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Abstract 

New generations of gravity wave detectors require unprecedented levels of vibration 

isolation. This paper presents the final design of the vibration isolation and 

positioning platform used in Advanced LIGO to support the interferometer’s core 

optics. This five-ton two-and-half-meter wide system operates in ultra-high vacuum. 

It features two stages of isolation mounted in series. The stages are imbricated to 

reduce the overall height. Each stage provides isolation in all directions of translation 

and rotation. The system is instrumented with a unique combination of low noise 

relative and inertial sensors. The active control provides isolation from 0.1 Hz to 30 

Hz. It brings the platform motion down to 10ିଵଵ	݉/√ݖܪ at 1 Hz. Active and passive 

isolation combine to bring the platform motion below 10ିଵଶ	݉/√ݖܪ at 10 Hz. The 

passive isolation lowers the motion below 10ିଵଷ	݉/√ݖܪ at 100 Hz. The paper 

describes how the platform has been engineered not only to meet the isolation 

requirements, but also to permit the construction, testing, and commissioning 

process of the fifteen units needed for Advanced LIGO observatories. 

 

Keywords: Vibration Isolation, Seismic Isolation, Active Isolation, Passive 

Isolation, Vibration Isolator, Multi-axis Platform, Positioning System, 

Vacuum compatible, Low-noise instrument. 
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1 Introduction 

Physics experiments and precision systems often require a large amount of vibration 

isolation. Isolators have been developed for a variety of application such as scanning 

tunneling microscopy [1]-[2], gravitometers [3]-[4], atom interferometric 

measurements [5], atomic force microscopy [6], colliders [7], and space pointing [8]. 

Ground based gravity waves detectors have set very stringent requirements in terms 

of vibration isolation [9]. These instruments use km long interferometers in order to 

detect strains of space-time caused by astrophysical events [10]. To make gravity 

waves detection possible, the detector’s components must be isolated from all 

environmental disturbances, including ground motion, which is the dominant 

disturbance at low frequency. 

Seismic isolation concepts and prototypes were developed in early experiments 

carried out for gravity waves detectors [11]. During the past two decades, several 

observatories have been built around the world [12]-[16]. Multiple pendulum 

suspensions equipped with springs blades providing vertical isolation were 

developed to isolate the optics of the 600 meter long GEO detector located in 

Germany. Silica fibers are used between the two bottom stages to increase the 

quality factor and therefore reduce the thermal noise [17]-[18]. This technique in now 

being used in other gravity waves detectors [19]. The 3 km long VIRGO detector 

combines 7 meter high inverted pendulums, multi-stage suspended pendulums and 

inertial control to provide the suitable isolation to all degrees of freedom [20]-[21]. 

This system called the super-attenuator features natural frequencies as low as 40 
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mHz. It provides 15 orders of magnitude of isolation at 10 Hz [22]. The 3 km long 

KAGRA detector in Japan is currently being built underground. The seismic motion 

in this environment is roughly two orders of magnitude quieter than at the surface 

level. A combination of seismic attenuation systems and multiple pendulums are 

used to achieve the isolation requirements [23]. Estimated noises show that the 

seismic noise will be well under other noise sources in the detection band. 

The LIGO observatory based in the US consists of 4 km long detectors, located in 

Washington State and Louisiana State [12]. After a decade of operation, the initial 

LIGO interferometers are currently being retrofitted with a new generation of 

instruments called Advanced LIGO [24]. To provide very high vibration isolation at 

all frequencies, Advanced LIGO combines Hydraulic Exo-vacuum Pre-Isolators 

(HEPI), Intra-vacuum Seismic Isolators (ISI) and multistage passive suspensions 

(SUS) [25]-[27]. The HEPI system is based on the quiet hydraulic actuators and 

control techniques developed at Stanford [28]-[29]. This active platform provides 

long-range alignment capability to all directions of translation and rotation. It is used 

to reject very low frequency disturbances such as tidal and micro-seismic motion 

[30]. It provides active inertial isolation from 100 mHz to 10 Hz [31]. The ISI platforms 

feature large optical tables on which the LIGO optics are mounted [32]. Instrumented 

with low noise instruments, they provide alignment capability and inertial isolation 

from about 100 mHz to 30 Hz. They also provide passive isolation above a few Hertz 

to several hundreds of Hertz. Two different types of platform have been developed: 

the HAM-ISI for the auxiliary optics [33]-[34], and the BSC-ISI for the core optics 
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which require further seismic isolation [35]. The LIGO suspensions holding the 

interferometer optics are mounted on the ISI systems. These multiple pendulums 

provide multistage passive isolation. They are equipped with relative sensors and 

actuators to damp the suspension resonances and to position the interferometer 

optics. Different types of suspensions have been designed for the different optics 

used in the interferometers [27]. 

This paper presents the ISI active platform designed to support the Advanced LIGO 

core optics suspensions. Installed in the large LIGO vacuum chambers called Basic 

Symmetric Chambers (BSC), this isolator is often referred to as the BSC-ISI system. 

It features a two meter wide optical table capable of supporting more than 1000 kg 

of equipment (optical payload). The design requirement is to provide more than three 

orders of magnitude of isolation at low frequency, to bring the optical motion down 

to 10ିଵଵ	݉/√ݖܪ	 at 1 Hz, and 10ିଵଶ	݉/√ݖܪ	 at 10 Hz [36]. Five BSC-ISI units per 

interferometer are necessary to support the core optics (one for the beam splitter, 

one for each of the two input test masses, and one for each of the two output test 

masses). 

The concept used for the BSC-ISI is based on early prototypes built at JILA in the 

nineties [37]-[39]. These experiments demonstrated the performance achievable 

with multi-dof active platforms instrumented with inertial instruments and driven with 

voice coil actuators through feedback controls. The results obtained motivated the 

construction of a rapid prototype as a concept for the Advanced LIGO project [40]-

[41]. This two-stage system was instrumented with commercial seismometers and 
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voice coil actuators. All six degrees of freedom of each stage were servo controlled. 

The conclusive results led to the construction of a full-scale two-stage Technical 

Demonstrator (Tech-Demo) built and tested at the LIGO Stanford facilities [42]. This 

system had the size and payload capacity required for the Advanced LIGO project. 

Like the rapid prototype, the Tech-Demo was made of two stages in series, each 

having six degrees of freedom. Vertical springs were used for the vertical isolation, 

and flexure rods for the horizontal isolation. An optimal combination of low noise 

commercial instruments was used for the active control. A unique feature of the 

Tech-Demo is that it uses “reasonably” stiff springs. Unlike most isolators used in 

similar applications, the low frequency isolation is entirely achieved actively. All the 

rigid body natural frequencies are near or above 1 Hz. This system demonstrated 

that the use of stiffer springs greatly simplifies the assembly, leveling, and 

commissioning steps, but does not affect the active control performance achievable 

at low frequency. 

After this successful experiment, the “stiff spring” two-stage concept became the 

baseline design of the In-vacuum Seismic Isolation system needed to support the 

Advanced LIGO core optics. In 2004, detailed design requirements were defined for 

the system [43]. A prototype was designed during the following year [44]-[45]. The 

BSC-ISI prototype was built and tested at MIT between 2006 and 2008 [35]. The 

lessons learned during the prototyping phase were used to engineer the final design 

in 2009 and 2010 [46]-[47]. The first unit was successfully tested at the LIGO MIT 
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test facility in 2011. In the past two years, 13 of the 15 units have been built for the 

LIGO observatories (The last two units are currently under construction). 

This manuscript is the first part of a series of two companion papers presenting the 

BSC-ISI platform for Advanced LIGO. It presents the system and focuses on design 

and production considerations. The next section gives an overview of the two-stage 

isolator concept. The third section describes the design of the sub-systems. It 

highlights the technical challenges related to the design of high precision isolators 

and details how they have been solved. The fourth section describes design choice 

trade-offs driven by practical aspects of the production and testing process. The 

paper concludes with a comparison of the theoretical and experimental transfer 

functions. The second part of this series of two companion papers focuses on the 

testing investigation during the prototyping and production phase of this project [48]. 

2 Concept Overview 

The final design of the BSC-ISI system is based on the architecture of the system 

used during the prototyping phase [35]. A conceptual representation is shown in Fig. 

1. It represents the structure and the spring components in a schematic section view. 

Actuators and sensors are not displayed. The system is made of three main sub-

assemblies: a base called “Stage 0” and two suspended stages called “Stage 1” and 

“Stage 2”. The stages are imbricated to minimize the volume occupied. The bottom 

plate of Stage 2 is the optical table on which the Advanced LIGO equipment is 

mounted. 
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Stage 1 is suspended from Stage 0, and Stage 2 is suspended from Stage 1. The 

spring assemblies provide horizontal and vertical flexibility. They are symbolically 

represented by helicoids. Their actual shape and location is presented in section 3.5. 

The springs decouple the stages from each other in all directions of translation 

(called Longitudinal, Transverse and Vertical in Fig. 1) and all directions of rotation 

(called Pitch, Roll and Yaw in Fig. 1). The system is designed to minimize the cross 

couplings between degrees of freedom. In each direction, the system behaves as a 

two-mass-spring system as illustrated in Fig. 2 for three of the six directions. In Fig. 

2 (a), ݔ଴, ݔଵ and ݔଶ are the longitudinal motions of Stage 0, Stage 1 and Stage 2. ݇௫ଵ, ܿ௫ଵ and ݉ଵ are the stiffness, damping and mass of Stage 1. ݇௫ଶ, ܿ௫ଶ and ݉ଶ are 

the stiffness, damping and mass of Stage 2. ௫݂଴ଵ is the actuation force between 

Stage 0 and Stage 1. ݂ ௫ଵଶ is the actuation force between Stage 1 and Stage 2. Similar 

notations and subscripts are used in Fig. 2 (b) for the vertical motion and in Fig. 2 

(c) for the pitch motion, where the letter ݖ is used to denote the vertical direction, ߠ 

is used for the angular pitch motion, ߬ for the torques and ܫ for the quadratic moment 

of inertia. 

In each direction, the system provides passive isolation as described in the system 

of equations (1)-(3), using the longitudinal direction as an example.  In these 

equations, ݔ଴ is the input motion, ݔଵ is the first stage motion and ݔଶ	 is the second 

stage motion. The mass, damping and stiffness matrices are called ܥ ,ܯ and ܭ 

respectively. The matrices ܣ and ܤ give the influence of the input disturbance and 

the control forces on the system respectively.   
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Fig. 1 Conceptual representation of the BSC-ISI passive components. Sensors and actuators 

not represented. Springs assembly are symbolically represented by helicoids. 

  



Pre-print for submission to Precision Engineering 

11 

 

 

 

 

Fig. 2 Conceptual representation of the passive model along a single axis, for (a) the 

longitudinal direction, (b) the vertical direction, and (c) the pitch direction.  
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ܯ ൜ݔሷଵݔሷଶൠ ൅ ܥ ൜ݔሶଵݔሶଶൠ ൅ ܭ ቄݔଵݔଶቅ ൌ ܣ ቄݔ଴ݔሶ଴ቅ െ ܤ ൜ ௫݂଴ଵ௫݂ଵଶൠ (1) 

ܯ ൌ ൤݉ଵ 00 ݉ଶ൨ , ܥ ൌ ቂܿଵ ൅ ܿଶ െܿଶെܿଶ ܿଶ ቃ , ܭ ൌ ൤݇௫ଵ ൅ ଶݔ݇ െ݇௫ଶെ݇௫ଶ ݇௫ଶ ൨ (2) 

ܣ ൌ ቂ݇ଵ ܿଵ0 0 ቃ , ܤ ൌ ቂ1 െ10 1 ቃ (3) 

At low frequencies, Stage 1 and Stage 2 are controlled actively. Each of the twelve 

degrees of freedom are controlled independently. For instance, the longitudinal 

motion of the first mass (ݔଵ) is controlled with the force ௫݂଴ଵ applied between Stage 

0 and Stage 1, and the longitudinal motion of the second mass (ݔଶ) is controlled with 

the force ௫݂ଵଶ applied between Stage 1 and Stage 2. Fig. 3 shows the feedback 

control block diagram for a single degree of freedom, where ܺ୬ is the degree of 

freedom under control. It is valid for both stages. The subscript value n can be 1 for 

stage 1, or 2 for stage 2. Capital letters are used to denote the analysis is performed 

in the harmonic domain. The stage motion ܺ୬ is disturbed by the input motion ܺ୬ିଵ 

through the seismic path called ௦ܲ	. It is controlled with the force ܨ௫ (Complex 

amplitude of ௫݂଴ଵ if analyzing Stage 1, or ௫݂ଵଶ if analyzing Stage 2) through the force 

path called 	 ிܲ	.The system’s harmonic responses ௦ܲ	 and 	 ிܲ	 can be calculated from 

theoretical models such as in equations (1)-(3) for the preliminary design phases. 

Experimental transfer functions are used for the final design of the control loops [48]. 
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Fig. 3 Feedback control principle for one degree of freedom. 
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On each of the two active stages (Stage1 and Stage 2), two types of sensors are 

used: inertial and relative sensors. The inertial sensors (geophones or 

seismometers) are used to measure the stage’s absolute motion (ܺ୬) which is 

necessary to provide active seismic isolation (isolation/decoupling from the previous 

stage). The absolute measurement (inertial instrument signal) is called 	ܷ௔ in Fig. 3. 

It includes a noise component called ௔ܰ. This noise is dominant at low frequency 

where the inertial sensor loses sensitivity. The relative sensors are capacitive 

gauges measuring the differential motion between the stages (ܺ୬ െ ܺ୬ିଵ). They are 

used for DC and low-frequency positioning of the stages. The relative measurement 

is called 	 ௥ܷ. It includes a noise component called ௥ܰ. This noise is typically much 

lower than the inertial sensor noise at low frequencies. Details related to the type of 

sensors used on each stage are given in section 3. A sensor fusion is used to 

combine the absolute and the relative measurement. The inertial sensor signal is 

filtered with the high-pass called ܪ. The relative sensor is filtered with the low-pass ܮ. The outputs of these filters are summed to form the error signal. A compensator ܥ is used to command the control force ܨ௫. 
The components of this block diagram are summarized in Eq. (4) to (7), assuming 

that the absolute measurement (	ܷ௔) and relative measurement (	 ௥ܷ) are calibrated 

in displacements units. This is done practically using digital filters inverting the 

instruments frequency response. Equation (4) gives the stage motion as a function 

of the input motion (disturbance) and the control force. Equation (5) gives the control 

force as a function of inertial measurement (	ܷ௔) and the relative measurement (	 ௥ܷ). 
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Equations (6) and (7) introduce the sensor noise. To simplify the control design, the 

low-pass and high-pass filters are designed to be complementary [30], as shown in 

Eq (8). Equation (9) gives the closed loop motion (power spectral density) ܺ୬ଶ 

assuming the input motion and the sensor noises are uncorrelated. The first term 

shows the contribution of the input stage motion (ܺ୬ିଵ). The second term shows the 

contribution of the absolute (inertial) motion sensor noise ( ୟܰ). The third term shows 

the contribution of the relative motion sensor noise ( ୰ܰ). Assuming large loop gain in 

the control bandwidth, the amplitude spectral density can be written as shown in Eq. 

(10). The input motion contribution is filtered by the low-pass filter L. Therefore, the 

lower the cutoff frequency the better for the isolation, but the high pass-filter ܪ and 

low-pass filter ܮ must also be adequately designed to minimize the sensor noise 

contribution. The optimization consists of designing complementary filters that 

provide both isolation and enough filtering of the instrument’s noise. More details 

can be found in [30]. 

ܺ௡ ൌ ௦ܲ ܺ௡ିଵ ൅ ிܲ   ௫ (4)ܨ

௫ܨ ൌ െܥ ሺܪ ܷ௔ ൅ ܮ ௥ܷ) (5)  

ܷ௔ ൌ ܺ௡ ൅ ௔ܰ (6)  

	 ௥ܷ ൌ ሺܺ௡ െ ܺ௡ିଵሻ ൅ ௥ܰ (7)  

ܮ ൅ ܪ ൌ 1 (8)  
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ܺ୬ଶ ൌ	൬	 ௦ܲ	 ൅ 	ܥ	ܮ ிܲ			1 ൅ 	ܥ ிܲ	 ൰ଶ ܺ୬ିଵଶ ൅ ൬ ܪ ܥ ிܲ1 ൅ ܥ ிܲ ൰ଶ ୟܰଶ ൅ ൬ ܮ ܥ ிܲ 	1 ൅ ܥ ிܲ	൰ଶ ୰ܰଶ (9) 
 

݈݅݉ሺ஼	௉ಷሻ→ஶ ଵܺ	 ൌ 	ඥሺܮ ܺ௡ିଵሻଶ ൅ ሺܪ ௔ܰሻଶ ൅ ሺܮ ௥ܰሻଶ (10)  

3 System and Sub-Systems Design Description 

3.1 System Overview 

The base of the system (Stage 0), the first suspended stage (Stage 1) and the 

second suspended stage (Stage 2) are shown in grey shades in the Computer Aided 

Design (CAD) representation in Fig. 4. Stage 1 is suspended from Stage 0 using 

three sets of blades and flexures. Stage 2 is suspended from Stage 1 using three 

sets of blades and flexures similar to those used between Stage 0 and Stage 1. One 

instance of each type of spring sub-assembly is indicated in Fig. 4. The picture shows 

how Stage 1 and Stage 2 are imbricated to reduce the system’s volume. The two 

stages’ mass, inertia properties, and the spring’s stiffness are chosen to obtain 

suitable rigid-body natural frequencies. More details on that are provided in the 

following sub-sections. The springs are positioned to minimize the cross couplings 

as explained in the sub-section related to blades and flexures. A BSC-ISI unit 

undergoing the test process at the LIGO Hanford observatory is shown in Fig. 5. In 

this picture, 1100 kg of dummy mass is mounted on the top plate to float the stages 

during the testing phase. Once the testing is completed, the dummy mass removed, 

the unit is moved to the detector area where interferometer components are attached 
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to the inverted (down-facing) optical table of Stage 2. Details on the system 

component shapes and features can be found in the top assembly and sub-assembly 

drawings [49]. The following sub-sections give a detailed description of the sub-

systems. 
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Fig. 4. CAD representation of the BSC-ISI system. 
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Fig. 5. A BSC-ISI unit in testing at the LIGO Hanford observatory. 
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3.2 Stage 0 

Stage 0 is the base of the BSC-ISI system. A CAD representation of Stage 0 is 

shown in Fig. 6, with the components attached to Stage 0. They are the Stage 0-1 

spring assemblies, actuator posts, and motion limiters. The structure of Stage 0 is 

made of a hexagonal hollow structure approximately 2.4 meters wide and 0.3 meter 

high. It consists of two monolithic halves bolted together (called top half and bottom 

half in Fig. 6). Each half structure is machined out bulk aluminum 6061 T6. The inner 

shapes and webbings have been designed to optimize the structural stiffness, in 

particular the torsion deformation as illustrated by the blue arrows (angular 

deformation θሺPሻ, where P is the static load). The weight of the two half structures 

combined is 540 kg. The total weight with the components attached to Stage 0 (as 

shown in Fig. 6) is 885 kg. The 1.6 meter wide hexagonal opening in the inner section 

of Stage 0 permits access the down-facing optical table of Stage 2. 

Machining and assembly errors result in imperfection of the stage locations, spring 

load, and leveling offsets. The tolerances must, therefore, be adequately chosen and 

controlled. A machining tolerance of 0.125 mm is specified for the flatness and 

parallelism of Stage 0 reference surfaces to ensure accurate location and orientation 

of the sub-assemblies mounted on it. Location pins are used to position the two half-

structures relative to each other and to position the components mounted on it. 

Special care has be given to the press-pin process due to the high friction (the 

system is ultra-clean to operate in UHV environment, more detail is given in the next 

sections). Stainless steel hardware is necessary for corrosion resistance during the 
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cleaning process and for UHV compatibility. Preload and torques values in the bolted 

joints have been calculated to account for the high friction in the clean assemblies. 

Helicoils made from Nitronic 60 are used in bolted assemblies requiring high preload. 

Similar machining, tolerancing, positioning, bolting, and cleaning techniques are 

used for the other sub-assemblies presented in the following sub-sections. 
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Fig. 6. A CAD Representation of the Stage 0 structure, Stage 0-1 spring components, actuator 

posts and motion limiters. 
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3.3 Stage 1 

A CAD representation of Stage 1 is shown in Fig. 7. It is made of a 1.75 meter-wide 

three-branch structure. The aluminum structure weighs 550 kg and carries 350 kg of 

instrumentation (podded sensors and actuators). The structure has been designed 

to optimize the stiffness over mass ratio. Design and finite element analysis iterations 

have been carried out to raise the natural frequencies of the structural global bending 

and torsion modes along the arrows shown in Fig. 7. Related information can be 

found in [47]. The lowest natural frequency of the metal structure has been measured 

to be 260 Hz. It drops to 215 Hz when the stage is fully instrumented with all 

equipment and sub-assemblies. The design is three fold symmetric around the 

vertical axis. Each of the three branches of the structure is equipped with two relative 

position sensors, one three-axis seismometer, two geophones, and two actuators. 

Two voice coil electromagnetic actuators designed for LIGO by Planning Systems 

Incorporated are mounted in each branch of Stage 1. One actuator is mounted 

vertically, and one is mounted horizontally. The horizontal actuators are positioned 

with respect to the spring assembly and the stage center of mass to minimize the 

cross couplings between horizontal and tilt motion as explained in the section on 

flexure rods. The coil is mounted on Stage 0 to improve the heat conduction path 

out of the vacuum chamber. The magnet assembly is mounted on Stage 1. The 

magnets are positioned in pairs of North-South and South-North dipoles to reduce 

the magnetic field which escapes the actuator assembly. The actuator has a return 
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yoke to minimize the escaped magnetic field which can interfere with the sensitive 

equipment surrounding the platform. 

These actuators produce 40 N/Amp, with a coil resistance of 6.5 Ohms. Coil drivers 

capable of supplying a +/- 20 V range are used to drive the actuators. More 

information on the coil drivers is given in section 3.6. The maximum force delivered 

by each actuator is approximately 125 N. The first pole induced by the impedance 

of the coil is at 32 Hz. The dynamic response of the actuator is characterized in [50]. 

A CAD representation of the actuator assembly is shown in Fig. 8 and a picture of 

an actual assembly is shown in Fig. 9. Tooling bars (not shown) are used to lock the 

coil and the magnet components during the assembly process. Aluminum brackets 

are used to connect each half of the actuator to the stage. Copper bars are used to 

conduct the heat out of the assembly. Spherical support and washers are used in 

the joints to reduce over-constrains between the coil and the magnets occurring 

during the assembly process. 

Capacitive gauges supplied by Microsense are used to sense the relative motion 

between Stage 0 and Stage 1. These sensors are collocated with the actuators as 

shown in Fig. 8. The sensor gauges are attached to Stage 0 so that their wires do 

not introduce unwanted friction on the isolated stage. The aluminum sensor targets 

are attached to Stage 1. They are diamond turned to obtain a very smooth finish 

necessary to minimize the cross-sensitivity to lateral motion. A 

modulation/demodulation scheme is used to sense the motion. The Stage 0-1 

sensors range of sensing is +/- 1 mm. Their noise floor is 2 ൈ 10ିଵ଴	݉/√ݖܪ at 1 Hz. 
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The sensor electronic boards are mounted outside of the vacuum system. Tri-ax 

cables are used to minimize the cable capacitance and radiation. 

One three-axis seismometer is used in each of the three branches of Stage 1. They 

are 240 seconds period instruments (T240) supplied by Nanometrics. One of the two 

horizontal axes is oriented tangentially, and the other radially. These sensors are 

very low noise instruments at low frequency. The noise of these inertial sensors is in 

the range of 2 ൈ 10ିଽ	݉/√ݖܪ at 100	݉ݖܪ. 

In order to be used in ultra-high vacuum, each seismometer is mounted in a sealed 

chamber, as shown in Fig. 10. The chamber is custom-made for this application. It 

is made of Stainless Steel 304. The welded parts are subjected to a thorough leak-

check process to validate the fabrication. For this test, the chamber is filled with 

Helium, and subjected to a RGA scan. For the final assembly, the pod containing 

the instrument is filled with Neon, which is used as a tracker for leak detection during 

operations. Additionally, each pod is instrumented with pressure sensors to help 

identify a faulty pod in case of a leak. The pod used for the T240 has been designed 

to minimize the volume between the instruments and the sealed chamber, and 

therefore reduce noise disturbances related to gas currents induced by temperature 

gradients. 

Stage 1 is also equipped with six passive inertial sensors. They are L4C geophones 

supplied by Sercel. There is one instrument mounted horizontally and one mounted 

vertically in each branch. The instruments are encapsulated in custom made sealed 

chambers as previously described for the T240 seismometers. A CAD 
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representation of the L4C sealed assembly is shown in Fig. 11. The instruments are 

equipped with low-noise custom-made pre-amplifiers and pressure sensors 

mounted on the instrument inside their sealed chamber. The instrument sensor noise 

is 2 ൈ 10ିଵଵ	݉/√ݖܪ at 1	ݖܪ and 10ିଵଶ	݉/√ݖܪ at 10	ݖܪ. The T240 seismometers and 

L4C geophones are combined for very low noise broadband inertial sensing. More 

information on the sensor fusion is given in [48]. Fig. 12 shows all the components 

in one branch of stage 1. It also shows the front door and vibration absorbers used 

to damp the structural modes (they were not displayed in Fig. 7 to better show the 

instrument location in the branch). 
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Fig. 7 A CAD Representation of Stage 1 (Front door not shown). 
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Fig. 8. A CAD representation of the Stage 0-1 actuators and capacitive position sensors 

assembly. 
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Fig. 9. Stage 0-1 actuator assembly. 
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Fig. 10. Custom made sealed chamber to use the Trillium T240 in ultra-high-vacuum. 
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Fig. 11. Custom made sealed chamber to use the Sercel L4C in ultra-high-vacuum. 
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Fig. 12. Front view of one of the three branches of Stage 1. 
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3.4 Stage 2 

A CAD picture of Stage 2 is shown in Fig. 13. The 1.85 meter-wide aluminum 

structure weighs 1350 kg. The total mass of Stage 2 including the podded sensors, 

actuators, springs, and motion limiters is 1750 kg. Additionally, it supports 1200 kg 

of equipment, including 350 kg usually configured as ballast. The Stage 2 threefold 

symmetric structure is built so as to encompass Stage 1. The assembly process of 

the imbricated stages is detailed in [51]. The bottom plate of Stage 2 features an 

optical table with a 25 mm x 25 mm hole pattern. Like the two other stages already 

presented, Stage 2 has been optimized for overall stiffness and local rigidity where 

the instruments are mounted. It is suspended from Stage 1 using three sets of blades 

and flexures similar to those used on Stage 1. These components are described in 

the section 3.5. 

In each of its three corners, Stage 2 is instrumented with two actuators, two relative 

sensors, and two inertial sensors. Fig. 14 and Fig. 15 show the actuators. They are 

similar to those described for Stage 1. The coils are mounted on Stage 1 to provide 

a shorter conduction path for the heat to transfer out. It also reduces the risk of a 

mechanical shortcut through the actuator cabling. Since Stage 1 provides sufficient 

positioning capability, smaller actuators are used on Stage 2. These actuators 

develop 27 N/Amp. The coil resistance is 10 Ohms. The maximum force delivered 

by each actuator is approximately 55 N. The first pole induced by the impedance of 

the coil is at 50 Hz. The dynamic response of the actuator is characterized in [50]. 
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The Stage 1-2 position sensors are collocated with the Stage 1-2 actuators. The 

gauges are mounted on Stage 1 and the targets on Stage 2. The Stage 1-2 position 

sensor construction is identical to those used for Stage 0-1, but they are four times 

more sensitive, at the cost of four times less sensing range. Their noise floor is 6	 ൈ 	10ିଵଵ	݉/√ݖܪ at 1	ݖܪ. The low noise performance of these instruments is 

necessary for the positioning control not to compromise the seismic isolation of 

Stage 2. 

The inertial sensors used for Stage 2 are passive GS13 geophones supplied by 

Geotech. The instrument flexures have been replaced by custom made beryllium-

copper notch-style flexures [52]. This modification makes the instrument more robust 

to shock, and eliminates the need for locking the instrument during transportation 

and installation. The instruments are equipped with low noise pre-amplifiers carefully 

chosen to minimize the noise in the control bandwidth [53]. The instrument sensor 

noise is 8	 ൈ 	10ିଵଶ	݉/√ݖܪ at 1	ݖܪ and 4	 ൈ 	10ିଵଷ	݉/√ݖܪ at 10	ݖܪ. Fig. 16 shows 

pictures of the GS13’s pod assembly. The aluminum external shell of the instrument 

has been replaced by a mu-metal can to shield the instruments against magnetic 

fields. Like the inertial instruments of Stage 1, the GS13s are encapsulated in 

custom-made sealed chambers equipped with pressure sensors, filled with Neon, 

leak checked after assembly and monitored during operations. 
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Fig. 13. A CAD Representation of the Stage 2 Assembly. 
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Fig. 14. Stage 1-2 actuator assembly. 
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Fig. 15. Stage 1-2 vertical actuator CAD representation. 
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Fig. 16. GS13 equipped with mu-metal shielding and sealed in a custom pod for use in ultra-

high-vacuum. 
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3.5 Spring Components 

3.5.1 Springs assembly overview 

The design and engineering of the spring components is very critical to both the 

performance and operability of a vibration isolation system. The rigid-body natural 

frequencies must be low enough to provide adequate passive isolation, but the 

springs must not be too compliant so that the system remains easy to commission 

and operate. LIGO experience acquired during prototyping of vibration isolation 

systems showed that rigid-body natural frequencies in the 1 Hz to 7 Hz range provide 

an excellent compromise. 

To reduce the complexity of the control strategy and to facilitate operation, the BSC-

ISI system has been engineered to minimize the couplings between the degrees of 

freedom in the Cartesian basis. As a result, the system behaves as a two-spring-

mass system in each direction of translation and rotation as explained in the 

introduction. The spring components have been designed to obtain in-phase rigid-

body modes in the 1 Hz to 2 Hz range (the two masses moving in phase at the 

resonance), and out-of-phase rigid-body modes in the 5 Hz to 7 Hz range (the two 

masses moving out of phase at the resonance). 

Three blade-flexure assemblies are used on each stage, and positioned 

symmetrically at 120 degrees around the vertical axis. The blades are designed to 

provide the vertical flexibility, and the flexure rods are designed to provide the 

horizontal flexibility. A symbolic cross-section representation of one of the three sets 

is shown in Fig. 17. It shows one Stage 0-1 spring assembly and one Stage 1-2 
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spring assembly. The blades are flat in the un-deformed state, and curved with a 

constant radius of curvature in the loaded configuration as shown in Fig. 17. The 

stage 0-1 blade center of curvature is located under the blade (with respect to the 

ascending vertical axis), and the stage 1-2 blade center of curvature is located above 

the blade to reduce the volume occupied by the springs assembly. 

The blades, the flexures, the horizontal actuators and the stage’s center of mass are 

positioned relatively to each over to minimize the cross couplings. Fig. 17 illustrates 

how the static tilt-horizontal coupling has been minimized. The Stage 0-1 blade’s tip 

and the Stage 0-1 horizontal actuator plane are located at a distance ߣଵ from the 

flexure’s tips. The distance ߣଵ is chosen so that the horizontal actuator force (ܨଵ) 

produces a horizontal motion (ݔଵ), but no rotation. The distance ߣଵ is function of the 

flexure geometric parameters, material, and the vertical load ܲ. More details are 

given in the section on flexures. Similar positioning is done for the stage 1-2 

components (location ߣଶ, horizontal force ܨଶ, horizontal motion ݔଶ). A cross section 

of the Stage 0-1 spring assembly is shown in the CAD representation in Fig. 18, and 

a cross section of the Stage 1-2 spring assembly is shown in Fig. 19. 
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Fig. 17. Conceptual representation of the spring assembly. 
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Fig. 18. Stage 0-1 spring assembly. 
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Fig. 19. Stage 1-2 spring assembly. 
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3.5.2 Blades providing vertical flexibility 

Bernoulli beam theory as given in Eq. (11)-(12) can be used to relate the blade’s 

triangular geometry with the spring constant, where ܧ is the young modulus, ܫ is the 

quadratic second area moment of inertia, ݓ is the vertical deflection, ݔ is the 

horizontal location, ܲ is the normal load, ݈ is the length of the blade, ܾ is the width at 

the root, and ݄ is the thickness. Equation (13) gives the stress ߪ at the surface of the 

blade. Due to the triangular shape, it is independent of the location ݔ. Stress levels 

are checked through non-linear finite element analysis (FEA) to account for large 

displacements and to estimate accurately the stress concentration near edges and 

boundary conditions [54]. Equation (14) give the tip deflection ݓ and Eq. (15) gives 

the spring’s stiffness at the tip of the blade. These parameters are also checked 

through non-linear FEA. The spring components are made of maraging steel. They 

are nickel plated to avoid corrosion during the cleaning and assembly process. 

Tuned mass dampers are mounted on the blades to damp the internal resonances 

[55]. Table 1 summarizes the blades parameters, analytical calculations and FEA 

results. 

ܫܧ ߲ଶݔ߲ݓଶ ൌ ܲ ሺ݈ െ ሻ (11)ݔ

ܫ ൌ ܾ ݄ଷ12 ሺ݈ െ ሻ݈ݔ  (12)

ߪ ൌ 6 ܲ ݈ܾ ݄ଶ  
(13)
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ݓ ൌ 6 ܲ ܧ݈ ܾ ݄ଷ ଶ (14)ݔ

݇௭ ൌ ܧ ܾ ݄ଷ6 ݈ଷ  (15)

The clamps are designed to not provide unwanted flexibility (clamp flexibility noted ߠ in Fig. 18). Particular attention has been given to minimize the gap between the 

clamps and the root of the blade that could potentially result in friction and hysteresis 

effects. Such a residual gap is illustrated in Fig. 19 and shown in Fig. 20 for Stage 

1-2 blades. Silver plated screws and Nitronic 60 barrel nuts are used to reduce the 

friction in the bolted assemblies and increase the preload in the joints. Jigs were 

constructed to measure the friction in the clean assemblies and correlate the results 

with FEA analysis. 

The geometry of the spacers at the root of the blade must be controlled with accuracy 

to not affect the system’s equilibrium position. The launch angle ߙ (machined to ¼ 

mrad angular tolerance) and the height ݄ (machined to 25	݉ߤ tolerance) of the 

clamps have been used as degrees of freedom during the testing phase to bring the 

system to its nominal mass and equilibrium position. They are shown in Fig. 18 for 

stage 0-1 blades. Once the first production units clamp parameters had been 

adequately tuned, all subsequent units were machined with the same set of 

parameters. 
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Fig. 20. Clamp gap inspection: a gap between the blade and its mount can arise if the load 

force over comes the pre-load force in the bolted assembly. Friction in the ultra-clean bolted 

assembly and pre-load are carefully controlled. 
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Table 1: Blades Properties 

Symbol Name Stage 0-1  Stage 1-2  ݄ Thickness 13.87 x 10-3 m 12.14 x 10-3 m ܾ Base width 0.216 m 0.162 m ݈ Length 0.429 m 0.322 m ܲ Load per blade 12000 N 9125 N ݇௭  Stiffness, Analytical 2.28 x 105 N/m 2.72 x 105 N/m 

 Stiffness, FEA 2.17 x 105 N/m 2.57 x 105 N/m ݓሺ݈ሻ Deflection, Analytical 52.6 x 10-3 m 33.6 x 10-3 m 

 Deflection FEA 55.4 x 10-3 m 35.3 x 10-3 m ߪ Stress, Analytical 750 MPa 740 MPa 

 Stress, FEA 1050 MPa 1200 MPa 
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3.5.3 Flexure rods 

The flexure rods are attached to the blade’s tip as shown in the schematic 

representation in Fig. 21 (a) for the Stage 0-1 assembly, where ܨଵ is the actuator 

horizontal force, ܲ is the normal load, and ݑଵ is the tip deflection. Beam equations 

are used to calculate the distance ߣଵ so that the horizontal force ܨଵ produce no 

rotation [56]. It can be summarized as follows. Fig. 21 (b) shows the flexure motion 

parameters and external forces. The flexure’s deflection is ݑሺݔሻ. The axial load is ܲ. 

The force, translation motion, torque and rotation at the top tip are ܨ଴, ݑ଴, ߬଴ and ߠ଴ 

respectively. The force, translation motion, torque and rotation at the bottom tip are ܨଵ, ݑଵ, ߬ଵ and ߠଵ respectively. Equation (16) gives the beams’ cross section 

equilibrium, where ܧ is the young modulus, ܫ is the quadratic moment of inertia, and ݖ is the vertical location. The general solution is given in Eq. (17) where the constant 

values ܽ଴, ܽଵ, ܽଶ and ܽଷ are function of boundary conditions, and ܭ is given in Eq. 

(18). The solution can be written as a function of the external forces and motions at 

the tips as shown in the system in Eq. (19), where ݇௧௧	 is the translational stiffness, ݇௥௥	 is the rotational stiffness, ݇௥௥ᇱ  and ݇௧௥	 are cross coupling terms. This system can 

be solved to find the location of the forces ܨ଴	 and ܨଵ	 that produces pure translational 

motion (ߠ଴	 ൌ 	ଵߠ ൌ 0). This specific location, sometimes called “zero-moment-point” 

location is noted and given in Eq. (20). The horizontal actuator mid-plane is 

positioned at a distance ߣଵ from the bottom tip where the actuator force ܨଵ produces 

a pure translation. The blade is positioned at a distance ߣଵ from the top tip where the 

reaction force from the blade ܨ଴ will not rotate the rod. Similar positioning is done for 
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the Stage 1-2 blades. The flexures geometrical parameters are chosen to provide 

both suitable stiffness and peak stress value. The maximum axial stress can be 

estimated as shown in (21), where the maximum deflection ݑଵ is constrained by 

motion limiters. The Stage 0-1 motion limiters allow +/- 0.5 mm of motion. The Stage 

1-2 motion limiters allow +/- 0.25 mm of motion. The flexure rods properties are 

summarized in Table 2. 

	ܫܧ ߲ଶݖ߲ݑଶ ൌ െ߬ଵ	 ൅ ଵܨ ݖ ൅ ܲ ሺݑ െ ଵሻ (16)ݑ

ሻݖሺݑ ൌ ܽ଴ ൅ ܽଵ	ݖ ൅ ܽଶ coshሺܭ ሻݖ ൅ ଷߙ sinhሺ ܭ ሻ (17)ݖ

ܭ ൌ ඨܲܧ (18) ܫ

൞ܨ଴	߬଴	ܨଵ	߬ଵ	ൢ ൌ ൦ ݇௧௧	 ݇௧௥ െ݇௧௧ ݇௧௥݇௧௥	 ݇௥௥	 െ݇௧௥	 ݇௥௥ᇱെ݇௧௧	 െ݇௧௥	 ݇௧௧	 െ݇௧௥	݇௧௥	 ݇௥௥ᇱ െ݇௧௥ ݇௥௥ ൪ ൞ݑ଴ߠ଴	ݑଵ	ߠଵ	ൢ (19)

ߣ ൌ ݇௧௥݇௧௧ ൌ ܭ1 tanh 2ܮܭ  (20)

ߪ ൌ 4 ߨܲ ݀ଶ ൅ ܲ ߣ ݀ ଵ2ݑ ܫ ሺܮ െ 2 ߣ ሻ (21)
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Fig. 21. (a) Conceptual representation of the flexure rod attached to the blade. (b) Force and 

position parameters. 
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Table 2: Flexure rods properties 

Symbol Name Stage 0-1  Stage 1-2  ݀ Diameter 5.92 x 10-3 m 6.35 x 10-3 m ܮ Length 0.189 m 0.117 m ܲ Load per Flexure 12000 N 9125 N ݇ݔ Stiffness, Analytical 9.41 x 104 N/m 2.32 x 105 N/m ߣ Zero Moment Point 30.6x 10-3 m 32.9x 10-3 m ݓሺ݈ሻ Maximum Deflection 0.6x 10-3 m 0.3x 10-3 m ߪ Stress, Analytical 522 MPa 471 MPa 
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3.6 Electronics and Computing 

The electronics of high performance active vibration isolation systems must be very 

carefully designed to allow such systems to perform at design sensitivity. For 

instance, the pre-amps of passive geophones will likely limit the self-noise of the 

instrument-preamp pair [57]-[58]. The amplification and filtering stages must be 

sufficiently low noise to not compromise the measurement. The dynamic range must 

be carefully considered. For that, adequate gain and filtering must be chosen to 

maintain the signal above the quantization noise without saturating the analog to 

digital converter (ADC). A detailed knowledge of the input motion and environmental 

conditions is therefore necessary for the design of the amplification stages. 

Switchable gains and whitening stages are often necessary to adjust the settings as 

a function of a change of control state or fluctuation of input conditions. 

Fig. 22 shows a simplified signal flow diagram for the BSC-ISI system. It indicates 

the sensitivity of the instruments mounted on the platform. The L4C and GS13 

geophones are equipped with custom-made pre-amplifying boards. Detailed 

information regarding the selection of the op-amp can be found in [53]. The boards 

are mounted directly on the sensor connector, inside the sealed pod. These 

electronic boards also host the pressure sensors used to detect a possible leak. 

Low-noise interface chassis are used to filter, collect and send the signals to the 

ADC. The parameters of amplification and filtering are specific to each type of sensor 

(though they are called “Ampli” in Fig. 22 ). The analog gains and whitening filters 

can be switched by the control system in order to adjust the dynamic range to match 



Pre-print for submission to Precision Engineering 

53 

operating conditions. The signals are digitized at 64 kHz using 16 bit +/- 20V ADC 

cards. A third order Chebyshev with a notch near the sampling frequency is used for 

the anti-aliasing filter. The signals are decimated to the digital controller sampling 

frequency at 4 kHz. The digital control is based on the LIGO CDS real time code 

[59]. An Epics database [60] is used for communication between the front-end real-

time controller and the control room machines. The operator interface is built in 

MEDM code [61]. The controller output is up-sampled to the DAC cards frequency 

at 64 kHz. Low-noise voltage amplifiers (coil drivers) are used to drive the magnetic 

actuators. Actuator voltages and current read-back signals are monitored through 

the digital system. Detailed information regarding these electronics can be found in 

[62]. 

  



Pre-print for submission to Precision Engineering 

54 

 

 

 

 

 

Fig. 22 Simplified signal flow diagram. 
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4 Design for series production 

4.1 Production scale and Assembly considerations 

Unlike similar prototypes previously built, the BSC-ISI system has been engineered 

to allow timely production of a series of 15 units. As a result, a BSC-ISI unit can be 

fully assembled and tested in less than 4 weeks. It can be commissioned to operate 

near design sensitivity in about a week. Thirteen of the fifteen units necessary for 

the Advanced LIGO project have been built and tested (as of July 2014). 

In order to reach the level of isolation described in the introduction, the system must 

operate in vacuum. All of the system’s components (structure, instruments & cables) 

are ultra-high-vacuum compatible. They are subjected to a strict cleaning process 

that includes chemical cleaning, ultra-sound baths and low temperature heating in 

vacuum bake ovens. LIGO clean and bake procedures are detailed in [63]. The 

components are subjected to a thorough quality control process, including RGA 

scans and FTIR tests. The systems are assembled in Class 100 standard clean 

room. A BSC-ISI unit during the assembly process is shown in Fig. 23. The assembly 

process of the main structure and all the sub-assemblies is fully detailed in [64]. 
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Fig. 23 BSC-ISI Assembly in LIGO clean rooms. 
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4.2 Testing process overview 

To reach the level of isolation targeted with this system, all the mechanical 

instruments and electronics components must operate at design sensitivity. The 

testing process is therefore a critical step of the system’s integration phase. Before 

assembly, each component and sub-component such as actuators, sensors, pod 

assemblies, and electronic chassis is tested individually. After assembly, each BSC-

ISI unit is submitted to a thorough testing process. The unit’s testing procedure is 

detailed in [65]. It is made of three phases that can be summarized as follows. 

The first phase of testing is dedicated to validate the BSC-ISI assembly. After 

assembly, the unit is loaded with dummy masses mounted on the top plate of stage 

2 as shown in Fig. 5. The motion limiters are dis-engaged to release the two 

suspended stages. Due to machining and assembly tolerances, a little lateral motion 

is observed when the stages are released for the first time (typically a quarter of 

mm). The motion limiters are laterally re-aligned with this natural static equilibrium 

position. After that, the stages are leveled using trim masses attached to the 

sidewalls. The mass budget is carefully checked. The series of tests performed on 

each unit include geometry and leveling measurements, sensor noise tests, actuator 

response tests, range of motion measurements, system static response 

measurements, cross coupling measurements, linearity tests, transfer functions 

measurements, and damping loops tests. 

After assembly testing, the dummy payload is removed. The BSC-ISI unit is 

transported from the assembly area to the detector area in a sealed container. The 
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BSC-ISI is positioned on a stand designed for integration with the optical equipment. 

The equipment is installed on the optical table of the BSC-ISI. Fig. 24 shows a BSC-

ISI supporting two multiple-pendulum suspensions. Great care must be given to the 

routing of the payload cables so as to not shortcut the BSC-ISI passive isolation. Fig. 

25 shows how cables are routed from Stage 2 to Stage 1, and from stage 1 to Stage 

0, to avoid direct coupling from Stage 0 to Stage 2 through the cabling. The cable 

parameters ݇ and ߟ symbolically represent the cable complex stiffness. Once the 

payload installation and cable routing are completed, the BSC-ISI is subjected to a 

second phase of testing called integration testing, during which the couplings 

between the platform and its payload are carefully checked. 

After completion of the Integration testing, the entire cartridge (isolator and 

payload) is lifted and installed in the vacuum chamber. The third and last phase of 

testing is dedicated to the commissioning of the isolator in the vacuum environment. 

The digital controllers are installed and tuned to optimize the isolation performance 

of each unit. 
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Fig. 24 A BSC-ISI on integration stand. 
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Fig. 25 Cable routing. 
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4.3 Production units frequency response 

In Fig. 26, the experimental transfer functions are compared with the response of an 

ideal two-mass spring system. Fig. 26 (a) shows the transfer function in the 

longitudinal (ܺ) direction for stage 1. The actuators are combined to drive in the ܺ 

direction, and the L4Cs are used to sense the motion in the same direction. Below 1 

Hz, the transfer function is very “flat”. It indicates that there is very little tilt-horizontal 

coupling in static regime, and that the actuators are well aligned with respect to the 

system’s static center of rotation. Between 1 Hz and 10 Hz, the main resonances 

are in agreement with the model. A little bit of coupling between ܺ and ܴܻ is visible. 

It indicates that the center of mass is not perfectly aligned with the center of 

percussion, but it is sufficiently small so as to not affect the system’s controllability 

and performance. The modal damping is induced by the magnetic actuators 

dissipating energy in the input resistance of the amplification stages. Between 10 Hz 

and 100 Hz, the system provides passive isolation as predicted. Above 150 Hz, the 

peaks of the structural resonances are damped to low level by passive dampers [48]. 

The Stage 2 horizontal transfer function show a similar set of characteristics, as 

shown in Fig. 26 (b). A notable difference is below 0.1 Hz, where the transfer 

function’s corner frequency indicates higher tilt horizontal coupling ratio. This is 

caused by the rotational reaction of Stage 1. This coupling is greatly reduced when 

the rotational control of Stage 1 is engaged. Fig. 26 (c) and (d) show the transfer 

functions for the vertical directions. The good agreement with the model shows that 

there is very little cross-coupling between the degrees of freedom. The transfer 



Pre-print for submission to Precision Engineering 

62 

functions measured in all other degrees of freedom are also in excellent agreement 

with the ideal two-degrees of freedom model response. The transfer function results 

are repeatable from one unit to another. Table 3 gives a summary of the system’s 

rigid-body mode frequencies. 
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Table 3: BSC-ISI Rigid-body modes frequencies. 

Direction 
In Phase 

Mode 

Out of Phase 

Mode 

X (or Y) 1.25 Hz 5.25 Hz 

Z 1.80 Hz 6.70 Hz 

RX (or RY) 1.55 Hz 6.80 Hz 

RZ 1.40 Hz 5.70 Hz 
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Fig. 26 Comparison of theoretical transfer functions (Model) and experimental transfer 

functions as measured by the inertial sensors (Expe). 
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5 Conclusion 

An extensive engineering effort has been led during the past several years to 

develop the final version of the two-stage vibration isolation system for the Advanced 

LIGO observatories. The goal was to engineer a system not only to meet very high 

performance criteria, but also suitable for timely production, assembly, testing and 

commissioning for a series of 15 units. 

A detailed presentation of the system’s design has been made. It highlighted 

features of interest for the field of vibration isolation in precision engineering. It 

described the system architecture, the design of the flexure components, the 

actuators, the low-noise instrumentation, electronics, and challenges related to 

vacuum compatibility and the control strategy. It detailed how the system has been 

engineered for the production of a series of units. 

During the past two years, 13 BSC-ISI units have been assembled and tested. 

The last two units are under construction and will be completed by the end of 2014. 

All the units tested show extremely reproducible results and characteristics. Five 

units are currently in use at each of the LIGO observatories and performing at very 

high level of isolation required for Advanced LIGO. A companion paper (Part 2: 

Experimental Investigation and Tests Results) covers in detail the results of the 

prototyping and testing phase of this project. 
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