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Abstract: Forecasting is a crucial task for successfully integrating photovoltaic (PV) output power
into the grid. The design of accurate photovoltaic output forecasters remains a challenging issue,
particularly for multistep-ahead prediction. Accurate PV output power forecasting is critical in
a number of applications, such as micro-grids (MGs), energy optimization and management, PV
integrated in smart buildings, and electrical vehicle chartering. Over the last decade, a vast literature
has been produced on this topic, investigating numerical and probabilistic methods, physical models,
and artificial intelligence (AI) techniques. This paper aims at providing a complete and critical review
on the recent applications of AI techniques; we will focus particularly on machine learning (ML),
deep learning (DL), and hybrid methods, as these branches of AI are becoming increasingly attractive.
Special attention will be paid to the recent development of the application of DL, as well as to the
future trends in this topic.

Keywords: photovoltaic plant; power forecasting; artificial intelligence techniques; machine learning;
deep learning

1. Introduction

Over the last decade, a rapid growth of the photovoltaic (PV) market has been observed worldwide,
and according to the International Energy Agency (IEA) the global PV capacity exceeds 500 GWp [1].

As the PV produced power depends on the weather conditions that are by nature highly
uncertain [2], the penetration of such systems in the actual power system asset represents a challenge [3].
The power produced by the PV plants depends on a number of meteorological variables such as solar
irradiance, air temperature, cloud variation, wind speed, relative humidity, etc. PV output power
forecasting is a challenge in particular in the case of multi-step applications, large databases, noisy
measurements, and multiple input–output observations. On the other hand, reliable forecasts allow
avoiding penalties to plant managers caused by deviations between the scheduled and the produced
power [4]. The forecast accuracy is generally improved by a pre-processing and a post processing of
historical and forecasted PV output power [5].

In the literature, numerous PV power forecasting methods have been developed and, with
reference to the forecast horizon [6], these can be divided into four types. Very short-term forecasting
with a time horizon ranging from a few seconds to some minutes; short-term forecasting up to 48–72 h
ahead; medium-term forecasting from a few days to one week ahead; long-term forecasting from a few
months to a year or more. Each forecasting horizon has its specific application so that, for example,
very short-term forecasters are used for the control and management of PV systems, in the electricity
market, for the control of microgrid, etc. Short-term horizons are adopted for the control of power

Appl. Sci. 2020, 10, 487; doi:10.3390/app10020487 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-2106-0374
https://orcid.org/0000-0002-7883-0034
http://dx.doi.org/10.3390/app10020487
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/2/487?type=check_update&version=2


Appl. Sci. 2020, 10, 487 2 of 22

system operations, economic dispatch, unit commitment, etc. Medium and long-terms horizon are
usually used for the maintenance and the planning of PV plants.

Another classification considers one and multi-step-ahead forecasters, and these latter are more
prevalent in many applications. With regards to multi-step forecasting, there are three main strategies:
the multi-input multi-output strategy, the recursive strategy, and the direct strategy [7].

The major factors that affect the performance of the forecasters used in the prediction of the power
produced by PV plants are [8]: the time-horizon and time resolution, the weather conditions, the
geographic location, and the availability and quality of the data.

With reference to these parameters, different forecasters can be chosen for the particular need:
physical methods [9,10] that are mainly based on the use of numerical weather prediction (NWP)
models [11,12] or satellite images [13] which can be used for developing regional models. In this case,
meteorological data from satellite images are often used for long-term forecasting [3]. NWP models
are widely used to predict the state of atmosphere up to 15-days ahead [14], and do not need any
historical data. These methods can provide a good accuracy, but depend mainly on the stability of the
weather conditions. However, the implementation of physical models is in general relatively difficult,
as they require a number of parameters and expensive equipment that are not always available in
many areas of the world. In addition, for most of the available NWP the first hours of predictions are
not particularly useful for solar forecasting [15].

Another option is statistical and probabilistic approaches. These methods include regression
models [16], exponential smoothing, autoregressive models (AR), autoregressive moving integrated
average (ARIMA), [17], time series ensemble [18], and probabilistic approaches [19–21]. Statistical
approaches are more suitable for short-term forecasting up to one day-ahead. To cope with the problem
of non-linearity several attempts were done, for example an extended application of seasonal time
series ensemble for PV forecasting can be found in [18].

Advanced methods based on artificial intelligence (AI) techniques and machine learning (ML) [22]
include artificial neural networks (ANNs), k nearest neighbor (kNN), extreme learning machine (ELM),
support vector machine (SVM), etc. These methods, that do not need any information regarding the PV
systems, have some advantages typical of statistical approaches. They are used when measurements
from the field are available, and basically for short-term applications [23].

Hybrid approaches combine one of the above-mentioned advanced methods with one physical or
statistical approach. This type of techniques presents a very good forecasting accuracy as they benefit
from the combination of two well performing techniques [24,25].

In the literature, there are models based on the use of on-site measurements, models relying
on weather forecast data, and models that combine on-site historical measurements with weather
forecasts [8]. The latter are more and more used and belong to the hybrid category.

There are a good number of reviews on PV power, and the most recent ones are reported in
Table 1. The present work differs from the ones already available in the literature, as the main objective
in this case is to review the field of advanced techniques. This review offers the first comprehensive
comparison of the most relevant techniques for PV power forecasting base on machine learning (ML),
deep learning (DL), and hybrid methods. These methods are validated with external data (data not
used in model development) to verify the capability of the model to forecast power with good accuracy,
when it is mentioned in the referenced papers.
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Table 1. Review papers on photovoltaic (PV) power forecasting.

Ref Year Authors Major Findings

[23] 2008 Mellit and Kalogirou

This review is on a number of the first forecaster’s techniques using ANNs for the forecasting of the power
produced by PV systems. It was shown that AI based techniques have a great potential in the estimation, and

recurrent neural networks-based (RNNs) were recognized as the most accurate forecasters. Also, long-short term
memory (LSTM) had been widely used.

[4] 2016 Antonanzas et al.

This paper includes regression techniques and AI-based methods. Authors found out that statistical approaches
perform better than parametric approaches. They also mentioned that most recent techniques are based on the use
of ML methods (including SVM, ELM, LSRV, FL, etc.), due to the easiness of modeling without the need to know

the PV plant characteristics.

[5] 2016 Raza et al.

The authors provided a complete review including time series, ANNs, and some hybrid approaches. A comparison
between ANN-based and classical time series models was also presented. The conclusions were that the forecast
accuracy con be enhanced by pre and post-processing the historical data. ANNs gave better performances than

other classical time series approaches.

[26] 2017 Barbieri et al.

The authors wrote that the methods based on the forecasting of solar irradiance and cell temperature are the best
forecasting approaches when there are rapid fluctuations in the PV power (especially occurring with a sky partially
clouded). They also observed that a combination of satellite and land-based sky imaging improve the forecasting

results in the case of very short forecasting.

[27] 2017 Ogliari et al.
The authors presented an extended comparative study between physical and hybrid methods. The conclusion was

that the physical-hybrid-artificial neural networks (PHANN) always show the highest accuracy.

[28] 2018 Das et al.

In this work, a general review on recent studies on the direct forecasting methods was conducted. The authors
pointed out that ANN and SVM-based forecasting models perform particularly well under rapid and varying

environmental conditions. Optimized algorithm can significantly increase the forecasting accuracy, and genetic
algorithms (GA) represent one of the most practical optimization techniques for the forecasting of PV power.

[29] 2018 Sobri et al.
The main conclusion of this review was that ANN and SVM-based methods are widely used due to their ability in

solving complex and non-linear forecasting problems. Ensemble methods were found capable to improve the
forecasting accuracy as they’re able to merge linear and non-linear methods.

[30] 2019 Naveed Akhter et al.
A review on ML and metaheuristics methods for solar radiation and PV power forecasting has been presented in
this work. The authors reported that hybrid models based on ML and metaheuristic methods could contribute to
improve the forecasting accuracy, while GA-based techniques represent the most viable optimization method [28].
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The paper is organized as follows: a brief introduction about artificial intelligence techniques,
including machine learning and deep leaning is provided in Section 2; Section 3 presents the recent
applications of AI techniques in PV power forecasting; concluding remarks and future directions will
be provided in the last section.

2. Artificial Intelligence Techniques

There are many definitions of artificial intelligence and one of the most used is “imitating intelligent
human behavior” that includes systems with the following characteristics: they have a “thinking
process” similar to the one human beings have, they are able to act like humans, their thinking process
is rational, and their acting is rational too. For these reasons a number of intelligent computing
technologies are today more and more used as an alternative to conventional techniques [22].

There are different branches of AI techniques that can be classified as follows [31]: machine learning
(ML) including supervised, unsupervised, reinforcement learning which regards algorithms/statistical
models that computer systems use in order to effectively perform a specific task without using explicit
instructions, and deep learning (DL) which is seen as a ML subset. DL allows computational models
that are composed of multiple processing layers to learn representations of data with multiple levels
of abstraction.

Other branches are expert systems (ESs), which allow computers to “make decisions” by
interpreting data and selecting from a list of alternatives, computational intelligence (CI) covering the
theory, and development of biologically and linguistically motivated computational paradigms (the
main three pillars of CI are: artificial neural networks (ANNs), genetic algorithms (GAs), and fuzzy
logic (FL)).

These main groups often are adopted in order to accomplish specific tasks or are widely used in
many fields crosswise such as: problem solving and planning (PSP), nonmonotonic reasoning (NMR),
logic programming (LP), pattern recognition (PR), knowledge representation (KP), Common sense
knowledge and reasoning (CSKR), natural language processing (NLP), computer vision (CV), robotics,
epistemology, ontology, and others.

Some of the techniques used in the literature for the forecasting of the PV power are [23]: GA
including different meta-heuristic methods such as particle swarm optimization (SWO), ACO, and
etc.; ML including support vector machine (SVM), k-nearest neighbors (k-NN), linear regression (LR),
decisions trees (DT), naïve Bayes (NB), and etc.; NNs including MLP, RNN, RBFN, etc.; FL and hybrid
systems that combine two or more branch of AI (such as for example ANFIS, ANN-GA, etc.

This review paper focuses on the most used AI techniques for the PV output power forecasting
that are ML and DL that, as shown in Figure 1, are a subset of AI. With reference to AI, the next
breakthrough in the field of PV forecasting will come from systems that combine representation
learning and complex reasoning [32].

 

 

 

 

 

 

 

 

 

Artificial intelligence 

Machine learning 

Deep learning 

Figure 1. A Venn-diagram of artificial intelligence: link between artificial intelligence, machine learning
and deep learning.
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2.1. Machine Learning

According to Arthur Samuel (1959) [33], ML refers to techniques able to give computers the ability
to learn automatically from experience (i.e., dataset) without being explicitly programmed by human
beings. ML algorithms can be classified into three major algorithms [34,35]: supervised learning,
unsupervised learning, and reinforcement learning. In the first case, an algorithm tries to create some
relationships and dependencies between input and output features. In the case of unsupervised
learning, there is no output and the algorithm searches for rules and patterns in the available dataset in
order to better describe the data. The reinforcement type is mainly used to bring high dimensional
into lower dimensional data for visualization or analysis purposes. This type of learning can be also
divided into the following two kinds of problems: clustering and association.

2.2. Deep Learning

Deep learning can be defined as providing knowledge to computers through data, observations
and interactions with the world [36]. DL is a relatively new advancement in NN programming and
represents a way to train deep neural networks (DNNs), as traditional NN-based methods might be
affected by problems such as overfitting, diminishing gradients, etc. [36]. As defined in [35], a NN
is a massively parallel-distributed processor made up of simple processing units that has a natural
propensity for storing experiential knowledge and making it available for use. A typical NN comprises
several layers of interconnected neurons, each one connected to the others in the ensuing layer. Data
are presented to the neural network via an input layer, while an output layer holds the response of the
network to the input. One or more hidden layers may exist between the input layer and the output
layer. Essentially, any NN with more than two layers is called “deep”. On the other hand, DL is a
semi-supervised training approach, suitable for DNN training [36].

In the last few years, DL has led to very good performance on a variety of problems, such as
speech recognition, visual recognition, natural language processing, pattern recognition, automatic
translations, self-driving cars, medical diagnosis, financial prediction, automatic trading, etc. On the
contrary, the application of DL in photovoltaics is still limited. DNNs are able to automatically learn
arbitrary complex mappings from inputs to outputs and support multiple inputs and outputs [36]. The
main DL methods are [32]: convolutional neural network (CNN), long short-term memory (LSTM),
and other hybrid combinations especially used when dealing with multistep forecasting.

CNNs have a grid-like topology and are a special type of NNs where the convolution is used in
place of a general matrix multiplication [37]. Like common NNs, CNNs are made of an input layer,
an output layer, and many hidden layers in between. The hidden layers consist of three layers: the
convolution, the activation or rectified linear unit (ReLU) layer, and the pooling layer. The ability of
CNNs to learn and automatically extract features from raw input data can be applied to time series
forecasting problems. A sequence of observations can be treated like a one-dimensional image that a
CNN model can read and distill into the most salient elements.

LSTM is a kind of RNN with a memory cell, an input gate, an output gate, and a forget gate in
addition to the hidden state always present in traditional RNNs. The main drawback of RNNs is that
they practically fail to handle long-term dependencies. As the gap between the output and the input
data point increases, RNNs fail in connecting the information between the two. In the last decades,
researchers have proposed a number of new recurrent units (RU) to solve this problem, and the most
effective solution are LSTM [38] and gated recurrent units (GRU) [39].

3. AI-Based Techniques Used for PV Output Power Forecasting

This section describes the most advanced ML and DL-based techniques used in PV output
forecasting. With reference to Figure 2 (where papers published in journals between 2010 and 2019 have
been considered), the most popular methods use a ML approach (55%) followed by hybrid methods



Appl. Sci. 2020, 10, 487 6 of 22

used (36%). Among DL techniques, ANN-based methods including MLP, RNN, and RBF are the most
used (48%).
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Figure 2. (a) AI-based PV power forecasting method; (b) the most common deep learning
(DL)-techniques; (c) investigated time scale horizons, and (d) countries involved in PV forecasting.

Finally, long-term prediction is certainly the most investigated field (90%), and the Italian scholars
are the most committed in this area of research.

In the last few decades, one-step ahead forecasters were the most common, while during the last
years due to the progress achieved in the soft-computing techniques and data analysis, multi-step
forecast methods are becoming more and more attractive.

With reference to ML and DL methods, there are mainly three approaches and methods:

- Methods that use only historical output powers record (on site measurement) [40]:

(pt, pt+1, .., pt+k) = f (pt−n, pt−n−1, pt−n−2, . . . pt−1) (1)

where pt is the actual power, pt–n is the previous power, pt+k is the forecasted power at step
k, and f is a functional dependency between past and future. t ∈ {1, .., n}, n is the length of
the measurements.

- Methods that rely upon forecasted meteorological parameters such as solar irradiance, air
temperature, relative humidity, cloud index, wind speed, pressure, etc. These parameters can be
from satellite images, numerical weather prediction models, or statistical models:

(pt, pt+1, .., pt+k) = f (Gt+k, Tt+k, WSt+k, RHt+k, Ct+k . . .) (2)

where Gt+k, Tt+k, WSt+k, RHt+k, and Ct+k are the forecasted solar irradiance, air temperature, wind
speed, relative humidity, and cloud cover respectively.
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- Methods which combine the use of historical power data records with meteorological
parameters forecasts:

(pt, pt+1, .., pt+k) = f (pt−n, pt+n−1, .., pt−1, Gt+k, Tt+k, WSt+k, RHt+k, Ct+k . . .) (3)

These methods can be used both for one-step and multistep ahead forecasting.

3.1. Application of Machine Learning in PV Power Forecasting

With reference to the period 2011–2019, a comprehensive summary of the most relevant researches
dealing with the applications of ML-based methods in the field of PV power forecasting is reported in
Table 2.

An indirect method to estimate the power produced by a PV plant 24-h ahead has been described
in [41]. The method uses as an input the forecasted solar irradiance and is based on a simple multi-layer
perceptron neural network (MLP). The mean absolute error (MAE) is lower than 5% for all examined
case studies. A conclusion of this work was that using more input parameters such as cloud cover,
pressure, and wind speed could improve the model accuracy. The same happens when the quality and
the size of the database are improved.

A RBF-NN for a 24-h ahead online PV power forecasting is shown in [42]. In this work, a
self-organized map (SOM) is utilized in order to classify the input variables. The developed model
accepts as an input the mean daily values of solar irradiance, temperature, wind speed, and historical
powers. The performance of this model is represented by a MAPE of 8.3% corresponding to sunny
days, and a 54.4% corresponding to rainy days. The model was tested for a small-scale 28 kWp PV
plant installed at Huazhong, China.

In [43] the authors described a method for a one-day ahead PV power output forecasting. The
method based on SVM technique works with a weather classification, accepts as an input the historical
dataset of power together with the weather forecasts for the next day. Four models have been developed
corresponding to four typical days: cloudy, foggy, rainy, and sunny. The average MRE was 8.64%,
while the best results have been achieved for sunny days (in this case the MAE was 4.85%).

A short-term ANN-based forecaster is described in [44]. In this case, the input data were the
historical electrical energy generation and the weather forecasts coming from a NWP model. The
MLP-NWP performed better than other investigated ARIMA and K-NN, while ANFIS, MLP-NWP
based-models outperformed all the tested forecasters. Considering different forecasting horizons from
16–39 h, the average root mean squared error (RMSE) was 11.79%, while the average MAE was 6.41%.

In [45] the authors developed a simple NN for the short medium-term forecasting of the power
produced by a PV small-scale plant installed in Istanbul, Turkey. In this case, only the historical powers
have been used to design and verify the model that works well only for a time horizon in the range
[5–40 min]. A support vector regression (SVR)-based method is used for the power of a 1 MWp plant
installed at Kitakyushu, Japan [46]. The model accepts as an input different the cloudiness level, the
relative humidity, and the extraterrestrial insolation. The obtained results are represented by an RMSE
corresponding to 0.0948 MWh, and the model has shown bad performances in the case of partially
clouded days. The authors claimed that there is no need to use relative humidity and air temperature
as an input of the model.
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Table 2. Machine learning (ML)-based methods for the forecast of PV power-period 2010–2019.

Ref and Authors. Year Method
Time Horizon and

Resolution
Parameters Used

Point or Regional
Forecast

Region and PV
Nominal Power

Accuracy

[41]
Mellit and Massi Pavan

2010 ANN
24 h ahead

5 min

Meteorological parameters:
forecasted solar irradiance and

air temperature
1 point

Trieste, Italy
120 kWp

MAE < 5%

[42]
Chen et al.

2011 ANN
24 h ahead

5 min
Historical powers and
meteorological forecast

1 point
Huazhong, China

28 kWp
MAPE: 8.29% sunny day
MAPE: 54.44% rainy day

[43]
Shi et al.

2012 SVM
1-day ahead

15 min
Historical powers and weather

forecasts
1 point

China
20 kWp

MRE = 8.64%

[44]
Fernandez-Jimenez

2012 ANN Up to 39 h ahead
Historical powers and weather

forecasts
3 points

La Rioja, Spain
36 kWp

MAPE = 0.85%

[45]
Izgi et al.

2012 ANN
5 min–40 min

1 min
Historical powers 1 point

Istanbul, Turkey
750 Wp

RMSE = 65 W

[46]
Fonseca et al.

2012 SVR 1 h ahead
Forecasted parameters:

cloudiness and extraterrestrial
insolation

1 point
Kikakyushu, Japan

1 MWp
MAE = 0.058 MWh

[47]
Zeng and Qiaop

2013 SVM 1 h ahead
Meteorological parameters: sky

cover, relative humidity, and
wind speed

3 points
Denver, Seattle and

Miami, U.S.
MAE: 35 W

[40]
Mellit at al.

2014 ANN
24 h ahead

5 min
Historical powers. On-site solar
irradiance and cell temperature

1 point
Puglia, Italy

1 MWp
MAPE: 2%–12%

[48]
Giorgi et al.

2014 ANN
24 h ahead

min

On-site measurements of air
temperature, module

temperature, and in-plane solar
irradiance

1 point
Salerno, Italy

960 kWp
NMAE = 19.49%

[49]
Almonacid et al.

2014 ANN 1 h ahead
On-site measurements of solar
irradiance and air temperature

1 point
Jean, Spain

44 kWp
R2 = 0.98

[50]
Liu et al.

2015 ANN 1 day ahead
Historical powers,

temperatures, aerosol indexes,
wind speeds, and humidities

Regional forecast
Minqin, Gansu

10 MWp
MAPE = 7.65%

[51]
Gigoni et al.

2015 ENS
1 day ahead

1 h
Forecast of solar irradiance Regional forecast

Italy
114 MWp

nMAE: 1.27–4.04

[52]
Zhang et al.

2015 k-NN 1 day ahead
On-site measurements: solar

irradiance, temperature, wind
speed, and relative humidity

3 points

SanDiego, Braedstrup
and Catania, Italy

49.2 kWp, 5.21 kWp,
and 15 kWp

nMAE: 7.4, 6.38 and 7.74

[53]
Ehsan et al.

2016 ANN
1 day ahead

15 s

On-site measurements:
Solar irradiance, air

temperature, wind speed, and
relative humidity

1 point
Tamil Nadu, India

20 kWp
MAPE: 1.92%–11.28%
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Table 2. Cont.

Ref and Authors. Year Method
Time Horizon and

Resolution
Parameters Used

Point or Regional
Forecast

Region and PV
Nominal Power

Accuracy

[54]
Baharin et al.

2016 SVR
12 h ahead

min

On site measurements: solar
irradiance and module

temperature
1 point

Melaka, Malaysia
6 kWp

RMSE: 4.29%–6.85%

[55]
Pierro et al.

2016 MME 1 day ahead NWP models 1 point
Bolzano, Italy,

662 kWp
RMSE = 10.5%

[56]
Li et al.

2016 ML-H
15 min, 1 h and 24 h

ahead
Historical power and NWP 1.point

Florida, U.S.
6 MWp

MAE = 128.77 kWh

[57]
Paulescu et al.

2017 FL
72 h ahead

1 h
Forecasted solar irradiance and

estimated solar cells
2 points

Catania, Italy
5.21 kWp

MAE: 0.56 and 0.64 kW

[58]
Liu et al.

2017 FL 1 h ahead
Historical powers, air

temperature, humidity, and
insolation

1 point
Queensland, Australia.

433 kWp
MAE = 9.77%

[59]
Das et al.

2017 SVM
24 h ahead

1 h
Historical powers and

meteorological data
3 points

Kuala Lumpur,
Malaysia

1.875 MWp
2 MWp,

2.7 MWp

Average MAE = 34.57%

[60]
Leva et al.

2017 ANN
1 day ahead

1 h
Weather data and historical

measurements
1 point

Milano, Italy
264 kWp

MAE < 15%

[61]
Pierro et al.

2017 ANN
Up to 48 h

1 h
Satellite data and NWP models Regional

Italy,
68.2 MW

RMSE: 5%–7% for 1–4 h
RMSE: 7%–7.5% for 1–2

days

[62]
Liu et al.

2018
SVM and

ANN
1 h ahead

-

On-site measurements:
temperature, relative humidity,

and aerosol
1 point

Beijing, China
1.2 kWp

MRE = 11.61%

[63]
Al-Dahidi

2018 ELM-ANN
24 h ahead

-
On-site measurements: solar

irradiance and air temperature
1 point

Amman, Jordan
264 kWp

MAE = 1.08%

[64]
Yao et al.

2019 ESN 1 h ahead Historical output powers 1 point China MAPE = −0.00195%

[65]
Han et al.

2019 ELM Few hours interval

Historical data powers and
NWP meteorological data: solar

irradiance, air temperature,
wind speed, and relative

humidity.

1 point
China

250 kWp
MAE = 2.13%
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In [47] the authors described a SVM-based model for the short-term forecasting of the power
produced by three PV plants installed in three different regions of the U.S. The data used to develop
the model was provided by the National Solar Radiation Database (NSRDB). This study showed that
normalizing the solar irradiation values with respect to the transmissivity gives better results than
using a standard sigmoid function-based normalization. The proposed technique was compared with
a RBF-NN-based model showing a better accuracy. The authors suggested that the addition of the
information regarding the sky cover can improve the prediction accuracy.

A simple but accurate approach for short-term forecasting regarding a large-scale PV plant is
presented in [40]. The model was calibrated using the on-site measured powers, cell-temperatures,
and solar radiations regarding a one MWp PV plant installed in the southern part of Italy. This
work showed that adding more hidden layers does not lead to better accuracies, but increases the
convergence time. The authors pointed out that the proposed models do not require any additional
parameter and that they can be easily implemented.

A multiple regression analysis has been performed in order to determine the most significant
input parameters (among module and air temperature, in-plane solar irradiation, and produced power)
to be used in an extreme machine learning NN used to forecast the power produced by a 960 kWp PV
system located at Salerno, Italy [48]. The model was evaluated for a forecasting horizon in the range
[1–24 h].

In [49] the authors developed a dynamic NN to forecast one hour-ahead the power produced
by a 44 k Wp PV plant installed at the Jean University in Spain. In this case, an ANN was used to
predict the solar irradiance and the air temperature that are then used as an input of a second ANN
forecasting the produced power. In [50] the authors developed a method using an ANN for a one
day-ahead PV power forecasting. The aerosol index has been used as an input as the solar irradiance
is a parameter that is not always measured and/or available. The MAE was 7.65%, and the authors
concluded that in the future data from remote sensors could represent a valuable input in the field of
PV power forecasting. Different methods have been investigated in [51] including a grey-box model,
NNs, k-nearest neighbors (kNNs), quantile random forest (QRF), SVM, and ensemble of methods
(ENS). The application of these techniques gave similar performances showing a MAE close to 5%.
However, ENS was the best forecaster considering variable weather condition. The authors concluded
that the investigated methods proved the feasibility to produce good results even without using the
temperature as an input parameter.

In [52] the authors used a k-NN-based method for forecasting the power produced by small-scale
PV plants installed in three different regions: SanDiego, Braedstrup and Catania. They concluded
that simple techniques such as k-NNs can produce relatively accurate forecasts (the nMAE was in
fact 0.96%).

The well-known MLP-ANN was used to estimate one day-ahead the power profile of a small-scale
grid-connected 20-kWp PV plant installed at Tamil Nadu, India [53]. The MAE was in the range
[1.92%–11.28%]. In this case, a number of learning algorithms has been investigated, while the
Levenberg–Marquardt and Delta-Bar-Delta have shown the best performance.

In [54] the authors used a SVR-based method applied to a small-scale PV plant located in Melaka,
Malaysia. The use of different input has been investigated including the tilted and horizontal global
irradiance, and the module temperature. The results showed that the model performs well in the
tropical climate with a RMSE that was in the range [4.29%–6.85%].

A large dataset both from NPW and measurements from the field has been used to train different
multi-model ensembles (MME) including SVM, ANN, and statistic models [55]. The investigated
PV plant is located in Bolzano (Italy), and its capacity is 662 kWp. This work showed that the same
algorithms differ in performance when using as input NWP data with comparable accuracy.

A hierarchical-based approach with different time horizons (15 min, 1 h, and 24 h) was used
in [56]. In this case, many different parameters have been used as an input including the plant output
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power, a number of environmental variables coming from NWP, and the geometry of the system. The
conclusion was that this method performs better than others based on ANNs and SVR.

In [57] the author developed an advanced fuzzy-logic method for forecasting the output power
of two PV plants installed in Milano and Catania, Italy. The model was used to forecast the output
power with a time horizon in the range [1 h–72 h]. The MAE was 0.56 kW for the PV plant installed in
Catania and 0.64 kW for the one in Milano. This work showed that all investigated models including
generalized adaptive, physical inspired, semi-statistical methods perform better in summer than in
winter, while have similar performance in summer and autumn.

The T–S fuzzy-based approach proposed in [58] uses as an input a number of meteorological
parameters. The model was compared with other methods such as SVM, MLP-ANN, RNN, and other
empirical models. The results showed that the proposed model outperforms all others with a quite
low MAE = 9.77% in summer, but a high MAE = 30% in spring.

In [59] the authors designed a SVM-based model for a one day-ahead forecasting. The model
accepts as an input the historical powers and some meteorological data. The method was tested to
forecast the PV power generation for different conditions corresponding to clear-sky, cloudy and rainy
days, and for three locations in Malaysia. The results in terms of MAE = 34.57% has shown the good
forecast ability of the proposed model.

In [60] a MLP-based forecaster was trained using weather forecasts and historical data. The model
performed better during sunny than partially cloudy days. The normalized MAE was lower than 15%
for all the investigated cases.

A new upscaling method was developed for estimating the power produced by a PV plant
installed in Italy [61]. The method uses data from satellite and NWP to estimate the solar generation
on a regional scale. The method was applied to the power generation of 1985 small-scale PV plants
installed in the South Tyrol Region, Italy (the total covered area was 800 km2). The RMSE was in the
range [5%–7%] for a time horizon of 4 h, and in the range [7%–7.5%] for the 1-day estimation.

SVM and a MLP have been used to for the ultra-short-term forecasting of a small-scale PV
plant installed in Beijing, China [62]. According to the authors, the designed model is particularly
efficient and especially designed for particular environmental conditions with fog and haze. The input
of these forecasters comprises the on-site measurements of air temperature, relative humidity, and
aerosol indexes.

In [63] an ELM algorithm has been developed in order to train a MLP network that forecasts 24-h
ahead the power produced by a PV plant installed at Amman, Jordan. The ELM outperforms the
classical back propagation (BP) algorithm in terms of accuracy. The technique showed the smallest
MAE = 1.08% in June, while the biggest MAE = 18.83% and corresponded to February and March.

A multiple reservoirs echo state network (MR-ESN) based model has been proposed for in [64].
The quasi Newton algorithm has been used to optimize the reservoir parameters. The results showed
a MAPE very close to zero (0.00195%) and, with reference to one-hour forecast horizon, the model
performed better than other techniques such as SVM, back-propagation neural networks (BPNNs),
support vector regression (SVR-ANN), and wavelet transform (WT).

A multi-model ELM-based forecaster was proposed in [65] for the forecasting of the power
produced by 250 kWp PV plant installed in Beijing, China. With reference to the accuracy of the
multi-model, the MAE was 2.13% in spring and 1.7% in summer, while for an annual single model the
MAE was 2.43% in spring and 1.81% in summer. The designed multi-model takes into account the
fluctuation of the power output in order to improve the accuracy.
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3.2. Application of Deep Learning in PV Power Forecasting

Table 3 reports a summary of different deep learning-based techniques published during the
period 2011–2019 for forecasting the power produced by PV plants.

In [66] five LSTM-based neural networks have been designed to forecast the hourly PV output
power. The proposed model, that does not use any meteorological data and is based on historical
powers, offered a reduction in the forecasting error compared with other methods.

A six-layer feedforward deep neural network for one day-ahead PV power forecasting of a grid
connected photovoltaic system installed in Seoul, Korea has been presented in [67]. The method, that
does not require the use of any on-site sensors, has shown better performance than other models using
local measurements. Nevertheless, the achieved errors during summer and cloudy weather were
not satisfactory.

In [68], the authors proposed a comparative study between different deep neural networks-based
one-day ahead forecasters. The study includes conventional neural networks (CNNs), LSTM, and a
hybrid model that combine CNNs and LSTMs. It has been shown that the accuracy of the three models
mainly depends on the size of the available database. Generally, the experimental results show that the
deep learning network has a good effect on the prediction of photovoltaic power generation and the
stability and robustness of the model are high.

A recurrent LSTM-based method has been designed for the hourly short-term forecasting of
the power produced by a PV plant installed in Gumi, South of Korea [69]. The model accepts as an
input the solar irradiance, the ambient temperature, and the cloudiness index. The results showed the
best performance compared with other approaches based on DNN, ANN, auto regressive integrated
moving average (ARIMA), and seasonal-ARIMA. LSTMs perform particularly well, especially in the
case of instable power output.
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Table 3. DL-based methods for the forecast of PV power-period 2017–2019.

Ref and Authors Year Method Time Horizon Parameters Used
Point or Regional

Forecast
Region and PV
Nominal Power

Accuracy

[66]
Mahmou et al.

2017
Deep LSTM

network
1 h ahead Historical powers 1 point Aswan, Egypt RMSE = 82.15

[67]
Son et al.

2018 DNN 24 h ahead Weather forecast 1 point
Seoul, Korea
2.448 kWp

MAE = 2.9%

[68]
Wang et al.

2019
CNN, LSTM and

CNN+LSTM
1 day ahead

On-site
measurements:active power,

current, wind speed,
irradiance, humidity, and

air temperature

1 point
Trina, China,

23.4 kWp

RMSE = 0.343%,
MAE = 0.126%,
MAPE = 0.022%

[69]
Lee et al.

2019 RNN-LSTM DNN 1 h ahead
On-site measurement and

cloudiness data
1 point

Gumi, South of
Korea

40 kWp
MAE = 0.23%
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3.3. Hybrid Methods-Based Forecasting

Table 4 summarizes the main research regarding hybrid methods carried out during the
period 2012–2019.

A number of forecasting techniques using no exogenous inputs for the prediction of the power
produced by a 1 MWp power plant have been presented in [70]. The hybrid genetic algorithm
ANN-based outperforms the other investigated techniques such as kNN, ANN, and ARIMA-based.

In [25], the authors introduced a hybrid model for the short-term power forecasting of a small-scale
PV system installed on the rooftop of the municipality of Trieste, Italy. The model combines a SVM
approach with a seasonal auto-regressive integrated moving average method (SARIMA). The result
was that the designed hybrid model performs better than the SVM and SARIMA model working alone.

In order to improve the speed of convergence and the accuracy of the prediction, a new hybrid
genetical swarm optimization (GSO)/error back propagation (EBP)-based technique was developed
in [71]. The method was tested for the 24-h power forecasting regarding a small-scale plant installed at
Milano, Italy. The result was an improvement of performances with respect to the standard EBP alone.

A hybrid methodology combining SVM, self-organization map (SOM), and fuzzy logic (FL) for
a one day-ahead forecasting is proposed in [72]. In this work, SOM was used to classify the type of
weather, the SVM for the training phase, and the FL in order to select the most accurate training model
coming from the SVM. The data used to develop the method was from the Taiwan Central Weather
Bureau (TCWB). This hybrid forecaster outperformed both the traditional SVR and ANN-based models.

In [73], the authors presented an optimized GANN-based method for intra-hourly reforecasting the
power produced by a large-scale plant installed in San Diego, U.S. The results showed the effectiveness
of the optimized reforecasting method in reducing the errors produced by a number of different forecast
methodologies including deterministic models, k-NN, and ARMA.

In [74] the authors developed a method for forecasting hour-ahead the power produced by a 5
kWp PV plant installed in Taiwan. The hybrid method consists of a fuzzy k-means algorithm for the
classification of the historical daily PV power, five RBFN to forecast the produced power, and a fuzzy
logic controller to select the appropriate RBFN for the considered conditions. In this case, the input
data were the actual solar irradiation, precipitation level, and the temperature forecast.
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Table 4. Hybrid methods for the forecast of PV power-period 2012–2019.

Ref and Authors Year Method Time Horizon Parameters Used
Point Regional

Forecast
Region and PV
Nominal Power

Accuracy

[70]
Pedro et al.

2012 ANN-GA 1 h and 2 h ahead
Historical measurement of the

output power
1-point

Central California, US
1 MWp

1 h-MAE = 42.96 kW
2 h-MAE= 57.53 kW

[25]
Bouzerdoum et al.

2013 SVM-ARIMA
1 h ahead

5 min
Historical measurement of

powers
1-point

Trieste, Italy
20 kWp

MPE = 2.73%

[71]
Ogliari et al.

2013
MLP-GSO-Physical

model
Up to 24 h

Weather forecasts and historical
powers

1-point
Milano, Italy,

30 kWp
MAE = 0.317 kW

[72]
Yan et al.

2013 SVM-FL-SOM-LVQ
1-day ahead

h
Air temperature, probability of

precipitation, and solar irradiance
1-point

Taiwan
5 kWp

MRE = [1.79–4.69]

[73]
Chu et al.

2015
ANN-GA, kNN

ARMA
Intra-hour

s
Historical powers and imaging

data
1 point

Sandiego, US
48 MWp

MAE = 20.7 kWp

[24]
Dolara et al.

2015 PHANN
Up to 72 h

h
Weather forecast and onsite

measurements
1-point

Milano, Italy
264 kWp

NMAE = [6.4%–12.5%]

[74]
Huang et al.

2015
Fuzzy- K means,

RBFN
1 day ahead

Actual solar irradiance and
predicted maximum temperature

and precipitation
1-point

Taiwan,
5 kWp

MAE = 3.25%

[75]
Wang et al.

2017
Hybrid

WT-CDNN-QR
15 min, 30 min, 1 h

and 2 h ahead
Historical measurement of the

output power
2 points

Belgium, China
1.5 MW

MAE = [0.58%, 2.96%]

[76]
Dolara et al.

2018 PHANN 1 day ahead
Weather and historical

measurement
1-point

Milano, Italy
245 kWp

NMAE = 5.1%

[77]
Behera et al.

2018 Hybrid PSO-ELM
15 min, 30 min 60 min

ahead
Historical data: solar irradiance

and air temperature
1-point

Bhubaneswar India.
120 Wp

15-min MAE = 0.029%
60-min MAE = 0.51%

[78]
Cervone et al.

2018
Hybrid

ANN+AnEn
72 h ahead

On-site measurements, weather,
and astronomical variables

3 points forecast

One in the north and
two in the south of Italy

5.21 kWp
4.99 kWp
5.29 kWp

MAE = −1.85%,
0.38%–1.53%

[79]
Ogliari et al.

2018 PHANN 1 day ahead
Weather forecasts, day of the year,

and location
1-point

Milano, Italy
285 Wp

NMAE = 3.79%



Appl. Sci. 2020, 10, 487 16 of 22

Table 4. Cont.

Ref and Authors Year Method Time Horizon Parameters Used
Point Regional

Forecast
Region and PV
Nominal Power

Accuracy

[80]
Nespoli et al.

2018 PHANN 1 day ahead
Weather forecasts, day of the year,

and location
1-point

Milano, Italy
285 Wp

NMAE = 3.39%

[81]
Zang et al.

2019
Hybrid

VMD-CNN-SVR
Various hour time

scales
Historical power 1-point

Nanjing, China.
100 kWp

MAE = 1.54%

[82]
Eseye et al.

2019
Hybrid

WT-PSO-SVM
1 day ahead

SCAD historical powers,
NWP meteorological

1-point
Beijing, China.

480 kWp
NMAE = 0.4%

[83]
Van Deventer et al.

2019 Hybrid GA-SVM 1 h ahead
On-site measurements of PV

power, solar irradiance, and air
temperature

1 point
Deakin, Malaysia

3 kWp
MAPE = 98.76 W

[84]
Gao et al.

2019 LSTM-NN 2 days ahead
On-site weather data and

historical powers
1 point

Beijing, China
10 MWp

MAD = 1.41% and
3.97%

[85]
Ospina et al.

2019 SWT-LSTM-DNN
24 h ahead

30 min
Historical PV powers and

temperature
1 point

Florida, USA,
12.6 MW
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A model based on a hybrid deterministic-probabilistic method for PV power forecasting has been
described in [75]. The technique combines WT to decompose the signal, deep convolutional neural
network (DCNN) to extract the nonlinear features and invariant structures in the decomposed signal,
and quantile regression (QR) to statistically evaluate the forecasted power. The model was evaluated
at two different locations and for different time horizons (14 min, 30 min, 1 h, and 2 h). The model
was trained only using historical output powers, and compared with other approaches based on SVM,
BPNN, and SVM-WT.

The effect of different training approaches for the day-ahead forecasting of the power produced
by a 245 Wp PV plant installed in Milano, Italy, was analyzed and discussed in [76]. In particular, the
influence of the dataset size and the way in which data were employed in the training step was found
to be of paramount importance.

To enhance the accuracy in the forecasting, an ELM has been optimized using different adaptive
PSO algorithms (APSO-ELM) in [77]. The result was a better performance in the short-term solar
forecasting with respect to other techniques.

A method combining a NN-based approach with an analog ensemble (AnEn) was proposed
in [78] for the short-term forecasting of the power produced by a number of PV arrays. The method
was tested for three different PV plants installed in Italy with a time horizon of 72 h, and according to
the authors the proposed solution is particularly suitable for massive scale computation.

It has previously demonstrated in [24] that a dual layer ANN hybridized with the Clear sky
solar radiation algorithm, namely the physical hybrid neural network model (PHANN), improved the
day-ahead forecast accuracy compared to the pure ANN. In addition, it was demonstrated that the
PHANN method always outperformed the day-ahead power forecast obtained with the physical five
parameter equivalent model of a PV module, located in Milan, Italy [27]. Besides, a mixed forecasting
technique is described in [79]. Here, the authors improved the accuracy of some weather forecasts using
a physical neural network model (PHANN) and optimizing the five-parameter model with a social
network optimization (SNO). The method clearly improved the forecast accuracy in the prediction of
the power produced by a PV plant installed at Milano, Italy. The same hybrid method scored better
results with different time horizon forecasts [80].

In [81], a hybrid technique using a variation mode decomposition (VMD) method together with a
CNN was developed for the short-term power forecasting of a 100 kWp plant installed at Nanjing,
China. The VDM was used to decompose the PV power time series into different frequencies and into
2D data, while the power was estimated by a SVR model. It has been shown that the method presents
a higher prediction accuracy with respect to other 1D VMD-based forecasting methods.

A hybrid WT-PSO-SVM- based method for the short-term prediction of the power produced by a
PV system installed in China was presented in [82]. In this case, the input data were the PV system
powers and the meteorological parameters from NWP. The results showed the better performance of
the designed technique with respect to others based on HGNN, HPNN, BPNN, and SVM.

In [83] a hybrid SVM-GA model has been devised and validated for the short-term PV power
forecasting. The SVM technique was used to classify the weather, while the GA to optimize for the
optimization of the model. The hybrid GA-SVM model outperformed the SVM in point of view
accuracy forecasting.

LSTM networks have been used for one day ahead power forecasting regarding a large-scale
PV plant in China [84]. The method classifies the weather into ideal and non-ideal conditions, and a
discrete grey model has been developed for the power prediction.

A hybrid model based on stationarity wavelet networks (SWN), LSTM, and DNN for the short-term
forecasting of the power produced by a small-scale and a large-scale PV plant has been presented
in [85]. The model used the temperatures estimated by the SWM, while the LSTM was used to extract
the historical powers, and the DNN to predict the powers.
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4. Concluding Remarks and Future Trends

In this paper, an extensive review of the recent applications of AI techniques-including ML, DL,
and hybrid methods-to PV output power forecasting, is presented. The key conclusions and future
directions that can be inferred are:

 

 

While the development of forecasters based on ML in general has been investigated rather
intensively, the application of DL for PV power prediction has been rather limited so far.
 

 

Most researchers have focused on forecasting at single locations, while little work has been done on
regional models; no accurate general regional model has been proposed to date.
 

 

The most investigated time horizon is in the short-term regime (up to few days)—which is also
the most requested and used. ML-based forecasters are well suited for this case, particularly when
combined with appropriate algorithms—such as ANN-optimized GA or PSO.
 

 

Very-short-term forecasting and long-term forecasting have been scarcely investigated.
 

 

Most AI-based models perform well for sunny days, while for cloudy days the forecasting accuracy
decreases significantly.
 

 

The accuracy of AI-models decreases for longer time horizons, especially beyond 72 h.
 

 

ML methods based on historical power output, and the use of meteorological parameters (such
as air temperature, solar irradiance, relative humidity, wind speed, cloud cover), combined with an
optimal learning algorithm and weather classification can improve forecasting accuracy.
 

 

One-step ahead forecasting performs best, and has been extensively investigated. Conversely,
multistep-ahead predictions remain a challenging task.
 

 

Hybrid models (e.g., the combination of physical models with ML methods such as ANN) improve
forecasting accuracy.

Generally, in order to increase the accuracy of the forecasters based on AI techniques, the following
points should be considered: (1) large datasets with good-quality data are preferable; (2) pretreatment
and analysis of the database to identify outliers and missing data is required; (3) exogenous inputs
should be taken into account, such as for example cloud variation; (4) combination with other
physical models.

Long-term PV power forecasting could be achieved by using NWP models and DL including
LSTM and CNN, as the latter (as well as RNN) have some useful characteristics, such as the ability
of estimating the temporal dependencies of the investigated data, and the ability of performing a
more general feature extraction. With the increasing amount of data (on-site measurements based on
SCADA, satellite image data, NWP models), DL will become increasingly interesting for PV power
prediction, in particular for designing accurate regional forecasters. An extensive investigation is still
needed on DL-based forecasting methods. DL has been gaining popularity in particular for time series
forecasting, due to the availability of increasingly large datasets and open sources codes (e.g., Python,
TensorFlow, Keras, etc.). ML based models, on the other hand, have shown their capability for PV
power forecasting as well as DL based models, while the accuracy depends mainly on the data quality,
their amount and the learning algorithms. However, DL based models are more suitable in the case of
large database, unlike ML based models.

The improvement of model accuracy for cloudy days is still only marginally investigated.
Forecasting approaches able to estimate and classify cloud cover and to use these parameters for DL
models is expected to lead to sizeable accuracy improvement.

The combination of physical models with DL-based methods (e.g., DCNN) has been scarcely
investigated. However, such an approach could significantly improve forecasting accuracy.
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