ADVANCED MODELING IN COMPUTATIONAL ELECTROMAGNETIC COMPATIBILITY

DRAGAN POLJAK, PhD

Department of Electronics University of Split, Croatia

WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION

CONTENTS

PF	REFA	ACE	XV
	ART I LECT	I: FUNDAMENTAL CONCEPTS IN COMPUTATIONA TROMAGNETIC COMPATIBILITY	L 1
1.		oduction to Computational Electromagnetics Electromagnetic Compatibility	3
	1.1	Historical Note on Modeling in Electromagnetics	3
	1.2	Electromagnetic Compatibility and Electromagnetic	
		Interference	5
		1.2.1 EMC Computational Models and Solution Methods	5
		1.2.2 Classification of EMC Models	7
		1.2.3 Summary Remarks on EMC Modeling	8
	1.3	References	8
2.	Fund	damentals of Electromagnetic Theory	10
	2.1	Differential Form of Maxwell Equations	10
	2.2	Integral Form of Maxwell Equations	11
	2.3	Maxwell Equations for Moving Media	14
	2.4	The Continuity Equation	17
	2.5	Ohm's Law	19
	2.6	Conservation Law in the Electromagnetic Field	21
	2.7	The Electromagnetic Wave Equations	24
	2.8	Boundary Relationships for Discontinuities in Material	
		Properties	26
	2.9	The Electromagnetic Potentials	32
	2.10	Boundary Relationships for Potential Functions	33
	2.11	Potential Wave Equations	35
		2 11 1 Coulomb Gauge	36

CONTENTS

		2.11.2 Diffusion Gauge	37
		2.11.3 Lorentz Gauge	38
	2.12	Retarded Potentials	40
	2.13	General Boundary Conditions and Uniqueness Theorem	41
	2.14	Electric and Magnetic Walls	41
	2.15	The Lagrangian Form of Electromagnetic Field Laws	42
		2.15.1 Lagrangian Formulation and Hamilton Variational	
		Principle	43
		2.15.2 Lagrangian Formulation and Hamilton Variational	
		Principle in Electromagnetics	45
	2.16	Complex Phasor Notation of Time-Harmonic	
		Electromagnetic Fields	51
		2.16.1 Poyinting Theorem for Complex Phasors	52
		2.16.2 Complex Phasor Form of Electromagnetic	
		Wave Equations	53
		2.16.3 The Retarded Potentials for the Time-Harmonic	
		Fields	54
	2.17	Transmission Line Theory	54
		2.17.1 Field Coupling Using Transmission Line Models	55
		2.17.2 Derivation of Telegrapher's Equation for the Two-Wire	
		Transmission Line	56
	2.18	Plane Wave Propagation	66
	2.19	Radiation	68
		2.19.1 Radiation Mechanism	68
		2.19.2 Hertzian Dipole	69
		2.19.3 Fundamental Antenna Parameters	71
		2.19.4 Linear Antennas	75
	2.20	References	79
3	Intro	duction to Numerical Methods in Electromagnetics	80
U			
	3.1	Analytical Versus Numerical Methods	82
	2.2	3.1.1 Frequency and Time Domain Modeling	82
	3.2	Overview of Numerical Methods: Domain, Boundary,	01
		and Source Simulation	84
		3.2.1 Modeling of Problems via the Domain	04
		Methods: FDM and FEM	84
		3.2.2 Modeling of Problems via the BEM:	85
		Direct and Indirect Approach	83

CONTENTS

3.3	The Finite Difference Method	85
	3.3.1 One-Dimensional FDM	86
	3.3.2 Two-Dimensional FDM	88
3.4	The Finite Element Method	91
	3.4.1 Basic Concepts of FEM	91
	3.4.2 One-Dimensional FEM	92
	3.4.3 Two-Dimensional FEM	98
3.5	The Boundary Element Method	109
	3.5.1 Integral Equation Formulation	109
	3.5.2 Boundary Element Discretization	114
	3.5.3 Computational Example for 2D Static Problem	121
3.6	References	122
4 Stati	c Field Analysis	123
4.1	Electrostatic Fields	123
4.2	Magnetostatic Fields	124
4.3	Modeling of Static Field Problems	126
	4.3.1 Integral Equations in Electrostatics Using Sources	126
	4.3.2 Computational Example: Modeling of a Lightning	
	Rod	129
4.4	References	135
5 Quas	sistatic Field Analysis	136
5.1	Introduction	136
5.2	Formulation of the Quasistatic Problem	137
5.3	Integral Equation Representation of the Helmholtz	
	Equation	140
5.4	Computational Example	143
	5.4.1 Analytical Solution of the Eddy Current Problem	144
	5.4.2 Boundary Element Solution of the Eddy Current	
	Problem	146
5.5	References	150
6 Elect	tromagnetic Scattering Analysis	151
6.1	The Electromagnetic Wave Equations	151
6.2	Complex Phasor Form of the Wave Equations	154
6.3	Two-Dimensional Scattering from a Perfectly	
	Conducting Cylinder of Arbitrary Cross-Section	154

ix

C	ONT	ENT	S

6.4	Solution by the Indirect Boundary Element Method	156
	6.4.1 Constant Element Case	158
	6.4.2 Linear Elements Case	159
6.5	Numerical Example	159
6.6	References	162
PART	II: ANALYSIS OF THIN WIRE ANTENNAS	
	CATTERERS	163
7 Wire	e Antennas and Scatterers: General	
Cons	siderations	165
7.1	Frequency Domain Thin Wire Integral Equations	165
7.2	Time Domain Thin Wire Integral Equations	166
7.3	Modeling in the Frequency and Time Domain:	
	Computational Aspects	167
7.4	References	168
8 Wire	e Antennas and Scatterers: Frequency Domain Analysis	171
8.1	Thin Wires in Free Space	171
	8.1.1 Single Straight Wire in Free Space	172
	8.1.2 Boundary Element Solution of Thin Wire Integral	
	Equation	174
	8.1.3 Calculation of the Radiated Electric Field and the Input	
	Impedance of the Wire	180
	8.1.4 Numerical Results for Thin Wire in	
	Free Space	180
	8.1.5 Coated Thin Wire Antenna in Free Space	181
	8.1.6 The Near Field of a Coated Thin Wire Antenna	186
	8.1.7 Boundary Element Procedures for Coated Wires	187
	8.1.8 Numerical Results for Coated Wire	190
	8.1.9 Thin Wire Loop Antenna	191
	8.1.10 Boundary Element Solution of Loop Antenna Integral	
	Equation	193
	8.1.11 Numerical Results for a Loop Antenna	196
	8.1.12 Thin Wire Array in Free Space: Horizontal Arrangement	196
	8.1.13 Boundary Element Analysis of Horizontal Antenna	
	Аттау	199
	8.1.14 Radiated Electric Field of the Wire Array	201

	8.1.15	Numerical Results for Horizontal Wire Array	201
	8.1.16	Boundary Element Analysis of Vertical Antenna Array:	
		Modeling of Radio Base Station Antennas	201
	8.1.17	Numerical Procedures for Vertical Array	207
	8.1.18	Numerical Results	209
8.2	Thin V	Wires Above a Lossy Half-Space	213
	8.2.1	Single Straight Wire Above a Dissipative	
		Half-Space	214
	8.2.2	Loaded Antenna Above a Dissipative	
		Half-Space	220
	8.2.3	Electric Field and the Input Impedance of a Single	
		Wire Above a Half-Space	222
	8.2.4	Boundary Element Analysis for Single Wire Above	
		a Real Ground	224
	8.2.5	Treatment of Sommerfeld Integrals	227
	8.2.6	Calculation of Electric Field and Input	
		Impedance	229
	8.2.7	Numerical Results for a Single Wire Above	
		a Real Ground	233
	8.2.8	Multiple Straight Wire Antennas Over a Lossy	
		Half-Space	237
	8.2.9	Electric Field of a Wire Array Above a Lossy	
		Half-Space	239
	8.2.10	Boundary Element Analysis of Wire Array Above	
		a Lossy Ground	240
	8.2.11	Near-Field Calculation for Wires Above	
		Half-Space	241
	8.2.12	Computational Examples for Wires Above a	
		Lossy Half-Space	242
8.3	Refere	ences	246
9 Wire	Anten	nas and Scatterers: Time Domain Analysis	250
9.1		Wires in Free Space	252
9.1	9.1.1	Single Wire in Free Space	252
	9.1.1	Single Wire Far Field	252
	9.1.2	Loaded Straight Thin Wire in Free Space	250
	9.1.3 9.1.4	Two Coupled Identical Wires in Free Space	259
	9.1.4	Measures for Postprocessing of Transient Response	263

		9.1.6	Computational Procedures for Thin Wires				
			in Free Space	265			
		9.1.7	Numerical Results for Thin Wires in Free Space	275			
	9.2	2 Thin Wires in a Presence of a Two-Media					
		Config	guration	290			
		9.2.1	Single Straight Wire Above a Real Ground	290			
		9.2.2	Far Field Equations	294			
		9.2.3	Loaded Straight Thin Wire Above a Lossy				
			Half-Space	296			
		9.2.4	Two Coupled Horizontal Wires in a Two Media				
			Configuration	300			
		9.2.5	Thin Wire Array Above a Real Ground	304			
		9.2.6	Computational Procedures for Horizontal Wires				
			Above a Dielectric Half-Space	307			
		9.2.7	Computational Examples	317			
	9.3	Refere	ences	333			
PA	RT I	II: CC	MPUTATIONAL MODELS IN ELECTROMAGNETIC				
CO	MP	ATIBI	LITY	335			
10	T.						
10		nsmissi siderat	on Lines of Finite Length: General	337			
			mission Line Theory Method	338			
	10.2		na Models of the Transmission Lines	340			
			Above-Ground Transmission Lines	341			
			Below-Ground Transmission Lines	341			
	10.3	Refere	ences	342			
11	Elec	troma	gnetic Field Coupling to Overhead Lines:				
			Domain and Time Domain Analysis	345			
	11.1	Freque	ency Domain Analysis: Derivation of Generalized				
			apher's Equations	345			
	11.2	-	ency Domain Computational Results	351			
		100-100 per (* 52-0	Single Wire Above an Imperfect Ground	351			
			Multiple Wire Transmission Line Above an				
			Imperfect Ground	355			
	11.3	Time	Domain Analysis	359			
			Domain Computational Examples	359			

CONTENTS			xiii
	11.4.1	Single Wire Transmission Line	360
		Two Wire Transmission Line	367
	11.4.3	Three Wire Transmission Line	367
11.5	Refere	nces	372
12 The	Electro	omagnetic Field Coupling to Buried Cables:	
Free	luency-	and Time-Domain Analysis	374
12.1	The Fi	requency-Domain Approach	374
		Formulation in the Frequency Domain	375
		Numerical Solution of the Integral Equation	378
		The Calculation of Transient Response	380
		Numerical Results	381
12.2	Time-l	Domain Approach	384
	12.2.1	Formulation in the Time Domain	384
	12.2.2	Time-Domain Energy Measures	391
	12.2.3	Time-Domain Numerical Solution Procedures	392
	12.2.4	Computational Examples	395
12.3	Refere	nces	403
13 Sim	ple Gro	ounding Systems	405
13.1	Vertica	al Grounding Electrode	406
		Integral Equation Formulation for the Vertical	
		Grounding Electrode	407
	13.1.2	The Evaluation of the Input Impedance Spectrum	411
	13.1.3	Numerical Procedures for Vertical	
		Grounding Electrode	413
	13.1.4	Calculation of the Transient Impedance	414
	13.1.5	Numerical Results	416
13.2	Horizo	ontal Grounding Electrode	418
	13.2.1	Integral Equation Formulation for the Horizontal Electrode	420
	13.2.2	The Evaluation of the Input Impedance	
		Spectrum	425
	13.2.3	Numerical Procedures for Horizontal Electrode	427
	13.2.4	The Transient Impedance Calculation	428
	13.2.5	Numerical Results	428
13.3	Transn	nission Line Method Versus Antenna Theory Approach	437
	13.3.1	Transmission Line Method (TLM) Approach	
		to Modeling of Horizontal Grounding Electrode	438

		13.3.2 Computational Examples	439
	13.4	Measures for Quantifying the Transient Response	
		of Grounding Electrodes	443
		13.4.1 Transient Response Assessment	443
		13.4.2 Measures for Quantifying the Transient Response	444
		13.4.3 Computational Examples	445
	13.5	References	451
14	Hun	nan Exposure to Electromagnetic Fields	453
	14.1	Environmental Risk of Electromagnetic Fields:	
		General Considerations	453
		14.1.1 Nonionizing and Ionizing Radiation	454
		14.1.2 Electrosmog or Radiation Pollution at Low and High	
		Frequencies	454
		14.1.3 The Effects of Low Frequency Fields	455
		14.1.4 The Effects of High Frequency Fields	456
		14.1.5 Remarks on Electromagnetic Fields and Related	
		Possible Hazard to Humans	457
	14.2	Assessment of Human Exposure to Electromagnetic	
		Fields: Frequency and Time Domain Approach	458
		14.2.1 Frequency Domain Cylindrical Antenna Model	458
		14.2.2 Realistic Models of the Human Body for ELF	
		Exposures	459
		14.2.3 Human Exposure to Transient Electromagnetic Fields	459
	14.3	Human Exposure to Extremely Low Frequency (ELF)	
		Electromagnetic Fields	459
		14.3.1 Parasitic Antenna Representation of the Human Body	460
		14.3.2 Realistic Modeling of the Human Body	467
	14.4	Exposure of Humans to Transient Radiation:	
		Cylindrical Model of the Human Body	478
		14.4.1 Time Domain Model of the Human Body	479
		14.4.2 Measures of the Transient Response	480
	14.5	References	489
Inc	lex		493