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Preface

INTRODUCTION

This text is a development of classroom notes prepared in connection with
advanced undergraduate and first-year graduate courses in elasticity and the
mechanics of solids. It is designed to satisfy the requirements of courses subsequent
to an elementary treatment of the strength of materials. In addition to its applica-
bility to aeronautical, civil, and mechanical engineering and to engineering mechan-
ics curricula, the text is useful to practicing engineers. Emphasis is given to
numerical techniques (which lend themselves to computerization) in the solution of
problems resisting analytical treatment. The stress placed on numerical solutions is
not intended to deny the value of classical analysis, which is given a rather full
treatment. It instead attempts to fill what the authors believe to be a void in the
world of textbooks.

An effort has been made to present a balance between the theory necessary to
gain insight into the mechanics, but which can often offer no more than crude
approximations to real problems because of simplifications related to geometry
and conditions of loading, and numerical solutions, which are so useful in present-
ing stress analysis in a more realistic setting. This text emphasizes those aspects of
theory and application that prepare a student for more advanced study or for pro-
fessional practice in design and analysis.

The theory of elasticity plays three important roles in the text: it provides exact
solutions where the configurations of loading and boundary are relatively simple; it
provides a check on the limitations of the mechanics of materials approach; and it
serves as the basis of approximate solutions employing numerical analysis.

To make the text as clear as possible, attention is given to the presentation of
the fundamentals of the mechanics of materials. The physical significance of the
solutions and practical applications are given emphasis. A special effort was made
to illustrate important principles and applications with numerical examples. Consis-
tent with announced national policy, problems are included in the text in which the
physical quantities are expressed in the International System of Units (SI). All
important quantities are defined in both SI and U.S. Customary System of units.
A sign convention, consistent with vector mechanics, is employed throughout for

xii



loads, internal forces, and stresses. This convention conforms to that used in most
classical strength of materials and elasticity texts, as well as to that most often
employed in the numerical analysis of complex structures.

TEXT ARRANGEMENT

Because of the extensive subdivision into a variety of topics and the employment of
alternative methods of analysis, the text should provide flexibility in the choice of
assignments to cover courses of varying length and content. Most chapters are
substantially self-contained. Hence, the order of presentation can be smoothly
altered to meet an instructor’s preference. It is suggested, however, that Chapters 1
and 2, which address the analysis of basic concepts, should be studied first. The
emphasis placed on the treatment of two-dimensional problems in elasticity
(Chapter 3) may differ according to the scope of the course.

This fifth edition of Advanced Mechanics of Materials and Applied Elasticity seeks
to preserve the objectives and emphases of the previous editions. Every effort has
been made to provide a more complete and current text through the inclusion of new
material dealing with the fundamental principles of stress analysis and design: stress
concentrations, contact stresses, failure criteria, fracture mechanics, compound cylin-
ders, finite element analysis (FEA), energy and variational methods, buckling of
stepped columns, and common shell types. The entire text has been reexamined and
many improvements have been made throughout by a process of elimination and re-
arrangement. Some sections have been expanded to improve on previous expositions.

The references, provided as an aid to the student who wishes to further pursue
certain aspects of a subject, have been updated and identified at the end of each
chapter. We have resisted the temptation to increase the material covered except
where absolutely necessary. However, it was considered desirable to add a number
of illustrative examples and a large number of problems important in engineering
practice and design. Extra care has been taken in the presentation and solution of
the sample problems. All the problem sets have been reviewed and checked to
ensure both their clarity and numerical accuracy. Most changes in subject-matter
coverage were prompted by the suggestions of faculty familiar with earlier editions.

It is hoped that we have maintained clarity of presentation, simplicity as the
subject permits, unpretentious depth, an effort to encourage intuitive understand-
ing, and a shunning of the irrelevant. In this context, as throughout, emphasis is
placed on the use of fundamentals in order to build student understanding and an
ability to solve the more complex problems.

SUPPLEMENTS

The book is accompanied by a comprehensive Solutions Manual available to
instructors. It features complete solutions to all problems in the text. Answers to
selected problems are given at the end of the book. PowerPoint slides of figures and
tables and a password-protected Solutions Manual are available for instructors at
the Pearson Instructor Resource Center, pearsonhighered.com/irc.
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1

C H A P T E R  1

Analysis of Stress

1.1 INTRODUCTION

There are two major parts to this chapter. Review of some important fundamentals
of statics and mechanics of solids, the concept of stress, modes of load transmission,
general sign convention for stress and force resultants that will be used throughout
the book, and analysis and design principles are provided first. This is followed with
treatment for changing the components of the state of stress given in one set of
coordinate axes to any other set of rotated axes, as well as variation of stress within
and on the boundaries of a load-carrying member. Plane stress and its transforma-
tion are of basic importance, since these conditions are most common in engineer-
ing practice. The chapter is thus also a brief guide and introduction to the remainder
of the text.

Mechanics of Materials and Theory of Elasticity 

The basic structure of matter is characterized by nonuniformity and discontinuity
attributable to its various subdivisions: molecules, atoms, and subatomic particles.
Our concern in this text is not with the particulate structure, however, and it will be
assumed that the matter with which we are concerned is homogeneous and
continuously distributed over its volume. There is the clear implication in such an
approach that the smallest element cut from the body possesses the same proper-
ties as the body. Random fluctuations in the properties of the material are thus of
no consequence. This approach is that of continuum mechanics, in which solid elas-
tic materials are treated as though they are continuous media rather than com-
posed of discrete molecules. Of the states of matter, we are here concerned only
with the solid, with its ability to maintain its shape without the need of a container
and to resist continuous shear, tension, and compression.



2 Chapter 1 Analysis of Stress

In contrast with rigid-body statics and dynamics, which treat the external
behavior of bodies (that is, the equilibrium and motion of bodies without regard to
small deformations associated with the application of load), the mechanics of
solids is concerned with the relationships of external effect (forces and moments)
to internal stresses and strains. Two different approaches used in solid mechanics
are the mechanics of materials or elementary theory (also called the technical the-

ory) and the theory of elasticity. The mechanics of materials focuses mainly on the
more or less approximate solutions of practical problems. The theory of elasticity
concerns itself largely with more mathematical analysis to determine the “exact”
stress and strain distributions in a loaded body. The difference between these
approaches is primarily in the nature of the simplifying assumptions used,
described in Section 3.1.

External forces acting on a body may be classified as surface forces and body

forces. A surface force is of the concentrated type when it acts at a point; a
surface force may also be distributed uniformly or nonuniformly over a finite area.
Body forces are associated with the mass rather than the surfaces of a body, and are
distributed throughout the volume of a body. Gravitational, magnetic, and inertia
forces are all body forces. They are specified in terms of force per unit volume.
All forces acting on a body, including the reactive forces caused by supports and
body forces, are considered to be external forces. Internal forces are the forces that
hold together the particles forming the body. Unless otherwise stated, we assume in
this text that body forces can be neglected and that forces are applied steadily and
slowly. The latter is referred to as static loading.

In the International System of Units (SI), force is measured in newtons (N).
Because the newton is a small quantity, the kilonewton (kN) is often used in prac-
tice. In the U.S. Customary System, force is expressed in pounds (lb) or kilopounds
(kips). We define all important quantities in both systems of units. However, in
numerical examples and problems, SI units are used throughout the text consistent
with international convention. (Table D.2 compares the two systems.)

Historical Development

The study of the behavior of members in tension, compression, and bending began
with Leonardo da Vinci (1452–1519) and Galileo Galilei (1564 –1642). For a proper
understanding, however, it was necessary to establish accurate experimental
description of a material’s properties. Robert Hooke (1615–1703) was the first to
point out that a body is deformed subject to the action of a force. Sir Isaac Newton
(1642–1727) developed the concepts of Newtonian mechanics that became key ele-
ments of the strength of materials.

Leonard Euler (1707–1783) presented the mathematical theory of columns in
1744. The renowned mathematician Joseph-Louis Lagrange (1736 –1813) received
credit in developing a partial differential equation to describe plate vibrations.
Thomas Young (1773–1829) established a coefficient of elasticity, Young’s modulus.
The advent of railroads in the late 1800s provided the impetus for much of the
basic work in this area. Many famous scientists and engineers, including Coulomb, 
Poisson, Navier, St. Venant, Kirchhoff, and Cauchy, were responsible for advances



1.2 Scope of Treatment 3

*Historical reviews of mechanics of materials and the theory of elasticity are given in Refs. 1.1
through 1.5.

in mechanics of materials during the eighteenth and nineteenth centuries. The
British physicist William Thomas Kelvin (1824 –1907), better known by his knighted
name, Sir Lord Kelvin, first demonstrated that torsional moments acting at the
edges of plates could be decomposed into shearing forces. The prominent English
mathematician Augustus Edward Hough Love (1863–1940) introduced simple
analysis of shells, known as Love’s approximate theory.

Over the years, most basic problems of solid mechanics had been solved.
Stephan P. Timoshenko (1878–1972) made numerous original contributions to the
field of applied mechanics and wrote pioneering textbooks on the mechanics of
materials, theory of elasticity, and theory of elastic stability. The theoretical base for
modern strength of materials had been developed by the end of the nineteenth cen-
tury. Following this, problems associated with the design of aircraft, space vehicles,
and nuclear reactors have led to many studies of the more advanced phases of the
subject. Consequently, the mechanics of materials is being expanded into the
theories of elasticity and plasticity.

In 1956, Turner, Clough, Martin, and Topp introduced the finite element

method, which permits the numerical solution of complex problems in solid
mechanics in an economical way. Many contributions in this area are owing to
Argyris and Zienkiewicz. The recent trend in the development is characterized by
heavy reliance on high-speed computers and by the introduction of more rigorous
theories. Numerical methods presented in Chapter 7 and applied in the chapters
following have clear application to computation by means of electronic digital
computers. Research in the foregoing areas is ongoing, not only to meet demands
for treating complex problems but to justify further use and limitations on which
the theory of solid mechanics is based. Although a widespread body of knowledge
exists at present, mechanics of materials and elasticity remain fascinating subjects
as their areas of application are continuously expanded.* The literature dealing
with various aspects of solid mechanics is voluminous. For those seeking more
thorough treatment, selected references are identified in brackets and compiled at
the end of each chapter.

1.2 SCOPE OF TREATMENT

As stated in the preface, this book is intended for advanced undergraduate and
graduate engineering students as well as engineering professionals. To make the
text as clear as possible, attention is given to the fundamentals of solid mechanics
and chapter objectives. A special effort has been made to illustrate important prin-
ciples and applications with numerical examples. Emphasis is placed on a thorough
presentation of several classical topics in advanced mechanics of materials and 
applied elasticity and of selected advanced topics. Understanding is based on the 
explanation of the physical behavior of members and then modeling this behavior
to develop the theory.



The usual objective of mechanics of material and theory of elasticity is the
examination of the load-carrying capacity of a body from three standpoints:
strength, stiffness, and stability. Recall that these quantities relate, respectively, to
the ability of a member to resist permanent deformation or fracture, to resist
deflection, and to retain its equilibrium configuration. For instance, when loading
produces an abrupt shape change of a member, instability occurs; similarly, an
inelastic deformation or an excessive magnitude of deflection in a member will
cause malfunction in normal service. The foregoing matters, by using the fundamen-

tal principles (Sec. 1.3), are discussed in later chapters for various types of structural
members. Failure by yielding and fracture of the materials under combined loading
is taken up in detail in Chapter 4.

Our main concern is the analysis of stress and deformation within a loaded
body, which is accomplished by application of one of the methods described in the
next section. For this purpose, the analysis of loads is essential. A structure or
machine cannot be satisfactory unless its design is based on realistic operating
loads. The principal topics under the heading of mechanics of solids may be summa-
rized as follows:

1. Analysis of the stresses and deformations within a body subject to a prescribed
system of forces. This is accomplished by solving the governing equations that
describe the stress and strain fields (theoretical stress analysis). It is often advan-
tageous, where the shape of the structure or conditions of loading preclude a
theoretical solution or where verification is required, to apply the laboratory
techniques of experimental stress analysis.

2. Determination by theoretical analysis or by experiment of the limiting values of
load that a structural element can sustain without suffering damage, failure, or
compromise of function.

3. Determination of the body shape and selection of the materials that are most
efficient for resisting a prescribed system of forces under specified conditions of
operation such as temperature, humidity, vibration, and ambient pressure. This is
the design function. 

The design function, item 3, clearly relies on the performance of the theoretical
analyses under items 1 and 2, and it is to these that this text is directed. Particularly,
emphasis is placed on the development of the equations and methods by which
detailed analysis can be accomplished.

The ever-increasing industrial demand for more sophisticated structures and
machines calls for a good grasp of the concepts of stress and strain and the behav-
ior of materials—and a considerable degree of ingenuity. This text, at the very least,
provides the student with the ideas and information necessary for an understanding
of the advanced mechanics of solids and encourages the creative process on the
basis of that understanding. Complete, carefully drawn free-body diagrams facili-
tate visualization, and these we have provided, all the while knowing that the sub-
ject matter can be learned best only by solving problems of practical importance.
A thorough grasp of fundamentals will prove of great value in attacking new and
unfamiliar problems.

4 Chapter 1 Analysis of Stress



1.3 ANALYSIS AND DESIGN

Throughout this text, a fundamental procedure for analysis in solving mechanics
of solids problems is used repeatedly. The complete analysis of load-carrying struc-
tural members by the method of equilibrium requires consideration of three con-
ditions relating to certain laws of forces, laws of material deformation, and
geometric compatibility. These essential relationships, called the basic principles of

analysis, are:

1. Equilibrium Conditions. The equations of equilibrium of forces must be satisfied
throughout the member.

2. Material Behavior. The stress–strain or force-deformation relations (for example,
Hooke’s law) must apply to the material behavior of which the member is
constructed.

3. Geometry of Deformation. The compatibility conditions of deformations must
be satisfied: that is, each deformed portion of the member must fit together with
adjacent portions. (Matter of compatibility is not always broached in mechanics
of materials analysis.)

The stress and deformation obtained through the use of the three principles
must conform to the conditions of loading imposed at the boundaries of a member.
This is known as satisfying the boundary conditions. Applications of the preceding
procedure are illustrated in the problems presented as the subject unfolds. Note,
however, that it is not always necessary to execute an analysis in the exact order of
steps listed previously.

As an alternative to the equilibrium methods, the analysis of stress and defor-
mation can be accomplished by employing energy methods (Chap. 10), which are
based on the concept of strain energy. The aspect of both the equilibrium and the
energy approaches is twofold. These methods can provide solutions of acceptable
accuracy where configurations of loading and member shape are regular, and they
can be used as the basis of numerical methods (Chap. 7) in the solution of more
realistic problems.

Engineering design is the process of applying science and engineering tech-
niques to define a structure or system in detail to allow its realization. The objective
of a mechanical design procedure includes finding of proper materials, dimensions,
and shapes of the members of a structure or machine so that they will support pre-
scribed loads and perform without failure. Machine design is creating new or
improved machines to accomplish specific purposes. Usually, structural design deals
with any engineering discipline that requires a structural member or system.

Design is the essence, art, and intent of engineering. A good design satisfies
performance, cost, and safety requirements. An optimum design is the best solution
to a design problem within given restrictions. Efficiency of the optimization may be
gaged by such criteria as minimum weight or volume, optimum cost, and/or any
other standard deemed appropriate. For a design problem with many choices, a
designer may often make decisions on the basis of experience, to reduce the prob-
lem to a single variable. A solution to determine the optimum result becomes
straightforward in such a situation.

1.3 Analysis and Design 5
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A plan for satisfying a need usually includes preparation of individual prelimi-
nary design. Each preliminary design involves a thorough consideration of the loads
and actions that the structure or machine has to support. For each situation, an
analysis is necessary. Design decisions, or choosing reasonable values of the safety
factors and material properties, are significant in the preliminary design process.

The role of analysis in design may be observed best in examining the phases of
a design process. This text provides an elementary treatment of the concept of
“design to meet strength requirements” as those requirements relate to individual
machine or structural components. That is, the geometrical configuration and 
material of a component are preselected and the applied loads are specified. Then,
the basic formulas for stress are employed to select members of adequate size in
each case. The following is rational procedure in the design of a load-carrying
member:

1. Evaluate the most likely modes of failure of the member. Failure criteria that
predict the various modes of failure under anticipated conditions of service are
discussed in Chapter 4.

2. Determine the expressions relating applied loading to such effects as stress, strain,

and deformation. Often, the member under consideration and conditions of
loading are so significant or so amenable to solution as to have been the subject
of prior analysis. For these situations, textbooks, handbooks, journal articles, and
technical papers are good sources of information. Where the situation is unique,
a mathematical derivation specific to the case at hand is required.

3. Determine the maximum usable value of stress, strain, or energy. This value is
obtained either by reference to compilations of material properties or by experi-
mental means such as simple tension test and is used in connection with the
relationship derived in step 2.

4. Select a design factor of safety. This is to account for uncertainties in a num-
ber of aspects of the design, including those related to the actual service loads,
material properties, or environmental factors. An important area of uncer-
tainty is connected with the assumptions made in the analysis of stress and
deformation. Also, we are not likely to have a secure knowledge of the
stresses that may be introduced during machining, assembly, and shipment of
the element. 

The design factor of safety also reflects the consequences of failure; for
example, the possibility that failure will result in loss of human life or injury
or in costly repairs or danger to other components of the overall system. For
these reasons, the design factor of safety is also sometimes called the factor of

ignorance. The uncertainties encountered during the design phase may be of
such magnitude as to lead to a design carrying extreme weight, volume, or
cost penalties. It may then be advantageous to perform thorough tests or
more exacting analysis rather to rely on overly large design factors of safety.

The true factor of safety, usually referred to simply as the factor of safety, can
be determined only after the member is constructed and tested. This factor is the
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ratio of the maximum load the member can sustain under severe testing without
failure to the maximum load actually carried under normal service conditions,
the working load. When a linear relationship exists between the load and the
stress produced by the load, the factor of safety n may be expressed as

(1.1)

Maximum usable stress represents either the yield stress or the ultimate stress.
The allowable stress is the working stress. The factor of safety must be greater
than 1.0 if failure is to be avoided. Values for factor of safety, selected by the 
designer on the basis of experience and judgment, are about 1.5 or greater. For
most applications, appropriate factors of safety are found in various construction
and manufacturing codes.

The foregoing procedure is not always conducted in as formal a fashion as may
be implied. In some design procedures, one or more steps may be regarded as 
unnecessary or obvious on the basis of previous experience. Suffice it to say that
complete design solutions are not unique, involve a consideration of many factors,
and often require a trial-and-error process [Ref. 1.6]. Stress is only one considera-
tion in design. Other phases of the design of components are the prediction of the
deformation of a given component under given loading and the consideration of
buckling (Chap. 11). The methods of determining deformation are discussed in later
chapters. Note that there is a very close relationship between analysis and 
design, and the examples and problems that appear throughout this book illustrate
that connection.

We conclude this section with an appeal for the reader to exercise a degree of
skepticism with regard to the application of formulas for which there is uncertainty
as to the limitations of use or the areas of applicability. The relatively simple form
of many formulas usually results from rather severe restrictions in its derivation.
These relate to simplified boundary conditions and shapes, limitations on stress and
strain, and the neglect of certain complicating factors. Designers and stress analysts
must be aware of such restrictions lest their work be of no value or, worse, lead to
dangerous inadequacies.

In this chapter, we are concerned with the state of stress at a point and the
variation of stress throughout an elastic body. The latter is dealt with in Sections 1.8
and 1.16 and the former in the balance of the chapter.

1.4 CONDITIONS OF EQUILIBRIUM

A structure is a unit consisting of interconnected members supported in such a way
that it is capable of carrying loads in static equilibrium. Structures are of four gen-
eral types: frames, trusses, machines, and thin-walled (plate and shell) structures.
Frames and machines are structures containing multiforce members. The former
support loads and are usually stationary, fully restrained structures. The latter

n =
maximum usable stress

allowable stress



transmit and modify forces (or power) and always contain moving parts. The truss

provides both a practical and economical solution, particularly in the design of
bridges and buildings. When the truss is loaded at its joints, the only force in each
member is an axial force, either tensile or compressive.

The analysis and design of structural and machine components require a
knowledge of the distribution of forces within such members. Fundamental con-
cepts and conditions of static equilibrium provide the necessary background for the
determination of internal as well as external forces. In Section 1.6, we shall see that
components of internal-forces resultants have special meaning in terms of the type
of deformations they cause, as applied, for example, to slender members. We note
that surface forces that develop at support points of a structure are called reactions.
They equilibrate the effects of the applied loads on the structures.

The equilibrium of forces is the state in which the forces applied on a body are
in balance. Newton’s first law states that if the resultant force acting on a particle
(the simplest body) is zero, the particle will remain at rest or will move with con-
stant velocity. Statics is concerned essentially with the case where the particle or
body remains at rest. A complete free-body diagram is essential in the solution of
problems concerning the equilibrium.

Let us consider the equilibrium of a body in space. In this three-dimensional
case, the conditions of equilibrium require the satisfaction of the following equa-

tions of statics:

(1.2)

The foregoing state that the sum of all forces acting on a body in any direction must
be zero; the sum of all moments about any axis must be zero.

In a planar problem, where all forces act in a single (xy) plane, there are only
three independent equations of statics:

(1.3)

That is, the sum of all forces in any (x, y) directions must be zero, and the resultant
moment about axis z or any point A in the plane must be zero. By replacing a force
summation with an equivalent moment summation in Eqs. (1.3), the following alter-

native sets of conditions are obtained:

(1.4a)

provided that the line connecting the points A and B is not perpendicular to the 
x axis, or

(1.4b)

Here points A, B, and C are not collinear. Clearly, the judicious selection of points
for taking moments can often simplify the algebraic computations.

A structure is statically determinate when all forces on its members can be
found by using only the conditions of equilibrium. If there are more unknowns than

�MC = 0�MB = 0�MA = 0

�MB = 0�MA = 0�Fx = 0

�MA = 0�Fy = 0�Fx = 0

�Mz = 0�My = 0�Mx = 0

�Fz = 0�Fy = 0�Fx = 0

8 Chapter 1 Analysis of Stress



available equations of statics, the problem is called statically indeterminate. The
degree of static indeterminacy is equal to the difference between the number of
unknown forces and the number of relevant equilibrium conditions. Any reaction
that is in excess of those that can be obtained by statics alone is termed redundant.

The number of redundants is therefore the same as the degree of indeterminacy.

1.5 DEFINITION AND COMPONENTS OF STRESS

Stress and strain are most important concepts for a comprehension of the
mechanics of solids. They permit the mechanical behavior of load-carrying compo-
nents to be described in terms fundamental to the engineer. Both the analysis and
design of a given machine or structural element involve the determination of stress
and material stress–strain relationships. The latter is taken up in Chapter 2.

Consider a body in equilibrium subject to a system of external forces, as shown
in Fig. 1.1a. Under the action of these forces, internal forces are developed within
the body. To examine the latter at some interior point Q, we use an imaginary plane
to cut the body at a section a–a through Q, dividing the body into two parts. As the
forces acting on the entire body are in equilibrium, the forces acting on one part
alone must be in equilibrium: this requires the presence of forces on plane a–a.
These internal forces, applied to both parts, are distributed continuously over the
cut surface. This process, referred to as the method of sections (Fig. 1.1), is relied on
as a first step in solving all problems involving the investigation of internal forces.

A free-body diagram is simply a sketch of a body with all the appropriate
forces, both known and unknown, acting on it. Figure 1.1b shows such a plot of the
isolated left part of the body. An element of area , located at point Q on the cut
surface, is acted on by force �F. Let the origin of coordinates be placed at point Q,
with x normal and y, z tangent to . In general, �F does not lie along x, y, or z.�A

�A
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FIGURE 1.1. Method of sections: (a) Sectioning of a loaded body; (b) free body with
external and internal forces; (c) enlarged area with components of the
force �F.
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Decomposing �F into components parallel to x, y, and z (Fig. 1.1c), we define the
normal stress and the shearing stresses and

(1.5)

These definitions provide the stress components at a point Q to which the area
is reduced in the limit. Clearly, the expression depends on the ideal-

ization discussed in Section 1.1. Our consideration is with the average stress on
areas, which, while small as compared with the size of the body, is large compared
with interatomic distances in the solid. Stress is thus defined adequately for engi-
neering purposes. As shown in Eq. (1.5), the intensity of force perpendicular, or
normal, to the surface is termed the normal stress at a point, while the intensity of
force parallel to the surface is the shearing stress at a point.

The values obtained in the limiting process of Eq. (1.5) differ from point to
point on the surface as �F varies. The stress components depend not only on �F,
however, but also on the orientation of the plane on which it acts at point Q. Even
at a given point, therefore, the stresses will differ as different planes are considered.
The complete description of stress at a point thus requires the specification of the
stress on all planes passing through the point.

Because the stress ( or ) is obtained by dividing the force by area, it has units

of force per unit area. In SI units, stress is measured in newtons per square meter

or pascals (Pa). As the pascal is a very small quantity, the megapascal
(MPa) is commonly used. When U.S. Customary System units are used, stress is 
expressed in pounds per square inch (psi) or kips per square inch (ksi).

It is verified in Section 1.12 that in order to enable the determination of the
stresses on an infinite number of planes passing through a point Q, thus defining
the stresses at that point, we need only specify the stress components on three
mutually perpendicular planes passing through the point. These three planes, per-
pendicular to the coordinate axes, contain three hidden sides of an infinitesimal
cube (Fig. 1.2). We emphasize that when we move from point Q to point the
values of stress will, in general, change. Also, body forces can exist. However, these

Q¿

1N/m22,
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�xy = lim
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=
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dFz
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=
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FIGURE 1.2. Element subjected to three-
dimensional stress. All stresses
have positive sense.
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cases are not discussed here (see Sec. 1.8), as we are now merely interested in
establishing the terminology necessary to specify a stress component.

The general case of a three-dimensional state of stress is shown in Fig. 1.2. Con-
sider the stresses to be identical at points Q and and uniformly distributed on
each face, represented by a single vector acting at the center of each face. In accor-
dance with the foregoing, a total of nine scalar stress components defines the state
of stress at a point. The stress components can be assembled in the following matrix

form, wherein each row represents the group of stresses acting on a plane passing
through Q(x, y, z):

(1.6)

We note that in indicial notation (refer to Sec. 1.17), a stress component is writ-
ten as , where the subscripts i and j each assume the values of x, y, and z as
required by the foregoing equation. The double subscript notation is interpreted as
follows: The first subscript indicates the direction of a normal to the plane or face
on which the stress component acts; the second subscript relates to the direction of
the stress itself. Repetitive subscripts are avoided in this text, so the normal stresses

and are designated and as indicated in Eq. (1.6). A face or

plane is usually identified by the axis normal to it; for example, the x faces are per-
pendicular to the x axis.

Sign Convention

Referring again to Fig. 1.2, we observe that both stresses labeled tend to twist
the element in a clockwise direction. It would be convenient, therefore, if a sign
convention were adopted under which these stresses carried the same sign. Apply-
ing a convention relying solely on the coordinate direction of the stresses would
clearly not produce the desired result, inasmuch as the stress acting on the
upper surface is directed in the positive x direction, while acting on the lower
surface is directed in the negative x direction. The following sign convention, which
applies to both normal and shear stresses, is related to the deformational influence
of a stress and is based on the relationship between the direction of an outward
normal drawn to a particular surface and the directions of the stress components on
the same surface.

When both the outer normal and the stress component face in a positive direc-
tion relative to the coordinate axes, the stress is positive. When both the outer nor-
mal and the stress component face in a negative direction relative to the coordinate
axes, the stress is positive. When the normal points in a positive direction while the
stress points in a negative direction (or vice versa), the stress is negative. In accor-
dance with this sign convention, tensile stresses are always positive and compres-
sive stresses always negative. Figure 1.2 depicts a system of positive normal and
shear stresses.

�yx

�yx

�yx

�z,�x, �y,�zz�xx, �yy,

�ij

[�ij] = J
�xx �xy �xz

�yx �yy �yz

�zx �zy �zz
K = J

�x �xy �xz

�yx �y �yz

�zx �zy �z
K
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Equality of Shearing Stresses

We now examine properties of shearing stress by studying the equilibrium of forces
(see Sec. 1.4) acting on the cubic element shown in Fig. 1.2. As the stresses acting
on opposite faces (which are of equal area) are equal in magnitude but opposite in
direction, translational equilibrium in all directions is assured; that is,

and Rotational equilibrium is established by taking 
moments of the x-, y-, and z-directed forces about point Q, for example. From 

Simplifying,

(1.7a)

Likewise, from and we have

(1.7b)

Hence, the subscripts for the shearing stresses are commutative, and the stress ten-
sor is symmetric. This means that shearing stresses on mutually perpendicular planes

of the element are equal. Therefore, no distinction will hereafter be made between
the stress components and and or and In Section 1.8, it is
shown rigorously that the foregoing is valid even when stress components vary from
one point to another.

Some Special Cases of Stress

Under particular circumstances, the general state of stress (Fig. 1.2) reduces to
simpler stress states, as briefly described here. These stresses, which are commonly
encountered in practice, are given detailed consideration throughout the text.

a. Triaxial Stress. We shall observe in Section 1.13 that an element subjected to
only stresses and acting in mutually perpendicular directions is said to
be in a state of triaxial stress. Such a state of stress can be written as

(a)

The absence of shearing stresses indicates that the preceding stresses are the
principal stresses for the element. A special case of triaxial stress, known as spherical

or dilatational stress, occurs if all principal stresses are equal (see Sec. 1.14). Equal tri-
axial tension is sometimes called hydrostatic tension. An example of equal triaxial
compression is found in a small element of liquid under static pressure.

b. Two-Dimensional or Plane Stress. In this case, only the x and y faces of the ele-
ment are subjected to stress, and all the stresses act parallel to the x and y axes,
as shown in Fig. 1.3a. The plane stress matrix is written

(1.8)c �x �xy

�xy �y
d

J
�1 0 0

0 �2 0

0 0 �3
K

�3�1, �2,

�zy.�yz�zx,�yx, �xz�xy

�xz = �zx,  �yz = �zy

�Mx = 0,�My = 0

�xy = �yx

1- �xy dy dz2dx + 1�yx dx dz2dy = 0

�Mz = 0,
�Fz = 0.�Fx = 0, �Fy = 0,
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FIGURE 1.3. (a) Element in plane stress; (b) two-dimensional presentation of plane
stress; (c) element in pure shear.

Although the three-dimensional nature of the element under stress should not
be forgotten, for the sake of convenience we usually draw only a two-dimensional

view of the plane stress element (Fig. 1.3b). When only two normal stresses are
present, the state of stress is called biaxial. These stresses occur in thin plates
stressed in two mutually perpendicular directions.

c. Pure Shear. In this case, the element is subjected to plane shearing stresses only,
for example, and (Fig. 1.3c). Typical pure shear occurs over the cross sec-
tions and on longitudinal planes of a circular shaft subjected to torsion.

d. Uniaxial Stress. When normal stresses act along one direction only, the one-
dimensional state of stress is referred to as a uniaxial tension or compression.

1.6 INTERNAL FORCE-RESULTANT AND STRESS RELATIONS

Distributed forces within a load-carrying member can be represented by a stati-
cally equivalent system consisting of a force and a moment vector acting at any
arbitrary point (usually the centroid) of a section. These internal force resul-

tants, also called stress resultants, exposed by an imaginary cutting plane con-
taining the point through the member, are usually resolved into components
normal and tangent to the cut section (Fig. 1.4). The sense of moments follows
the right-hand screw rule, often represented by double-headed vectors, as
shown in the figure. Each component can be associated with one of four modes
of force transmission:

1. The axial force P or N tends to lengthen or shorten the member.
2. The shear forces and tend to shear one part of the member relative to the

adjacent part and are often designated by the letter V.
3. The torque or twisting moment T is responsible for twisting the member.
4. The bending moments and cause the member to bend and are often iden-

tified by the letter M.
MzMy

VzVy

�yx�xy
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A member may be subject to any or all of the modes simultaneously. Note that the
same sign convention is used for the force and moment components that is used for
stress; a positive force (or moment) component acts on the positive face in the posi-
tive coordinate direction or on a negative face in the negative coordinate direction.

A typical infinitesimal area dA of the cut section shown in Fig. 1.4 is acted on
by the components of an arbitrarily directed force dF, expressed using Eq. (1.5) as

and Clearly, the stress components on
the cut section cause the internal force resultants on that section. Thus, the incre-
mental forces are summed in the x, y, and z directions to give

(1.9a)

In a like manner, the sums of the moments of the same forces about the x, y, and z
axes lead to

(1.9b)

where the integrations proceed over area A of the cut section. Equations (1.9) rep-
resent the relations between the internal force resultants and the stresses. In the next
paragraph, we illustrate the fundamental concept of stress and observe how
Eqs. (1.9) connect internal force resultants and the state of stress in a specific case.

Consider a homogeneous prismatic bar loaded by axial forces P at the ends
(Fig. 1.5a). A prismatic bar is a straight member having constant cross-sectional
area throughout its length. To obtain an expression for the normal stress, we make
an imaginary cut (section a–a) through the member at right angles to its axis. A
free-body diagram of the isolated part is shown in Fig. 1.5b, wherein the stress is
substituted on the cut section as a replacement for the effect of the removed part.
Equilibrium of axial forces requires that or The normal
stress is therefore

(1.10)�x =
P

A

P = A�x.P = 1�x dA

T = L1�xzy - �xyz2 dA,  My = L�x z dA,  Mz = -L�xy dA

P = L�x dA,  Vy = L�xy dA,  Vz = L�xz dA

dFz = �xz dA.dFx = �x dA, dFy = �xy dA,
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FIGURE 1.4. Positive forces and moments on a cut
section of a body and components of
the force dF on an infinitesimal area
dA.
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FIGURE 1.5. (a) Prismatic bar in tension; (b) Stress distribution across cross section.

*Further discussion of uniaxial compression stress is found in Section 11.6, where we take up
the classification of columns.

where A is the cross-sectional area of the bar. Because and T all are equal
to zero, the second and third of Eqs. (1.9a) and the first of Eqs. (1.9b) are satisfied
by Also, in Eqs. (1.9b) requires only that be sym-
metrically distributed about the y and z axes, as depicted in Fig. 1.5b. When the
member is being extended as in the figure, the resulting stress is a uniaxial tensile

stress; if the direction of forces were reversed, the bar would be in compression
under uniaxial compressive stress. In the latter case, Eq. (1.10) is applicable only to
chunky or short members owing to other effects that take place in longer
members.*

Similarly, application of Eqs. (1.9) to torsion members, beams, plates, and shells is
presented as the subject unfolds, following the derivation of stress–strain 
relations and examination of the geometric behavior of a particular member. 
Applying the method of mechanics of materials, we develop other elementary

formulas for stress and deformation. These, also called the basic formulas of 

mechanics of materials, are often used and extended for application to more com-
plex problems in advanced mechanics of materials and the theory of elasticity. For 
reference purposes to preliminary discussions, Table 1.1 lists some commonly
encountered cases. Note that in thin-walled vessels (r/t � 10) there is often no dis-
tinction made between the inner and outer radii because they are nearly equal. In
mechanics of materials, r denotes the inner radius. However, the more accurate shell
theory (Sec. 13.11) is based on the average radius, which we use throughout this text.
Each equation presented in the table describes a state of stress associated with a single
force, torque, moment component, or pressure at a section of a typical homogeneous
and elastic structural member [Ref. 1.7]. When a member is acted on simultaneously
by two or more load types, causing various internal force resultants on a section, it is
assumed that each load produces the stress as if it were the only load acting on the
member. The final or combined stress is then determined by superposition of the
several states of stress, as discussed in Section 2.2.

The mechanics of materials theory is based on the simplifying assumptions
related to the pattern of deformation so that the strain distributions for a cross sec-
tion of the member can be determined. It is a basic assumption that plane sections

before loading remain plane after loading. The assumption can be shown to be exact
for axially loaded prismatic bars, for prismatic circular torsion members, and for

�xMy = Mz = 0�xy = �xz = 0.

Vy, Vz,
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TABLE 1.1. Commonly Used Elementary Formulas for Stress

1. Prismatic Bars of Linearly Elastic Material

Axial loading: (a)

Torsion: (b)

Bending: (c)

Shear: (d)

where

axial stress of inertia about 
stress due to torque neutral axis (N.A.)
stress due to vertical moment of inertia 

shear force of circular cross section
force of bar at which 

is calculated
shear force
moment about z axis moment about N.A. of the 

area area beyond the point at which 
principal axes is calculated

of the area

2. Thin-Walled Pressure Vessels

Cylinder: (e)

Sphere: (f)

where

stress in cylinder wall pressure

stress in cylinder wall thickness

stress in sphere wall radius

derivations and limitations of the use of these formulas are discussed in Sections 1.6, 5.7, 6.2, and 13.13.aDetailed
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p = internal�� = tangential
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prismatic beams subjected to pure bending. The assumption is approximate for
other beam situations. However, it is emphasized that there is an extraordinarily
large variety of cases in which applications of the basic formulas of mechanics of
materials lead to useful results. In this text we hope to provide greater insight into
the meaning and limitations of stress analysis by solving problems using both the
elementary and exact methods of analysis.

1.7 STRESSES ON INCLINED SECTIONS

The stresses in bars, shafts, beams, and other structural members can be obtained by
using the basic formulas, such as those listed in Table 1.1. The values found by these
equations are for stresses that occur on cross sections of the members. Recall that all

of the formulas for stress are limited to isotropic, homogeneous, and elastic materials
that behave linearly. This section deals with the states of stress at points located on
inclined sections or planes under axial loading. As before, we use stress elements to
represent the state of stress at a point in a member. However, we now wish to find
normal and shear stresses acting on the sides of an element in any direction.

The directional nature of more general states of stress and finding maximum
and minimum values of stress are discussed in Sections 1.10 and 1.13. Usually, the
failure of a member may be brought about by a certain magnitude of stress in a cer-
tain direction. For proper design, it is necessary to determine where and in what di-
rection the largest stress occurs. The equations derived and the graphical technique
introduced here and in the sections to follow are helpful in analyzing the stress at a
point under various types of loading. Note that the transformation equations for
stress are developed on the basis of equilibrium conditions only and do not depend
on material properties or on the geometry of deformation.

Axially Loaded Members

We now consider the stresses on an inclined plane a–a of the bar in uniaxial tension
shown in Fig. 1.6a, where the normal to the plane forms an angle with the axial
direction. On an isolated part of the bar to the left of section a–a, the resultant P
may be resolved into two components: the normal force and the
shear force as indicated in Fig. 1.6b. Thus, the normal and shearing
stresses, uniformly distributed over the area of the inclined plane
(Fig. 1.6c), are given by

(1.11a)

(1.11b)

where . The negative sign in Eq. (1.11b) agrees with the sign convention
for shearing stresses described in Section 1.5. The foregoing process of determining 
the stress in proceeding from one set of coordinate axes to another is called stress

transformation.

�x = P/A

�x¿y¿ = -
P sin �

Ax¿
= - �x sin � cos �

�x¿ =
P cos �

Ax¿
= �x cos2 �

Ax¿ = A/cos �

Py¿ = -P sin �,
Px¿ = P cos �

�x¿



Equations (1.11) indicate how the stresses vary as the inclined plane is cut at
various angles. As expected, is a maximum when is or and 

is maximum when is or Also, . The maximum
stresses are thus

(1.12)

Observe that the normal stress is either maximum or a minimum on planes for
which the shearing stress is zero.

Figure 1.7 shows the manner in which the stresses vary as the section is cut at
angles varying from to Clearly, when the sign of in Eq.
(1.11b) changes; the shearing stress changes sense. However, the magnitude of the
shearing stress for any angle determined from Eq. (1.11b) is equal to that for

This agrees with the general conclusion reached in the preceding section:
shearing stresses on mutually perpendicular planes must be equal.

We note that Eqs. (1.11) can also be used for uniaxial compression by assigning
to P a negative value. The sense of each stress direction is then reversed in Fig. 1.6c.

EXAMPLE 1.1 State of Stress in a Tensile Bar

Compute the stresses on the inclined plane with for a prismatic
bar of a cross-sectional area subjected to a tensile load of
60 kN (Fig. 1.6a). Then determine the state of stress for by cal-
culating the stresses on an adjoining face of a stress element. Sketch the
stress configuration.

Solution The normal stress on a cross section is

�x =
P

A
=

6011032
800110-62 = 75 MPa

� = 35°
800 mm2,

� = 35°

� + 90°.
�

�x¿y¿� 7 90°,180°.� = 0°

�max = �x,  �max = ;
1
2 �x

�max = ;
1
2 �max135°.45°�1�max2 �x¿y¿180°,0°�1�max2�x¿
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FIGURE 1.6. (a) Prismatic bar in tension; (b, c) side views of a part cut from
the bar.
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24.67 MPa

50.33 MPa

35.24 MPa

y ′

x ′

x

90°+ θ

θ = 35°

FIGURE 1.8. Example 1.1. Stress 
element for u = 35°.
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Introducing this value in Eqs. (1.11) and using we have

The normal and shearing stresses acting on the adjoining face are,
respectively, 24.67 MPa and 35.24 MPa, as calculated from Eqs. (1.11) by
substituting the angle The values of and are the
same on opposite sides of the element. On the basis of the established
sign convention for stress, the required sketch is shown in Fig. 1.8.

1.8 VARIATION OF STRESS WITHIN A BODY

As pointed out in Section 1.5, the components of stress generally vary from point to
point in a stressed body. These variations are governed by the conditions of equilib-
rium of statics. Fulfillment of these conditions establishes certain relationships,
known as the differential equations of equilibrium, which involve the derivatives of
the stress components.

Consider a thin element of sides dx and dy (Fig. 1.9), and assume that 
and are functions of x, y but do not vary throughout the thickness (are indepen-
dent of z) and that the other stress components are zero. Also assume that the x and
y components of the body forces per unit volume, and are independent of z
and that the z component of the body force This combination of stresses,
satisfying the conditions described, is the plane stress. Note that because the element

Fz = 0.
Fy,Fx

�yx

�x, �y, �xy,

�x¿y¿�x¿� + 90° = 125°.

y¿

�x¿y¿ = -�x sin � cos � = -751sin 35°21cos 35°2 = -35.24 MPa

�x¿ = �x cos2 � = 751cos 35°22 = 50.33 MPa

� = 35°,

Stress

0
45 90 135 180

Angle θ°

σx

σx

τx ′y ′

0.5 σx

−0.5 σx

′

FIGURE 1.7. Example 1.1. Variation of stress at a point with the inclined 
section in the bar shown in Fig. 1.6a.



is very small, for the sake of simplicity, the stress components may be considered to
be distributed uniformly over each face. In the figure they are shown by a single
vector representing the mean values applied at the center of each face.

As we move from one point to another, for example, from the lower-left corner
to the upper-right corner of the element, one stress component, say acting on
the negative x face, changes in value on the positive x face. The stresses and

similarly change. The variation of stress with position may be expressed by a
truncated Taylor’s expansion:

(a)

The partial derivative is used because is a function of x and y. Treating all the
components similarly, the state of stress shown in Fig. 1.9 is obtained.

We consider now the equilibrium of an element of unit thickness, taking
moments of force about the lower-left corner. Thus, yields

Neglecting the triple products involving dx and dy, this reduces to In a
like manner, it may be shown that and as already obtained in
Section 1.5. From the equilibrium of x forces, we have

(b)

Upon simplification, Eq. (b) becomes

(c)

Inasmuch as dx dy is nonzero, the quantity in the parentheses must vanish. A sim-
ilar expression is written to describe the equilibrium of y forces. The x and y

a 0�x

0x
+

0�xy

0y
+ Fxbdx dy = 0

a�x +
0�x

0x
dxbdy - �x dy + a�xy +

0�xy

0y
dybdx - �xy dx + Fx dx dy = 0

�Fx = 0,
�xz = �zx,�yz = �zy

�xy = �yx.

- a�yx +
0�yx

0y
dybdx dy + Fydx dy

dx

2
- Fx dx dy

dy

2
= 0

a 0�y

0y
dx dyb dx

2
- a 0�x

0x
dx dyb dy

2
+ a�xy +

0�xy

0x
dxbdx dy

�Mz = 0

�x

�x +
0�x

0x
dx

�yx

�y, �xy,
�x,
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*In this case, the body is not in static equilibrium, and the inertia force terms and
(where and are the components of acceleration) must be included in the body

force components and respectively, in Eqs. (1.14).Fz,Fx, Fy,
azax, ay,-�az

-�ax, -�ay,

1.8 Variation of Stress within a Body 21

equations yield the following differential equations of equilibrium for two-

dimensional stress:

(1.13)

The differential equations of equilibrium for the case of three-dimensional

stress may be generalized from the preceding expressions as follows:

(1.14)

A succinct representation of these expressions, on the basis of the range and sum-
mation conventions (Sec. 1.17), may be written as

(1.15a)

where and The repeated subscript is j, indicating summation.
The unrepeated subscript is i. Here i is termed the free index, and j, the dummy index.

If in the foregoing expression the symbol is replaced by a comma, we have

(1.15b)

where the subscript after the comma denotes the coordinate with respect to which
differentiation is performed. If no body forces exist, Eq. (1.15b) reduces to ,
indicating that the sum of the three stress derivatives is zero. As the two equilibrium
relations of Eqs. (1.13) contain three unknowns and the three expres-
sions of Eqs. (1.14) involve the six unknown stress components, problems in stress
analysis are internally statically indeterminate.

In a number of practical applications, the weight of the member is the only

body force. If we take the y axis as upward and designate by the mass density per
unit volume of the member and by g, the gravitational acceleration, then

and in Eqs. (1.13) and (1.14). The resultant of this force
over the volume of the member is usually so small compared with the surface
forces that it can be ignored, as stated in Section 1.1. However, in dynamic systems,
the stresses caused by body forces may far exceed those associated with surface
forces so as to be the principal influence on the stress field.*
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�
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Application of Eqs. (1.13) and (1.14) to a variety of loaded members is pre-
sented in sections employing the approach of the theory of elasticity, beginning
with Chapter 3. The following sample problem shows the pattern of the body force
distribution for an arbitrary state of stress in equilibrium.

EXAMPLE 1.2 The Body Forces in a Structure

The stress field within an elastic structural member is expressed as
follows:

(d)

Determine the body force distribution required for equilibrium.

Solution Substitution of the given stresses into Eq. (1.14) yields

The body force distribution, as obtained from these expressions, is
therefore

(e)

The state of stress and body force at any specific point within the mem-
ber may be obtained by substituting the specific values of x, y, and z into
Eqs. (d) and (e), respectively.

1.9 PLANE-STRESS TRANSFORMATION

A two-dimensional state of stress exists when the stresses and body forces are
independent of one of the coordinates, here taken as z. Such a state is described
by stresses and and the x and y body forces. Two-dimensional
problems are of two classes: plane stress and plane strain. In the case of plane
stress, as described in the previous section, the stresses and and the 
z-directed body forces are assumed to be zero. The condition that occurs in a
thin plate subjected to loading uniformly distributed over the thickness and
parallel to the plane of the plate typifies the state of plane stress (Fig. 1.10).
In the case of plane strain, the stresses and and the body force are like-
wise taken to be zero, but does not vanish* and can be determined from
stresses and �y.�x

�z

Fz�yz�xz

�yz,�z, �xz,

�xy�x, �y,

Fx = 3x2
- 4y - 3xz2,  Fy = -y,  Fz = -2xy + 3z2

- z3

1-3z22 + 1z3
+ 2xy2 + 102 + Fz = 0

1y2 + 102 + 102 + Fy = 0

1-3x22 + 14y2 + 13xz22 + Fx = 0

�y = 2x3
+

1
2y

2,  �yz = 0,  �z = 4y2
- z3

�x = -x3
+ y2,  �xy = 5z + 2y2,  �xz = xz3

+ x2y
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*More details and illustrations of these assumptions are given in Chapter 3.



FIGURE 1.11. Elements in plane stress.
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We shall now determine the equations for transformation of the stress compo-
nents and at any point of a body represented by an infinitesimal element,
isolated from the plate illustrated in Fig. 1.10. The z-directed normal stress even
if it is nonzero, need not be considered here. In the following derivations, the angle

locating the axis is assumed positive when measured from the x axis in a coun-

terclockwise direction. Note that, according to our sign convention (see Sec. 1.5), the
stresses are indicated as positive values.

Consider an infinitesimal wedge cut from the loaded body shown in Fig. 1.11a,
b. It is required to determine the stresses and which refer to axes 
making an angle with axes x, y, as shown in the figure. Let side AB be normal to
the axis. Note that in accordance with the sign convention, and are posi-
tive stresses, as shown in the figure. If the area of side AB is taken as unity, then
sides QA and QB have area and respectively.

Equilibrium of forces in the x and y directions requires that

(1.16)
py = �xy cos � + �y sin �

px = �x cos � + �xy sin �

sin �,cos �

�x¿y¿�x¿x¿

�

x¿, y¿�x¿y¿,�x¿
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y

z
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σx ′

σx
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θ

FIGURE 1.10. Thin Plate in-plane loads.
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where and are the components of stress resultant acting on AB in the x and y

directions, respectively. The normal and shear stresses on the plane (AB plane)
are obtained by projecting and in the and directions:

(a)

From the foregoing it is clear that Upon substitution of the
stress resultants from Eq. (1.16), Eqs. (a) become

(1.17a)

(1.17b)

Note that the normal stress acting on the face of an inclined element 
(Fig. 1.11c) may readily be obtained by substituting for in the expression
for . In so doing, we have

(1.17c)

Equations (1.17) can be converted to a useful form by introducing the following
trigonometric identities:

The transformation equations for plane stress now become

(1.18a)

(1.18b)

(1.18c)

The foregoing expressions permit the computation of stresses acting on all possible
planes AB (the state of stress at a point) provided that three stress components on a
set of orthogonal faces are known.

Stress tensor. It is important to note that addition of Eqs. (1.17a) and (1.17c)
gives the relationships

In words then, the sum of the normal stresses on two perpendicular planes is 
invariant—that is, independent of . This conclusion is also valid in the case of a three-
dimensional state of stress, as shown in Section 1.13. In mathematical terms, the stress

whose components transform in the preceding way by rotation of axes is termed tensor.
Some examples of other quantities are strain and moment of inertia. The similari-
ties between the transformation equations for these quantities are observed in 
Sections 2.5 and C.4. Mohr’s circle (Sec. 1.11) is a graphical representation of a stress
tensor transformation.
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1.9 Plane-Stress Transformation 25

Polar Representations of State of Plane Stress

Consider, for example, the possible states of stress corresponding to
and Substituting these values into Eq.

(1.18) and permitting to vary from to yields the data upon which the
curves shown in Fig. 1.12 are based. The plots shown, called stress trajectories, are
polar representations: versus (Fig. 1.12a) and versus (Fig. 1.12b). It is 
observed that the direction of each maximum shear stress bisects the angle 
between the maximum and minimum normal stresses. Note that the normal stress is
either a maximum or a minimum on planes at and 
respectively, for which the shearing stress is zero. The conclusions drawn from this
example are valid for any two-dimensional (or three-dimensional) state of stress
and are observed in the sections to follow. 

Cartesian Representation of State of Plane Stress

Now let us examine a two-dimensional condition of stress at a point in a loaded
machine component on an element illustrated in Fig. 1.13a. Introducing the given
values into the first two of Eqs. (1.18), gives

In the foregoing, permitting to vary from to in increments of leads to
the data from which the graphs illustrated in Fig. 1.13b are obtained [Ref. 1.7]. This
Cartesian representation demonstrates the variation of the normal and shearing
stresses versus . Observe that the direction of maximum (and minimum)
shear stress bisects the angle between the maximum and minimum normal stresses.
Moreover, the normal stress is either a maximum or a minimum on planes =

and = + , respectively, for which the shear stress is zero. Note as a
check that MPa, as expected.�x + �y = �max + �min = 9
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FIGURE 1.12. Polar representations of and (in megapascals) versus �.x¿y¿x¿� �



The conclusions drawn from the foregoing polar and Cartesian representations
are valid for any state of stress, as will be seen in the next section. A more conve-
nient approach to the graphical transformation for stress is considered in
Sections 1.11 and 1.15. The manner in which the three-dimensional normal and
shearing stresses vary is discussed in Sections 1.12 through 1.14.

1.10 PRINCIPAL STRESSES AND MAXIMUM IN-PLANE 

SHEAR STRESS 

The transformation equations for two-dimensional stress indicate that the normal
stress and shearing stress vary continuously as the axes are rotated through the
angle To ascertain the orientation of corresponding to maximum or minimum

the necessary condition is applied to Eq. (1.18a). In so doing, we have

(a)

This yields

(1.19)

Inasmuch as two directions, mutually perpendicular, are
found to satisfy Eq. (1.19). These are the principal directions, along which the prin-
cipal or maximum and minimum normal stresses act. Two values of correspond-
ing to the and planes, are represented by and respectively. �–p,�¿p�2�1

�p,

tan 2� = tan1� + 2�2,
tan 2�p =

2�xy

�x - �y

-1�x - �y2 sin 2� + 2�xy cos 2� = 0

d�x¿/d� = 0�x¿,
x¿y¿�.

�x¿y¿�x¿
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FIGURE 1.13. Graph of normal stress and shearing stress with angle u (for u ).… 180°�x¿y¿�x¿
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1.10 Principal Stresses and Maximum In-Plane Shear Stress 27

When Eq. (1.18b) is compared with Eq. (a), it becomes clear that on a
principal plane. A principal plane is thus a plane of zero shear. The principal stresses

are determined by substituting Eq. (1.19) into Eq. (1.18a):

(1.20)

Note that the algebraically larger stress given here is the maximum principal stress,
denoted by The minimum principal stress is represented by It is necessary to
substitute one of the values into Eq. (1.18a) to determine which of the two cor-
responds to 

Similarly, employing the preceding approach and Eq. (1.18b), we determine
the planes of maximum shearing stress. Thus, setting we now have

or

(1.21)

The foregoing expression defines two values of that are apart. These directions
may again be denoted by attaching a prime or a double prime notation to Com-
paring Eqs. (1.19) and (1.21), we also observe that the planes of maximum shearing
stress are inclined at with respect to the planes of principal stress. Now, from
Eqs. (1.21) and (1.18b), we obtain the extreme values of shearing stress as follows:

(1.22)

Here the largest shearing stress, regardless of sign, is referred to as the maximum

shearing stress, designated Normal stresses acting on the planes of maximum
shearing stress can be determined by substituting the values of from Eq. (1.21)
into Eqs. (1.18a) and (1.18c):

(1.23)

The results are illustrated in Fig. 1.14. Note that the diagonal of a stress ele-
ment toward which the shearing stresses act is called the shear diagonal. The shear
diagonal of the element on which the maximum shearing stresses act lies in the
direction of the algebraically larger principal stress as shown in the figure. This 
assists in predicting the proper direction of the maximum shearing stress.
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2�xy

1�x - �y2cos 2� + 2�xy sin 2� = 0
d�x¿y¿/d� = 0,

�1.
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θ ′p
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FIGURE 1.14. Planes of principal and maximum shear-
ing stresses.



1.11 MOHR’S CIRCLE FOR TWO-DIMENSIONAL STRESS

A graphical technique, predicated on Eq. (1.18), permits the rapid transformation
of stress from one plane to another and leads also to the determination of the
maximum normal and shear stresses. In this approach, Eqs. (1.18) are depicted by a
stress circle, called Mohr’s circle.* In the Mohr representation, the normal stresses
obey the sign convention of Section 1.5. However, for the purposes only of
constructing and reading values of stress from Mohr’s circle, the sign convention for
shear stress is as follows: If the shearing stresses on opposite faces of an element
would produce shearing forces that result in a clockwise couple, as shown in
Fig. 1.15c, these stresses are regarded as positive. Accordingly, the shearing stresses
on the y faces of the element in Fig. 1.15a are taken as positive (as before), but
those on the x faces are now negative.

Given and with algebraic sign in accordance with the foregoing sign
convention, the procedure for obtaining Mohr’s circle (Fig. 1.15b) is as follows:

1. Establish a rectangular coordinate system, indicating and Both stress
scales must be identical.

2. Locate the center C of the circle on the horizontal axis a distance 
from the origin.

3. Locate point A by coordinates and These stresses may correspond to
any face of an element such as in Fig. 1.15a. It is usual to specify the stresses on
the positive x face, however.

4. Draw a circle with center at C and of radius equal to CA.
5. Draw line AB through C.

-�xy.�x

1
21�x + �y2

+�.+�

�xy�x, �y,
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FIGURE 1.15. (a) Stress element; (b) Mohr’s circle of stress; (c) interpretation of posi-
tive shearing stresses.

*After Otto Mohr (1835–1918), professor at Dresden Polytechnic. For further details, see
Ref. 1.7, for example.
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The angles on the circle are measured in the same direction as is measured in Fig.
1.15a. An angle of on the circle corresponds to an angle of on the element. The
state of stress associated with the original x and y planes corresponds to points A
and B on the circle, respectively. Points lying on diameters other than AB, such as

and define states of stress with respect to any other set of and planes
rotated relative to the original set through an angle 

It is clear that points and on the circle locate the principal stresses and
provide their magnitudes as defined by Eqs. (1.19) and (1.20), while D and E repre-
sent the maximum shearing stresses, defined by Eqs. (1.21) and (1.22). The radius of
the circle is

(a)

where

Thus, the radius equals the magnitude of the maximum shearing stress. Mohr’s cir-
cle shows that the planes of maximum shear are always located at from planes
of principal stress, as already indicated in Fig. 1.14. The use of Mohr’s circle is illus-
trated in the first two of the following examples.

EXAMPLE 1.3 Principal Stresses in a Member

At a point in the structural member, the stresses are represented as in
Fig. 1.16a. Employ Mohr’s circle to determine (a) the magnitude and
orientation of the principal stresses and (b) the magnitude and orienta-
tion of the maximum shearing stresses and associated normal stresses. In
each case, show the results on a properly oriented element; represent
the stress tensor in matrix form.

Solution Mohr’s circle, constructed in accordance with the procedure
outlined, is shown in Fig. 1.16b. The center of the circle is at

MPa on the axis.

a. The principal stresses are represented by points and Hence, the
maximum and minimum principal stresses, referring to the circle, are

or

The planes on which the principal stresses act are given by

Hence

�¿p = 28.15°  and  �–p = 118.15°

2�¿p = tan-1 30

20
= 56.30° and 2�–p = 56.30° + 180° = 236.30°

�1 = 96.05 MPa and �2 = 23.95 MPa

�1, 2 = 60 ; 21
4180 - 4022 + 13022

B1.A1

�140 + 802/2 = 60

45°

CF =
1
21�x - �y2,    AF = �xy

CA = 2CF2
+ AF2

B1A1

�.
y¿x¿B¿,A¿

�2�

�



Mohr’s circle clearly indicates that locates the plane. The results
may readily be checked by substituting the two values of into Eq.
(1.18a). The state of principal stress is shown in Fig. 1.16c.

b. The maximum shearing stresses are given by points D and E. Thus,

It is seen that yields the same result. The planes on which
these stresses act are represented by

As Mohr’s circle indicates, the positive maximum shearing stress acts
on a plane whose normal makes an angle with the normal to
the original plane (x plane). Thus, on two opposite faces of
the element will be directed so that a clockwise couple results. The
normal stresses acting on maximum shear planes are represented by

MPa on each face. The state of maximum shearing stress
is shown in Fig. 1.16d. The direction of the may also be readily
predicted by recalling that they act toward the shear diagonal. We
note that, according to the general sign convention (Sec. 1.5), the

�max’s
OC, �¿ = 60

x¿+�max

�–sx¿

�–s = 28.15° + 45° = 73.15° and �¿s = 163.15°

1�1 - �22/2
�max = ; 21

4180 - 4022 + 13022 = ;36.05 MPa

�p

�1�¿p

30 Chapter 1 Analysis of Stress
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(MPa)

y

B (40,30)
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A (80,−30)
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O B1

σ ′ = 60

σ (MPa)
30 MPa

80 MPa

(a) (b)
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y ′
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28.15°
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23.95 MPa

(c) (d)
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τ
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FIGURE 1.16. Example 1.3. (a) Element in plane stress; (b) Mohr’s circle of stress;
(c) principal stresses; (d) maximum shear stress.
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shearing stress acting on the plane in Fig. 1.16d is negative. As a
check, if and the given initial data are substituted into
Eq. (1.18b), we obtain MPa, as already found.

We may now describe the state of stress at the point in the 
following matrix forms:

These three representations, associated with the 
and planes passing through the point, are equivalent.

Note that if we assume in this example, a much higher shear-
ing stress is obtained in the planes bisecting the and z planes (Prob-
lem 1.56). Thus, three-dimensional analysis, Section 1.15, should be
considered for determining the true maximum shearing stress at a point.

EXAMPLE 1.4 Stresses in a Frame

The stresses acting on an element of a loaded frame are shown in 
Fig. 1.17a. Apply Mohr’s circle to determine the normal and shear
stresses acting on a plane defined by � = 30°.

x¿

�z = 0

� = 73.15°
� = 0°, � = 28.15°,

c80 30

30 40
d ,  c96.05 0

0 23.95
d ,  c 60  -36.05

-36.05 60
d

�x¿y¿ = -36.05
2�–s = 146.30°

x¿

14 MPa

(MPa)

28 MPa

x

y

(a)

(b)

(c)

30°

y

τ

σ ′ = 7
x ′

A′

y ′
B ′

60°

CO

σ  (MPa)

B1(−14,0) A1(28,0)

x

x ′

30°

18.19 MPa

3.5 MPa17.5 MPa

y ′

FIGURE 1.17. Example 1.4. (a) Element in biaxial stresses; (b) Mohr’s circle of stress; 
(c) stress element for u = 30°.



Solution Mohr’s circle of Fig. 1.17b describes the state of stress given
in Fig. 1.17a. Points and represent the stress components on the x
and y faces, respectively. The radius of the circle is 
Corresponding to the plane within the element, it is necessary to 
rotate through counterclockwise on the circle to locate point A

counterclockwise rotation locates point Referring to the circle,

and

Figure 1.17c indicates the orientation of the stresses. The results can be
checked by applying Eq. (1.18), using the initial data.

EXAMPLE 1.5 Cylindrical Vessel Under Combined Loads

A thin-walled cylindrical pressure vessel of 250-mm diameter and 5-mm
wall thickness is rigidly attached to a wall, forming a cantilever (Fig.
1.18a). Determine the maximum shearing stresses and the associated
normal stresses at point A of the cylindrical wall. The following loads
are applied: internal pressure MPa, torque and
direct force kN. Show the results on a properly oriented 
element.

P = 20
T = 3 kN # m,p = 1.2

�x¿y¿ = ;21 sin 60° = ;18.19 MPa

�y¿ = -3.5 MPa

�x¿ = 7 + 21 cos 60° = 17.5 MPa

B¿.240°
A¿.60°

30°
114 + 282/2 = 21.

B1A1
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τt
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FIGURE 1.18. Example 1.5. Combined stresses in a thin-walled cylindrical 
pressure vessel: (a) side view; (b) free body of a segment; (c) and
(d) element A (viewed from top).
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Solution The internal force resultants on a transverse section through
point A are found from the equilibrium conditions of the free-body
diagram of Fig. 1.18b. They are and

In Fig. 1.18c, the combined axial, tangential, and shearing
stresses are shown acting on a small element at point A. These stresses
are (Tables 1.1 and C.1)

We thus have and 
Note that for element hence, the direct shearing stress

The maximum shearing stresses are from Eq. (1.22):

Equation (1.23) yields

To locate the maximum shear planes, we use Eq. (1.21):

Applying Eq. (1.18b) with the given data and 
Hence, and the stresses are shown in

their proper directions in Fig. 1.18d.

1.12 THREE-DIMENSIONAL STRESS TRANSFORMATION

The physical elements studied are always three dimensional, and hence it is desir-
able to consider three planes and their associated stresses, as illustrated in Fig. 1.2.
We note that equations governing the transformation of stress in the three-
dimensional case may be obtained by the use of a similar approach to that used for
the two-dimensional state of stress.

Consider a small tetrahedron isolated from a continuous medium (Fig. 1.19a),
subject to a general state of stress. The body forces are taken to be negligible. In the
figure, and are the Cartesian components of stress resultant p acting on
oblique plane ABC. It is required to relate the stresses on the perpendicular planes
intersecting at the origin to the normal and shear stresses on ABC.

pzpx, py,

�–s = 27.6°,�x¿y¿ = -10.71 MPa.
2�s = 55.2°,

�s =
1
2 tan-1 J- 47.6 - 30

21-6.1122 K = 27.6° and 117.6°

�¿ =
1
2147.6 + 302 = 38.8 MPa

�max = ; B a47.6 - 30

2
b 2

+ 1-6.11222 = ;10.71 MPa

�d = �xz = VQ/Ib = 0.
A, Q = 0;

�xy = -6.112 MPa.�x = 47.6 MPa, �y = 30 MPa,

�a =
pr

2t
=

1.21106211252
2152 = 15 MPa,  �� = 2�a = 30 MPa

�t = -
Tr

J
= -

311032r
2�r3t

= -
311032

2�10.1252210.0052 = - 6.112 MPa

�b =
Mr

I
=

811032r
�r3t

=
811032

�10.1252210.0052 = 32.6 MPa

T = 3 kN # m.
V = 20 kN, M = 8 kN # m,



The orientation of plane ABC may be defined in terms of the angles between a
unit normal n to the plane and the x, y, and z directions (Fig. 1.19b). The direction
cosines associated with these angles are

(1.24)

The three direction cosines for the n direction are related by

(1.25)

The area of the perpendicular plane QAB, QAC, QBC may now be expressed in
terms of A, the area of ABC, and the direction cosines:

The other two areas are similarly obtained. In so doing, we have altogether

(a)

Here i, j, and k are unit vectors in the x, y, and z directions, respectively.
Next, from the equilibrium of x, y, z-directed forces together with Eq. (a), we

obtain, after canceling A,

(1.26)

The stress resultant on A is thus determined on the basis of known stresses
and and a knowledge of the orientation of A. In the limit as

the sides of the tetrahedron approach zero, plane A contains point Q. It is thus
demonstrated that the stress resultant at a point is specified. This in turn gives the

�yz�x, �y, �z, �xy, �xz,

pz = �xzl + �yzm + �zn

py = �xyl + �ym + �yzn

px = �xl + �xym + �xzn

AQAB = Al,  AQAC = Am,  AQBC = An

AQAB = Ax = A # i = A1li + mj + nk2 # i = Al

l2 + m2
+ n2

= 1

 cos � = cos1n, z2 = n

 cos � = cos1n, y2 = m

 cos 	 = cos1n, x2 = l
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FIGURE 1.19. Stress components on a tetrahedron.
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stress components acting on any three mutually perpendicular planes passing
through Q as shown next. Although perpendicular planes have been used there for
convenience, these planes need not be perpendicular to define the stress at a point.

Consider now a Cartesian coordinate system wherein coincides

with n and lie on an oblique plane. The and xyz systems are related by
the direction cosines: and so on. The notation cor-
responding to a complete set of direction cosines is shown in Table 1.2. The normal
stress is found by projecting and in the direction and adding

(1.27)

Equations (1.26) and (1.27) are combined to yield

(1.28a)

Similarly, by projecting and in the and directions, we obtain,
respectively,

(1.28b)

(1.28c)

Recalling that the stresses on three mutually perpendicular planes are required
to specify the stress at a point (one of these planes being the oblique plane in ques-
tion), the remaining components are found by considering those planes perpendic-
ular to the oblique plane. For one such plane, n would now coincide with the 
direction, and expressions for the stresses and would be derived. In a
similar manner, the stresses and are determined when n coincides with
the direction. Owing to the symmetry of the stress tensor, only six of the nine
stress components thus developed are unique. The remaining stress components are
as follows:

(1.28d)

(1.28e)

(1.28f)+ �yz1n2m3 + m2n32 + �xz1l2n3 + n2l32�y¿z¿ = �xl2l3 + �ym2m3 + �zn2n3 + �xy1m2l3 + l2m32
�z¿ = �xl3

2
+ �ym3

2
+ �zn3

2
+ 21�xyl3m3 + �yzm3n3 + �xzl3n32

�y¿ = �xl2
2
+ �ym2

2
+ �zn2

2
+ 21�xyl2m2 + �yzm2n2 + �xzl2n22

z¿

�z¿y¿�z¿x¿,�z¿,
�y¿z¿�y¿x¿,�y¿,

y¿

+ �yz1m1n3 + n1m32 + �xz1n1l3 + l1n32�x¿z¿ = �xl1l3 + �ym1m3 + �zn1n3 + �xy1l1m3 + m1l32
+ �yz1m1n2 + n1m22 + �xz1n1l2 + l1n22�x¿y¿ = �xl1l2 + �ym1m2 + �zn1n2 + �xy1l1m2 + m1l22

z¿y¿pzpy,px,

�x¿ = �xl1
2
+ �ym1

2
+ �zn1

2
+ 21�xyl1m1 + �yzm1n1 + �xzl1n12

�x¿ = pxl1 + pym1 + pzn1

x¿pzpx, py,�x¿

l1 = cos1x¿, x2,m1 = cos1x¿, y2,x¿y¿z¿y¿, z¿
x¿x¿, y¿, z¿,

TABLE 1.2. Notation for Direction
Cosines

x y z

n3m3l3z¿

n2m2l2y¿

n1m1l1x¿



Equations (1.28) represent expressions transforming the quantities 
and which, as we have noted, completely define the state of stress. Quanti-

ties such as stress (and moment of inertia, Appendix C), which are subject to such
transformations, are tensors of second rank (see Sec. 1.9).

The equations of transformation of the components of a stress tensor, in indi-
cial notation, are represented by

(1.29a)

Alternatively,

(1.29b)

The repeated subscripts i and j imply the double summation in Eq. (1.29a), which,
upon expansion, yields

(1.29c)

By assigning and noting that the foregoing leads to the six
expressions of Eq. (1.28).

It is interesting to note that, because and are orthogonal, the nine
direction cosines must satisfy trigonometric relations of the following form:

(1.30a)

and

(1.30b)

From Table 1.2, observe that Eqs. (1.30a) are the sums of the squares of the cosines
in each row, and Eqs. (1.30b) are the sums of the products of the adjacent cosines in
any two rows.

1.13 PRINCIPAL STRESSES IN THREE DIMENSIONS

For the three-dimensional case, it is now demonstrated that three planes of zero
shear stress exist, that these planes are mutually perpendicular, and that on these
planes the normal stresses have maximum or minimum values. As has been dis-
cussed, these normal stresses are referred to as principal stresses, usually denoted

and The algebraically largest stress is represented by and the smallest
by .�3 : �1 7 �2 7 �3

�1,�3.�1, �2,

l1l3 + m1m3 + n1n3 = 0

l2l3 + m2m3 + n2n3 = 0

l1l2 + m1m2 + n1n2 = 0

li
2
+ mi

2
+ ni

2
= 1,  i = 1, 2, 3

z¿y¿,x¿,

�rs = �sr,r, s = x, y, z

+ lzrlxs�xz¿ + lzrlys�yz + lzrlzs�zz

+ lyrlxs�xy + lyrlys�yy + lyslzr�yz

�¿rs = lxrlxs�xx + lxrlys�xy + lxrlzs�xz

�rs = lrilsj�¿ij

�¿rs = lirljs�ij

�yz,�xz,
�xy,�z,�y,�x,
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We begin by again considering an oblique plane. The normal stress acting on
this plane is given by Eq. (1.28a):

(a)

The problem at hand is the determination of extreme or stationary values of To
accomplish this, we examine the variation of relative to the direction cosines.
Inasmuch as l, m, and n are not independent, but connected by 
only l and m may be regarded as independent variables. Thus,

(b)

Differentiating Eq. (a) as indicated by Eqs. (b) in terms of the quantities in
Eq. (1.26), we obtain

(c)

From we have and Introducing
these into Eq. (c), the following relationships between the components of p and n
are determined:

(d)

These proportionalities indicate that the stress resultant must be parallel to the unit
normal and therefore contains no shear component. It is concluded that, on a plane
for which has an extreme or principal value, a principal plane, the shearing
stress vanishes.

It is now shown that three principal stresses and three principal planes exist.
Denoting the principal stresses by Eq. (d) may be written as

(e)

These expressions, together with Eq. (1.26), lead to

(1.31)

A nontrivial solution for the direction cosines requires that the characteristic deter-
minant vanish:

(1.32)† �x - �p �xy �xz

�xy �y - �p �yz

�xz �yz �z - �p

† = 0

�xzl + �yzm + 1�z - �p2n = 0

�xyl + 1�y - �p2m + �yzn = 0

1�x - �p2l + �xym + �xzn = 0

px = �pl,  py = �pm,  pz = �pn

�p,

�x¿

px

l
=

py

m
=
pz

n

0n/0m = -m/n.0n/0 l = - l/nn2
= 1 - l2 - m2,

px + pz
0n

0l
= 0,  py + pz

0n

0m
= 0

0�x¿

0l
= 0,  

0�x¿

0m
= 0

l2 + m2
+ n2

= 1,
�x¿

�x¿.

�x¿ = �xl
2
+ �ym

2
+ �zn

2
+ 21�xylm + �yzmn + �xzln2

x¿



Expanding Eq. (1.32) leads to

(1.33)

where

(1.34a)

(1.34b)

(1.34c)

The three roots of the stress cubic equation (1.33) are the principal stresses, corre-
sponding to which are three sets of direction cosines, which establish the relationship
of the principal planes to the origin of the nonprincipal axes. The principal stresses
are the characteristic values or eigenvalues of the stress tensor Since the stress
tensor is a symmetric tensor whose elements are all real, it has real eigenvalues. That
is, the three principal stresses are real [Refs. 1.8 and 1.9]. The direction cosines l, m,
and n are the eigenvectors of

It is clear that the principal stresses are independent of the orientation of the
original coordinate system. It follows from Eq. (1.33) that the coefficients and

must likewise be independent of x, y, and z, since otherwise the principal stresses
would change. For example, we can demonstrate that adding the expressions for

and given by Eq. (1.28) and making use of Eq. (1.30a) leads to
Thus, the coefficients and represent

three invariants of the stress tensor in three dimensions or, briefly, the stress invari-

ants. For plane stress, it is a simple matter to show that the following quantities are
invariant (Prob. 1.27):

(1.35)

Equations (1.34) and (1.35) are particularly helpful in checking the results of a
stress transformation, as illustrated in Example 1.7.

If now one of the principal stresses, say obtained from Eq. (1.33), is
substituted into Eq. (1.31), the resulting expressions, together with

provide enough information to solve for the direction cosines,
thus specifying the orientation of relative to the xyz system. The direction
cosines of and are similarly obtained. A convenient way of determining the
roots of the stress cubic equation and solving for the direction cosines is
presented in Appendix B, where a related computer program is also 
included (see Table B.1).

�3�2

�1

l2 + m2
+ n2

= 1,

�1

I2 = I3 = �x�y - �xy
2

= �x¿�y¿ - �x¿y¿
2

I1 = �x + �y = �x¿ + �y¿

I3I1, I2,I1 = �x¿ + �y¿ + �z¿ = �x + �y + �z.
�z¿�x¿, �y¿,

I3

I1, I2,

�ij.

�ij.

I3 = † �x �xy �xz

�xy �y �yz

�xz �yz �z

†
I2 = �x�y + �x�z + �y�z - �xy

2
- �yz

2
- �xz

2

I1 = �x + �y + �z

�p
3

- I1�p
2

+ I2�p - I3 = 0

38 Chapter 1 Analysis of Stress



1.13 Principal Stresses in Three Dimensions 39

Q
P

T
M

(a)

11.8

y

8.3

z

Q

(b)

4.6

4.7 6.45

19

x

FIGURE 1.20. Example 1.6. (a) Hub-shaft assembly. (b) Element in
three-dimensional stress.

EXAMPLE 1.6 Three-Dimensional Stress in a Hub

A steel shaft is to be force fitted into a fixed-ended cast-iron hub. The
shaft is subjected to a bending moment M, a torque T, and a vertical
force P, Fig. 1.20a. Suppose that at a point Q in the hub, the stress field is
as shown in Fig. 1.20b, represented by the matrix

Determine the principal stresses and their orientation with respect to
the original coordinate system.

Solution Substituting the given stresses into Eq. (1.33) we obtain from
Eqs. (B.2)

Successive introduction of these values into Eq. (1.31), together with
Eq. (1.30a), or application of Eqs. (B.6) yields the direction cosines that
define the orientation of the planes on which and act:

Note that the directions of the principal stresses are seldom required for
purposes of predicting the behavior of structural members.

n1 = - 0.5031,  n2 = - 0.6855,  n3 = - 0.5262

m1 = - 0.8638,  m2 = 0.3802,  m3 = 0.3306

l1 = 0.0266,  l2 = - 0.6209,  l3 = 0.7834

�3�1, �2,

�1 = 11.618 MPa,  �2 = -9.001 MPa,  �3 = -25.316 MPa

J
-19 -4.7   6.45

 -4.7   4.6  11.8

   6.45  11.8 -8.3
K  MPa
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EXAMPLE 1.7 Three-Dimensional Stress in a Machine Component

The stress tensor at a point in a machine element with respect to a
Cartesian coordinate system is given by the following array:

(f)

Determine the state of stress and and for an coordi-
nate system defined by rotating x, y through an angle of coun-
terclockwise about the z axis (Fig. 1.21a).

Solution The direction cosines corresponding to the prescribed rota-
tion of axes are given in Fig. 1.21b. Thus, through the use of Eq. (1.28)
we obtain

(g)

It is seen that the arrays (f) and (g), when substituted into Eq. (1.34),
both yield and 
and the invariance of and under the orthogonal transformation
is confirmed.

1.14 NORMAL AND SHEAR STRESSES ON AN OBLIQUE PLANE

A cubic element subjected to principal stresses acting on mutually per-
pendicular principal planes is called in a state of triaxial stress (Fig. 1.22a). In the fig-
ure, the x, y, and z axes are parallel to the principal axes. Clearly, this stress condition
is not the general case of three-dimensional stress, which was taken up in the last two
sections. It is sometimes required to determine the shearing and normal stresses act-
ing on an arbitrary oblique plane of a tetrahedron, as in Fig. 1.22b, given the principal

stresses or triaxial stresses acting on perpendicular planes. In the figure, the x, y, and z
axes are parallel to the principal axes. Denoting the direction cosines of plane ABC

by l, m, and n, Eqs. (1.26) with and so on, reduce to

(a)px = �1l,  py = �2m,  pz = �3n

�x = �1, �xy = �xz = 0,

�1, �2, and �3

I3I1, I2,
I3 = -53,000 1MPa23,I1 = 100 MPa, I2 = 1400 1MPa22,

[�i¿j¿] = J
 45 -15 28.28

-15  25 28.28

 28.28  28.28 30
K  MPa

� = 45°
x¿, y¿, z¿I3I1, I2,

[�ij] = J
50 10 0

10 20 40

0 40 30
K  MPa

y x ′

x ′

x

1 2 1 2 0

−1 2

0

(a) (b)

0 1

1 2 0

y z

y ′

z ′

y ′

z

x

θ

FIGURE 1.21. Example 1.7. Direction cosines for u = 45°. 
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Referring to Fig. 1.22a and definitions (a), the stress resultant p is related to the
principal stresses and the stress components on the oblique plane by the expression

(1.36)

The normal stress on this plane, from Eq. (1.28a), is found as

(1.37)

Substitution of this expression into Eq. (1.36) leads to

(1.38a)

or

(1.38b)

Expanding and using the expressions and
so on, the following result is obtained for the shearing stress on the oblique plane:

(1.39)

This clearly indicates that if the principal stresses are all equal, the shear stress van-
ishes, regardless of the choices of the direction cosines.

For situations in which shear as well as normal stresses act on perpendicular planes
(Fig. 1.22b), we have and defined by Eqs. (1.26). Then, Eq. (1.37) becomes

(1.40)

Hence,

(1.41)+ 1�xz l + �yzm + �z n22 - �2 d 1/2

� = c1�x l + �xym + �xz n22 + 1�xy l + �ym + �yz n22
� = �xl

2
+ �ym

2
+ �zn

2
+ 21�xy lm + �yzmn + �xz ln2

pzpx, py,

� = c1�1 - �222l2m2
+ 1�2 - �322m2n2

+ 1�3 - �122n2l2 d 1/2

�

1 - l2 = m2
+ n2, 1 - n2

= l2 + m2,

�2
= �1

2l2 + �2
2m2

+ �3
2n2

- 1�1l
2
+ �2m

2
+ �3n

222
�2

= �1
2 l2 + �2

2m2
+ �2

3n
2
- �2

� = �1l
2
+ �2m

2
+ �3n

2

�

p2
= �1

2l2 + �2
2m2

+ �3
2n2

= �2
+ �2

FIGURE 1.22. Elements in triaxial stress.
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where is given by Eq. (1.40). Formulas (1.37) through (1.41) represent the
simplified transformation expressions for the three-dimensional stress.

It is interesting to note that substitution of the direction cosines from Eqs. (a)
into Eq. (1.25) leads to

(1.42)

which is a stress ellipsoid having its three semiaxes as the principal stresses
(Fig. 1.23). This geometrical interpretation helps to explain the earlier conclusion
that the principal stresses are the extreme values of the normal stress. In the event
that a state of hydrostatic stress exists, and the stress ellipsoid
becomes a sphere. In this case, note again that any three mutually perpendicular
axes can be taken as the principal axes.

Octahedral Stresses

The stresses acting on an octahedral plane is represented by face ABC in Fig. 1.22b
with QA = QB = QC. The normal to this oblique face thus has equal direction
cosines relative to the principal axes. Since we have

(b)

Plane ABC is clearly one of eight such faces of a regular octahedron (Fig. 1.24).
Equations (1.39) and (b) are now applied to provide an expression for the octahedral

shearing stress, which may be rearranged to the form

(1.43)

Through the use of Eqs. (1.37) and (b), we obtain the octahedral normal stress:

(1.44)

The normal stress acting on an octahedral plane is thus the average of the principal
stresses, the mean stress. The orientations of and are indicated in Fig. 1.24.
That the normal and shear stresses are the same for the eight planes is a powerful
tool for failure analysis of ductile materials (see Sec. 4.8). Another useful form of
Eq. (1.43) is developed in Section 2.15.

�oct�oct

�oct =
1
31�1 + �2 + �32

�oct =
1
3[1�1 - �222 + 1�2 - �322 + 1�3 - �122]1/2

l = m = n =
1

23

l2 + m2
+ n2

= 1,

�1 = �2 = �3,

apx
�1

b 2

+ apy
�2

b 2

+ apz
�3

b 2

= 1

�

py

px

pz

σ1

σ3

σ2

FIGURE 1.23. Stress ellipsoid.
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FIGURE 1.24. Stresses on an octahedron.

1.15 MOHR’S CIRCLES IN THREE DIMENSIONS

Consider a wedge shown in Fig. 1.25a, cut from the cubic element subjected to
triaxial stresses (Fig. 1.22a). The only stresses on the inclined face (parallel to the
z axis) are the normal stress and the shear stress acting in the plane.
Inasmuch as the foregoing stresses are determined from force equilibrium equa-
tions in the plane, they are independent of the stress . Thus, the transforma-
tion equations of plane stress (Sec. 1.9) and Mohr’s circle can be employed to
obtain the stresses and . The foregoing conclusion is also valid for normal
and shear stresses acting on inclined faces cut through the element parallel to the x
and y axes.

The stresses acting on elements oriented at various angles to the principal axes
can be visualized with the aid of Mohr’s circle. The cubic element (Fig. 1.22a) viewed
from three different directions is sketched in Figs. 1.26a to c. A Mohr’s circle is
drawn corresponding to each projection of an element. The cluster of three circles

represents Mohr’s circles for triaxial stress (Fig. 1.26d). The radii of the circles are
equal to the maximum shear stresses, as indicated in the figure. The normal stresses
acting on the planes of maximum shear stresses have the magnitudes given by the
abscissa as of the centers of the circles.

�x¿y¿�x¿

�3x¿y¿

x¿y¿�x¿y¿�x¿

x¿

FIGURE 1.25. Triaxial state of stress: (a) wedge; (b) planes of maximum
shear stress.
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The largest shear stresses occur on planes oriented at 45° to the principal
planes. The shear stress is a maximum located as the highest point on the outer cir-
cle. The value of the absolute maximum shearing stress is therefore

(1.45)

acting on the planes that bisect the planes of the maximum and minimum principal
stresses, as shown in Fig. 1.25b. It is noted that the planes of maximum shear stress
may also be ascertained by substituting into Eq. (1.38b), differ-
entiating with respect to l and m, and equating the resulting expressions to zero
(Prob. 1.80).

Determining the absolute value of maximum shear stress is significant when
designing members made of ductile materials, since the strength of the material
depends on its ability to resist shear stress (Sec. 4.6). Obviously, as far as the stress
magnitudes are concerned, the largest circle is the most significant one. However,
all stresses in their various transformations may play a role in causing failure, and it
is usually instructive to plot all three principal circles of stress, as depicted in the
figure. An example of this type occurs in thin-walled pressurized cylinders, where

, , and at the outer surface (Table 1.1). It is also inter-
esting to note that, in special cases, where two or all principal stresses are equal, a
Mohr’s circle becomes a point.

�r = �3 = 0�a = �2�� = �1

n2
= 1 - l2 - m2

1�max2a = 1�132a =
1
21�1 - �32

FIGURE 1.26. (a– c) Views of elements in triaxial stresses on different
principal axes; (d) Mohr’s circles for three-dimensional stress.
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Equations of Three Mohr’s Circles for Stress

It has been demonstrated that, given the values of the principal stresses and of the
direction cosines for any oblique plane (Fig. 1.22b), the normal and shear stresses
on the plane may be ascertained through the application of Eqs. (1.37) and (1.38).
This may also be accomplished by means of a graphical technique due to Mohr
[Refs. 1.10 through 1.12]. The latter procedure was used in the early history of stress
analysis, but today it is employed only as a heuristic device.

In the following discussion, we demonstrate that the aforementioned equations
together with the relation are represented by three circles of
stress, and the coordinates locate a point in the shaded area of 
Fig. 1.26d [Ref. 1.13]. These simultaneous equations are

(a)

where and . Solving for the direction cosines, results in

(1.46)

Inasmuch as , the numerators of Eqs. (1.46) satisfy

(b)

as the denominators of Eqs. (1.46) are and ,
and and , respectively.

Finally, the preceding inequalities may be expressed as follows

(1.47)

�2
+ [� -

1
21�1 + �22]2

Ú
1
41�1 - �222 = 1�1222max

�2
+ [� -

1
21�1 + �32]2

…
1
41�1 - �322 = 1�1322max

�2
+ [� -

1
21�2 + �32]2

Ú
1
41�2 - �322 = 1�2322max

1�3 - �22 6 01�2 - �12 6 0, 1�3 - �12 6 01�2 - �32 7 0
1�1 - �32 7 01�1 - �22 7 0

�2
+ 1� - �121� - �22 Ú 0

�2
+ 1� - �321� - �12 …  0

�2
+ 1� - �221� - �32 Ú 0

�1 7 �2 7 �3

n2
=

�2
+ 1� - �121� - �221�3 - �121�3 - �22 Ú 0

m2
=

�2
+ 1� - �321� - �121�2 - �321�2 - �12 Ú 0

l2 =
�2

+ 1� - �221� - �321�1 - �221�1 - �32 Ú 0

n2
Ú 0l2 Ú  0, m2

Ú 0,

1 = l2 + m2
+ n2

� = �1 l
2
+ �2m

2
+ �3n

2

�2
= �1

2 l2 + �2
2m2

+ �3
2 n2

- �2

1�, �2l2 + m2
+ n2

= 1
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Equations (1.47) represent the formulas of the three Mohr’s circles for stress,
shown in Fig. 1.26d. Stress points satisfying the equations for circles centered
at and lie on or outside circles, but for the circle centered at lie on or
inside circle. We conclude therefore that an admissible state of stress must lie on
Mohr’s circles or within the shaded area enclosed by these circles.

EXAMPLE 1.8 Analysis of Three-Dimensional Stresses in a Member

The state of stress on an element of a structure is illustrated in
Fig. 1.27a. Using Mohr’s circle, determine (a) the principal stresses and
(b) the maximum shearing stresses. Show results on a properly oriented
element. Also, (c) apply the equations developed in Section 1.14 to
calculate the octahedral stresses.

Solution

a. First, Mohr’s circle for the transformation of stress in the xy plane is
sketched in the usual manner as shown, centered at with dia-
meter (Fig. 1.27b). Next, we complete the three-dimensional
Mohr’s circle by drawing two additional circles of diameters 
and in the figure. Referring to the circle, the principal stresses
are and Angle

, as tan . The results are sketched on a prop-
erly oriented element in Fig. 1.27c.

2�p¿¿¿ = 4/3�p¿¿¿ = 26.56°
�3 = -60 MPa.�2 = 40 MPa,�1 = 100 MPa,

A1A3

A1A2

A2A3

C2

C3C2C1

1�, �2
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FIGURE 1.27. Example 1.8. (a) Element in three-dimensional stress; (b) Mohr’s circles of
stress; (c) stress element for u .p¿¿¿ = 26.56°
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b. The absolute maximum shearing stress, point , equals the radius of
the circle centered at of diameter . Thus,

The maximum shearing stress occurs on the planes 45° from the
and z faces of the element of Fig. 1.27c.

c. The octahedral normal stress, from Eq. (1.44), is

The octahedral shearing stress, using Eq. (1.43), is

Comments A comparison of the results (see Fig. 1.27b) shows that

That is, the maximum principal stress and absolute maximum shear
stress are greater than their octahedral counterparts.

1.16 BOUNDARY CONDITIONS IN TERMS OF SURFACE FORCES

We now consider the relationship between the stress components and the given
surface forces acting on the boundary of a body. The equations of equilibrium that
must be satisfied within a body are derived in Section 1.8. The distribution of stress
in a body must also be such as to accommodate the conditions of equilibrium with
respect to externally applied forces. The external forces may thus be regarded as a
continuation of the internal stress distribution.

Consider the equilibrium of the forces acting on the tetrahedron shown in
Fig. 1.19b, and assume that oblique face ABC is coincident with the surface of the
body. The components of the stress resultant p are thus now the surface forces per
unit area, or surface tractions, and The equations of equilibrium for this
element, representing boundary conditions, are, from Eqs. (1.26),

(1.48)

For example, if the boundary is a plane with an x-directed surface normal,
Eqs. (1.48) give and under these circumstances, the
applied surface force components and are balanced by and 
respectively.

It is of interest to note that, instead of prescribing the distribution of surface
forces on the boundary, the boundary conditions of a body may also be given in
terms of displacement components. Furthermore, we may be given boundary condi-
tions that prescribe surface forces on one part of the boundary and displacements

�xz,�x, �xy,pzpx, py,
pz = �xz;px = �x, py = �xy,

pz = �xzl + �yzm + �zn

py = �xyl + �ym + �yzn

px = �xl + �xym + �xzn

pz.px, py,

�oct 6 �1    and �oct 6 1�max2a
�oct =

1
3[1100 - 4022 + 140 + 6022 + 1-60 - 10022]1

2 = 66 MPa

�oct =
1
31100 + 40 - 602 = 26.7 MPa

y¿

1�132max = 1�max2a =
1
2 [100 - 1-602] = 80 MPa

A1 A3C3

B3



on another. When displacement boundary conditions are given, the equations of
equilibrium express the situation in terms of strain, through the use of Hooke’s law
and subsequently in terms of the displacements by means of strain–displacement
relations (Sec. 2.3). It is usual in engineering problems, however, to specify the
boundary conditions in terms of surface forces, as in Eq. (1.48), rather than surface
displacements. This practice is adhered to in this text.

1.17 INDICIAL NOTATION

A system of symbols, called indicial notation, index notation, also known as tensor

notation, to represent components of force, stress, displacement, and strain is used
throughout this text. Note that a particular class of tensor, a vector, requires only a
single subscript to describe each of its components. Often the components of a ten-
sor require more than a single subscript for definition. For example, second-order

or second-rank tensors, such as those of stress or inertia, require double subscript-
ing: Quantities such as temperature and mass are scalars, classified as tensors
of zero rank.

Tensor or indicial notation, here briefly explored, offers the advantage of suc-
cinct representation of lengthy equations through the minimization of symbols. In
addition, physical laws expressed in tensor form are independent of the choice of
coordinate system, and therefore similarities in seemingly different physical systems
are often made more apparent. That is, indicial notation generally provides insight
and understanding not readily apparent to the relative newcomer to the field. It
results in a saving of space and serves as an aid in nonnumerical computation. 

The displacement components u, , and w, for instance, are written 
(or ) and collectively as with the understanding that the subscript i can
be 1, 2, and 3 (or x, y, z). Similarly, the coordinates themselves are represented by

or simply and or Many equa-
tions of elasticity become unwieldy when written in full, unabbreviated term; see,
for example, Eqs. (1.28). As the complexity of the situation described increases, so
does that of the formulations, tending to obscure the fundamentals in a mass of
symbols. For this reason, the more compact indicial notation is sometimes found in
publications.

Two simple conventions enable us to write most equations developed in this
text in indicial notation. These conventions, relative to range and summation, are as
follows:

Range convention: When a lowercase alphabetic subscript is unrepeated, it takes
on all values indicated.

Summation convention: When a lowercase alphabetic subscript is repeated in a
term, then summation over the range of that subscript is indicated, making
unnecessary the use of the summation symbol.

The introduction of the summation convention is attributable to A. Einstein
(1879–1955). This notation, in conjunction with the tensor concept, has far-reaching
consequences not restricted to its notational convenience [Refs. 1.14 and 1.15].

xi 1i = x, y, z2.xx, xy, xz,xi1i = 1, 2, 32,x3,x2,x1,

ui,uzuy,ux,
u3u2,u1,v

�ij, Iij.
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PROBLEMS

Sections 1.1 through 1.8

1.1. Two prismatic bars of a by b rectangular cross section are glued as shown
in Fig. P1.1. The allowable normal and shearing stresses for the glued joint
are 700 and 560 kPa, respectively. Assuming that the strength of the joint
controls the design, what is the largest axial load P that may be applied?
Use a = 50 mm, and b = 75 mm.

1.2. A prismatic steel bar of a = b = 50-mm square cross section is subjected to
an axial tensile load (Fig. P1.1). Calculate the normal and
shearing stresses on all faces of an element oriented at (a) and
(b) 
 = 45°.


 = 70°,
P = 125 kN


 = 40°,

Problems 49
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1.3. A prismatic bar is under an axial load, producing a compressive stress of
75 MPa on a plane at an angle (Fig. P1.3). Determine the normal
and shearing stresses on all faces of an element at an angle of 

1.4. A square prismatic bar of cross-sectional area is composed of
two pieces of wood glued together along the plane, which makes an
angle with the axial direction (Fig. 1.6a). The normal and shearing
stresses acting simultaneously on the joint are limited to 20 and 10 MPa, 
respectively, and on the bar itself, to 56 and 28 MPa, respectively. Deter-
mine the maximum allowable axial load that the bar can carry and the cor-
responding value of the angle 

1.5. Calculate the maximum normal and shearing stresses in a circular bar of
diameter d = 50 mm subjected to an axial compression load of P = 150 kN
through rigid end plates at its ends.

1.6. A frame is formed by two metallic rectangular cross sectional parts sol-
dered along their inclined planes as illustrated in Fig. P1.6. What is the per-
missible axial load that can be applied to the frame, without exceeding
a normal stress of or a shearing stress of on the inclined plane?
Given: a = 10 mm, b = 75 mm, t = 20 mm, = 55°, = 25 MPa, and 

= 12 MPa. Assumption: Material strength in tension is 90 MPa.�all

�all�

�all�all

Pall

�.

�

x¿

1300-mm2

� = 50°.
� = 30°
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θ = 30°
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FIGURE P1.6.
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Problems 51

1.7. Redo Prob. 1.6 for the case in which , , and

1.8. Determine the normal and shearing stresses on an inclined plane at an
angle through the bar subjected to an axial tensile force of P (Fig. P1.1).
Given: , , , .

1.9. Redo Prob. 1.8, for an angle of and .

1.10. A cylindrical pipe of 160-mm outside diameter and 10-mm thickness, spi-
rally welded at an angle of with the axial (x) direction, is sub-
jected to an axial compressive load of through the rigid end
plates (Fig. P1.10). Determine the normal and shearing stresses 
acting simultaneously in the plane of the weld.

1.11. The following describes the stress distribution in a body (in megapascals):

Determine the body force distribution required for equilibrium and the
magnitude of its resultant at the point 

1.12. Given zero body forces, determine whether the following stress distribu-
tion can exist for a body in equilibrium:

Here the c’s are constants.

1.13. Determine whether the following stress fields are possible within an elastic
structural member in equilibrium:

The c’s are constant, and it is assumed that the body forces are negligible.

1a2  cc1x + c2y c5x - c1y

c5x - c1y c3x + c4
d ,  1b2  c -

3
2x

2y2 xy3

xy3
-

1
4y

4 d

�x = -2c1xy, �y = c2z
2, �z = 0

�xy = c11c2 - y22 + c3xz, �xz = -c3y, �yz = 0

z = 60 mm.
y = 30 mm,x = -10 mm,

�x = x2
+ 2y, �y = xy - y2z, �xy = -xy2

+ 1

�yz = 0, �xz = xz - 2x2y, �z = x2
- z2
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 = 50°b = 30 mma = 15 mm
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1.14. For what body forces will the following stress field describe a state of
equilibrium?

Sections 1.9 through 1.11

1.15. and 1.16. The states of stress at two points in a loaded body are represented
in Figs. P1.15 and P1.16. Calculate for each point the normal and shearing
stresses acting on the indicated inclined plane. As is done in the 
derivations given in Section 1.9, use an approach based on the equilibrium

equations applied to the wedge-shaped element shown.

1.17. and 1.18. Resolve Probs. 1.15 and 1.16 using Eqs. (1.18).

1.19. At a point in a loaded machine, the normal and shear stresses have the
magnitudes and directions acting on the inclined element shown in
Fig. P1.19. What are the stresses , , and on an element whose sides
are parallel to the xy axes?

�xy�y�x

�x = -2x2
+ 3y2

- 5z, �xy = z + 4xy - 7

�y = -2y2, �xz = -3x + y + 1

�z = 3x + y + 3z - 5, �yz = 0
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FIGURE P1.15.

FIGURE P1.19.

FIGURE P1.16.
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1.20. The stresses at a point in the enclosure plate of a tank are as depicted in
the element of Fig. P1.20. Find the normal and shear stresses at the point
on the indicated inclined plane. Show the results on a sketch of properly
oriented element.

1.21. A welded plate carries the uniform biaxial tension illustrated in Fig. P1.21.
Determine the maximum stress for two cases: (a) The weld has an allow-
able shear stress of 30 MPa. (b) The weld has an allowable normal stress of
80 MPa.

1.22. Using Mohr’s circle, solve Prob. 1.15.

1.23. Using Mohr’s circle, solve Prob. 1.16.

1.24. Using Mohr’s circle, solve Prob. 1.20.

1.25. Using Mohr’s circle, solve Prob. 1.21.

1.26. The states of stress at two points in a loaded beam are represented in
Fig. P1.26a and b. Determine the following for each point: (a) The magni-
tude of the maximum and minimum principal stresses and the maximum
shearing stress; use Mohr’s circle. (b) The orientation of the principal and
maximum shear planes; use Mohr’s circle. (c) Sketch the results on prop-
erly oriented elements. Check the values found in (a) and (b) by applying
the appropriate equations.

�
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FIGURE P1.20.

FIGURE P1.21.
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3

y

x

45 MPa

90 MPa

60 MPa

σ
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20°



54 Chapter 1 Analysis of Stress

50 MPa

100 MPa

150 MPa

x

60 MPa

100 MPa

x

(a) (b)

y y

FIGURE P1.26.

60 MPa

22 MPa

x ′

θ = 60°

20 MPa

x

FIGURE P1.30.

1.27. By means of Mohr’s circle, verify the results given by Eqs. (1.35).

1.28. An element in plane stress (Fig. 1.3b) is subjected to stresses
and Determine the prin-

cipal stresses and show them on a sketch of a properly oriented element.

1.29. For an element in plane stress (Fig. 1.3b), the normal stresses are
and What is the maximum permissible

value of shearing stress if the shearing stress in the material is not to
exceed 140 MPa?

1.30. The state of stress on an element oriented at is shown in Fig. P1.30.
Calculate the normal and shearing stresses on an element oriented at 

1.31. A thin skewed plate is subjected to a uniform distribution of stress along
its sides, as shown in Fig. P1.31. Calculate (a) the stresses and
(b) the principal stresses and their orientations.

1.32. The stress acting uniformly over the sides of a rectangular block is shown
in Fig. P1.32. Calculate the stress components on planes parallel and per-
pendicular to mn. Show the results on a properly oriented element.

1.33. Redo Prob. 1.31 for the stress distribution shown in Fig. P1.33.

1.34. A thin-walled cylindrical tank of radius r is subjected simultaneously to inter-
nal pressure p and a compressive force P through rigid end plates. Determine
the magnitude of force P to produce pure shear in the cylindrical wall.

�x, �y, �xy,

� = 0°.
� = 60°

�xy

�y = -100 MPa.�x = 60 MPa

�xy = -70 MPa.�x = 50 MPa, �y = -190 MPa,

14 MPa

30 MPaα =  60°

FIGURE P1.31.



1.35. A thin-walled cylindrical pressure vessel of radius 120 mm and a wall thick-
ness of 5 mm is subjected to an internal pressure of In addition,
an axial compression load of and a torque of 
are applied to the vessel through the rigid end plates (Fig. P1.35). Determine
the maximum shearing stresses and associated normal stresses in the cylin-
drical wall. Show the results on a properly oriented element.

1.36. A pressurized thin-walled cylindrical tank of radius and wall
thickness is acted on by end torques and tensile
forces P (Fig. P1.35 with sense of P reversed). The internal pressure is

Calculate the maximum permissible value of P if the allow-
able tensile stress in the cylinder wall is 80 MPa.

1.37. A shaft of diameter d carries an axial compressive load P and two torques
, (Fig. P1.37). Determine the maximum shear stress at a point A on

the surface of the shaft. Given: ,
and .T2 = 2 kN # m

d = 100 mm, P = 400 kN, T1 = 10 kN # m
T2T1

p = 5 MPa.

T = 600 N # mt = 4 mm
r = 60 mm

T = 10� kN # mP = 30� kN
p = 4 MPa.
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1.38. What are the normal and shearing stresses on the spiral weld of the aluminum
shaft of diameter d subjected to an axial load P and a torque T (Fig. P1.38)?
Given: , , , and .

1.39. A hollow generator shaft of 180-mm outer diameter and 120-mm inner
diameter carries simultaneously a torque and axial com-
pressive load What is the maximum tensile stress?

1.40. A cantilever beam of thickness t is subjected to a constant traction (force
per unit area) at its upper surface, as shown in Fig. P1.40. Determine, in
terms of h, and L, the principal stresses and the maximum shearing
stress at the corner points A and B.

1.41. A hollow shaft of 60-mm outer diameter and 30-mm inner diameter is
acted on by an axial tensile load of 50 kN, a torque of and a
bending moment of Use Mohr’s circle to determine the principal
stresses and their directions.

1.42. Given the stress acting uniformly over the sides of a thin, flat plate
(Fig. P1.42), determine (a) the stresses on planes inclined at to the hor-
izontal and (b) the principal stresses and their orientations.

1.43. A steel shaft of radius is subjected to an axial compression
a twisting couple and a bending moment

at both ends. Calculate the magnitude of the principal stresses,
the maximum shear stress, and the planes on which they act in the shaft.
M = 13 kN #m

T = 15.6 kN # m,P = 81 kN,
r = 75 mm

20°

200 N # m.
500 N # m,

�0,

�0

P = 700 kN.
T = 20 kN # m


 = 50°d = 40 mmT = 1.5 kN # mP = 120 kN
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FIGURE P1.38.
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1.44. A structural member is subjected to a set of forces and moments. Each sep-
arately produces the stress conditions at a point shown in Fig. P1.44. Deter-
mine the principal stresses and their orientations at the point under the
effect of combined loading.

1.45. Redo Prob. 1.44 for the case shown in Fig. P1.45.

1.46. Redo Prob. 1.44 for the case shown in Fig. P1.46.

1.47. The shearing stress at a point in a loaded structure is Also, 
it is known that the principal stresses at this point are and

Determine (compression) and and indicate the
principal and maximum shearing stresses on an appropriate sketch.

1.48. The state of stress at a point in a structure is depicted in Fig. P1.48. Calcu-
late the normal stress and the angle .��

�y�x�2 = -60 MPa.
�1 = 40 MPa

�xy = 40 MPa.
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+
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+
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30°

FIGURE P1.46.



58 Chapter 1 Analysis of Stress

18 MPa
y

15 MPa
x

60 MPa
=

y ′

σy′
τx ′y ′

30 MPa

x ′

x

θ1

FIGURE P1.50.

1.49. Acting at a point on a horizontal plane in a loaded machine part are normal
stress and a (negative) shearing stress. One principal stress at
the point is 10 MPa (tensile), and the maximum shearing stress is of 
magnitude 50 MPa. Find, by the use of Mohr’s circle, (a) the unknown
stresses on the horizontal and vertical planes and (b) the unknown principal
stress. Show the principal stresses on a sketch of a properly oriented
element.

1.50. For a state of stress at a point in a structure, certain stress components are
given for each of the two orientations (Fig. P1.50). Applying transforma-
tion equations, calculate stress components and and the angle 
between zero and 

1.51. A solid shaft 200 mm in diameter rotates at and is subjected to
a bending moment of Determine the torque T and power P

that can also act simultaneously on the shaft without exceeding a resultant
shearing stress of 56 MPa and a resultant normal stress of 98 MPa (with f
expressed in rps and torque in in watts).

1.52. The cylindrical portion of a compressed-air tank is made of 5-mm-thick
plate welded along a helix at an angle of with the axial direction
(Fig. P1.52). The radius of the tank is 250 mm. If the allowable shearing
stress parallel to the weld is 30 MPa, calculate the largest internal
pressure p that may be applied.


 = 60°

N # m, P = 2�f # T

21� kN # m.
f = 20 rps

90°.
�1�x¿y¿�y¿

�y = 20 MPa

FIGURE P1.48.
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1.53. A thin-walled cylindrical tank is subjected to an internal pressure p and
uniform axial tensile load P (Fig. P1.53). The radius and thickness of the
tank are and The normal stresses at a point A on
the surface of the tank are restricted to and 
while shearing stress is not specified. Determine the values of p and P.
Use

1.54. For a given state of stress at a point in a frame, certain stress components
are known for each of the two orientations shown in Fig. P1.54. Using
Mohr’s circle, determine the following stress components: (a) and
(b) and 

1.55. The state of stress at a point in a machine member is shown in Fig. P1.55.
The allowable compression stress at the point is 14 MPa. Determine (a) the
tensile stress and (b) the maximum principal and maximum shearing
stresses in the member. Sketch the results on properly oriented elements.

1.56. In Example 1.3, taking investigate the maximum shearing stresses
on all possible (three-dimensional) planes.

1.57. A thin-walled pressure vessel of 60-mm radius and 4-mm thickness is made
from spirally welded pipe and fitted with two rigid end plates (Fig. P1.57).
The vessel is subjected to an internal pressure of and a

axial load. Calculate (a) the normal stress perpendicular to the
weld; (b) the shearing stress parallel to the weld.
P = 50 kN

p = 2 MPa

�z = 0,

�x

�y¿.�x¿y¿

�xy

� = 30°.
�x¿y¿

�y¿ = 56 MPa,�x¿ = 84 MPa
t = 5 mm.r = 0.45 m

φ

FIGURE P1.52.

x ′

x PP

y

A
θ

FIGURE P1.53.

y

x x

100 MPa

100 MPa

40 MPa

τx ′y ′

τxy

y ′

x ′

σy ′

θ = 35°

=

FIGURE P1.54.
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1.58. A thin-walled cylindrical pressure vessel of 0.3-m radius and 6-mm wall thick-
ness has a welded spiral seam at an angle of with the axial direction
(Fig. P1.10). The vessel is subjected to an internal gage pressure of p Pa and
an axial compressive load of applied through rigid end plates.
Find the allowable value of p if the normal and shearing stresses acting simul-
taneously in the plane of welding are limited to 21 and 7 MPa, respectively.

Sections 1.12 and 1.13

1.59. The state of stress at a point in an x, y, z coordinate system is

Determine the stresses and stress invariants relative to the coordi-
nate system defined by rotating x, y through an angle of counterclock-
wise about the z axis.

1.60. Redo Prob. 1.59 for the case in which the state of stress at a point in an
x, y, z coordinate system is

1.61. The state of stress at a point relative to an x, y, z coordinate system is given by

Calculate the maximum shearing stress at the point.

1.62. At a point in a loaded member, the stresses relative to an x, y, z coordinate
system are given by

Calculate the magnitude and direction of maximum principal stress.

J
60 20 10

20 -40 -5

10 -5 30
K  MPa

J
12 4 2

4 -8 -1

2 -1 6
K  MPa

J
60 40 -40

40 0 -20

-40 -20 20
K  MPa

30°
x¿, y¿, z¿

J
20 12 -15

12 0 10

-15 10 6
K  MPa

P = 9� kN


 = 30°

P

32° P

FIGURE P1.57.

12 MPa

20 MPa

y

x

σx

FIGURE P1.55.
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1.63. For the stresses given in Prob. 1.59, calculate the maximum shearing stress.

1.64. At a specified point in a member, the state of stress with respect to a
Cartesian coordinate system is given by

Calculate the magnitude and direction of the maximum principal stress.

1.65. At a point in a loaded structure, the stresses relative to an x, y, z coordinate
system are given by

Determine by expanding the characteristic stress determinant: (a) the prin-
cipal stresses; (b) the direction cosines of the maximum principal stress.

1.66. The stresses (in megapascals) with respect to an x, y, z coordinate system
are described by

At point (3, 1, 5), determine (a) the stress components with respect to
if

and (b) the stress components with respect to if

and Show that the quantities given by

Eq. (1.34) are invariant under the transformations (a) and (b).

1.67. Determine the stresses with respect to the axes in the element of
Prob. 1.64 if

1.68. For the case of plane stress, verify that Eq. (1.33) reduces to Eq. (1.20).

1.69. Obtain the principal stresses and the related direction cosines for the fol-
lowing cases:

1a2  J
3 4 6

4 2 5

6 5 1 K  MPa,  1b2  J
14.32 0.8 1.55

0.8 6.97 5.2

1.55 5.2 16.3 K  MPa

n1 = 0,  n2 = 0,  n3 = 1

m1 =
23

2
,  m2 =

1
2,  m3 = 0

l1 =
1
2,  l2 = -

23

2
,  l3 = 0

x¿, y¿, z¿

n3 = 1.l1 = 2/25,m1 = -1/25,

z–y–,x–,

l1 = 1,  m2 =
1
2,  n2 =

23

2
,  n3 =

1
2,  m3 = -

23

2

x¿, y¿, z¿

�y = y2
- 5,  �xy = �xz = �yz = 0

�x = x2
+ y,  �z = -x + 6y + z

J
30 0 20

0 0 0

20 0 0
K  MPa

J
12 6 9

6 10 3

9 3 14
K  MPa
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Sections 1.14 through 1.17

1.70. The stress at a point in a machine component relative to an x, y, z coordi-
nate system is given by

Referring to the parallelepiped shown in Fig. P1.70, calculate the normal
stress and the shear stress at point Q for the surface parallel to the fol-
lowing planes: (a) CEBG, (b) ABEF, (c) AEG. [Hint: The position vectors
of points G, E, A and any point on plane AEG are, respectively, ,

, , The equation of the plane is given by

(P1.70)

from which

The direction cosines are then

1.71. Re-solve Prob. 1.70 for the case in which the dimensions of the paral-
lelepiped are as shown in Fig. P1.71.

1.72. The state of stress at a point in a member relative to an x, y, z coordinate
system is

J
20 10  -10

10 30 0

- 10 0 50 K  MPa

l =
4

242
+ 32

+ 62
=

4

261
,  m =

3

261
,  n =

6

261

J
x - 3 y z

-3 4 0

-3 0 2 K = 0 or 4x + 3y + 6z = 12

1r - rg2 # 1re - rg2 * 1ra - rg2 = 0

r = xi + yj + zk.ra = 2kre = 4j
rg = 3i

��

J
100 40 0

40 60 80

0 80 20
K  MPa

C

Q

z A B

x

G

2

4

3

D

E F

y

FIGURE P1.70.

y

2

3

1

E F

D

G

X

BA

Z

C

Q

FIGURE P1.71.



Problems 63

Determine the normal stress and the shearing stress on the surface
intersecting the point and parallel to the plane: 

1.73. For the stresses given in Prob. 1.62, calculate the normal stress and the
shearing stress on a plane whose outward normal is oriented at angles

and with the x, y, and z axes, respectively.

1.74. At a point in a loaded body, the stresses relative to an x, y, z coordinate
system are

Determine the normal stress and the shearing stress on a plane whose
outward normal is oriented at angles of and with the x, y, and
z axes, respectively.

1.75. Determine the magnitude and direction of the maximum shearing stress
for the cases given in Prob. 1.69.

1.76. The stresses at a point in a loaded machine bracket with respect to the
x, y, z axes are given as

Determine (a) the octahedral stresses; (b) the maximum shearing stresses.

1.77. The state of stress at a point in a member relative to an x, y, z coordinate
system is given by

Calculate (a) the principal stresses by expansion of the characteristic stress
determinant; (b) the octahedral stresses and the maximum shearing stress.

1.78. Given the principal stresses and at a point in an elastic solid,
prove that the maximum shearing stress at the point always exceeds the
octahedral shearing stress.

1.79. Determine the value of the octahedral stresses of Prob. 1.64.

1.80. By using Eq. (1.38b), verify that the planes of maximum shearing stress in
three dimensions bisect the planes of maximum and minimum principal
stresses. Also find the normal stresses associated with the shearing plane by
applying Eq. (1.37).

1.81. A point in a structural member is under three-dimensional stress with
, , , and , as shown in Fig.

P1.81. Calculate (a) the absolute maximum shear stress for ;
(b) the absolute maximum shear stress for .�z = -30 MPa

�z = 30 MPa
�z�xy = 60 MPa�y = 20 MPa�x = 100 MPa

�3�1, �2,

J
-100 0 -80

0 20 0

-80 0 20
K  MPa

J
36 0 0

0 48 0

0 0  -72
K  MPa

54°40°, 75°,
��

J
40 40 30

40 20 0

30 0 20
K  MPa

73.6°35°, 60°,
�

�

2x + y - 3z = 9.
��
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1.82. Consider a point in a loaded body subjected to the stress field represented
in Fig. P1.82. Determine, using only Mohr’s circle, the principal stresses and
their orientation with respect to the original system.

1.83. Re-solve Prob. 1.82 for the case of a point in a loaded body subjected to
the following nonzero stress components: 
and

1.84. The state of stress at a point in a loaded structure is represented in
Fig. P1.84. Determine (a) the principal stresses; (b) the octahedral stresses
and maximum shearing stress.

1.85. Find the normal and shearing stresses on an oblique plane defined by 

and

The principal stresses are and 
If this plane is on the boundary of a structural member, what should be the
values of surface forces and on the plane?

1.86. Redo Prob. 1.85 for an octahedral plane, and
�3 = 25 MPa.

�1 = 40 MPa, �2 = 15 MPa,

pxpx, py,

�3 = -28 MPa.�1 = 35 MPa, �2 = -14 MPa,

n = A
9

13
 .l = A

3

13
 , m = A

1

13

�xy = 40 MPa.
�x = 80 MPa, �z = -60 MPa,

60 MPa

20 MPa

50 MPa

100 MPa

y

z

x

FIGURE P1.82.

FIGURE P1.81.
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Abraham, L. H., 631
Airy, G. B., 132
Airy’s stress function, 132
Almroth, B. O., 536
Angle of twist, 294, 301
Anisotropy, 81
Anticlastic surface, 230
Area coordinates, 379
Areas, properties of, table, 646
Avallone, E. A., 110, 668
Axial rigidity, 90
Azar, J. J., 536

Baker, A. J., 396, 631
Bathe, K. I., 396, 442, 631
Baumeister III, T., 110, 668
Beams

asymmetrical section of, 230
basic equations for, 242
cantilever, 135, 235, 243, 258
composite, 250
curvature of, 229
curved, 266
deflections of, table, 663, 664
on elastic foundations, 448–468
infinite, 449
kinematic relations of, 228
plastic bending of, 553
pure bending of, 227,

230, 267, 554
semi-infinite, 454
simply supported, 238
slopes of, table, 663
strain energy in, 105, 265
stress in, 244
symmetrical section of, 227

Beam column, 543

Chong, K.P., 49
Chou, P. C., 49, 110
Cold working, 183
Collapse load, 565
Column

allowable stress in, 517
classification of, 513, 517
critical stress in, 513
eccentrically loaded, 520
effective length of, 511
end conditions, 511
with initial curvature, 519

Compatibility equations
in polar coordinates, 146
in thermoelasticity, 140
in three-dimensional

problems, 72
in torsion problems, 302
in two-dimensional problems

72, 128, 132
Complementary energy, 102
Constant strain triangle, 379
Contact stresses, 159
Conversion factors, table, 662
Cook, R.D., 280, 395, 442
Coulomb, C. A., 188
Cozzarelli, F. A., 110, 217
Crack, 200
Creep, 183
Critical load, 505
Crotti-Engesser theorem, 481
Cylinder

compound, 416
plastic stress in, 579, 584, 586
thermal stress in, 432
thick-walled, 408, 586
thin-walled, 15, 16, 624

Becker, S. J., 441
Bending, theory of, 240, 599
Bernadou, M., 396
Bernoulli-Euler theory, 230
Betti, E., 472
Body forces, 2
Boley, B. A., 170
Boresi, A. P., 49, 110, 171, 280,

395, 536
Boundary conditions

geometric, 346, 494
in plates, 605
static, 494
in three-dimensional prob-

lems, 47
in torsion problems, 302–303
in two-dimensional problems,127

Bredt’s formulas, 318
Brittle material, 83, 182
Brock, D., 217
Brush, D. O., 536
Buckling load

allowable, 522
by energy method, 507, 522
by equilibrium method, 506
Euler’s, 508
by finite differences, 529
inelastic, 515

Budynas, R.G., 280, 330
Bulk modulus, 93
Burr, A. H., 496

Carey, G. F., 395
Castigliano’s theorem, 472, 488
Center of twist, 300
Centroid, 645
Cheatham, J. B., 496



Deformation, 66
Deformational theory, 578
Design, 5
Deutschman, A. D., 217
Dieter, G. E., 217
Dilatation, 89
Direction cosines, 34, 641
Disk, rotating

of constant thickness, 419, 575
of variable thickness, 426
of uniform stress, 429

Disk, thermal stress in, 431
Dislocation, 546
Dynamic loading, 212, 215
Dynamics, 2
Ductile material, 83, 182
Dummy (unit) load method, 479
Dunham, R. S., 396, 442

Effective strain increment, 584
Elastic material, 80
Elastic range, 80
Elastic-plastic material, 547
Elasticity, conditions imposed in,

125
Elasticity, two- and three-

dimensional problems in,
125

Elastic instability, 505
Endurance limit, 186
Energy methods, 469, 522
Engesser stress, 515
Equilibrium, 8, 506
Equilibrium equations, 8

in polar coordinates, 143
for plates, 603–605
in three-dimensional

problems, 21
in two-dimensional problems,

21, 127
Euler’s buckling load, 508
External forces, 2

Factor of safety, 7, 517
Failure, definition of, 181
Failure, by fracture, 184
Failure, by yielding, 182
Failure theories

comparison of yielding, 193
Coulomb-Mohr, 196
maximum energy of distor-

tion, 189
maximum principal stress, 195
maximum shear stress, 188
Mohr’s, 195
octahedral shear stress, 190

Fatigue, 186
Fatigue criterion, table, 207
Fatigue life, 186, 209
Fatigue strength, 186
Faupel, J. H., 171, 496, 590, 631
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Kinematic relations, 69
Kirchhoff’s force, 605
Knight, E., 395
Knott, J. F., 217
Koiter, W. T., 529
Kotter, T., 110

Lamé’s constants, 93
Langhaar, H. L., 496
Lévy-Mises equations, 583
Limit design, 565
Limit load, 520
Linear strain triangle, 379
Linearly elastic material, 80
Logan, D. L., 395
Love, A. E. H., 49

Malkus, D. S., 395
Marin, J., 217
Martin, H. C., 395
Messal, E. E., 644
Material properties, table,

660, 661
Matrix

displacement, 372
elasticity, 374
nodal force, 375
stiffness, 352
strain, 373
stress, 374

Meguid, S. A., 217
Membrane analogy, 310, 311
Membrane-roof

analogy, 574
Mendelson, A., 590
Method of sections, 9
Messal, E. E., 644
Michell, J. H., 170
Michels, W. J., 217
Midsurface, 618
Mises, R. von, 189
Mises-Hencky yield criterion,

190
Modulus

bulk, 93
of elasticity, 88
of elasticity in shear, 88
of foundation, 448
of plasticity, 578
of resilience, 102
of rupture, 228
secant, 578
section, 228, 558
tangent, 515
toughness, 102

Mohr, Otto, 28n
Mohr’s circle

for curvature of plates, 601
for moment of inertia, 653
for strain, 77
for stress, 28

Fisher, F. E., 171, 496, 590, 631
Flexural center, 257
Flexural rigidity, 228, 602
Flexure formula, 228, 232
Flügge, W., 110, 171, 466, 496
Fluid flow analogy, 321
Ford, H., 49, 590
Form factor, 265
Fourier series, 489
Fracture, 186
Fracture criteria, 187
Fracture mechanics, 200
Frame, collapse load of, 568
Fracture toughness, 203
Fundamental principles, 4,

5, 125

Galilei, Galileo, 2
Gallagher, R.H., 395
Gerber relation, 207
Gere, J., 49, 496, 536
Goodier, J., 110, 170, 171, 280,

330
Goodman relation, modified, 207
Griffith, A. A., 184
Griffith theory, 184

Harris, C. M., 217
Hencky, H., 189
Hencky equations, 583
Hencky yield condition, 189
Hertz problem, 160
Hetényi, M., 110, 466
Hodge, P. G., 49, 590
Hoffman, O., 49, 590
Homogeneous material, 81
Hooke’s Law

generalized, 91
for plane strain, 127
for plane stress, 129
in polar coordinates, 145
in thermoelasticity, 139
for uniaxial stress, 89

Hooke, R., 2
Huber, T. M., 189

Impact factor, 213
Impact loading, 212
Incremental theory, 583
Indicial (tensor) notation, 48, 69
Inglis, C. E., 170
Instability phenomenon, 549
Interaction curves, 562
Internal force resultants, 13
Inverse method, 133
Irwin, G. R., 217
Isotropy, 81
Iyengar, K. T., 466

Johnston, P. R., 395
Juvinall, R. C. , 217



Mohr’s theory, 195
Mollick, L., 441
Moment

bending, 13, 601
of inertia, 648
sign convention for, 14, 227,

602
twisting, 13, 601
ultimate, 558
yield, 556

Nadai, A., 217, 590
Navier, L., 2, 607
Neou, C. Y., 170
Neuber, H. P., 170
Neutral axis, 227
Neutral surface, 227
Nickell, R. E., 396, 442
Nonlinearly elastic material, 101
Nowacki, W., 170
Numerical methods

finite differences, 338–350
finite element, 350–394

Oden, J. T., 496
Offset method, 83
Orthogonal functions, 490
Osgood, W. R., 590, 548

Pagano, N. J., 49, 110
Parallel-axis theorem, 649
Park, F. R., 441
Pawlik, P. S., 49
Pearson, K., 49, 330
Peery, D. J., 536
Pepper, D. W., 396, 631
Perfectly plastic material, 546,

597
Peterson, R. E., 158, 170, 668
Pívot, 147
Plane strain problems, 126
Plane stress problems, 128
Plastic

deformation, 80, 546
hinge, 558
hinge moment, 559
material, 80, 547
range, 84

Plasticity, 545
Plates

bending of, 598
boundary conditions for, 605
circular, 610
with circular hole, 154
equilibrium equations for,

603–605
of irregular geometry, 615
rectangular, 607
strain energy in, 613
stresses in, 601–604

Poisson, S. D., 89

Index 679

Slenderness ratio, effective, 512
Slip, 182, 546
Slope, 242
Soderberg relation, 207
Sokolnikoff, I. S., 49, 110, 170,

280, 395, 496
Spring constant, 213
Statically indeterminate 

systems, 262, 483
Static load, 2, 181
Statics, 2
Sternberg, E., 110
Strain

definition of, 67
effective, 578
engineering, 82
initial, 374
invariants of, 76
logarithmic, 84
mean, 107
normal, 67
plane, 22, 67, 126
principal, 75
shear, 68
sign convention for, 68
state of, 73
tensor, 69
thermal, 139
transformation of, 73–76
true, 84

Strain-displacement relations
in plate bending, 599
in polar coordinates, 143
in three-dimensional prob-

lems, 69
in two-dimensional problems,

67, 68
Strain energy

density, 101–104
dilatational, 107
distortional, 107
in structural members, 104
total, 102

Strain gages, 97
Strain hardening, 183

index, 548
Strain rosette, 97
Strength coefficient, 548
Stress

allowable (working), 7, 517
average, 185
combined, 15
complete plastic, 588
completely reversed, 186
components of, 9
critical, 513
deviator, 107
dilatational, 107
effective, 190, 578
elementary formulas for, 16
ellipsoid, 42

Poisson’s ratio, 89
Polar coordinates, 142
Polar moment of inertia, 649
Polynomial solutions, 134
Potential energy, 487
Potential energy, principle of, 487
Prandtl and Reuss equations, 585
Prandtl’s membrane analogy,

310
Prandtl’s stress function, 302
Principal curvature, 167, 620
Principal moment of inertia, 652
Proportional limit, 80
Pure shear, 13

Quinney, H., 194, 217

Radius of curvature, 229, 601
Radius of gyration, 649
Ramberg, W., 590
Ramu, S. A., 466
Rankine, W. J. M., 195
Ranov, T., 441
Rayleigh, Lord, 472
Rayleigh-Ritz method, 493, 494
Reciprocal theorem, 471
Redheffer, R. M., 395, 496
Reismann, H., 49
Residual stress, 81, 551, 558, 586
Rigid-plastic material, 547
Ripperger, E. A., 496
Ritz, W., 493

Sachs, G., 49, 590
SAE relation, 207
Saint-Venant,

Barré de, 108
principle, 108
semi-inverse method, 300

Sand-hill analogy, 575
Schmidt, R. J., 49, 171, 280, 395,

536
Secant formula, 520
Segerlind, L. J., 395, 396
Semi-inverse method, 133
Shaffer, B. W., 466
Shames, I. H., 49, 110, 217
Shanley, R. F., 536
Shear, center, 256, 257
Shear, flow, 245, 319
Shear, pure, 13
Shear diagonal, 27
Shear stress formula, 245
Shells

conical, 623
cylindrical, 623–624
membrane action of, 618
of revolution, 620
spherical, 622
theories of, 618

Shock loads, 212



Stress (cont.)
engineering, 82
hydrostatic, 42
invariants of, 38
mean, 107, 206
normal, 10
octahedral, 42
plane, 12, 22, 128
principal, 12, 26, 36, 640
pure shear, 13
range, 206
residual, 81, 551, 563
resultant, 13, 24, 33
rupture, 83
shear, 10
sign convention for, 11
state of, 22, 33
tensor, 12, 24, 48
thermal, 138
transformation of, 17, 24, 33,

42
transverse normal, 249
triaxial, 12, 24
true, 82–85
ultimate tensile, 83, 84, 85
uniaxial, 13
variation of, 19
von Mises, 189, 579

Stress concentration, 147
Stress concentration factor, 154
Stress cubic equation, 38, 640
Stress function, 132, 302
Stress intensity factors, 201
Stress relaxation, 184
Stress resultants, 13
Stress-strain diagrams, 82, 547
Stress trajectories, 25
Sullivan, J. L., 217
Sundara, R., 466
Superposition, method of, 66, 262
Surface forces, 2

680 Index

Ultimate torque, 575
Unit-load method, 479
Utku, S., 396, 442

Van Vlack, L. H., 217
Variational methods, 469
Virtual displacement, 486
Virtual work, principle of,

486, 522, 529
Viscoelastic material, 80
Volume change, 89, 93
von Mises stress, 189, 578
von Mises theory, 189, 190

Wahl, A. M., 330
Warping deformation, 292
Weaver, W., Jr., 395
Wedge

bending of, 149
compression of, 148

Weiner, J. H., 170
Woinowsky-Krieger, S.,

631
Wilson, C. E., 217
Winkler, E., 269
Winkler foundation, 449
Winkler’s formula, 273
Winkler’s theory, 269
Work-strain energy, 470

Yang, T. Y., 395, 441, 631
Yield criteria, 187
Yielding, 182
Yield moment, 558
Yield point, 83
Young, T., 88
Young, W. C., 170, 280, 330, 658,

668
Young’s modulus, 88

Zienkiewicz, O. C., 395, 441, 631

Surface tractions, 47
Systems of units, 2

Tangent modulus theory, 515
Taylor, G. I., 194, 217, 441, 631
Taylor, R. I., 395
Terry, E. S., 644
Thermal effects, 215
Thermoelasticity, 139
Timoshenko, S. P., 49, 110, 170,

171, 217, 280, 330, 496,
536, 631

Timoshenko’s theory, 230
Ting, B. Y., 466
Todhunter, I., 49, 330
Torsion

of circular bars, 293
of curved bars, 327
elastic-plastic, 569
of elliptical bar, 304
with one section restrained,

323
of prismatic bars, 292
of thin-walled sections, 317
stress and deformation in,

table, 313
Torsional rigidity, 295
Torsion formula, 294
Transfer formula, 649
Transformed section method, 251
Transition, ductile-brittle, 215
Tresca yield criterion, 188
Triangular element, 379
Twist center, 300

Ugural, A. C., 49, 110, 171, 217,
280, 330, 395, 441, 466, 496,
536, 590, 631, 639, 668

Ultimate load, 566
Ultimate moment, 228, 558
Ultimate pressure, 588



This page intentionally left blank 



Register the Addison-Wesley, Exam 

Cram, Prentice Hall, Que, and 

Sams products you own to unlock 

great benefi ts. 

To begin the registration process, 

simply go to informit.com/register

to sign in or create an account. 

You will then be prompted to enter 

the 10- or 13-digit ISBN that appears 

on the back cover of your product.

informIT.com 
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram   

IBM Press | Que | Prentice Hall | Sams 

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS 

Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall 

Professional, Que, and Sams. Here you will gain access to quality and trusted content and 

resources from the authors, creators, innovators, and leaders of technology. Whether you’re 

looking for a book on a new technology, a helpful article, timely newsletters, or access to 

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock 

the following benefi ts:

• Access to supplemental content, 

including bonus chapters, 

source code, or project fi les. 

• A coupon to be used on your 

next purchase.

Registration benefi ts vary by product.  

Benefi ts will be listed on your Account 

page under Registered Products.

informit.com/register

THIS PRODUCT



InformIT is a brand of Pearson and the online presence 

for the world’s leading technology publishers. It’s your source 

for reliable and qualified content and knowledge, providing 

access to the top brands, authors, and contributors from 

the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT

Looking for a book, eBook, or training video on a new technology? Seek-

ing timely and relevant information and tutorials? Looking for expert opin-

ions, advice, and tips?  InformIT has the solution.

• Learn about new releases and special promotions by 

subscribing to a wide variety of newsletters. 

Visit informit.com/newsletters.

•   Access FREE podcasts from experts at informit.com/podcasts.

•   Read the latest author articles and sample chapters at 

informit.com/articles.

• Access thousands of books and videos in the Safari Books 

Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the 

hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook, 

Twitter, YouTube, and more! Visit informit.com/socialconnect.



Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top 

technology publishers, including Addison-Wesley Professional, Cisco Press, 

O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books, 

Safari’s extensive collection of video tutorials lets you learn from the leading 

video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst 

to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content 

created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY! 

www.informit.com/safaritrial

www.informit.com/safaritrial

	Contents
	Preface
	Acknowledgments
	About the Authors
	List of Symbols
	Chapter 1 Analysis of Stress
	1.1 Introduction
	1.2 Scope of Treatment
	1.3 Analysis and Design
	1.4 Conditions of Equilibrium
	1.5 Definition and Components of Stress
	1.6 Internal Force-Resultant and Stress Relations
	1.7 Stresses on Inclined Sections
	1.8 Variation of Stress within a Body
	1.9 Plane-Stress Transformation
	1.10 Principal Stresses and Maximum In-Plane Shear Stress
	1.11 Mohr’s Circle for Two-Dimensional Stress
	1.12 Three-Dimensional Stress Transformation
	1.13 Principal Stresses in Three Dimensions
	1.14 Normal and Shear Stresses on an Oblique Plane
	1.15 Mohr’s Circles in Three Dimensions
	1.16 Boundary Conditions in Terms of Surface Forces
	1.17 Indicial Notation
	References
	Problems

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z


