some (or, sometimes all) of the random parameters are observed.

When a stochastic programming model involves only anticipative variables and the
constraints depend on random parameters, feasibility of the variables is sometimes de-
scribed using chance constraints that impose lower limits on the satisfaction probability
of the constraint. For example, a chance constraint may take the following form:

P{gi(x, p) ≥ 0} ≥ θi.

Of course, many realistic models include both anticipative and adaptive variables.
Recourse models bring these two types of variables together. Using a multi-stage
stochastic programming formulation, with recourse variables at each stage, one can
model a decision environment where information is revealed progressively and the de-
cisions are adapted to each new piece of information.

In investment planning, each new trading opportunity represents a new decision
to be made. Therefore, trading dates where investment portfolios can be rebalanced
become natural choices for decision stages, and these problems can be formulated
conveniently as multi-stage stochastic programming problems with recourse.

6.2 Two Stage Problems with Recourse

The next three sections are based on the Stochastic Programming chapter in the course
notes by Gerard Cornuejols for course “Optimization Methods in Finance”. In the
Introduction, we have already seen a generic form of a two-stage stochastic linear
program with recourse. We follow the standard notation for stochastic LPs here which
is slightly different from that of (SP):

max (c1)T x1 + E[max c2(ω)T x2(ω)]
A1x1 = b1

B2(ω)x1 + A2(ω)x2(ω) = b2(ω)
x1 ≥ 0, x2(ω) ≥ 0.

(6.2)

Above, the first-stage decisions are represented by vector x1 and the second-stage
decisions by vector x2(ω), which depend on the realization ω of a random event. A1
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and b1 define deterministic constraints on the first-stage decisions x1, whereas A2(ω),
B2(ω), and b2(ω) define stochastic linear constraints linking the recourse decisions
x2(ω) to the first-stage decisions. The objective function contains a deterministic term
(c1)T x1 and the expectation of the second-stage objective c2(ω)T x2(ω) taken over all
realizations of the random event ω.

Notice that the first-stage decisions will not necessarily satisfy the linking con-
straints B2(ω)x1 + A2(ω)x2(ω) = b2(ω), if no recourse action is taken. Therefore,
recourse allows one to make sure that the initial decisions can be “corrected” with
respect to this second set of feasibility equations.

In Section 1.2.1, we also argued that problem (6.2) can be represented in an alter-
native manner by considering the second-stage or recourse problem that is defined as
follows, given x1, the first-stage decisions:

f(x1, ω) = max c2(ω)T x2(ω)
A2(ω)x2(ω) = b2(ω)−B2(ω)x1

x2(ω) ≥ 0,
(6.3)

Now, the alternative formulation of the two-stage stochastic linear program is given as

max (c1)T x1 + E[f(x1, ω)]
A1x1 = b1

x1 ≥ 0,
f(x1, ω) = maxx2(ω){c2(ω)T x2(ω)|A2(ω)x2(ω) = b2(ω)−B2(ω)x1, x2(ω) ≥ 0}.

(6.4)
Next, we consider the case where the sample space Ω for the random event vector

ω is a finite set. Assume that Ω = {ω1, . . . , ωK2} and let p = (p1, . . . , pK2) denote
the probability distribution on this sample space. For brevity, we write c2

k instead of
c2(ωk), etc. Under this scenario approach the two-stage stochastic linear programming
problem takes the following form:

max (c1)T x1 +
∑K2

k2=1 pk2f(x1, ωk2)]
A1x1 = b1

x1 ≥ 0,
f(x1, ωk2) = maxx2

k2
{(c2

k2
)T x2

k2
|A2

jx
2
k2

= b2
k2
−B2

k2
x1, x2

k2
≥ 0}, k2 = 1, . . . , K2.

(6.5)
The maximum in the objective will be achieved if and only if all second-stage problems
achieve their maximum objective values. Therefore, we can eliminate the f(x1, ωk2)
expressions and get the following problem:

max (c1)T x1 + p1(c
2
1)

T x2
1 + . . . + pk(c

2
K2

)T x2
K2

A1x1 = b1

B2
j x

1 + A2
1x

2
1 = b2

1
...

. . .
...

B2
K2

x1 + A2
K2

x2
K2

= b2
K2

x1, x2
1, . . . x2

K2
≥ 0.

(6.6)
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This is a deterministic linear programming problem called the deterministic equivalent
of the original uncertain problem. This problem has k copies of the second-stage
decision variables and therefore, can be significantly larger than the original problem
before we considered the uncertainty of the parameters. Fortunately, however, the
constraint matrix has a very special sparsity structure that can be exploited by modern
decomposition based solution methods.

6.3 Multi Stage Problems

A multi-stage stochastic program with recourse is formulated as follows:

max c1x1 + Eω2 [max (c2(ω2)x2(ω2) + . . . + EωT |ωT−1 [cT (ωT )xT (ωT )] . . .)]
subject to

A1x1 = b1

B2(ω2)x1 +A2(ω2)x2(ω2) = b2(ω2)
B3(ω3)x2(ω2) +A3(ω3)x3(ω3) = b3(ω3)

. . .
BT (ωT )xT−1(ωT−1) +AT (ωT )xT (ωT ) = bT (ωT )

x1 ≥ 0, x2(ω2) ≥ 0, . . . xT (ωT ) ≥ 0
(6.7)

where the first-stage decisions are represented by vector x1 and the stage t decisions
by vector xt(ωt), for t = 2, . . . , T . In the objective, Eωt|ωt−1 denotes the conditional
expectation of the state ωt of the data process ω = (ω2, . . . , ωT ) at time t given the
history of the process up to time t− 1. The sequence of events is the following:

decide x1 observe ω2 decide x2(ω2) . . . observe ωT decide xT (ωT ).

Using the approach presented in Section 1.2.1 and above for the two-stage case, one
can reduce multistage stochastic programs to a nested sequence of nonlinear programs.
Alternatively, we can again consider the scenario approach. In the multi-stage case, one
can think of the scenarios as a tree with T levels where, at each stage t = 1, . . . , T − 1,
the branches correspond to refinements of ωt to ωt+1. The stochastic program can then
be written as a very large linear program as follows. For t = 2, . . . , T , let pk2,k3,...,kt

denote the conditional probability of outcome kt at stage t given outcomes k2, . . . , kt−1

at the previous stages. Then (6.7) can be written as
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max c1x1 +
∑K2

k2=1[p
k2(ck2xk2 + . . . +

∑KT
kT =1[p

k2,...,kT ck2,...,kT xk2,...,kT ] . . .)]
subject to

A1x1 = b1

Bk2x1 +Ak2xk2 = bk2

Bk2k3xk2 +Ak2k3xk2k3 = bk2k3

. . .
Bk2,...,kT xk2,...,kT−1 +Ak2,...,kT xk2,...,kT = bk2,...,kT

x1 ≥ 0, xk2 ≥ 0, . . . xk2,...,kT ≥ 0
(6.8)

where

Bk2 :=


B2(ω2

1)
B2(ω2

2)
. . .

B2(ω2
K2

)

 ,

the matrix obtained by stacking all the possible realizations of B2(ω2). The matrices
Ak2 and bk2 are defined similarly. The matrix Bk2k3 is defined as



B3(ω3
1,1) 0 . . . 0

. . . . . . . . . . . .
B3(ω3

1,K3
) 0 . . . 0

0 B3(ω3
2,1) . . . 0

. . . . . . . . . . . .
0 B3(ω3

2,K3
) . . . 0

. . . . . . . . . . . .
0 0 . . . B3(ω3

K2,1)
. . . . . . . . . . . .
0 0 . . . B2(ω3

K2,K3
)



,

where ω3
ij for i = 1, . . . , K2 and j = 1, . . . , K3 are all the possible realizations of ω3. The

remaining matrices are defined similarly. It should be clear from this construction that
(6.8) is a very large scale linear program. Indeed, if Bi(ωi) has mi rows and ni columns,
then Bk2,...,ki has miK2K3 . . . Ki rows and niK2K3 . . . Ki−1 columns. For example, for a
problem with 10 stages and a binary tree, there are 1024 scenarios and therefore (6.8)
has several thousand constraints and variables. Modern commercial codes can handle
such large linear programs, but a moderate increase in the number of stages or in the
number of branches at each stage could make (6.8) too large to solve.
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6.4 Stochastic Programming Models and Tools in

Finance

6.4.1 Asset/Liability Management

Financial health of any company, and in particular those of financial institutions, is
reflected in the balance sheets of the company. Proper management of the company re-
quires attention to both sides of the balance sheet–assets and liabilities. Asset-liability
management (ALM) offers sophisticated mathematical tools for an integrated manage-
ment of assets and liabilities and is the focus of many studies in financial mathematics.

ALM recognizes that static, one period investment planning models (such as mean-
variance optimization) fail to incorporate the multi-period nature of the liabilities faced
by the company. A multi-period model that emphasizes the need to meet liabilities in
each period for a finite (or possibly infinite) horizon is often required. Since liabilities
and asset returns usually have random components, their optimal management requires
tools of “Optimization under Uncertainty” and most notably, stochastic programming
approaches.

We recall the ALM setting we introduced in Section 1.3.4: Let Lt be the liability
of the company in year t for t = 1, . . . , T . The Lt’s are random variables. Given these
liabilities, which assets (and in which quantities) should the company hold each year
to maximize its expected wealth in year T? The assets may be domestic stocks, foreign
stocks, real estate, bonds, etc. Let Rit denote the return on asset i in year t. The Rit’s
are random variables. The decision variables are:

xit = market value invested in asset i in year t.

The decisions xit in year t are made after the random variables Lt and Rit are realized.
That is, the decision problem is multistage, stochastic, with recourse. The stochastic
program can be written as follows.

max E[
∑

i xiT ]
subject to

asset accumulation:
∑

i(1 + Rit)xi,t−1 −
∑

i xit = Lt for t = 1, . . . , T
xit ≥ 0.

The constraint says that the surplus left after liability Lt is covered will be invested
as follows: xit invested in asset i. In this formulation, x0,t are the fixed, and possibly
nonzero initial positions in different asset classes. The objective selected in the model
above is to maximize the expected wealth at the end of the planning horizon. In
practice, one might have a different objective. For example, in some cases, minimizing
Value at Risk (VaR) might be more appropriate. Other priorities may dictate other
objective functions.

To address the issue of the most appropriate objective function, one must under-
stand the role of liabilities. Pension funds and insurance companies are among the most
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typical arenas for the integrated management of assets and liabilities through ALM.
We consider the case of a Japanese insurance company, the Yasuda Fire and Marine In-
surance Co, Ltd. In this case, the liabilities are mainly savings-oriented policies issued
by the company. Each new policy sold represents a deposit, or inflow of funds. Interest
is periodically credited to the policy until maturity, typically three to five years, at
which time the principal amount plus credited interest is refunded to the policyholder.
The crediting rate is typically adjusted each year in relation to a market index like
the prime rate. Therefore, we cannot say with certainty what future liabilities will
be. Insurance business regulations stipulate that interest credited to some policies be
earned from investment income, not capital gains. So, in addition to ensuring that the
maturity cash flows are met, the firm must seek to avoid interim shortfalls in income
earned versus interest credited. In fact, it is the risk of not earning adequate income
quarter by quarter that the decision makers view as the primary component of risk at
Yasuda.

The problem is to determine the optimal allocation of the deposited funds into
several asset categories: cash, fixed rate and floating rate loans, bonds, equities, real
estate and other assets. Since we can revise the portfolio allocations over time, the
decision we make is not just among allocations today but among allocation strategies
over time. A realistic dynamic asset/liability model must also account for the payment
of taxes. This is made possible by distinguishing between income return and price
return.

A stochastic linear program as in (6.7) is used to model the problem. The linear
program has uncertainty in many coefficients. This uncertainty is modeled through a
finite number of scenarios. In this fashion, the problem is transformed into a very large
scale linear program of the form (6.8). The random elements include price and income
returns for each asset class, as well as policy crediting rates.

We now present a multistage stochastic program that was developed for The Yasuda
Fire and Marine Insurance Co., Ltd. Our presentation follows the description of the
model as stated in [3].

Stages are indexed by t = 0, 1, . . . , T .
Decision variables of the stochastic program:

xit = market value in asset i at t

wt = income shortfall at t ≥ 1

vt = income surplus at t ≥ 1

Random variables appearing in the stochastic linear program: For t ≥ 1,

RPit = price return of asset i from t− 1 to t

RIit = income return of asset i from t− 1 to t

Ft = deposit inflow from t− 1 to t

Pt = principal payout from t− 1 to t
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It = interest payout from t− 1 to t

gt = rate at which interest is credited to policies from t− 1 to t

Lt = liability valuation at t

Parametrized function appearing in the objective:

ct = piecewise linear convex cost function

The objective of the model is to allocate funds among available assets to maximize
expected wealth at the end of the planning horizon T less expected penalized shortfalls
accumulated through the planning horizon.

max E[
∑

i xiT −
∑T

t=1 ct(wt)]
subject to

asset accumulation:
∑

i xit −
∑

i(1 + RPit + RIit)xi,t−1 = Ft − Pt − It for t = 1, . . . , T
income shortfall:

∑
i RIitxi,t−1 + wt − vt = gtLt−1 for t = 1, . . . , T

xit ≥ 0, wt ≥ 0, vt ≥ 0.
(6.9)

Liability balances and cash flows are computed so as to satisfy the liability accu-
mulation relations.

Lt = (1 + gt)Lt−1 + Ft − Pt − It for t ≥ 1.

The stochastic linear program (6.9) is converted into a large linear program using
a finite number of scenarios to deal with the random elements in the data. Creation of
scenario inputs is made in stages using a tree. The tree structure can be described by
the number of branches at each stage. For example, a 1-8-4-4-2-1 tree has 256 scenarios.
Stage t = 0 is the initial stage. Stage t = 1 may be chosen to be the end of Quarter 1
and has 8 different scenarios in this example. Stage t = 2 may be chosen to be the end
of Year 1, with each of the previous scenarios giving rise to 4 new scenarios, and so on.
For the Yasuda Fire and Marine Insurance Co., Ltd., a problem with 7 asset classes
and 6 stages gives rise to a stochastic linear program (6.9) with 12 constraints (other
than nonnegativity) and 54 variables. Using 256 scenarios, this stochastic program
is converted into a linear program with several thousand constraints and over 10,000
variables. Solving this model yielded extra income estimated to about US$ 80 million
per year for the company.

6.4.2 Corporate Debt Management

A closely related problem to the asset-liability management (ALM) problem in cor-
porate financial planning is the problem of debt management. Here the focus is on
retiring (paying back) outstanding debt at minimum cost. More specifically, corporate
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debt managers must make financial decisions to minimize the costs and risks of bor-
rowing to meet debt financing requirements. These requirements are often determined
by the firm’s investment decisions. Our discussion in this subsection is based on the
article [4].

Debt managers need to choose the sources of borrowing, types of debts to be used,
timing and terms of debts, whether the debts will be callable1, etc., in a multi-period
framework where the difficulty of the problem is compounded by the fact that the inter-
est rates that determine the cost of debt are uncertain. Since interest rate movements
can be modeled by random variables this problem presents an attractive setting for
the use of stochastic programming techniques. Below, we discuss a deterministic linear
programming equivalent of stochastic LP model for the debt management problem.

We consider a multi-period framework with T time periods. We will use the indices
s and t ranging between 0 (now) and T (termination date, or horizon) to denote
different time periods in the model. We consider K types of debt that are distinguished
by market of issue, term and the presence (or absence) of call option available to the
borrower. In our notation, the superscript k ranging between 1 and K will denote the
different types of debt being considered.

The evolution of the interest rates are described using a scenario tree. We denote by
ej = ej1, ej2, . . . , ejT , j = 1, . . . , J a sample path of this scenario tree which corresponds
to a sequence of interest rate events. When a parameter or variable is contingent on
the event sequence ej we use the notation (ej) (see below).

The decision variables in this model are the following:

• Bk
t (ej): dollar amount at par2 of debt type k Borrowed at the beginning of period

t.

• Ok
s,t(ej): dollar amount at par of debt type k borrowed in period s and Outstanding

at the beginning of period t.

• Rk
s,t(ej): dollar amount at par of debt type k borrowed in period s and Retired

(paid back) at the beginning of period t.

• St(ej): dollar value of Surplus cash held at the beginning of period t.

Next, we list the input parameters to the problem:

• rk
s,t(ej): interest payment in period t per dollar outstanding of debt type k issued

in period s.

• fk
t : issue costs (excluding premium or discount) per dollar borrowed of debt type

k issued in period t.

1A callable debt is a debt security whose issuer has the right to redeem the security prior to its
stated maturity date at a price established at the time of issuance, on or after a specified date.

2At a price equal to the par (face) value of the security; the original issue price of a security.
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• gk
s,t(ej): retirement premium or discount per dollar for debt type k issued in

period s, if retired in period t3.

• it(ej): interest earned per dollar on surplus cash in period t.

• p(ej): probability of the event sequence ej. Note that p(ej) ≥ 0, ∀j and∑J
j=1 p(ej) = 1.

• Ct: cash requirements for period t, which can be negative to indicate an operating
surplus.

• Mt: maximum allowable cost of debt service in period t.

• qk
t (Qk

t ): minimum (maximum) borrowing of debt type k in period t.

• Lt(ej)(Ut(ej)): minimum (maximum) dollar amount of debt (at par) retired in
period t.

The objective function of this problem is expressed as follows:

min
J∑

j=1

p(ej)

(
K∑

k=1

T∑
t=1

(
1 + gk

t,T (ej)
) [

Ok
t,T (ej)−Rk

t,T (ej)
]
+ (1− fk

T )Bk
T (ej)

)
. (6.10)

This function expresses the expected retirement cost of the total debt outstanding at
the end of period T .

We complete the description of the deterministic equivalent of the stochastic LP by
listing the constraints of the problem:

• Cash Requirements: For each time period t = 1, . . . , T and scenario path
j = 1, . . . , J :

Ct + St(ej) =
K∑

k=1

{(
1− fk

t

)
Bk

t (ej) + (1 + it−1(ej)) St−1(ej)

−
t−1∑
s=0

[
rk
s,t(ej)O

k
s,t(ej)−

(
1 + gk

s,t(ej)
)
Rk

s,t(ej)
]}

.

This balance equation indicates that the difference between cash available (new
net borrowing, surplus cash from previous period and the interest earned on this
cash) and the debt payments (interest on outstanding debt and cash outflows on
repayment) should equal the cash requirements plus the surplus cash left for this
period.

3These parameters are used to define call options and to value the debt portfolio at the end of the
planning period.
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• Debt Balance Constraints: For j = 1, . . . , J , t = 1, . . . , T , s = 0, . . . , t − 2,
and k = 1, . . . K:

Ok
s,t(ej)−Ok

s,t−1(ej) + Rk
s,t−1(ej) = 0

Ok
t−1,t(ej)−Bk

t−1(ej)−Rk
t−1,t(ej) = 0

• Maximum cost of debt: For j = 1, . . . , J , t = 1, . . . , T , and k = 1, . . . K:

t−1∑
s=1

(
rk
s,t(ej)O

k
s,t(ej)− it−1(ej)St−1(ej)

)
≤ Mt.

• Borrowing limits: For j = 1, . . . , J , t = 1, . . . , T , and k = 1, . . . K:

qk
t ≤ Bk

t (ej) ≤ Qk
t .

• Payoff limits: For j = 1, . . . , J and t = 1, . . . , T :

Lt(ej) ≤
K∑

k=1

t−1∑
s=0

Rk
s,t(ej) ≤ Ut(ej).

• Nonnegativity: For j = 1, . . . , J , t = 1, . . . , T , s = 0, . . . , t−2, and k = 1, . . . K:

Bk
t (ej) ≥ 0, Ok

s,t(ej) ≥ 0, Rk
s,t(ej) ≥ 0, St(ej) ≥ 0.

In the formulation above, we used the notation of the article [4]. However, since
the parameters and variables dependent on ej can only depend on the portion of the
sequence that is revealed by a certain time, a more precise notation can be obtained
using the following ideas. First, let et

j = ej1, ej2, . . . , ejt, j = 1, . . . , J, t = 1, . . . , T ,
i.e., et

j represents the portion of ej observed by time period t. Then, one replaces the
expressions such as St(ej) with St(e

t
j), etc.



82 CHAPTER 6. STOCHASTIC PROGRAMMING MODELS



Chapter 7

Robust Optimization Models and
Tools in Finance

7.1 Introduction to Robust Optimization

Robust optimization refers to the modeling of optimization problems with data uncer-
tainty to obtain a solution that is guaranteed to be “good” for all possible realizations of
the uncertain parameters. As we argued in the introductory chapter, unlike the prob-
abilistic descriptions of uncertainty, this approach gives the same importance to all
possible realizations. Uncertainty in the parameters is described through uncertainty
sets that contain all (or most) possible values that may be realized for the uncertain
parameters.

Recall from our introduction that there are different definitions and interpretations
of robustness and the resulting models differ accordingly. In particular, we distinguish
between model robustness and solution robustness. In the first case, data uncertainty
puts the feasibility of potential solutions at risk. In the second, feasibility constraints
are fixed and the uncertainty of the objective function affects the proximity of the
generated solutions to optimality. Next, we discuss each topic in detail.

7.2 Model Robustness

One of the most important concepts in robust optimization is model robustness. This
refers to solutions that remain feasible for all possible values of the uncertain inputs–we
will call such solutions constraint-robust solutions. This type of solutions are required in
many engineering applications. Typical instances include multi-stage problems where
the uncertain outcomes of earlier stages have an effect on the decisions of the later
stages and the decision variables must be chosen to satisfy certain balance constraints
(e.g., inputs to a particular stage can not exceed the outputs of the previous stage) no
matter what happens with the uncertain parameters of the problem. Therefore, our

83
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solution must be constraint-robust with respect to the uncertainties of the problem.
Here is a mathematical model for finding constraint-robust solutions: Consider an
optimization problem of the form:

(OPuc) minx f(x)
G(x, p) ∈ K.

(7.1)

Here, x are the decision variables, f is the (certain) objective function, G and K are
the structural elements of the constraints that are assumed to be certain and p are
the possibly uncertain parameters of the problem. Consider an uncertainty set U that
contains all possible values of the uncertain parameters p. Then, a constraint-robust
optimal solution can be found by solving the following problem:

(CROP) minx f(x)
G(x, p) ∈ K, ∀p ∈ U .

(7.2)

Above, CROP stands for constraint-robust optimization problem. Note that there are
no uncertain parameters in the objective function of the problem OPuc. This, however,
is not a restrictive assumption. An optimization problem with uncertain parameters in
both the objective function and constraints can be easily reformulated to fit the form
in OPuc. In fact,

(OP ′
uc) minx f(x, p)

G(x, p) ∈ K
(7.3)

is equivalent to the problem:

(OP ′′
uc) mint,x t

t− f(x, p) ≥ 0,
G(x, p) ∈ K.

(7.4)

This last problem has all its uncertainties in its constraints.
Let us now apply the constraint-robust optimization approach to a multi-period

portfolio selection problem:

7.2.1 Robust Multi-Period Portfolio Selection

This part of the notes is adapted from an article by Ben-Tal, Margalit, and Ne-
mirovski [2]. We consider an investor who currently holds the following portfolio:
x0 = (x0

1, . . . , x
0
n), where x0

i denotes the number of shares of asset i in the portfolio, for
i = 1, . . . , n. Also, let x0

0 denote her cash holdings. She is trying to determine how to
adjust her portfolio in the next L investment periods to maximize her total wealth at
the end of period L.

We use the following decision variables to model this multi-period portfolio selection
problem: bl

i denotes the number of additional shares of asset i bought at the beginning
of period l and sl

i denotes the number of asset i shares sold at the beginning of period l,
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for i = 1, . . . , n and l = 1, . . . , L. Then, the number of shares of asset i in the portfolio
at the beginning of period l, denoted xl

i, is given by the following simple equation:

xl
i = xl−1

i − sl
i + bl

i, i = 1, . . . , n, l = 1, . . . , L.

Let P l
i denote the price of a share of asset i in period l. For initial prices, without

loss of generality we choose P 0
i = 1, for all i = 0, . . . , n; we can always normalize the

x0 quantities if necessary. We make the assumption that the cash account earns no
interest so that P l

0 = 1,∀l. This is not a restrictive assumption either–we can always
reformulate the problem in this way via a change of numeraire.

We assume that proportional transaction costs are paid on asset purchases and
sales and denote them with αl

i and βl
i for sales and purchases, respectively, for asset i

and period l. We assume that αl
i’s and βl

i’s are all known at the beginning of period
0, although they can vary from period to period and from asset to asset. Transaction
costs are paid from the investor’s cash account and therefore, we have the following
balance equation for the cash account:

xl
0 = xl−1

0 +
n∑

i=1

(1− αi)P
l
i s

l
i −

n∑
i=1

(1 + βi)P
l
i b

l
i, l = 1, . . . , L.

This balance condition indicates that the cash available at the beginning of period l
is the sum of last period’s cash holdings and the proceeds from sales (discounted by
transaction costs) minus the cost of new purchases. For technical reasons, we will
replace the equation above with an inequality, effectively allowing the investor “burn”
some of her cash if she wishes to:

xl
0 ≤ xl−1

0 +
n∑

i=1

(1− αi)P
l
i s

l
i −

n∑
i=1

(1 + βi)P
l
i b

l
i, l = 1, . . . , L.

The objective of the investor, as we mentioned above, is to maximize her total
wealth at the end of period L. This objective can be represented as follows:

max
n∑

i=1

PL
i xL

i .

If we assume that all the future prices P l
i are known at the time this investment

problem is to be solved, we obtain the following deterministic optimization problem:

maxx,s,b
∑n

i=0 PL
i xL

i

xl
0 ≤ xl−1

0 +
∑n

i=1(1− αi)P
l
i s

l
i −

∑n
i=1(1 + βi)P

l
i b

l
i, l = 1, . . . , L

xi
l = xl−1

i − sl
i + bl

i, i = 1, . . . , n, l = 1, . . . , L
sl

i ≥ 0, i = 1, . . . , n, l = 1, . . . , L
bl
i ≥ 0, i = 1, . . . , n, l = 1, . . . , L

xl
i ≥ 0, i = 0, . . . , n, l = 1, . . . , L.

(7.5)
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This is, in fact, a linear programming problem that can be solved easily using the
simplex method or interior-point methods. The nonnegativity constraints on xl

i’s dis-
allow short sales and borrowing–these constraints are not essential to the model and
can be removed to allow short sales on a subset of the assets or to allow borrowing.
Observe that the investor would, of course, never choose to burn money if she is trying
to maximize her final wealth. Therefore, the cash balance inequalities will always be
satisfied with equality in an optimal solution of this problem.

In a realistic setting, we do not know P l
i ’s in advance and therefore can not solve

the optimal portfolio allocation problem as the linear program we developed above.
Instead, we will develop a robust optimization model. Since the objective function
involves uncertain parameters PL

i , we first reformulate the problem as in (7.4) to move
all the uncertainty to the constraints:

maxx,s,b,t t
t ≤ ∑n

i=0 PL
i xL

i

xl
0 ≤ xl−1

0 +
∑n

i=1(1− αi)P
l
i s

l
i −

∑n
i=1(1 + βi)P

l
i b

l
i, l = 1, . . . , L

xi
l = xl−1

i − sl
i + bl

i, i = 1, . . . , n, l = 1, . . . , L
sl

i ≥ 0, i = 1, . . . , n, l = 1, . . . , L
bl
i ≥ 0, i = 1, . . . , n, l = 1, . . . , L

xl
i ≥ 0, i = 0, . . . , n, l = 1, . . . , L.

(7.6)

The first two constraints of this reformulation are the constraints that are affected by
uncertainty and we would like to find a solution that satisfies these constraints for
most possible realizations of the uncertain parameters P l

i . To determine the robust
version of these constraints, we need to choose an appropriate “uncertainty set” for
these uncertain parameters and we follow a 3-sigma approach (as in engineering and
statistical applications) for this purpose.

Future prices can be assumed to be random quantities. Let us denote the expected

value of the vector P l =


P l

1
...

P l
n

 with µl =


µl

1
...

µl
n

 and its variance with V l. First,

consider the constraint:

t ≤
n∑

i=0

PL
i xL

i .

Letting xL = (xL
1 , . . . , xL

n), the expected value and the standard deviation of the right-

hand-side expression are given by (µL)T xL =
∑n

i=1 µL
i xl

i and
√

(xL)T V LxL If PL
i quan-

tities are normally distributed, by requiring

t ≤ E(RHS)− 3STD(RHS) = (µL)T xL − 3
√

(xL)T V LxL

we would guarantee that the (random) inequality t ≤ ∑n
i=0 PL

i xL
i would be satisfied

more than 99% of the time, which is equivalent to “always” for an engineer. Therefore,
we regard this last inequality as the “robust” version of t ≤ ∑n

i=0 PL
i xL

i .
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We can apply a similar logic to other constraints affected by uncertainty:

xl
0 − xl−1

0 ≤
n∑

i=1

(1− αi)P
l
i s

l
i −

n∑
i=1

(1 + βi)P
l
i b

l
i, l = 1, . . . , L

In this case, the expected value and the variance of the right-hand-side expression are
given by the following formulas:

E

[
n∑

i=1

(1− αi)P
l
i s

l
i −

n∑
i=1

(1 + βi)P
l
i b

l
i

]
= (µL)T Dl

αsl − (µL)T Dl
βbl

= (µL)T
[

Dl
α −Dl

β

] [ sl

bl

]
,

and

Var

[
n∑

i=1

(1− αi)P
l
i s

l
i −

n∑
i=1

(1 + βi)P
l
i b

l
i

]
=
[
sl bl

] [ Dl
α

−Dl
β

]
V l
[

Dl
α −Dl

β

] [ sl

bl

]
.

Above, Dα and Dβ are the diagonal matrices

Dα :=


(1− αl

1)
. . .

(1− αl
n)

 , and Dβ :=


(1 + βl

1)
. . .

(1 + βl
n)

 ,

sl = (sl
1, . . . , s

l
n), and bl = (bl

1, . . . , b
l
n). Replacing

xl
0 − xl−1

0 ≤
n∑

i=1

(1− αi)P
l
i s

l
i −

n∑
i=1

(1 + βi)P
l
i b

l
i, l = 1, . . . , L

with

xl
0 − xl−1

0 ≤ (µL)T
[

Dl
α −Dl

β

] [ sl

bl

]
− 3

√√√√[sl bl]

[
Dl

α

−Dl
β

]
V l
[

Dl
α −Dl

β

] [ sl

bl

]

we obtain a “robust” version of the constraint. By satisfying this robust constraint we
can guarantee that the original constraint will be satisfied “almost always”, no matter
what happens to the uncertain parameters.

Our approach above corresponds to choosing the uncertainty sets for the uncertain
parameter vectors P l in the following manner:

U l := {P l :
√

(P l − µl)T (V l)−1(P l − µl) ≤ 3}, l = 1, . . . , L

The complete uncertainty set U for all the uncertain parameters is the Cartesian prod-
uct of the sets U l: U = U1 × . . .× UL.

The resulting problem has nonlinear constraints, because of the square-roots and
quadratic terms within the square-roots. Fortunately, however, these constraints can be
written as second order cone constraints and result in a second order cone optimization
problem. This is a special and simple case of more general conic optimization problems
and can be solved efficiently using interior-point methods.
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7.3 Solution Robustness

Another important robustness concept is solution robustness. This refers to solutions
that will remain close to optimal for all possible realizations of the uncertain problem
parameters, and for this reason we prefer the alternative term objective robust for such
solutions. Since such solutions may be difficult to obtain, especially when uncertainty
sets are relatively large, an alternative goal for objective robustness is to find solutions
whose worst-case behavior is optimized. Worst-case behavior of a solution corresponds
to the value of the objective function for the worst possible realization of the uncertain
data for that particular solution. Here is a mathematical model that addresses objective
robustness: Consider an optimization problem of the form:

(OPuo) minx f(x, p)
x ∈ S.

(7.7)

Here, S is the (certain) feasible set and f is the objective function that depends on
uncertain parameters p. Assume as above that U is the uncertainty set that contains
all possible values of the uncertain parameters p. Then, an objective robust solution
can be obtained by solving:

(OROP) minx∈S maxp∈U f(x, p). (7.8)

Let us now explore some portfolio selection models that incorporate the uncertainty of
problem inputs:

7.3.1 Robust Portfolio Selection

This section is adapted from the article [6]. Recall that Markowitz’ mean-variance
optimization problem can be stated in the following form that combines the reward
and risk in the objective function:

max
x∈X

µT x− lxT Qx. (7.9)

Here µi is an estimate of the expected return of security i, qii is the variance of this
return, qij is the covariance between the returns of securities i and j, λ is a risk-
aversion constant used to trade-off the reward (expected return) and risk (portfolio
variance). The set X is the set of feasible portfolios which may carry information on
short-sale restrictions, sector distribution requirements, etc. Since such restrictions are
predetermined, we can assume that the set X is known without any uncertainty at the
time the problem is solved.

Recall also that solving the problem above for different values of l one obtains what
is known as the efficient frontier of the set of feasible portfolios. The optimal portfolio
will be different for individuals with different risk-taking tendencies, but it will always
be on the efficient frontier.
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One of the limitations of this model is its need to accurately estimate the expected
returns and covariances. In [1], Bawa, Brown, and Klein argue that using estimates of
the unknown expected returns and covariances leads to an estimation risk in portfolio
choice, and that methods for optimal selection of portfolios must take this risk into
account. Furthermore, the optimal solution is sensitive to perturbations in these input
parameters—a small change in the estimate of the return or the variance may lead to
a large change in the corresponding solution, see, for example, [8, 9]. This attribute is
unfavorable since the modeler may want to periodically rebalance the portfolio based on
new data and may incur significant transaction costs to do so. Furthermore, using point
estimates of the expected return and covariance parameters do not respond to the needs
of a conservative investor who does not necessarily trust these estimates and would be
more comfortable choosing a portfolio that will perform well under a number of different
scenarios. Of course, such an investor cannot expect to get better performance on some
of the more likely scenarios, but will have insurance for more extreme cases. All these
arguments point to the need of a portfolio optimization formulation that incorporates
robustness and tries to find a solution that is relatively insensitive to inaccuracies in
the input data. Since all the uncertainty is in the objective function coefficients, we
seek a “solution robust” portfolio, as outlined in the introduction to this section.

For robust portfolio optimization we consider a model that allows return and co-
variance matrix information to be given in the form of intervals. For example, this
information may take the form “The expected return on security j is between %8
and %10.” rather than claiming that it is %9. Mathematically, we will represent this
information as membership in the following set:

U = {(µ, Q) : µL ≤ µ ≤ µU , QL ≤ Q ≤ QU , Q � 0}, (7.10)

where µL, µU , QL, QU are the extreme values of the intervals we just mentioned. The
restriction Q � 0 is necessary since Q is a covariance matrix and, therefore, must
be positive semidefinite. These intervals may be generated in different ways. An
extremely cautious modeler may want to use historical lows and highs of certain input
parameters as the range of their values. One may generate different estimates using
different scenarios on the general economy and then combine the resulting estimates.
Different analysts may produce different estimates for these parameters and one may
choose the extreme estimates as the endpoints of the intervals. One may choose a
confidence level and then generate estimates of covariance and return parameters in
the form of prediction intervals.

We want to find a portfolio that maximizes the objective function in (7.9) in the
worst case realization of the input parameters µ and Q from their uncertainty set U in
(7.10). Given these considerations the robust optimization problem given in (OROP)
takes the following form

max
x∈X

{ min
(µ,Q)∈U

µT x− lxT Qx} (7.11)

which is equivalent to minx∈X{max(µ,Q)∈U −µT x + lxT Qx}. This problem can be ex-
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pressed as a saddle-point problem and be solved using the technique outlined in [6].

7.3.2 Robust Asset Allocation: A Case Study

This material in this section is adapted from the article [16]. We apply the robust
optimization approach discussed in the previous section to an asset allocation prob-
lem. We consider a universe of 5 asset classes: large cap growth stocks, large cap value
stocks, small cap growth stocks, small cap value stocks, and fixed income securities.
To represent each asset class, we use a monthly log-return time series of corresponding
market indices: Russell 1000 growth and value indices for large cap stocks, Russell 2000
growth and value indices for small cap stocks, and Lehman Brothers US Intermediate
Government/Credit Bond index for fixed income securities. Lehman Brothers U.S.
Intermediate Government/Credit Bond Index is an unmanaged index generally repre-
sentative of government and investment-grade corporate securities with maturities of
1-10 years. Our time series data spans the period January 1978 (the inception date of
Russell indices) to July 2002, a total of n = 283 months.

Using this data, we computed the historical means and covariances of the five
indices mentioned above. Further, we determined the uncertainty sets for the actual
values of these parameters (lower and upper bound vectors and matrices on means
and covariances) using a bootstrapping strategy. Namely, a time series of length n
was chosen for each index by bootstrapping from the available observations and means
and covariances were computed for these series. This process was repeated 3000 times
and the quantiles of the statistics were computed. Table 1 lists the 2.5, 50, and 97.5
percentiles for means of monthly returns and covariances of these returns. The first
and last entry for each value was used in the description of the uncertainty set.

10−2× Ru 1000 Gr Ru 1000 Va Ru 2000 Gr Ru 2000 Va LB IT Gov/Cre
2.5 percentile 0.3187 0.6351 -0.1480 0.5797 0.5788
50 percentile 0.9621 1.1134 0.7291 1.1757 0.7442

97.5 percentile 1.5946 1.6031 1.5568 1.7486 0.9099

10−3× Ru 1000 Gr Ru 1000 Va Ru 2000 Gr Ru 2000 Va LB IT Gov/Cre

Ru 1000 Gr
2.2283
2.8771
3.6662

Ru 1000 Va
1.3628
1.8353
2.4660

1.3057
1.7379
2.2796

Ru 2000 Gr
2.4206
3.2729
4.3474

1.4273
2.1309
3.0909

3.8896
5.1327
6.7269

Ru 2000 Va
1.3054
1.9130
2.7692

1.1325
1.6841
2.4485

2.1489
3.0751
4.3566

1.6569
2.4125
3.5011

LB IT Gov/Cre
0.0529
0.1370
0.2221

0.0712
0.1466
0.2279

-0.0277
0.0896
0.2048

0.0234
0.1184
0.2181

0.1350
0.1854
0.2502

Table 7.1: 2.5, 50, and 97.5 percentiles of mean monthly log-returns as well as the entries of
the covariance matrix obtained from bootstrapped samples. Only the lower diagonal entries
in the covariance matrix are listed for brevity.
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Using the data presented above, we generated the standard and robust efficient
frontiers. Figure 7.1 depicts the standard efficient frontier obtained by using the 50
percentile values for expected returns and covariances as inputs and the composition
of the portfolios on the efficient frontier. Lowest risk efficient portfolios are obtained,
as expected, using the fixed income securities. As one moves along the efficient frontier
toward the efficient portfolio with the highest expected return, fixed income securities
are gradually replaced by a mixture of large-cap and small-cap value stocks. Close to
the high-return end of the frontier, large-cap stocks are also phased out and one gets
a portfolio consisting entirely of small cap value stocks.
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Figure 7.1: The efficient frontier and the composition of the efficient portfolios found using
the classical MVO approach without any consideration of input uncertainty.

Figure 7.2 shows the corresponding graphs for robust efficient portfolios. To find
the robust efficient portfolios, we used the 2.5 and 97.5 percentiles listed in Table 1 as
the lower and upper bounds µL, µU , QL, and QU . We observe that QU obtained in
this manner is a positive definite matrix. In this case, the the robust efficient portfolios
can be found using the classical mean-variance optimization approach with inputs
µL and QU and the (more involved) saddle-point approach outlined in the previous
section is not necessary. Note that the figures for the robust efficient portfolios depict
the worst-case values of the expected returns and standard deviations, so returns are
substantially smaller and volatilities are higher. In contrast to the classical efficient
portfolios, robust efficient portfolios never utilize small cap value stocks and instead
concentrate all equity holdings in large cap value stocks (with the exception of a small
allocation to large cap growth stocks at the low-risk end of the frontier).

Finally, we compare the (σ, µ) frontiers for classical and robust efficient portfolios.
First, we plot the standard deviation-expected return profiles of the generated port-
folios assuming that the expected returns and covariances were actually equal to the
point estimates used for the classical mean-variance optimization approach. Under
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Figure 7.2: The efficient frontier and the composition of the efficient portfolios found using
the robust asset allocation approach. 2.5 and 97.5 percentiles of means and covariances of
bootstrapped samples were used to describe the uncertainty intervals for these inputs.

this scenario, portfolios coming from the classical MVO approach only slightly outper-
form the portfolios generated with the worst-case in mind. Next, we plot the standard
deviation-expected return profiles of the generated portfolios assuming that actual ex-
pected returns and covariances were the worst-case values within the lower and upper
bounds used for robust optimization. Figure 7.3 shows these two graphs. Compared to
the nominal case, the difference in the worst-case performances of the two sets of effi-
cient portfolios is dramatically different. Namely, the performance of classical efficient
portfolios deteriorate significantly at the high-return end with worst-case inputs.

We conclude this section by noting that robust portfolio optimization approaches
can also be implemented in the framework of factor models, i.e., when the interde-
pendencies of stock returns are explained through a small number of factors. In [5],
Goldfarb and Iyengar investigate such problems and show that in this case, the robust
portfolio selection problem reduces to a second-order cone programming problem when
the uncertainty sets are ellipsoids. Second-order cone problems can be solved efficiently
using interior-point approaches similar to the one presented in the previous section.

7.4 Exercises

1. Recall that we considered the following two-stage stochastic linear program with
recourse in Section 6.2.

max (c1)T x1 + E[max c2(ω)T x2(ω)]
A1x1 = b1

B2(ω)x1 + A2(ω)x2(ω) = b2(ω)
x1 ≥ 0, x2(ω) ≥ 0.

(7.12)
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Figure 7.3: (σ, µ)-profiles of classical and robust efficient portfolios when actual moments
are (i) equal to their point estimates, (ii) equal to their worst possible values within given
bounds.

In this problem, it was assumed the uncertainty in ω was of “random” nature, and
therefore, the stochastic programming approach was appropriate. Now consider
the case where ω is not a random variable but is known to belong to an uncertainty
set U . Formulate a two-stage robust linear program with recourse using the ideas
developed in Section 8. Next, assume that B2 and A2 are certain (they do not
depend on ω), but b2 and c2 are uncertain and depend affinely on ω: b2(ω) =
b2 + Pω and c2(ω) = c2 + Rω, where b2, c2, P, R are (certain) vectors/matrices
of appropriate dimension. Also, assume that U = {ω :

∑
i diw

2
i ≤ 1} for some

positive constants di. Can you simplify the two-stage robust linear program with
recourse under these assumptions?

2. When we studied model robustness on the multi-period portfolio selection prob-
lem, we replaced the constraint

t ≤
n∑

i=0

PL
i xL

i

(which has a random right-hand-side) with the following “robust” constraint:

t ≤ E(RHS)− 3STD(RHS) = (µL)T xL − 3
√

(xL)T V LxL,

where µL and V L denote the expected value vector and the (positive definite)
covariance matrix of the random vector PL

i .

Given µL and V L, consider the following uncertainty set for the uncertain pa-
rameters PL

i :

UL := {PL :
√

(PL − µL)T (V L)−1(PL − µL) ≤ 3}.
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Show that

t ≤
n∑

i=0

PL
i xL

i , ∀PL ∈ UL

if and only if

t ≤ (µL)T xL − 3
√

(xL)T V LxL.

Thus, our 3-σ approach is equivalent to the robust formulation of this constraint
using an appropriate uncertainty set.

(Hint: You may first want to show that

UL = {µL + (V L)1/2u : ‖u‖ ≤ 3}.)

3. In Section 7.3.1 we described the robust portfolio selection problem formulated
as:

max
x∈X

{ min
(µ,Q)∈U

µT x− lxT Qx} (7.13)

where the uncertainty set U is described as follows:

U = {(µ, Q) : µL ≤ µ ≤ µU , QL ≤ Q ≤ QU , Q � 0}.

Now we consider a special case of this problem where we make the following
assumptions

• x ≥ 0, ∀x ∈ X (i.e., X includes nonnegativity constraints)

• QU is positive semidefinite.

Under these assumptions, show that (7.13) reduces to the following maximization
problem:

max
x∈X

(
µL
)T

x− lxT QUx. (7.14)

Observe that this new problem is a simple concave quadratic maximization prob-
lem and can be solved easily using, for example, interior-point methods. (Hint:
Note that the objective function of (7.13) is separable in µ and Q and that
xT Qx =

∑
i,j qijxij with xij = xixj ≥ 0 when x ≥ 0.)

4. For a given constant l, expected return vector µ, and a positive definite covariance
matrix Q consider the following MVO problem:

max
x∈X

µT x− lxT Qx, (7.15)

where X = {x : eT x = 1} with e = [1 1 . . . 1]T . Let z(µ, Q) represent the
optimal value of this problem. Determine z(µ, Q) as an explicit function of µ and
Q. Next, assume that µ and Q are uncertain and belong to the uncertainty set
U := {(µi, Qi) : i = 1, . . . ,m}, i.e., we have a finite number of scenarios for µ
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and Q. Assume also that z(µi, Qi) > 0 ∀i. Now formulate the following robust
optimization problem: Find a feasible portfolio vector x such that the objective
value with this portfolio under each scenario is within 10% of the optimal ob-
jective value corresponding to that scenario. Discuss how this problem can be
solved. What would be a good objective function for this problem?
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Chapter 8

Conic Optimization

Recall the definition of a standard form conic optimization problem from the first
chapter:

(CO) minx cT x
Ax = b

x ∈ C.
(8.1)

Here, C denotes a closed convex cone (see the Appendix for a brief discussion on cones)
in a finite-dimensional vector space X. In other words, conic optimization refers to
the problem of of minimizing a linear function over the intersection of a translate of
a subspace (the region defined by the linear equations Ax = b) and a closed convex
cone. When X = <n and C = <n

+, this problem is the standard form LP. However, this
setting is much more general than linear programming since we can use non-polyhedral
cones C in the description of these problems.

Conic optimization offers a convenient setting where the sophisticated interior-point
algorithms for linear programming problems can be generalized and used very efficiently
to solve a large class of convex optimization problems. An advanced discussion on this
subject can be found in [10]. Two important subclasses of conic optimization problems
are the following:

1. Second-order cone programming: This corresponds to the case where C is
the second-order cone (also known as the quadratic cone, Lorenz cone, and the
ice-cream cone):

Cq := {x = (x0, x1, . . . , xn) ∈ <n+1 : x0 ≥ ‖(x1, . . . , xn)‖}. (8.2)

2. Semidefinite programming: This corresponds to the case where C is the cone
of positive semidefinite matrices of a fixed dimension (say n):

Cn
s :=

X =


x11 · · · x1n
...

. . .
...

xn1 · · · xnn

 ∈ <n×n : X = XT , X is positive semidefinite

 .

(8.3)
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During the past decade, there was an intense theoretical and algorithmic study of
conic optimization problems that also produced a number of increasingly sophisticated
software for several problem classes. Interested readers can obtain additional informa-
tion on such software by following the software link of the following page dedicated to
semidefinite programming:

http://www-user.tu-chemnitz.de/~helmberg/semidef.html

8.1 Conic Optimization Models and Tools in Fi-

nance

We have already seen examples of conic optimization models in our discussion of robust
optimization. Specifically, our discussion on “Robust Multi-Period Portfolio Selection”
in Section 7.2.1 led to an optimization problem with constraints of the form

t ≤ (µL)T xL − 3
√

(xL)T V LxL

which, we argued, can be represented as second-order cone constraints. Similarly, in
Section 7.3.1, when we discussed the robust portfolio selection models, we considered
uncertainty sets that used the positive semi-definiteness restriction in their definition.
To optimize over such sets, one has to solve conic optimization problems as well. Here
we discuss two additional examples from finance that lead to conic optimization prob-
lems, further emphasizing the importance of these sophisticated models for modern
financial mathematics.

8.1.1 Minimum Risk Arbitrage

The material in this subsection is based on the article [11]. Consider an investment
environment with n financial securities whose future price vector r ∈ <n is a random
variable. Let p ∈ <n represent the current prices of these securities. If the investor
chooses a portfolio x = (x1, . . . , xn) that satisfies

pT x < 0

and the realization r̃ at the end of the investment period of the random variable r
satisfies

r̃T x ≥ 0

then the investor would make money: S/he forms a portfolio with negative cash flow
(pocketing money) and the portfolio has a nonnegative value at the end. If the investor
can choose a portfolio x such that pT x < 0 and

Prob[rT x ≥ 0] = 1
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then, there is an arbitrage opportunity (type A).

Since arbitrage opportunities generally do not exist (or at least, do not exist for long
periods), one might be interested in the alternative notion of “minimum risk arbitrage”.
This concept is developed using a similar construction to what we have seen in Section
7.2.1. Let µ and Q represent the expected future price vector and covariance matrix
of the random vector r. Then, as in Section 7.2.1, the random inequality

rT x ≥ 0

can be replaced by the following deterministic approximation:

µT x− θ
√

xT Qx ≥ 0.

As in Section 7.2.1, choosing θ = 3 would correspond to the 3-σ approach of engineering.
When returns are normally distributed, satisfying this last inequality with θ = 3 would
ensure that

Prob[rT x ≥ 0] ≥ 0.99.

Therefore, if we find an x satisfying

µT x− θ
√

xT Qx ≥ 0, pT x < 0

for a large enough positive value of θ we have an approximation of an arbitrage oppor-
tunity. Note that, by relaxing the constraint pT x < 0 as pT x ≤ 0 or as pT x ≤ −ε, we
obtain a conic feasibility system. Therefore, the resulting system can be solved using
the conic optimization approaches.

8.1.2 Approximating Covariance Matrices

Given a vector of random variables, the covariance matrix of these random variables
is one of the most important entities describing the joint behavior of these random
variables. Covariance matrices are encountered frequently is financial mathematics,
for example, in mean-variance optimization, in forecasting, in time-series modeling,
etc. Often, true values of covariance matrices are not observable and one must use
estimates. Since estimation is often performed entry-by-entry, the resulting estimate
of the covariance matrix may be “improper” in the sense that it may not satisfy the
following basic property of any covariance matrix: positive semi-definiteness.

Lack of positive semi-definiteness in a covariance matrix estimate is a serious
problem–one might be led to think that there are portfolios with negative variances!
Assume then, that we have an estimate Q̂ ∈ Σn of a covariance matrix and that Q̂
is not positive semidefinite. Here, Sn denotes the space of symmetric n × n matrices.
An important question in this scenario is the following: What is the “closest” positive
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semidefinite matrix to Q̂? Here, the definition of “close” may be subjective–among a
few alternatives we consider the following popular measure:

dF (Q, Q̂) =
√∑

i,j

(Qij − Q̂ij)2.

Above, F stands for Frobenius, as the measure dF is nothing but the Frobenius norm
of (Q− Q̂).

Therefore, we have the following optimization problem: Given Q̂ ∈ Sn,

min dF (Q, Q̂)

Q ∈ Cn
s

where Cn
s is as defined in (8.3). Furthermore, introducing a dummy variable t, we can

rewrite the last problem above as:

min t

dF (Q, Q̂) ≤ t

Q ∈ Cn
s .

It is easy to see that the inequality dF (Q, Q̂) ≤ t can be written as a second-order
cone constraint, and therefore, the formulation above can be transformed into a conic
optimization problem.

8.2 Exercises

1. A vector (y0, y1) ∈ < × <k belongs to the k + 1 dimensional second-order cone
(also known as the quadratic cone, Lorentz cone, ice-cream cone) if it satisfies
the following inequality:

y0 ≥ ‖y1‖2.

Constraints of the form above are called second-order cone constraints. Show
that the constraint

t ≤ (µL)T xL − 3
√

(xL)T V LxL

can be represented as a second-order cone constraint using an appropriate change
of variables. You can assume that V L is a given positive definite matrix.
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Convexity

Convexity is an important concept in mathematics, and especially in optimization,
that is used to describe certain sets and certain functions. Convex sets and convex
functions are related but separate mathematical entities.

Let x and y be given points in some vector space. Then, for any l ∈ [0, 1], the
point lx + (1 − l)y is called a convex combination of x and y. The set of all convex
combinations of x and y is the line segment joining these two points.

A subset S of a given vector space X is called a convex set if x ∈ S, y ∈ S, and
λ ∈ [0, 1] always imply that λx + (1 − λ)y ∈ S. In other words, a convex set is
characterized by the following property: for any two given points in the set, the line
segment connecting these two points lies entirely in the set.

Polyhedral sets are sets defined by linear equalities and inequalities. So, for exam-
ple, the feasible region of a linear optimization problem is a polyhedral set. It is a
straightforward exercise to show that polyhedral sets are convex.

Given a convex set S, a function f : S → < is called a convex function if ∀x ∈
S, y ∈ S and λ ∈ [0, 1] the following inequality holds:

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).

We say that f is a strictly convex function if x ∈ S, y ∈ S and λ ∈ (0, 1) implies the
following strict inequality:

f(λx + (1− λ)y) < λf(x) + (1− λ)f(y).

A function f is concave if −f is convex. Equivalently, f is concave, if ∀x ∈ S, y ∈ S
and λ ∈ [0, 1] the following inequality holds:

f(λx + (1− λ)y) ≥ λf(x) + (1− λ)f(y).

A function f is strictly concave if −f is strictly convex.
Given f : S → < with S ⊂ X, epi(f)–the epigraph of f , is the following subset of

X ×<:
epi(f) := {(x, r) : x ∈ S, f(x) ≤ r}.
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f is a convex function if and only if epi(f) is a convex set.
For a twice-continuously differentiable function f : S → < with S ⊂ <, we have a

simple characterization of convexity: f is convex on S if and only if f ′′(x) ≥ 0, ∀x ∈ S.
For multivariate functions, we have the following generalization: If f : S → < with
S ⊂ <n is twice-continuously differentiable, then f is convex on S if and only if
∇2f(x) is positive semidefinite for all x ∈ S. Here, ∇2f(x) denotes the (symmetric)

Hessian matrix of f ; namely, [∇2f(x)]ij = ∂2f(x)
∂xi∂xj

,∀i, j. Recall that a symmetric matrix

H ∈ <n×n is positive semidefinite (positive definite) if yT Hy ≥ 0, ∀y ∈ <n (yT Hy >
0, ∀ y ∈ <n, y 6= 0).

The following theorem is one of the many reasons for the importance of convex
functions and convex sets for optimization:

Theorem A.1 Consider the following optimization problem:

(OP) minx f(x)
s.t. x ∈ S

(A.1)

If S is a convex set and if f is a convex function of x on S, then all local optimal
solutions of OP are also global optimal solutions.



Appendix B

Cones

A cone is a set that is closed under positive scalar multiplication. In other words, a set
C is a cone if lx ∈ C for all l ≥ 0 and x ∈ C. A cone is called pointed if it does not
include any lines. We will generally be dealing with closed, convex, and pointed cones.
Here are a few important examples:

• Cl := {x ∈ <n : x ≥ 0}, the non-negative orthant. In general, any set of the form
C := {x ∈ <n : Ax ≥ 0} for some matrix A ∈ <m×n is called a polyhedral cone.
The subscript l is used to indicate that this cone is defined by linear inequalities.

• Cq := {x = (x0, x1, . . . , xn) ∈ <n+1 : x0 ≥ ‖(x1, . . . , xn)‖}, the second-order cone.
This cone is also called the quadratic cone (hence the subscript q), Lorentz cone,
and the ice-cream cone.

• Cs :=

X =


x11 · · · x1n
...

. . .
...

xn1 · · · xnn

 ∈ <n×n : X = XT , X is positive semidefinite

,

the cone of symmetric positive semidefinite matrices.

If C is a cone in a vector space X with an inner product denoted by 〈·, ·〉, then its dual
cone is defined as follows:

C∗ := {x ∈ X : 〈x, y〉 ≥ 0,∀y ∈ C}.

It is easy to see that the nonnegative orthant in <n (with the usual inner product)
is equal to its dual cone. The same holds for the second-order cone and the cone of
symmetric positive semidefinite matrices, but not for general cones.

The polar cone is the negative of the dual cone, i.e.,

CP := {x ∈ X : 〈x, y〉 ≤ 0,∀y ∈ C}.
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Appendix C

A Probability Primer

One of the most basic concepts in probability theory is a random experiment, which
is an experiment whose outcome can not be determined in advance. In most cases,
however, one has a (possibly infinite) set of all possible outcomes of the event; we call
this set the sample space of the random experiment. For example, flipping a coin is a
random experiment, so is the score of the next soccer game between Japan and Korea.
The set Ω = {heads, tails} is the sample space of the first experiment, Ω = IN × IN
with IN = {0, 1, 2, . . .} is the sample space for the second experiment.

Another important concept is an event : a subset of the sample space. It is custom-
ary to say that an event occurs if the outcome of the experiment is in the corresponding
subset. So, “Japan beats Korea” is an event for the second experiment of the previous
paragraph. A class F of subsets of a sample space Ω is called a field if it satisfies the
following conditions:

i) Ω ∈ F ,

ii) A ∈ F implies that Ac ∈ F , where Ac is the complement of A,

iii) A, B ∈ F implies A ∪B ∈ F .

The second and third conditions are known as closure under complements and (finite)
unions. If, in addition, F satisfies

iv) A1, A2, . . . ∈ F implies ∪∞i=1Ai ∈ F ,

then F is called a σ-field. The condition (iv) is closure under countable unions. Note
that, for subtle reasons, Condition (iii) does not necessarily imply Condition (iv).

A probability measure or distribution P is a real-valued function defined on a field
F (whose elements are subsets of the sample space Ω), and satisfies the following
conditions

i) 0 ≤ P (A) ≤ 1, for ∀A ∈ F ,
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ii) P (∅) = 0, and P (Ω) = 1,

iii) If A1, A2, . . . is a sequence of disjoint sets in F and if ∪∞i=1Ai ∈ F , then

P (∪∞i=1Ai) =
∞∑
i=1

P (Ai).

The last condition above is called countable additivity.
A probability measure is said to be discrete if Ω has countably many (and possibly

finite) number of elements. A density function f is a nonnegative valued integrable
function that satisfies ∫

Ω
f(x)dx = 1.

A continuous probability distribution is a probability defined by the following relation:

P [X ∈ A] =
∫

A
f(x)dx,

for a density function f .
The collection Ω, F (a σ-field in Ω), and P ( a probability measure on F) is called

a probability space.
Now we are ready to define a random variable. A random variable X is a real-valued

function defined on the set Ω 1. Continuing with the soccer example, the difference
between the goals scored by the two teams is a random variable, and so is the “winner”,
a function which is equal to, say, 1 if the number of goals scored by Japan is higher,
2 if the number of goals scored by Korea is higher, and 0 if they are equal. A random
variable is said to be discrete (respectively, continuous) if the underlying probability
space is discrete (respectively, continuous).

The probability distribution of a random variable X is, by definition, the probability
measure PX in the probability space (Ω,F , P ):

PX(B) = P [X ∈ B].

The distribution function F of the random variable X is defined as:

F (x) = P [X ≤ x] = P [X ∈ (−∞, x]] .

For a continuous random variable X with the density function f ,

F (x) =
∫ x

−∞
f(x)dx

1Technically speaking, for X to be a random variable, it has to satisfy the condition that for each
B ∈ B, the Euclidean Borel field on <, the set {ω : X(ω) ∈ B} =: X−1(B) ∈ F . This is a purely
technical requirement which is met for discrete probability spaces (Ω is finite or countably infinite)
and by any function that we will be interested in.
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and therefore f(x) = d
dx

F (x).
A random vector X = (X1, X2, . . . , Xk) is a k-tuple of random variables, or equiv-

alently, a function from Ω to <k that satisfies a technical condition similar to the
one mentioned in the footnote. The joint distribution function F of random variables
X1, . . . , Xk is defined by

F (x1, . . . , xk) = PX[X1 ≤ x1, . . . , Xk ≤ xk].

In the special case of k = 2 we have

F (x1, x2) = PX[X1 ≤ x1, X2 ≤ x2].

Given the joint distribution function of random variables X1 and X2, their marginal
distribution functions are given by the following formulas:

FX1(x1) = lim
x2→∞

F (x1, x2)

and

FX2(x2) = lim
x1→∞

F (x1, x2).

We say that random variables X1 and X2 are independent if

F (x1, x2) = FX1(x1)FX2(x2)

for every x1 and x2.
The expected value (expectation, mean) of the random variable X is defined by

E[X] =
∫
Ω

xdF (x)

=

{ ∑
x∈Ω xP [X = x] if X is discrete∫

Ω xf(x)dx if X is continuous

(provided that the integrals exist) and is denoted by E[X]. For a function g(X) of
a random variable, the expected value of g(X) (which is itself a random variable) is
given by

E[g(X)] =
∫
Ω

xdFg(x) =
∫
Ω

g(x)dF (x).

The variance of a random variable X is defined by

V ar[X] = E
[
(X − E[X])2

]
= E[X2]− (E[X])2.

The standard deviation of a random variable is the square-root of its variance.
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For two jointly distributed random variables X1 and X2, their covariance is defined
to be

Cov(X1, X2) = E [(X1 − E[X1])(X2 − E[X2])]

= E[X1X2]− E[X1]E[X2]

The correlation coefficient of two random variables is the ratio of their covariance to
the product of their standard deviations.

For a collection of random variables X1, . . . , Xn, the expected value of the sum of
these random variables is equal to the sum of their expected values:

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi].

The formula for the variance of the sum of the random variables X1, . . . , Xn is a bit
more complicated:

V ar

[
n∑

i=1

Xi

]
=

n∑
i=1

V ar[Xi] + 2
∑

1≤i<j≤n

Cov(Xi, Xj).
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Newton’s Method

To solve optimization problems (such as LPs and QPs) one usually follows the follow-
ing strategy: First, a set of conditions that has to be satisfied by an optimal solution
is determined. Such conditions are called optimality conditions for the given prob-
lem. These may be linear or nonlinear, equality or inequality constraints1. Once the
optimality conditions are determined, one looks for solutions for this system. When
optimality conditions involve inequality constraints, they become much harder to deal
with. Here, we focus on the case where optimality conditions are given by a system of
equations.

Suppose that the set of optimality conditions for a given problem have the following
form:

f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

. . .
...

fn(x1, x2, . . . , xn) = 0

(D.1)

Solving this system is a relatively easy task when all the functions f1 through fn

are linear, for example, by using Gaussian elimination. Unfortunately, this task gets
much harder when some or all of the functions f1, . . . , fn are nonlinear. Except for
a few special cases, solution of nonlinear systems of equations is often done using an
iterative approach, where each iteration consists of the solution of a linear system. In
each iteration, we get a new estimate of the solution, which is obtained by improving
the previous estimate in one way or another. Newton’s method is the basis of most
modern methods for the solution of nonlinear systems of equations and here we describe
it briefly.

Let us first consider the one-dimensional case, i.e., when we have only one equation

1Recall from calculus that to find the minimum value of a (convex) function, all you did was to
find a value where the derivative was zero. So, for such problems ‘The derivative equals zero’ was the
optimality condition.
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in one variable. So, for a given nonlinear function f we want to find an x such that

f(x) = 0.

Assume that f is continuously differentiable and we currently have an estimate xk for
the solution (we will use subscripts for iteration indices in the following discussion). If
we write out the first order Taylor series approximation to the function f around xk

we get:

f(xk + δ) ≈ g(δ) := f(xk) + δf ′(xk).

This is equivalent to saying that we can approximate the function f by the line g(δ)
that is tangent to it at xk. Remember that we want an x such that f(x) = 0. If the
first order approximation g(δ) were perfectly good, and if f ′(xk) 6= 0 the value of δ
that satisfies

g(δ) = f(xk) + δf ′(xk) = 0

would give us the move that we need to make from xk to get to a solution. This value
is

δ = − f(xk)

f ′(xk)

and we choose

xk+1 = xk + δ = xk −
f(xk)

f ′(xk)

as our next estimate of the solution to the nonlinear equation f(x) = 0. This is the
formula for Newton’s method and this operation is called the Newton update. We do
this repeatedly until f(xk) = 0, or in most cases, until f(xk) is reasonably small, say,
less than some prespecified ε > 0.

We can give a geometric explanation of the procedure we just described: We first
find the line tangent to the function at the current iterate, then calculate the point
where this line intersects the x-axis, and set the next iterate to this value. See Figure
D.1 for an illustration.

Example D.1 As an example we consider the one dimensional problem

f(x) = x4 − 4x3 − 7x2 + 34x− 24 = 0.

Then, the derivative of f is

f ′(x) = 4x3 − 12x2 − 14x + 34
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and the formula for Newton’s method is:

xk+1 = xk −
x4 − 4x3 − 7x2 + 34x− 24

4x3 − 12x2 − 14x + 34
.

We need to start the method with an initial guess, let us choose x0 = 0. Then

x1 = x0 −
x4

0 − 4x3
0 − 7x2

0 + 34x0 − 24

4x3
0 − 12x2

0 − 14x0 + 34

= 0− −24

34
=

12

17
= 0.705882352941

We mentioned above that the next iterate of Newton’s method is found by calculating
the point where the line tangent to f at the current iterate intersects the axis. This
observation is illustrated in Figure D.1.

f(x)   
tangent

−0.5 0 0.5 1
−30

−25

−20

−15

−10
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0
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10

15

−24

24/34

slope=f’(0)=34

Figure D.1: First step of Newton’s method

Since f(x1) = f(12
17

) = −4.646496090804 is not close to zero we continue by sub-
stituting x1 into the formula to obtain x2 = 0.943612085452. The complete iteration
sequence is given in Table D.1.

A few comments on the speed and reliability of Newton’s method are in order.
Under favorable conditions, Newton’s method converges very fast to a solution of a
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Table D.1: Newton’s method for Example D.1

k xk f(xk)
0 0 -24.000000000000
1 0.705882352941 -4.646496090804
2 0.943612085452 -0.717979624527
3 0.996932543663 -0.036931796699
4 0.999989873926 -0.000121514224
5 0.999999999889 -0.000000001333
6 1.000000000000 -0.000000000000
7 1.000000000000 0.000000000000

nonlinear equation. Indeed, if xk is sufficiently close to a solution x∗, then the following
relation holds:

xk+1 − x∗ ≈ C(xk − x∗)
2 with C =

f ′′(x∗)

2f ′(x∗)
(D.2)

(D.2) indicates that, the error in our approximation (xk−x∗) is approximately squared
in each iteration. This behavior is called the quadratic convergence of Newton’s method.
You can observe that the correct digits are doubled in each iteration of the example
above.

However, when the ‘favorable conditions’ we mentioned above are not satisfied,
Newton’s method may (and very often does) fail to converge to a solution. Therefore,
it often has to be modified before being applied to general problems. Common modifi-
cations to Newton’s method lead to line-search methods and trust-region methods ; you
can learn more about such methods in a nonlinear optimization course.

Next, we will look at the case where there are several equations involving several
variables as in (D.1). Let us represent this system as

F (x) = 0,

where x is a vector of n variables, and F (x) is <n-valued function with components
f1(x), . . . , fn(x). We repeat the procedure: First, we write the first order Taylor’s series
approximation to the function F around the current estimate xk:

F (xk + δ) ≈ G(δ) := F (xk) +∇F (xk)δ. (D.3)

Above, ∇F (x) denotes the Jacobian matrix of the function F , i.e., ∇F (x) has rows
(∇f1(x))T , . . . , (∇fn(x))T , the transposed gradients of the functions f1 through fn.
We denote the components of the n-dimensional vector x using superscripts, i.e. x =
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(x1, . . . , xn). Let us make these statements more precise:

∇F (x1, . . . , xn) =


∂f1

∂x1 · · · ∂f1

∂xn

...
. . .

...
∂fn

∂x1 · · · ∂fn

∂xn

 .

As before, G(δ) is the linear approximation to the function F by the hyperplane that
is tangent to it at the current point xk. The next step is to find the value of δ that
would make the approximation equal to zero, i.e., the value that satisfies:

F (xk) +∇F (xk)δ = 0.

Notice that the 0 on the RHS is a vector of zeros. If∇F (xk) is nonsingular, the equality
above has a (unique) solution given by

δ = −∇F (xk)
−1F (xk),

and the formula for the Newton update in this case is:

xk+1 = xk + δ = xk −∇F (xk)
−1F (xk).

Example D.2 Consider the following problem:

F (x) = F (x1, x2) =

(
f1(x

1, x2)
f2(x

1, x2)

)
=

(
x1x2 − 2x1 + x2 − 2

(x1)2 + 2x1 + (x2)2 − 7x2 + 7

)
= 0

First we calculate the Jacobian:

∇F (x1, x2) =

(
x2 − 2 x1 + 1
2x1 + 2 2x2 − 7

)
.

If our initial estimate of the solution is x0 = (0, 0), then the next point generated by
Newton’s method will be:

(x1
1, x

2
1) = (x1

0, x
2
0)−

(
x2

0 − 2 x1
0 + 1

2x1
0 + 2 2x2

0 − 7

)−1 (
x1

0x
2
0 − 2x1

0 + x2
0 − 2

(x1
0)

2 + 2x1
0 + (x2

0)
2 − 7x2

0 + 7

)

= (0, 0)−
(
−2 1
2 −7

)−1 ( −2
7

)

= (0, 0)− (
7

12
,−5

6
) = (− 7

12
,
5

6
).
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Appendix E

Karush-Kuhn-Tucker Conditions

Consider an optimization problem given by a nonlinear objective function and/or non-
linear constraints. We can represent such problems in the following generic form:

(OP) minx f(x)
gi(x) = 0, i ∈ E
gi(x) ≥ 0, i ∈ I.

(E.1)

In the remainder of this section we assume that f and gi, i ∈ E ∪I are all continuously
differentiable functions.

One of the most important theoretical issues related to this problem is the identifica-
tion of necessary and sufficient conditions for optimality. Collectively, these conditions
are called the optimality conditions and are the subject of this section.

Before presenting the optimality conditions for (E.1) we first discuss a technical
condition called regularity that is encountered in the theorems that follow:

Definition E.1 Let x be a vector satisfying gi(x) = 0, i ∈ E and gi(x) ≥ 0, i ∈ I. Let
J ⊂ I be the set of indices for which gi(x) ≥ 0 is satisfied with equality. Then, x is a
regular point of the constraints of (E.1) if the gradient vectors ∇gi(x) for i ∈ E ∪ J
are linearly independent.

Constraints corresponding to the set E ∪ J in the definition above, namely, the
constraints for which we have gi(x) = 0, are called the active constraints at x.

Theorem E.1 (First Order Necessary Conditions) Let x∗ be a local minimizer
of the problem (E.1) and assume that x∗ is a regular point for the constraints of this
problem. Then, there exists li, i ∈ E ∪ I such that

∇f(x∗)−
∑

i∈E∪I
li∇gi(x

∗) = 0 (E.2)

li ≥ 0, i ∈ I (E.3)

ligi(x
∗) = 0, i ∈ I. (E.4)
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First order conditions are satisfied at local minimizers as well as local maximizers
and saddle points. When the objective and constraint functions are twice continu-
ously differentiable, one can eliminate maximizers and saddle points using curvature
information on the functions.

Theorem E.2 (Second Order Necessary Conditions) Assume that f and gi, i ∈
E ∪ I are all twice continuously differentiable functions. Let x∗ be a local minimizer
of the problem (E.1) and assume that x∗ is a regular point for the constraints of this
problem. Then, there exists li, i ∈ E ∪ I satisfying (E.2)–(E.4) as well as the following
condition:

∇2f(x∗)−
∑

i∈E∪I
li∇2gi(x

∗) (E.5)

is positive semidefinite on the tangent subspace of active constraints at x∗.

The last part of the theorem above can be restated in terms of the Jacobian of
the active constraints. Let A(x∗) denote the Jacobian of the active constraints at x∗

and let N(x∗) be a null-space basis for A(x∗). Then, the last condition of the theorem
above is equivalent to the following condition:

NT (x∗)

(
∇2f(x∗)−

∑
i∈E∪I

li∇2gi(x
∗)

)
N(x∗) (E.6)

is positive semidefinite.
The satisfaction of the second order necessary conditions does not always guarantee

the local optimality of a given solution vector. The conditions that are sufficient for
local optimality are slightly more stringent and a bit more complicated since they need
to consider the possibility of degeneracy.

Theorem E.3 (Second Order Sufficient Conditions) Assume that f and gi, i ∈
E ∪I are all twice continuously differentiable functions. Let x∗ be a feasible and regular
point for the constraints of the problem (E.1). Let A(x∗) denote the Jacobian of the
active constraints at x∗ and let N(x∗) be a null-space basis for A(x∗). If there exists
li, i ∈ E ∪ I satisfying (E.2)–(E.4) as well as

gi(x
∗) = 0, i ∈ I implies li > 0, (E.7)

and

NT (x∗)

(
∇2f(x∗)−

∑
i∈E∪I

li∇2gi(x
∗)

)
N(x∗) is positive definite (E.8)

then x∗ is a local minimizer of the problem (E.1).

The conditions listed in Theorems 1, 2, and 3 are often called Karush-Kuhn-Tucker
(KKT) conditions, after their inventors.
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