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Abstract

Supercapacitors are increasingly used for energy conversion and storage systems in sustainable nanotechnologies. Graphite 
is a conventional electrode utilized in Li-ion-based batteries, yet its specific capacitance of 372 mA h g−1 is not adequate 
for supercapacitor applications. Interest in supercapacitors is due to their high-energy capacity, storage for a shorter period 
and longer lifetime. This review compares the following materials used to fabricate supercapacitors: spinel ferrites, e.g., 
 MFe2O4,  MMoO4 and  MCo2O4 where M denotes a transition metal ion; perovskite oxides; transition metals sulfides; carbon 
materials; and conducting polymers. The application window of perovskite can be controlled by cations in sublattice sites. 
Cations increase the specific capacitance because cations possess large orbital valence electrons which grow the oxygen 
vacancies. Electrodes made of transition metal sulfides, e.g.,  ZnCo2S4, display a high specific capacitance of 1269 F g−1, 
which is four times higher than those of transition metals oxides, e.g., Zn–Co ferrite, of 296 F g−1. This is explained by the 
low charge-transfer resistance and the high ion diffusion rate of transition metals sulfides. Composites made of magnetic 
oxides or transition metal sulfides with conducting polymers or carbon materials have the highest capacitance activity and 
cyclic stability. This is attributed to oxygen and sulfur active sites which foster electrolyte penetration during cycling, and, 
in turn, create new active sites.
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Introduction

Rising global population and the global energy crisis has 
led to concerns regarding electrical energy generation and 
consumption. There is therefore a need for an alternative 
energy storage device that has a higher capacity than the 
current technologies. Prior to now, the storage of electrical 
energy has been exclusively based on batteries and capaci-
tors. Batteries have been the most utilized and preferred can-
didate, owing to high energy capacity coupled with insub-
stantial power evolved. However, when substantial energy is 
required at high power, capacitors remain the suitable device 
to date. Despite their benefits, both batteries and capaci-
tors are inadequate for storing high energy and power den-
sity required for effective consumption and performance of 
renewable energy systems (Najib and Erdem 2019). Inven-
tors and innovators in the field have been encountering 
bottlenecks with current solutions such as short lifecycles 
and shelf lives associated with batteries. This was only the 
case until revolutionary trends brought about applications 
of nanotechnology in the manufacturing of electrical appli-
ances and large storage capacity devices (Burke and Zhao 
2015). Nanotechnology is an advancement in the field of 
technology that deals with manipulation and regulation of 
substances on a nanoscale measurement, employing scien-
tific skills from a diverse biomedical and industrial approach 
(Soares et al. 2018). Nanoparticles, a nano-size object that 
has three external nanoscale dimensions is the fundamen-
tal constituent of nanotechnology, while nanomaterials are 
materials with interior or exterior structures on the nanoscale 
dimension (Anu and Saravanakumar 2017; Jeevanandam 
et al. 2018). Nanomaterials possess unique chemical and 
physical characteristics that offer advantages and promotes 
them as an appropriate candidate for extensive utilization 
in fields such as electronics (Kang et al. 2015) and superca-
pacitors, where the storage of energy is required (Saha et al. 
2018). It is now evident that the energy storage system is 
an important way to offer a solution to the rising demand in 
world energy generation and consumption (Nocera 2009).

Supercapacitors are electrochemical energy storage 
devices possessing both great power density and energy den-
sity with long lifecycle and high charging/discharging (Sun 
et al. 2018a). These properties are the reason for high-energy 
storage ability exhibited by supercapacitors for technological 
advancement (Chen and Dai 2013). SCs have been described 
as a capacitor that offers high storage space, larger than other 
capacitors with low internal resistance, which viaducts the 
gap between rechargeable cells and the conventional capaci-
tors. In addition to high power capacity and longevity, low 
weight, large heat range of − 40 °C to 70 °C, ease to pack-
age and affordable maintenance are the main advantages 
supercapacitors have over other devices that stores energy 

(Wang et al. 2009). The components of supercapacitors are 
an electrolyte, two electrodes and a separator which electri-
cally isolate the two electrodes. These electrodes represent 
the most essential and fundamental constituent of super-
capacitors (Pope et al. 2013; Iro et al. 2016); hence, the 
performance of the supercapacitors largely depends on the 
electrochemical properties of electrodes, the voltage range 
and the electrolyte. Iro et al. (2016) reported that applica-
tions of supercapacitors such as the ability to compliment 
the power of battery usage during emergency power supplies 
and in electric vehicle power systems are largely dependent 
on its useful attributes. Wide usefulness of supercapacitors 
has been described in fuel cell vehicles, low-emission hybrid 
vehicles, electric vehicles, forklifts, power quality upgrading 
and load cranes (Miller and Simon 2008; Cai et al. 2016). 
Fabrication of supercapacitors using printing technology 
has utilized diverse nanomaterials such as conductive poly-
mers, electrolytes, transition metal carbides, transition metal 
dichalcogenides, nitrides and hydroxides (Sun et al. 2018a).

Magnetic metal oxide nanoparticles represent an attrac-
tive type of materials among inorganic solids because they 
are cheap and easy to prepare in large quantities (Masala 
and Seshadri 2004). Among different magnetic materials, 
spinel ferrites and inorganic perovskite oxides have superior 
performance as an electrode in supercapacitor applications. 
The emerging evidence has revealed that spinel ferrites of 
different elements are currently applicable in the design of 
supercapacitor energy storage devices. Spinel ferrite nano-
materials possess a high energy density, durability and good 
capacitance retention, high power and effective long-term 
stability (Elkholy et al. 2017; Liang et al. 2020). Recently, 
manganese zinc ferrite  (MnZnFe2O4) nanoneedles were suc-
cessfully synthesized, with higher specific capacitance than 
that of  MnFe2O4 and  ZnFe2O4. More so, the nanoneedles 
fabricated were found to exhibit a high surface area, pow-
erful long-term stability and very high columbic effective-
ness, which makes it suitable for supercapacitors applica-
tion (Ismail et al. 2018). Perovskite oxides are functional 
nanomaterials that have received great attention to poten-
tial applications, and it has been widely employed in the 
fabrication of anion-intercalation supercapacitors. These 
nanomaterials are greatly influenced by valence state of 
B-site element, surface area and internal resistance. More 
importantly, research on energy and power densities of 
perovskite oxides are scanty (Nan et al. 2019; Ding et al. 
2017). Design of La-based perovskite with high density, 
wide voltage window and high energy capacity for a flex-
ible supercapacitor application was reported in the litera-
ture (Ma et al. 2019a). Although, the transition metal oxides 
have relatively poor conductivity and thus poor capacitance. 
Therefore, an oxygen replacement with sulfur was recently 
performed which led to transition metal sulfides. They 
have been viewed as materials capable of application in the 
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fabrication of supercapacitors owing to their characteristics 
such as good electrical conductivity, high specific capaci-
tance, electrochemical redox sites and minimal electronega-
tivity, which led to the synthesis of ternary nanostructures 
like  Co0.33Fe0.67S2 in supercapacitors application (Liu et al. 
2018a). In addition, the highly flexible, lightweight asym-
metric supercapacitor “graphene fibers/NiCo2S4” was fab-
ricated with an extremely high value of both energy density 
and volumetric capacity (Cai et al. 2016). This was in search 
for a more durable and efficient energy storage device with 
high volumetric capacity, high energy density and wide volt-
age window. The partially substituting Co by the transition 
metals (i.e., Zn, Mn, Ni, and Cu) in the  Co3O4 lattice leads 
to produce an inverse spinel structure, in which the external 
cation occupies the B-sites, while cobalt occupies both the 
A- and B-sites (Kim et al. 2014). This presents effective 
channels for ion diffusion enrichment toward charge carri-
ers (electrons or holes) that jump into the A-site and B-site 
for high electrical conduction (Liu et al. 2018b).  ZnCo2O4 
nanoparticles show the specific capacitance values of 202, 
668 and 843, 432 F g−1 (Bhagwan et al. 2020). The elec-
trochemical characteristics of transition metal sulfides are 
much better than the electrochemical properties of transmis-
sion metal oxides. This can be explained by the presence 
of sulfur atoms instead of oxygen atoms. Hence, the lower 
electronegativity of sulfur than that of oxygen facilitates 
electron transfer in the metal sulfide structure easier than 
that in the metal oxide form. Thus, replacing oxygen with 
sulfur, providing more flexibility for nanomaterials synthesis 
and fabrication (Jiang et al. 2016). Li et al. (2019a) have 
found that the  ZnCo2S4 electrode displays an extraordinary 
specific capacitance ~ 1269 F g−1, which is 4 multiplies of 
those for Zn–Co ferrite electrode (~ 296 F g−1), due to the 
 ZnCo2S4 electrode having low charge-transfer resistance, 
and likewise, exceptional ion diffusion rate compared with 
achieved from the  ZnCo2O4 electrode.

Furthermore, graphene and carbon nanotubes are carbon-
derived nanomaterials that have received great attention in 
their potential application as efficient electrode materials in 
the design of supercapacitors owing to their high mechani-
cal properties with great specific surface area and most 
importantly competent electrical properties (Chen and Dai 
2013). Further, other forms of carbon-nanomaterials like 
carbon derivatives, xerogel, carbon fiber, activated carbon 
and template carbon likewise been applied in the design of 
supercapacitors and they also serve as the supercapacitor’s 
electrodes. These materials possess powerful lifecycles, 
durable power density, lasting cycle durability and desir-
able columbic reliability (Yin et al. 2014). Carbon-based 
nanomaterials are relatively cheap, readily accessible and 
very common with characteristic permeability which enables 
easy penetration of electrolytes into the electrodes, to boost 
the capacitance of the supercapacitors. Besides, its huge 

surface area and effective conductance of electricity make 
them applicable in electric supercapacitors with double layer 
(Yang et al. 2019a; Cheng et al. 2020a). In the same context, 
the extraordinary specific surface area and conductivity are 
demanded to secure excellent capacity achievement for the 
electrodes. Therefore, mineral oxide, two-dimensional car-
bon composites and polymer composites that possess high 
conductivity are normally utilized in electric devices with a 
high display. Especially, two-dimensional carbon composites 
improve capacity achievement via enhancing their surface 
area, porosity and electric conducting. Notwithstanding this 
level of concern,  ZnCo2O4 efficiency needs more promotion 
by morphological and chemical modifications (Kathalingam 
et al. 2020). Hence, the incorporation of nitrogen-doped gra-
phene oxide and polyaniline with the  ZnCo2O4 affects on 
electrochemical performance. The prepared electrode exhib-
ited a high capacity of about 720 F g−1 and retained ~ 96% 
from its original capacitance over 10 × 103 cycles (Kathal-
ingam et al. 2020). Also, the fabricated  ZnCo2S4@hydro-
thermal carbon spheres/Fe2O3@pyrolyzed polyaniline nano-
tubes unveiled a high capacitance about ~ 150 mA h g−1 and 
retained 82% from its original capacity after 6x103 cycles 
and confirming huge energy density (~ 85 W h kg−1) at a 
moderate power density of 460 W kg−1 (Hekmat et al. 2020).

The conducting polymer materials are pseudo-capaci-
tance materials with poor lifecycles when compared with 
carbon-based materials (Snook et al. 2010). Numerous good 
properties of conducting polymer materials like flexibility, 
conductivity, ease of synthesis, financial viability and high 
pseudo-capacitance conducting polymer materials such as 
polythiophene, polypyrrole and polyaniline have received 
great attention in the potential supercapacitor application. 
Despite these good properties, pure conducting polymer 
materials exhibit poor cycling stability and lower power and 
energy densities (Huang et al. 2017a).

This review focuses on spinel ferrites  MFe2O4,  MMoO4 
and  MCo2O4, where M denotes a transition metal ion. 
Additional focus areas include perovskite oxides, transition 
metals sulfides, carbon materials and conducting polymer 
materials, as materials that have been extensively and widely 
employed in the fabrication of supercapacitors to establish 
loopholes in some of these nanomaterials. This would ulti-
mately offer guidelines on how to design better energy stor-
age devices with a higher power, density and sufficient stor-
age ability.

Supercapacitor-based on spinel ferrites

Spinel ferrites constitute metal oxide compounds of minute 
classes of transition metals that are originally obtained from 
magnetite  (Fe3O4). The spinel ferrites exhibit good magnetic 
and electrical characteristics, which has brought about its 
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broad applications in high-density data storage, water reme-
diation, drug delivery, sensors, spintronics, immunoassays 
using magnetic labeling, hyperthermia of cancer cells, opti-
cal limiting, magnetocaloric refrigeration and magnetic reso-
nance imaging (Farid et al. 2017; Dar and Varshney 2017; 
Amirabadizadeh et al. 2017; Pour et al. 2017; Alcalá et al. 
2017; Yan and Luo 2017; Sharma et al. 2017; Winder 2016; 
Samoila et al. 2017; Niu et al. 2017; Anupama et al. 2017; El 
Moussaoui et al. 2016; Patil et al. 2016; Ghafoor et al. 2016; 
Ashour et al. 2018; Amiri and Shokrollahi 2013; Ouaissa 
et al. 2015; Houshiar et al. 2014; Maksoud et al. 2020a, b; 
Abdel Maksoud et al. 2020a; Hassan et al. 2019; Patil et al. 
2018; Žalnėravičius et al. 2018; Thiesen and Jordan 2008; 
Koneracká et al. 1999; Arruebo et al. 2007; Basuki et al. 
2013; Gupta and Gupta 2005a, b; Jain et al. 2008; Liu et al. 
2005; Abdel Maksoud et al. 2020b). Besides these applica-
tions, raising attention in energy storage research via dis-
semination is due to the fast-growing demand for electronic 
devices that are manufactured to be smaller, lighter and 
relatively cheaper. Therefore, an all-in-one device demands 
effective energy storage components which will fit into such 
design criteria with enhanced energy performance (Reddy 
et al. 2013; Zhu et al. 2015; Hao et al. 2015). The crystal 
structure of some oxides such as ionic oxides, specifically 
oxides of Fe, permits visibility of complex composition of 
magnetic ordering. The type of such magnetic ordering is 
known as ferrimagnetism. The structure of these materials 
has two spins (up and down), and also, the net magnetic 
moment of all the directions is not zero (Reitz et al. 2008). 
For the various neighboring sublattices, the atoms’ magnetic 
moments are opposed to each other, nevertheless, the oppos-
ing moments are unbalanced (O’handley 2000; Cullity and 
Graham 2011).

Spinel ferrites are distinguished via the nominal composi-
tion  MFe2O4, where M denotes divalent cations possessing 
an ionic radius within 0.6 and 1 Å, such examples are mag-
nesium, copper, nickel, manganese, zinc, cobalt, etc. Also, 
M can be substituted by any different metal ions. The ferric 
ions can be substituted via extra trivalent cations such as 
aluminum, chromium, etc. The spinel structure originates 
from the  MgAl2O4 which owns a cubic structure. This crys-
tal was first discovered by Bragg and by Nishikawa (Ashour 
et al. 2014).

In the spinel lattice, each cell has a cubic arrangement 
and comprises eight  MeFe2O4 molecules. The large  O2− ions 
produce a face-centered cubic lattice. The cubic cell has 
two types of interstitial sites: (1) tetrahedral sites enclosed 
via 4 oxygen anions (A-site), (2) octahedral sites enclosed 
by 6 oxygen anions (B-site) (Shah et al. 2018; Yadav et al. 
2018; Kefeni et al. 2020). Figure 1 shows the tetrahedral and 
octahedral positions in the FCC lattice (Cullity and Graham 
2011; AJMAL 2009; Vijayanand 2010; Bhame 2007; Sach-
dev 2006).

On the basis of the cation distribution, ferrites can be sub-
divided into three classes: The possible distribution of the 
metal ions can be represented by the general formula (Cul-
lity and Graham 2011):

where δ is the degree of inversion. The ions inside the brack-
ets () are located in tetrahedral sites, while those inside the 
brackets [] occupy the octahedral sites. According to this 
distribution, there are three categories of spinel ferrites:

1. Normal spinel (δ = 1) the formula becomes  (M2+)  [Fe2] 
 O4 and the divalent metal ions are in tetrahedral sites. 
 ZnFe2O4 and  CdFe2O4 are examples for normal spinel 
ferrites.

2. Inverse spinel ferrite (δ = 0) the formula becomes  (Fe3+) 
 [M2+Fe3+]  O4. In this case, the divalent metal ions com-
pletely occupy the octahedral sites while the iron is 
equally divided between the tetrahedral and octahedral 
sites.  NiFe2O4 and  CoFe2O4 are examples of inverse spi-
nel ferrites.

3. Intermediate ferrite (0 < � < 1 ) in which the M and  Fe3+ 
ions are distributed uniformly over the tetrahedral and 
octahedral sites.  MnFe2O4 is an example of the interme-
diate ferrites (Cullity and Graham 2011).

For anode materials, three varieties of available charge-
storage mechanisms are considered: alloying–de-alloying, 
intercalation–deintercalation and conversion reactions 
(Park et al. 2010; Zhang 2011; Kumar et al. 2004). The 

(
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1−�
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4

Fig. 1  Spinel ferrite structure showing oxygen (red), tetrahedral 
(yellow) and octahedral (blue) sites. Adapted with permission from 
Kefeni et al. (2020), Copyright 2020, Elsevier
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conversion-reaction mechanism applies to spinel ferrites 
as one of the oxides of transition elements. In spinel fer-
rites and through the initial discharging process, the crystal 
structure is destructed into different mineral particles, fol-
lowing with the production of the  Li2O form. As mineral 
particles promote the electrochemical action using the pro-
duction/destruction of  Li2O that supplies the route for the 
conversion reaction mechanism (Jiang et al. 2013; Yuvaraj 
et al. 2016). To obtain an extraordinary power and excellent 
energy density Li-ion batteries, suitable electrode materials 
with remarkable specific capacities, cell voltages and Li-dis-
persion coefficients are necessary. After the effort of Poizot 
et al. (2000), transition metal-oxide nanoparticles have been 
examined as a possible electrode for Li-ion batteries. They 
are extraordinary electrochemical characteristics reaching 
700 mA h g−1 with no loss of their initial capacitance over 
100 lifecycles at special rates of charging. This superior 
electrochemical reactivity of spinel ferrites confirmed that 
they attend to the developed satisfaction of such batteries.

Spinel  MFe2O4 where M is Co, Zn and Mn

In the past few years, attention has shifted toward the appli-
cation of spinel ferrite and their derivative composites (Shin 
et al. 2018; Reddy and Yun 2016). The spinel ferrite which 
has nominal composition  MFe2O4, where M is magnesium, 
zinc, copper, manganese, nickel and cobalt, present notable 
discharging of capacitance up to 1000 mA h g−1, which is 
about three orders of magnitude higher than commercial 
anodes made from graphite (Yuvaraj et al. 2016; Yin et al. 
2013).

Cobalt ferrite  CoFe2O4 nanoparticles

The nanoparticles of cobalt ferrite  CoFe2O4 are a common 
ferromagnetic substance. The  CoFe2O4 has an inverse spinel 
structure where  Co2+ ion species are located at the B-site 
and the  Fe3+ ion species are found at both the A and B sites 
as in the formula  (Fe3+)  [Co2+Fe3+]  O4. Interestingly, the 
ferrite materials are an interlacing structure of metal ions 
with positive charges and divalent oxygen ions with their 
negative charge.  CoFe2O4 is a likely suitable for sensing 
devices as well as active and passive microwave devices due 
to its remanence, coercivity and high resistance (Sharifi et al. 
2012; Yin et al. 2006). Also,  CoFe2O4 is cubic in structure 
belonging to the Fd3m space group. Further, it is an insulator 
(ρ ≈ 105 Ωm) with saturation magnetization = 90 A m2 kg−1 
and magnetic moment (µ = 3.7µB). In this circumstance, 
millimetre-sized single crystals of  CoFe2O4 show almost an 
insignificant coercive field. Moreover, at 300 K, the crystal-
lites  CoFe2O4 samples sized 120 and 40 nm exhibit coercive 
fields of about 453 and 4650 Oe, respectively (Amiri and 
Shokrollahi 2013; Ouaissa et al. 2015; Houshiar et al. 2014). 

Also,  CoFe2O4 stores Li-ions via a conversion reaction, 
and it theoretically possesses a unique specific capacitance 
(> 900 mA h g−1). However, it has critical disadvantages 
like high volume change that affects the trituration and accu-
mulation of the active material and high resistivity that leads 
to reduced cycling stability and a lowering rate capability of 
the  CoFe2O4 (Lavela et al. 2009; Kumar et al. 2014). Lately, 
Hennous et al. (2019) have studied the 57Fe Mossbauer spec-
tra of  CoFe2O4 as a function of temperature (Fig. 2). Every 
spectrum produces a splitting owns magnetic nature (almost 
6-line) including a broadening line attributed to the aligned 
Fe ions via a magnetic field locating various dissimilar sites. 
The reverse sextets arise due to the diverse number of cobalt 
and iron neighbors in tetrahedral and octahedral sites. At 
low temperatures, the tetrahedral site has a magnetically 
hyperfine field (50 Tesla) and declines regularly with rising 
its temperature (to 40 Tesla in 227 C. While, the octahedral 
site has a magnetic hyperfine field bigger than its value in the 
other site (tetrahedral site), which declined also with arising 
temperature. The nanoparticles of  CoFe2O4 can enhance the 
capacitance of the composite electrode and have an immeas-
urable electrochemical activity, which leads to the improve-
ment in energy and power densities of a supercapacitor. 
Recently, Elseman et al. (2020) have established a facile one-
step pathway to synthesize  CoFe2O4/carbon spheres nano-
composite as a novel electrode. The glucose (as a source for 
carbon spheres) was directly combined with  CoFe2O4 via the 
solvothermal approach at specific conditions. The electrode 
has significantly increased the electrochemical capacitance 
of 600 F g−1, with loss of 5.9% of its initial capacitance over 
5 × 103 exhibiting an energy density of 27.08 W h kg−1 and 
a power density 750 W kg−1. This can be attributed to its 
structure which is hierarchical shaped allowing great elec-
trical conductance. These results showed that the prepared 
composite electrode has much high specific capacity with 
maximum retention ability. Finally, the results affirmed that 
the electrode is very attractive applicants for supercapaci-
tor materials. Also, Reddy et al. (2018a) have used ZnO to 
increase the electrochemical properties of  CoFe2O4. The 
electrochemical analyses showed that the ZnO@CoFe2O4 
nanocomposite electrode in a 3 M KOH aqueous solution 
performed a large specific capacitance (4050 F g−1), with an 
excellent energy density about 77 W h kg−1. This electrode 
presented excellent cycling stability and retained about 91% 
of its specific capacitance after 1000 cycles. Besides, the 
electrode exhibited a specific capacitance (~ 3500 F g−1) and 
cycling stability (~ 50%) lower than the ZnO@CFO nano-
composite electrode. These outcomes of the nanocompos-
ite were confirmed as electrodes for subsequent generation 
supercapacitor.
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Zinc ferrite  ZnFe2O4

Zn ferrite is the common material for electrochemical appli-
cations due to its eco-friendly nature, sufficient resources, 
cost-effectiveness, strong redox process and extraordinary 
theoretical capacity of 2600 F g−1 (Vadiyar et al. 2015, 
2016a; Raut and Sankapal 2016; Zhang et al. 2018a). How-
ever, its lower conductivity, volume fluctuations during 
charge and discharge rhythm and low cycling stability cycles 
make it unsuitable for efficient supercapacitors. To defeat 
those disadvantages, the conducting polymers or conduct-
ing materials were added to the Zn ferrite to enhance the 
electronic conductivity and to improve the cycling stabil-
ity (Yang et al. 2018; Qiao et al. 2018). Israr et al. (2020) 
have synthesized a nanocomposite series of Zn ferrite/nano-
platelets of graphene. The cyclic voltammetry curves for the 
as-synthesized electrode are displayed in Fig. 3. The figure 
shows that the curve shape is kept fixed for electrode even 
at higher scan rates, meaning its higher rate ability. It is 
worth to mention that the conducting network of graphene 
created within the formation of the nanocomposite is the 
main reason for this higher specific capacity and great rate 
ability. The high conductance of nanoplatelets of graphene 
within the nanocomposite structure makes efficient transport 

of charge as well as develops the electrode’s capability rate. 
The synthesized nanocomposites can be applied as elec-
trochemical capacitors with an excellent capacitance of 
314 F g−1, great performance rate and lost about 22.6% of 
its initial capacitance.

In the same context, Yao et al. (2017) have successfully 
synthesized carbon-coated Zn ferrite/graphene composite 
by a general multistep strategy. During the anodic process, 
one broad peak rises at ~ 1.50–2.10 V, representing the oxi-
dation of the base zinc ions  (Zn0 to  Zn2+) and iron ions, 
i.e.,  Fe0 to  Fe3+. The electrochemical analyses confirm that 
electrode offers a discharge capacity (initial) with a value 
of 1235 mA h g−1 and loss about 465 mA h g−1 over 150 
cycles with a high value of capacity and good cycling perfor-
mance. The microstructural stability and the very low accu-
mulation of hierarchical spheres of electrode are the most 
common reasons for allowing appropriate transportation of 
the ion/electrons leading to this enhanced electrochemical 
achievement. The electrochemical results are influenced by 
carbon layer novel architectures (~ 3–6 nm) and graphene 
nanosheets with ultrathin thickness. The studied electrode 
can be applied in Li-ion batteries as a high-performance 
alternative anode.

Fig. 2  57Fe Mossbauer spectra 
as a function of temperature for 
 CoFe2O4. The figure illustrates 
splitting and magnetic nature of 
 CoFe2O4 where each broaden-
ing line assigned to iron ions via 
a magnetic field settling multi-
ple disparate sites. Adapted with 
permission from Hennous et al. 
(2019), Copyright 2019, Royal 
Society of chemistry
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Manganese ferrite  MnFe2O4

Spinel  MnFe2O4 is characterized by rapid valence-state 
response-ability, high electrochemical activity along with 
it is a cheap, readily available and eco-friendly material. 
Therefore, spinel Mn ferrite NPs has been lately examined as 
proper electrodes for batteries based on lithium and sodium 
ions, batteries of metal-air and SCs (Xiao et al. 2013; Sankar 
and Selvan 2014, 2015; Lin and Wu 2011). But, the Mn 
ferrite has reduced both rate capability and cycling stability 
due to the inferior electrical conductivity and the serious 
effect of ion insertion/deinsertion performance during the 
charging/discharging process (Cheng et al. 2011; Guan et al. 
2015; Wang et al. 2014a). Because of the integrated advan-
tages of the quantum dot, it can be assumed that when the 
size of spinel Mn ferrite decreased into the quantum scale, 
the available surface area and the electrochemically active 
sites will greatly be developed in addition to rapid surface-
controlled pseudo-capacitance behavior with reduction in 
the ion carrying route (Su et al. 2018). Besides, the electrode 
has an excellent performance rate owing to the integration 
between the great capacitance and extraordinary cycling 

stability. Su et al. (2018) have demonstrated the successful 
preparation of Mn ferrite@Nitrogen-doped graphene via the 
solvothermal method. The prepared electrode displays an 
extraordinary capacity of about ~ 517 F g−2. Furthermore, 
carbon encapsulation is promising for the development for 
rate and cycling achievement, providing a satisfying capaci-
tance (~ 150 F g−1) as well as an excellent lifecycle up to 
65 × 103 cycles. These conclusions make the prepared mate-
rials are proper electrodes for energy storage applications.

The influence of electrolyte types on the electrochemi-
cal performance of Mn ferrite was evaluated. Vignesh et al. 
(2018) have documented a facile synthesis of Mn ferrite by 
co-precipitation technique. The electrochemical analysis of 
Mn ferrite was examined with various types of electrolytes, 
such as potassium hydroxide, lithium phosphate and lithium 
nitrate (Fig. 4). The highest capacity of 173 F g−1 via using 
potassium hydroxide, 31 F g−1 via using lithium nitrate and 
430 F g−1 via using lithium phosphate were achieved.

Between these electrolytes, the potassium hydroxide 
electrolyte showed loss about 40% from its original capaci-
tance with highest performance rate due to high acces-
sibility of surface, synergistic activities and improved 

Fig. 3  (ZFO)1-x(GNPs)x electrodes CV curves, where ZFO is refer to Zn ferrite and GNPs refer to nanoplatelets of graphene. Adapted with per-
mission from Israr et al. (2020), Copyright 2020, Elsevier
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electronic conductivity of Mn-ferrite. Besides, the synthe-
sis of symmetric cells via Mn-ferrite as an electrode mate-
rial with potassium hydroxide as an electrolyte presented 
power density, specific capacitance and energy density of 
1207 W kg−1, 245 F g−1 and 12.6 W h kg−1, respectively. 
Moreover, the Mn-ferrite keeps more than 105% of its origi-
nal capacity after 10 × 103 cycles.

Spinel metal molybdates

The binary metal molybdates  (NiMoO4,  CoMoO4,  FeMoO4, 
etc.) have gained significant interest in the energy-related 
research area (compared to metal oxides, hydroxides and 

sulfides). This is due to their low cost, environmental 
friendliness, abundant resources, suitable electrical, elec-
trochemical and mechanical properties for high capacity 
supercapacitors (Zhang et al. 2019a; Huang et al. 2016a). 
Lately, researchers have focused on the improvement in 
metal molybdates as electrode materials for supercapacitor 
applications.

Nickel molybdate  NiMoO4

The nickel molybdate  NiMoO4 has gained significant atten-
tion in recent years as a proper electrode material for super-
capacitor, due to its inexpensive cost, unlimited sources, 

Fig. 4  Cyclic voltammetry profile and specific capacitance as a func-
tion of the current density of  MnFe2O4 electrode materials in aque-
ous KOH (a–c), lithium nitrate (d–f), lithium phosphate (g–i) as 
electrolytes, respectively. It is illustrated that the results achieved a 

high capacity of 173 F g−1 via using potassium hydroxide, 31 F g−1 
via using lithium nitrate and 430 F g−1 via using lithium phosphate. 
Adapted with permission from Vignesh et al. (2018), Copyright 2018, 
Elsevier
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great redox activity, well-defined redox performance and 
eco-friendly compatibility (Guo et  al. 2014; Yin et  al. 
2015a). The nickel molybdate has many crystals’ shapes, and 
this depends upon the synthesizing technique and tempera-
ture of the annealing process as illustrated in Fig. 5 (Kumar 
et al. 2020; Liu et al. 2013a; Chen et al. 2015; Hussain et al. 
2020).

The specific capacitance and better cycling stability of 
nickel molybdate are dependent on the crystals’ shapes. 
Ajay et al. (2015) observed that the two-dimensional nickel 
molybdate like-nanoflakes synthesized via rapid micro-
wave-assisted achieved 1739 F g−1 of specific capacitance 
at 1 mV s−1 of scan rates. While, Huang et al. (2015a) found 
that three-dimensional form interconnected nickel molyb-
date like-nanoplate arrays show a specific capacitance as 
high as 2138 F g−1 at a current density of 2 mA cm−2, and 

an outstanding cyclability where lost 13% of its original 
capacity over 3 × 103 cycles. Also, Cai et al. (2013), have 
synthesized nickel molybdate nanospheres and nanorods 
via simple hydrothermal techniques. The nickel molybdate 
nanospheres displayed a higher value of specific capacitance 
and good both stability of its lifecycle and rate capability 
than nickel molybdate nanorods. This behavior may be due 
to their massive surface area and good electrical conduc-
tivity. Nickel molybdate nanospheres displayed ~ 974 F g−1 
of specific capacitances while it was ~ 945 F g−1 for nano-
spheres. In another study, Cai et al. (2014a) observed that the 
mesoporous nickel molybdate like-nanosheets displayed a 
higher specific capacitance and cycling stability than nickel 
molybdate like-nanowires.

Notwithstanding these benefits, nickel molybdate as metal 
oxides materials undergoes lower cyclic stability attributed 

Fig. 5  Nickel molybdate has many crystals’ shapes, and this depends 
upon the synthesizing technique and temperature of the annealing 
process. a–d SEM images of a nanoflower, adapted with permission 
from Kumar et al. (2020). Copyright 2020, Royal Society of Chem-
istry, b nanorods, adapted with permission from Liu et  al. (2013a), 
Copyright 2013, Royal Society of chemistry; c nanowire, adapted 
with permission from Chen et al. (2015), Copyright 2015, Elsevier; d 

nanogravel, adapted with permission from Hussain et al. (2020), Cop-
yright 2020, Elsevier; e the crystal structure, adapted with permission 
from Huang et al. (2018a), Copyright 2018, Royal Society of Chem-
istry; f, g EDX spectra and elemental mapping images, adapted along 
with permission from Kumar et al. (2020) Copyright in 2020, Royal 
Society of Chemistry, for nickel molybdate ferrite
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to structural degradation induced via the hard-redox reac-
tions. Furthermore, the breakdown of the nanostructure pro-
duced via the high volume change, particle agglomeration 
and variable solid electrolyte interface creates an extreme 
reduction in capacity (Budhiraju et al. 2017). To defeat 
the above-mentioned defects, the synthesizing of electrode 
materials via coating very conductive materials onto active 
materials has shown to be sufficient (Wang et al. 2017a). To 
date, conductive polymers, owing to their excellent electri-
cal conductivity, plasticity and simple fabrication display 
effective properties when working as electrode materials 
(Huang et al. 2016b). Yi et al. (2020) reported a rational 
study and the structure of Ni-oxide@nickel molybdate like-
porous sphere coated with polypyrrole. The outcomes reveal 
that the shell of nickel molybdate and polypyrrole with high 
electronic conductivity reduces the charge-transfer reaction 
resistance of Ni-oxide and then increases the electrochemi-
cal kinetics of Ni-oxide. The initial capacitance of Ni-oxide/
nickel molybdate/polypyrrole is 941.6 F g−1 at 20 A g−1. 
Particularly, the electrode holds capacitance of 850.2 F g−1 
and remains 655.2 F g−1 with high retention of 77.1% at 
30 A g−1 even after 30,000 cycles.

Cobalt molybdate  CoMoO4 nanoparticles

Cobalt molybdate  CoMoO4 has many advantages like nickel 
molybdate, such as cost-effectiveness, eco-friendliness and 
high electrochemical performance (Mai et al. 2011a). The 
considerable stability of one-dimensional form  CoMoO4 
like-nanorods structure exhibited exceptional stability with 
high specific capacitance (Liu et al. 2013b). The synthe-
sized  CoMoO4 by a simple sonochemical technique gave 
electrochemical performance and capacity of ~ 133 F g−1 at 
1 mA cm−2 of current density (Veerasubramani et al. 2014). 
Furthermore, the  CoMoO4 like-nanoplate arrays produced 
a maximum capacity of 227 μA h cm−2 at 2.5 mA cm−2 and 
showed superior cyclic stability and energy density in the 
operating voltage window of 1.5 V (Veerasubramani et al. 
2016). Nevertheless, metal oxides naturally have a short dif-
fusion distance of electrolytes that resulted in lower elec-
trical conductivity and restricted their application as elec-
trodes for pseudocapacitors. High surface area and electrical 
conductivity of graphene material enable it to be used as 
an electrode for supercapacitor (Sun et al. 2011). Never-
theless, graphene supercapacitors have low energy density 
and restrict its usage in several significant applications. 
The obtained  CoMoO4@graphene composites possessed 
high electroactive areas which could promote accessible 
accession of  OH− ions and quick charge carriers (Xia et al. 
2013). Jinlong et al. (2017) have reported the synthesiz-
ing of  CoMoO4@reduced graphene-oxide nanocomposites 
via the hydrothermal method. The electrode nanocom-
posites electrode showed a remarkable capacity about of 

~ 856 F g−1 at 1 A g−1 and retain about 94.5% of its original 
capacitance over 2000 cycles. The electrode nanocompos-
ites presented high electrochemical conductivity compared 
to pristine  CoMoO4. This improvement is attributed to the 
obtained composites that had a greater specific surface area 
and average pore size than the pristine for nanoparticles of 
 CoMoO4. The  CoMoO4 like-nanoflake promoted electrolyte 
transport through the charging/discharging process and pre-
sented numerous active sites available for electrochemical 
reactions. The synergetic effect between reduced graphene-
oxide and  CoMoO4 also increased the performance of the 
supercapacitor.

Iron(II) molybdate  FeMoO4

Iron(II) molybdate  FeMoO4 is a part of the several nota-
ble mineral molybdates and assumed to give higher redox 
chemistry attributed to the mixed combinations of both Fe 
and Mo cations. To the day, Iron(II) molybdate widely uti-
lized as promising electrode toward Li-ion batteries (Wang 
et al. 2014b). Wang et al. (2014b) have reported the doping 
of Iron(II) molybdate with graphene via a simple hydro-
thermal. The results confirmed that the Iron(II) molyb-
date/reduced graphene-oxide composite possesses specific 
capacitance 135 F g−1 at 1 A g−1 larger than those obtained 
of Iron(II) molybdate 96 F g−1 or reduced graphene-oxide 
66 F g−1. Furthermore, the capacitance of the composite 
decayed gradually and reached 29.6% loss after 500 cycles. 
Recently, Nam et al. (2020) have successfully synthesized 
FMO nanosheet via the chemical bath deposition procedure. 
The outcomes demonstrate that the FMO electrode is highly 
proper in the supercapacitor application. The Iron(II) molyb-
date electrode shows excellent electrochemical achievements 
with specific capacity of about 158 mA h g−1 at 2 A g−1, and 
9% loss of its original capacitance over 4 × 103 cycle.

Spinel cobaltites

Until now, significant research has been conducted and led 
to the promotion of spinel cobalt oxide  Co3O4 because of its 
cost-effective components, original plenty, excellent redox 
ability and extraordinary theoretical specific capacitance 
(Zhai et al. 2017). Nevertheless, due to the high electri-
cal resistivity as a result of its semiconducting nature, the 
electrochemical achievements of most published  Co3O4 
electrodes are still far from expectations, with restricted 
specific capacitances and moderate power densities (Lu 
et al. 2017; Zhang et al. 2015a). Hence, considerable effort 
is being focused on offering more eco-friendly and moder-
ately affordable alternative metals to partially substitute Co 
for making ternary spinel cobaltites, to collaboratively give 
excellent reversible capacities, preferred electrical conduc-
tivity and interesting redox chemistry (Liu et al. 2016a; Hui 
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et al. 2016). Intrinsically,  Co3O4 is characterized as a normal 
spinel structure, in which the  Co2+ and  Co3+ ions occupy the 
A-site and B-site, respectively (Gao et al. 2016a). The par-
tially substituting Co by the transition metals (i.e., Zn, Mn, 
Ni, and Cu) in the  Co3O4 lattice leads to produce an inverse 
spinel structure, in which the external cation occupies the 
B-sites, while Co occupies both the A- and B-sites (Kim 
et al. 2014). This presents effective channels for ion diffusion 
enrichment toward charge carriers (electrons or holes) that 
jump into the A-site and B-site for high electrical conduction 
(Liu et al. 2018b).

Nickel cobaltite  (NiCo2O4)

NiCo2O4 as a mineral oxide represents a proper candidate 
used in the energy storage area owing to a high special 
capacity, extraordinary electric conduction and excellent sta-
bility (Xu et al. 2018a; Yuan et al. 2020). The nanoparticles 
of nickel-cobaltite were initially published as an exceptional 
display electrode candidate for electrochemical capacitors 
(Wei et al. 2010). Consequently, several nickel-cobaltite 
structures with various morphologies exhibited increased 
capacitive achievements as opposed to the bulk structure. 
Searches on Web of Science have revealed that about 1000 
articles related to the application of nickel-cobaltite materi-
als for electrochemical capacitors have been published to 
date. The composites of the nanoparticles of nickel-cobaltite 
originated on a substrate owns conduction nature is utilized 
in capacitors applications. Current research has confirmed 
that the incorporation of different elements upon the nano-
particles of nickel-cobaltite leading to achieving the excel-
lent capacity and durability of the nanoparticles of nickel-
cobaltite (Lin and Lin 2017). This performance-enhanced 
electrochemical property of the nanoparticles of nickel-
cobaltite because attributing to production more transporta-
tion channels to easy charges motion leading to improve its 
electric conduction (Cheng et al. 2020b).

The nanoparticles of the spinel nickel-cobaltite own 
inverse structure where  Ni2+ cations settle the B-sites and 
 Co2+ ions settle the B- and A-sites equally. The nanopar-
ticles of spinel nickel-cobaltite, a semiconductor (p-type) 
owns narrow bandgap (~ 2.1 eV) with suitable electric con-
duction. Spinel nickel-cobaltite has excited many researchers 
due to its promising cost-effectiveness and eco-friendliness 
properties compared with other metals oxides materials. 
The basic reactions can be displayed as the next equations 
(Cheng et al. 2020b):

Through the charge–discharge cycle, the redox reactions 
only appear on the surface of the electrode materials. It was 

NiCo
2
O

4
+ OH

−
+ H

2
O ⇔ NiOOH + 2CoOOH + e

−

2CoOOH + OH
−
⇔ CoO

2
+ H

2
O + e

−

observed that the specific capacitance of the spinel nickel-
cobaltite improved after many hundreds of cycles to a limit 
range, owing to its exceptional morphologies and the activa-
tion process of the electrode (Cheng et al. 2020b).

Yang et al. (2019b) have synthesized the nanoparticles of 
spinel nickel-cobaltite with nanoneedle morphology via the 
hydrothermal technique. The nanoneedle of spinel nickel-
cobaltite changed to nanoflake morphology via a template 
on the surface of a self-assembly graphene oxide/multiwall 
carbon nanotube. The template/substrate worked as a seed 
layer to promote the production of nucleation sites to facili-
tate the nanoparticles of spinel nickel-cobaltite to build on 
the surface of the template/substrate, through promoting the 
nanoneedle-like array morphology. The electrode composite 
showed extraordinary specific capacitance of 1525 F g−1 at 
1 A g−1 and 1081 F g−1 at 100 A g−1, respectively. The pre-
pared composite electrodes were utilized as both the anode 
and cathode, the supercapacitor showed the highest power 
density and maximum energy density of 5151 W kg−1 and 
25.2 W h kg−1, respectively. Besides, is displayed superior 
cycling stability, where lost 0.4% only of the primary capaci-
tance over 7 × 103 cycle thus affirming its suite for superca-
pacitor applications.

Both the nanoparticles of spinel nickel-cobaltite and 
 MnO2 have an edge owing to their characteristic abundance 
in nature, high theoretical capacitance and cost-effectiveness 
(Yuan et al. 2017). Xu et al. (2018a) first published that the 
hierarchical nanoparticles of spinel nickel-cobaltite@man-
ganese dioxide core–shell nanowire arrays showed excep-
tional characteristics for electrochemical capacitors. The 
excellent performance was associated with the significant 
core–shell form and the synergistic impacts of the mixed 
enrichment from the porous nanoparticles of spinel nickel-
cobaltite core and the thin manganese dioxide shell. Also, 
Zhang et al. (2016a) utilized galvanostatic electrodeposition 
to attach manganese dioxide nanoflakes on a two-dimen-
sional form of the nanoparticles of spinel nickel-cobaltite 
structures on the steel mesh outside. The studied electrode 
offers a specific capacitance with a value of 914 F g−1 at 
0.5 A g−1 along with after 3000 cycles has a loss of 12.9%.

Zinc cobaltite  ZnCo2O4

Spinel-type  ZnCo2O4 is one of the spinel transition oxide 
group and characteristic cobaltite with  Zn2+ ions locating 
the A-sites of spinel  Co3O4 (Wu et al. 2015a). The eco-
friendly, low-priced and abundant Zn, Co atoms show the 
high electrochemical activities; therefore, it is strongly 
applied in energy storage applications. Zhou et al. reported 
one-dimensional from the spinel-type  ZnCo2O4 porous 
nanotubes which exhibit an extraordinary specific capaci-
tance of 770 F g−1 at 10 A g−1 (Zhou et al. 2014). Also, Ven-
katachalam et al. (2017) used a hydrothermal technique to 
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prepare the spinel-type  ZnCo2O4 like-hexagonal nanostruc-
tured, showing 845.7 F g−1 at a current density of 1 A g−1. 
Finally, Kathalingam et al. (2020) prepared the spinel-type 
 ZnCo2O4@Nitrogen-doped-graphene oxide/polyaniline 
hybrid nanocomposite via a hydrothermal approach. The 
highest specific capacitance was 720 F g−1 at 10 mV s−1 
and 96.4% capacity retention after  104 cycles were achieved. 
This enhanced performance for the composite electrode 
was ascribed to the improvements from reinforced material 
porosity characteristics.

The underlying mechanism of this action influenced by 
various cation substitutions (Mn, Ni, and Cu) has been dis-
cussed (Fig. 6). Liu et al. (2018b) presented a systematic 
examination to clarify the impact of metals replacement 
on the pseudocapacitive performance of spinel  Co3O4. The 
replacement of Co by transition metals in the  Co3O4 lat-
tice can concurrently increase charge transference and ion 

dispersion, that way showing improved electrochemical 
properties. The  MnCo2O4 gives magnificent specific capac-
itance about (~ 2145 F g−1) at 1 A g−1. Also, more than 
92% of its primary capacitance is kept after 5 × 103 cycles. 
Besides, the  MnCo2O4/activated carbon electrode produces 
an exceptional energy density (⁓56 W h kg) at a power den-
sity of about 800 W kg−1.

Inorganic perovskite-type oxides

The inorganic perovskite-type oxides show special phys-
icochemical characteristics in ferroelectricity (Pontes et al. 
2017; Rana et al. 2020; Cao et al. 2017), piezoelectric-
ity (Perumal et al. 2019; Vu et al. 2015; Xie et al. 2019), 
dielectric (Arshad et al. 2020; Zhou et al. 2019; Boudad 
et al. 2019), ferromagnetism (Yakout et al. 2019; Ravi and 

Fig. 6  This figure exhibits that the  MCo2O4 nanowires are completely 
segregated with the symmetrical arrangement, which could be useful 
to the ions transport to redox-active positions, then probably enhanc-
ing the electrochemical features. The images of the field-emission 

scanning electron microscopy (FESEM) of a, d, g  MnCo2O4, b, e, h 
 NiCo2O4, and c, f, i  CuCo2O4 nanowires at different magnifications. 
Adapted with permission from Liu et  al. (2018b). Copyright 2018, 
Royal Society of chemistry
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Senthilkumar 2017; Alvarez et al. 2016), magnetoresist-
ance (Wang et al. 2015a; Liu et al. 2007; Dwivedi et al. 
2015), and multiferroic (Li et al. 2019b; Zhang et al. 2016b; 
Pedro-García et al. 2019). They are interesting nanomate-
rials for broad applications in catalysis (Grabowska 2016; 
Yang and Guo 2018; Hwang et al. 2019; Xu et al. 2019a; 
Ramos-Sanchez et al. 2020), fuel cells (Kaur and Singh 
2019; Sunarso et al. 2017; Jiang 2019), ferroelectric random 
access memory (Gao et al. 2020; Chen et al. 2016a; Wang 
et al. 2019a), electrochemical sensing and actuators (Govin-
dasamy et al. 2019a; Deganello et al. 2016; Atta et al. 2019; 
Zhang and Yi 2018; Rosa Silva et al. 2019), and superca-
pacitors (Song et al. 2020; Salguero Salas et al. 2019; Lang 
et al. 2019; George et al. 2018). Furthermore, these materials 
possess a significant advantage that is the simple crystalline 
structure and low cost for the preparation of these materi-
als in monocrystalline or polycrystalline form. Any small 
modification of their typical crystal structure and chemical 
composition may lead to the production of unique transport 
(Choudhary et al. 2020), magnetic (Abbas et al. 2019), cata-
lytic (Abirami et al. 2020), thermochemical (Gokon et al. 
2019), mechanical(Wang et al. 2016a), and electrochemi-
cal (Baharuddin et al. 2019) properties. Recently, increased 
efforts have taken place by research groups worldwide con-
centrating on optimizing the physical properties of perovs-
kite-structured compounds. Most investigations are based 
on confirming a correlation between the crystalline structure 
and the chemical stoichiometry of the major components. 
These have led to an enhancement in the functional proper-
ties of the perovskites (Rendón-Angeles et al. 2016).

The atomic arrangement for perovskites originally related 
to the prototype mineral perovskite,  CaTiO3, with the for-
mula  ABO3, where B is a small transition mineral cation 
and A is larger. It was assumed that the unit cell of  CaTiO3 
could be interpreted by  Ca2+ ions at the corners of a cube, 
with  Ti4+ ions at the body center and  O2− ions at the center 
of the faces (Schaak and Mallouk 2002).

To illustrate the correlation between the A, B, and O ions, 
the typical  ABO3 perovskite possesses a cubic crystal struc-
ture with tolerance factor ( �) = 1, which is represented as 
� = (rA + rO)/

√

2 (rB + rO), where rA, rB and rO are the ionic 
radii of A, B and oxygen elements, respectively. Gold-
schmidt has revealed that the cubic perovskite structure is 
stable only in tolerance factor a close range of 0.8 < � < 0.9, 
and a slightly larger range for distorted perovskite structures 
with orthorhombic or rhombohedral symmetry. The replace-
ment of multiple cations into the A- or B-sites can change 
the symmetry of the pristine structure and, consequently, the 
physical and chemical properties (Zhang et al. 2016c). These 
changes in symmetry can be fulfilled over relatively little 
disfigurement in the crystal structure. This is evident in com-
pounds that have smaller and larger values, leading to tilting 
of the  BO6 octahedral to permeate space. For orthorhombic 

structures, the tilting is about the b and c axes and for rhom-
bohedral structures, the tilting is about each axis. This tilting 
brings the decrease in coordination number for A, B or both 
ions. In addition to tilting, displacement of cations can also 
lead to structural distortion.

The structure of rare-earth manganites  RMnO3 perovskite 
(R = rare earth element) is widely affected via the internal 
structural distortions existing in the compound (Chen et al. 
2007; Dabrowski et al. 2005). The structure is formed by 
inter-combined  MnO6 octahedra in rare-earth. Usually, the 
lattice of perovskite lattice has distorted due to (1) octa-
hedral tilting and/or (2) Jahn–Teller deformation (Siwach 
et al. 2008). Nandy et al. (2017) reported the influence of 
 Na+ substituting on internal lattice deformation of  EuMnO3. 
The common atomic order of  Eu1−xNaxMnO3 samples is pre-
sented in Fig. 7. It is obvious that 6 atoms of oxygen settle 
in face-centered of the cubic and 1 manganese atom settle 
body-centered of the cubic outlines the  MnO6 octahedra; 
finally, the corners were occupied via both of europium and 
sodium atoms. The lattice is exposed to deformations via 
the octahedra  MnO6 tilting and Jahn–Teller effect. The pos-
sibility for various replacements at the site of the cations 
is the principal feature of perovskites, which results in the 
appearance of great groups of compounds with different cati-
ons in B site  (ABxB1−xO3); with various cations in A site 
 (AxA1−xBO3); and with replacements in both cation position 
 (AxA1−xByB1−yO3) (Assirey 2019).

The phases of perovskite oxides have been classified into 
2 categories (Assirey 2019):

 I. The ternary perovskite-type oxides are divided into 
 A1+B5+O3,  A2+B4+O3,  A3+B3+O3 types and oxy-
gen- and cation-deficient phases. The oxygen and 
cation-deficient phases will be regarded as those 
which include large vacancies and not phases which 
are only slightly non-stoichiometric. Several of these 
hold Β ions of one element in two valence states and 
should not be confused with the complex perovskite 
compounds which contain different elements in vari-
ous valence states (Assirey 2019; Pan and Zhu 2016; 
Galasso 2013).

 II. The complex perovskite-type compounds 
A

(

B
′

x
B
′′

y

)

O
3
 will be classified into four compounds 

which contain (Galasso 2013; Modeshia and Walton 
2010):

(a) Compounds possess twice as much lower valence 
state elements as higher valence state elements, 
A
(

B
′

0.67
B
′′

0.33

)

O
3
.

(b) Compounds possess twice as much higher valence 
state elements as lower valence state elements, 
A
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(c) Compounds possess equal proportions of the two 
B elements, A

(

B
′

0.5
B
′′

0.5

)

O
3
.

(d) Compounds with oxygen-deficient phases, 
A
(

B
�

x
B

y

)

O
3−z

.

Potassium niobate  (KNbO3) presents various crystal 
arrangements depending on temperature, as compiled in 
Fig. 8. Above its curie temperature TC = 708 K, it loses its 
ferroelectric properties and becomes cubic. While, below its 
curie temperature, it exhibits tetragonal, orthorhombic and 
then rhombohedral lattice with a reduction in temperature 
(Grabowska 2016; Zhang et al. 2013a, 2016c; Hirel et al. 
2015).

KNbO3 in orthorhombic phase has lattice param-
eters: a = 3.973, b = 5.693, and c = 5.721 Å belongs space 
group Amm2, cubic phase  KNbO3 has lattice parameter 
of a = 4.022 Å with space group (Pm3m), while  KNbO3 
tetragonal phase belongs to space group (P4mm) (Magrez 
et al. 2006).

As a promising and crucial device for energy storage/
conversion, supercapacitors have gained interest and wide 
appeal owing to its fast charge and discharge cycle, long-
lasting lifecycle, high power density and safe operation 
(Lang et al. 2017). Investigating unique electrode materi-
als, particularly coating electrodes with conductive matter 
is one of the most impactful ideas to enhance conductiv-
ity. It was not until 2014 before studies on perovskites as 
anodes for supercapacitors emanated when Mefford et al. 
(2014) examined the electrochemical properties  LaMnO3 for 
supercapacitors and suggested oxygen-anion-intercalation as 
the mechanism that charge storage depends upon. Besides, 
in toward supercapacitors and hybrid supercapacitors, the 
perovskites have some edge when utilized as anodes. Where 
they have a great significance of oxygen vacancies, i.e., they 
have a mineral character in the ground state due to B cations 
3d and O 2p orbitals through the Fermi level among the total 
density of states (Liu et al. 2018c). Hence, the immense 
content of oxygen vacancies  (Ovacancy), and remarkable con-
ductivity allows their extraordinary energy densities. Also, 
the perovskites store charge by oxygen intercalation and the 
excellent diffusion pathways along crystal domain bounda-
ries leading the promotion of the dispersion rate (Nan et al. 
2019).

The La-based perovskite oxides were observed to pos-
sess numerous merits like heightened electronic conduction, 
broad window of voltage and excellent stability of charge/

discharge pathway. A well-known procedure to increase 
the electronic conduction (or decrease the resistance) of 
composite-based on  LaBO3 perovskites is through the com-
pletely/or partial incorporation of diverse cations  (Ca2+,  Sr2+ 
etc.) for  La3+ species on A-site, leading to a larger number 
of oxygen vacancies are inserted in the structure (Nan et al. 
2019; Ma et al. 2020). For  LaMnO3 perovskite, the charge 
imbalance after the substitution is partially offset through the 
oxidation of  Mn3+ species (d4) to  Mn4+ oxide species (d3) 
in the B-site, jointly with the Jahn–Teller effect of manga-
nese  (Mn3+) ion species, attending to the perovskite struc-
ture deformation (Louca et al. 1997). The structure of the 
perovskite is assumed to possess a significant impact on the 
 Ovacancy concentration, the  O2− diffusivity, along with the 
electrochemical behavior (Liu et al. 2016b).

Hence, future research should pay more attention to the 
quantity of  Ovacancy required (Nan et al. 2019). The stud-
ies of the possibility of applying the perovskite oxides in 
supercapacitors were insufficient. Thus, in the next section, 
the impact of cation substitution on perovskite supercapaci-
tors, and consequently, the changes in their electrochemical 
performance was reviewed.

Influence of cation substitution in A-site 
of perovskite oxides

Ma et al. (2020) have examined the influence of A-site 
substitution of  LaMnO3 perovskite via calcium ions 
 (Ca2+) or strontium  (Sr2+). The  La0.85Ca0.15MnO3 and 
 La0.85Sr0.15MnO3 samples are synthesized via the sol–gel 
method. Schematic diagrams of the oxygen intercalation 
process in the phases of the crystal structure (orthorhom-
bic/rhombohedral) of the studies samples are offered in 
Fig. 9. The relation between the oxygen octahedron deform-
ity and Jahn–Teller impact as illustrated above as Mefford 
detailed, R1 has illustrated the oxidation pathway of  (Mn2+) 
to  (Mn3+). One of  Ovacancy is fulfilled by  O2− intercalation, 
collectively with 2 ions of  Mn2+ oxidized to  Mn3+ as shown 
in the following equation:

Nevertheless, the variation is that the  La0.85A0.15Mn3+O2.925 
is yet shown as an oxygen-deficient when every of the  Mn2+ 
are oxidized to  Mn3+. Therefore, the following step which 
expects the oxidation process of  Mn3+ to  Mn4+ as shown in 
the next equation:

(1)
La0.85A0.15

[

Mn
2+

2�
;Mn

3+

1−2�

]

02.925−� + 2�0H
−

↔ La0.85A0.15Mn
3+

O2.925 + 2�e− + �H2O

(2)

La0.85A0.15Mn
3+

O2.925 + 2�0H
−

↔ La0.85A0.15

[

Mn
4+

2�
;Mn

3+

1−2�

]

02.925+�

+ 2�e− + �H2O

Fig. 7  a, b  MnO6 tilting arrangement of atoms and combining c 
angles between asymmetrical bond  Eu1−xNaxMnO3 samples, it is 
obvious that 6 atoms of oxygen settle in face-centered of the cubic 
and 1 manganese atom settle body-centered of the cubic outlines the 
 MnO6 octahedra, finally the corners were occupied via both of euro-
pium and sodium atoms. Adapted with permission from Nandy et al. 
(2017). Copyright 2017, Elsevier

◂
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The last step is classified into 2 steps. At � = 0.075, it occurs 
through  O2− that continuously arrested to fulfil the residual 
 Ovacancy, and the ions of  Mn3+ are transformed into ions of 
 Mn4+ (R2-1 in Fig. 9). The  Ovacancy completely diffuses to 
the surface of the material, La0.85A0.15

[

Mn
4+

0.15
;Mn

3+

0.85

]

03 is 
formed. Then, the second step occurs, the  Mn3+ ions are 
more transformed to  Mn4+, appearing in the oxygen over 
abundance La0.85A0.15

[

Mn
4+

2�
;Mn

3+

1−2�

]

02.925+�(� > 0.075) 
product (R2-2 in Fig. 9).

Therefore,  La0.85Ca0.15MnO3 and  La0.85Sr0.15MnO3 
samples with higher essential  Ovacancy display excellent 
capacitance features than  LaMnO3 and store more energy 
by the  Ovacancy tailored redox pseudocapacitance. The 
capacitances achieved are ~ 33.0 mF cm−2, 129.0 mF cm−2, 
and 140.5 mF cm−2 for  LaMnO3,  La0.85Sr0.15MnO3, and 
 La0.85Ca0.15MnO3, respectively. The  La0.85Ca0.15MnO3 elec-
trode produces the most exceptional capacitance behavior 
due to the lower value of ion dispersion impedance, the most 
distinguished concentricity of  Ovacancy and the sufficient 
exploitation of the perovskite bulk structure.

Fig. 8  Crystal structures of cubic, orthorhombic and tetragonal and 
rhombohedral  KNbO3. Green spheres represent Nb, red spheres rep-
resent oxygen and purple spheres represent K. Adapted with permis-
sion from Hirel et al. (2015)

Fig. 9  a  La0.85Ca0.15MnO3; b  La0.85Sr0.15MnO3 compositions: the 
structures of crystal and the oxygen intercalation pathways of A-site 
replacement, the  La0.85Ca0.15MnO3 and  La0.85Sr0.15MnO3 samples 

with higher essential  Ovacancy display excellent capacitance features 
than  LaMnO3 and store more energy by the  Ovacancy. Adapted with 
permission from Ma et al. (2020). Copyright 2020, Elsevier
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Also, Mo et al. (2018) have prepared Ca-doped perovskite 
lanthanum manganite via the sol–gel technique. Between 
fabricated samples,  La0.5Ca0.5MnO3 exhibited low essen-
tial resistance of 2.13 Ω cm2 and an extraordinary specific 
surface area of 23.0 m2 g−1. The highest specific capaci-
tance achieved was 170 F g−1 at 1 A g−1. Nevertheless, 
La–Ca–MnO3 met serious elements leaching, resulting in 
small cycling stabilities and thereby restricting their appli-
cations as electrode materials of supercapacitors. Therefore, 
Ca-doped lanthanum manganite samples were not attractive 
applicants for supercapacitor applications. Overall, devel-
opments in electrochemical performances of manganite 
electrodes need different effective techniques to prevent 
cations leaching in Ca-doped perovskite lanthanum man-
ganite. Wang et al. (2019b) have fabricated nanofibers of 
 LaxSr1−xFeO3 oxides via combining electrospinning. As an 
outcome, they produced  La0.7Sr0.3FeO3 nanofibers exhibit-
ing outstanding performance as an electrode for superca-
pacitor purposes including increased specific surface area 
~ 28.0 m2 g−1 and efficient unique of the huge porosity. 
The  LaxSr1−xFeO3 (x = 0.3) NPs exhibited an extraordinary 
capacitance around 520 F g−1, which is still more than other 
samples. Additionally, over 5 × 103 cycles and at 20 A g−1, 
the  LaxSr1−xFeO3 (x = 0.3) owns superior rate strength and 
stability over cycling (~ 84%) of its primary capacitance. 
Also, Cao et al. (Cao et al. 2015a) have synthesized nanofib-
ers of the nanoparticles of  LaxSr1−xCo0.1Mn0.9O3−δ oxides 
via electrospinning technique. The authors examined the 
impact of Sr cation substitution in A-site. They found that 
strontium substitutes the site of La ions; therefore, the mor-
phology of  LaxSr1−xCo0.1Mn0.9O3−δ nanofibers is affected. 
Where, as the rise in  Sr2+ content, their coarseness and diam-
eters suffer from reduction. But in contrast, with enhancing 
the  Sr2+ content, the area of surface for the studied sample 
and also, their grain size significantly increased. Moreover, 
both bond angles and length between manganese and oxygen 
ions are significant parameters that possess an outstanding 
effect in the double exchange of electrons and enhancing 
the electric conduction leading the improving electrochem-
ical display of perovskites. The electrochemical activities 
of  LaxSr1−xCo0.1Mn0.9O3−δ nanofibers are significantly 
enhanced when the length is considerably reduced, and the 
angle is about 180°. The influence of cations substituting 
on A-site was further investigated by Wang et al. (2020a). 
The electrospinning and calcination techniques were used to 
fabricate porosity nanofibers of gadolinium Gd-substituted 
 SrNiO3 (Fig. 10). Some diffraction peaks of gadolinium 
substituted  SrNiO3 (at x = 0.5, and 0.7) are insignificantly 
increased and passivate owing to the lattice structure defor-
mation from Sr-substituting. The octahedron of  NiO6 and 
the bond angle between Ni and oxygen are deformed via the 
occupancy ratio in tetrahedral site elements, which are gen-
erated through the various radii between  Gd3+ and  Sr2+ ions. 

Jahn–Teller effect appears as a result of the dissimilar bal-
ance in A-site cations, causing stretching and distorting for 
the standard cubic crystal system on the c-axis, furthermore, 
lead to weaken the crystallinity of the crystal lattice. Hence, 
Gadolinium(III) ions with a shorter ion radius than Lan-
thanum are occupied as A-site ions, and then Strontium(II) 
ions with a larger ion radius are preferred to locate in the 
tetrahedral site.

The synthesized  GdxSr1−xNiO3 perovskite has more 
 Ovacancies and ion defects. It’s meriting remarking that the 
 Ovacancies of  GdxSr1−xNiO3 is simple to achieve and trans-
ferred by weak the bond between cation in octahedral site 
and oxygen and smaller energy, which can promote the 
transport of electric charge and perform with an outstanding 
performance in electrochemical energy storage. The product 
gadolinium-substituted  SrNiO3 at x = 0.7 owns the outstand-
ing activities when utilized as an electrode for supercapaci-
tors, which is strongly affected by the supreme surface area 
of approximately 16 m2 g−1 and rational radius of pores 
reached 3.7  nm. The gadolinium-substituted  SrNiO3 at 
x = 0.7 exhibits a significant voltage window and outstanding 
capacitance, where gadolinium-substituted  SrNiO3 at x = 0.7 
possesses specific capacitance of 929 F g−1 in 1 Molar of 
sodium sulfate and 764 F g−1 in 1 Molar of potassium 
hydroxide. Besides, the gadolinium-substituted  SrNiO3 at 
x = 0.7, the device exhibits an excellent energy density about 
54 W h kg−1 and the power density of 1 kW kg−1 at 1 A g−1. 
Furthermore at 20 A g−1, the sample shows 20 kW kg−1 as 
a remarkable power density and 19W h kg−1 as a unique 
energy density.

In summary, cations substituting in the tetrahedral site of 
the perovskite has a prominent role in the extent of control or 
change grain size then obtaining a huge surface area. Moreo-
ver, it will affect on bowing the angle between the metal 
and  O2−, and consequently, the variation in the bond length 
between the metal and  O2−. Hence, this pathway leading 
the electric conduction and  O2− dispersion rate of perovs-
kites will likewise be improved because of  Ovacancy. A suited 
amount of cations substituting in the tetrahedral site could 
achieve perovskites with enhancing the perovskites capacity 
display (Nan et al. 2019).

Influence of cation substitution in the octahedral 
site of perovskite oxides

Various research concerning anion-intercalation super-
capacitors has considered that the suitable choice of the 
octahedral site cation intends to enhance the  Ovacancy or 
decrease the inherent resistivity (Elsiddig et al. 2017; Zhu 
et al. 2016; Li et al. 2017a). Besides, the electrochemical 
display is based on the octahedral site elements. Liu et al. 
(2020) investigated the stability window of  Sr2CoMoO6−δ 
affected by B-site cations substituting. The successful 
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substituting of  Ni2+ into the  Sr2CoMoO6−δ lattice with vari-
ous content, i.e.,  Sr2CoMo1−x/100Nix/100O6−δ was affirmed 
via XRD. A small increment in lattice constants was seen 
with substituting the Ni atom at the expense of the molyb-
denum ratio. This is explained by viewing the ionic radius 

of  Ni2+ (0.69 Å), which is larger than the ionic radius of 
 Mo6+ (0.59 Å) through the octahedral site. The cyclic vol-
tammetry curves of the  Ni2+ substituted the  Sr2CoMoO6 
electrode confirm that the predominant mechanism for 
store the carriers is intercalation pseudocapacitive. Nickel 

Fig. 10  a The preparation schematic for nanofibers of  GdxSr1-xNiO3, 
b GSN CV curves, c GSN GCD curves, d capacitance of GSN Vs. 
scan rate, e capacitance of GSN Vs. the current density, where GSN 

is refer to  GdxSr1-xNiO3. Adapted with permission from Wang et al. 
(2020a). Copyright 2020, Elsevier
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substituted the  Sr2CoMoO6 samples showed NiO and  Co3O4 
NPs and perovskite oxide phases which provide the entire 
capacity. The resulting the  Ovacancy energy of the studied 
perovskite due to nickel and cobalt cations incorporation 
was also explained by density-functional theory estimation. 
The generation of oxygen vacancies was promoted once 
the B-site cations were accelerated from the oxide lattice 
within the perovskite. With increasing the scan rates, the 
oxidation peaks moved positively, while reduction peaks 
moved on the opposite way, implying fast redox reactions 
and excellent reversibility occurring in the electrodes. Tomar 
et al. (2018) have enhanced the oxygen vacancies strontium 
cobaltite  SrCoO3 via Mo-doping i.e.  SrCo0.9Mo0.1O3−δ. 
The sol–gel method was utilized to synthesize  SrCoO3 and 
 SrCo0.9Mo0.1O3-δ as an oxygen anion-intercalated charge-
storage substances. An extremely high value of diffusion 
coefficient is characteristic of the efficient accessibility of 
 OH− ions inside the  SrCo0.9Mo0.1O3−δ electrode. At 1 A g−1, 
the specific capacitance of  SrCo0.9Mo0.1O3−δ is around 
1220.0 F g−1.  SrCo0.9Mo0.1O3−δ exhibits extremely excel-
lent capacitance retention at high current density. Also at 
10 A g−1, the  SrCo0.9Mo0.1O3−δ electrode exhibited excel-
lent cycling stability and columbic efficiency (6.48% only 
loss from its original capacitance over five thousand cycles). 
Furthermore,  SrCo0.9Mo0.1O3−δ exhibits better performance 
than  SrCoO3, which is ascribed to higher oxygen vacancies 
and structural stability. From the above outcomes, we deduce 
that the substituting of cations inside the B-site enhances the 
 Ovacancies and improves the capacitance.

In the conclusion of the above review, the potential win-
dow of perovskite can be controlled via the cations sub-
stituting over the octahedral site. Moreover, as substituent 
cations possess large orbital valence electrons, the  Ovacancies 
grew, and then the specific capacity or specific capacitance 
multiplied (Nan et al. 2019). Furthermore, Table 1 reviews 
the electrochemical characteristics of some of the latest 
reported supercapacitors based on the magmatic oxides and 
their composites.

Transition metals sul�de based 
on nanocomposite electrode 
for supercapacitor applications

Transition metal sulfides, like MoS, CoS, NiS, MnS, FeS 
etc., represent potential materials for energy storage appli-
cations owing to the excellent electrochemical characteris-
tics they exhibit (Zhang et al. 2020b). The electrochemical 
characteristic of transition metal sulfides is much better than 
the electrochemical properties of transmission metal oxides. 
This can be explained by the presence of sulfur atoms 
instead of oxygen atoms. Hence, the lower electronegativity 

of sulfur than that of oxygen facilitates electron transfer in 
the metal sulfide structure easier than that in the metal oxide 
form. Thus, replacing oxygen with sulfur provides more flex-
ibility for nanomaterials synthesis and fabrication (Jiang 
et al. 2016).

Transition metal sulfides have attracted interest in many 
fields of research including, supercapacitors, solar cells and 
lithium-ion batteries because of their distinctive optical and 
electrical characteristics, especially when mixed with other 
materials to prepare nanocomposite structures (Rao 2020).

The main advantages of using nanostructured transition 
metal sulfides as improved materials that can be utilized as 
an electrode in electrochemical supercapacitors are because 
of their excellent electrochemical behavior. Such properties 
are distinctive structures of their crystal lattice, ultra-high 
specific capacitance, excellent conductivity of electric cur-
rent, great redox activity, and small value of their electron-
egativity (Geng et al. 2018; Yu and David Lou 2018). These 
superior electrical characteristics of transition metal sulfides 
are mainly related to their specific forms and structures with 
extraordinary morphology of their surfaces, in terms of hav-
ing unique shapes (nano-flowers, nano-rods, kelp-like, nano-
wires, flaky, hierarchical, the nano-honeycomb-like, etc.) (Li 
et al. 2020).

Nickel sulfide

Nickel sulfide (NiS) is a semiconductor and can be present 
in many various compositions. It can also be incorporated 
in a lot of interesting applications including supercapacitors, 
dye-sensitized solar cells and quantum-dots. Many electrode 
materials based on NiS have been studied to investigate their 
capability of being used as a supercapacitor. NiS nanocom-
posites have exceptional physicochemical properties with 
excellent transportation of ions over the electrode surface 
(Rao 2020). Besides, NiS nanocomposites possess high 
electrochemical functioning and performance for them to 
be widely applied as catalysts, as pseudo-capacitors and in 
dye-sensitized solar cells (Kim et al. 2016). Despite all of 
these interesting properties and characteristics of NiS nano-
composites, they still have some drawbacks such as limited 
stability of their questionable lifecycle (Ikkurthi et al. 2018).

For example, Xu et al. (2017) synthesized a nanocom-
posite electrode based on NiS and  NiCo2S4 hydrothermally, 
the synthesis process is presented as a schematic diagram in 
Fig. 11. They used activated carbon as a negative electrode 
and  NiCo2S4/NiS as a positive one. They used a superca-
pacitor of nickel cobaltite sulfide/nickel sulfide, which had 
a large active surface area with enhanced electrochemical 
characteristics such as, at 160 W kg−1 of power density, it 
exhibits an energy density value of 43.7 W h kg−1 and at 
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Table 1  Electrochemical performance of magnetic oxides and their composites

No. Materials Electrolyte Specific capacitance Energy density and 
power density

Cyclic stability References

1 MnFe2O4 2 M KOH 282.4 F g−1 No data 85.8% retention after 
2000 cycles

Kwon et al. (2017)

2 MnFe2O4 2 M KOH 25.21 F g−1 12.60 W h kg−1

0.74 W kg−1
No data Singh and Chandra 

(2018)
3 MnFe2O4 2 M KOH 88.4 F g−1 No data 69.2% retention after 

2000 cycles
Guo et al. (2017)

4 MnFe2O4/rGO 6 M KOH 271 F g−1 15.9 W h kg−1

324.5 W kg−1
104% retention after 

5000 cycles
Tabrizi et al. (2017)

5 MnFe2O4/carbon 
black/PANI

0.5 M  H2SO4 206 F g−1 16 W h kg−1 75% retention after 
100,000 cycle

Zha et al. (2015)

6 Polyaniline/acetylene 
black/CuFe2O4

1 M KOH 732.35 F g−1 F g−1 26.757 W h kg−1

3165.25 W kg−1
78% retention after 

5000 cycles
Das and Verma (2019)

7 Ni1−xMgxFe2O4 6 KOH 259.89 F g−1 11.96 W h kg−1 
143.9 kW kg−1

88.79% retention after 
1000 cycles

Wongpratat et al. 
(2020)

8 NiAl0.1Fe1.9O4 2 M KOH 250.9 F g−1 No data 98.7% retention after 
1000 cycles

Ramadevi et al. (2020)

9 Co0.5Ni0.5Fe2O4 3 M KOH 630.00 F g−1 7.43 W h kg−1

60.45 W kg−1
82% retention after 

1500 cycles
Sharifi et al. (2020)

10 MnFe2O4-ZnFe2O4/
graphene

KOH 263 mA h g−1 75.65 W h kg−1

6629.53 W kg−1
96.89% retention after 

5000 cycles
Gopi et al. (2020)

11 CoFe2O4/MWCNTs 2 M KOH 390 F g−1 26.7 W h kg−1

319 W kg−1
93% retention after 

2000 cycles
Acharya et al. (2020)

12 Mg1−xZnxFe2O4 1 mol L−1  Na2SO4 484.6 F g−1 10.8 W h kg−1

0.5 kW kg−1
– Uke et al. (2020)

13 rGO–NiFe2O4 1 M  Na2SO4 210.9 F g−1 23.7 W h kg−1

225 W kg−1
94.2% retention after 

5000 cycles
Cai et al. (2019)

14 CoMnFeO4 3 M KOH 770 F g−1 – 88% retention after 
8000 cycles

Saleh Ghadimi et al. 
(2019)

15 ZnFe2O4 2 M NaOH 1235 F g−1 33 W h kg−1

68 W kg−1
– Shanmugavani and 

Selvan (2014)
16 CuFe2O4/RGO 3 M KOH 797 F g−1 11 W h kg−1

543 W kg−1
92% retention after 

2000 cycles
Chandel et al. (2018)

17 ZnFe2O4 6 M KOH 118 F g−1 42 W h kg−1

5 kW kg−1
83% retention after 

8000 cycles
Vadiyar et al. (2016b)

18 CoFe2O4/graphene/
PANI

6 M KOH 1123 F g−1 F g−1 240 W h kg−1

2680 W kg−1
98.2% retention after 

2000 cycles
Mousa et al. (2017)

19 PANI/MnFe2O4 1 M  H2SO4 371 F g−1 – 86.7% retention after 
1000

Arsalani et al. (2018)

20 Carbon fiber cloth/
CoFe2O4

3 M KOH 237.8 F g−1 84.6 W h kg−1

1334 W kg−1
– Song et al. (2019)

21 ZnMoO4 3 M KOH 704.8 F g−1 22.45 W h kg−1

800.06 kW kg−1
93.6% retention after 

10,000 cycles
Gao et al. (2018a)

22 Ag/NiMoO4 3 M KOH 3342.7 F g−1 48.5 W h kg−1

212.5 kWh kg−1
84.4% retention after 

5000 cycles
Zhang et al. (2020a)

23 Zn–Ni–Co oxide@
NiMoO4

KOH/PVA 87.5 mA h g−1 70 W h kg−1

5115.1 W kg−1
91% retention after 

10,000
Bandyopadhyay et al. 

(2020)
24 MnMoO4/CoMoO4 2 M NaOH 204.1 F g−1 28.4 W h kg−1 98% retention after 

1000 cycles
Mai et al. (2011b)

25 NiMoO4/MoO3 3 M KOH 184 F g−1 37.5 W h kg−1 100% retention after 
75,000 cycles

Zhang et al. (2018b)

26 MoS2/NiCo2O4 3 M KOH 51.7 F g−1 18.4 W h kg−1

1200.2 W kg−1
98.2% retention after 

8000 cycles
Wen et al. (2018)

27 ZnCo2O4@
NiMoO4·H2O

1 M KOH 3.53 F cm−2 2.55 mWh cm−3

0.033 W cm−3
88% retention after 

5000 cycles
Chen et al. (2019a)
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Table 1  (continued)

No. Materials Electrolyte Specific capacitance Energy density and 
power density

Cyclic stability References

28 CoMoO4–NiMoO4 2 M KOH 1079 F g−1 33 W h kg−1

375 W kg−1
98.4% retention after 

1000 cycles
Yin et al. (2015b)

29 NiMoO4@CoMoO4 1 M KOH 1601 F g−1 – 83% retention after 
2000 cycles

Zhang et al. (2015b)

30 CoMoO4/Co3O4 3 M KOH 1062.5 F g−1 31.64 W h kg−1

7270 W kg−1
90.38% retention after 

2000 cycles
Zhou et al. (2015)

31 NiMoO4@NiWO4 3 M KOH 1290 F g−1 – 93.1% retention after 
3000 cycles

Reddy et al. (2018b)

32 α-ZnMoO4 2 M KOH 234.75 F g−1 20.808 W h kg−1

199.44 W kg−1
82% retention after 

1600 cycles
Reddy et al. (2019)

33 NiMoO4/graphene 
nanosheets

2 M LiOH 3868 F g−1 54 W h kg−1

19 478 W kg−1
98% retention after 

4000 cycles
Kazemi et al. (2016)

34 Mn0.33Nio0.33Co
0.33MoO4

2 M NaOH 124 F g−1 82 W h kg−1

1650 W kg−1
80% retention after 

2000 cycles
Minakshi et al. (2017)

35 MnCo2O4@NiMoO4 2 M KOH 1244 F g−1 42 W h kg−1 
852.3 W kg−1

93% retention after 
8000 cycles

Mehrez et al. (2019)

36 FeCo2O4 3 M KOH 960.0 F g−1 34.5 W h kg−1

6391.7 W kg−1
94% retention after 

10,000 cycles
Lalwani et al. (2019)

37 NiCo2O4–graphene 2 M KOH 845 F g−1 F g−1 52.2 W h kg−1

187 W kg−1
97.3% retention after 

10,000 cycles
Lv et al. (2017)

38 ZnCo2O4 2 M KOH 812 F g−1 – 88% retention after 
5100 cycles

Ramachandran and 
Hamed (2018)

39 Polyaniline–CuCo2O4 1 M KOH 403 C g−1 76 W h kg−1 
599 W kg−1

94% retention after 
3000 cycles

Omar et al. (2017)

40 Carbon black/
NiCo2O4

1 M KOH 604.4 C g−1 33.7 W h kg−1

12.2 kW kg−1
~90% retention after 

50,000
Zha et al. (2017)

41 Carbon fiber paper@
NiCo2O4/graphene 
foam

2 M KOH 254 F g−1 34.5 W h kg−1

547 W kg−1
92.2% retention after 

10,000 cycles
Tang et al. (2015a)

42 NiCo2O4–reduced 
graphene oxide

2 M KOH 870 F g−1 – 90% retention after 
5000 cycles

Umeshbabu et al. 
(2015)

43 NiCo2O4@MnO2 1 M NaOH 112 F g−1 35 W h kg−1 ~113.6% retention 
after 8000 cycles

Xu et al. (2014)

44 Carbon nanotube@
NiCo2O4

6 M KOH 1038 F g−1 19.7 W h kg−1

62.5 W kg−1
100% retention after 

1000 cycles
Cai et al. (2014b)

45 FeCo2O4 3 M KOH 407 F g−1 F g−1 3 W h kg−1

3780 W kg−1
142% retention after 

2000 cycles
Pendashteh et al. 

(2015)
46 NiCo2O4@poly(3,4-

ethylenedioxypyr-
role)

NiCo2O4 1775 F g−1 898 W h kg−1

1.25 kW kg−1
~ 95% retention after 

5000 cycles
Deshagani et al. (2019)

47 MnCo2O4@graphene 1 M KOH 406.50 F g−1 F g−1 20.32 W h kg−1

300 kW kg−1
95% retention after 

5000 cycles
Saren et al. (2019)

48 CoO/NiCo2O4 2 M KOH 908 F g−1 – 75% retention after 
3000 cycles

Jang et al. (2015)

49 LaMnO3 0.5 M  Na2SO4 520 F g−1 52.5 W h kg−1

1000 W kg−1
117% retention after 

7500 cycles
Shafi et al. (2018)

50 La0.85Sr0.15MnO3 1 M KOH 198 F g−1 – 78% retention after 
1000 cycles

Wang et al. (2016b)

51 (La0.75Sr0.25)0.95Mn
O3−δ

1 M  Na2SO4 56 F g−1 F g−1 – 98% retention after 
1000 cycles

Lü et al. (2015)

52 SrRuO3 1 M KOH 52.4 F g−1 – 77.8% retention after 
1000 cycles

Galal et al. (2018)

53 LaxSr1−xNiO3−δ 1 M  Na2SO4 719 F g−1 81.4 W h kg−1

500 W kg−1
90% retention after 

2000 cycles
Cao et al. (2015b)
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a current density of 1 mA cm−2 the specific capacitance 
reached its maximum value of 123 F g−1.

Cobalt sulfide

Cobalt sulfide  CoS2 has many advantages in the field of 
supercapacitors as it is readily available raw materials, easy 
to synthesize and environment-friendly material, in addition 
to its high electrical conductance with plenty of sites avail-
able for redox reactions to occur (Li et al. 2016a). Several 
nanostructured electrode materials based on CoS have been 
prepared for utilization in the area of energy storage and 
supercapacitors. Recently, Govindasamy et al. (2019b) used 
the hydrothermal method to spread nanostructured nickel 
cobaltite sulfide/cobalt sulfide on a piece of carbon cloth 
in a two-step process as shown in Fig. 12. The prepared 

nickel cobaltite sulfide/cobalt sulfide exhibits a good specific 
capacitance of 1565 F g−1 at a current density 1 A g−1 and 
retained 91% of its initial SC after a number of 8000 cycles 
at a current density 1 A g−1. At a power density value of 
242.8 W kg−1, the energy density value was 17 W h kg−1.

Iron sulfide

Being reasonably priced, exhibiting very good electrical 
conductivity and possession of an excess of active sites; Iron 
sulfide  (FeS2) has attracted the interest of many researchers 
for its potential use in energy storage applications (Zhao 
et al. 2017a; Pham et al. 2018; Yu et al. 2018). A huge num-
ber of supercapacitors based on nanocomposites of  FeS2 
as an electrode material has been prepared with a variety 
of interesting morphologies and structures. For example, 

Table 1  (continued)

No. Materials Electrolyte Specific capacitance Energy density and 
power density

Cyclic stability References

54 Reduced graphene 
oxide/LaAlO3

1 M KOH 283 F g−1 F g−1 57 W h kg−1

569 W kg−1
74% retention after 

5000 cycles
Vinuth Raj et al. (2020)

55 La0.8Nd0.2Fe0.8Mn
0.2O3/nitrogen-doped 
graphene oxide

3 M KOH 1060 F g−1 – 92.4% retention after 
1000 cycles

Rezanezhad et al. 
(2020)

56 SrTiO3 3 M KOH 592 F g−1 27.8 W h kg−1

1921 W kg−1
99% retention after 

5000 cycles
Tomar et al. (2019)

57 Ag@La2NiO4+δ 1 M KOH 466.4 C g−1 44.7 W h kg−1

800 W kg−1
93% retention after 

10,000 cycles
Wei et al. (2019)

58 Ag@La0.7Sr0.3CoO3−δ 1 M KOH 517.5 F g−1 52.0 W h kg−1 85.6% retention after 
3000 cycles

Liu et al. (2017a)

59 LaMnO3@NiCo2O4 6 M KOH 811 C g−1 36.6 W h kg−1

800 W kg−1
96% retention after 

2000 cycles
Tian et al. (2019)

60 BiYO3/reduced gra-
phene oxide

6 M KOH 696 F g−1 91% retention after 
2000 cycles

Selvarajan et al. (2020)

Fig. 11  Hydrothermal synthesis of the nickel cobaltite sulfide/nickel sulfide nanocomposite
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Balakrishnan et al. (2019) fabricated a hybrid supercapacitor 
based on  FeS2 and reduced graphene oxide hydrothermally. 
The prepared hybrid supercapacitor has a much greater 
value of specific capacitance than pure iron sulfide (i.e. the 
difference was 21.28 mF cm−2 under the same conditions). 
Moreover, at a current density of 0.3 mA cm−2, it retained 
90% of its initial SC after 10,000 cycles. Figure 13 shows the 
Scanning electron microscopy images for the preparation of 
the hybrid supercapacitor.

Molybdenum disulfide

Molybdenum disulfide  (MoS2) is cheap, simply prepared 
in nanosheet form, with very high surface area and excel-
lent conductivity (Liu et al. 2016c; Palsaniya et al. 2018). 
Owing to these excellent properties,  MoS2 and its based 

nanocomposites have been extensively studied in many fields 
and applications like catalysis, energy storage, supercapaci-
tors, and Li-ion batteries (Osman et al. 2018).

As an example, Yang et al. (2017) used the hydrothermal 
reaction pathway with glucose assistance to manufacturing 
an asymmetric supercapacitor in the form of hierarchical 
arrays of NiS based on  MoS2 nanosheets on a backbone of 
carbon nanotubes as shown in Fig. 14. The prepared elec-
trode demonstrated a specific capacitance of 676.4 F g−1 at 
1 A g−1, and the retained capacitance percentage was 100% 
at a current density of 5 A g−1 after 2000 cycles.

Another example is the hydrothermal synthesis of a 
novel nanocomposite based supercapacitor of molybdenum 
disulfide and graphitic carbon nitrides (g-C3N4/MoS2) in a 
flower-like shape by Xu et al. (2019b). The specific capaci-
tance of this supercapacitor was 532.7 F g−1 at 1 A g−1 and 

Fig. 12  Fabrication of nickel cobaltite sulfide/cobalt sulfide coated 
over carbon cloth, a part of carbon cloth was put in the uniform solu-
tion and hydrothermally heated at 120 °C, and gradually reduced its 
temperature. The Cobalt tetraoxide  Co3O4/carbon cloth was washed 

and dried overnight. Lastly, the samples were calcined at 200  °C. 
Adapted with permission from Govindasamy et  al. (2019b). Copy-
right (2019) Elsevier
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retained 88.6% of its initial capacitance after 1000 lifecycles. 
These superior electrochemical characteristics may be attrib-
uted to the synergetic action between flowery  MoS2 and the 
nanosheets of graphitic carbon nitrides (see Fig. 15) which 
facilitates the charge-transfer process.

Recently, Manuraj et al. have synthesized a nanocom-
posite hetero-structured solid substance comprising of 
molybdenum sulfide,  MoS2, nanowires and  RuO2 nanopar-
ticles via hydrothermal and chemical reduction procedures. 
In a three-electrode configuration, the  MoS2–RuO2 hybrid 
electrode shows specific capacitance reached 972 F g−1 at 
1 A g−1, while, in the two-electrode configuration, its pre-
sented 719 F g−1 as presented in Fig. 16. Furthermore, the 
symmetric supercapacitor based on the composite elec-
trodes shows high cycling stability which retained about 
100% from its initial capacitance after 10 × 103 cycles. Also, 
 MoS2–RuO2 hybrid electrode shows a high energy density 
value of 35.92 W h kg−1 at power density 0.6 kW kg−1.

Tin sulfides

Many studies have been performed to enhance the electro-
chemical activities of tin sulfides (SnS and  SnS2), using 
numerous approaches. These include doping with metal or 

non-metal ions, use of a carbon matrix and material engi-
neering into nanostructured forms of tin sulfides and their 
nanocomposites to apply them as electrochemical capacitors 
(Mishra et al. 2017; Wang et al. 2015b). Recently, Parveen 
et al. (2018) synthesized  SnS2 in different shapes of nano-
structures like; ellipsoid tin sulfide (EL-SnS2), flower-like 
(FL-SnS2), and sheet-like (SL-SnS2). The flower-like tin 
sulfide was the most promising one with small pore size and 
larger surface area exhibiting 432 F g−1 of specific capaci-
tance at 1 A g−1.

Manganese sulfide

Manganese sulfide (MnS) is also a cheap, naturally abun-
dant, environmentally friendly compound and theoretically, 
it possesses a high supercapacitance and electrical conduc-
tivity due to its various oxidation states ranging from + 2 to 
+ 7 (Palaniyandy et al. 2019). Moreover, MnS is present in 
three polymorphic states: α (cubic), β (cubic), and γ (hex-
agonal) (Yu et al. 2016). A summary of some of the most 
recent work on MnS is shown in Table 2.

Fig. 13  Scanning electron microscopy (SEM) images of a, b micro flowers of  FeS2 and c, d microspheres of reduced graphene oxide/iron sulfide 
hybrid. Adapted with permission from Balakrishnan et al. (2019). Copyright (2019) Elsevier



399Environmental Chemistry Letters (2021) 19:375–439 

1 3

Tungsten sulfide

Tungsten sulfide  (WS2) is again abundant in nature and is 
found as hexagonal crystals belonging to the space group 
P63/mmc (Eftekhari 2017).  WS2 crystals are forming rela-
tively brittle, restacked nanosheets with slight electrical con-
ductivity, restricting its application as a supercapacitor (Xia 
et al. 2018). Hence, many approaches have been followed 
to enhance its electrochemical performance, such as dop-
ing with binary metals, non-metals, carbon materials and 
conducting polymers (Xia et al. 2018).

Choudhary et al. (Choudhary et al. 2016) prepared a 
nanowire of tungsten(VI) oxide  (WO3) and comprised it 
with a tungsten sulfide  (WO3/WS2) core/shell structure. 
They used a foil of W and applied KOH on its surface to 
promote its oxidation at 650 °C, forming a hexagonal sin-
gle crystal of  WO3 (h-WO3), followed by a sulfurization 
process to finally form h-WO3/WS2 nanowires as illustrated 

in Fig. 17. The synthesized hybrid supercapacitor demon-
strated superior electrochemical characteristics and losses 
a negligible percentage of its primary capacity after 30,000 
lifecycles.

Carbon materials for supercapacitors 
applications

Carbon-derived materials hold numerous benefits such as 
great quantity in raw materials (abundance), thermal stabil-
ity, value-added chemicals, ease of processing and modifica-
tion. Consequently, they have displayed countless attention 
and high potential in different energy-related applications 
(Wang et al. 2008, 2018a; Meng et al. 2014; Li et al. 2016c; 
Jiang et al. 2012; Osman et al. 2019a, b, 2020a, b; Osman 
2020; Chen et al. 2019b). Mesoporous carbon materials con-
sider as promising targets for advanced applications due to 

Fig. 14  a Synthesis process of nickel sulfide/molybdenum disulfide/carbon nanotube. b Pathways of electron transport in the nickel sulfide/
molybdenum disulfide/carbon nanotube supercapacitor. Adapted with permission from Yang et al. (2017). Copyright (2017) Elsevier
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their exceptional features, which enables them to engross 
universal apprehension over the last few decades (Qiang 
et al. 2017; Zhang et al. 2017c; Sevilla et al. 2017; Wang 
et al. 2006; Hooch Antink et al. 2018). There are several 
physical arrangements for mesoporous carbons, containing 
nanoparticles (Górka and Jaroniec 2010; Lee et al. 2011), 
nanosheets (Wang et al. 2018a; Li et al. 2017b; Ding et al. 
2013), nanotubes (Osman et al. 2019a, 2020a, b; Guo et al. 
2011), nanofibers (Wu et al. 2015b), etc., which can adapt 
with several categories of industrial applications. Addition-
ally, there are different pore size in the nanostructures of 
mesoporous carbons, including micropores, mesopores and 
macropores, which is of noteworthy prominence for their 
supercapacitor application.

Several preparation pathways, including nanocast-
ing direct synthesis strategies, were studied to obtain 

mesoporous carbon materials with different particle struc-
tures via several reaction pathways (Fig. 18), which all have 
separate advantages and disadvantages (Li et al. 2016d).

Nanocasting method showed the best ability, compared 
to direct synthesis methods, to prepare unvarying dispersed 
mesopores in carbon materials with attracting features to 
produce highly symmetric mesoporous inorganic solid 
substances as appropriate templates in the energy storage 
application. Interestingly, mesoporous inorganic substances 
can reproduce their internal structures in nanoporous carbon 
construction with promising distributed mesoporosity. The 
nanocasting techniques for creating mesoporous carbons 
involved two advanced procedures, the hard and soft tem-
plating approaches. Commonly, the nanocasting technique 
is a relatively predictable templating progression. Notwith-
standing that the synthesized mesoporous carbons have 

Fig. 15  Morphology of a graphitic carbon nitrides g-C3N4/MoS2 
nanocomposite. a SEM image, b TEM, c HR-TEM, d sketch of the 
graphitic carbon nitrides/MoS2 nanocomposite structure, As observed 
in the figure, a more uniform and smooth molybdenum disulfide 
structure performed without aggregation. TEM confirms that most 
of the molybdenum disulfide are grown on the surface of the gra-

phitic carbon nitrides, which means that the graphitic carbon nitrides 
sheets give beneficial sites for the extension of the molybdenum 
disulfide.  SEM: scanning electron microscopy, TEM: transmission 
electron microscopy, HR: high resolution. Adapted with permission 
from Xu et al. (2019b). Copyright (2019) Elsevier
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inimitable physical and chemical features, the large-scale 
production has quite a few drawbacks.

High-performance supercapacitor electrode 
material via 3D carbon nanosheet

Due to the high cost of graphene and its derivatives, three-
dimensional porous carbon nanosheets, synthesized via 
facile methods, have received attention for large scale 
applications because of their largely opened layer, excel-
lent electronic transportation ability and high specific sur-
face area. The obtained results for the prepared bark-based 
carbon demonstrates specific features toward a remarkable 
function in energy storage. The as-fabricated bark-based 
carbon-700-based supercapacitors exhibit an enchanting 
capacitance, exceptional capacitance retention and attrac-
tive energy density for supercapacitor application systems. 
The universal method of preparing a carbon nanosheet from 
bark, which exists in a tree’s construction is considered as 
environmentally friendly (as schematically shown in Fig. 19) 
(Li et al. 2019e), can be very succinct, as the bark contains 
the periderm as well as the lignin that oriented hollow tube 

cellulose fibers (Keränen et al. 2013; Sun et al. 2018b; Chen 
et al. 2018b).

Additionally, Fig. 20a illustrates the main structure of 
untreated bark that confirms the distribution of both abun-
dant pores as well as different sizes in the raw materials, The 
pollen can be activated and the spherical porous structure 
of the materials kept as it is while using copper salts in the 
preparation pathway to synthesize the carbon nanosheet (Liu 
et al. 2018g). The SEM images of bark-based carbon 700 °C 
are demonstrated in Fig. 20b, c, which confirm the formation 
of a typical flower-like carbon structure with outstanding 
three-dimensional vertical carbon structure through the car-
bon nanosheet. As well, the TEM image (Fig. 20d) was used 
for the confirmation of the texture for the obtained bark-
based carbon samples, in which the thin nanosheet struc-
ture of the as-prepared material was undeniably discovered. 
In addition, the  N2 adsorption–desorption measurements, 
through curves in Fig. 20e, were used to detect the obtained 
samples microstructures. The hysteresis loops located at 
0.4–0.9 P/P0 disclose the existence of the mesoporous (Chen 
et al. 2019c). The pore size distribution curves premeditated 
from density-functional theory are represented in Fig. 20f, 

Fig. 16  Cyclic voltammetry curves of a molybdenum disulfide, b 
molybdenum disulfide/ruthenium oxide, c capacitance s. scan rate. 
c Galvanostatic charge/discharge curves of d molybdenum disulfide, 
e molybdenum disulfide/ruthenium oxide, f capacitance versus cur-
rent density, The figures display two of redox peaks, which designate 
the high performance of the material matching to the introduction 

and parentage of electrons. At higher scan rates, peaks are moved 
as the ions may be bound over the electrode surface, at lower scan 
rates, the ions could efficiently migrate into the internal active posi-
tions. Adapted with permission from Manuraj et al. (2020), Copyright 
(2020) Elsevier
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Table 2  Electrochemical characteristics of transition metals sulfide-based nanocomposite electrodes for supercapacitor applications

Electrode composition Electrolyte Current 
density 
(A g−1)

Capacitance (F g−1) Percent of 
retained specific 
capacitance %/
no. of cycles

Energy density (W h kg−1)/power 
density (kW kg−1)

References

MoS2–graphene 1 M  Na2SO4 1 243 92.3/1000 73.5/19.8 Huang et al. (2013a)

MoS2/carbon aerogel 1 M  Na2SO4 1 260 96/500 Huang et al. (2015b)

3D-MoS2/chemically modi-
fied graphene

1 M  Na2SO4 1 257 93/1000 Yang et al. (2015)

s-MoS2/carbon nanotube 1 M  Na2SO4 0.1 108 7.4/3.7 Khawula et al. (2016)

MoS2/graphene foam//
activated carbon prepared 
via expanded graphite

1 59 95/2000 16/0.758 Masikhwa et al. (2017)

MoS2@microporous 
carbons

1 M  H2SO4 10 145 98/3000 Weng et al. (2015)

Reduced graphene oxide/
MoS2

10 mV s−1 298.81 90/500 Murugan et al. (2017)

MoS2/carbon 1.6 182.9 94.1/1000 Fan et al. (2015)

Carbon nanotube@MoS2 1 M  Na2SO4 1 350.6 85/10,000 Sun et al. (2017)

G wrapped carbon nano-
tube@MoS2

5 350 94.3/10,000 Sun et al. (2017)

MoS2/mesoporous carbon 
spheres

1 M  Na2SO4 1 411 93.2/1000 Zhang et al. (2017a)

Carbon fiber tows/MoS2 10 272 3.67 mW h g−1/33.21 m W g−1 Gao et al. (2016b)

Carbon nanotube/MoS2 
nanosheet

5 mV s−1 135 F cm−3 95/1000 Luo et al. (2015)

MoS2/reclaimed carbon 
fiber

1 M  Na2SO4 4 112 78.6/2000 Zhao et al. (2018)

MoS2/reduced graphene 
oxide membrane on Ti 
Mesh 5:1

10 mV s−1 17.6 mF s−1 Lamberti (2018)

MoS2/three-dimensional 
graphene

20 A cm−2 2080 F cm−2 116.83/5000 Han et al. (2018)

MoS2@N-doped carbon 1 M  Na2SO4 1 276 90.59/6000 Cui et al. (2017)

Electrospun  MoS2@C 
nanofiber

6 M KOH 5 mV s−1 355.6 93/2000 Kumuthini et al. 
(2017)

MoS2-coated three-dimen-
sional graphene network

3 M KOH 10 1825.24 110.57/4000 Zhou et al. (2017)

MoS2/graphene nanobelts 2 278.07 96.75/1000 Jia et al. (2017)

MoS2/C 2 290 132.4/5000 Lee et al. (2017)

MoS2/reduced graphene 
oxide

2 M KOH 10 mV s−1 314.5 80.02/1000 Awasthi et al. (2018)

MoS2-hollow carbon sphere 0.5 M  H2SO4 1 334 87/5000 Liu et al. (2018d)

Carbon–MoS2 nano-sphere 3 M KOH 10 760 96/20,000 Luo et al. (2018)

MoS2 nanosheets/reduced 
graphene oxide

1 M  H2SO4 100 mV s−1 1.501 mF cm−2 95/1000 5.71 mW h cm−2/54.1 mW cm−2 Dutta and De (2018)

Polyaniline/MoS2 1 M  H2SO4 1 575 98/500 265/18 Huang et al. (2013b)

Polyaniline/A-MOS2 1 M  H2SO4 10 405 88.6/1000 33.33/8 Zha et al. (2017)

Polyaniline/C-MoS2 10 367 75.1/1000 27.11/8 Zha et al. (2017)

MoS2/polypyrrole 5 157 96.47/1000 Chang et al. (2017)

M-MoS2/polyaniline 10 337 80/2500 Ansari et al. (2017)

C-MoS2/polyaniline 1 225.15 Ansari et al. (2017)

C-MoS2/polyaniline-20 
 MoS2 20%

1 M  H2SO4 8 480 90/900 Wang et al. (2017b)

MoS2/polypyrrole-
nanowire

MoS2:polypyrrole 1:5

3 350 82/2000 25.5/266.3 Chen et al. (2017a)

MoS2–polyethylenedioxy-
thiophene three configu-
ration cells

2 M HCl 5 mV s−1 452 Alamro and Ram 
(2017)

MoS2–polyethylenedioxy-
thiophene two configura-
tion cells

2 M HCl 5 mV s−1 360 Alamro and Ram 
(2017)
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Table 2  (continued)

Electrode composition Electrolyte Current 
density 
(A g−1)

Capacitance (F g−1) Percent of 
retained specific 
capacitance %/
no. of cycles

Energy density (W h kg−1)/power 
density (kW kg−1)

References

MoS2/polyaniline@C 1 668 80/10,000 Yang et al. (2016)

MoS2/polypyrrole 10 mV s−1 720 85/4000 Tang et al. (2015b)

1T-MoS2/polyaniline-62 
60 g  MoS2

0.5 M  H2SO4 10 340 91/2000 Zhao et al. (2017b)

Macroporous-polyaniline 
nanorods@MoS2

10 433 86.7/2000 43.3/6 Wang et al. (2017c)

Polypyrrole/MoS2 1 895.6 98/10,000 3.774/252.8 Lian et al. (2017)

Polyaniline-few-layer  MoS2 10 200 93/2000 128/0.494 Raghu et al. (2018)

Ni3S2@MoS2 8 791.2 91/2000 Wang et al. (2014c)

Ni3S4–MoS2 10 733 78/20,000 Luo et al. (2017)

Co3S4–MoS2 10 754 82/20,000 Luo et al. (2017)

Ni3S4–MoS2//AC 10 60 86.2/10,000 18.75/7.5 Luo et al. (2017)

Bi2S3/MoS2 10 mA cm−2 1.48 F cm−2 96.5/1000 Ma et al. (2017)

MoS2/Mn3O4 1 172 69.3/2000 Wang et al. (2016c)

MoS2–NiO 2 1030 101.9/9000 Wang et al. (2017d)

MoS2–Co3O4 1 1088.5 93/6000 Wang et al. (2017d)

MoS2–WO3 1 M  Na2SO4 2 468 95/5000 Gong et al. (2018)

NiFe2O4/MoS2 1 M KOH 5 300 90.7/3000 Zhao et al. (2017c)

Bi2S3 nanorod/MoS2 
nanosheet

10 1553 92.65/5000 Fang et al. (2017)

MoS2@3D-Ni-foam 3 mA cm−2 3400 mF cm−2 82/4500 Nandi et al. (2017)

Ag@MoS2 2 M KOH 1 980 97/5000 Wu et al. (2017)

MoS2/CoS2 nanotube 
arrays

1 mA cm−2 142.5 mF cm−2 92.7/1000 13.25/0.05 Wang et al. (2017e)

MoS2 nanosheet arrays@
Ti plate

1 M KCl 1 133 93/1000 11.11/0.53 Wang et al. (2017f)

MoS2 nanospheres  (SiO2@
MoS2)

2 M KOH 1 683 85.1/10,000 Gao et al. (2018b)

CoS2@MoS2 5 885 84.76/10,000 Huang et al. (2018b)

MoS2–CoSe2 20 896 91.3/5000 60/0.800 Fang et al. (2018)

Ag nano-wires-MoS2 0.05 V−1 18 mF cm−2 96.3/20,000 Li et al. (2019c)

Ni3S2@MoS2 (0.75 mM 
sodium molybdate

6 M KOH 5 836.4 75.8/1250 Huang et al. (2017b)

MoS2–rGO/multiwall 
carbon nanotube  (MoS2 
6.3%)

1 M  H2SO4 0.5 A cm−3 4.8 F cm−3 100/7000 Sun et al. (2015)

MoS2/polyaniline/graphene 20 476 96/2000 Sha et al. (2016)

Polyaniline/carbon nano-
tube/MoS2,  MoS2 5%

10 289 68/2000 Thakur et al. (2017)

C@Ni3S2@MoS2 10 1388 71.4/10,000 Li et al. (2016b)

Ni3S4@MoS2 5 833 96.2/5000 Huang et al. (2017a)

MoS2/Fe3O4/physical 
exfoliated graphite

1 M  H2SO4 6 665 96/2200 Sarno and Troisi 
(2017)

Polyindole/carbon black/
MoS2

1 442 92.3/5000 2.11/0.135 Majumder et al. (2017)

MoS2@carbon nanotube/
reduced graphene oxide

1 M  H2SO4 10 mA cm−2 96 mF cm−2 96.6/10,000 Wang et al. (2017g)

MoS2 nanowires/NiCo2O4//
active carbon

6 21 98.2/8000 18.4/12.002 Wen et al. (2018)

NiCo2S4–C–MoS2 6 M KOH 0.5 1601 75/2000 27.7/0.400 Zhang et al. (2018a)

MoS2/MoOx@activated 
carbon cloth

5 mV s−1 230 128/1500 Sari and Ting (2018)

C@MoS2/Ni3S4 2 M KOH 20 468.6 136.7/10,000 Qin et al. (2018)

Multwall carbon nanotube/
polyaniline/MoS2

1 M  H2SO4 1 490 73.71/3000 Zhang et al. (2018c)

Reduced graphene oxide–
MOS2–WS2

1 365 70/3000 15/0.373 Lin et al. (2018)



404 Environmental Chemistry Letters (2021) 19:375–439

1 3

Table 2  (continued)

Electrode composition Electrolyte Current 
density 
(A g−1)

Capacitance (F g−1) Percent of 
retained specific 
capacitance %/
no. of cycles

Energy density (W h kg−1)/power 
density (kW kg−1)

References

Co9S8@N–C@MoS2
Nanocubes

3 M KOH 10 410 101.7/20,000 Hou et al. (2018)

MoS2/polyaniline/reduced 
graphene oxide hierarchi-
cal nanosheets

10 330.7 81.9/40,000 Chao et al. (2018)

3D  Ni3S2 1 M KOH 5 626.1 Zhang et al. (2014)

Ni3S2 1 M NaOH 50 1000 Chen et al. (2017b)

NiCoS 1 M KCl 5 1513 Sami et al. (2017)

Carbon nanofibers-NiS 2 M KOH 1 177.1 mA h g−1 Xu et al. (2018b)

NiCo2S4 1 M KOH 10 mV s−1 1155 Kim et al. (2017)

NiCo2S4@NiO 3 M KOH 1 mA cm−2 12.2 F cm−2 Huang et al. (2016c)

Quadruple-shelled  CoS2 2 M KOH 1 375.2 Jia et al. (2019)

Hollow  CoS2 2 M KOH 1 936 Ren et al. (2019)

Hierarchical  CoS2 2 M KOH 1 718.7 Xing et al. (2014a)

Octahedron-shaped  CoS2 2 M KOH 1 236.5 Xing et al. (2014b)

3D hollow  CoS2 6 M KOH 0.5 499 Zeng et al. (2017)

CoS2 nanodendrites 2 M KOH 1 311.06 Zhang et al. (2016d)

CoS2-multiwall carbon 
nanotube

1 M NaOH 1 1486 Sarkar et al. (2018)

Pyrite  FeS2 1 M  Na2SO4 3 317.8 Chen et al. (2016b)

FeS2–carbon nanofiber 30 wt% KOH 1 406 Sridhar and Park 
(2018)

FeS2 2 M KOH 1 515 C g−1 Sun et al. (2019a)

Co0.33Fe0.67S2 3 M KOH 2 mV s−1 310.2 C g−1 Liu et al. (2018a)

FeS2@Fe2O3 1 M  Li2SO4 1 255 Gao et al. (2016a)

Reduced graphene oxide/
FeS

2 M KOH 3.3 300 Zhao et al. (2017d)

MoS2@carbon nanotubes/
Ni

1 M  Na2SO4 1 512 Sun et al. (2019b)

MoS2/carbon nanotubes-
MnO2

1 M  Na2SO4 0.8 365.6 Zhang et al. (2019b)

MoS2/carbon nanotubes 1 M  Na2SO4 1 402 Chen et al. (2018a)

MoS2/C@reduced gra-
phene oxide

1 M  Na2SO4 1 340.0 Liu et al. (2019)

NiS/MoS2@N-reduced 
graphene oxide

6 M KOH 1 2225 Xu et al. (2019c)

MoS2-reduced graphene 
oxide@polypyrrole 
nanotubes

1 M KCl 1 1561.25 Sarmah and Kumar 
(2018)

MoS2/poly(ethyleneimine–
graphene oxide

6 M KOH 1 153.9 Liu et al. (2018e)

MoO2/MoS2 1 M  Na2SO4 1 383.5 Zhang et al. (2016e)

MoS2/3D-Ni foam Na2SO4/PVA solid 1.3 34.1 Mishra et al. (2019)

Co9S8/α-MnS@N–C@
MoS2

2 M KOH 1 1938 Kandula et al. (2018)

Carbon black-SnS 1 M KOH 0.1 201 Barik et al. (2019)

SnS2/reduced graphene 
oxide

2 M  Na2SO4 0.5 500 Chauhan et al. (2017)

SnS/S-doped graphene 
hybrid nanosheets

6 M KOH 1 642 Liu et al. (2017b)

Mo–SnS2 3.5 M KOH 1 213 Ma et al. (2015)

Mn–SnS2–graphene 
aerogels

6 M KOH 5 mV s−1 523 Chu et al. (2018)

SnS2@Cu2O/reduced 
graphene oxide

1 M KOH 0.6 1800 Hatui et al. (2017)

SnS2–SnO2 0.5 M  Na2SO4 2 149 Asen et al. (2019)
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which demonstrated the same pore structure with pores sizes 
principally determined at 0.8 and 1.2 nm. Reasonably, the 
current study can conclude that both treatment temperatures, 
as well as the hard template, are indispensable factors toward 
obtaining porous carbon nanosheets via biomass.

The performance of the as-prepared carbon nanosheet 
can be obtained via the electrochemical activity measure-
ments by applying these materials in the supercapacitor. 
Figure 21a confirmed the obtained capacity ability curves 
of bark-based carbon at 700 °C, which proposes remain-
ing capacitor activities of the bark-based carbon at 700 °C. 
Moreover, the galvanostatic charge/discharge, as well as 
specific capacitances results, are developed to consider the 
capacity implemented as an electrode material (Fig. 21b, 
c). The results indicated that bark-based carbon at 700 °C 
displays an exceptional capacitance around ~ 340.0 F g−1, 
comparing to that of bark-based carbon at 600 °C around 
⁓290 F g−1 and finally bark-based carbon at 800 °C dis-
plays capacity 309 F g−1. Likewise, Fig. 21d illustrates the 

electrochemical impedance spectroscopy analysis of bark-
based carbon samples, which indicates related plot profiles 
that contain a semicircle and around vertical lines in low 
and high frequencies, respectively, to result in significantly 
better supercapacitor behavior. Thus, it can be established 
that bark-based carbon at 700 °C owns the lower values of 
resistance about 0.26 O, indicating the exceptional electro-
chemical performance of the 3D porous carbon nanosheet.

Graphene-based nanocomposites 
for supercapacitor applications

Graphene which exists in hexagonal assembly can be defined 
as a two-dimensional single layer of sp2 hybridized carbo-
naceous atoms. The number and arrangement of graphene 
layers determine the electronic characteristics of graphene. 
Additionally, interlayer ordering and the layer number with 
a different thickness could affect the chemical and physical 
characteristics of graphene.

Table 2  (continued)

Electrode composition Electrolyte Current 
density 
(A g−1)

Capacitance (F g−1) Percent of 
retained specific 
capacitance %/
no. of cycles

Energy density (W h kg−1)/power 
density (kW kg−1)

References

SnNi2S4 1 M KOH 2 1484 Chandrasekaran et al. 
(2018)

MnS/GO-NH3 2 M KOH 0.25 391 Tang et al. (2015c)

Graphene nanosheets—
manganese sulfide

3.5 M KOH 2 792 Vignesh et al. (2019)

MnS@reduced graphene 
oxide/Ni

3 M KOH 0.5 2220 Naveenkumar and 
Paruthimal Kalaig-
nan (2018)

γ-MnS/reduced graphene 
oxide

1MKOH/0.5MNa2 
S.9H2O/0.5 M Sulfur  
powders

5 802 Li et al. (2015)

γ-MnS/reduced graphene 
oxide

2 M KOH 1 548 Zhang et al. (2017b)

γ-MnS/reduced graphene 
oxide

6 M KOH 1 1009 Ranganatha and 
Munichandraiah 
(2018)

γ-MnS 0.5 M  Na2SO4 0.2 378 Li et al. (2019d)

α-MnS/N-reduced gra-
phene oxide

3 M KOH 1 934 Quan et al. (2016)

ZnS/MnS 3 M KCl 2 (mV s−1) 884 Arul et al. (2018)

CuS/MnS 3 M KOH 1 1144 Liu et al. (2018f)

WS2 1 M  H2SO4 40 mV s−1 86 mF cm−2 Liang et al. (2018)

WS2/reduced graphene 
oxide

1MKOH/0.5MKCl 1 mV s−1 2508 Tu et al. (2016)

WS2-multiwall carbon 
nanotubes

1 M  H2SO4 1 760 Gao et al. (2018c)

WS2/N,S-reduced graphene 
oxide

6MKOH 1 1562 Xu et al. (2019d)

ZnWO4/WS2 3MKOH 3 1281 Anitha et al. (2019)

CuWS/Ni 1 M  Li2SO4 10 mA 2667 Pazhamalai et al. 
(2019)
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Graphene has received great research attention owing 
to its extraordinary features. For instance, its powerful 
mechanical strength, porosity, large specific area, improved 
conductivity, and electrochemically active nature. Differ-
ent physical and chemical pathways can be used to attain 
graphene as well as several composite materials between 
graphene and other compounds that make graphene appro-
priate to improve the electrochemical activity of different 
materials for numerous applications like lithium-ion batter-
ies and supercapacitors. Graphene-derived materials possess 
a monumental potential for applications in broad areas such 
as conversion, electronics, energy storage and catalysis (Sun 
et al. 2011; Chen and Hsu 2011; Liu et al. 2012; Yu et al. 
2012; Shih et al. 2013; Zhang et al. 2012; Hou et al. 2013; 
Wang et al. 2013a; Girishkumar et al. 2010; Jin et al. 2013; 
Hassoun et al. 2012; Pan et al. 2013; Yang et al. 2013; Gao 
et al. 2012; Wang et al. 2013b; Zhang et al. 2013b; Zhu 
et al. 2012; Luo et al. 2012; Xu et al. 2013; Lin et al. 2013; 
Huang et al. 2012; Wang et al. 2011). Scheme 1 described 
the information on characteristics of graphene that enables 
its wide range of applications, and the features of graphene 
for different applications.

Graphene and their composites were widely employed 
for progress in supercapacitors. Where it has got signifi-
cant attention, attributed to its exceptionally surface area 
achieved ~ 2542.0 m2 g−1 and its unique electrical conduc-
tion characteristic. Also, one layer of G performs extraor-
dinary capacitance around ~ 20.0 μF cm−1 which is larger 
than other composites based on C materials. The highest 
energy density of the supercapacitors depends on various 

parameters namely; electrode nature, current collectors, 
separators, type, and density of electrolyte, working voltage 
window of the cell, and the retention performance (El-Kady 
et al. 2016). Graphene, as an electrode material, has a large 
enrichment to the performance of the supercapacitor. It owns 
numerous obvious shapes in all four dimensions as quantum 
dots, wires (one dimensional), films (two dimensional), and 
monoliths (three dimensional). Further to the four-dimen-
sional self-healing structure (Yadav and Devi 2020).

Graphene oxide material along with the reduced graphene 
oxide species are examined as possible electrode materi-
als for supercapacitors because of their remarkably great 
specific surface area, superior electrical conductivity, and 
exceptional mechanical properties (Wang et al. 2009; Ke and 
Wang 2016). Michael et al. have synthesized an asymmetri-
cal supercapacitor device based on graphene oxide via a sim-
ple screen-printing method. The capacitance was increased 
from 0.82 to 423 F g−1, after graphene oxide incorporation. 
The device exhibited a power density of about 13.9 kW kg−1 
at the energy density up to11.6 W h kg−1. Also, Zhang et al. 
(2016f) have successfully synthesized a reduced graphene 
oxide/nickel foam electrode via flame-induced reduction of 
dry graphene oxide onto nickel foam. The produced com-
posite material offers a specific capacitance that reaches 
228.6 F g−1 at 1 A g−1 and retained high cycling stability up 
to 94.7% after 10,000 cycles. The excellent performance is 
ascribed to the cross-linking disordered network along with 
the random distribution of the resulted pores that allows fast 
transport of ions to the active sites (Zhang et al. 2016f). 
Recently, Sahoo et  al. (2016) have synthesized a novel 

Fig. 17  a Fabrication of tungsten oxide/tungsten sulfide composites. 
b A photo of the studied system and nanowires image, The nanowires 
like structures of the crystalline Tungsten(VI) oxide are sulfurized in 
furnace supporting by sulfur medium via the chemical vapor deposi-

tion, which transforms the outside surface of the Tungsten(VI) oxide 
to two-dimensional Tungsten sulfide. Adapted with permission from 
Choudhary et al. (2016). Copyright (2016) American Chemical Soci-
ety
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porous ternary nanohybrid based on  NiMn2O4, reduced Gra-
phene oxide, and Polyaniline as an excellent supercapacitor 
electrode material. The  NiMn2O4/reduced graphene oxide/
polyaniline shows a specific capacitance of 757 F g−1 at 
1 A g−1. Further, the electrode presented the highest energy 
density of (70 W h kg−1) with retained about 93% after 2000 
cycles (Fig. 22). 

Mariappan et  al. (2019) have synthesized ternary 
hybrid nanocomposites with varying weight por-
tions of reduced graphene oxide/polypyrrole/Co fer-
rite and reduced graphene oxide/polypyrrole/Fe3O4 
by a hydrothermal procedure (Fig.  23). The specific 
capacitance for 37 wt% reduced graphene oxide/58 wt% 
Polypyrrole/5  wt%Fe3O4 (FO5), 32  wt% reduced 

Fig. 18  Mesoporous carbonaceous materials derived from various 
routes. Interestingly, mesoporous inorganic substances can repro-
duce their internal structures in nanoporous carbon construction with 
promising distributed mesoporosity. The nanocasting techniques for 

creating mesoporous carbons involved two advanced procedures, the 
hard and soft templating approaches. Adapted with permission from 
Ref. Li et al. (2016d). Copyright 2016 Springer Nature
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graphene oxide/54 wt% polypyrrole/14 wt%Fe3O4 (FO14), 
37 wt%rGO/58 wt% polypyrrole/5 wt% Co ferrite (CFO5), 
and 32  wt%rGO/54  wt% polypyrrole/14  wt%Co fer-
rite (CFO14) is reached to 261, 141, 108 and 68 F g−1 at 
1 A g−1, respectively. Between the studied samples, FO5 
presents high specific capacitance with excellent rate 
capacitance (163 F g−1). As an outcome, the FO5//AC cell 
shows the specific capacitance of 39 F g−1 with superior 
rate ability and excellent cycling performances. The energy 
density is observed to range between 18–4.2 W h kg−1 at 
a power density between 0.3–10.5 kW kg−1, respectively.

Also, the doping graphene with nitrogen is an efficient 
route to enhance its properties and therefore, it has been 
used in lithium-ion batteries and supercapacitors. During a 
nitrogen atom is doped into graphene, three public bonding 
arrangements within the carbon lattice, namely pyridinic N, 
pyrrolic N, and graphitic N (quaternary N) are seen (Fig. 24) 
(Wang et al. 2012; Yadav and Dixit 2017).

For the illustration of pyridinic N, one Nitrogen atom 
are replaced carbon matrix and then make chemical bonds 
with 2 Carbon atoms at the graphene edges gives a one-
electron (p) to the π system. The reason for naming Pyr-
rolic N attributes to that the nitrogen atoms give 2 electrons 
(p) to the π system and then create chemical bonds in the 
ring with the 5 neighbors of C atoms. Finally, quaternary 
nitrogen atoms that replace C atoms in the hexagonal ring. 
Among these N-types, pyrrolic N appears a sp3 hybridized 
while the other two types appear sp2 hybridized (Yadav and 
Devi 2020). The N-graphene displays various properties 

compared with pure graphene. For example, the spin den-
sity and charge arrangement of C atoms will be effected 
via the neighbor nitrogen substituents, which produces 
the activation region on the graphene surface (Wang et al. 
2012). Chen et al. (2013) have synthesized N-doped gra-
phene hydrogel via the hydrothermal approach. The fabri-
cated electrode exhibited extraordinary power density of 
205 kW kg−1 and retained about 92.5% capacitance after 
4000 cycles at100 A g−1. Recently, Rezanezhad et al. (2020) 
have synthesized the Mn–Nd co-doped  LaFeO3 perovskite 
NPs via the hydrothermal technique (Fig. 25). Subsequently, 
the system was incorporated with N-Graphene oxide nano-
sheets. The  La0.8Nd0.2Fe0.8Mn0.2O3 sample shows a higher 
specific capacitance of 158 F g−1. Also, it was observed that 
the incorporation of N-Graphene oxide mainly improves the 
specific capacitance of the nanocomposite to increase up to 
1060 F g−1. Additionally, the composite exhibited excep-
tional capacity retention as 92.4% after 10,000 cycles which 
higher than of those for the  La0.8Nd0.2Fe0.8Mn0.2O3 sample 
(85.37%).

Xu et  al. (2019c) have synthesized a NiS/MoS2@N-
reduced graphene oxide composite through the hydrother-
mal approach. The NiS/MoS2@N-reduced graphene oxide 
hybrid is employed as an electrode exhibiting an extraordi-
nary specific capacity (2225 F g−1; at 1 A g−1), and a high 
rate of 1347.3 F g−1 at 10 A g−1. Also, the NiS/MoS2@N-
reduced graphene oxide demonstrates unique capacitive 
property reached 1028 F g−1 at 1 A g−1. Further, it gives 
high energy density up to 35.69 W h kg−1 at good power 

Fig. 19  Preparation of 3D porous carbon nanosheet. The universal 
method of preparing a carbon nanosheet from bark, which exists in a 
tree’s construction is considered as environmentally friendly. Adapted 

with permission from Li et al. (2019e) Copyright© 2019, American 
Chemical Society
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601.8 W kg−1. Besides, it possesses excellent cycle stability 
where it retained about 94.5% from its original capacitance 
50,000 cycles (Fig. 26).

Conducting polymers

Conducting polymer hydrogels have been extensively-uti-
lized in the field of energy storage as supercapacitors owing 
to many promising and useful attributes like wonderful elec-
trochemical activities, good electrical conductivity, distinc-
tive solid–liquid interface, high stretchability, unique elastic 
resilience and good energy and power densities (Li et al. 
2018; Xu et al. 2020; Ma et al. 2019b; Qin et al. 2017; Wang 

Fig. 20  a–c SEM images of bark, bark-based carbon at 700 C, and 
flower-like carbon, respectively. Which confirm the formation of a 
typical flower-like carbon structure with outstanding three-dimen-
sional vertical carbon structure through the carbon nanosheet and d 

TEM image of the bark-based carbon at 700 C, e BET curves adsorp-
tion/desorption confirm mesoporous nature and f distribution of pore 
radius of bark-based carbon. Adapted with permission from Li et al. 
(2019e) Copyright © 2019, American Chemical Society



410 Environmental Chemistry Letters (2021) 19:375–439

1 3

et al. 2018b, 2019c). In this regard, the rationale of super-
capacitors based on conducting polymer hydrogels, current 
challenges and future directions were explained in light of 
many recent research reports.

Stretchable supercapacitors with good mechanical proper-
ties are seen as very promising power supplies for electronic 
devices (Wang et al. 2019c). Zhaokun Yang et al. used a 
phytic acid-assisted molecular bridge to fabricate super-
capacitors with high electrochemical activity and good 
mechanical properties through combining two kinds of 
conducting polymers, the poly(3,4-ethylene dioxythiophene) 
and polyaniline (Yang et al. 2019c). Phytic acid allowed 
the benzoic to quinoid structure’s transition. The obtained 
hydrogel possessed largely-improved mechanical charac-
teristics compared to poly(3,4-ethylene dioxythiophene), 
thanks to the molecular interaction between poly(3,4-ethyl-
ene dioxythiophene) and polyaniline. The recorded energy 
density was about 0.25 Mw h cm−3 at 107.14 mW cm−3 

power density. This good activity was attributed to many 
factors including, the partial removal of polystyrene sul-
fonate from poly(3,4-ethylene dioxythiophene) and its con-
version from benzoic to quinoid structure and the interaction 
between the employed polymers which allowed sustained 
electron and ion transfer and provided quick and revers-
ible redox reactions. Another asymmetrical supercapacitor 
based on manganese oxide nanoflakes-loaded on polypyrrole 
nanowires was reported by Weidong He et al. via a sim-
ple and eco-friendly method (He et al. 2017). The prepared 
core–shell structure had a large surface area and permit-
ted an efficient ion transfer due to the decreased distance 
of ion transmission. The synergistic impact of both  MnO2 
and polypyrrole led to a relatively-high specific capacitance 
of 276 F g−1 at 2 A g−1. In addition, capacitance retained 
ratio of about 72.5% was recorded at harsh charge/discharge 
circumstances of 200 F g−1 at 20 A g−1. Moreover, good 
flexibility and mechanical stability indicated by minimal 

Fig. 21  a Cyclic voltammetry 
and b the galvanostatic charge/
discharge curves of bark-based 
carbon versus current densities. 
c capacitances and d Nyquist 
plots of bark-based carbon 
samples. The results indicated 
that bark-based carbon (at 700 
°C) displays an exceptional 
capacitance comparing to those 
obtained of bark-based carbon 
(at 600  C0). Adapted with per-
mission from Li et al. (2019e) 
Copyright © 2019, American 
Chemical Society

Scheme 1  Graphene material 
along with their unique proper-
ties and various applications. 
Graphene-derived materials 
possess a monumental potential 
for applications in broad areas 
such as conversion, electronics, 
energy storage and catalysis 
(Mahmood et al. 2014)
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capacitance reduction, high energy density (25.8 W h kg−1 
at 901.7 W kg−1 power density), unique cycling stability 
of 90.3% at 3 A g−1 after 6000 cycles and a high voltage 
window of 1.8–2 V were obtained. The electrochemical 
characteristics of the prepared  MnO2@polypyrrole flexible 
supercapacitor, were collected and are shown in Fig. 27. 

To achieve further flexibility, Panpan Li et al. reported 
a macromolecular self-assembly-based method to develop 
a 3D Polyaniline/graphene hydrogel. The fabricated 3D 
Hybrid exhibited powerful interconnectivity and improved 
mechanical properties (Li et al. 2018). The suggested device 
showed high strain (around 40%) and achieved consider-
able energy density of 8.80 mW h cm−3 at 30.77 mW cm−3 
power density. In addition to that, the proposed supercapaci-
tor could avoid short-circuiting and effectively defeat large 
structural deformation.

Another comparative study to understand the role of 
conducting polymers in supercapacitors was carried out 
by Zichen Xu et al. where four different polymers includ-
ing Polyaniline, polypyrrole, poly(3,4-ethylene dioxythio-
phene) and polythiophene were loaded on a composite of 

zin sulfide and reduced graphene oxide as shown in Fig. 28 
(Xu et al. 2020). The investigated samples were fabricated 
via polymerization of the conducting polymers on ZnS/
reduced graphene oxide composite which was prepared by 
a hydrothermal route. All employed conducting polymers 
increased the specific capacitance and cyclic stability of the 
prepared composite. However, their result showed that the 
ZnS/reduced graphene oxide/polyaniline composite pos-
sessed the highest capacitance activity and cyclic stability. 
In the two-electrode configuration, the recorded stability and 
specific capacitances were 76.1% and 722 F g−1 at 1 A g−1, 
respectively after 1000 cycles. While, in the three-electrode 
system, the obtained specific capacitance and stability were 
1045.3 F g−1 and 160% at the same conditions. In addition, 
the maximum power and energy densities were 18 kW kg−1 
and 349.7 W h kg−1. This superior characteristic of the ZnS/
reduced graphene oxide/polyaniline composite was attrib-
uted to N and S active sites of this composite which fostered 
electrolyte penetration during cycling and allowed further 
active sites.

Fig. 22  Preparation of  NiMn2O4/reduced graphene oxide/polyani-
line displays the synthesis mechanism of the ternary nanocompos-
ite. Originally, the hydrothermal conditions induced the formation 
of  NiMn2O4 on the surface of graphene. Lastly, an in situ polymeri-

zation method was conducted to fabricate Polyaniline on the binary 
composite. Adapted with permission from Sahoo et al. (2016), Copy-
right (2016) Elsevier
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Fig. 23  Capacitive and diffusion measured capacitance parts for syn-
thesized ternary hybrid nanocomposites with varying weight por-
tions of reduced graphene oxide/polypyrrole/Co ferrite and reduced 
graphene oxide/polypyrrole/Fe3O4 a FO5, b FO14, c CFO5, and d 

CFO14. e, f Trasatti plot for evaluation the specific capacitance con-
tribution of the external surface of the electrode for all nanocompos-
ites. Adapted with permission from Mariappan et  al. (2019), Copy-
right (2019) Elsevier
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Highly-flexible, conducting polymer-based supercapaci-
tors were fabricated by Qingqing Qin et al. by employing 
polybenzimidazole of 100 megapascals tensile strength (Qin 
et al. 2017). In their study, graphite paper-coated activated 
carbon was integrated with the polybenzimidazole con-
ducting polymer. The obtained device showed low series 
resistance and very high capacitance retention stability more 
than 90% after 10,000 cycles. Besides, the electrochemical 
performance of the tested supercapacitors remained stable 
after twisting, bending and rolling; indicating their unique 
flexibility and mechanical damage-resistant reliability.

Stretchable electrodes are the basis of stretchable super-
capacitors. Xi Wang et al. reported the fabrication of stretch-
able electrodes based on polyaniline or poly(1,5-diaminoan-
thraquinone) polymers supporting acrylate rubber/multi-wall 
carbon nanotubes composite (Wang et al. 2018b). The pre-
pared acrylate rubber/multi-wall carbon nanotubes loaded 
on poly(1,5-diaminoanthraquinone) and acrylate rubber/
multi-wall carbon nanotubes loaded on Polyaniline exhib-
ited a large volumetric capacitance at 1 mA cm−2 of about 
20.2 F cm−3 and 17.2 F cm−3, respectively, as shown in 
Fig. 29. The unique energy density of about 2.14 mW h cm−3 
was obtained after assembling asymmetrical supercapaci-
tor by employing poly(1,5-diaminoanthraquinone)-loaded 
acrylate rubber/multi-wall carbon nanotubes as the anode 
and polyaniline-loaded acrylate rubber/multi-wall carbon 
nanotubes as the cathode. Moreover, capacitance retention 
of 86% at 30 mA cm−2 and good cycling stability after harsh 
strain conditions were achieved.

Carbon nanotubes have allowed the uniform distribution 
of conducting polymers without any need of binding com-
pounds or linkers. Besides, they possess excellent conduct-
ing and mechanical properties. Frackowiak et al. (2006), 

reported the fabrication of three different composites made 
of multiwall carbon nanotubes, polyaniline, polypyrrole and 
poly(3,4-ethylene dioxythiophene) conducting polymers. 
The prepared composites exhibited both pseudo-capacitance 
and electrostatic attraction. The employed multiwall carbon 
nanotubes allowed good mechanical properties and pre-
served the active materials of the tested conducting polymers 
from mechanical deformation during long cycling measure-
ments. A range of capacitance values from 100 to 330 F g−1 
was obtained at capacitance voltage 0.6–1.8 V using vari-
ous asymmetric configurations. This unique performance 
was attributed to the presence of multiwall carbon nano-
tubes which allowed high charge/discharge rates through an 
enhanced charge transfer.

A similar study was conducted by employing reduced 
graphene oxide sheets. Jintao Zhang et  al. reported the 
in situ polymerization of poly(3,4-ethylene dioxythiophene), 
polyaniline, and polypyrrole on the surface of reduced gra-
phene oxide (Zhang and Zhao 2012). Due to the synergic 
effect of conducting polymers and reduced graphene oxide 
sheets. The prepared nanocomposites displaced above 80% 
retained capacitance after 1000 cycles. In addition, reduced 
graphene oxide@polyaniline composite showed 361 F g−1 
specific capacitance at 0.3 A g−1 current density. While spe-
cific capacitances of 248 F g−1 and 108 F g−1 were recoded 
for reduced graphene oxide–polypyrrole and reduced gra-
phene oxide@poly(3,4-ethylene dioxythiophene) compos-
ites, respectively, as shown in Fig. 30.

Based on the electrostatic attraction between surfactants 
of positive charge and negatively-charged graphene oxide 
sheets, Zhang et al. reported a simple and cost-effective 
method for the preparation of graphene oxide@polypyr-
role sandwich structure (Zhang et al. 2010). The prepared 
composite showed a unique performance with a capacitance 
of 500 F g−1. High cyclic stability was also achieved. The 
reported properties were attributed to many factors includ-
ing, exfoliated graphene oxide which enabled many active 
sites for both sides’ conjugation of polypyrrole, the prepared 
3D structure enabled cyclic stability, resistance reduction by 
graphene oxide and polypyrrole which effectively-contrib-
uted to the overall capacitance.

Similarly, Wang et al. (2005) used the electrochemical 
route for synthesizing carbon nanotubes@polypyrrole com-
posite. The composite was prepared via polypyrrole plat-
ing into the host membrane’s pores. High conductivity (I–V 
relation) and stability were obtained as shown in Fig. 31.

Another configuration based on poly(N-phenylglycine) 
conducting polymer was reported by Vedi Kuyil et al. which 
was synthesized via in situ polymerization and N-phenyl-
glycine’s electrodeposition on exfoliated graphite sheets 
(Muniraj et al. 2020). The electrochemical performance of 
the investigated device showed a unique specific capacitance 

Fig. 24  Bonding configurations types of nitrogen atom doped gra-
phene. During a nitrogen atom is doped into graphene, three public 
bonding arrangements within the carbon lattice (Yadav and Dixit 
2017)



414 Environmental Chemistry Letters (2021) 19:375–439

1 3

at 10 mV s−1 of 367 mF cm−2. Interestingly, an outstand-
ing 8.36 μW h cm−2 energy was recorded at 1.65 mW cm−2 
power density using 1.1 V potential window.

Dirican et al. (2020) reported electrodeposition and elec-
trospinning-based method for the fabrication of Polyani-
line@MnO2@porous carbon nanofibers for supercapacitors. 

Fig. 25  Fabrication of N-graphene oxide from graphene oxide by hydrothermal technique. Adapted with permission from Rezanezhad et  al. 
(2020) Copyright (2020) Elsevier
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The proposed device combined the advantages of porous 
carbon nanofibers good cyclic stability, large conductivity 
of Polyaniline and  MnO2 nanoparticles’ high pseudocapaci-
tance. As a result, the prepared device exhibited high capaci-
tance of about 289 F g−1 and large retained capacitance of 
91% after 1000 cycles as shown in Fig. 32. Besides, the 
configuration of the asymmetrical cell showed an enhanced 
energy density of 119 W h kg−1 and 322 W kg−1 power 
density.

Recent studies on polymer-based supercapacitors are 
summarized in Table 3. 

Bibliometric analysis

Prior to the bibliometric analysis, preliminary Web of 
Science results showed there were only two publications 
in the last three years using the search criteria of TOPIC: 
(“supercapacitor”) AND TOPIC: (“transition metal”) AND 
TOPIC: (spinel ferrites) Timespan: Last 5 years. Indexes: 
SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, 
ESCI. Additionally, the document types are research arti-
cles, this indicates that there is a significant gap in the lit-
erature regarding spinel ferrites and transition metal ions 
(oxide or sulfide). On the other hand, using the search crite-
ria (TOPIC: (“supercapacitor”) AND TOPIC: (“conducting 
polymer”) over a similar time frame indicated 364 results 
for the conducting polymers, this clearly shows there is an 

Fig. 26  a 3 Dimensional NiS/MoS2@N-reduced graphene oxide 
composites schematic fabrication, b cyclic voltammetry curves versus 
scan rates. c The galvanostatic charge/discharge curves versus current 

densities. d Capacitances versus current densities. e Plots of Ragone. 
Adapted with permission from Xu et  al. (2019c), Copyright (2019) 
Elsevier
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abundant amount of research regarding conducting polymers 
as supercapacitors. Among the results, there are 323 research 
articles along with 28 review articles.

The bibliometric mapping of supercapacitors over the 
last 5 years showed 964 results using the search criteria 
(from Web of Science Core Collection) “TOPIC: (superca-
pacitor transition metal) OR “supercapacitor” over the last 
5 years. Again, as seen in Fig. 33 most of the research out-
puts are conducting polymers and graphene in the energy 
storage field. Another identified cluster (shown in green) is 
the growing field of composite materials used as superca-
pacitors. As seen in the density visualization map (Fig. 34), 
derived from bibliometric results, there are prominent key-
words that dominate the existing research. These include but 
not limited to graphene, nanostructure and Ni foam. Inter-
estingly, composites fall slightly outside the dense region.

Conclusion

Supercapacitors were employed for normal applications like 
memory protection and internal battery backup. However, in 
recent years, the application area has widened significantly 

toward hybrid carriers, smartphones, and energy collection. 
The latest technologies on the horizon encourage making 
and placing supercapacitors into direct competition with 
rechargeable batteries.

In this review, we selected various electrode materials 
such as spinel ferrites, perovskite oxides, transition metals 
sulfides, carbon materials, and conducting polymer materials 
and evaluated their performance and outlined their advan-
tages and disadvantages in the application of supercapaci-
tors. The current review highlights the available literature 
documented on the electrochemical activities of nanostruc-
tured of selected materials, their composites, and possible 
approaches to implementing these materials in Li-ion bat-
teries in the soon future.

The spinel ferrite and perovskite oxides based materi-
als present notable discharge capacities of 1000 mA h g−1, 
which is two to three times higher than that those obtained 
via graphite anodes (Yuvaraj et al. 2016; Yin et al. 2013). In 
magnetic oxides and through the initial discharging cycle, 
the crystal structure is destructed into different mineral par-
ticles following with the production of the  Li2O form. As 
performed mineral particles promote the electrochemical 
action using the production/destruction of  Li2O that supplies 

Fig. 27  a Cyclic voltammetry curves versus scan rates, b the galva-
nostatic charge/discharge versus current densities, c cycling stability, 
d Ragone plot, e cycling activity at various bending and f single and 

double supercapacitor the galvanostatic charge/discharge of prepared 
 MnO2@polypyrrole. Adapted with permission from He et al. (2017), 
Copyright 2017, Elsevier
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the route for the conversion reaction mechanism. The mag-
netic oxides have many crystals whose shapes depend upon, 
the synthesizing technique, and temperature of the anneal-
ing process. Besides, their specific capacitance and better 
cycling stability are dependent on the crystals’ shape (Ajay 
et al. 2015). Also, the replacement of multiple cations into 
the A- or B-sites can change the symmetry of the pristine 
structure and consequently, the physical and chemical prop-
erties (Zhang et al. 2016c). The magnetic oxides (spinel 
ferrites and perovskite oxides) as anodes holds an edge 
for supercapacitors and hybrid supercapacitors (Liu et al. 
2018c). Hence, the immense content of oxygen vacancies 
 (Ovacancy), and remarkable conductivity allow their extraor-
dinary energy densities. Also, the perovskites store charge 
by oxygen intercalation and the excellent diffusion pathways 
along crystal domain boundaries leading the promotion of 
the dispersion rate (Nan et al. 2019). However, the transition 

metal sulfides are promising materials for energy storage 
applications because of their excellent electrochemical char-
acteristics. The electrochemical characteristics of transition 
metal sulfides are much better than that of transition metal 
oxides; this is can be explained by the presence of sulfur 
atoms instead of oxygen atoms. Hence, the lower electron-
egativity of sulfur than that of oxygen facilitates electron 
transfer in the metal sulfide structure easier than that in the 
metal oxide form. Thus, replacing oxygen with sulfur, pro-
vides more flexibility for nanomaterials synthesis and fab-
rication (Jiang et al. 2016).

However, the lower conductivity, low cycling stability 
and volume change during charge/discharge cycles of met-
als oxides and transition metal sulfides make them insuf-
ficient materials for performing supercapacitors. To defeat 
those disadvantages, the conducting polymers or conducting 
materials were added to the magnetic oxides or transition 

Fig. 28  Synthesis of conducting polymers-loaded onto ZnS/reduced 
graphene oxide composite. The amount of ZnS/reduced graphene 
oxide was dispersed in deionized water. The solution of acetonitrile 

dropwise in 3, 4-ethylenedioxythiophene in the presence of ammo-
nium persulfate and stirred in an ice bath. Adapted with permission 
from Xu et al. (2020), Copyright 2020, Royal Society of chemistry
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metal sulfides to amplify the electronic conductivity and to 
enhance the cycling stability (Yang et al. 2018; Qiao et al. 
2018). Conducting polymer hydrogels have been extensively 
used in the field of energy storage for supercapacitors pro-
duction owing to many promising and outstanding properties 
like powerful electrochemical activities, improved electrical 
conductivity, distinctive solid–liquid interface, high stretch-
ability, unique elastic resilience and good power and energy 
densities (Li et al. 2018; Xu et al. 2020; Ma et al. 2019b; Qin 
et al. 2017; Wang et al. 2018b, 2019c). Also, graphene has 
received great attention in research owing to its extraordi-
nary features, such as high conductivity, powerful mechani-
cal strength, large specific area, porosity, and electrochemi-
cally active nature. The result showed that the composites 
that comprise of magnetic oxides or transition metal sulfides 
with conducting polymers or conducting materials possessed 

the highest capacitance activity and cyclic stability. These 
superior characteristics of these composites were attributed 
to oxygen and S active sites of this composite which fostered 
electrolyte penetration during cycling and allowed further 
active sites (Xu et al. 2020).

In brief, it is deduced that the electrochemical achieve-
ment of the magnetic oxides or transition metal sulfides is 
improved in the following techniques: designed magnetic 
oxides or transition metal sulfides that have considerable 
surface areas, possess a huge porosity, composites with 
carbonaceous materials (core–shells and graphene), and/or 
conducting polymers, that decrease the irreversible capacity 
loss and the production of stable supercapacitors. Hence, 
mixed-magnetic oxides or transition metal sulfides and their 
composites are the ideal prospective materials for the next 
generation of energy-storage applications.

Fig. 29  a Cyclic voltammetry curves measured at 10 mV s−1, b the 
galvanostatic charge/discharge curves, c capacitance vs current den-
sity and d capacitance versus cycle number of the fabricated acrylate 

rubber/multi-wall carbon nanotubes/poly (1,5-diaminoanthraqui-
none). Adapted with permission from Ref. Wang et al. (2018b), Cop-
yright 2018, Royal Society of chemistry
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Fig. 30  Cyclic voltammograms of a reduced graphene oxide@
poly(3,4-ethylene dioxythiophene) composite, b reduced graphene 
oxide@polypyrrole composite and c reduced graphene oxide@poly-
aniline composite, d charge/discharge pattern of reduced graphene 

oxide@poly(3,4-ethylene dioxythiophene) composite, e reduced gra-
phene oxide@polypyrrole composite and f reduced graphene oxide@
polyaniline composite. Adapted with permission from Ref. Zhang and 
Zhao (2012), Copyright 2012, American Chemical Society

Fig. 31  Cyclic voltammetry 
curves of a carbon nanotubes 
and  Cl−-doped polypyrrole 
nanowires b polypyrrole films. 
Adapted with permission from 
Ref. Wang et al. (2005), Copy-
right 2004, American Chemical 
Society
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Fig. 32  a Galvanostatic charge/discharge patterns of polyaniline@
MnO2@porous carbon nanofibers,  MnO2@porous carbon nanofibers 
and porous carbon nanofibers, b specific capacitance of porous car-
bon nanofibers,  MnO2@PCNFs and Polyaniline@MnO2@porous car-
bon nanofibers and c retained capacitance of Polyaniline@MnO2@

porous carbon nanofibers,  MnO2@porous carbon nanofibers and 
porous carbon nanofibers. The prepared device exhibited high capaci-
tance (289 F g−1) and largely retained capacitance. Adapted with per-
mission from Dirican et al. (2020), Copyright 2020, Elsevier
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Table 3  Recent studies on polymer-based supercapacitors

Electrode 
material

Electrolyte Current den-
sity (A g−1)

Specific capaci-
tance (F g−1)/
areal capacitance 
(mF cm−2)

Stability 
%/no. of 
cycles

Retained 
specific 
capaci-
tance %

Energy density (W h kg−1)/power 
density (kW kg−1)

References

NaxMnO2@
carbon 
nanotubes

potassium 
poly(acrylate)@
water-born 
polyurethane in 
1 M  Na2SO4

1 36.8 97/10,000 93.4 16.38/1.04 Wang et al. 
(2020b)

S-doped 
polyani-
line nano-
tubes@
Ni(OH)2 
nano-
sponge

Poly(vinyl 
alcohol) in 3 M 
KOH

2 622 10,000 97 70/136 Bhaumik 
et al. 
(2020)

Phospho-
molybdic 
acid/
polypyr-
role

Poly(vinyl 
alcohol)-H2SO4

0.5 162.1 1000 80 50.66/750 Wang et al. 
(2020c)

Reduced 
graphene 
oxide/
molyb-
denum 
disulfide/
poly 
(3,4-ethyl-
enedioxy-
thiophene)

1 M  H2SO4 0.5 mA cm−2 241.81 mF cm−2 5000 93.7 1.44 μW h cm−2/0.058 mW cm−2 Chen et al. 
(2020)

Nitrogen-
doped 
graphene/
polyani-
line

1 M  H2SO4 0.5 620 5000 87.4 31.14/800 Ge et al. 
(2020)

Binary 
MXenes 
 Ti3C2/
polypyr-
role

2 M  H2SO4 1.05 mA cm−2 109.4 mF cm−2 10,000 96 3.398 μW h cm−2/0.0845 Mw cm−2 Zhang et al. 
(2020c)

Na-
poly(vinyl 
alcohol)

Poly(vinyl alco-
hol)

313 mA g−1 103.7 mF cm−2 1000 ~ 100 6.5/161.4 Wang et al. 
(2020d)

Cyclo-
dextrin 
polymer@
poly-
aniline/
carbon 
nanotube

1 M  H2SO4 1 107.4 5000 97 – Zhang et al. 
(2020d)

Multi-
channels 
carbon 
nanofib-
ers@SnO2

6 M KOH 0.5 406 10,000 95 11.5/451 Cao et al. 
(2020)



422 Environmental Chemistry Letters (2021) 19:375–439

1 3

Table 3  (continued)

Electrode 
material

Electrolyte Current den-
sity (A g−1)

Specific capaci-
tance (F g−1)/
areal capacitance 
(mF cm−2)

Stability 
%/no. of 
cycles

Retained 
specific 
capaci-
tance %

Energy density (W h kg−1)/power 
density (kW kg−1)

References

Poly(3,4-
ethylenedi-
oxythioxy-
thiophene-
co-methyl-
pyrrole)

0.5 M LiClO4 0.5 69.2 5000 65.4 – Lacerda 
et al. 
(2020)

Polyester 
(PET)/
metal 
organic 
frame-
works/
reduced 
graphene 
oxide

Poly(vinyl alco-
hol) +H2SO4

0.05 mA cm−2 510 mF cm−2 1000 85 64 μW h cm−3/0.6 mW cm−3 Barakzehi 
et al. 
(2020)

Polypyrrole 1 M NaCl 0.25 mA cm−2 120 1000 88 1.16 μW h cm−2/35 μW cm−2 Zhao et al. 
(2020)

Poly(N-
methyl-
pyrrole)@
activated 
carbon//
poly(N-
methyl-
pyrrole)@
nickel 
telluride 
doped 
with 
selenide 
(NiTe:Se)

6 M KOH 5 127 mF cm−2 1600 99.95 34/807 Deshagani 
et al. 
(2020)

Polyaniline/
multiwall 
carbon 
nanotubes 
2 wt%

1 M  H2SO4 1 1183 1000 87 183.18 Awata et al. 
(2020)

Nickel–
cobalt 
hydroxide 
hybrid 
reduced 
graphene-
based fiber

PVA/KOH 0.7 763 10,000 87 50.7/1642.1 Zhou et al. 
(2020)
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Fig. 33  Bibliometric network mapping of the supercapacitors research field in the last 5 years
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