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Manufacturing equipment and scientific instruments, including wafer scanners, printers, microscopes, and medical

imaging scanners, require accurate and fast motions. An increase in such requirements necessitates enhanced control

performance. The aim of this paper is to identify several challenges for advanced motion control originating from

these increasing accuracy, speed, and cost requirements. For instance, flexible mechanics must be explicitly addressed

through overactuation, oversensing, inferential control, and position-dependent control. This in turn requires suitable

models of appropriate complexity. One of the main advantages of such motion systems is the fact that experimenting

and collecting large amounts of accurate data is inexpensive, paving the way for identifying and learning of models

and controllers from experimental data. Several ongoing developments are outlined that constitute part of an overall

framework for control, identification, and learning of complex motion systems. In turn, this may pave the way for

new mechatronic design principles, leading to fast lightweight machines where spatio-temporal flexible mechanics are

explicitly compensated through advanced motion control.
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1. Introduction

Positioning systems are a key enabling technology in man-

ufacturing machines and scientific instruments. A state-of-

the-art example of such a mechatronic system is a wafer

scanner, which is used in the lithographic production of in-

tegrated circuits (ICs), see Figs. 1(a)–1(b), and achieves sub-

nanometer positioning accuracy with extreme speed and ac-

celeration (1). Also, in semiconductor assembly processes, in-

cluding wire bonders and die bonders, see Fig. 1(c), products

have to be positioned with varying trajectories, up to 72000

products per hour (2). Furthermore, for printing systems, rang-

ing from desktop printers to industrial printers and 3D print-

ing, see Fig. 1(d), printing accuracy and speed are essential.

In scientific instruments, such as atomic force microscopes

(AFMs) and scanning electron microscopes (SEM), the sam-

ple needs to be accurately positioned (3) (4), whereas in com-

puted tomography CT scanners the detector is positioned for

medical imaging, see Fig. 1(e). The accuracy and speed of

these positioning systems hinges on the motion control de-

sign (5)–(7) and determines the capabilities and market position

of the manufacturing machines and scientific instruments.

Control of these positioning systems is traditionally sim-

plified by an excellent mechanical design. In particular,

the mechanical design is such that the system is stiff and

highly reproducible. In conjunction with moderate perfor-

mance requirements, the control bandwidth is well-below the

resonance frequencies of the flexible mechanics, as is also

schematically shown in Fig. 2(a). As a result, the system can
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often be completely decoupled (8) in the frequency range rele-

vant for control. Consequently, the control design is divided

into well-manageable single-input single-output (SISO) con-

trol loops, for which standard guidelines exist for their man-

ual tuning by control engineers for both feedback and feed-

forward, see (7) (9)–(11) and Sec. 2.2. In addition, SISO learning

control approaches that are suitable for motion control are

well-developed, see (12) (13).

Although motion control design is well-developed, pre-

sently available techniques mainly apply to positioning sys-

tems that behave as a rigid body in the relevant frequency

range. On the one hand, increasing performance require-

ments hamper the validity of this assumption, since the band-

width, i.e., the frequency range over which control is effec-

tive, has to increase, leading to flexible dynamics in the cross-

over region, see Fig. 2(b) and also (14)–(16). On the other hand,

the requirement for rigid-body behavior puts high require-

ments on the mechatronic system design, e.g., in terms of

exotic and stiff materials and hence cost.

The aim of this paper is to sketch the present state of

the practice (Sec. 2) and to identify challenges arising in

precision motion control (Sec. 3). Recent results that ad-

dress these challenges in motion feedback control are out-

lined (Sec. 4), revealing the need for system identification

techniques. Next, feedforward and learning control are ad-

dressed (Sec. 5). Hence, this paper addresses both feedback,

identification, feedforward, and learning, extending the ear-

lier papers (17)–(19). Finally, an outlook on ongoing and related

developments in provided (Sec. 6).

2. Traditional Motion Control

2.1 Motion Systems Mechatronic positioning sys-

tems consist of mechanics, actuators, and sensors (9) (20). The
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(a) Experimental wafer stage. (b) Prototype reticle stage. (c) Wire bonder.

(d) Industrial flatbed printer. (e) CT scanner.

Fig. 1. Example state-of-the-art positioning systems

(a) Traditional loop-gain. (b) Envisaged loop-gain in next-generation systems.

Fig. 2. Envisaged developments in motion systems. In traditional motion systems, the control bandwidth, i.e.,
the frequency where the loop-gain crosses 0 dB takes place in the rigid-body region. In next-generation systems,
flexible dynamics are foreseen to occur within the control bandwidth. Indeed, on the one hand, increasing per-
formance requirements necessitate a larger bandwidth. On the other hand, lightweight constructions lead to the
occurrence of flexible dynamics at lower frequencies

actuators typically generate forces and are considered as in-

put to the system. The sensors typically measure position and

are considered as output of the system.

In the frequency range that is relevant for control, the dy-

namical behavior is mainly determined by the mechanics. In

particular, the mechanics can typically be described as (21)–(23)

Gm=

nRB∑

i=1

cib
T
i

s2

︸����︷︷����︸

rigid−body modes

+

ns∑

i=Nrb+1

cib
T
i

s2 + 2ζiωis + ω
2
i

︸������������������������︷︷������������������������︸

flexible modes

, · · · · · · · (1)

where nRB is the number of rigid-body modes, the vectors

ci ∈ R
ny , bi ∈ R

nu are associated with the mode shapes, and

ζi, ωi ∈ R+. Here, ns ∈ N may be very large and even in-

finite (24). Note that in (1), it is assumed that the rigid-body

modes are not suspended, i.e., the term 1
s2 relates to New-

ton’s law. In the case of suspended rigid-body modes, e.g., in

case of flexures as in (10) (25), (1) can directly be extended.

In traditional positioning systems, the number of actuators

nu and sensors ny equals nRB, and are positioned such that the

matrix
∑nRB

i=1
cib

T
i

is invertible. In this case, matrices Tu and

Ty can be selected such that

Fig. 3. Traditional motion control architecture

G = TyGmTu =
1

s2
InRB
+Gflex, · · · · · · · · · · · · · · · · · · · ·(2)

where Ty is typically selected such that the transformed out-

put y equals the performance variable z, as is defined in

Sec. 3.3. Importantly, the selection of these matrices Tu and

Ty can be done directly on the basis of frequency response

function (FRF) data, e.g., (8). Such frequency response data is

inexpensive, fast, and accurate to obtain. The importance of

such frequency response data is further clarified in Sec. 4.8.

2.2 Traditional Control Architecture The motion

control architecture in Fig. 3 is standard, where

e = S (r −G f ) − S v, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (3)

with S = (I +GK)−1. Typically, r is a prespecified reference

trajectory for the output y, e is the vector of error signals to

be minimized, f is a feedforward signal, K is the feedback
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controller, and v represents disturbances. It is remarked that

these are tacitly used for both continuous and discrete time

systems. Indeed, for manual tuning often the continuous time

domain is used as in (1)–(2). For automated algorithms, as

developed in Sec. 4 and Sec. 5, the discrete time domain is

more natural. These domains can be directly linked, see (26) (27).

In view of (2), G is decoupled in the relevant frequency

ranges, in which case the elements e may be minimized step

by step. This is investigated in the following subsections.

2.2.1 Traditional Feedforward Design Feedforward

can effectively compensate for reference-induced error sig-

nals. In particular, f should be selected such that r − G f

is minimized, possibly taking into account the weighting in-

duced by the closed-loop system. In the low-frequency range,

the system is decoupled and Gflex can be ignored in (2), in

which case f = G−1r = s2r, which is the Laplace transfor-

mation of the acceleration profile. Note that in (2), the mass

of the rigid-body mode is normalized to unity. In practice, the

feedforward signal is selected as f = ms2r, which is tuned in

the time domain by decorrelating the measured error signal

in (3) and the acceleration profile, details of which can be

found in (28). Furthermore, the compliance of the higher-order

modes Gflex can be addressed in a snap term. Also, nonlinear

effects such as friction can be effectively compensated. All

these terms can be directly tuned manually in a straightfor-

ward manner (28).

2.2.2 Traditional Feedback Design For an appropri-

ately designed feedforward signal, δ = r−G f is small. In this

case, the feedback controller has to minimize S (δ− v), where

S is subject to a number of constraints and limitations (29), and

hence cannot be made zero in general. The main idea is that

rigid-body decoupling of G enables the shaping of the di-

agonal elements of S through a decentralized feedback con-

troller (30, Sec. 10.6). As a result, each diagonal element of K may

be tuned independently. Typically, due to the low-frequency

rigid-body behavior, a PID controller is tuned through man-

ual loopshaping, followed by notch filters to account for the

flexible modes in Gflex that hamper stability and/or perfor-

mance.

2.2.3 Traditional Learning Control The feedfor-

ward controller in Sec. 2.2.1 performs well for a range of ref-

erences r: the corresponding command signal f is automati-

cally updated for each task, which possibly has a varying ref-

erence r. In the case where the setpoint r does not vary, see,

e.g., (2) for an application example, the feedforward f may be

obtained or improved using learning techniques. For SISO

systems, these are fairly well-developed, see, e.g., (12) (13) for

an approach that relates to the design approach in Sec. 2.2.2.

2.2.4 Traditional Design Procedure Traditional mo-

tion control design divides the multivariable control design

problems into subproblems that are manageable by manual

control design. The traditional procedure consists of the fol-

lowing steps:
• identify an FRF of Gm, i.e., Gm(ωi), for frequencies ωi;
• decouple the plant to obtain an FRF of G;
• design K using manual loopshaping on the basis of the

FRF, consisting of a PID with notches; and
• tune a feedforward controller, e.g., f = mr̈, using corre-

lation techniques, optionally followed by learning con-

trol.

3. Precision Motion Control Developments

3.1 Future Mechatronic Designs A radically new

lightweight mechatronic system design is envisaged to meet

the requirements imposed by innovations in manufacturing

machines and scientific instruments in terms of throughput,

accuracy, and cost for the following reasons.

( 1 ) Increased throughput is directly related to faster

movements. The acceleration is directly determined by New-

ton’s law F = ma. Here, the forces F that the actuators can

deliver are bounded due to size and thermal aspects. Hence,

throughput is increased by reducing the moving mass m.

( 2 ) Increased accuracy is enabled by contactless motion,

e.g., through magnetic levitation (31), since this avoids friction

and enhances reproducibility. In addition, in certain appli-

cations, including EUV lithography (32) (33), motion has to be

performed in vacuum. Contactless motion is then essential to

avoid pollution caused by mechanical wear and lubricants.

( 3 ) Reduced cost can be enabled by reducing the require-

ments on material properties. In particular, present state-

of-the-art systems involve exotic materials that provide high

stiffness in conjunction with good thermal behavior.

Combining these aspects reveals that a lightweight system

design is highly promising for next-generation motion sys-

tems. Such lightweight systems exhibit predominant flexible

dynamical behavior, as is schematically illustrated in Fig. 4,

as well as an increased susceptibility to disturbances (9, Sec. 9.5.2).

The prime reason why such systems are not yet feasible is the

lack of control methodologies that handle the increased com-

plexity, since the overall control design problem cannot be

divided into subproblems as in Sec. 2, which are manageable

by manual tuning techniques.

3.2 Challenges for Advanced Motion Control of Fu-

ture Mechatronic Systems The envisaged mechatronic

designs in Sec. 3.1 lead to several challenges for motion con-

trol design, including the following.

( 1 ) Unmeasured performance variables are introduced by

spatio-temporal deformations. In particular, the location

where the performance is desired may not be directly mea-

sured. For example, performance in lithographic wafer stages

is required at the spot of exposure, whereas sensors typically

measure the edge of the stage, see Fig. 4. A key challenge

lies in inferring the unmeasured performance variables. Sim-

ilarly, in printing applications, both in 2D and 3D additive

manufacturing, performance is desired where material is de-

posited on the substrate, while the sensor is mounted on the

motor, with flexible dynamics in between, see Fig. 5.

Fig. 4. Envisaged lightweight motion system in lithog-
raphy. Top right: reticle stage containing reticle. Bot-
tom left: envisaged lightweight wafer stage with spatio-
temporal deformations due to flexible dynamics
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Fig. 5. Schematic illustration of a printing system where
the performance variables are not directly measured. In
particular, the sensor is mounted on the motor, while the
belt deformation causes a deposition error

( 2 ) Many additional inputs and outputs can be exploited

to actively control the flexible dynamical behavior. In partic-

ular, the presence of spatio-temporal deformations and spa-

tially distributed disturbances lead to highly complex defor-

mations. A large number of sensors, which is enabled by the

availability of inexpensive sensors and ubiquitous computing

power, enable a high quality estimation of the dynamical be-

havior. Subsequently, spatially distributed actuators, includ-

ing inexpensive smart materials such as piezos, will actively

provide stiffness and damping to the mechanical deforma-

tions. Such an oversensed and/or overactuated situation is

in sharp contrast to the present rigid-body situation, as is out-

lined in Sec. 2, and a key challenge lies in dealing with a large

number of measured variables and manipulated variables.

( 3 ) Position-dependent behavior is almost unavoidable in

the case of spatio-temporal deformations, since motion sys-

tems perform motion by definition. For instance, for the

single-mass system in Fig. 4, the spatio-temporal deforma-

tions are observed differently if the sensor is attached to the

fixed world. In the sense of the model in (1), this implies

that the ci, bi vectors depend on the actual position of the sys-

tem, and (1) may be viewed as a local linearization of the

overall nonlinear system. Similarly, in certain systems, in-

cluding gantry stage designs, mass distributions change due

to motion, leading to additional position-dependent behavior.

A key challenge lies in handling the position dependence of

future systems.

( 4 ) A systems-of-systems perspective on motion control

design provides a strong potential for performance enhance-

ment of the overall system. In particular, typical manufac-

turing machines and scientific instruments involve multiple

controlled subsystems, e.g., in the schematic illustration of a

wafer scanner in Fig. 4, the wafer stage and reticle stage have

to move relative to each other. In the design approach of

Sec. 2, the overall goal is first divided into subsystems with a

error budgets. As a result, performance limitations (29) in each

subsystem will negatively impact the overall performance. A

joint design enables that individual subsystems will be able

to compensate each other’s limitations. A main challenge lies

in an increase of the complexity of the control problem.

( 5 ) Thermal dynamics, in addition to mechanical defor-

mations, are expected to become substantially more impor-

tant due to increasing performance specifications, the use of

less exotic materials for cost reduction, etc. A key challenge

lies in the joint thermo-mechanical control design.

( 6 ) Vibrations, including flow-induced vibrations of

cooling liquids, floor vibrations, and immersion-hood in

Fig. 6. Example of flexible tasks in 2D and 3D printing

Fig. 7. Generalized plant setup, where P(G). Note that
K can be equal as in Fig. 3, but can also be extended to
generate the signal f in Fig. 3

lithography, have to be attenuated. These increase pro-

portionally to mass reduction (9, Sec. 9.5.2) and must be explicitly

compensated.

( 7 ) Versatile tasks are foreseen to become much more

important in future manufacturing machines. For in-

stance, ( a ) additive manufacturing allows for a large user-

customization of products, ( b ) wafer scanners compensate

for surface roughness (9, Sec. 9.4.1), ( c ) die bonders and wire bon-

ders perform pick-and-place tasks based on actual product

locations (2), and ( d ) 2D printing tasks involve varying refer-

ences and media width (34). As a result, the positioning sys-

tems in such machines have to perform a class of tasks, see

Fig. 6.

3.3 A Generalized Plant Approach A generalized

plant framework allows for a systematic way to address the

future challenges in advanced motion control. In particular,

the envisaged developments on future mechatronic system

design, as described in Sec. 3.1, lead to challenges for mo-

tion control design, as are identified in Sec. 3.2.

The generalized plant is depicted in Fig. 7. The general-

ized plant is by no means new, and is at the basis of common

optimization-based control algorithms (30). However, the gen-

eralized plant allows a systematic and unified framework in

which the challenges in Sec. 3.2 can be cast and conceptually

addressed. In contrast, the traditional architecture in Fig. 3,

which directly fits in the setup of Fig. 7, does not allow to

address these challenges, even at a conceptual level.

In Fig. 7, z are the performance variables, addressing Chal-

lenge 1, which arises in addition to the already present mea-

sured variables y. Indeed, y and u are the measured variables

and manipulated variables, respectively, the dimensions of

which will drastically increase in view of Challenge 2. The

variable w contains the exogenous inputs, typically including

both reference signals and disturbances (Challenge 6), i.e.,

r and d in Fig. 3. Now, these variables may all be position-

dependent (Challenge 3), and in addition, the variable r may

vary for each task (Challenge 7). Furthermore, if multiple

systems are addressed simultaneously, either due to their in-

teraction, or their interaction due to a shared, overall machine

control goal (Challenge 4), then this substantially increases

the signal dimensions. Similarly, a joint thermal-mechanical

control design (Challenge 5) involves signals and systems in

both the thermal domain and the positioning domain.

The generalized plant approach in Fig. 7 directly reveals
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the additional complexity arising from the challenges out-

lined in Sec. 3.2. Here P(G) denotes the generalized plant,

which contains the input-output plant G as well as the in-

terconnection structure, e.g., Fig. 3. These increased com-

plexity and accuracy requirements necessitate new develop-

ments in control algorithms, since these undermine the basic

assumptions on which the approach in Sec. 2 relies. Indeed,

the generalized plant is a conceptual framework to pose the

overall problem, the actual design of motion controllers re-

quires substantially more steps. Importantly, the controller K

in Fig. 7 can be either a feedback controller, a feedforward

controller, or both. Due to the fundamentally different objec-

tives of these controllers, these are investigated sequentially

in the forthcoming sections.

4. Feedback and Identification for Control

Feedback control, i.e., K in Fig. 3, is essential to deal with

uncertainty in the system dynamics G and disturbances v. In-

deed, the main goal of feedback is to render the system insen-

sitive to such uncertainties. Note that the commonly imposed

requirement of stability is only a direct consequence of the

presence of uncertainties. In this section, feedback control

design is investigated in view of the challenges in Sec. 3.2.

4.1 Norm-based Control In view of feedback, a

model-based design is foreseen to be able to systematically

address the challenges in Sec. 3.2. Here, model-based con-

trol refers to the use of parametric models using optimization

algorithms (30). For example, model-based optimal controller

synthesis enables a systematic control design procedure for

multivariable systems, enabling centralized controller struc-

tures. Also, a model-based design enables the estimation

of unmeasured performance variables through the use of a

model. It is emphasized that such a design is far from stan-

dard in industry, where the procedure in Sec. 2.2.2 is still

most commonly used in state-of-the-art positioning systems.

To specify the control goal, the criterion

J(G,K) = ‖Fl(P(G),K)‖· · · · · · · · · · · · · · · · · · · · · · · · · (4)

is posed, where the goal is to compute

Kopt = arg min
K

J(Go,K). · · · · · · · · · · · · · · · · · · · · · · · · · (5)

Here, ‖.‖ denotes a suitable norm, e.g., H2 or H∞, and Fl

denotes a lower linear fractional transformation (LFT), i.e.,

Fl(G,K) = P11 + P12K(I − P22K)−1P21, · · · · · · · · · · (6)

where P(G) is the interconnection structure and contains G.

Indeed, P(G) is the generalized plant depicted in Fig. 7 that

encompasses most controller architectures, see (30, Sec. 3.8) for de-

tails. Next, note that Fl(G,K) is typically a closed-loop trans-

fer function matrix, e.g., the general four-block problem

Fl(G,K) = W

[

G

I

]

(I + KG)−1
[

K I
]

V, · · · · · · (7)

where W and V are user-chosen weighting filters of suitable

dimensions. For instance, if W =
[

I 0
]

, V =
[

0 I
]T

,

then (7) reduces to

G(I + KG)−1. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (8)

It is emphasized that Go in (5) denotes the true system, e.g.,

one of the systems depicted in Fig. 1. Note that Go is un-

known and will be represented by a model Ĝ, as is elaborated

next.

4.2 Nominal Modeling for Control: Motivation To

arrive at a mathematically tractable optimization problem in

(5), knowledge of the true system is represented through a

model Ĝ. The central question is how to obtain such a model

that is suitable for controller design. System identification,

or experimental modeling as opposed to first principles mod-

eling, is an inexpensive, fast, and accurate approach to obtain

such a model, see (35)–(37) for an overview. Indeed, the machine

is often already built, enabling direct experimentation.

The model Ĝ that results from system identification is

an approximation of the true system Go for several reasons

i) motion systems, typically of the form (2), often contain an

infinite number of modes ns, while a model of limited com-

plexity may be desirable from a control perspective; ii) par-

asitic nonlinearities are present, including nonlinear damp-

ing (38); and iii) identification experiments are based on finite

time disturbed observations, leading to uncertainties on esti-

mated parameters, e.g., ζi and ωi in (2).

Although a large variety of system identification ap-

proaches and algorithms have been developed, many of these

do not directly deliver a model that is suitable for designing

a high-performance controller when implemented on the true

system in view of (5). The main reason is that most identifica-

tion techniques deliver a model that predicts the open-loop re-

sponse as well as possible, instead of the desired closed-loop

response, which is unknown before the controller is actually

synthesized. This is illustrated in the following example.

Example 1 Consider the true system

Go=
1

s2
+

1

s2+2 · 0.1 · (2π100)s+(2π100)2
· · · · · · · · (9)

and the models

Ĝ1 =
1

s2
−

1

s2 + 2 · 0.1 · (2π100)s + (2π100)2
· · · · (10)

and

Ĝ2 =
1

s2 + 2 · 1s · (2π0.2) + (2π0.2)2

+
1

s2 + 2 · 0.1 · (2π100)s + (2π100)2
, · · · · · · (11)

see Fig. 8 for a Bode plot.

Next, an input

f (t) =

{

1 0 ≤ t ≤ 0.1

0 elsewhere
· · · · · · · · · · · · · · · · · · · · (12)

is applied to the true system Go as well as to both models Ĝ1

and Ĝ2, all of which are in open-loop, i.e., K = 0 in Fig. 3.

In addition, r and v are zero in Fig. 3. The responses are

depicted in Fig. 9. It is observed that Ĝ1 matches the true re-

sponse accurately, while Ĝ2 shows a very different response.

In particular, Go and Ĝ1 show an unbounded response due

to the rigid-body behavior, while Ĝ2 shows a bounded re-

sponse. The Bode plots in Fig. 8 support this observation,

since the model Ĝ2 does not have a −40 dB/dec slope at low

frequencies. The key point is that most system identification

techniques deliver a model that compares to Ĝ1, which is of

course desired if the goal is to simulate Go in open-loop as in

Fig. 9.

Now, suppose that the optimal controller (5) is given by
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Fig. 8. Example 1: true system Go in (9) (solid blue),
model Ĝ1 in (10) (dashed red), model Ĝ2 in (11) (dash-
dotted green)

Fig. 9. Example 1: open-loop response to the input f
in (12). True system Go in (9) (solid blue). The model
Ĝ1 in (10) (dashed red) closely matches the true output.
However, model Ĝ2 in (11) (dash-dotted green) shows a
strong deviation compared to the true response

Fig. 10. Example 1: closed-loop response to the input
f in (12) with optimal controller K = 105. True sys-
tem Go in (9) (solid blue). The model Ĝ2 in (11) (dash-
dotted green) now closely matches the true output. In
contrast, the model Ĝ1 in (10) (dashed red), which accu-
rately predicted the open-loop response, performs poorly
when predicting the closed-loop response

K = 105, i.e., a proportional controller to illustrate the main

idea. When applying the same input (12), yet with K = 105

implemented as in Fig. 3, then the results in Fig. 10 are ob-

tained. The difference of these closed-loop results are strik-

ing compared to Fig. 9: when the optimal controller K = 105

is implemented on the model Ĝ1, this does not even give a

bounded response. In contrast, the model Ĝ2, that seemingly

performed poorly in the open-loop response in Fig. 9, is very

suitable for predicting the closed-loop response. �

The main conclusion from Example 1 is that the quality of

models should be evaluated in view of their subsequent goal.

The main goal of the models here is to deliver a controller

that performs well on the true system in closed-loop. In this

section, the identification of models in view of feedback con-

trol is investigated, the feedforward and ILC case is further

elaborated on in Sec. 5.1.5.

4.3 Control-relevant Nominal Identification The

quality of models depends on their goal. Here, the goal is

given by (5). In particular, a model Ĝ is used to determine

K(Ĝ) = arg min
K

J(Ĝ,K) · · · · · · · · · · · · · · · · · · · · · · · · (13)

which is then implemented on the true system Go, leading to

the achieved cost J(Go,K(Ĝ), which is bounded by

J(Go,K
opt) ≤ J(Go,K(Ĝ)). · · · · · · · · · · · · · · · · · · · · · (14)

The main question now is how to identify models that de-

liver a good controller in the sense that the bound (14) is

tight. In addition, these models should preferably be of lim-

ited complexity, since the order of the controller is directly

related to the order of the model Ĝ. In contrast, in manually-

tuned controllers, cf. Sec. 2.2.2, notch filters are only added

for the modes in (1) that endanger stability and performance.

Hence, the complexity of the model has to be justified by the

control requirements.

A strategy to obtain such control-relevant models is to note

that J(Go,K(Ĝ)) involves a norm. Hence, by rewriting and

applying the triangle inequality for a certain K,

J(Go,K) = J(Ĝ,K) + J(Go,K) − J(Ĝ,K) · · · · · · · (15)

≤ J(Ĝ,K) + ‖Fl(P(Go),K) − Fl(P(Ĝ),K)‖

· · · · · · · · · · · · · · · (16)

Here, the first term J(Ĝ,K) can be minimized, which in fact

equals the model-based design (13). The second term is a

function of Go, Ĝ, and K. To arrive at a well-posed identifi-

cation problem, assume that a reasonable feedback controller

Kexp is already designed and implemented, e.g., following the

procedure in Sec. 2.2.2. In fact, such a controller is typically

required for identification experiments, since the open-loop

system is often unstable, see (1). Then, Fl(P(Go),Kexp) is

directly obtained as the (weighted) closed-loop system with

Kexp implemented.

In this case, a suitable identification criterion is to substi-

tute Kexp into the term in (16), leading to

ĜCR = arg min
Ĝ
‖Fl(P(Go),Kexp) − Fl(P(Ĝ),Kexp)‖.

· · · · · · · · · · · · · · · · · · · (17)

Essentially, in (17) a control-relevant model ĜCR is identi-

fied that aims at representing closed-loop behavior. The min-

imization in (17) can be directly performed using the algo-

rithm in, e.g., (39). Note that (17) depends on the controller

K. If K is chosen equal to Kopt, then typically the best re-

sult is obtained. Since Kopt is unknown, the result will de-

pend on the quality of Kexp. To mitigate this dependence,

the controller synthesis (13) and control-relevant identifica-

tion (17) can be solved alternately, aiming to minimize the

upper bound (16). Such an iterative procedure is at the basis

of many approaches, including (40)–(45). Unfortunately, such an

iterative approach does not necessarily work, since the trian-

gle inequality in (16) only holds valid for a fixed K, and does

not allow for iterative updating of the controller. Still, (17) is

a very valuable criterion for model identification, as will be

shown in Sec. 4.5.
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4.4 Toward Robust Motion Control The key reason

why alternating between control-relevant identification (17)

and model-based control design (13) does not work is the

lack of robustness. Indeed, if K(Ĝ) is designed solely based

on Ĝ, there is no reason to assume that it achieves a suitable

level of performance on Go. In fact, there are no guarantees

that it actually stabilizes Go in closed-loop. This motivates

a robust control design, where the model quality is explicitly

addressed during controller synthesis, as is outlined next.

In a robust control design (30), the true system behavior is

represented by a model set G such that

Go ∈ G. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(18)

Throughout, this model set is constructed by considering a

perturbation around the nominal model Ĝ, see Sec. 4.3, i.e.,

G =
{

G
∣
∣
∣G = Fu(Ĥ,∆u),∆u ∈ ∆u

}

, · · · · · · · · · · · · · · · (19)

with the upper linear fractional transformation (LFT)

Fu(Ĥ,∆u) = Ĥ22 + Ĥ21∆u(I − Ĥ11∆u)−1Ĥ12 · · · · · ·(20)

and Ĥ contains the nominal model Ĝ and the model uncer-

tainty structure, see (30, (8.23)) for details. Note that Ĝ is recov-

ered if the uncertainty is zero, so that Ĝ = Fu(Ĥ, 0).

It remains to specify ∆u in more detail. In view of the con-

sidered motion control objectives, anH∞ norm, i.e.,

‖H‖∞ = sup
ω

σ̄(H( jω)), · · · · · · · · · · · · · · · · · · · · · · · · · (21)

with σ̄ denoting maximum singular value, is selected for the

following reasons.

( 1 ) H∞-norm-bounded uncertainty enables a frequency-

dependent characterization of dynamic uncertainty,

which is very well suited for representing lightly damped

modes in systems of the form (1). This is in sharp con-

trast to parameter uncertainty as is used in, e.g., (46).

( 2 ) The H∞ norm provides a suitable means to quantify

performance objectives for motion systems in (4). In

particular, theH∞ norm allows a loopshaping-based de-

sign, see (47) (48) for a general perspective and (7) (49)–(52) for a

motion control perspective. In addition, controller syn-

thesis is typically most straightforward if a single norm

is used for representing uncertainty and specifying the

performance objectives.

Hence,

∆u =
{

∆u ∈ H∞

∣
∣
∣ ‖∆u‖∞ ≤ γ

}

, · · · · · · · · · · · · · · · · · · ·(22)

where γ ∈ R+. Associated with G is the worst-case criterion

JWC(G,K) = sup
G∈G

J(G,K). · · · · · · · · · · · · · · · · · · · · · · (23)

Hence, by minimizing the worst-case performance

KRP = arg min
K

JWC(G,K), · · · · · · · · · · · · · · · · · · · · · · (24)

the controller KRP achieves robust performance in the sense

that using (18), it leads to the tight upper bound

J(Go,K
RP) ≤ JWC(G,KRP). · · · · · · · · · · · · · · · · · · · · · (25)

Hence, this leads to a performance guarantee when KRP is

implemented on the true system Go. This is in sharp contrast

to (14), which may actually be unbounded.

4.5 Modeling for Robust Motion Control Robust

control provides a performance guarantee when implement-

ing the controller KRP on the true system Go. The question on

how to minimize the upper bound (25) hinges on the model

set G. Essentially, this involves the robust-control-relevant

identification of a model set, which is the counterpart of the

control-relevant identification problem of a nominal model Ĝ

in Sec. 4.3.

The main idea is to follow a very similar approach as in

Sec. 4.3. In particular, assume again that a controller Kexp is

already implemented. Then, instead of minimizing (4) over

K as in (24), it is minimized for the entire set G, leading to

the robust-control-relevant identification criterion

GRCR = min
G

JWC(G,Kexp), · · · · · · · · · · · · · · · · · · · · ·(26)

subject to (18).

Combining the arguments implies that

J(Go,K
RP) ≤ JWC(GRCR,K

RP) ≤ JWC(GRCR,K
exp),

· · · · · · · · · · · · · · · · · · · (27)

hence guaranteed performance enhancement is achieved. Al-

though this also depends on Kexp, it can be iterated, leading to

monotonous performance enhancement (53), which is in sharp

contrast to the suggested iterative procedure in Sec. 4.3.

The key question is how to actually determine the model

set (26). The approach pursued here is to continue along the

path in Sec. 4.3, i.e., to determine a control-relevant model

as in (17). A second step aims at extending the model ĜCR

with ∆u such that (26) is actually addressed. Many techniques

have been developed for selecting the structure of uncertainty,

e.g., (54, Table 9.1), as well as quantifying its size (55) (56). However,

the closed-loop aspect of the identified models, as in Exam-

ple 1, has important consequences.

( 1 ) Constraint (18) has to be satisfied for (25) to hold. Al-

though this may seem trivially satisfied by increasing

the size of ∆u, note that typical uncertainty structures

are based on open-loop reasoning. In particular, suppose

that in Example 1

G =
{

G
∣
∣
∣G = Ĝ2 + ∆u, ‖∆u‖∞ ≤ γ

}

. · · · · · · · · · · (28)

Then, since Ĝ2 ∈ H∞ and by (28), G ⊂ H∞. How-

ever, since Go � H∞, (18) cannot be satisfied. The main

reason is that Go contains a rigid-body mode, which is

neither included in Ĝ2, nor in anH∞-norm-bounded per-

turbation ∆u. This is confirmed by Fig. 8, where Ĝ2 has a

bounded magnitude, yet Go → ∞ for ω → 0. Hence, no

bounded ∆u can capture the model mismatch using the

structure (28).

( 2 ) Suppose that the previous issue 1 is appropriately dealt

with, and a certain bound γ guarantees that (18) is sat-

isfied, the next question is how this actually minimizes

JWC(G,Kexp) over G in (26). Indeed, often G satisfies

(18), yet contains an element or a subset that is not sta-

bilized by Kexp, in which case (26) is unbounded, see,

e.g., (17, Table 1).

( 3 ) Suppose that issue 1 and 2 are addressed, the final ques-

tion is how JWC(G,Kexp) in (26) can be actually mini-

mized.

These three issues are of crucial importance to avoid conser-

vatism in the entire robust control design procedure. Indeed,
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robust control is often experienced to lead to conservative re-

sults or may need a very large user-interaction, e.g., (51) (57), due

to inappropriately dealing with Issues 1 - 3, above.

The main trick to address Issues 1 and 2 has a very long

history in control and is known as the dual form of the Youla

parameterization. The Youla parameterization (58) parameter-

izes all controllers that stabilize a certain system. The dual

form, as is considered here, see also (53) (59)–(62), parameterizes

all candidate systems that are closed-loop stable with Kexp

implemented. In particular,
• the dual-Youla uncertainty structure is generated around

the nominal model Ĝ obtained from Sec. 4.3,
• Go is stabilized by Kexp, hence (18) is satisfied for a suf-

ficiently large γ,
• all elements in G are stabilized, hence JWC(G,Kexp) in

(26) remains bounded.

The remaining step to obtain a robust-control-relevant model

set in the sense of (26) is to appropriately define the distance

metric. Indeed, there is a large amount of freedom left in

the dual-Youla parameterization. Recently, in (63), this free-

dom is exploited through a new coprime factorization, which

directly connects the size of uncertainty γ in (22) and the

control-relevant identification criterion (17). The underlying

theory closely connects to recent developments in, e.g., (64). A

key consequence of this approach is that it provides an auto-

matic scaling of the uncertainty, both in input/output direc-

tions and frequency. In turn, this enables the use of unstruc-

tured uncertainty in (22), which has important consequences

for solving (24), e.g., using D − K iterations (65).

4.6 Identification Procedure for Robust Motion Con-

trol Combining the developments in the preceding sec-

tions leads to the following design procedure.

( 1 ) Specify a control objective J in (4) using theH∞ norm,

e.g., using loop-shaping design as in Sec. 2.2.2.

( 2 ) Identify a nominal model Ĝ by minimizing (17) using

data collected while Kexp is implemented.

( 3 ) Extend the nominal model with the dual-Youla uncer-

tainty structure as is outlined in Sec. 4.5, and determine

the size of γ using any model uncertainty quantification

procedure that delivers the minimal γ such that (18) is

satisfied, e.g., (66)–(68).

( 4 ) Compute and implement the optimal robust controller

(24). If the performance is not satisfactory, repeat the

procedure from Step 1.

The overall design procedure leads to nonconservative robust

motion controllers and applies to highly complex systems. It

enables new developments in motion control and addresses

the challenges in Sec. 3.2 as is illustrated next.

4.7 Case Studies The procedure in Sec. 4.6 allows

the design of advanced motion controllers that address the

challenges in Sec. 3.2. These are elaborated next.

4.7.1 Case 1: Multivariable Modeling for Robust

Control To show that the approach in Sec. 4.6 can deal

with multivariable dynamics, a robust-control-relevant model

set in the sense of (26) of the wafer stage in Fig. 1(a) is iden-

tified. The control goal in (4) is set to a bandwidth (30, Sec. 2.4.5) of

90 Hz with PID characteristics.

The identification results are depicted in Fig. 11. The

model Ĝ is of order 8, corresponding to nRB = 2 and ns = 2 in

(1). In addition, the uncertainty is tuned towards the control

Fig. 11. Sec. 4.7.1: identified model set of the system in
Fig. 1(a), with Ĝ (solid blue), G (cyan). Robust-control-
relevance emphasizes the bandwidth region around
90 Hz, as well as the first two resonance phenomena (17)

Fig. 12. Sec. 4.7.2: Overactuation of a prototype wafer
stage (69). The original model Ĝ has torsion mode with
a resonance frequency of 143 Hz (dashed red). After
closing the torsion loop, this resonance shifts to 193 Hz,
where the equivalent plant model is shown (solid red).
The identified frequency response function with the tor-
sion loop closed (dotted blue) confirms the result

objective: the uncertainty is small in the bandwidth region

and the first two resonances, which typically need notches in

the traditional manual design procedure in Sec. 2.2.2. In ad-

dition, at low and high frequencies, a very large uncertainty

is tolerated. The model set has been shown to lead to a fac-

tor two error reduction after 1 design cycle, see (17) for details.

This error can be further reduced by repeating the design cy-

cle in Sec. 4.6, as well as an error-based redesign (26).

4.7.2 Case 2: Overactuation The closed-loop band-

width is often limited by resonance phenomena (69), even if

multivariable loopshaping techniques (52) are used that address

the input/output directionality of Gflex in (2). In view of the

ideas in Sec. 3.2, additional actuators and sensors can be ex-

ploited. From a practical perspective, these can be employed

to add active damping and stiffness. This technique has been

successfully applied to a prototype wafer stage, where in the

result of Fig. 12 a single actuator and sensor pair address the

torsion mode, leading to a 35% bandwidth increase compared

to the traditional input-output situation. These techniques are

being extended to the 14 input-14 output prototype reticle
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stage in Fig. 1(b), which can potentially achieve a significant

accuracy and throughput enhancement by lightweight stage

design, see Sec. 3.1. Finally, it is emphasized that the use of

overactuation and oversensing has important benefits com-

pared to traditional notch filters, as mentioned in Sec. 2.2.4.

In particular, notch filters essentially render the vibrational

modes unobservable, and only focus on local performance.

In contrast, the proposed approach using overactuation and

oversensing typically improves global performance (23).

4.7.3 Case 3: Inferential Control The procedure in

Sec. 4.6 can be directly extended towards dealing with un-

measurable performance variables, in which case z contains

variables that are not contained in y. The main idea is that

a model is made that enables prediction of the unmeasur-

able performance variables, e.g., using temporary sensors.

This requires an extension of the controller structure in Fig. 3,

see (25) for details and an experimental example.

4.7.4 Case 4: Position-dependent Control Motion

systems perform motions by definition. Hence, it can be ex-

pected that the system in Fig. 4 is position dependent, since

the sensor observes the mode-shapes differently for changing

positions. As a result, the position-dependence of the obser-

vation enables casting the system into the framework of lin-

ear parameter-varying (LPV) systems (70) (71), for which reliable

synthesis techniques are available. However, the identifica-

tion of such systems from data is challenging (72). Recently,

a new approach has been developed (73) to model position-

dependent systems for LPV control, which consists of two

steps.

( 1 ) Identify the system at a large number of frozen posi-

tions nθ, which are considered as ny ·nθ auxiliary outputs.

Identify the high-dimensional nu input ny · nθ output sys-

tem using the procedure in Sec. 4.3 and Sec. 4.5.

( 2 ) Interpolate the modeshapes to obtain a model with a

continuous position dependence.

Experimental results are promising, see Fig. 13.

4.7.5 Case 5: Systems of Systems The overall con-

trol of the wafer stage in Fig. 4 involves several subsystems,

including the wafer stage and the reticle stage. The overall

control problem is the relative positioning of the wafer with

respect to the reticle. Instead of dividing the overall control

problem in independent subproblems, the overall framework

of Fig. 7 enables the direct solution of the overall problem

through the approach in Sec. 4.6. Interestingly, the theory

developed in Sec. 4.4–Sec. 4.5 also allows for a systematic

add-on, see (74) for recent results in this direction, as well as

references therein.

Fig. 13. Sec. 4.7.4: identification of position-dependent
motion systems: 5th and 9th estimated mode of the proto-
type lightweight motion system of Sec. 4.7.2 (73)

4.7.6 Case 6: Thermomechanical Systems So far,

the focus has mainly been on motion control. However, ther-

mal aspects are becoming significant for increasing accuracy.

These directly fit in the setup of Fig. 7, and the approach in

Sec. 4.6 has recently been applied to a thermal control sys-

tem with thermal actuators and sensors (75). This also enables

compensating for thermal deformations in motion control.

4.7.7 Case 7: Vibrations The presence of exoge-

nous disturbances is essential and addressed in various as-

pects, including the use of active vibration isolation systems

(AVIS) (66) (76), compensation through disturbance observers (77),

and disturbance-based control (26) (78).

4.8 Discussion and Overall Design Procedure In

Sec. 4.7, several successful case studies of the approach in

Sec. 4.6 are presented. This raises the question whether the

approach in Sec. 4.6 has disadvantages compared to the tradi-

tional approach in Sec. 2.2.2. Although the theory is laid out,

the algorithms still require significant user interaction. Also,

numerical aspects are highly challenging (79)–(82), especially for

the complex systems envisaged in Sec. 3.2.

Taking into account the current level of maturity of the

tools described in this section and based on significant expe-

rience with multivariable motion systems, the following pro-

cedure enables a systematic design of motion controllers.

Procedure 1 Advanced motion control design procedure.

1. Interaction analysis. Decoupled?
• yes: independent SISO design (Sec. 2.2.2). No: next step

2. Static decoupling (Equation (2)). Decoupled?
• yes: independent SISO design (Sec. 2.2.2). No: next step

3. Decentralized MIMO design: loop closing procedures (83, Sec. 1.3.3)

• robustness for interaction, e.g., using factorized Nyquist
• design for interaction, e.g., sequential loop closing

Not successful? Next step
4. Optimal & robust control (Sec. 4.6)

• centralized controller with typically best performance
• requires parametric model

Procedure 1 has proven to perfectly balance effort vs. con-

trol requirements (83). Indeed, the effort in terms of user in-

tervention and modeling are only increased if necessitated by

the control requirements. Interestingly, the first three steps

are all based on FRF data, whereas the last step, i.e., the pro-

cedure of Sec. 4.6 involves the use of a parametric model.

Note that all four steps in Procedure 1 are based on FRF

data. Indeed, Step 4 in Procedure 1 involves the identification

problem Sec. 4.3, which is again based on FRFs. This has led

to a renewed interest in identifying FRFs of complex mecha-

tronic systems, where traditionally noise excitation has been

used (7) (51). These have been extended towards periodic exci-

tation for motion systems (17), and more recently substantial

advancements have been made using local parametric mod-

eling techniques (84), including extensions to linear parameter-

varying (LPV) systems (85) and multivariable systems (86).

5. Feedforward and Learning

Feedforward and learning control are essential for high

performance motion control. In this section, first learning

control is investigated, the connection to feedforward is fur-

ther outlined in Sec. 5.1.5.

5.1 Learning and Repetitive Control Iterative

learning control (ILC) (13) is particularly promising for posi-
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tioning systems that perform repeating tasks. Typically, the

feedforward signal f in Fig. 3 is updated based on past exper-

iments or trials j, e.g.,

f j+1 = Q( f j + Le j), · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (29)

with Q and L appropriate learning filters. Essentially, (29)

involves a trial-domain feedback, hence the resulting system

is a 2D system (87). For SISO systems, a well-developed de-

sign framework is available (12), yet in view of the challenges

in Sec. 3.2, ILC algorithms of the form (29) are not directly

applicable. The challenges in Sec. 3.2 are now briefly in-

vestigated in the context of ILC, see (19) for a more detailed

overview. Repetitive control (88) (89) is a control strategy that is

similar to ILC, yet does not reset the system after each rep-

etition. The mentioned challenges are focussed on ILC, yet

also apply to repetitive control situations.

5.1.1 Inferential ILC for Unmeasurable Feedback

Signals Often, the performance variables are not directly

accessible to the feedback controller, but they can be mea-

sured after a task is completed. For instance, in printing in-

visible markers can be used (90, Sec. 5.3). This idea is illustrated in

Fig. 14. When ILC is applied to the z measurement, whereas

feedback is applied to y, it is generally impossible to track a

reference for both, i.e., to ensure that both r − y and r − z are

small. This can lead to severe consequences when attempting

to do so, e.g., using integral action in conjunction with ILC,

Fig. 14. Schematic side-view illustration of the posi-
tioning drive in a printer system for inferential ILC in
Sec. 5.1.1. The paper position z is controlled using the
motor. The feedback uses real-time encoder measure-
ments y. The performance z is measured line-by-line us-
ing the scanner, which is used for iterative learning con-
trol purposes

Fig. 15. Signals after convergence of inferential ILC in
Sec. 5.1.1. In traditional motion control architectures
(Fig. 3), the ILC command signal f (red dashed) cancels
the feedback controller output (blue dashed, also Ke in
Fig. 3), leading to an internally unstable system (the over-
all input u (black solid) remains bounded). An adapted
controller architecture leads to closed-loop stability in a
2D systems setting, see (91), leading to both a bounded ILC
command signal f (black solid) and bounded feedback
controller output (red-dashed)

as is illustrated in Fig. 15. To systematically address these

aspects, a 2D systems approach, see (87), is used in the context

of inferential ILC framework developed in (91), which also en-

compasses related inferential ILC approaches, including (92).

5.1.2 Multivariable ILC with Additional Inputs and

Outputs ILC for multivariable systems is significantly

more challenging compared to feedback. Although ILC is

fairly robust with respect to modeling errors, it is effective

up to the Nyquist frequency, imposing model quality require-

ments over the entire frequency range, which is in sharp con-

trast to the results in Fig. 11. In (93), the ILC analogue of Pro-

cedure 1, which aims at advanced motion feedback control

design, is developed. Indeed, as is shown in Fig. 16, a decen-

tralized ILC that ignores interaction may lead to an unstable

ILC algorithm in the iteration domain when both loops are

closed simultaneously. In Fig. 17, several solutions are shown

that lead to a stable ILC iteration. Here, the decentralized de-

sign requires the least modeling effort, i.e., only the diagonal

terms need to be modeled parametrically. A centralized de-

sign typically improves the performance, yet requires a full

multivariable parametric model. Hence, the procedure in (93)

appropriately balances the required modeling effort and the

performance requirements. As an additional aspect in dealing

with multivariable systems, the potential of additional inputs

for ILC is established in (94).

5.1.3 ILC for Position-dependent Systems Since

ILC is effective over a much larger frequency range com-

pared to feedback, the effect of position-dependent dynam-

ics is amplified. In particular, when applying ILC to the

position-dependent printer in Fig. 1(d), linearized models ei-

ther lead to a divergent scheme or slow convergence, see

Fig. 18. An LTV approach, see (95), can effectively deal with

position-dependent behavior. Initial results towards an LPV

approach are reported in (96), whereas an LPTV approach is

pursued in (97).

Fig. 16. Multivariable ILC in Sec. 5.1.2. Independently
designed ILC loops (◦, ×) converge when implemented
independently. However, when implemented simultane-
ously (�), the multivariable ILC does not converge

Fig. 17. Multivariable ILC in Sec. 5.1.2. Multivariable
ILC designs (93): decentralized with robustness for inter-
action (×), centralized based on H∞ preview control (⋄),
and centralized based on MIMO ZPETC (◦) lead to con-
vergent ILC algorithms. In contrast, a decentralized de-
sign that ignores interaction (�) leads to a divergent error
norm
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Fig. 18. Position-dependent ILC in Sec. 5.1.3. Apply-
ing ILC to the position-dependent printer in Fig. 1(d).
First, a linearized model at an edge position is used. This
LTI model leads to a divergent iteration when applied to
the position-dependent system (∗). Inclusion of a Q-filter
for robustness leads to convergence, yet limited perfor-
mance enhancement (×). Linearization of the model at a
different location leads to a convergent ILC (+) without
the need for a Q-filter, hence leading to improved perfor-
mance. An LTV design (95) leads to superior performance:
it achieves high performance and fast convergence

Fig. 19. Varying references in ILC, see Sec. 5.1.5, as oc-
curring in the wire bonder of Fig. 1(c). Due to varying
product locations, the end-position varies

5.1.4 Systems of Systems The design procedure in (93)

can directly be applied to such systems, whereas a systematic

ILC add-on as in Sec. 4.7.5 is developed in (98).

5.1.5 Flexible Tasks One of the largest drawbacks of

traditional ILC is that it requires the reference r in Fig. 3 to

be fixed. This is in sharp contrast to traditional feedforward

control as is outlined in Sec. 2.2.1. The main goal of recent

research, including (90) (99)–(101) has been to combine the perfor-

mance advantages of learning control with the extrapolation

capabilities of the feedforward structures in Sec. 2.2.1.

As an application example, the wire bonder in Fig. 1(c) has

varying references for every product due to position variabil-

ity. As a result, the end-position of the point-to-point mo-

tion varies, see Fig. 19. ILC is highly susceptible to such

changes, see Fig. 20, since a reference change at iteration 10

leads to a large performance degradation. Note that the ref-

erence is kept constant from iteration 0–9 for illustration pur-

poses only. For more details on the wire bonder application,

see (2). For a successful applications on the printer system

of Fig. 1(d), see (34). For an application to the wafer stage of

Fig. 1(a), see (102).

The theoretical framework is further extended towards in-

put shaping (103) and rational feedforward structures in (104)–(106),

which have as key advantage that these can exactly compen-

sate non-minimum phase dynamics, see (107) for a detailed ex-

position, and also (95) (108) (109) for further details and applications.

Finally, a strongly related approach that further connects to

system identification in Sec. 4.3 is developed in (28) (110) (111). In

particular, this approach essentially constitutes a framework

Fig. 20. Varying references in ILC, see Sec. 5.1.5, as oc-
curring in the wire bonder of Fig. 1(c). In iteration 0 − 9,
the blue reference of Fig. 19 is used, while from itera-
tion 10 at further, the green dashed reference of Fig. 19
is used. Clearly, standard ILC (red) is highly sensitive to
reference changes, whereas the proposed ILC with basis
function in (2) (green) enables high performance for ver-
satile references

Fig. 21. Control of future lightweight stages as in Fig. 4.
Based on measured sensor information, the controller
predicts the spatio-temporal behavior (either locally at the
performance location or globally), and determines a suit-
able force profile for accurately positioning the stage and
its internal flexible dynamics

for identification of models for feedforward, where the an-

swer lies in identifying the inverse system directly using in-

strumental variable system identification (112). For a detailed

comparison to ILC-based approaches, see (102). Notice that

in ILC, the identification criterion for the model, which is

needed to construct the learning filter, is slightly different and

should be chosen such that the model error is less than 100%

in the relevant frequency range of interest, see (93) for details

in this direction.

6. Outlook

Advanced motion control is a highly challenging and im-

portant area. Several issues arising from ongoing develop-

ments in applications have been identified, along with several

solution strategies that are being developed. Many related

challenges, e.g., for specific application areas, have not been

addressed in the present paper, including (4) (113)–(116). In addi-

tion, numerical aspects are highly challenging for complex

systems, in control (117), system identification (79)–(82), and learn-

ing (95). In addition, resource-efficient approaches for ILC

based on sparse optimization are investigated in (118). Further-

more, nonlinear control techniques have been investigated in,

e.g., (119)–(121). Digital implementation aspects are investigated

in (116) (122) (123). Finally, data-driven techniques to avoid mod-

eling altogether are being investigated in, e.g., (121) (124) (125) for

feedback control and (126) (127) for ILC.

In the near future, developments in advanced motion con-

trol may enable a paradigm shift in mechatronic system
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design. Indeed, a very lightweight design is foreseen, see

Fig. 4, where stiffness is obtained through active control. In-

deed, based on measured sensor information, the controller

predicts the spatio-temporal behavior (either locally at the

performance location or globally, and determines a suitable

force profile for accurately positioning the stage and its in-

ternal flexible dynamics, see Fig. 21 for details. In addition,

thermal behavior will be actively controlled. These future

systems may achieve unprecedented accuracy, speed, and

cost, and will communicate with other subsystems to increase

overall system performance.
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