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Abstract

Magnetic resonance imaging (MRI) is a very versatile imaging modality which

can be used to acquire several different types of images. Some examples include

anatomical images, images showing local brain activation and images depicting

different types of pathologies. Brain activation is detected by means of functional

magnetic resonance imaging (fMRI). This is useful e.g. in planning of neurosur-

gical procedures and in neurological research. To find the activated regions, a

sequence of images of the brain is collected while a patient or subject alters be-

tween resting and performing a task. The variations in image intensity over time

are then compared to a model of the variations expected to be found in active parts

of the brain. Locations with high correlation between the intensity variations and

the model are considered to be activated by the task.

Since the images are very noisy, spatial filtering is needed before the activation

can be detected. If adaptive filtering is used, i.e. if the filter at each location is

adapted to the local neighborhood, very good detection performance can be ob-

tained. This thesis presents two methods for adaptive spatial filtering of fMRI

data. One of these is a modification of a previously proposed method, which at

each position maximizes the similarity between the filter response and the model.

A novel feature of the presented method is rotational invariance, i.e. equal sensi-

tivity to activated regions in different orientations. The other method is based on

bilateral filtering. At each position, this method averages pixels which are located

in the same type of brain tissue and have similar intensity variation over time.

A method for robust correlation estimation is also presented. This method auto-

matically detects local bursts of noise in a signal and disregards the corresponding

signal segments when the correlation is estimated. Hence, the correlation estimate

is not affected by the noise bursts. This method is useful not only in analysis of

fMRI data, but also in other applications where correlation is used to determine

the similarity between signals.

Finally, a method for correcting artifacts in complex MR images is presented.

Complex images are used e.g. in the Dixon technique for separate imaging of

water and fat. The phase of these images is often affected by artifacts and therefore

need correction before the actual water and fat images can be calculated. The

presented method for phase correction is based on an image integration technique

known as the inverse gradient. The method is shown to provide good results even

when applied to images with severe artifacts.





Populärvetenskaplig
sammanfattning

Funktionell magnetresonanstomografi (fMRI) är en metod för att detektera och

lokalisera de områden i hjärnan som aktiveras när en viss uppgift utförs. Meto-

den används dels vid planering av kirurgiska ingrepp och dels för att undersöka

hjärnans funktion. För att hitta de områden som aktiveras, analyseras sekvenser

av MR-bilder som samlats in under tiden uppgiften utförts. Genom att förbättra

analysen kan man få högre kvalitet på de kartor som visar aktiva områden. Sam-

tidigt möjliggör en bättre analys kortare undersökningstider. Denna avhandling

presenterar tre olika metoder för analys av fMRI-bilder. Gemensamt för de olika

metoderna är att de analyserar bilderna adaptivt, vilket medför att aktiverade

områden kan detekteras med hög noggrannhet.

Magnetresonanstomografi används även för att avbilda anatomiska strukturer. Till

exempel kan mängden fett i olika delar av kroppen mätas genom analys av MR-

bilder av en viss typ. När dessa bilder samlas in, uppstår ofta fel som måste

korrigeras innan det går att skilja mellan fett och vatten. I avhandlingen presen-

teras en korrigeringsmetod som gör det möjligt att hitta fettstrukturer även när det

finns stora störningar i de insamlade bilderna.
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1
Introduction

Around 300 B.C. Greek physicians Herophilos and Erasistratus performed the

first anatomical research based on dissections of human cadavers. As a result of

their research they obtained a more informed view of the human body than was

earlier available. Dissection remained the only method for gaining knowledge

about the human anatomy until the end of the 19th century, when the first X-ray

photograph, depicting a human hand, was taken. Just a few years later, X-ray

was used for medical purposes. Since then, the X-ray technology has undergone

tremendous development, and today it is used in computed tomography (CT) to

acquire three-dimensional images of e.g. the human body. Alternative techniques

which do not utilize the potentially dangerous ionizing radiation in X-rays are also

in widespread use. The most prevalent of these is magnetic resonance imaging

(MRI), which uses magnetic fields and radio frequent radiation to acquire images

of the body. CT and MRI each have their advantages and disadvantages. For

example, while CT provides images of higher resolution, MRI is better suited to

distinguish between different types of soft tissue, i.e. fat, water and gray and white

matter in the brain.

MRI is a very versatile modality and can be used to obtain information about a

large number of different anatomical and physiological parameters. Images show-

ing pathologies, different tissue properties, and even brain activity and blood flow

velocity can be obtained. Obviously some of these properties can not be directly

measured. Instead, they are obtained by post-processing and analyzing images or

image sequences acquired using MRI. The subject of this thesis is processing and

analysis of MR images for detection of brain activity and for separate imaging of

fat and water.

1.1 Detection of brain activity

Even earlier than the first dissections, already about 400 B.C, Hippocrates stated

that the brain is the seat of intelligence. Since then, the function of the human
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brain has attracted much interest. A major breakthrough occurred when tools

such as positron emission tomography (PET), single photon emission computed

tomography (SPECT) and functional magnetic resonance imaging (fMRI) made

it possible to create images of the functional regions of the brain. Using these

methods, it is possible to see what parts of the brain are activated when a certain

task is carried out. Earlier, this could only be studied by observing patients with

brain lesions, drawing conclusions from the damaged regions of their brains and

the neural functions that seemed to be affected. The new possibilities provided

by functional mapping techniques have facilitated many aspects of neurological

research, and have shed light on several issues within the field. Another important

application of functional imaging is surgical planning, i.e. preoperative planning

of brain surgery, for example when removing brain tumors. By knowing where

important neural functions are located, it is possible to minimize the damage to

the patient’s brain during surgery.

The most important method of those mentioned above is fMRI, since it provides

functional maps with high resolution without the need for possibly exogenous

contrast agents. In contrast, SPECT and PET rely on the use of radioactive sub-

stances, which are inhaled, ingested or injected into the bloodstream of the patient

to be examined. This makes fMRI the most viable alternative for repeated exami-

nations and for examinations of healthy volunteers.

An fMRI experiment generates a large amount of data, which needs to be analyzed

in order to obtain a map of the activated regions of the brain. Several analysis

methods have been proposed. Most of these are based on searching for regions

where the data matches a template which depends on the experiment. However,

the result of the experiment is heavily dependent on how the data is analyzed. The

aim of the fMRI-related work described in this thesis is to develop an analysis

method that finds active regions with the best possible accuracy.

1.2 Separation of fat and water

In order to visualize active brain regions, they are usually overlaid on an image

showing the anatomical structure of the brain. This provides a means of localiza-

tion, thus aiding the interpretation of the results. When acquiring the anatomical

images, the scanner parameters are usually selected to provide contrast between

different types of tissue in the brain, such as gray matter, white matter and cere-

brospinal fluid. In other types of examinations, high contrast is instead desired

between other tissue types. In e.g. obesity studies, MR imaging is used to distin-

guish between water and fat.

Obesity is becoming an increasingly large problem, commonly causing cardiovas-

cular problems, diabetes and osteoarthritis. It is generally considered that abdom-

inal fat accumulation is particularly dangerous. By measuring the abdominal fat,
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it is possible to predict the risk of these and other diseases. Several MRI protocols

for measuring intra-abdominal fat exist. The simplest methods classify each pixel

as either belonging to fatty or water-based tissue. This, however, has the disad-

vantage that the fat content is almost always underestimated. A more advanced

method, known as the Dixon technique, utilizes that the MR signals from fat and

water have slightly different frequencies. This difference can be used to distin-

guish between the two types of tissue. However, the signal difference of interest

is very small, and artifacts from the acquisition process make it difficult to detect.

These artifacts need to be corrected before an accurate estimate of the fat accumu-

lation can be obtained. A possible solution to this problem is presented in chapter

8, where phase sensitive reconstruction of MR images is discussed.

1.3 How to read this thesis

The thesis is made up of two main tracks: functional MRI and phase sensitive

reconstruction. Depending on the reader, one or both of these tracks may be of

interest. The next two chapters provide the background of magnetic resonance

(chapter 2) and magnetic resonance imaging (chapter 3) and are relevant for both

tracks. Chapter 4 describes the background of functional MRI and the following

chapters (5, 6 and 7) each describes one method for fMRI analysis. Chapter 8

outlines the background of fat/water segmentation and phase sensitive reconstruc-

tion and describes a method for analysis of such data. Chapter 9 contains a review

of included papers, which are available in the second part of the thesis. Finally

chapter 10 presents a discussion and some pointers to possible further work.

1.4 Contributions

Naturally, not everything discussed in this thesis is the result of my own work.

The background chapters, for example, present a brief summary of results from

countless man-years of research in the fields of magnetic resonance and anatom-

ical and functional imaging. Chapters 5 – 8, however, are largely based on my

research.

In chapter 5, a method for analysis of fMRI data is presented and its invariance

to the orientation of active regions is discussed. A modified method is introduced

and shown to provide better invariance properties. The original analysis method

is the result of work presented in Friman et al. (2003), while the discussion of

rotational invariance and the modified algorithm are based on my research.

Chapter 6 presents another method for fMRI data analysis, based on bilateral fil-

tering. While bilateral filtering per se is well known in the signal processing

community, the presented application to functional MRI data is a result of my

research.
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Chapter 7 presents a method for robust estimation of correlation coefficients. The

discussed statistical methods (the general linear model and canonical correlation

analysis) are well-known, while the robust estimation technique is based on my

own work.

Finally, chapter 8 presents an algorithm for phase reconstruction in complex MR

images. The method is presented in the context of Dixon imaging (Dixon, 1984),

and utilizes the inverse gradient operation (Farnebäck et al., 2007). The presented

method for phase reconstruction based on iterative application of the inverse gra-

dient is a result of my research, while Dixon imaging and the inverse gradient

itself are not.

1.5 Publications

Four papers are included in the second part of the thesis. Chapter 9 describes these

in more detail.

• Joakim Rydell, Hans Knutsson and Magnus Borga. On rotational invari-

ance in adaptive spatial filtering of fMRI data. NeuroImage 2006;30(1):144-

150.

• Magnus Borga and Joakim Rydell. Signal and anatomical constraints in

adaptive filtering of fMRI data. IEEE International Symposium on Biomed-

ical Imaging (ISBI). Arlington, Virginia, USA. 2007.

• Joakim Rydell, Magnus Borga and Hans Knutsson. Robust correlation

analysis with an application to functional MRI. Submitted manuscript.

• Joakim Rydell, Hans Knutsson, Johanna Pettersson, Andreas Johansson,

Gunnar Farnebäck, Olof Dahlqvist, Peter Lundberg, Fredrik Nyström and

Magnus Borga. Phase sensitive reconstruction for water/fat separation in

MR imaging using inverse gradient. International Conference on Medical

Image Computing and Computer-Assisted Intervention (MICCAI). Bris-

bane, Australia. 2007.

The following papers are also related to my research, but are not included in the

thesis:

• Gunnar Farnebäck, Joakim Rydell, Tino Ebbers, Mats Andersson and Hans

Knutsson. Efficient computation of the inverse gradient on irregular do-

mains. IEEE Computer Society Workshop on Mathematical Methods in

Biomedical Image Analysis (MMBIA). Rio de Janeiro, Brazil. 2007.

• Joakim Rydell, Hans Knutsson and Magnus Borga. Adaptive fMRI data

filtering based on tissue and signal similarities. Joint Annual Meeting

ISMRM-ESMRMB. Berlin, Germany. 2007.
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• Joakim Rydell, Hans Knutsson and Magnus Borga. Rotational invariance

in adaptive fMRI data analysis. IEEE International Conference on Image

Processing (ICIP). Atlanta, Georgia, USA. 2006.

• Joakim Rydell, Hans Knutsson and Magnus Borga. Tissue-selective adap-

tive filtering of fMRI data. ESMRMB. Warsaw, Poland. 2006.

• Joakim Rydell, Hans Knutsson and Magnus Borga. Adaptive filtering of

fMRI data based on correlation and BOLD response similarity. IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing (ICASSP).

Toulouse, France. 2006.

• Joakim Rydell, Hans Knutsson and Magnus Borga. Correlation controlled

adaptive filtering for fMRI data analysis. Nordic-Baltic Conference on

Biomedical Engineering and Medical Physics (NBC). Umeå, Sweden. 2005.

• Joakim Rydell, Magnus Borga and Hans Knutsson. Correlation controlled

bilateral filtering of fMRI data. ISMRM. Miami, USA. 2005.

• Joakim Rydell, Magnus Borga, Peter Lundberg and Hans Knutsson. Di-

mensionality and degrees of freedom in fMRI data analysis – a comparative

study. IEEE International Symposium on Biomedical Imaging (ISBI). Ar-

lington, Virginia, USA. 2004.

1.6 Notation

Inevitably, some mathematics will appear in a text on this topic. The notation

conventions used in this thesis are summarized below.

s Scalar

v Vector

|v| Norm of vector

v̂ Vector of unit norm

M Matrix

MT Transpose of vector or matrix

x ∗ y Convolution of the signals x and y
E[x] Expectation value of a random variable

V ar[x] Variance of a random variable

Cov[x, y] Covariance between two random variables

Corr[x, y] Correlation between two random variables

1.7 Abbreviations

This table lists some of the abbreviations used in this thesis along with their mean-

ings.
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MR Magnetic resonance

MRI Magnetic resonance imaging

fMRI Functional magnetic resonance imaging

BOLD Blood oxygen level dependent

SNR Signal to noise ratio

GLM General linear model

PCA Principal component analysis

CCA Canonical correlation analysis

RCCA Restricted canonical correlation analysis



2
Magnetic resonance

This chapter describes how the chemical properties of a sample can be measured

using nuclear magnetic resonance (NMR1). While this background is not strictly

necessary to understand the signal processing topics in later chapters, knowledge

of the signal and how it is acquired may provide some additional insight. NMR

is a very complex topic, and a complete description of all details requires exten-

sive knowledge of quantum mechanics. Therefore, this presentation describes a

simplified model of the actual process. This model is, however, sufficient to under-

stand the remainder of this thesis. For further information, the reader is directed

to the very thorough explanation of spin physics available in Levitt (2001).

2.1 Properties of elementary particles

An atom consists of three types of elementary particles: protons, neutrons and

electrons. The protons and neutrons are located in the nucleus of the atom, and are

thus sometimes collectively referred to as nucleons, while the electrons surround

the nucleus. As is familiar to most people, two properties of the nucleus are mass

and electric charge. Two less familiar properties are magnetism and spin. These

latter properties have much smaller effect on the behavior of an atom, but they

can be utilized to obtain information about the chemical environment in which

the atom is located. This is done by means of nuclear magnetic resonance. All

four properties depend on what type of atoms we are dealing with. Since the

atoms of interest in a medical MR examination are located in a human body, a

very large part of them are hydrogen (1H), carbon (12C) or oxygen (16O) atoms.

Among these, only hydrogen has non-zero spin and magnetic moment, and thus

only hydrogen nuclei contribute to the NMR signal. While most of what is stated

here is valid also for other nuclei, this text is focused on hydrogen nuclei (single

protons).

1Nowadays NMR is usually referred to as simply “MR” or “magnetic resonance”, avoiding the

negative connotations to the word “nuclear”.
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2.2 Magnetism and spin

The property of magnetism can be thought of as a small bar magnet located inside

the atom nucleus (see figure 2.1). Like all magnets, it has a north and a south pole,

and it points in a certain direction.

N

Figure 2.1: The magnetic moment of a nucleus.

The spin property is less intuitive. The nucleus is not spinning in the way that

things do when they are rotating. However, it is sometimes convenient to think of

the spin as an actual rotating motion. Then, the spin angular momentum can be

visualized as in figure 2.2, where the direction of the arrow is the axis of rotation

and the length of the arrow is proportional to the angular velocity. The spin vector

is always parallel or anti-parallel to the magnetic moment of the nucleus.

Figure 2.2: The spin of a nucleus.

In the absence of an external magnetic field, the magnetic moments of all nuclei

are free to point in any direction. Since all directions are equally likely, the sum of

all magnetization vectors is very close to zero. If an external magnetic field, often

referred to as the B0 field, is applied, more of the magnetic moments of the nuclei

will be aligned with the field than against it. Then, a net magnetization in the
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direction of the external field will be obtained. The stronger the external magnetic

field, the more nuclei will align with it, producing a stronger net magnetization.

Figure 2.3 shows possible orientations of the individual nuclei with and without

an external magnetic field. The external field is illustrated by the black arrow,

and the net magnetic moment is illustrated by the gray arrow. The alignment of

the individual magnetic moments to the external field is greatly exaggerated in

this figure, even though the external field in a typical medical MR scanner is very

strong; 1.5 T or approximately 30000 times the Earth’s magnetic field.

(a) Without external field.

(b) With external field.

Figure 2.3: Orientation of nuclei with and without an external magnetic field (illustrated

by the black arrow). In the presence of an external field, there is a net mag-

netic moment (illustrated by the gray arrow) pointing in the same direction.

In the presence of an external magnetic field, the spin causes the magnetic mo-

ments of the nuclei to precess around the field, as shown in figure 2.4. The fre-

quency of the precession is proportional to the strength of the magnetic field and

is referred to as the Larmor frequency. If we consider one individual magnetic

moment, we essentially have a tiny precessing magnet. This is shown in figure

2.4(a). If a receiver coil was placed near the magnet, a small current would be in-

duced by the precessing magnetic moment. Thus, it would be possible to measure



10 Chapter 2. Magnetic resonance

the precession, and thereby gain knowledge about the nucleus and its interaction

with the surrounding sample. However, since there are countless little magnets,

all precessing at the same frequency but with random phase, the net magnetism is

constant. Thus, no current will be induced in the receiver coil. This is shown in

figure 2.4(b).

(a) An

individual

spin.

(b) A collection of spins.

Figure 2.4: Magnetic moments precessing around an external magnetic field.

2.3 Radio-frequency pulses

By applying a radio-frequent (RF) pulse at the frequency of the precession of

the spins, it is possible to change the orientation of all magnetic moments in a

sample. Applying a RF pulse is often referred to as exciting the sample. If we,

for example, rotate all the magnetic moments 90 degrees, as shown in figure 2.5,

the net magnetization will change from being aligned with the external magnetic

field (pointing up) to pointing to the left. However, it will still precess around

the external field. Thus, after the application of an RF pulse, the precessing mag-

netic moments will be in phase and there will be a precessing net magnetization.

This can be measured using a receiver coil, in which an alternating current at the

Larmor frequency will be induced. By measuring this current, much information
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about the magnetic and chemical properties of the sample can be revealed. For ex-

ample, since all spins contribute with the same magnetism and precess at the same

frequency, the current induced in the receiver coil is proportional to the number

of spins in the sample.

(a) Before RF pulse.

(b) After RF pulse.

Figure 2.5: Magnetic moments before and after a 90 degree RF pulse. The net magneti-

zation changes from pointing up to pointing to the left.

So why does the application of an RF pulse at a certain frequency change the ori-

entation of the magnetic moments? This is most easily understood by considering

the RF pulse as a rapidly changing magnetic field which is added to the strong B0

field. This magnetic field rotates at the same frequency as the precession of the

magnetic moments, and thus the latter are continuously nudged away from their

axis of precession, as illustrated in figure 2.6. If the frequency of the RF pulse

is not the same as the precession frequency, the magnetic moments will not be

affected.

An RF pulse is characterized by two important properties: its flip angle and its

phase. The flip angle determines how far from the precession axis the magnetic

moment is flipped and thereby also how large the current induced in the receiver
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coil will be. This is controlled by the amplitude and length of the pulse. The phase

determines in which direction the magnetic moments are flipped, and affects the

phase of the current induced in the receiver coil.

Figure 2.6: Motion of a magnetic moment as a result of an RF pulse with a flip angle of

90◦ at the precession frequency of the spin. The black arrow indicates the

original direction of the magnetic moment, the gray arrow points in its final

direction and the thin line traces its trajectory.

2.4 Relaxation

The current that is induced in the receiver coil decays with time. This process is

called relaxation, and has two primary causes. One is that the thermal motion at

the molecular level brings the net magnetic moment back to its original orienta-

tion along the external magnetic field. This is called T1 relaxation. The other,

referred to as T2 relaxation, is that random interactions between the nuclei cause

the precession of their magnetic moments to lose coherence, thus reducing the net

magnetization. When the magnetic moments are entirely out of phase, no net mag-

netization remains. Since the precession frequency of the spins is proportional to

the strength of the magnetic field, inhomogeneities in the field also cause dephas-

ing of the magnetic moments. The combined effects of random nuclei interactions

and inhomogeneity-induced dephasing is known as T∗
2 relaxation. The rate of re-

laxation differs between different types of tissue and is typically expressed as a

relaxation time after which a certain percentage of the signal remains.

By using cleverly designed sequences of RF pulses, relaxation times and other

properties can be measured, and conclusions can be drawn about the chemical

composition of the sample. In fMRI, T∗
2 relaxation is measured to detect the

difference between oxygenated and deoxygenated blood. This is possible since

the iron in deoxygenated blood create small inhomogeneities in the magnetic field,

causing the spins nearby to dephase more quickly than those in the vicinity of

oxygenated blood.
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2.5 Magnetic resonance spectroscopy

As stated in the previous section, inhomogeneities in the magnetic field cause

different precession frequencies in different parts of a sample. Apart from this,

differences in the chemical environment of the hydrogen nuclei also contribute

to the different precession frequencies. For example, hydrogen bound in fat pre-

cesses at a frequency approximately 3.5 ppm lower than hydrogen in water. This

difference is known as chemical shift and is used in MR spectroscopy for e.g. dif-

ferentiating between different substances. This also forms the basis for the Dixon

technique for fat/water segmentation, where the different resonance frequencies

of hydrogen in fat and water are used to form two images from which the water

and fat content can be determined. Dixon imaging is explained in greater detail in

chapter 8.





3
Magnetic resonance imaging

In a homogeneous sample, for example a liquid solution, the chemical properties

are the same everywhere. That is obviously not true in the human body, which is

of interest in the context of this thesis. Otherwise, it would not be meaningful to

discuss activated regions or separation of different types of tissue. While a certain

property of a homogeneous sample can be described by just one value, an entire

volume where each voxel represents a measurement is needed to describe some-

thing inhomogeneous, such as a part of the body. Hence a means to distinguish

between signals from different locations in a sample is needed.

3.1 Spatial encoding

The process of acquiring spatially resolved magnetic resonance signals is referred

to as magnetic resonance imaging (MRI). To encode the spatial position of the MR

signals, the fact that the precession frequency of the spins is proportional to the

strength of the magnetic field is utilized. Imaging can be performed in one, two

or three dimensions. To illustrate the spatial encoding, a simple one-dimensional

example is shown here. In figure 3.1, the distribution of hydrogen nuclei in a

hypothetical one-dimensional sample is shown. The horizontal axis represents

the spatial location while the vertical axis represents the amount of hydrogen at

each position. To further simplify the example, all of the hydrogen is assumed to

be located at three distinct positions in the sample.

As explained in the previous chapter, if the sample is exposed to a magnetic field,

the magnetic moments of the nuclei will start precessing around the field with a

frequency proportional to the field strength. By applying an RF pulse, the net

magnetic moment can be tilted from the direction of the magnetic field, which

will cause the precession to induce a current in a receiver coil. Thus, a signal

whose amplitude depends on the amount of hydrogen, and whose frequency is

proportional to the magnetic field strength, can be measured. This, however, does

not provide us with any information about the spatial distribution of the hydrogen.
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Figure 3.1: Spatial distribution of hydrogen in a one-dimensional sample.

To obtain this extra information, another magnetic field is used. This field is

aligned with the main field of the MR scanner, but unlike the main field it is

not spatially constant. Instead, the strength of this field varies linearly with the

position along the horizontal axis, according to the figure below:
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Figure 3.2: Spatially varying magnetic field.

This magnetic field is referred to as a gradient field. By activating this field after

applying the RF pulse, spins at different spatial positions are made to precess at

different frequencies. Thus, the signal induced in the receiver coil will be the sum

of several different frequency components, each of which originates from spins at

a certain position in the sample. In this example, hydrogen nuclei far to the right

will precess faster and generate high frequency signals, while nuclei in the left

part of the sample will precess slower and generate signals of lower frequency.

By calculating the Fourier transform of the measured signal, its frequency distri-

bution and thus also the spatial distribution of the hydrogen is obtained. Figure

3.3 shows the signal induced in the receiver coil and the absolute value of the

Fourier transform of the signal. Clearly, the Fourier transform is identical to the

actual spatial distribution shown above.

This example illustrates the basic idea and shows that the acquired signal is ac-
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(a) Signals from hydrogen at different

locations.
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(b) Measured signal (sum of the individ-

ual signals).
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(c) Fourier transform of the measured

signal.

Figure 3.3: Signal induced in the receiver coil and its Fourier transform.

tually the Fourier transform of the image. However, the example is simplified

in order to convey the general idea behind MR imaging. The remainder of this

section provides a more detailed description of how the acquisition is performed.

As stated above, when no gradients are used, all spins precess at the same fre-

quency, determined by the strength of the B0 field. Disregarding any relaxation

effects, all spins will thus be in phase and this coherent precession will induce a

sinusoidal current in the receiver coil. Since the spins are in phase they will all

make an identical contribution to the induced signal. Hence the amplitude of the

signal indicates the number of spins in the sample. This number, measured before

the gradient is activated, is the DC component of the image (the zero frequency in

the Fourier transform and the mean value of the image).

After the gradient is activated, spins in different parts of the sample will precess

at slightly different frequencies. Thus the spins will lose coherence, becoming

increasingly out of phase as time progresses. Figure 3.4 shows the phase of spins

in different parts of the sample after different amounts of time.

Hence the current induced in the receiver coil will no longer be the sum of identi-

cal contributions from all spins, but instead the spins will contribute with signals

of different phase. This may not be obvious at a first glance, but since the magnetic
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Figure 3.4: Spins at different spatial positions gradually lose coherence while a gradient

is active. Because of the magnetic field gradient, spins to the right precess

faster than spins to the left.

field and therefore also the phase of the individual spins vary linearly with spatial

position, each sample of the induced signal corresponds to one frequency compo-

nent of the desired image. Which frequency component is obtained depends on

the phase difference between spins at different positions, which in turn depends

on what gradient fields the sample has been exposed to since it was excited by

the RF pulse. If no gradients have been applied, the DC component is obtained.

If, on the other hand, a constant gradient has been applied for a long time, high

frequency components are obtained. If a constant gradient has been applied for

some time, and its polarity is reversed, spins with low precession frequencies will

begin to precess faster and vice versa. Hence the spins will eventually rephase,

and the signal will again correspond to the DC component of the image.

While the above description explains how an image can be acquired one frequency

component at a time, it is convenient not having to think about the phase and

frequency of each spin. A common alternative is to use the so called k-space

formalism. The space where the image is acquired is then referred to as the k-

space, which is similar to the Fourier space in that each coordinate corresponds

to one spatial frequency. The advantage of this formalism is that a very simple

relationship is defined between the coordinates of this space and the gradients

used during acquisition: the position in k-space is determined by the integral of the

gradients. Thus a stronger gradient moves faster through k-space, gradients with

opposite signs move in opposite directions and a gradient which is active during

a longer time moves further. Defining k as the coordinate in a one-dimensional

k-space and G(t) as the gradient strength at time t,

k(T ) =

∫ T

0
G(t)dt, (3.1)

where T is the time since excitation. Any frequency component can now be ac-

quired by using the gradients to move to the corresponding position in k-space,

where the signal is sampled.
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In two-dimensional imaging, the procedure is similar but involves two gradient

fields, oriented perpendicular to each other. The k-space is also two-dimensional.

By using the gradients, it is possible to scan through k-space, after which the

Fourier transform can be used to obtain a two-dimensional image of the object in

the scanner. In three-dimensional imaging, yet another gradient is used to scan

a three-dimensional k-space before a Fourier transform is used to obtain a three-

dimensional image. Figure 3.5 shows a typical two-dimensional k-space and the

corresponding image. Since the actual k-space samples are complex numbers, the

magnitude is shown.

(a) k-space (b) Image space

Figure 3.5: Two-dimensional k-space and corresponding image.

3.2 Slice selection

A typical two-dimensional MR image, such as the one shown in figure 3.5b, de-

picts a slice through the imaged object. The thickness of this slice is usually just

a few millimeters. However, if the sample is excited by an RF pulse as described

in the previous chapter and two-dimensional spatial encoding is used, the image

will show a “slice” with a thickness of several decimeters. Since the entire part

of the body which is located inside the magnet bore is excited by the RF pulse,

signals from this entire volume will contribute to the acquired image. Also, since

two-dimensional spatial encoding does not provide any localization in the third

direction, the signals from different positions in this dimension will effectively be

averaged.

In order to receive signals only from a slice at a specific position and with a spe-

cific thickness, a slice selection gradient is used. As stated in section 2.3, spins are

only excited if they experience a RF pulse at their precession frequency. Hence a

slice can be selected by activating a magnetic field gradient perpendicular to the

desired slice while applying the RF pulse. By choosing the strength of this gra-

dient and the center frequency and bandwidth of the RF pulse, only spins located

at certain positions will be excited by the pulse. Figure 3.6 shows a slice selec-

tion gradient and the relationship between the frequency and bandwidth of the RF
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pulse and the position and thickness of the excited slice.

Figure 3.6: A slice selection gradient and the relationship between the RF pulse fre-

quency and bandwidth and the position and thickness of the excited slice.

In three-dimensional imaging a thick slab is selected in the same way, but three-

dimensional spatial encoding is used to separate signals from different positions

in the slab.

3.3 Pulse sequences

In order to excite a sample and acquire signals from different parts of k-space, a

sequence of RF pulses, slice selection gradients and spatial encoding gradients is

needed. These sequences are typically called pulse sequences and depicted as dia-

grams showing RF pulse activity, amplitude and duration of gradients, and readout

times (periods during which the signal is acquired, denoted Acq in the figures be-

low). Figure 3.7 shows a common type of pulse sequence called a gradient echo.

The name is due to the use of the gradient Gx to dephase and then rephase the sig-

nal. The dephase-rephase process can be seen in the figure as gradient waveforms

with reversing polarity. Since the k-space position is the integral of the gradient

waveforms, the initial dip in e.g. the x gradient corresponds to a translation to the

edge of k-space. Samples acquired immediately after this correspond to horizontal

high frequency image components.

The gradient in the y-direction (Gy) is here drawn as a set of different amplitudes.

This indicates that the sequence is repeated a number of times, each time with a

different value of Gy . The effect of this is that the k-space data is acquired one

line (one vertical frequency) at a time, and that the entire slice is excited once for

each line. The repeated excitation has the advantage that the readout period is kept

short. Thus it is possible to keep relaxation effects, noise and frequency drifts at

very low levels. This improves the quality of the acquired images. It is, however,

also possible to acquire the entire slice in one excitation. This technique is called

EPI (echo planar imaging; only one echo or excitation is used to acquire an entire

image plane). A typical EPI pulse sequence is shown in figure 3.8. Here Gx
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Figure 3.7: A gradient echo pulse sequence.

and Gy are first used to move to one corner of k-space. Then Gx alters between

different polarities, i.e. scans back and forth along the x direction of k-space,

while Gy is periodically activated for a short time in order to jump to the next

vertical frequency. Thus, every second k-space line is scanned left-to-right while

the other lines are scanned right-to-left. Because of the longer readout period and

increased gradient activity, EPI images often have lower signal to noise ratio than

other MR images.

Figure 3.8: An echo planar gradient echo pulse sequence.

When EPI is used, an image may be acquired in as little as a few tens of millisec-

onds, while ordinary imaging may take several seconds. Thus EPI is the obvious

choice if imaging speed is important, for example when capturing dynamic events.

An example of this is fMRI, where a sequence of images is used to detect chang-

ing oxygenation levels. Examples of images acquired using ordinary imaging and

using EPI are shown in figure 3.9. The difference in image quality is huge, and
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(a) Ordinary imaging. (b) Echo planar imaging.

Figure 3.9: Two images acquired using MRI. One is optimized for high image quality

and the other for high temporal resolution.

definitely motivates the use of ordinary imaging when speed is not essential.

It is also possible to acquire images an entire volume at a time (echo volumar

imaging or EVI), but because of the very long readout period this technique is

only useful for volumes of very low resolution (e.g. 8 × 8 × 8 voxels).

3.4 Image contrast

The above discussion has primarily focused on measuring the amount of hydro-

gen present in different parts of a sample. Images showing hydrogen content are

often referred to as being proton density (PD) weighted. As mentioned in the

previous chapter, other properties such as relaxation times can also be measured

using MR. By careful design of pulse sequences, images where each voxel repre-

sent for example the local relaxation time can be obtained. Such images are called

T1 weighted, T2 weighted or T∗
2 weighted depending on which type of relaxation

affects the image to the greatest extent. The weighting of an MR image is often

called the image contrast.

For several different reasons, the actual pixel values of a typical MR image have

no absolute meaning. A proton density weighted image does not provide informa-

tion about the absolute concentration of protons, and a T1 weighted image does

not provide the relaxation time in milliseconds. Rather, the pixel values are rela-

tive measures, from which conclusions such as “this region has a higher density

than that region” or “the relaxation time is shorter in this region” can be drawn.

However, special techniques can be used to measure the absolute values of these

properties. This is called quantitative imaging and is very useful in e.g. fat ac-

cumulation studies and for detection of some types of plaque. More information

about quantitative imaging can be found in Warntjes et al. (2007).

Images weighted to show proton density and relaxation times are, by the very

nature of density and time, real valued. With the exception of some types of
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relaxation weighted images, they are also positive. This is advantageous since

small errors in the acquisition process tend to disturb the complex phase of the

acquired images. When the signal is expected to be real and positive, the phase

can easily be disregarded by using the magnitude of the images. Some imaging

modes, however, utilize the possibility to encode information in the image phase.

One example of this is velocity encoded imaging, which is used to measure e.g.

local blood flow. Very briefly, this is achieved by using alternating magnetic field

gradients to induce phase differences between spins moving at different velocities.

Real images encompassing both positive and negative numbers are also useful for

some measurements, for example in Dixon imaging for fat/water separation. In

typical Dixon imaging, two images showing water minus fat and water plus fat,

respectively, are acquired. Since there is more fat than water in some pixels, the

first image contains both positive and negative numbers. Therefore the phase can

not be discarded but instead needs to be corrected. This subject will be explored

in more detail in chapter 8.

3.5 Further reading

Like NMR, magnetic resonance imaging is a huge topic, and there is no way to

provide a complete description within the scope of this thesis. Apart from those

mentioned here, there are countless parameters that control different aspects of

the data acquisition. Some of them are trade-offs between imaging speed and

image quality, some control the amount of radio frequent radiation and rapidly

changing magnetic fields that the patient is exposed to, and others control which

chemical properties are actually imaged. The interested reader is encouraged to

find more information in the large literature on the subject, for example in Liang

and Lauterbur (2000), Haacke et al. (1999) or Schmitt et al. (1998).
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Functional magnetic resonance

imaging

In functional magnetic resonance imaging (fMRI), the difference between the

magnetic properties of oxygenated and deoxygenated blood is used to distinguish

between active and inactive brain regions. This chapter describes how neural ac-

tivity is linked to local changes in blood oxygenation and explains how images

showing the oxygenation level can be obtained using MRI. It also describes how

the choice of analysis method affects the precision with which activated regions

are detected. Evaluation of analysis methods is discussed, and commonly needed

pre-processing steps are described.

4.1 Neural activity and blood oxygenation

When neural activity increases in a part of the brain, the activated neurons start

consuming an increased amount of oxygen. Since the oxygen supply in the brain

is regulated, more oxygen will be transported to the activated region through the

blood. However, the regulation overcompensates for the increased demand, and

thus more oxygen than needed will be supplied. After a short time, the oxygena-

tion level in the capillaries close to activated neurons will therefore be higher than

normal. As mentioned in section 2.4, this affects the T∗
2 relaxation by decreasing

the local magnetic field inhomogeneity. By acquiring T∗
2 weighted images, i.e.

images where the voxel values reflect the local T∗
2 relaxation rates, it is possible to

distinguish between active and inactive regions. However, the difference between

an image acquired during rest and one acquired during activity is very small. Fig-

ure 4.1 shows a resting-state image and an image acquired during activity. It is

clear that the difference between these images is mostly due to noise, and that they

are not sufficient to determine which regions are activated.
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(a) Rest (b) Activity

Figure 4.1: T∗

2
weighted images acquired during rest and activity.

4.2 Paradigms

To determine which regions are activated, something more than just two images

from different states is obviously needed. The solution is to collect a sequence

of images, usually between 100 and 200 over a period of 5 to 10 minutes, while

the patient or subject alters between resting and performing some activity. The

pattern of rest and activity is referred to as the paradigm of the experiment. In

the simplest case a block paradigm, with equal periods of rest and activity, is

used. For some tasks, however, it may be impossible to design a block paradigm.

This is the case when the active condition can not be easily controlled, or does

not span a sufficiently long period of time, such as e.g. answering a question or

reacting to an instantaneous stimulus. In those cases, event-related paradigms are

used instead. In an event-related paradigm, the active condition may appear as

instantaneous spikes or blocks of varying length. Examples of block and event-

related paradigms are shown in figure 4.2.
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(a) Block paradigm.
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(b) Event-related paradigm.

Figure 4.2: Examples of block and event-related paradigms.

Disregarding the noise, the intensity time-series of a voxel in an activated region

can be expected to vary according to the paradigm. This response to the activation

paradigm is called the blood oxygen level dependent (BOLD) signal. The inten-
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sity of an inactive voxel, on the other hand, will be constant. By finding voxels

whose time-series resemble the paradigm, activated regions can be detected. This

can be done in several different ways, some of which are presented in this and the

following chapters.

4.3 BOLD models

The regulation of the oxygen supply is not immediate, but delayed by a short time.

Thus, the BOLD signal from an activated region is not identical to the paradigm.

Instead it is a delayed, smoother signal. During the first few hundred millisec-

onds, there is even a small decrease in blood oxygenation because of the neurons’

increased consumption of oxygen. With some knowledge of the regulation pro-

cess, it is possible to model the expected BOLD response. BOLD models can for

example be calculated using convolution of the paradigm with a suitable response

function (Boynton et al., 1996; Rajapakse et al., 1998; Friston et al., 1998). An-

other option is to use Buxton’s balloon model (Buxton et al., 1998), which models

blood flow, volume and oxygenation in the vicinity of activated neurons. After

this, active regions can be recognized as regions where the time-series are similar

to the BOLD model. Figure 4.3 shows a paradigm and a possible BOLD model.
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Figure 4.3: A block paradigm and a plausible model of the BOLD response.

Using a fixed model of the oxygenation regulation is often insufficient. This is

due to the large variations between different subjects, different scanning sessions

and even between different regions of the brain in the same session. To be able

to handle these variations, so called subspace models are often used. A subspace

model is a model consisting of two or more basis signals. These signals are as-

sumed to span the linear subspace of biologically plausible BOLD responses, i.e.

it is assumed that any reasonable BOLD response can be expressed as a linear

combination of the basis signals.

The simplest subspace models only take into account the variation in delay be-

tween the paradigm and the BOLD response. Then, one of the basis functions is

defined as the expected response, calculated using for instance Buxton’s model,

and the other basis function is the temporal derivative of the first one. According
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to Taylor’s theorem, linear combinations of these two basis signals can approxi-

mate any small variation of the delay of the BOLD model with high precision. A

more advanced type of subspace model can be generated using principal compo-

nent analysis (PCA) (Jolliffe, 1986). A large number of different plausible BOLD

responses are generated using for example the balloon model. The mean response

is used as one of the basis signals, while the other basis signal is chosen to cap-

ture as much of the variation between the generated signals as possible. While

still only utilizing two basis functions, this subspace model can adapt to differ-

ent kinds of variations in the BOLD response (Friman et al., 2003). Figure 4.4

shows a part of a paradigm, two BOLD model basis signals generated using PCA

and two possible linear combinations of them. These linear combinations of the

basis signals represent BOLD responses with slightly different delay and other

properties.
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(c) Linear combinations of the basis

signals.

Figure 4.4: A part of a paradigm, the basis signals of a subspace model of the BOLD

response and two linear combinations of the basis signals.
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4.4 Detecting BOLD-like signals

Several similarity measures can be used to compare the acquired signals to the

BOLD model. One that is commonly used is correlation, defined as

Corr[x, y] =
Cov[x, y]

√

V ar[x]V ar[y]
, (4.1)

where x is a time-series and y is the model of the BOLD response. While this

measure is only applicable to BOLD models with only one basis function, it can

easily be extended to the more general case of subspace models. Then, the cor-

relation between a time-series and the BOLD model is defined as the maximum

correlation between the time-series and any linear combination of the basis sig-

nals. This generalization will be discussed in more detail in chapters 5 and 7.

Unfortunately, the acquired images are very noisy. Hence the activation map ob-

tained by simply comparing the time-series of each voxel to the BOLD model

does not reflect the actual activation very well. The simplest solution to this prob-

lem, applied in for example SPM (a widespread software package for fMRI anal-

ysis) is to average the time-series of nearby voxels, i.e. to low-pass filter the T∗
2

weighted images before they are compared to the BOLD model (Worsley and Fris-

ton, 1995). While this solution reduces the noise, it also has a major drawback.

Because of the low-pass filtering, the map of the activated regions is blurred,

which makes it difficult to know the exact size or shape of an activated region.

Also, and perhaps worse, small activated regions may disappear completely due to

the blurring. The analysis methods described in the next chapters suggest two ap-

proaches to adaptive filtering, i.e. filtering which only performs averaging where

it does not cause unnecessary blurring of the activation map.

4.5 Sensitivity and specificity

In analysis of fMRI data, the final result is usually not a measure of similarity to

the BOLD model in each voxel. Rather, a classification of the voxel as activated

or not activated is desired. This classification is obtained by thresholding the

similarity values. Naturally, this raises the question of how large the similarity

should be for a voxel to be declared as activated. A too low threshold will cause a

number of voxels to be classified as activated when in fact they are not, while a too

high threshold will cause the opposite problem. This can be described in terms of

sensitivity (the fraction of truly activated voxels declared as active by the analysis)

and specificity (the fraction of non-activated voxels that are declared as inactive).

Ideally, the threshold should be chosen such that it maximizes both sensitivity and

specificity. This is of course only possible if the similarity measures of all active

voxels are higher than those of all inactive voxels. Because of the high noise levels

in the data, and the fact that the time-series consist of a relatively low number of
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samples, this places impossible requirements on the design of the analysis method

and the model of the BOLD response. If the model accepts too much variation,

the noise in the time-series from some inactive voxels will almost certainly be

considered as possible BOLD responses. On the other hand, if the BOLD model

is too restrictive, it will be unable to adapt to the variations between different

plausible BOLD responses. As is explained in more detail in the next chapters,

other properties of an analysis method also affect the sensitivity and specificity.

Usually, the threshold is chosen such that a certain probability of mistakenly

declaring inactive voxels as active is obtained. This probability is referred to

as the significance or p-value, and may either be defined for single voxels (the

probability that a specific inactive voxel is declared active), for the entire data set

(the probability that any inactive voxel in the data set is declared as active), or for

smaller groups of voxels. To determine what threshold corresponds to a certain p-

value, the distribution of similarity measures in a data set with no activated voxels

is calculated, using either parametric or non-parametric statistics (Worsley, 1994;

Friman and Westin, 2005; Locascio et al., 1997).

4.6 Exploratory analysis

Up to this point, this chapter has focused on so called confirmatory analysis,

where a known signal (the BOLD model) is sought in the acquired data. There

are, however, also techniques for exploratory analysis, which aim at detecting un-

known but interesting signals in a data set (McKeown et al., 1998). It is of course

not obvious what constitutes an interesting signal, but properties such as slow

temporal variation and presence in several voxels may be used to define the set of

desired signals. A number of methods for finding interesting signals are based on

maximizing statistical independence, signal variance or auto-correlation. These

are described in some detail and compared to each other in an fMRI context in

Friman et al. (2002b).

In most fMRI experiments, the paradigm is known, and thus confirmatory analysis

is the natural choice to detect active regions. However, there are cases where the

BOLD signal expected in active voxels is unknown. One example is examinations

of complex tasks such as driving, where no objective measure of action or rest is

available (Calhoun et al., 2002). Exploratory analysis has also been used to inves-

tigate connections between different parts of the brain. By acquiring resting-state

data, i.e. data from a scanning session without a paradigm or stimulus, and using

exploratory techniques to search for regions with similar signals, conclusions can

be drawn about which parts of the brain are connected (Liangsuo et al., 2007).
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4.7 Evaluation of analysis methods

Since no method for analysis of fMRI data classifies every voxel correctly, even if

provided with an optimal threshold, a means to compare the activation detection

performance of different methods is needed. One solution is to use receiver oper-

ating characteristics (ROC) curves to evaluate how the sensitivity and specificity

of an analysis method varies with the value of the threshold. ROC curves are de-

scribed in more detail in section 4.7.1. Before an evaluation can be performed,

however, a data set needs to be analyzed by the method to be evaluated. This data

set can be of any of a few different types. These are real data, pseudo-real data

and synthetic data. Each of these types has its own advantages and disadvantages

for evaluating an analysis method.

Real data, of course, is data from a real fMRI examination. Since this is exactly

the type of data for which the analysis methods are used in the real world, it may

seem like the obvious choice. Unfortunately this type of data has one huge dis-

advantage: the true pattern of activation is unknown. This makes it impossible to

simply compare the classifications from the analysis to the correct answer in or-

der to obtain a measurement of the performance of the analysis method. However,

as is briefly described in the next section, some aspects of the performance of a

detection method can still be evaluated using real data.

Another disadvantage is that the activated regions in real data can not be chosen

arbitrarily. Therefore it is often not possible to design a data set with specific prop-

erties in order to investigate how it is handled by a certain analysis method. For

instance, it is difficult to choose the strength of the BOLD response and the shape

of the activated regions when real data is used. Finally, there are large variations

between real data sets from different experiments. Hence, the detection perfor-

mance obtained when one data set is analyzed is not always a good prediction of

the performance obtained when analyzing data from another experiment.

Pseudo-real data can be created from real data by mixing resting-state data, i.e.

data from a scanning session where no task has been performed, with active time-

series from another data set. The active time-series are taken from voxels with

very high correlation to the BOLD model, i.e. voxels which are certainly activated

(Nandy and Cordes, 2004). If the time-series in a large region of the resting-state

data is replaced by time-series from an activated region, most of the properties of

the pseudo-real data will be similar to those of real data. The advantage of using

pseudo-real data is that the pattern of activation is designed and thus known. The

most important disadvantage is that the edges between active and inactive regions

are not necessarily similar to those encountered in real data. Since a large portion

of the misclassified voxels typically reside close to the edges, this may in some

cases be a big problem.

Synthetic data can be divided into two sub-categories. The first is created by

inserting time-series similar to the BOLD model into resting-state data, while the
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second is created by inserting BOLD-like time-series into synthetic noise. The

disadvantage of this data type is, of course, that it is not necessarily similar to real

data. The advantage is that the patterns of activation and the signal-to-noise ratio

of the BOLD responses can be chosen entirely freely. This makes synthetic data

well suited for testing specific properties of an analysis method, such as how well

it detects activated regions of different shapes.

4.7.1 Receiver operating characteristics curves

When a pseudo-real or synthetic data set has been created and analyzed, both the

results of the analysis and the correct answer in each voxel are known. Then,

the detection performance of the analysis method can be presented as a receiver

operating characteristics (ROC) curve. This curve shows how the sensitivity and

specificity of the detection method vary with the value of the threshold. An ex-

ample of a ROC curve is shown in figure 4.5. Note that the curve by convention

is plotted with one minus the specificity on the x axis and the sensitivity on the y
axis. Also note that the x axis is logarithmic, to show the performance for high

specificities with greater accuracy.

Unfortunately, there is a problem with the ROC approach. If the data set does

not have sharp edges between active and inactive voxels, the signal to noise ratio

drops gradually from its maximum value to zero. This corresponds to voxels con-

taining both active and inactive neurons. While some of these voxels are almost

completely inside the active region and therefore have a high signal to noise ratio,

others mostly contain inactive brain tissue. It is not quite clear whether the latter

voxels should be considered as active in the ROC analysis. Because of this effect,

it is not always straight-forward to evaluate a detection method using ROC curves.

This problem can be diminished by calculating weighted ROC curves, where vox-

els which mostly contain inactive tissue are not allowed to affect the performance

estimate as much as entirely activated voxels.

When real data is used, and the true classification of the voxels is therefore not

known, the sensitivity and specificity can not be calculated. Thus, an ordinary

ROC curve can not be used to evaluate the analysis method. An alternative is to

use a so called modified ROC curve (Nandy and Cordes, 2003). Instead of sen-

sitivity and specificity, the modified ROC curve is based on the number of voxels

detected as active in data from a real experiment and the number of voxels de-

tected as active in a resting-state data set. Since the number of voxels classified as

active is used to determine the performance of an analysis method, this approach

may overestimate the performance of methods which tend to leak strong BOLD

signals into surrounding inactive areas.

Comparing two ROC curves is not always trivial, since one curve may be better

in one interval while the other curve is better in another interval. To obtain a

scalar measure of the detection performance, the integral of the curves can be
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Figure 4.5: An example of a ROC curve, showing the sensitivity and specificity of an

analysis method.

calculated. It is important, however, to consider which parts of the ROC curve

should be included in such a calculation. For example, the sensitivity obtained

where the specificity is very low is typically not of interest in an actual analysis.

Finally, it is important to notice that the choice of data (both the type of data, the

pattern of activated regions and the signal to noise ratio) influences the detection

performance. This is particularly important when comparing two analysis meth-

ods which have been optimized for different types of data sets. When choosing an

analysis method, care should be taken to evaluate the candidate methods on data

with properties similar to those of the data that will be analyzed. Depending on the

actual experiment, certain properties of the analysis method may be more or less

important. For example, if the experiment aims at determining whether functions

related to language processing reside in the left or right hemisphere, the exact

edge of the activated region may not be very important. On the other hand, an

experiment mapping the relation between the visual field and the primary visual

cortex needs very exact localization of the activated regions.

4.8 Pre-processing of data

4.8.1 Registration

Before data can be analyzed using either confirmatory or exploratory methods,

some pre-processing is usually necessary. In the 5 - 10 minutes during which im-

ages are typically acquired, the subject or patient often moves a few millimeters in

the scanner. Because of this motion, a certain voxel does not contain the same tis-

sue during an entire experiment. Thus the time-series of intensity values recorded

in a voxel does not only reflect the oxygenation variation in a specific part of the

brain, but the combined result of motion-induced signals and oxygenation varia-

tions. This problem can be solved by the use of image registration, which aligns

the images acquired at different times to each other. The registration algorithms
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commonly used to accomplish this range from simple methods based on minimiz-

ing the square difference of the registered images (Hajnal et al., 1995) to more

elaborate schemes based on local image phase (Knutsson and Andersson, 2005)

or maximization of mutual information (Pluim et al., 2003). When registering

the images, care must be taken in order to avoid detecting and introducing false

motion in the image sequence. The variations in image intensity which are due

to blood oxygenation may otherwise be picked up by the registration algorithm

and “compensated” by moving the images, thus introducing motion instead of

suppressing it. This problem has been shown to be particularly large when us-

ing simple registration methods such as least square minimization (Orchard et al.,

2003) and is of course larger if very strong BOLD signals are present in the data.

It can, however, be alleviated by the use of more advanced registration techniques,

or by iterative registration and activity detection.

4.8.2 Detrending

Because of imperfections in the scanner hardware and physiological processes

such as blood pulsation, respiratory movement etc, the noise present in both active

and inactive voxels is not white but colored, or auto-correlated. The result of

these effects sometimes correlates with the paradigm and BOLD model, thereby

degrading the performance of the signal detection (Friman et al., 2004). While

these noise components are not exactly known, they can be modeled and partly

removed from the time-series prior to activity detection. This process is called

detrending. There are two main classes of detrending approaches. One option is to

use known basis functions, for example polynomials or discrete cosine transform

bases, to estimate and remove trends in the data. The other alternative is to use

exploratory techniques similar to those mentioned in section 4.6 to find trends

typical for a particular data set and remove these from the time-series prior to

signal detection.

Figure 4.6: An example showing typical visualization of fMRI data. The image shows

activation in the primary motor cortex, induced by finger tapping.
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4.9 Visualization

The result of the analysis process is either a measure of correlation or some other

similarity measure in each voxel, or a classification of each voxel as active or

inactive. This, however, is very difficult to interpret unless anatomical information

is also provided. Hence, activation is often visualized by overlaying an activation

map on a proton density or T1 weighted image which shows the anatomy of the

brain. A typical example is shown in figure 4.6.





5
Analysis based on canonical

correlation analysis

As described in the previous chapter, correlation is often used for measuring

the similarity between fMRI time-series and the model of the BOLD response.

Canonical correlation analysis (CCA) provides a means to measure this correla-

tion while at the same time performing adaptive low-pass filtering of the data in

order to avoid unnecessary blurring of the activation map. In this chapter, a pre-

viously suggested method for CCA-based analysis of fMRI data (Friman et al.,

2001, 2003) is described. A certain disadvantage of the method is identified,

and a modified algorithm is presented. Although the description is focused on

two-dimensional analysis, an extension to three-dimensional data processing is

straight-forward.

5.1 Canonical correlation analysis

Canonical correlation analysis was introduced by Hotelling (1936) as a method

for finding the maximum correlation between linear combinations of two sets of

variables. That is, given two multivariate variables x = (x1, x2, ..., xm)T and

y = (y1, y2, ..., yn)T , CCA finds two projection vectors wx and wy such that

the correlation between the projections x = wT
x x and y = wT

y y is maximized.

This maximum correlation is called the canonical correlation. The projection

directions wx and wy can also be thought of as weights for linear combinations

of the data in x and y. A more detailed description of canonical correlation is

available in chapter 7.

5.2 CCA in fMRI data analysis

When CCA is used for fMRI data analysis, x represents the output from several

different spatial filters and y represents the basis signals for the subspace of BOLD

signals considered to match the paradigm. Because of linearity, filtering the data

spatially and then combining the filter outputs (as done by CCA) is equivalent to
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first combining the filters and then using the resulting filter on the data. That is,

(

N
∑

k=1

akfk
)

∗ It =
N

∑

k=1

(akfk ∗ It), (5.1)

where fk is the k:th filter kernel and It is the (two- or three-dimensional) T∗
2

weighted image of the brain at time t. CCA is used once for each pixel to be

analyzed, each time with x being the time-series obtained as filter responses from

a neighborhood around the pixel under consideration. Thus, in each neighborhood

the spatial filters are combined such that the correlation between the BOLD model

and the output from the resulting filter is maximized. The correlation, denoted ρ,

is assigned to the pixel in the center of the region.

5.2.1 Filter kernels

Several different sets of spatial filters have been proposed for use in the CCA

framework for activation detection. The simplest filter set consists of nine differ-

ent filters, each of which uses the information from one time-series in the 3 by 3
region surrounding the pixel examined for activation (Friman et al., 2001). These

filter kernels are shown in figure 5.1.

Figure 5.1: Simple filter kernels for use in the CCA framework.

When this filter set is used, the final filter can either use one pixel time-series

by itself, or average several neighboring time-series, since CCA can choose any

linear combination of the individual filters. Since averaging is only used where

it makes detection of activated pixels easier, single activated pixels are no longer

lost due to unnecessary blurring. This makes CCA, along with this filter set, very

good at finding activated pixels. However, the filter set is not quite that good at

correctly classifying inactive pixels. To understand this, imagine a single activated

pixel in an otherwise inactive region. When examining this pixel for activation, the

correlation with the BOLD model will be maximized by choosing wx so that only

the filter corresponding to the center pixel is used. However, when examining

any of the eight neighbors of the pixel, exactly the same filter response can be

obtained by choosing wx so that one of the other filters is the only one included.
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Thus, a single active pixel will be detected as a group of 3 by 3 activated pixels. In

general, this filter set causes a growing of the detected active regions. To alleviate

this problem, the symmetric filter set shown in figure 5.2 was proposed in Friman

et al. (2002a). When this filter set is used instead, pixels outside an activated

region are not as easily declared as active.

Figure 5.2: Symmetric filter kernels for use in the CCA framework.

To further improve the detection performance, a set of three anisotropic filters

(fok
, k = 1...3) and one smaller, isotropic filter (fi1) was suggested in Friman

et al. (2003). The oriented filters were defined as

fok
(x) = h(|x|) · (1 − giso(|x|))

(

(n̂T
k x̂)2 −

1

4

)

(5.2)

and the isotropic filter was defined as

fi1(x) = h(|x|)giso(|x|). (5.3)

h(|x|) is an isotropic low-pass filter and giso(|x|) is the weighting function used

for creating the small isotropic filter fi1 from h(|x|). h and giso can for exam-

ple be gaussian functions, h being wider than giso. n̂k is the orientation of the

k:th anisotropic filter. The filter directions are equally spaced, with an angular

distance of 60 degrees. These filters have the appealing property that they can

be interpolated (linearly combined) to form an oriented filter in any direction. If

they are combined with equal weights, a large isotropic filter is obtained. The

subtraction of 1/4 in the directional weighting makes the filters narrower while

still maintaining the interpolation property. The filter kernels are shown in figure

5.3. To illustrate the filters more clearly, the filters in the figure are larger than

those actually used in the analysis.

This filter set has primarily two advantages compared to the symmetric set shown

above. One is scalability, i.e. the possibility to easily create equivalent filters of

different sizes (for example, it is not quite clear how to design filters equivalent

to those shown in figure 5.2 in a 5 by 5 grid). The other advantage is that the set

consists of a relatively low number of filters. This makes it more difficult for CCA

to find a filter combination giving a high correlation in an inactive region. Thus,

the specificity of the analysis is improved. The anisotropic filters are known as

steerable filters, and were originally introduced in Knutsson et al. (1983).
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Figure 5.3: Steerable filters for use in the CCA framework.

5.2.2 Restricted CCA

There is still one problem, however, which is not related to the filter sets but rather

to an intrinsic property of canonical correlation analysis. CCA can be thought of

as an optimization method, which in the fMRI context is used to find an optimal

spatial filter and an optimal BOLD model. The drawback is that CCA can only

perform unconstrained optimizations, i.e. that there is no way to specify possible

ranges for the weights in wx and wy. This makes it possible for CCA to find

large correlations where there is no activation by using implausible combinations

of the filters. For example, if a negative weight is used for one basis filter while

a positive weight is used for another basis filter, the resulting combination is not

a low-pass (averaging) filter. One example of such an undesired filter is shown

in figure 5.4. The same problem exists for the combinations of BOLD model

basis functions. If, for example, two basis functions have been found to span the

subspace of BOLD models, not all combinations of these two functions represent

valid BOLD responses. Rather, the valid models may be between the two basis

functions, such that b = αb1 + (1 − α)b2 is a plausible model of the BOLD

response if and only if 0 ≤ α ≤ 1. Figure 5.5(a) shows two such BOLD model

basis functions and 5.5(b) shows the model obtained when α = −1. A time-

series which is similar to the signal shown in figure (b) should not necessarily be

considered to be activated. For examples of valid BOLD models constructed as

linear combinations of the same basis signals, refer to figure 4.4(c) in chapter 4.

Both of these problems can be solved by using restricted CCA (RCCA) intro-

duced in Das and Sen (1994), which as the name implies is a method to impose

restrictions, or constraints, on the weights obtained by using CCA. The only type

of restriction available is a positivity constraint, i.e. the constraint that some or all

coordinates in wx and wy should be positive. It is, however, possible to obtain

some other constraints by performing a linear change of basis before the actual
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Figure 5.4: An unwanted spatial filter obtained by using a combination of positive and

negative weights.
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Figure 5.5: Two BOLD model basis functions and a possible but implausible linear com-

bination.

RCCA calculation. An example of this is shown in the next section. In short,

RCCA is based on repeatedly using ordinary CCA with one or more of the filters

and/or BOLD model basis functions excluded, until a solution with only positive

weights is found.

5.2.3 Analysis

By using the filter set described above together with restricted CCA and a model of

the BOLD response, we now have everything that is needed to adaptively analyze

fMRI data. The analysis is divided into two steps. In the first step, RCCA is

used with the responses to the three anisotropic filters as one input (x) and the

BOLD model basis functions as the other input (y). In this step, all weights are

constrained to positive values. The resulting oriented filter fo can then be obtained

as

fo =
∑

k

wxk
fok

. (5.4)

In the second step, the response to fo is combined with the response to the small

isotropic filter fi1 . This time, however, simply constraining the weights to non-

negative values is not enough. If the weight of the small isotropic filter is not large

enough in relation to the weight of the oriented filter, the center pixel will have too
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little effect on the filter output. This increases the risk of misclassifying inactive

pixels located close to an activated region. To alleviate this problem, a change of

variables is performed before the restricted CCA is calculated:

f1 = fi1 and f2 = γfi1 + fo. (5.5)

After this change of variables, the two filters to be combined by RCCA (again with

positivity constraints on all variables) are the isotropic filter by itself (f1), and the

weighted sum of the isotropic and the oriented filters (f2). Thus, the positivity

constraints make certain that the isotropic filter is included. The parameter γ is

used to control the minimum weight of the isotropic filter.

5.3 Rotational invariance

A desired property of any activation detection method is invariance to the shape

of the activated region. That is, an activated region should be detected with the

same probability regardless of its size, orientation and other properties. Some

of these invariances are almost impossible to obtain. It is, for instance, always

easier to detect a large activated region than it is to detect a single activated pixel.

Invariance to orientation, however, is obtainable, but when restricted CCA is used

in the first step of the analysis as described above, it is not achieved.

The reason for the lack of rotational invariance is that the filter shapes which can

be constructed from the basis filters, using positive weights, are different depend-

ing on the desired filter orientation. If, for example, the desired filter is aligned

with one of the basis filters, the smallest possible filter is, of course, that very basis

filter. On the other hand, if the desired filter orientation is centered between two

basis filter orientations, the smallest possible filter is the sum of these two basis

filters. This filter is more isotropic than the individual basis filters, and hence it

is not as well adapted to thin, anisotropic activated regions. Figure 5.6 shows the

smallest possible filters in two perpendicular orientations. The filter in figure (a) is

aligned with a basis filter, while figure (b) shows a filter which is not aligned with

any of the basis filters. The aligned filter is clearly narrower than the non-aligned

filter.

5.3.1 Isotropic filtering

The simplest method for solving the rotational invariance issue is, of course, to

make all filters rotationally symmetric (isotropic). That reduces the complexity

of the data analysis at the expense of adaptivity. The only remaining degree of

freedom is scale, i.e. the filters always have the same shape, but their size may

vary. Isotropic filtering is implemented by skipping the first step of the analysis,

where the anisotropic filter is generated as a combination of the oriented basis

filters. Instead, two isotropic filters of different size are combined in the second
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Figure 5.6: The smallest possible anisotropic filters in two different orientations.

step. The drawback is of course that these filters can not adapt to anisotropic

activated regions.

5.3.2 Anisotropic filtering

As described above, the previous method for anisotropic adaptive filtering using

CCA lacks rotational invariance. By modifying the first step of that method, where

the oriented filters are combined, a new method which resolves this issue has been

developed.

Filter kernels

In the new method, a dynamically generated anisotropic filter fd is used instead

of a linear combination of the three oriented basis filters. However, the three

basis filters are still used to determine the orientation of fd. In addition to the

dynamically generated filter, a larger isotropic filter

fi2(x) = (1 − giso(|x|))h(|x|) (5.6)

is also used. The large isotropic filter fi2 is shown in figure 5.7, and an example

of the dynamically generated anisotropic filter fd is shown in figure 5.8. If fi2 is

combined with the small isotropic filter fi1 , the isotropic low-pass filter h(|x|) is

obtained. Instead combining fi1 with fd yields an anisotropic low-pass filter. fi2
is necessary to handle large isotropic regions of activation, since fd is always an

anisotropic filter. In the previous method, this case was handled implicitly since

fo is isotropic when all of the oriented basis filters are weighted equally.

Analysis

The analysis can now be divided into three steps, which are carried out for each

pixel. The first two of these steps replace the first step in the previous method.
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Figure 5.7: Large isotropic filter used in the last step of the analysis.

Figure 5.8: Anisotropic filter used in the last step of the analysis.

First, partly restricted CCA is used to find ŵx, the weights for each of the ori-

ented filters. This step is partly restricted in the sense that the filter weights are

unconstrained, but the weights for the BOLD basis functions are constrained to

positive values. This is important in order to avoid implausible BOLD responses

(see figure 5.5). Since the weights for the spatial filters are unconstrained in this

step, there is no guarantee that the resulting filter

f =
∑

k

wxk
fok

(5.7)

is anywhere near a low-pass filter, which is what we want. It is, however, possible

to create an anisotropic low-pass filter in the dominant direction of f , if that direc-

tion is known. This is done in the second step of the analysis. In order to find the

dominant direction, a tensor T is calculated as

T =
∑

k

wxk
n̂kn̂

T
k . (5.8)

The first eigenvector ê1 of T describes the dominant orientation of the filter f .

This makes it possible to generate the anisotropic low-pass filter fd in the direction

of ê1 according to

fd(x) = h(|x|)(1 − giso(|x|))|ê
T
1 x̂|α, (5.9)

where h(|x|) and giso(|x|) are defined as in section 5.2.1. Since fd is only used

to filter the data directly, and is not combined with other oriented filters, it does



5.3 Rotational invariance 45

not need the interpolation properties of the oriented basis filters fok
. Thus, the

subtraction of 1/4 is excluded from the generation of this filter, and instead a

parameter α is introduced to control the width of the filter. This has the advantage

that no negative coefficients appear in the filter. A higher value of α gives a

narrower filter, and experiments have shown that α = 6 is a reasonable value.

Anisotropic filters obtained with a few different values of α are shown in figure

5.9. Note that this kind of parameter could not be used in the old approach, where

the interpolation property was needed.

(a) α = 2 (b) α = 4

(c) α = 6 (d) α = 8

Figure 5.9: Examples of dynamically generated oriented filters with different values of

α.

The resulting filter fd is applied to the data in the current neighborhood, as are fi1
and fi2 . In the final step, these filter responses are combined using RCCA with

positivity constraints on all variables. As in the old method, however, it is vital

that the weight of the small isotropic filter is large enough, since the pixel in the

center of the final filter may otherwise not be included in the averaging. Again,

this is solved by performing a change of variables.

Filter design considerations

To obtain the rotational invariance, sampling effects have to be taken into account

when the oriented basis filters fok
are designed. Otherwise, the filters will not be

good approximations of their respective continuous functions and their interpola-

tion properties will be lost. This affects the relative weights of the filters in the first

step of the analysis, which in turn affects the orientation estimates. One method

for alleviating this problem is to create large filter kernels and down-sampling

those, instead of calculating the final filter coefficients directly from equation 5.2.
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5.3.3 Experiments

To evaluate the rotational invariance, both the old and the new method have been

tested on a data set with embedded simulated activation. The pattern of activation

in the data set has not been selected to mimic real, or even realistic, neural activity.

Rather, the purpose is to demonstrate the performance of the different methods

when applied to highly anisotropic activation in different orientations. Also, to

demonstrate the rotational invariance of the new method, the artificial data set

has been designed to contain equal amounts of activation in all orientations. The

signal to noise ratio in the artificial data is approximately 5 % in most parts of the

activated areas.

Figure 5.10 shows the data set and the activation detected by the new method.

Since there is very little visible difference between the correlation maps from the

different methods, the results from the previous method are not shown. In figure

5.11, the difference between the correlation maps from the new method and the

previous CCA-based method is shown. This figure is based on an average of the

correlation maps from 200 data sets. It is clear that in certain orientations, there

is a difference between the detection sensitivities of the two methods, while they

are equally sensitive in other orientations. In figure 5.12, the angular variations

are illustrated by the difference between the correlation maps and the same maps

rotated 90 degrees. This figure shows that the differences in figure 5.11 are actu-

ally caused by variations in the result from the previous method, while the new

method does not show any such variations.

(a) Activated regions. (b) Correlation map.

Figure 5.10: Locations of activated regions in anisotropic test data and correlation map

from the new method.

Figure 5.13 shows histograms of filter orientations in the test data. The actual

orientations are shown in figure 5.14. The difference between the two methods

is particularly visible in the top of the activated region, where the activation is

horizontal. The new method aligns the spatial filters with the activation, while

the old method mostly alters between the two closest basis filter orientations. The

orientations of the basis filters are −30, 30 and 90 degrees (−π/6, π/6 and π/2



5.3 Rotational invariance 47

 

 

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Figure 5.11: Average correlation difference between the new and the old method. The

difference is largest where the activation is not aligned with any of the basis

filters.
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Figure 5.12: Average difference between correlation maps and rotated correlation maps.

The new method does not show any of the structured variation present in the

correlation map from the old method.

radians), respectively.

Since the activated region is very thin, the old method finds larger correlation co-

efficients by choosing the smallest possible filters (the basis filters), than by align-

ing the filters with the activation. Therefore, the detection performance varies with

the angle between the closest basis filter and the activated region. The modified

method, however, can choose identical filter shapes in all orientations. Hence, the

filters are aligned with the activated region, and constant detection performance

is obtained. Further experiments and results showing the performance of these

methods are available in paper I, in the second part of the thesis.
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(b) New method.

Figure 5.13: Histograms of filter orientations. The overrepresented orientations in the

histogram from the old method are those of the basis filters.

(a) Old method. (b) New method.

Figure 5.14: Orientations of the spatial filters when analyzing the anisotropic data. The

new method aligns the filters with the activation, while the old method is

clearly biased to the basis filters. This is particularly visible in the horizontal

activation (in the top of the figures).
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Analysis based on bilateral filtering

6.1 Introduction

In the previous chapter, it is described how CCA can be used for adaptive spatial

filtering of fMRI data. Then, the size and shape of the local averaging region,

i.e. the resulting adaptive filter, is chosen such that the correlation between the

averaged time series and the model of the BOLD response is maximized. This

makes the method very sensitive. Unfortunately, this sensitivity comes at the cost

of specificity. Restrictions have to be imposed on the number and range of the

parameters in the adaptive filter in order to maintain a reasonable selectivity. If

given too much freedom, the method will find false signals in the noise since the

filter is optimized to make the filter output as similar to the BOLD repose model

as possible. Another problem caused by the correlation maximization principle is

that when the filter is centered in a non-activated voxel but close to an activated

region, the filter will try to ”reach in” to the activated region in order to pick up

as much activation as possible. This will make the resulting regions labeled as

activated become larger than they should be.

Instead of maximizing correlation, the filter can be designed to average over con-

sistent regions (Sole et al., 2001; Tabelow et al., 2006). A consistent region only

contains voxels that, in some aspect, are similar to each other. The question is

then, of course, how to define similarity. This chapter presents a method for adap-

tive filtering based on averaging of consistent regions. Two different similarity

measures are discussed, and it is shown that a combination of both measures can

be used to detect activation with high accuracy.

6.2 Bilateral filtering

The simplest example of a similarity measure in this context is the difference

between intensity values in the acquired images. This is a known as bilateral

filtering (Godtliebsen et al., 1997; Tomasi and Manduchi, 1998). Bilateral filtering
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is a non-linear filtering technique for removing noise without degrading important

structures such as edges. Ordinary linear low-pass filtering removes noise by

averaging pixels that are close to each other. Such averaging, however, destroys

sharp edges. Bilateral filtering solves this problem by also taking into account that

the pixels to be averaged should have values close to each other. The bilateral filter

kernel in each neighborhood can be expressed as a product of two filter kernels:

the spatial filter and the range filter. The spatial filter is based on spatial distance

while the range filter is based on the difference in image intensity. That is, given

an image I(x), were x is the spatial coordinate vector, the bilateral filter kernel

F (x,∆x) at image coordinates x can be written

F (x,∆x) = Fs(∆x)Fr(x,∆x), (6.1)

where Fs(∆x) is an ordinary spatial filter kernel g(∆x) and the range filter is

defined as

Fr(x,∆x) = h(I(x + ∆x) − I(x)). (6.2)

A common choice of the filter kernels g and h are gaussian functions. When this

filter is positioned over a relatively flat region it acts basically as an ordinary low-

pass filter. Close to an edge, however, where an ordinary low-pass filter would

be strongly affected by the values on the other side of the edge, these values will

have a small effect on the result of the bilateral filter. The difference between low-

pass and bilateral filtering is illustrated in figure 6.1. A one-dimensional signal

is shown along with results from low-pass and bilateral filtering. The signal is

a step function with additive gaussian noise. The bilateral filter can be seen as

making a robust estimate of the local average; values that are “too far away” are

not included.

(a) Noisy data (b) After low-pass filtering (c) After bilateral filtering

Figure 6.1: A noisy one-dimensional signal and the result of low-pass and bilateral filter-

ing.

6.3 Method

6.3.1 Measuring time sequence similarities

In the previous section, the range filter measured the similarities between individ-

ual, one-dimensional samples. In fMRI, each voxel contains a whole sequence
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Figure 6.2: Different signals (solid) added to correlated noise (dashed) with low SNR

will look similar (dotted) even if the signals are orthogonal.

of values describing the measured time signal at that position. Therefore, a simi-

larity measure for vectors is needed in order to be able to create the range filters.

Such a similarity measure is proposed for filtering of fMRI data in Godtliebsen

et al. (2001). This is, however, a rather coarse measure giving the similarity one

if the Euclidean distance between two time-series is below a certain threshold and

zero otherwise. However, the authors recognized that other, more sophisticated

similarity measures would perhaps be better.

A straight-forward choice of similarity measure would be the scalar product be-

tween the vectors themselves or between the normalized vectors. The latter would

correspond to the correlation coefficient between the time-series. One problem

with using such a simple similarity measure is that this only combines voxels

with high SNR, i.e. the voxels where averaging is least needed. Voxels with low

SNR or without any signal would have smaller chances to be combined with their

neighbors. This would not solve one of the common problems in fMRI: that spu-

rious correlations are often found in the noise because of the high noise level and

the limited number of samples in time. To limit this problem, we would like to

average not only in active regions, but also in inactive regions. The optimal sim-

ilarity measure would indicate a high similarity between two active voxels and

between two inactive voxels, but a low similarity between an active and an in-

active voxel. This is not straight-forward since two inactive voxel time-series in

general are very different.

Another potential problem with a simple similarity measure, such as the scalar

product or correlation between time-series, is that all pairs of neighboring time-

series would give more or less the same similarity measure because of the spatially

auto-correlated noise. This is especially true when the SNR is very low, which is

usually the case in fMRI. This is illustrated in figure 6.2 where two orthogonal

signal vectors give very similar measurements because of the strong correlated

noise vectors added to the signal.

One solution to this problem is to measure the similarities after the measured sig-

nal vectors have been projected into a signal subspace, e.g. the subspace spanned

the BOLD model basis functions. After this projection, much of the noise has
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Figure 6.3: Illustration of the signal subspace. Different colors represent different signals

and the saturation represents the strength of the signal.

been removed, leaving only true signal and the part of the noise that fits the signal

model. For a signal in a non-activated voxel, the resulting vector will in general

have a small magnitude and a random orientation. Signals in an activated region

will have larger magnitudes and consistent directions. Figure 6.3 illustrates the

space of vectors. Different colors represent different signals and the saturation

represents the strength of the signal. The gray region in the center corresponds to

noise and very little signal. In this space, a euclidean distance between the vectors

can be used to separate different signals from each other as well as signal from

noise, while giving a small distance between two noise vectors. Hence the signal

range filter can be written as

Frs(x,∆x) = e
−‖BT ŝ(x+∆x)−BT ŝ(x)‖2

2σ2
rs , (6.3)

where ŝ(x) is the normalized signal vector in the voxel at location x, B is a matrix

with the temporal basis functions as its columns and σrs is the width of the signal

range filter. The normalization of the signal has erroneously been omitted from

equation 2 in paper II.

6.3.2 Anatomical similarities

Another variation of this theme is to average signals if they are located close

to each other and they reside in the same type of tissue (fat, cerebrospinal fluid

(CSF), or gray or white matter). Neural activation occurs in gray matter and has

also been observed in white matter at high magnetic field strengths (Maldjian

et al., 1999; Tettamanti et al., 2002). No BOLD signal can be expected in fat or

cerebrospinal fluid, however. By constraining the filter to only combine signals

from the same type of tissue, activation will not “leak” into parts of the brain

where it is biologically implausible. Equally important, noise from regions in

other tissue types will not degrade the signal from an activated part of the brain.

Hence it seems advantageous to utilize information about anatomical structures in

the brain when analyzing fMRI data. Different variations based on this idea have

been proposed in for example Kiebel et al. (2000); Walker et al. (2006); Ou and

Golland (2005).
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This approach can be incorporated in the bilateral filtering framework by using an

anatomical range filter Fra, based on e.g. intensity differences in a T1 weighted

image. Since T1 values reflect different tissue types, this range filter causes signals

to be averaged only if they reside in the same type of tissue. In the experiments

presented here, we have used a gaussian kernel directly on the T1 values:

Fra(x,∆x) = e
−‖I(x+∆x)−I(x)‖2

2σ2
ra (6.4)

where I(x) is the T1 value. However, a non-linear transformation of the T1 values

might be beneficial in order to improve the discrimination between different tissue

types.

6.3.3 Combining signal and anatomical similarities

Each of the variations of bilateral filtering described above has its own advantages

and limitations. If only anatomical information is used to constrain the filters,

activation may be smeared into adjacent voxels in the same type of tissue. If, on

the other hand, only the similarity between different time-series is considered, the

available anatomical information is not utilized to improve the detection accuracy.

By multiplying the signal range filter Frs and the anatomical range filter Fra, a

range filter Fr = FrsFra which takes both kinds of similarities into account is

obtained. This filter is constrained by signal similarities as well as by anatomical

similarities, thereby being more selective than either of the filters Frs or Fra alone.

6.4 Experiments

The analysis method has been evaluated on both synthetic and real fMRI data.

Some of the experimental results are provided here, while others are available in

paper II in the second part of the thesis. The method is applicable to both two-

and three-dimensional filtering. Results from both types of analysis are presented.

6.4.1 Two-dimensional data analysis

The synthetic data consist of an image describing the anatomy and a sequence

of noisy images with biologically plausible BOLD signals embedded at known

locations. The activated locations are chosen such that most of the activation is

located within “gray matter”, while some activation is present in “white matter”.

Neither the anatomy nor the activated locations have been designed to mimic real

fMRI data, but rather to demonstrate the detection algorithm. The anatomy and

the activated regions are shown in figure 6.4, where white illustrates white matter,

gray is gray matter, black is CSF and the red regions are activated.

Figure 6.5 shows activation maps obtained by a number of different methods on

this two-dimensional data. Panels (a)-(c) show the result when using ordinary
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spatial low-pass filtering with σs = 0.5, 1.0, and 2.0 respectively. Panels (d)-

(f) show the activation maps obtained using only anatomical constraints (F =
FsFra), only constraints based on time-series similarity (F = FsFrs) and the

proposed combination of constraints (F = FsFrsFra) respectively. In all three

adaptive methods the width of the spatial filter is σs = 2.0.

Figure 6.4: Synthetic test image. Red indicates active pixels.

The adaptive methods all provide enhanced detection performance compared to

the fixed low-pass filtering. When only anatomical information is used to con-

strain the filters, however, the activation leaks into surrounding areas with the

same type of tissue (figure 6.5(d)). On the other hand, when only the similarity

between the time-series themselves is used to constrain the filters, some bound-

aries between active and inactive regions are slightly blurred (figure 6.5(e)). The

proposed method, where both types of constraints are used, provides an activa-

tion map with clear boundaries between active and inactive voxels (figure 6.5(f)).

These visual results are confirmed by the ROC curves in figure 6.6. It is clear that

the method using both signal and anatomical priors provides the best overall per-

formance, followed by the two other bilateral methods, and finally the low-pass

filtering. The best performance of the non-adaptive method is obtained when a

spatial filter with σs = 1.0 is used.

6.4.2 Three-dimensional data analysis

In three-dimensional data, the correlation between neighboring slices can be used

to further improve the signal to noise ratio in activated regions. To demonstrate

this, three-dimensional analysis has been carried out on a volume with charac-

teristics similar to the two-dimensional image above. The detection performance

is shown in the ROC curves in figure 6.7, and is obviously better than for two-

dimensional analysis. The relative performance of the different methods is similar

to the two-dimensional case, except for the low-pass filtering with σ = 1. In three

dimensions, this filter kernel averages over a too large region.
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(c) Low-pass, σs = 2.0
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Figure 6.5: Results on simulated 2D data.
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Figure 6.6: ROC curves for the simulated 2D data.

6.4.3 Data without sharp edges

Section 6.2 mentions that bilateral filtering is particularly good at preserving edges

in data. It might be argued that fMRI data typically contain very few edges, since

each voxel represents the average value in a region and it is highly unlikely that

the boundary of an activated region is located exactly at the edge between two

voxels. Therefore, the synthetic data shown above may not properly represent

the properties of real data. The analysis has also been applied to another two-
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Figure 6.7: ROC curves for the simulated 3D data.

dimensional data set, shown in figure 6.8. This data set is similar to the one

shown above, except that edges between active and inactive regions, and between

different types of tissue, are smoother.

Figure 6.8: Synthetic test image without sharp edges between active and inactive regions.

The color scale from red to yellow indicates active pixels with different signal

to noise ratio.

As shown in the above section on two-dimensional analysis, σs = 1.0 yields the

best detection performance for the fixed low-pass filtering. The best adaptive filter

was obtained by combining the signal and anatomical similarity measures. Figure

6.9 shows correlation maps obtained using these two filters. The adaptive filtering

appears to preserve the shape of the activated regions with higher accuracy. ROC

curves are shown in figure 6.10. According to these curves, the difference between

the methods is smaller than for the data set shown above. This has two explana-

tions. First, the similarity measures used to define the range filters Frs and Fra are

based on the difference between signals and T1 values in neighboring voxels. In

smooth data, these differences are smaller, which makes it more difficult to adapt

the range filters to the data. Second, as mentioned in chapter 4, the ROC analysis

requires voxels to be classified as either active or inactive. Some voxels at the

edge of an active region contain very little active tissue and hence have a very low
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Figure 6.9: Results on smooth two-dimensional data.

signal level, but are nevertheless considered as active in the ROC analysis. When

low-pass filtering is used, the blurring of stronger signals from neighboring voxels

causes many of these edge voxels to be classified as active. The adaptive method,

however, often do not detect them. It may be argued that a certain percentage of

active tissue should be required for a voxel to be considered active, and thus, this

effect may be considered either an advantage or a disadvantage of the proposed

method. It does, however, degrade the detection performance as measured by the

ROC analysis. Still, the ROC curves indicate that the adaptive method performs

better than the low-pass filter for most specificities of interest.
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Figure 6.10: ROC curves for the smooth 2D data.

6.5 Discussion

By combining local signal and anatomical similarities, better performance can

be obtained compared to when only one of the similarity measures is utilized.

This can be seen qualitatively in the correlation maps as well as quantitatively in
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the ROC curves in figures 6.6 and 6.7. In bilateral filtering the effective filter is a

product between a spatial kernel and the range filter. When the similarity measures

are combined, the range filter itself is a product between a signal range filter and

an anatomical range filter. These filters can be seen as constraints on the spatial

filter that prevent it from including other kinds of signals or signals from other

kinds of tissues. Utilizing a priori information to constrain the solution space is in

general a good idea. This explains the superior performance. The caveat is that it

is very important that the a priori information is correct. For example, the T1 and

T∗
2 volumes need to be properly aligned. A significant misalignment will make the

filters see different regions and, hence, impose wrong constraints. For the same

reason it is also important to avoid or correct for geometrical distortions of the T∗
2

images.

As was shown in the ROC curves, particularly in figure 6.6, for some choices of

specificity the best detection performance is obtained by only using constraints

based on anatomical similarity. This is caused by the signal similarity constraint

limiting the effective filter size when a spurious signal-like time-series is encoun-

tered in an inactive voxel. It should be noted, however, that the specificities for

which only anatomical constraints provides the best results are rather low, and that

the combination of both types of constraints provides better performance for most

interesting specificities.

Compared to linear low-pass filtering, the spatial kernel in bilateral filtering can be

rather large, since the effective kernel is restricted by the range kernel if necessary.

This makes it possible for bilateral filtering to gain very much from an extension

from two- to three-dimensional analysis, since the possibilities to find support for

a large kernel becomes greater in high-dimensional data.

In the filtering method described here, the time-series of one single voxel is com-

pared to time-series in surrounding individual voxels. The individual voxels can

be thought of as basis functions for the filtering process, similar to the isotropic

and anisotropic basis filters described in the previous chapter. Instead of the sin-

gle voxel bases, isotropic and oriented filters could be used as basis functions also

in bilateral filtering. Then the similarity would be measured between the filter

response to a small isotropic filter and the responses to a set of other basis filters.

Each filter would be included in the averaging to an extent depending on the sim-

ilarity values. This would cause a slight increase in blurring, but may improve the

adaptation to smooth active regions. The exact choice of basis filters remains an

open question, though.

In contrast to the CCA-based analysis method presented in the previous chapter,

this method does not maximize the similarity between the filter response and the

BOLD model. Hence, it does not have the same bias towards sensitivity.
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Robust correlation estimation

Correlation is used to measure the similarity between signals in many different ap-

plications. Examples include speech recognition (Hunt, 1999), fingerprint recog-

nition (Angle et al., 2005), image registration algorithms (Penney et al., 1998) and,

as described in previous chapters, analysis of fMRI data. In many of these cases,

the correlation between a set of known reference signals and a newly recorded

signal is calculated in order to determine whether the new signal belongs to the

same group as the reference signals. In the biometric applications, the correla-

tion may be used to determine whether for example a speaker is a certain person

or not, while in the fMRI context it is used to determine if a certain part of the

brain is activated. Depending on the application, the reference signals may ei-

ther be recorded in advance or calculated from a model. In either case, it is often

possible to ensure a certain quality of these signals since they are recorded or

calculated under controlled circumstances. The situation is worse for the new sig-

nals, which are compared to the references. These entire signals may have a low

signal-to-noise ratio, or sometimes most of the signals are well represented by the

recording, while some segments are corrupted by for example background noise

or radio frequent interference. Since these signals are recorded while a system is

being used, it is often not acceptable to re-record until signals of good quality are

obtained. In a voice recognition system, re-recording translates to making users

repeat spoken commands, and in the fMRI application it translates to repeating an

entire experiment. The latter is both troublesome for the patient and expensive.

Hence, a way to measure correlations robustly, i.e. in such a way that corrupted

signal recordings have minimal influence on the correlation estimates, is desirable.

This chapter presents an estimator of correlation, which is robust to corrupted

segments in the signals. The chapter is organized as follows: in the next sec-

tion, correlation and its generalizations to multidimensional signals (the general

linear model and canonical correlation analysis) are reviewed. In section 7.2 the

proposed method is explained. Section 7.3 presents how the method can be ap-

plied to fMRI data analysis, while section 7.4 demonstrates detection of partially

occluded objects in images. A discussion of the method is presented in section
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7.5.

7.1 Theory

7.1.1 Correlation, GLM and CCA

The ordinary Pearson correlation ρ between two one-dimensional signals x and y
is defined as the covariance of the signals divided by the geometric mean of their

respective variances, i.e.

ρ = Corr(x, y) =
Cov(x, y)

√

Var(x)Var(y)
. (7.1)

Assuming that both x and y are sampled signals of length N with zero mean, an

estimate of the correlation, ρ̃, can be calculated as

ρ̃ =

∑N
i=1 xiyi

√

∑N
i=1 x2

i

∑N
i=1 y2

i

. (7.2)

If the variables are not zero-mean, their respective mean values are simply sub-

tracted prior to this calculation.

The concept of correlation can be extended to multidimensional variables. The

simplest extension is named the general linear model (GLM) and handles corre-

lations between a one-dimensional and a multidimensional variable. The correla-

tion is then defined as the maximum correlation (disregarding the sign) between

the one-dimensional variable and any one-dimensional projection of the multidi-

mensional variable, i.e.

|ρ| = max
w

|Corr(x,wT y)|, (7.3)

where the vector w defines the projection of y which maximizes the correlation

with x.

As explained in chapter 5, a further generalization is termed canonical correla-

tion analysis (CCA) (Hotelling, 1936). CCA handles correlations between two

multidimensional variables. The canonical correlation is defined as the maximum

correlation (still disregarding the sign) between any projections of the two vari-

ables, i.e.

|ρ| = max
wx,wy

|Corr(wT
x x,wT

y y)|. (7.4)
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In CCA, the estimated correlation ρ̃ can be written as

ρ̃ =
wT

x

(
∑N

i=1 xiy
T
i

)

wy
√

wT
x

(
∑N

i=1 xix
T
i

)

wxwT
y

(
∑N

i=1 yiy
T
i

)

wy

= (7.5)

=
wT

x Cxywy
√

wT
x CxxwxwT

y Cyywy

,

where Cxx is the within-set covariance matrix of the multidimensional variable x,

Cxy is the between-sets covariance matrix of x and y etc. It can be shown (Borga,

1998) that the canonical correlation can be calculated by solving the eigenvalue

problem

(

Cxx 0
0 Cyy

)−1 (

0 Cxy

Cyx 0

)(

wx

wy

)

= ρ

(

wx

wy

)

. (7.6)

The first eigenvalue is the estimate of the canonical correlation, while the first

eigenvector is the concatenation of the corresponding projection directions wx

and wy.

Obviously, GLM is obtained as a special case of CCA when either x or y is one-

dimensional. Ordinary correlation is the special case obtained when both variables

are one-dimensional.

7.1.2 Weighted correlation

A weight can be assigned to each sample, allowing different samples to affect the

correlation estimate to a different extent. This is useful if each sample is accom-

panied by a certainty value. Less certain samples can then affect the correlation

estimate less than more certain ones. Assuming that ci is the certainty (or weight)

associated with the i:th sample, the weighted equivalent of equation 7.2 becomes

ρ̃ =

∑N
i=1 cixiyi

√

∑N
i=1 cix

2
i

∑N
i=1 ciy

2
i

. (7.7)

It is important, however, to consider the mean values of the signals. Before in-

troducing weights, we could simply subtract the averages to obtain zero mean

signals. Since samples with low weights should not affect the correlation esti-

mates to a large extent, this is no longer the case. Instead, the weighted average

must be subtracted before applying equation 7.7. That is, the correlation should

be estimated as

ρ̃ =

∑N
i=1 ci(xi − µx)(yi − µy)

√

∑N
i=1 ci(xi − µx)2

∑N
i=1 ci(yi − µy)2

, (7.8)
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where

µx =

∑N
i=1 cixi

∑N
i=1 ci

(7.9)

and µy is calculated equivalently.

GLM and CCA are adapted in a similar fashion to accommodate weighted calcu-

lation of correlation coefficients.

7.2 Method

In order to use weighted correlation, the weights of all samples must be known.

In some cases the weights may be available beforehand, for example if there is

a natural way to measure the certainty of each sample. This is the case e.g. if

a large number of reference signals is available, since the standard deviation of

each sample may be calculated and its inverse used as certainty. More often, how-

ever, no natural certainty estimate is available. Fortunately, it is possible to find

suitable weights using only the two signals whose correlation is to be calculated,

by automatically finding outliers in the signals. This is accomplished by dividing

both signals into a number of segments. The correlation between the signals is

then calculated in each segment using either Pearson correlation, GLM or CCA

depending on the dimensionality of the signals. By the use of weighted corre-

lation the segments need not be disjoint subsets of the signals, but can instead

be defined by partly overlapping smooth windows. This is preferable to disjoint

subsets since it makes the algorithm less sensitive to the exact locations of the

boundaries between different segments. Naturally, it is important to make sure

that the sum of the weights for all windows is constant for all samples. Figure 7.1

shows a one-dimensional signal and a set of functions defining weights for each

segment of the signal. In this example a truncated cos2 function is used to define

each window, and consecutive windows overlap by 50%. The number of windows

to use and the amount of overlap depend on the specific application.

If we calculate the weighted correlation estimates between this signal and each of

the signals shown in figure 7.2(a)-(c), using the windows shown above, a number

of correlation coefficients are obtained. These are remapped to the similarity val-

ues shown in figure 7.2(d)-(f). The remapping is described below. Obviously, the

similarity is approximately the same in all windows for the slightly noisy signal

shown in figure 7.2(a), and approximately zero in all windows for the pure noise

signal in figure 7.2(b). For the signal in figure 7.2(c), however, the similarity is

significantly lower in the noisy segment than in the other segments. The ordi-

nary, unweighted, correlation coefficients for these entire signals are 0.99, 0.04

and 0.73, respectively.

Let us now focus on the third signal. We have a sequence of similarities, one for

each window. These values can easily be split into two groups: all the relatively
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Figure 7.1: An example signal and a set of possible weighting functions. The windows

are defined by truncated cos2 functions and overlap by 50%.
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(f) Similarity 3

Figure 7.2: Three signals and their similarities (in each window) to the signal shown in

figure 7.1.

high values and the three low values. Since there are far more high values than

there are low ones, it is intuitively obvious that the low values could be considered

as outliers and that the corresponding segments of the signal should therefore have

lower weights. The algorithm arrives at the same conclusion by calculating the

pairwise differences between the similarity values in every signal segment. The

weight of each segment is then defined as a decreasing function of the average

distance to the similarity values of all other segments. More formally wk, the

weight of the k:th segment, is calculated as

wk = e−d2

k
/(2σ2), (7.10)

where

dk =
1

L − 1

∑

j 6=k

|Λ(ρ̃k) − Λ(ρ̃j)| (7.11)
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and

Λ(ρ) =
sign(ρ)

1 − ρ2 + r
. (7.12)

L is the number of segments. The function Λ(ρ), which is similar to Wilks’

lambda, can be used to map the estimated correlation coefficients to similarity

values in order to obtain a more linear scale. That is, Λ compensates for the fact

that a small increase of the resemblance between two signals with low original

correlation increases the correlation more than a small increase of the resemblance

between two signals with high original correlation. r is a regularization parameter

which controls the behavior of Λ when ρ approaches 1.

Finally, the weight of each sample can be calculated as the sum of all window

functions at the sample position, multiplied by the weight for the respective seg-

ments of the signal. That is, the weight ci of the i:th sample is calculated as

ci =
L

∑

k=1

wkfk(i), (7.13)

where fk(i) is the value of the k:th window function at the position of the i:th
sample. Thus for the signal in figure 7.2(c), we end up with the weighting shown

in figure 7.3(a). The weighted correlation is 0.99, which is very close to the (un-

weighted) correlation between the first signal above and the reference signal. The

automatically calculated weights cause the weighted correlation estimate to disre-

gard the outliers. If the method instead is applied to any of the two other signals,

an almost constant weighting is obtained. Thus, in those cases the weighted corre-

lation estimate is the same as the ordinary correlation, which is desired for signals

whose correlation to the reference signal is constant.

Figure 7.3(b) shows a fourth example of a signal whose correlation to the refer-

ence signal in figure 7.1(a) is to be calculated. This signal consists of only noise,

except for a short segment where it is similar to the reference signal. The weight-

ing obtained is also shown in the figure. The robust correlation between this signal

and the reference is 0.03, which is very close to the correlation between the ref-

erence and the pure noise signal above. Together, the third and fourth examples

illustrate how the underrepresented parts of a signal are disregarded, and how this

may cause the robust correlation coefficient to be either higher or lower than the

ordinary correlation.

The differences between the correlations in different segments can be calculated

according to equation 7.11 only when the signals are one-dimensional. When

the signals are multidimensional and GLM or CCA is used instead of the Pearson

correlation, the projection directions wx and wy should also be taken into account.

If the correlation coefficients in two segments are similar but wx or wy is different,

the signals are related to each other in different ways and the two segments should
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(a) Final weights for the signal shown

in figure 7.2c.
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(b) Another signal and its weighting.

Figure 7.3: Final weights for the signal shown in figure 7.2c and for another signal.

be treated accordingly. To handle this, the distance calculation is replaced by

dk =
1

L − 1

∑

j 6=k

‖Λ(ρ̃k)wxk
wT

yk
− Λ(ρ̃j)wxj

wT
yj
‖, (7.14)

i.e. the difference between outer products of the projection directions (multiplied

by Λ) is used to determine the distance between multidimensional correlations.

The Frobenius norm is used. In the one-dimensional case, both wx and wy are 1,

and equation 7.11 is thus a special case of equation 7.14.

If desired, additional parameters can be introduced to control how the similarity

values in different segments affect the weighting. For example, the distances can

be remapped such that small distances become even smaller, while large distances

become larger. This has the effect that a small number of segments with almost

identical similarity values will receive higher weights, while a larger group of

segments with larger differences between their similarity values will receive lower

weights.

Apart from similar correlation coefficients and projection directions, it might also

be argued that the ratio of variance between the signals x and y should be sim-

ilar. A case where this is important is illustrated in figure 7.4, which shows two

one-dimensional signals whose variance ratio is significantly different in differ-

ent parts of the signals. If small windows are used to measure local correlations

between these signals, the correlation coefficients will be similar in all windows

except those spanning the part of the signal where the variance changes. Hence

an almost constant weighting will be obtained, and the robust correlation coeffi-

cient will therefore be very low. If the variance ratio between the two signals is

also allowed to affect the weighting, this is avoided. This is achieved by, in each

window k, calculating the logarithm of the variance ratio:

vk = log
Vxk

Vyk

, (7.15)
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where Vxk
and Vyk

are variance estimates of x and y weighted with the k:th win-

dow function. Distances between vk in different windows are then calculated

analogously to the distances between the similarity values, and affect the weight-

ing in the same way. The logarithm is used to obtain symmetry; a change of

variance ratio from 1 to 0.1 should affect the weighting to the same extent as a

change from 1 to 10.
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Figure 7.4: Two signals with similar local correlations but different variance ratios.

7.3 Application to analysis of functional MRI data

As mentioned in chapter 4, the signal to noise ratio of fMRI data is typically rather

low. When the SNR is constant over time, the robust estimator of correlation does

not provide any improvement of the activation detection accuracy. If, however,

the signals from some or all voxels are corrupted by sudden bursts of noise, for

example induced by instruments used for delivering the stimuli to the patient or

subject, the proposed method is able to automatically identify and disregard the

corrupted parts of the signals.

To demonstrate and evaluate the method, synthetic fMRI data was created by em-

bedding BOLD-like signals in noise. The activated regions are a rectangle and a

circle. Extra noise was added to 7 consecutive samples out of a total of 40 sam-

ples. Most often, fMRI signals are longer (approximately 100 - 200 samples),

but short signals are of interest in some applications, e.g. where sliding window

approaches are used (Gembris et al., 2000). One example is real-time analysis,

which is necessary when fMRI is used in a feedback loop, i.e. when the stimuli

delivered to the patient or subject depends on previous brain activity. Two ex-

amples of such scenarios are presented in Yoo et al. (2004) and deCharms et al.

(2005).

In order to keep the example as simple as possible, ordinary low-pass filtering

was applied to the data before the correlation between the signal from each pixel

and the BOLD model was calculated. Figures 7.5(a) and (b) show correlation
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maps obtained using ordinary correlation and the proposed method, respectively.

Thresholded correlation maps are also shown. Obviously, better contrast between

active and inactive pixels and fewer misclassified pixels are obtained when using

the proposed estimator. A more quantitative evaluation is presented in figure 7.6,

which shows the distributions of correlation coefficients when using ordinary cor-

relation (a) and the proposed estimator (b). When the proposed estimator is used,

the overlap between the correlation coefficients from active and inactive pixels is

smaller than when ordinary correlation is used. This indicates that a lower number

of misclassified pixels is obtained when the proposed estimator is used.
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Figure 7.5: Correlation maps (original and thresholded) calculated using ordinary corre-

lation and the proposed method, respectively.
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Figure 7.6: Distributions of correlation coefficients for active and inactive pixels.
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7.4 Application to detection of partially occluded objects

Correlation can also be used detect and localize objects in images. This is achieved

by, at each position in an image, calculating the correlation between a small image

patch and an image of the sought object. In practice, this operation is similar to

convolving the image with the sought object, except that the convolution kernel is

not mirrored. At the location of the object, a high correlation coefficient will be

obtained. However, if the object is partly occluded, the estimated correlation will

be lower and the object will be more difficult to detect. By using robust correlation

estimation, this problem can be alleviated.

Figure 7.7(a) shows a photograph of an office with a desk and some computer

equipment. There is also a book, with a post-it note on its cover, in the image.

Figure 7.7(b) shows a close-up of the book without the post-it note. Both ordinary

and robust correlation has been used to localize the book in the office image. To

make the problem slightly more difficult, only the top half of the book was used

in the correlation analysis. The resulting correlation maps are shown in figure

7.8. The positions where the highest correlation coefficients are found are marked

in both images. When ordinary correlation is used, the maximum value (0.70)

is obtained near the right edge of the image, far from the book. When robust

correlation is used, the highest correlation coefficient (0.93) is obtained in the

region occupied by the book.

(a) Image showing desk and

computer

(b) Close-up of

book

Figure 7.7: An image showing a typical office environment and a close-up of the book

which is to be localized.

7.5 Discussion

Robust methods for correlation estimation have previously been described in e.g.

Dehon et al. (2000). Those methods, however, do not consider the locality of

groups of outliers. The estimator described here, on the other hand, controls the

influence of each segment of the signal based on local estimates of the correlation.

Therefore it is particularly suited for signals with local bursts of noise.

For the method to work well, the correlation in the outlier segments need to be
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Figure 7.8: Correlation coefficients obtained when searching for the book. The cross

marks the location of the highest correlation coefficient.

sufficiently different from the correlation in the other parts of the signal. Other-

wise the outliers will not be properly detected and the weights of all segments

will be similar. In such cases, the proposed estimator will act like ordinary cor-

relation analysis. The outlier detection is of course influenced by the choice of

σ (see equation 7.10), but the estimator also depends on the number of segments

and their amount of overlap. If the windows are too narrow, the local correlation

estimates will vary greatly. On the other hand, if they are too wide, short bursts

of noise may not affect the local correlation enough to be detected as an outlier.

The variance ratio measurements are, of course, also sensitive to these parameters.

Because of this parameter dependence, the algorithm works best in applications

where the properties of the signal and the noise bursts are well-known and the

parameters can be fine-tuned to match the specific situation.





8
Phase sensitive image

reconstruction

This chapter continues the fat/water segmentation track last visited in chapter 3.

First a brief overview of separate water and fat imaging is presented. This is

followed by an explanation of why this imaging mode requires phase sensitive

reconstruction and correction. Finally a novel method for solving this problem is

introduced and described, along with a previously proposed method.

8.1 Obesity, a big problem

There is a tremendous prevalence in obesity worldwide. Studies indicate that more

than 50 % of adults in the United States suffered from abdominal obesity during

2003 − 2004 (Kullberg, 2007). It is well known that obesity, particularly male

abdominal fat accumulation, is associated with high risk of developing common

diseases such as diabetes, high blood pressure and cholesterol disturbances. Dif-

ferent measures of body composition have been used to predict the risk of these

and other conditions. Examples range from very simple measures such as weight,

body mass index (BMI) and waist circumference, to more advanced ones based

on imaging of fat accumulation in the body using computed tomography (CT) or

MRI.

8.2 Imaging of adipose tissue

8.2.1 T1 weighted imaging

One of the most common MRI-based methods for measuring fat accumulation is

simple T1 weighted imaging. Fat is typically stored in the body as adipose tissue,

which consists of approximately 80 % fat and 20 % water, protein and minerals.

The T1 relaxation time of fat is very short compared to that of most other types

of tissue (according to de Bazelaire et al. (2004), at 1.5 T, the relaxation times for

subcutaneous fat, liver and spleen are approximately 343 ms, 586 ms and 1057

ms, respectively). Therefore, adipose tissue is clearly visible as bright regions in
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T1 weighted images. Hence, the images can be segmented in order to determine

the amount of adipose tissue. However, fat measurements based on T1 images

sometimes underestimate the fat content (Donnelly et al., 2003). This is likely

due to partial volume effects at interfaces between adipose and other tissue, which

cause voxels containing fat to be misclassified by the segmentation. Nevertheless,

this type of images has been used to assess body composition in e.g. Kullberg

(2007), and been shown to correlate well with fat measurements based on CT.

However, Dixon imaging (Dixon, 1984) is considered to provide better results.

8.2.2 Dixon imaging

As mentioned in chapter 2, the Larmor frequencies of hydrogen in fat and wa-

ter are somewhat different. The difference is 3.5 ppm, i.e. 220 Hz at a B0 field

strength of 1.5 T. Since the Larmor frequency of hydrogen in water is approx-

imately 63.9 MHz, this may not seem very important. However, while signals

from water and fat are of course in phase immediately after the RF excitation,

only 2.3 ms later the signals are entirely out of phase! Another 2.3 ms later, i.e.

4.6 ms after the excitation, the signals are in phase again, and so on. This effect

is utilized in Dixon imaging in order to obtain two images: w, showing the water

content of each pixel, and f , showing the fat content of each pixel. In typical

Dixon imaging, two images are acquired1 : one image where the signals are out of

phase (I1 = w− f ) and one image where they are in phase (I2 = w + f ). Ideally,

the water and fat images w and f can be obtained as

w =
I1 + I2

2
(8.1)

and

f =
I2 − I1

2
(8.2)

respectively. By combining this technique with methods for absolute quantifica-

tion, a true measure of the amount of fat in each pixel can be obtained. Since no

segmentation is needed, an unbiased measure of the fat content of any region can

then be obtained.

There is one problem, however. Because of experimental factors such as magnetic

field inhomogeneity and excitation and receiver coil issues, the complex phase

varies across the acquired images or volumes according to

Ĩ1 = I1e
iφ1 (8.3)

Ĩ2 = I2e
iφ2 , (8.4)

where Ĩ1 and Ĩ2 are the acquired images and φ1 and φ2 are slowly varying, smooth

phase fields. Figure 8.1(a) shows an example of an out of phase image with the

1Variations of the technique, where more than two images are used, also exist. This discussion,

however, will focus on the so called two-point Dixon method.
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additional phase variation caused by acquisition imperfections. The image inten-

sity corresponds to the magnitude of the image, while the colors correspond to

the complex phase. As is clearly visible in this image, there is a continuous phase

variation over the image, in addition to the phase jumps of π at the borders be-

tween water and fat. Figure 8.1(b) shows an image where fat and water are in

phase. This image does not show any phase jumps between water and fat, but the

phase variations are twice as fast as in the out of phase image. The latter is caused

by the additional time between excitation and image readout. An important thing

to notice in these images is that the out of phase image has very low magnitude

near borders between water and fat, since the signals from approximately equal

amounts of water and fat in those regions cancel. In the in phase image the signals

do not cancel, and the magnitude is unaffected.

(a) Out of phase (b) In phase

Figure 8.1: Example of acquired images with phase variations due to experimental ef-

fects.

Because of the phase variations shown in the images above, the water and fat

images can not be calculated directly from the acquired images Ĩ1 and Ĩ2. Instead

estimates Î1 and Î2 of the desired images I1 and I2 need to be reconstructed by

correcting the phase errors in the acquired images. These estimates can then be

used in the equations above to find w and f . Ĩ2 is by far the easiest image to

correct. For obvious reasons, w and f are both positive images, and thus w + f
is also positive. Hence all pixels in I2 should have zero phase, and thus Î2 = |Ĩ2|,
i.e. the magnitude of Ĩ2. Figure 8.2 shows the in phase image displayed above

after correction.

Unfortunately, finding Î1 is more difficult. The reason for the higher complexity

is that w − f is not necessarily positive since some pixels contain more fat than

water. Hence the phase of Ĩ1 is the combined result of phase shifts due to tissue

properties and the phase field φ1. The phase shifts due to the sign of w−f need to

be preserved in order to retain the possibility to calculate w and f , and therefore

φ1 needs to be estimated in order to correct the image. After that, Î1 is obtained

as

Î1 = Ĩ1e
−iφ̂1 , (8.5)



74 Chapter 8. Phase sensitive image reconstruction

Figure 8.2: In phase image Ĩ2 after correction.

where φ̂1 is the estimate of the phase field φ1.

The problem encountered here also appears in other types of MR imaging where

complex or non-positive images are acquired, e.g. in velocity encoded imaging

and inversion recovery imaging. There, too, the problem can be solved by es-

timating the phase field. Hence, an estimation procedure for finding φ̂1 is not

only useful in water/fat segmentation but also in other applications of MRI. The

remainder of this chapter is devoted to the estimation of φ1.

8.3 Phase estimation and correction

Separation of the phase of Ĩ1 into the sign of w − f and the additional phase field

φ1 requires some knowledge about these components. Without this information,

any property of the phase variation of Ĩ1 may equally well be attributed to either

of them. Fortunately, there is a well-known difference between the behaviors of

these phase variations: while φ1 is smooth and varies relatively slowly, the phase

of w − f only takes on the values 0 and π and is thus piecewise constant with

leaps of π at tissue boundaries. By clever use of this information, it is possible to

design algorithms which find the two individual contributions of the phase of Ĩ1.

8.3.1 Phase estimation using region growing

In Ma (2004) one such algorithm for phase estimation is proposed. Similar to

a number of other methods such as those presented in Szumowski et al. (1994);

Akkerman and Maas (1995), the method by Ma is based on region growing, i.e.

starts from a seed point and grows the solution into neighboring pixels. The

method utilizes the smoothness of φ1 by visiting pixels in an order of phase dif-

ference, such that the region grows in the direction of the smallest phase gradient.

If the phase difference between a pixel and its surrounding points is too large, the

sign of that pixel is flipped. When all pixels have been visited, phase variations

which are due to the sign of w− f have been removed and thus the estimate φ̂1 is

obtained. To keep track of the phase gradient, the method uses a number of pixel
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stacks; one stack for each phase difference interval of 10◦ from 0◦ to 90◦. First a

random pixel is selected as starting point for the region growing and put on one

of the pixel stacks, and then the following three steps are repeated until all pixels

have been visited:

1. Select a pixel from the lowest non-empty pixel stack.

2. Visit the four nearest neighbors, if not already visited, and place them onto

the pixel stacks according to their phase difference in x or y direction, de-

pending on the direction from which the pixel is visited. If the value is in

the 0◦ − 10◦ interval the pixel is placed on the first pixel stack, if the value

is in the 10◦ − 20◦ interval it is placed on the second stack, etc.

3. Determine the phase value of the selected pixel by inspecting the neighbor-

ing pixels that have already been checked. If the phase difference between

the seed pixel and a summation of already visited pixels within a defined

boxcar region exceeds 90◦, the sign of the seed pixel is flipped.

The algorithm is rather straight-forward, but the quantization of the phase differ-

ence may appear to be a bit ad-hoc. For most images the method works rather

well. In some cases, however, regions may be misclassified. This is particularly

common in regions where φ1 varies relatively fast, and where the region growing

is restricted to occur along thin structures, e.g. in the vicinity of air cavities where

the signal level is very low. Two examples, one where the method works well and

one where problems are encountered, are shown in figure 8.3. Images before and

after correction are shown. It may be difficult to see, but in the right image a re-

gion near the left arm is misclassified (some of the subcutaneous fat is red instead

of green). This is shown in greater detail in paper IV.

8.3.2 Phase estimation using the inverse gradient

It is a trivial and well-known fact that every image has an associated gradient field,

which describes how the pixel values change with the position in the image. In

the case of a two-dimensional image I , each point in the gradient field is a two-

dimensional vector pointing in the direction of greatest local increase of pixel

value, whose norm is proportional to the derivative of the image in that direction.

The gradient g of the image I is typically denoted

g = ∇I. (8.6)

A less well-known fact is that it is also possible to “go the other way” and find the

image I associated with a certain gradient field g. This operation may be referred

to as the inverse gradient and denoted

I = ∇−1g + C, (8.7)
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(a) Image 1 before correction (b) Image 2 before correction

(c) Image 1 after correction (d) Image 2 after correction

Figure 8.3: Results of the region growing method for phase correction. The method ob-

viously works well for the left image, while a region close to the left arm is

misclassified in the right image.

where C is an unknown additive constant. This is of course obvious for one-

dimensional signals, where the gradient is actually the scalar derivative g and I is

the integral of g:

I =

∫

g + C, (8.8)

but for multidimensional signals such as images or volumes the process is less

straight-forward. It can, however, be shown (Song et al., 1995; Horn and Brooks,

1986) that by solving a Poisson equation with inhomogeneous Neumann boundary

conditions:
{

∆I(x) = ∇ · g(x), all x ∈ Ω,
∂I
∂n

(x) = n · g(x), all x ∈ ∂Ω,
(8.9)

the image I which has a gradient field as close as possible to g (in a least squares

sense) is obtained. Ω is the region in which the equation is solved, and n is a

normalized, outwards directed, normal vector to the boundary of this region. By

solving this equation, the I which minimizes
∫

Ω
|∇I(x) − g(x)|2dx (8.10)
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is obtained. That is, the sum of squared euclidean distances between g(x) and

the gradient of I , for all x in Ω, is minimized. The equation needs to be solved

numerically. If the solver is designed carefully, Ω can have arbitrary shape as

long as it is connected. A more detailed description of the inverse gradient and its

properties is available in Farnebäck et al. (2007).

So why is the inverse gradient important in the context of phase estimation and

correction? Going back to the differences between the two contributions to the

total phase of Ĩ1 (the sign of w − f and the phase field φ1), a possible way to

eliminate one of them presents itself. If the phase of Ĩ1 is doubled, we obtain

Ĩ∗1 = |Ĩ1|e
i2 arg Ĩ1 = |w − f |ei2φ1 . (8.11)

Since the phase is doubled, it is no longer affected by the sign of w − f , and

thus only φ1 contributes to the phase of Ĩ∗1 ! While this is definitely a step in the

right direction, it does not completely solve the problem of obtaining φ̂1. Since

the phase is only known modulo 2π, it is not possible to directly obtain φ̂1 as half

the phase of I∗1 . However, if the phase varies sufficiently slowly (less than π per

pixel), it is possible to estimate the phase gradient of I∗1 :

g = ∇ arg I∗1 , (8.12)

Since the gradient g is determined locally, it does not contain the wraparounds

present in the actual phase field arg I∗1 . Hence it is possible to divide g by 2

without any uncertainty about the interpretation of the obtained value. By finally

applying the inverse gradient operator to g/2, a wrap-free phase field φ̂1 is ob-

tained. This field is an estimate of φ1 and can be plugged into equation 8.5 to

obtain Î1, which is used in conjunction with Î2 to calculate w and f .

In image regions where the signal strength is very low, e.g. in air cavities or close

to the border between water and fat, where the signals cancel, the phase is very

sensitive to noise and thus should not affect the gradient g to the same extent as

more certain phase values where the signal magnitude is large. This is solved by a

technique known as normalized convolution (Knutsson and Westin, 1993), which

is used to interpolate g in low-certainty regions.

The estimation procedure is illustrated in figure 8.4, where different steps in the

algorithm are shown. Panel (a) shows the acquired out of phase image Ĩ1, panel

(b) shows the synthetic in phase image I∗1 , panel (c) shows the estimated phase

field φ̂1 and panel (d) shows a partly corrected out of phase image.

As is clearly visible in figure 8.4(d), the result of this procedure is not perfect;

the image is not entirely real valued after correction. This is explained by arti-

facts in g caused by noise in Ĩ1 and by the interpolation of the gradient field. To

overcome this problem, the correction is iterated a number of times, progressively

converging to a solution with only two phase values, π apart, corresponding to

water and fat. However, these phase values are not necessarily 0 and π. Since
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(a) Acquired image Ĩ1 (b) Synthetic in-phase image

I∗1
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(c) Estimated phase field φ̂1 (d) Partly corrected image

Figure 8.4: Out of phase image and different steps in the phase estimation procedure.

the image should be real valued, these are the only allowed phase values, but like

all integration procedures the inverse gradient is only able to restore the phase up

to an unknown additive constant. This problem is easily solved since only two

possible mappings between the phase values present in the image and the allowed

values exist; one of the existing phase values should be mapped to 0 and the other

to π. For typical images it is not difficult to choose one of these mappings. The

contrast of the magnitude of the acquired images is largely due to T1 relaxation,

and as was stated above the strongest signals obtained in such images are typically

from adipose tissue. Thus, the phase value present where the signal magnitude is

highest corresponds to fat, while the other phase value corresponds to water.

Figure 8.5 shows the corrected image Î1, obtained after a number of iterations.

This image is real valued and its phase has discontinuities at borders between

different types of tissue. The fat is shown in green while the water is shown in

red.

Finally, figure 8.6 shows reconstructed water and fat images. These are obtained

from the corrected out of phase and in phase images Î1 and Î2 by using equations

8.1 and 8.2 in section 8.2.2.

An advantage of this method is that can easily be generalized to three-dimensional
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Figure 8.5: Out of phase image after correction.

(a) Water (b) Fat

Figure 8.6: Reconstructed water and fat images obtained from I1 and I2 after phase cor-

rection.

images. A similar generalization is possible also for methods based on region

growing, but that is usually more complicated. Three-dimensional phase estima-

tion and correction is important since the phase in thin sheets of fat may some-

times be very difficult to estimate from a two-dimensional image, while the same

procedure is trivial in three dimensions.





9
Review of papers

In this chapter, the papers included in the second part of the thesis are introduced.

Each of the papers covers approximately the same material as the corresponding

chapter (5 – 8). In some parts, however, the descriptions in the papers are more or

less detailed than those in the preceding chapters. Some of the papers also provide

more experimental results. Some figures in the included papers may be difficult

to interpret since they are reproduced in grayscale. These figures are available in

color in the corresponding chapter.

9.1 Paper I: On rotational invariance in adaptive spatial

filtering of fMRI data

This paper presents a modification of a previously proposed method for adap-

tive analysis of fMRI data. The previous method is based on restricted canonical

correlation analysis, which enables simultaneous spatial filtering and activation

detection. It is demonstrated that the constraints imposed on the spatial filters

precludes rotationally invariant detection performance, i.e. that the sensitivity of

the method depends on the orientation of the activated regions. In the modified

method, another set of constraints are imposed on the filters. The modified method

is shown to be invariant to the orientation of activated regions, thereby providing

increased detection performance. The experimental results shown in chapter 5 are

included in this paper, along with more results showing the increased detection

performance. The paper has been published in NeuroImage.

9.2 Paper II: Signal and anatomical constraints in adap-

tive filtering of fMRI data

This paper describes another method for adaptive filtering of fMRI data. The

method is based on bilateral filtering and only averages signals if they are similar

and reside in the same type of brain tissue. This filtering strategy is compared to
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ordinary low-pass filtering and to bilateral filtering where only signal or anatom-

ical similarity is used to constrain the filters. Results show that the combined

approach provides superior detection performance. The analysis algorithm is also

described in chapter 6, although the paper contains some experimental results

which are not presented there. The paper was presented at IEEE International

Symposium on Biomedical Imaging (ISBI) 2007.

9.3 Paper III: Robust correlation analysis with an appli-

cation to functional MRI

A method for robust estimation of correlation is presented along with generaliza-

tions to multivariate correlation analysis (the general linear model and canonical

correlation analysis). The method is based on identifying outlier segments in the

signals, and disregarding those segments when the correlation is calculated. Since

correlation is used in a wide range of applications, the presented method can be

applied in a large number of different fields. In the paper, the method is demon-

strated on synthetic fMRI data. Results show improved detection performance

when the data is corrupted by temporally localized bursts of noise. Chapter 7 is

based on the material presented in this paper.

9.4 Paper IV: Phase sensitive reconstruction for water/fat

separation in MR imaging using inverse gradient

Unlike the other papers, this one is not related to functional MRI. The focus is

instead on Dixon imaging, which is used to obtain separate images of water and

fat. While most MR images are real and positive, the images acquired in Dixon

imaging are complex. The phase is often affected by artifacts and needs to be

corrected before the desired water and fat images can be calculated. This paper

presents a phase correction method based on integration of phase gradients. The

method is compared to a correction method based on region growing, and qualita-

tive results indicate that the new method provides more reliable phase correction

in the presence of severe artifacts. A slightly more thorough description of the

method is available in chapter 8. The paper has been presented at International

Conference on Medical Image Computing and Computer-Assisted Intervention

(MICCAI) 2007.
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Discussion

Chapters 5 – 8 each introduce one method for MRI data processing. Some of

these chapters are concluded by a short discussion. This chapter complements

these discussions, and also gives a few pointers to further research.

10.1 Adaptive spatial filtering of fMRI data

Two methods for noise reduction by spatial filtering have been presented. While

these algorithms are based on very different strategies, they share the basic idea

that the analysis should be adaptive, i.e. that the filtering performed at each lo-

cation should depend on local patterns of activation in the data to be analyzed.

This idea is also shared with other analysis methods, which have been proposed

in for example Shafie et al. (1998), Shafie et al. (2003) and Siegmund and Wors-

ley (1995). Still, despite the growing number of adaptive methods providing good

detection performance, most people working with fMRI are still using simple,

non-adaptive low-pass filtering to analyze their data. Most likely, one important

reason for this is that low-pass filtering is a very well-known method for noise

reduction. Another probable reason is related to the accessibility of the differ-

ent algorithms. Low-pass filtering is implemented in the software package SPM,

while most of the adaptive filtering schemes are only available as scientific pa-

pers and, in some cases, reference implementations which are difficult to use for

most people. Thus, in order to increase the general interest for adaptive methods

for analysis of fMRI data, the algorithms need to be made available to the peo-

ple who might actually use them, either clinically or for research. Yet another

reason may be that parametric statistics can be used for thresholding the corre-

lation maps when fixed low-pass filtering is used, while adaptive filtering often

requires non-parametric statistics based on resampling. Since resampling is very

time-consuming, this is a disadvantage of adaptive methods.

It may be argued that low-pass filtering does, in many experiments, detect acti-

vated brain regions with sufficient accuracy. However, as mentioned in chapter
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4, the properties of real data vary between different experiments. In some exper-

iments, the BOLD response is strong and the activated regions are large. Then,

very good results can often be obtained by using simple low-pass filtering. In

other cases, however, the benefit of using adaptive filtering may be much larger.

Naturally, this depends both on the performed task, the available scanner equip-

ment and the required accuracy.

Different methods sometimes provide equivalent average detection accuracy, but

make different types of mistakes. For instance, at a given level of specificity, the

CCA-based method is biased towards enlarging the activated regions, while the

method based on bilateral filtering instead finds spurious activation in other parts

of the brain. This makes it difficult to perform a generally valid evaluation of the

different methods, and hence, no attempt to compare them to each other has been

made in this thesis. Instead, specific properties of the methods, such as rotational

invariance or preservation of edges, have been emphasized in the descriptions of

the algorithms.

The rotationally invariant CCA-based method is a modification of a previously

proposed algorithm, and has been shown to provide improved detection perfor-

mance. While the angular sensitivity variations are not very large even in the

previous method, this improvement may still be important in some types of ex-

periments, particularly where highly anisotropic activation can be expected. One

example of such an experiment is mapping of the visual cortex, where visual stim-

uli in different orientations generate thin lines of activation (Kim et al., 2000).

Since the CCA-based method optimizes the filters to maximize the correlation to

the BOLD model, there is a risk of misclassifying inactive pixels or voxels near the

edge of an active region. This may be a problem in some types of experiments,

and further research should aim at reducing this risk. It may, for example, be

beneficial to impose additional constraints on the adaptive filters. This could be

done e.g. by including anatomical priors or by regularizing the filter optimization

by requiring that similar filters are used in adjacent pixels or voxels.

The method based on bilateral filtering does not attempt to maximize the corre-

lation coefficient. Hence, it typically does not spread BOLD-like signals beyond

active regions. Rather, one of the most important strengths of this method is that

it averages over consistent regions. However, when there are no clear edges be-

tween active and inactive parts of the brain, consistent regions are hard to find. As

shown in chapter 6, the benefit of using bilateral filtering is smaller in such cases.

A possible solution to this problem is described in section 6.5: By using smooth

basis filters instead of individual voxels, better adaptation to smooth active regions

should be obtained.
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10.2 Robust correlation estimation

Unlike the methods discussed above, the last fMRI-related method works in the

temporal domain. By identifying segments of a signal where the correlation to

the BOLD model deviates from its typical value, this method can disregard signal

segments with atypical behavior. This improves the detection performance in the

presence of bursts of noise. Such bursts may e.g. originate from equipment used to

deliver stimuli to the patient or subject. As demonstrated in chapter 7, the method

is also useful in other applications where correlation is used to measure similarity

between signals.

A number of parameters control how outlier segments are detected, and these

parameters need to be properly tuned for the method to work well. If the char-

acteristics of the signal and the noise bursts are well known, this is not a prob-

lem. Otherwise, however, the parameter dependence may preclude the use of this

method. Further research should aim at development of methods for automatic

parameter selection, as this would be a very important improvement.

10.3 Phase sensitive image reconstruction

The last method presented in this thesis is used to correct the phase of complex

MR images. In chapter 8, this method is applied to Dixon imaging for separation

of water and fat. A qualitative comparison to another method is presented, and

visual results indicate that the presented method is more robust to severe artifacts.

Unlike the fMRI methods, however, this method is relatively straight-forward to

evaluate quantitatively. Unfortunately, no such results are available at this time.

The type of phase artifact which is present in Dixon imaging also affect inversion

recovery images. Without modification, this method should be applicable also to

correction of such images.
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