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Fractional calculus is now a well-established tool in
engineering science, with very promising applications
in materials modelling. Indeed, several studies have
shown that fractional operators can successfully
describe complex long-memory and multiscale
phenomena in materials, which can hardly be
captured by standard mathematical approaches
as, for instance, classical differential calculus.
Furthermore, fractional calculus has recently proved
to be an excellent framework for modelling non-
conventional fractal and non-local media, opening
valuable prospects on future engineered materials.
The theme issue gathers cutting-edge theoretical,
computational and experimental studies on advanced
materials modelling via fractional calculus, with a
focus on complex phenomena and non-conventional
media.

This article is part of the theme issue ‘Advanced
materials modelling via fractional calculus: challenges
and perspectives’.

1. Overview
Fractional operators may be considered as integro-
differential operators of the convolution type with
hypersingular power-law kernels. Moving from the
celebrated letter of De L’Hospital to Leibniz in 1695,
discussing the concept of derivative of order ½,
the mathematical bases of fractional differentiation
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and fractional integration were set by prominent mathematicians such as Liouville, Grünwald,
Letnikov, Riesz, Caputo and many others up to recent times [1–5].

For a long time, however, fractional calculus was regarded as an elegant yet purely theoretical
field of mathematics, with limited practical use. The relevance of fractional calculus in applied
science has progressively grown in recent years and, now, a considerable number of studies
have definitely unveiled its potential to address several problems, especially in materials science
and engineering. Indeed, power-law dependence of fractional operators has proved ideally
suitable to model non-local behaviour of materials in time or space, which plays a crucial role
in several phenomena but cannot be captured by standard mathematical approaches as, for
instance, classical differential calculus; in this context, fractional operators have been fruitfully
applied to describe challenging phenomena such as viscoelasticity, heat conduction, diffusion
in porous media and wave propagation. On the other hand, fractional calculus has provided a
consistent framework to model non-conventional media, e.g. fractal and non-local ones, opening
unexpected opportunities in the design of new materials. Understanding the complex behaviour
of materials and modelling non-conventional media are, perhaps, the most fascinating and
increasingly relevant applications of fractional calculus, whose potential impact on materials
science and engineering has to be fully investigated.

Although an exhaustive description of all aspects of fractional calculus applications to
materials modelling is almost prohibitive, this theme issue will attempt to provide a broad
perspective on the state of the art and most recent developments, with 14 papers on viscoelasticity,
heat conduction and diffusion in porous media, non-local continua and fractal media. The
applications will involve a wide variety of fractional operators, with a constant order as well
as variable one; the interest in fractional operators of variable order is growing in the recent
literature, as valuable tools to model evolutionary phenomena without changing the governing
equations.

2. Material hereditariness: viscoelasticity
Time non-locality of fractional operators is ideally suitable to model material hereditariness and,
specifically, viscoelastic behaviour.

Early studies in this field are attributed to Boltzmann [6] and Volterra [7], who introduced the
concept of the constitutive equation given by a convolution integral modelling memory of the past
strain or stress histories. Pioneering work on fractional viscoelasticity was carried out by Nutting
[8], who observed that the stress–strain datasets of many complex materials do exhibit a power-
law relaxation, and by Gemant [9] and Bosworth [10], the first to propose a fractional-derivative
model for the constitutive behaviour of viscoelastic media on introducing the power-law kernel in
the Boltzmann–Volterra convolution integral. The use of fractional derivatives to fit experimental
data was later pursued by Scott-Blair & Caffyn [11] and Caputo [12]. However, a first attempt
to provide a theoretical basis for a fractional-derivative modelling of viscoelasticity was due,
at the beginning of the 1980s, to Bagley & Torvik [13], who framed their model in the context
of molecular theory. They also showed that, in order to capture the frequency dependence of
damping properties in some viscoelastic materials, fractional derivatives are more appropriate
than classical rheological models such as the Kelvin–Voigt model [14,15]; a further advantage
over complex stiffness models of damping is that non-causal responses are avoided. In the last
two decades, fractional viscoelastic models have been applied successfully in numerous studies,
proving capable of describing complex material behaviours at a macroscopic level in the form of
equations involving a small number of parameters and becoming, therefore, a well-established
approach for viscoelastic media of various nature [16–20]. Studies in [13–20] deal with linear
viscoelasticity and a comprehensive historical perspective on fractional calculus applications in
this field has been outlined by Mainardi [21].

Experimental data fitting by linear fractional viscoelastic models has been reported in several
studies, using various fractional operators. Caputo fractional-derivative viscoelastic models have
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been proposed by Di Paola et al. for polymers [22] and epoxy resins [23], by Mahiuddin et al. [24]
for fruit and vegetables; for example, experimental data obtained by Mahiuddin et al. [24] have
demonstrated that the fractional order is closely related to the material’s relaxation modulus and
eventually to the degree of permanent deformation in the food tissue.

Along with successful experimental data fitting, considerable insights on the theoretical
foundations of linear fractional viscoelastic models have been gained in recent years. For instance,
a consistent mechanical description of the insurgence of power laws has been provided by Di
Paola & Zingales [25], who have shown that a Couette problem involving heterogeneous fluid
with prescribed features yields power laws with order related to the decay of fluid properties.
A thermodynamic picture involving the notion of state of a material with power-law memory
has been reported by Deseri et al. [26], proving that the state is determined by fractional-order
integrals, or derivatives, of the stress or strain histories up to time t = 0. A thermodynamic
justification of power-law fading memory in terms of the Clausius–Duhem inequality has
been also provided by Deseri et al. [27], showing that the mechanical energy dissipation
corresponds to the Stavermann–Schwarzl dissipation [28]. Other interesting contributions on
thermodynamics in fractional-order viscoelasticity may be found in some recent papers [29].
A multiaxial model of fractional-order hereditariness for isotropic materials has been recently
provided [30] upon introducing thermodynamic restrictions on the orders of the power laws
involved in the mathematical models of transverse and axial creep as well as relaxation
functions.

An emerging issue in viscoelasticity theory is how to model mechanical properties of materials
that may modify as a result of various phenomena. For this purpose, several authors have
proposed variable-order fractional operators, i.e. operators whose order changes with time or
depending on specific state variables. The interest traces back to the early work of Samko &
Ross [31,32], and some other contributions to the development of variable-order operators have
been provided at the beginning of the last decade [33,34]. Variable-order fractional operators with
explicit dependence on a temperature field modelled as random noise have been proposed in
[35]. Furthermore, the use of variable-order fractional calculus has been discussed by Beltempo
et al. [36] to address ageing of pre-stressed concrete as an alternative to model B3 [37]. Variable-
order fractional calculus has been applied to model ageing concrete, obtaining mathematically
consistent relaxation functions to be coded into finite-element specific algorithms for a computer
simulation of real-case structures [38,39].

Interesting applications of variable-order fractional differential calculus have been proposed
to tackle nonlinear problems. In this regard, a position-depending variable-order fractional
derivative, built as a generalization of the Caputo fractional derivative, has been used by
Coimbra [40] to describe the mechanics of a mass oscillating on a guide covered with a non-
uniform viscoelastic film, featuring a continuous variation of the order of the frictional force;
the consistency of the proposed solution has been showed by comparison with an interpolative
solution of a nonlinear fixed-order differential equation. Using the variable-order fractional
derivative introduced by Coimbra [40], Ramirez & Coimbra [41] have developed a variable-
order macroscopic constitutive relation for viscoelastic composite materials under compression
at various constant strain rates; using a statistical mechanics approach for fitting experimental
data on epoxy resin and a carbon/epoxy composite, the authors showed that the variable order
of the operator is connected to the rate of change of the long-range order of the molecules at
the mesoscale within the material. A further successful application of the variable-order operator
proposed by Coimbra [40] can be found in the recent study of Meng et al. [42] to fit the stress
responses of two polymers at various temperatures and across the glass transition; the connection
between the variable order and the true strain was investigated at various temperatures. Ingman
& Suzdalnitsky [43] have described the behaviour of a polymeric material using a fractional
operator of time-dependent order, built as generalization of the Riemann–Liouville operator;
in this case, the order varies with respect to the independent variable of the problem. Variable-
order fractional operators have been used to capture nonlinear behaviour of metals and asphalt
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mixtures [44,45]. The advantages of using variable-order operators to tackle nonlinear problems
are described by Patnaik et al. [46], with focus on several application fields including nonlinear
viscoelasticity.

Finally, a quite recent and promising application field for fractional viscoelastic models is the
characterization of biological and biomedical systems. Fractional viscoelastic models have been
proposed to fit experimental data on lung tissue [47], arterial blood flow [48], interfaces formed
by bovine serum albumin and solution of acacia gum [49]. Indeed, many biological materials
exhibit power-law dependence of stress relaxation, often with marked nonlinear dependence on
the applied strain as it has been observed also for aortic valves.

The theme issue includes several contributions on linear and nonlinear fractional
viscoelasticity, as applied to various types of materials [50–55]. Atanackovic et al. [50] investigate
the thermo-dynamical restrictions on constitutive equations for viscoelastic fluids, as following
from a weak form of entropy inequality under isothermal conditions. The restrictions are derived
for fractional Burgers models and a more general class of linear constitutive equations with
fractional derivatives. The authors show that the proposed restrictions are found to be weaker
than classical existing ones, offering potentially more versatile approaches to capture creep
behaviour in viscoelastic media. Ionescu et al. [51] focus on non-Newtonian fluids. The authors
propose a minimal parameter (five) fractional-order impedance model to capture various degrees
of viscoelasticity in non-Newtonian fluids. Using a frequency-identification method based on
nonlinear least-squares, genetic and particle-swarm algorithms, the model proves to fit very
well experimental data for oil, sugar, detergent and liquid soap over wide frequency ranges.
A link between certain properties of the fluid and specific parameters of the fractional-order
impedance model is also suggested. The work is complemented by a critical discussion on further
potential applications of the model as well as on its limitations. Fang et al. [52] propose a three-
branch fractional-derivative viscoelastic model for solid propellants. The model provides a good
agreement with experimental data in terms of stress relaxation modulus and storage modulus,
using a limited number of parameters compared with traditional models containing integer-order
derivatives; the study is complemented by a simple and effective direct search method for data
fitting. Tenreiro Machado et al. [53] address the mechanical characterization of epoxy resins via
electrical impedance spectroscopy and fractional calculus tools. The authors compare integer and
fractional models, proving that the latter is more effective than the former at low frequencies
and require, in general, less parameters to achieve accurate fitting to experimental data. Finally,
the electrical impedance spectroscopy data gathered from the epoxy samples are compared with
those of different adhesives and sealants by means of a hierarchical clustering algorithm to detect
the relationships between the distinct materials. Di Paola et al. [54] introduce a novel approach
to time-dependent, variable-order fractional viscoelasticity. Moving from the observation that, in
this case, the Boltzmann linear superposition principle does not apply in standard form because
the fractional order is not constant with time, the authors propose a novel approach where the
system response is derived by a consistent application of the Boltzmann principle to an equivalent
system, built at every time instant based on the fractional order at that instant and the response
at all the previous ones. The approach is readily implementable in numerical form to calculate
either stress or strain responses of any fractional system where fractional order may change with
time. Finally, Bologna et al. [55] propose a nonlinear extension of fractional calculus to tissue
biomechanics, in order to handle the time-dependent mechanics of ligaments and tendons of the
human knee. The authors point out that fibrous tissues exhibit a marked nonlinear behaviour
in terms of relaxation and creep functions with coefficients and orders depending nonlinearly
on applied strain and stress, respectively. On this basis, the authors show that, as nonlinearity
is expressed by a power-law dependence on the applied stress, a modified version of fractional
material hereditariness, namely the quasi-fractional material hereditariness, can be obtained with
a nonlinear mapping of the state variables. As the mapping is established, specific relations
among the parameters of creep and relaxation functions are obtained with a numerical assessment
of the proposed formulation.
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3. Heat conduction
Heat conduction is a typical phenomenon where time non-locality of fractional operators has
been used to model memory effects. Various time-fractional heat conduction equations have been
proposed, differing each other for the fractional operators involved [56–61]. In this framework, a
thermodynamic model corresponding to power-law rise of temperature and heat flux has been
proposed recently by Zingales [62].

Of particular interest in this context is the coupling between time-fractional heat transfer
and material behaviour, which has led to the formulation of fractional thermoelasticity,
fractional thermo-viscoelasticity and fractional electro-thermoelasticity [63–66]. For instance, a
thermomechanical model with fractional-order heat equation has been developed, generalizing
the Fourier diffusion with the introduction of a Caputo fractional operator [67,68].

A special interest exists also on thermal stresses which may arise at the vicinity of a
crack as a result of thermal shocks. This is the problem investigated in the theme issue by
Povstenko & Kyrylych [69], who solve the time-fractional heat conduction equation with the
Caputo derivative for an infinite axisymmetric solid with a penny-shaped crack under a
prescribed heat flux loading across its surfaces. Using Laplace, Hankel and cos-Fourier integral
transforms, temperature field, thermal stress field and stress intensity factor are obtained in
analytical form, namely in integral form involving the generalized two-parameter Mittag–Leffler
function. The derived formulae allow a straightforward implementation of parametric analyses
for different orders of the Caputo derivative. In the theme issue, a further contribution concerning
heat conduction is given by Li & Cao [70], who show that fractional-order phonon Boltzmann
transport equations, representing memory effects in phonon heat transport, lead to fractional
heat conduction models capable of representing known anomalous heat diffusion, especially
in low-dimensional systems. Additionally, the study highlights a non-trivial, fractional-order
relationship between heat flux and entropy flux, as well as the contribution of initial effects to
the entropy production rate.

4. Diffusion in porous media
Time and/or space non-locality of fractional operators is also suitable for addressing diffusion
processes in various complex systems. In their seminal review, Metzler & Klafter [71] have
discussed the relations between the fractional calculus approach and continuous time random
walk theory and highlighted the advantages of fractional operators especially to describe
diffusion phenomena involving boundary values or external velocity or force fields. Time-
fractional operators are indeed ideally suitable to account for slow decay of initial conditions,
slower dispersion and memory effects, which characterize anomalous sub-diffusion in complex
systems as, for instance, proteins [72]. Time-fractional derivatives have been used to model
reactive transport, since solutes may interact with the immobile porous medium in highly
nonlinear ways; for instance, there is evidence that solutes may sorb for random amounts of
time that have a power-law distribution, or move into irregularly sized blocks of relatively
immobile water, producing similar behaviour [73]. Anomalous diffusion has been captured by
a fractional-order generalization of the well-known Darcy equation for mass transport [74].
A further application of the fractional-order Darcy equation in the presence of flux across an
elastic media has shown that an extended poro-elastic model is capable of capturing the faster,
slower swelling/settlement of porous media in the presence of external applied load [75].

Beside the time-fractional models, non-local fractional operators in terms of spatial coordinates
have been used to model diffusion phenomena [76] in porous media; for example, the effect
of an infinite medium and its space interaction with the fluid has been represented by space-
fractional derivatives, relating the flow to the pressure gradient experienced by the fluid in the
path from the starting point to the measurement site [76]; furthermore, in the context of the flow
in porous media, fractional-space derivatives have been used to model large motions through
highly conductive layers or fractures [73].
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Space–time-fractional equations have also been used to model anomalous diffusion, namely
using a Riemann–Liouville time-fractional derivative and a Riesz–Feller space-fractional
derivative [77]; space–time Caputo fractional derivatives have proved to fit experimental data on
methanol transport through porous media, e.g. pelletized zeolite-based catalyst [78]; space–time-
fractional differential equations have been investigated to model stochastic advection–diffusion
problems in fractal media with long-range, correlated spatial fluctuations [79].

In the theme issue, Chugunov & Fomin [80] address the challenging issue of anomalous
transport of contaminants within reservoirs. Focusing on the transport of radioactive materials in
fractures surrounded by porous matrices of fractal structure, the authors propose a novel form of
the fractional differential equation where fractional derivatives account for contaminant exchange
between the fracture and the surrounding porous matrix; exact and approximate expressions for
solute concentration in fracture and porous medium are obtained. Further, chloride diffusion
in the reinforced concrete is the subject of the contribution by Chen et al. [81]. On observing
that chloride ion penetration is generally slower than normal diffusion and exhibits anomalous
characteristics as history dependence and long-range correlation, the authors propose a multi-
term time-fractional model based on the Caputo fractional derivative and a pertinent numerical
solution scheme, proving its convergence and stability. Next, the authors propose a modified
grid approximation method to estimate the model parameters. Validation against real data from
ordinary Portland cement and fly ash cement specimens, both exposed to chloride penetration
over six different durations, prove that the proposed model is more accurate than alternative
existing ones; in this context, a better fitting to experimental data is obtained using variable
diffusion coefficients.

5. Non-local continua
Space-fractional operators have been used to formulate non-local continua, i.e. continua whose
governing equations are endowed with appropriate non-local terms. There exist indeed several
complex phenomena that cannot be addressed by classical local continua as, for instance, size
effects in micro- and nanostructures resulting from non-local atomic or Van der Waals interactions
or microstructure effects in elastic wave propagation through heterogeneous materials [82];
furthermore, space non-locality can also account for the effect of surrounding media that are not
included in the model but produce a coupling between the responses of the model at different
points. In this respect, space non-locality is definitely a relevant feature of fractional operators
that, on the other hand, benefit of pertinent variational formulations ensuring consistency of the
corresponding non-local governing equations.

Drapaca & Sivaloganatha [83] introduced a space-fractional continuum on introducing the
concept of motion of order alpha and deriving pertinent strain and stress tensors. Sumelka
et al. [84] have proposed a space-fractional continuum formulation, using a Riesz–Caputo
fractional derivative representing a non-local deformation gradient in small or finite strains,
with applications to linear elasticity [84] and rate-independent plasticity [85]. Space-fractional
operators have been used to model power-law long-range interactions between particles in
n-dimensional lattice structures [86]; remarkably, on introducing a general form of lattice
fractional derivatives and integrals, which revert to continuum Riesz fractional derivatives
and integrals in the continuous limit, a bridge has been established by lattice structures and
corresponding non-local continua [86,87]. A fractional generalization of the classical Eringen
integral model of non-locality has been proposed by Carpinteri et al. [88] using a Riesz integral
to represent a linearly elastic stress–strain integral relation. For the one-dimensional (1D) case,
the authors derived a point-spring mechanical interpretation, with four sets of springs, one
local and three non-local [88], which may be interpreted as describing long-range volume–
volume and volume–surface interactions within the solid. A linearly elastic, mechanically
based non-local fractional 1D continuum has been introduced by Di Paola and co-workers
[89–91] based on the assumption that non-adjacent volumes mutually exert forces depending
on relative displacements through distance-decaying power-law functions. Moving from this
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assumption, Di Paola and co-workers obtained equilibrium equations involving the Marchaud
fractional derivatives (their integral part only in bounded domains) and proved thermodynamic
consistency [90]; furthermore, they revealed some inconsistencies in the fractional Eringen
model for bounded domain, confirmed a previous non-local fractional 1D continuum introduced
by Lazopoulos [92] under the assumption of vanishing boundary displacements and, finally,
proposed pertinent numerical solution strategies of the governing equations [91]. The concept
of power-law long-range interactions has been further developed in a fractional non-local
Timoshenko beam theory by Alotta et al. [93], where non-adjacent beam elements mutually
exchange moments and transverse forces decaying with power-law functions of distance along
the beam axis; further applications have been found in two-dimensional (2D) foundation
subgrade models and, in this case, non-local terms arise from the interaction between subgrade
and foundation body [94]. A comprehensive fractional linear gradient elasticity theory has been
proposed by Tarasov & Aifantis [95], which hinges on a three-dimensional Riesz fractional
Laplacian modelling power-law, non-local constitutive behaviour; an alternative formulation
of fractional linear gradient elasticity theory stemming from pertinent fractional variational
principles has been presented by the same authors in a previous publication [96]. Applications of
the formulations in [95,96] have been envisaged to address unusual phenomena in nanomaterials
[97]. A fractional lattice approach has been proposed by Michelitsch et al. [98] for n-dimensional
periodic and infinite lattices, introducing the concept of centred fractional-order difference
operators as a generalization of the second-order centred difference operator appearing in the
context of classical lattice models [98]; relations have been found between the fractional-order
difference operators in the continuum limit and the classical Riesz fractional Laplacian derivative
[98,99]. Non-local spatial fractional operators have been also used to model blood flow in capillary
vessels, see [100,101], as well as long-range viscoelastic interactions [102,103].

In the theme issue, Patnaik & Semperlotti [104] propose a variable-order formulation to
capture the evolution of edge dislocations through lattice structures under static shear stress.
The authors simulate the microscopic structure of a material by a particle dynamic approach
where constitutive atoms or molecules are represented via discrete masses and interparticle
forces are represented by variable-order Riemann–Liouville operators depending on a quadratic
potential field. Numerical results on 2D structure prove that such operators are intrinsically
capable of capturing the complex linear-to-nonlinear dynamic transitions resulting from the
translation of dislocations as well as the creation and annihilation of bonds between particles.
Finally, the contribution to the theme issue of Zorica & Oparnica [105] focuses on time-
fractional-wave equations modelling hereditary viscoelastic behaviour and space-fractional-wave
equations associated with existing non-local elasticity models. For a number of fractional-wave
equations, the authors provide rigorous mathematical evidence of energy dissipation and energy
conservation. The authors provide also a comprehensive discussion on the physical meaning of
the considered fractional-wave equations and their pertinence to real phenomena.

6. Fractal media
Certainly, an interesting and challenging topic is the application of fractional calculus concepts
to describe the mechanics of fractal media. A space-fractional derivative approach to fractal
media has been proposed in the early work of Carpinteri & Mainardi [106] and, on this basis,
by Carpinteri et al. using the concept of local fractional derivative [107]. Later on, Tarasov [108]
has proposed an alternative fractional-integral approach, where continuum models of fractal
media are formulated using the fractional integration of non-integer order; Tarasov [109] also
proved that fractional continuous models using fractional integrals can be used not only to
describe a fractal medium with non-integer dimensions (e.g. mass dimension is found to be
equal to the order of the fractional integral) but also to describe dynamical processes in the
fractal medium and pertinent equations, as the equations of balance of mass density, momentum
density, internal energy, Navier–Stokes and Euler equations, with applications to porous media.
A gradient elasticity theory for fractal materials has been proposed by Tarasov & Aifantis [96]
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starting from a fractional-integral formulation. A brief but illustrative review of continuum
models of fractal media based on fractional calculus concepts may be found in [110]. A fractional-
space approach to physical problems on fractals has been recently proposed by Balankin [111]
based on the Stillinger’s definition of space of fractional dimension [112]. Linear and nonlinear
fractional viscoelastic models for fractal media have been derived from thermodynamic principles
by Mashayekhi et al. [113] using fractal media representation as in [114]. Experimental validation
was provided on a dielectric elastomer, whose a distinctive feature is a significant rate-dependent
deformation during uniaxial stress measurements; using Bayesian statistics for calibration, the
authors have shown that the fractional-order models are more accurate than integer-order ones
for deformation rates spanning several orders of magnitude [113]. In a further recent work,
Mashayekhi et al. [115] explored a physical connection between time-fractional derivative and
fractal geometry of fractal media; on using thermodynamics law, the order of the fractional
derivative in the linear fractional model of viscoelasticity was found to be a rate-dependent
material property strongly correlated with fractal dimension and spectral dimension which
characterizes diffusion in fractal media. The need for power-law functions to model phenomena
in fractal media has been shown for the flux–time relations across fractal structures [116,117] as
well as in the context of biomechanics of bone tissues [118].

In the theme issue, the mechanics of fractal media is addressed by Li & Ostoja-Starzewski
[119] with focus on porous media. They propose a continuum model for anisotropic porous
media of fractal type, which expresses the global balance laws in terms of fractal integrals
based on proper product measures and converts them to integer-order integrals in conventional
(Euclidean) space. Next, a continuum localization procedure leads to the local balance laws of the
fractal medium as the conservation of mass, micro-inertia, linear and angular momenta, energy as
well as to the pertinent second law of thermodynamics. Local balance laws involve the concept of
fractal derivative or gradient. The relation between the proposed model and alternative fractional
continua models of porous media is discussed throughout the paper. The proposed model has the
potential of broadening the applicability of continuum mechanics/physics to the study of highly
complex and fractal-type media (multiscale polycrystals, polymer clusters, gels, rocks, micro-
cracked materials, percolating networks, nervous systems, and pulmonary systems); the authors
present specific applications to model thermo-diffusion of liquid and gases in fractal poro-elastic
media. Within the modelling of complex media, a challenging problem is the investigation of the
dynamic response of media featuring random mass density with fractal and Hurst characteristics.
This topic is addressed by Zhang & Ostoja-Starzewski in the theme issue [120], focusing on
Lamb-type problems. The authors discuss the theoretical limitations in developing consistent
space-fractional-derivative models of fractal media as well as in finding pertinent solutions and,
in view of these outstanding challenges, propose an alternative approach simulating Cauchy and
Dagum natural-like random fields by a Monte Carlo cellular automata approach; the latter has
the advantage to assign cell-to-cell heterogeneous material properties and ensure equivalence to
the continuum elasto-dynamics equations in the limit of infinitesimal cells. Wave propagation is
investigated with focus on two Lamb-type problems on an elastic half-plane, specifically under a
tangential point load and a concentrated point moment.
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