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Abstract—This paper presents the scientific outcomes of the 2018
Data Fusion Contest organized by the Image Analysis and Data
Fusion Technical Committee of the IEEE Geoscience and Remote
Sensing Society. The 2018 Contest addressed the problem of urban
observation and monitoring with advanced multi-source optical
remote sensing (multispectral LiDAR, hyperspectral imaging, and
very high-resolution imagery). The competition was based on ur-
ban land use and land cover classification, aiming to distinguish be-
tween very diverse and detailed classes of urban objects, materials,
and vegetation. Besides data fusion, it also quantified the respec-
tive assets of the novel sensors used to collect the data. Participants
proposed elaborate approaches rooted in remote-sensing, and also
in machine learning and computer vision, to make the most of the
available data. Winning approaches combine convolutional neural
networks with subtle earth-observation data scientist expertise.
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I. INTRODUCTION

O
BSERVATION and monitoring of urban centers is a ma-

jor challenge for remote sensing and geospatial analysis

with tremendous needs for working solutions and many poten-

tial applications. Urban planning benefits from keeping track

of city center evolution or knowing how the land is used (for

public facilities, residential or commercial areas, etc.). Quanti-

fying impervious surfaces and how much space is dedicated to

vegetation is as crucial for environmental problems as identify-

ing allergenic tree species or quantifying car traffic is for health

issues.

Nowadays, multiple sensor technologies can be used to

measure scenes and objects from the air, including sensors for

multispectral and hyperspectral (HS) imaging (HSI), synthetic

aperture radar (SAR), and light detection and ranging (LiDAR).

They bring different and complementary information—spectral

characteristics which may help to distinguish between various

materials, height of objects and buildings to differentiate, e.g.,

between different types of settlement, and intensity or phase in-

formation. With very high-resolution (VHR) data, object shape

and relationships between objects become more meaningful in

order to understand the content of the observed scene.

The Image Analysis and Data Fusion Technical Committee

(IADF TC) of the IEEE Geoscience and Remote Sensing Soci-

ety (GRSS) is an international network of scientists working on

remote sensing image analysis, geo-spatial data fusion, and al-

gorithms. It aims at connecting people and resources, educating

students and professionals, and fostering innovation in multi-

modal earth-observation data processing. Since 2006, it has been

organizing the Data Fusion Contest (DFC) every year, which

brings new challenges to the community in order to evaluate

existing techniques and foster the progress of new approaches.

Two clear contest objectives were pursued previously. The

first one consists in delivering previously unseen types of data

captured by novel sensors and multiple sensor fusion including

pansharpening [1], multi-temporal SAR and optical data [2], HS

data which have become reference datasets [3]–[5], multiangu-

lar data [6], or videos from space with optical data at multiple

resolutions [7]. The second goal is the release of multimodal data

1939-1404 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6857-0152
https://orcid.org/0000-0002-0059-8458
https://orcid.org/0000-0001-6890-3650
https://orcid.org/0000-0003-2984-8315
https://orcid.org/0000-0003-0111-0861
https://orcid.org/0000-0003-3729-9360
https://orcid.org/0000-0002-7321-4590
https://orcid.org/0000-0002-2936-6765
https://orcid.org/0000-0001-7162-6746
mailto:yonghaoxu@ieee.org
mailto:zlp62@whu.edu.cn
mailto:remoteking@whu.edu.cn
mailto:daniele.cerra@dlr.de
mailto:miguel.figueiredovazpato@dlr.de
mailto:emiliano.carmona@dlr.de
mailto:saurabh.prasad@ieee.org
mailto:naoto.yokoya@riken.jp
mailto:r.haensch@tu-berlin.de
mailto:bertrand.le_saux@onera.fr


1710 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 12, NO. 6, JUNE 2019

(possibly coupled with ground truth) at a larger scale than the

current state-of-the-art. This aims at enabling new families of al-

gorithms to emerge. It includes change detection [8], large-scale

fusion of optical, SAR, and LiDAR data [9], classification [4],

[5], and large-scale classification and domain adaptation [10].

The 2018 DFC actually belongs to both categories. It proposed

data captured by an innovative LiDAR system, which operates

at several wavelengths and is capable of recording a diversity of

spectral reflectances from objects [11]. It also tackled the prob-

lem of automatic classification of multi-modal optical remote

sensing data to monitor urban land use and land cover (LULC).

A dataset over a large extent of Central Houston (up to 5 km2)

was released, which comprised very high-resolution data for ev-

ery sensor and an associated semantic reference data with a very

diverse taxonomy.

Specifically, the following data were gathered, co-registered,

and annotated: multispectral LiDAR point-cloud; HS data; and

VHR color imagery. The land use classification task was cast as a

20-class problem, which comprises more detailed urban classes

than usual. For example, buildings are either commercial or res-

idential, while vegetation comprises stressed and healthy grass,

evergreen and deciduous trees. To test the limits of current sen-

sors, rare objects which correspond to specific man-made ma-

terials were also included—cars, trains, railways, and stadium

seats.

The competition was framed as three challenges: Two single-

sensor tracks for HS and LiDAR and a data fusion track for

a combination of at least two sources of data. It took place in

two phases: First, participants got access to an area in Central

Houston as well as to the corresponding reference data for train-

ing. Second, only optical multi-source data were released for

a blind classification round. The considered area was also in

Central Houston, but larger and with more diverse content. Par-

ticipants were asked to submit their classification maps on the

IEEE GRSS Data and Algorithm Standard Evaluation website

(DASE 1) [12], [13], where they could get instant evaluation and

rank in the competition.

In this paper, we report the outcomes of the competition. Af-

ter describing the dataset (see Section II), first we will discuss

the overall results of the contest as a whole (see Section III).

Then, we will focus in more detail on the approaches proposed

by the first and second place teams (see Sections IV and V,

respectively). Finally, conclusions will be drawn in Section VI.

II. DATA OF THE DFC 2018

The following multimodal optical remote sensing datasets

were preprocessed and provided to the participants:

1) Multispectral LiDAR (MS-LiDAR) point cloud data, the

rasterized intensity and digital surface model (DSM) at a

0.5-m ground sampling distance (GSD);

2) HS data at a 1-m GSD;

3) VHR color imagery at a 5-cm GSD.

The datasets were acquired by the National Center for Air-

borne Laser Mapping (NCALM) at the University of Houston

1http://dase.grss-ieee.org/

(UH) on February 16, 2017, between 16:31 and 18:18 GMT,

covering the University of Houston campus and its surrounding

urban areas. The MS-LiDAR data provided in the contest are the

first benchmark multispectral LiDAR data made freely available

to the remote sensing community.

The three remote sensing datasets and the corresponding ref-

erence data for the training area [the red area in Fig. 1(a)] were

provided on January 15, 2018. The remote sensing datasets cov-

ering the test area [the entire imagery except red in Fig. 1(a)]

were disclosed on March 13, 2018, followed by the 12-day test

phase. Fig. 1(b)–(g) show visual examples of reference data, the

color composite of MS-LiDAR, the DSM, the color composite

of HS data, and the VHR imagery, respectively. Image registra-

tion was performed on the three multimodal remote sensing data

using ground control points. A particular care was brought so

that all the sensors are lined up exactly, such that the centers of

pixels from HSI match the color and LiDAR layers.

A. Multispectral LiDAR

The multispectral LiDAR data were acquired by an Optech

Titan MW (14SEN/CON340) with an integrated camera. This

MS-LiDAR sensor was operated at three different laser wave-

lengths, i.e., 1550 (#1, near infrared), 1064 (#2, near infrared),

and 532 nm (#3, green). The point cloud data from first return for

all channels were made available. Seven LiDAR-derived rasters

were produced—three intensity rasters for each wavelength and

four elevation models representing the elevation in meters above

sea level. In particular, elevation rasters include: 1) first surface

model (i.e., DSM) generated from first returns detected on Ti-

tan channels #1 and #2; 2) bare-earth digital elevation model

(DEM) generated from returns classified as ground from all Ti-

tan sensors; 3) bare-earth DEM with void filling for manmade

structures; and 4) a hybrid ground and building DEM, generated

from returns that where classified as coming from buildings and

the ground by all Titan sensors. All rasters were resampled to

a 0.5-m grid—intensity rasters were interpolated using inverse

distance weighting to a power two with a search radius of 3 m

while elevation rasters were generated using Kriging, with a

search radius of 3–5 m. The size of the rasterized datasets is

8344 × 2404 pixels.

B. HS Data

The HS imagery was collected by an ITRES CASI 1500 sen-

sor, covering a 380–1050 nm spectral range with 48 bands at a

1-m GSD. This HS data cube has been orthorectified and radio-

metrically calibrated to units of spectral radiance (milli-SRU).

The sampling of HS imagery is mostly aligned with the VHR

imagery, even if a few, residual errors can remain due to vari-

ous factors—camera parameters, image parallax or distortion,

or sensor trajectory. The dataset was distributed in radiance and

the image size is 4172 × 1202 pixels.

C. VHR Color Imagery

The VHR color imagery was obtained by a DiMAC ULTRA-

LIGHT+ camera with a 70-mm focal length. Processing steps
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Fig. 1. Dataset overview. (a) Training (red) and test (entire imagery except red) areas, examples of (b) ground truth, (c) color composite of multispectral LiDAR
intensity, (d) DSM, (e) color composite of HS imagery, and (f) VHR color imagery.

were applied—optimization of white balance, calibration with

respect to plane instruments, and orthorectification geolocaliza-

tion. Given large parallax differences, the creation of seamless

images is extremely difficult around large buildings, resulting in

a few artifacts (data voids) around larger structures such as the

UH main stadium. The final image product was resampled at a

5-cm GSD with the size of 83440 × 24040 pixels. The image

was distributed after being divided into 14 (i.e., 7 × 2) tiles with

each tile having the size of 11920 × 12020 pixels.

D. Reference Data

For the training area [the red area in Fig. 1(a)], we provided

reference data of the 20 LULC classes. Table I defines the LULC

classes with the number of training and test samples. The refer-

ence data were prepared by the organizer based on a field survey,

open map information (e.g., OpenStreetMap), and visual inspec-

tion of the datasets distributed in the contest. The reference data

were provided only for the training area as a raster image at a

0.5-m GSD. The reference data for testing remain undisclosed

and were used for the evaluation of the submitted results at a

0.5-m GSD for all the tracks in DASE.

As shown in Table I, the distribution of the classes is imbal-

anced for training, while that of the test area is better balanced

by resampling. The training and test areas were fully separated

into different regions with a ratio of 4 to 10 to assess the gen-

eralization ability of classification systems. Different from the

2013 DFC, where the ground truth was sparse, the dense ref-

erence data provided for training during 2018 DFC were made

available to promote the advancement of deep learning-based

approaches, leading to the imbalance issue. For testing, the ref-

erence data were created in the same way as for the training area

TABLE I
LULC CLASSES

but the samples were randomly resampled from the entire test

area to balance the numbers of test samples for different classes.

III. SUBMISSIONS AND RESULTS

There are 374 unique registrations for downloading the data

and 95 teams participated in the contest. We have received a to-

tal of 1334 submissions, divided into 538, 347, and 449 submis-

sions for the data fusion, multispectral LiDAR, and HS tracks,

respectively. The ranking of the submitted classification results
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TABLE II
TOP RANKED TEAMS WITH CLASSIFICATION PERFORMANCE IN

OVERALL ACCURACY (OA), COHEN’S KAPPA, AND

AVERAGE PRODUCER’S ACCURACY (AA)

was automatically computed on DASE based on the overall ac-

curacy (OA) for each track. The evaluation was carried out at

a 0.5-m GSD for all tracks. The average accuracy (i.e., average

of producer’s class accuracies) and Cohen’s kappa were also

measured to provide additional insights into the results. Table II

provides an overview of the twelve best performing teams of the

leaderboard among all the tracks. As expected, the data fusion-

based results were competitive, occupying six out of the top 12.

It is worth noting that the best result was obtained by using only

the multispectral LiDAR data, implying the great potential of

multispectral LiDAR for the complex LULC classification.

The best ranked team for each track (Gaussian for both the

data fusion and multispectral LiDAR tracks and challenger for

the HS track) and additional top-ranking teams (dlrpba and

AGTDA) among all the tracks were awarded. The top two teams

(Gaussian and dlrpba) were determined based on OA. The so-

lutions of the four top-ranked teams were presented during the

2018 IEEE International Geoscience and Remote Sensing Sym-

posium (IGARSS) in Valencia, Spain. The four teams are given

as follows.

1) First place: Gaussian team; Yonghao Xu, Bo Du, and

Liangpei Zhang from Wuhan University, China; multi-

source remote sensing data classification via fully convo-

lutional networks and post-classification processing [14].

2) Second place: dlrpba team; Daniele Cerra, Miguel Pato,

Emiliano Carmona, Jiaojiao Tian, Seyed Majid Azimi,

Rupert Müller, Ksenia Bittner, Corentin Henry, Eleonora

Vig, Franz Kurz, Reza Bahmanyar, Pablo d’Angelo, Kevin

Alonso, Peter Fischer, and Peter Reinartz from German

Aerospace Center, Germany; combining deep and shal-

low neural networks (NNs) with ad hoc detectors for the

classification of complex multi-modal urban scenes [15].

3) Third place: challenger team; Shuai Fang, Dou Quan,

Shuang Wang, Lei Zhang, and Ligang Zhou from Xid-

ian University, China; a two-branch network with semi-

supervised learning for HS classification [16].

4) Third place, ex aequo: AGTDA team; Sergey Sukhanov,

Dmitrii Budylskii, Ivan Tankoyeu, Roel Heremans, and

Christian Debes from AGT International, Germany; fu-

sion of LiDAR, HS, and RGB data for urban LULC

classification [17].

The best performing approaches are based on deep NNs

together with post-processing and/or object detection tech-

niques. In the history of the DFC classification benchmarks,

this is the first time that deep learning-based approaches oc-

cupied the leaderboard so much and demonstrated the capa-

bility of dealing with complex urban LULC classification. In-

deed, there is a shift in the way data fusion is processed; not

anymore using ensemble methods to fuse features, including

deep learning ones, as in [10], but directly with deep net-

works. This can be attributed to the unprecedented size of the

dataset and the availability of numerous training samples for

all classes. It is worth noting that the top two teams achieved

the best results with the use of ad hoc post-processing and/or

object detection techniques to boost the classification perfor-

mance, which yields an improvement of around 15% accu-

racy. This trend is consistent with the DFC editions in 2013

and 2014 [4], [5], where classification refinement by post-

processing played a key role to address the specific classification

tasks.

Fig. 2 shows the classification maps of the four winning teams

over the entire scene. Although there are some minor differences,

the maps in the data fusion and multispectral LiDAR tracks [see

Fig. 2(a), (b), and (d)] are consistent while the one in the HS track

[see Fig. 2(c)] shows a major difference (e.g., many pixels were

misclassified as water). This implies that multispectral LiDAR

data play a significant role in the classification task. Though, it

is worth noting that these results were obtained using only the

derived data, i.e., derived DSM and intensity rasters. Deeper

analysis might be reached by processing the original point

cloud.

As derived from the overall results, vegetation classes were

relatively easy to be distinguished. In particular, evergreen and

deciduous trees were well discriminated using MS LiDAR rather

than HS data. Various types of roads (i.e., classes #10–14) were

often confused with each other since they have similar spatial-

spectral characteristics. Highways (class #14) required specific

post-processing to be discriminated from the other road classes

as reported in the winning solutions (see Sections IV and V).

Even with ad hoc detectors, it was challenging to detect cross-

walks because their materials are the same as roads, sidewalks,

and major thoroughfares. It was not possible to identify unpaved

parking lots due to intra-class variance and inter-class similarity.

In Sections IV and V, we present the solutions proposed by

the first and second ranked teams, respectively. We will detail

the winning classification methodologies and provide in-depth

analysis of the pros and cons of the solutions.

IV. FIRST PLACE: WUHAN UNIVERSITY TEAM

In this section, we describe the algorithm proposed by the

first-place team in detail. The algorithm is based on a fully con-

volutional network (FCN) [18], named as Fusion-FCN. With

well designed network architecture, hierarchical features can

be learnt from three different types of data including LiDAR

data, HS images, and VHR images simultaneously. Besides, we

further implement post-classification processing with the topo-

logical relationship among different objects based on the result

yielded by the proposed Fusion-FCN, which helps to correct the

confusions between some similar categories such as different

types of roads.
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Fig. 2. Classification maps of the winners: (a) Gaussian in data fusion track, (b) dlrpba in data fusion track, (c) challenger in hs track, and (d) AGTDA in data
fusion track.

A. Preprocessing

The data preprocessing techniques utilized in our experiments

are described as follows.

1) Resampling: Since the classification results are expected

to be at a 0.5-m GSD, both the HS image and the VHR

image are resampled at a 0.5-m resolution with the nearest

neighbor method.

2) Outlier correction: We find that there are some outliers

in the original LiDAR intensity raster data and the DSM

data, which may be detrimental to the classification. Here,

we simply apply a filtering process to these data. Those

pixel values that are greater than a threshold τ are re-

placed with the minimum value in the data. We set τ as 1e4
and 1e10 for LiDAR intensity raster data and DSM data,

respectively.

3) Normalized DSM: In order to obtain the real height of the

object from the LiDAR data, we calculate the normalized

DSM (NDSM) value with the following equation:

NDSM = DSM − DEM. (1)

4) Data normalization: For all the data utilized in our exper-

iments, we normalize each feature dimension in the data

into a range of [0, 1].
5) Image partitioning: Considering the limited memory of

the GPU utilized in our experiments, we conduct image

partitioning to decrease the memory cost. In the training

phase, the full training image is partitioned into 40 sub-

images with a size of 1202× 300. During the test phase,

since there is no need to restore the gradient of the network

anymore, the full test image is partitioned into 15 sub-

images with a size of 2404× 600.

B. Fusion-FCN

Following the great success of deep learning in computer vi-

sion field [19]–[21], many deep models have been proposed to

address the remote sensing image classification task [22]–[28].

In this subsection, we describe the proposed Fusion-FCN for

Fig. 3. Architecture of the proposed Fusion-FCN. There are three branches in
the network. Each branch acts as a feature extractor for a corresponding type of
data. A concatenation layer is adopted to implement the feature fusion.

the interpretation of multi-sensor remote sensing data in detail.

Compared with previous FCN-based approaches [29]–[32], our

method can well maintain the boundaries of different objects

and decrease the risk of spatial information loss.

1) Overview of the proposed network: As shown in Fig. 3,

the proposed Fusion-FCN consists of three branches. The

VHR image and LiDAR intensity raster data are fed into

the first branch to learn the hierarchical spatial features.

The NDSM data are fed into the second branch to learn the

hierarchical elevation features. Both these two branches

share the same architecture including three 3× 3 convolu-

tional layers and three 2× 2 average pooling layers. Those

three pooling layers in each branch are further merged into

a merging layer with a point-wise addition. This process

will make the network possesses the property of multi-

scale, which may be beneficial to the remote sensing data

classification, where different targets usually tend to have

different sizes [33]. Notice that the zero padding is uti-

lized in both convolutional and pooling layers to process
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the pixels in the boundary. In this way, the convolutional

and pooling features will share a consistent spatial size

with the input images. Then, the merging layers in the

previous two branches are further concatenated with the

third branch (i.e., the original HS image) for the purpose of

feature fusion. A 1× 1 convolutional layer and the soft-

max function are adopted to accomplish the pixel-wise

image classification.

2) Optimization: Let ŷ (u, v) and y (u, v) denote the pre-

dicted label and real label of the pixel with location (u, v)
in the image. Then, the loss function of the network can be

defined as the cross entropy between the predicted labels

and the real ones

L = −
1

rc

r∑

u=1

c∑

v=1

[y (u, v) · log (ŷ (u, v))

+ (1− y (u, v)) · log (1− ŷ (u, v))]

(2)

where r and c are numbers of rows and columns of the

data, respectively.

The stochastic gradient descent algorithm with the Adam

optimizer [34] is utilized to train the network.

C. Post-Classification Processing

Up to now, we can get a preliminary classification map

from the trained Fusion-FCN. We find that there are still some

misclassifications between similar subclasses, such as differ-

ent types of roads, since these subclasses share very similar

spectral characteristics. To this end, we further implement some

post-classification processing with the topological relationship

among different objects based on the result yielded by the pro-

posed Fusion-FCN. In order to avoid the phenomenon that some

pixels may end up without any class label in this process, we

adopt the reclassification/relabeling strategy. We first design

some target-specific criteria according to the properties of dif-

ferent objects. If the pixels satisfy these criteria, they will then

be relabeled into the corresponding category. Otherwise, their

class label will be kept unchanged. The correction for high-

way objects and the paved parking lot objects is presented as an

example.

1) Correction for highway objects: We first extract the mix-

ture results of different types of road objects including

class No. 10 (roads), class No. 13 (major thoroughfares),

and class No. 14 (highways). It can be seen from Fig. 4(a)

that most of the highway regions in the mixture results are

misclassified as roads or major thoroughfares. In order

to remove those tiny connected components, the opening

and closing operations are applied to this road network

map with a 5× 5 square structure element, as shown in

Fig. 4(b). Then, the Hough transformation [35] is utilized

to implement the line detection. The detected straight lines

are colored blue in Fig. 4(c). The final detection results for

highway objects are obtained with an empirical criterion

that the width of the highway object should be greater than

150 pixels, as shown in Fig. 4(d).

Fig. 4. Illustrations of the correction for highway objects. (a) Mixture map of
different types of roads. (b) Road network map after opening and closing oper-
ations. Connected components that contain fewer than 1e6 pixels are removed.
(c) Line detection results (colored blue) with Hough transformation. (d) Final
map for highway objects with a criterion that the width of the highway object
should be greater than 150 pixels.

Fig. 5. Illustrations of the correction for paved parking lots objects. (a) Mixture
map of roads, major thoroughfares, paved parking lots, and cars. (b) Map after
erosion and dilation operations. Connected components that contain fewer than
1e3 pixels are removed. (c) Detection map for the paved parking lots with a
criterion to enforce the car pixels in the connected components should account
for more than 15%. (d) Final map for the paved parking lot objects which are
colored in yellow.

2) Correction for paved parking lot objects: Considering the

misclassification between parking lots and different types

of roads, we first generate a mixture map with pixels clas-

sified as class No. 10 (roads), class No. 13 (major thor-

oughfares), class No. 16 (paved parking lots), and class

No. 18 (cars), as shown in Fig. 5(a). Then, morphologi-

cal operations including erosion and dilation are utilized

to remove those tiny connected components, as shown

in Fig. 5(b). The detection for the paved parking lots is

achieved with a criterion to enforce that the car pixels in

the connected components should account for more than

a threshold τcar. In order to select a suitable τcar, we first

choose the upper left parking lot in the training image as

the observed region. Both the area of the parking lot and

the number of car pixels inside this region are counted.

Based on these statistics, we calculate the car occupancy

of this parking lot and the result is approximately 27%.

Considering that the observed parking lot we chose from

the training image is almost fully occupied by cars, the

threshold used in the post-processing step is supposed to

be smaller than this value, so that the less-occupied park-

ing lots can also be considered. On the other hand, a too

small threshold may also lead to confusion for those real

road objects since the car occupancy for road regions is
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TABLE III
EXPERIMENTAL RESULTS WITH DIFFERENT STRATEGIES (REPORTED IN PRODUCER’S ACCURACY, WITH BEST RESULTS SHOWN IN BOLD)

usually much smaller. Based on the above-discussed anal-

ysis, we empirically set 15% as the final threshold. In this

way, those pure road regions can thereby be filtered, as

shown in Fig. 5(c). The final map for paved parking lot

objects is shown in Fig. 5(d).

Other techniques utilized in the post-classification processing

are briefly summarized as follows.

1) Artificial turf: The classification of this class is improved

by relabeling those road regions whose NDVI value is

greater than 0.75 into the artificial turf category. Morpho-

logical operations including opening and closing are also

used in this step.

2) Bare soil: The erosion and dilation operations with a 7× 7
square structure element are adopted to preprocess the

union set of both road and bare soil categories. Those con-

nected components whose area is greater than 5000 pixels

are relabeled into the bare soil category.

3) Train: Pixels having an NDSM value between 3 to 6 m

are first extracted from the NDSM layer. Those connected

components with a roundness value less than 0.1 are rela-

beled into the train category.

4) Stadium seats: An elevation constraint is applied on the

road categories and those pixels having an NDSM value

between 3 to 9 meters are relabeled into the stadium seats

category.

Finally, the majority voting with a window size of 5× 5 is

also utilized to further smooth the classification map.

D. Results and Discussion

In this section, we report the experimental results of the pro-

posed method. In order to further investigate the influence of

various components in the approach, such as different types of

remote sensing data and post-classification processing, we also

conduct an ablation study. A brief introduction about the com-

paring methods are given as follows.

1) HS-FCN: A modified version of the proposed Fusion-FCN

which only utilizes HS image. It contains two branches.

The first branch acts as a spatial feature extractor, where

the first three principal components of the HS image

are input. The original HS image is fed into the second

branch.

2) LiDAR-FCN: A modified version of the proposed Fusion-

FCN which only utilizes the LiDAR data. It also contains

two branches. The first branch acts as a spatial feature

extractor, where the LiDAR intensity rasters are input.

The second branch acts as an elevation feature extractor

which receives the NDSM data.

3) Fusion-FCN: The proposed approach, which utilizes the

information from VHR images, LiDAR data, and HS im-

age, is shown in Fig. 3.

4) LiDAR-FCN-post: The proposed LiDAR-FCN with post-

classification processing.

5) Fusion-FCN-post: The proposed Fusion-FCN with post-

classification processing.

As we can see from Table III, using HS image alone a high

accuracy can be hardly obtained with the proposed FCN ap-

proach. By contrast, owing to the detailed elevation information

contained in the LiDAR data, LiDAR-FCN yields an OA of

62.37%, which outperforms the result of HS-FCN over 20%.

Therefore, elevation information plays a significant role in the

urban LULC classification task. Combining both HS image and

LiDAR data along with the VHR image, the performance can

be further improved to 63.28%.

One of the advantages of the proposed approach is the

small receptive field adopted in the FCN architectures,

which helps to yield a very detailed base map where the
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boundaries of different objects are well maintained. This prop-

erty enables us to implement post-classification processing for

those misclassified categories. As shown in Table III, with the

help of post-classification processing, the OA of Fusion-FCN

can be improved greatly to 80.78%. We also conduct simi-

lar post-classification processing to the result of LiDAR-FCN

as a comparison. The quantitative result shows that the OA of

LiDAR-FCN can also be improved significantly to81.07% (even

slightly better than Fusion-FCN-post), which demonstrates that

the proposed post-processing steps are not sensitive to different

baseline methods. Compared to the result of Fusion-FCN-post,

the slight advantage of LiDAR-FCN-post mainly comes from the

classification of residential buildings (89.10% versus 78.27%).

This phenomenon also indicates that the LiDAR data plays a

significant role in the identification of the building category, and

simply stacking more features from other sensors may mislead

the classification for this category.

The results in Table III also show some limitations of the pro-

posed methods. First, although Fusion-FCN can yield a higher

accuracy on most of the categories compared with the single-

sensor-based FCN, it performs much worse on the water class

than HS-FCN. Thus, the architecture of Fusion-FCN can be fur-

ther improved to achieve a better fusion for different types of

data. Besides, most of the post-classification techniques utilized

in our experiments still rely on the expert knowledge from the

designer, and the hyper-parameters need to be tuned manually.

How to incorporate these techniques into the network training

would be an interesting topic in our future work.

V. SECOND PLACE: DLR TEAM

Recently, classifiers based on deep learning are being exten-

sively used in remote sensing [24]. On the one hand, they are

simple to operate if pre-trained or given enough available train-

ing data, are able to capture the relevant features from a wide

variety of classes, and are robust to overfitting [36]. On the other

hand, a deep network often resembles a black box in which it is

difficult to understand which features (or their combinations) are

driving the decision process. Furthermore, these classifiers may

give too much importance to higher order interactions between

pixels of the same object. Shallow NNs may sometimes have

higher generalization power [37], [38] and, in the specific case

of image classification, usually give more diverse predictions

when compared to deeper networks [39].

A comparison in [36] concludes that deep networks outper-

form shallow ones for objects which can be described at different

scales and have peculiar features for each such scale. By con-

trast, classes which are driven by their spectral characteristics,

and often exhibit a stationary texture relevant for a single scale,

may be equally or better represented by a shallow network. This

group of objects may include natural classes, such as grass and

bare earth, as opposed to man-made objects often driven by

context and for which a multi-scale analysis may yield a better

characterization.

For the 2018 DFC, we tested both architectures and verified

that a shallow network yielded indeed more homogeneous

results on natural classes, including grass, trees, water, and

bare earth. These classes were slightly underrepresented in the

classification results of a deep network, which on the other hand

yielded a significantly superior performance in recognizing

more complex structures such as different types of roads and

trains.

Based on these considerations, our approach combined the

output of both deep and shallow networks. The final classifica-

tion was derived by overlaying the output of dedicated detectors

for specific classes which, for their characteristics, needed to

be analyzed with different strategies. The complete workflow is

reported in Fig. 6, with its single steps being discussed in the

next sections.

A. Preprocessing and Feature Extraction

The multimodal dataset underwent the following preprocess-

ing steps before the feature extraction and classification stages.

1) The LiDAR-derived digital surface models (first and last

pulse) were normalized by subtracting the available dig-

ital terrestrial model, previously blurred using a Gaus-

sian filter. Additional noise and abnormal values were

then removed from the normalized digital surface mod-

els (NDSMs).

2) The MS-LiDAR intensity images exhibited both periodic

and non-periodic noise. To reduce this noise a 5× 5 me-

dian filter was applied since it produced better results than

notch filters in the Fourier domain.

3) The HS dataset was resampled to 50 cm GSD using an

order-3 spline and 42 (out of 48) spectral bands were se-

lected as input for the next stages.

Subsequently, the following features have been extracted from

the available datasets.

1) Topics: High-level features are captured by the so-called

topic vectors, derived from multi-modal latent Dirichlet

allocation (mmLDA) [40] and the bag-of-words (BoW)

model. These features are computed on image patches ex-

tracted from the HS (1-m GSD) and RGB (50-cm GSD)

images, with each image element finally represented as a

mixture of 50 topics discovered by mmLDA. Fig. 7 codes

the dominant topic for each pixel with a different color,

showing the strong correlation between some topics and

the different classes of interest. For further details, see

[15].

2) Vegetation indices: In order to separate healthy from

stressed grass, both narrow- and broad-band vegetation

indices, such as the red edge inflection point (REIP) and

the normalized differential vegetation index (NDVI), have

been extracted from the upsampled HS image.

The input stack for both shallow and deep networks (see

Section V-B) are generated at 50-cm GSD, with each pixel repre-

sented as a 100-D vector composed by 48 spectral bands (42 HS,

three RGB, and three MS LiDAR bands), the two NDSMs, and

the 50-D topic vector.

B. Classification

The scene provided for the contest covers a complex urban

environment with a large set of heterogeneous classes. The
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Fig. 6. Workflow of the classification procedure. The classification fusion step is performed according to the top right map, showing the contribution to the final
classification results from the deep convolutional NN (CNN) (sienna), shallow fully connected NN (green) and ad hoc detectors (blue). Further details in Fig. 10.

Fig. 7. Illustration of the extracted topic features (insert). The colors represent
the dominant topic for each pixel.

classes are not only diverse and inhomogeneous in terms of

scale, shape, context, and spectral properties, but their distribu-

tion is also highly imbalanced in the training set (cf. Table I). If

high accuracies are to be attained for all or most classes, such

a challenging scene calls for an integrated approach combining

generic classifiers and class-wise tailored detectors in a com-

plementary fashion, as opposed to a unified approach with a

single generic classifier. With this in mind, our classification

strategy strove to combine: 1) base classifiers, trained on a

simplified set of classes to achieve a first generic but accurate

classification map, and 2) a number of ad hoc detectors, specifi-

cally tailored to identify one or two classes thereby refining the

results of the base classifiers. The next paragraphs detail our

implementation of the base classifiers, ad hoc detectors as well

as their combination to form our final classifier.

1) Base Classifiers: Classifying the 20 classes of interest

listed in Table I at the same time is very challenging, because of

the different features driving the recognition of specific classes.

For example, shape features are dominant for the class “cars,”

while spectral features are less important as the color of a car can

vary a lot. The opposite is true for the class “water.” Therefore,

it is considerably easier to work with a restricted set of classes

where semantically similar classes are merged, while others are

altogether excluded. There is however a tradeoff between re-

stricting the set of classes and obtaining a good overall result

in the classification task. After several trials during the training

phase of the contest, we defined a simplified set of 16 classes

where grass (classes 1 and 2) and buildings (classes 8 and 9)

are merged, while crosswalks and cars (classes 12 and 18) are

excluded. The merging of road-like classes proved disadvan-

tageous, as we did not manage to obtain an ad hoc road-like

detector outperforming the base classifiers.

It was in the simplified set of 16 classes described above

that our base classifiers were trained. In an effort to exploit the

potential of deep learning and at the same time the simplicity

of traditional classifiers, we adopted two complementary base

classifiers—a deep CNN and a shallow fully connected NN. A

multi-class support vector machine with linear kernels was also

used but discarded early on due to its inferior performance. The
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Keras API [41] with TensorFlow backend was used to implement

and train both CNN and NN.

The structure of the CNN can be summarized as eight convo-

lutional, two fully connected, and a final softmax layer. For the

classification of a pixel, the network uses as input a matrix of

25 pixels × 50-D features. The 25 pixels are obtained from the

patch of 5 × 5 pixels around the pixel of interest, while the 50-D

features correspond to the first half of the 100-D feature vector

previously introduced. Only the 50-D topic vector of the pixel

under classification is used in the final steps of the CNN (in-

corporated to the first fully connected layer). The convolutions

are selectively applied along the spatial (one dimension), spec-

tral (one dimension), or combined (two dimensions) dimensions

of the input data. The design of the network was chosen after

investigating different configurations and contains 1.324× 106

trainable parameters. At the final steps of the network, two fully

connected layers are used before the softmax layer that uses

a categorical cross-entropy loss function for the classification

into the simplified set of 16 classes. The CNN makes use of

the Adam optimizer [34] with the amsgrad option. Amsgrad

uses non-increasing step sizes, and this may avoid convergence

problems which are present in the Adam algorithm [42]. In our

preliminary tests, amsgrad showed on average lower training er-

rors. During training, special care was paid to reduce overfitting

given the limited amount of training data. For this reason, L2

regularization is introduced in all convolutional layers, a 25%

dropout is added between the two fully connected layers and the

network training is stopped after a small number of epochs.

The structure of the NN consisted of a two-hidden-layer fully

connected NN with a final softmax layer and a categorical cross-

entropy loss function. Considering the results obtained on the

training set, we opted for 128 × 64 hidden nodes with rectified

linear unit activations, stochastic gradient descent optimizer with

batch size of 128, and early stopping after five epochs. In order

to handle the imbalanced distribution of classes in the training

set (cf. Table I), weights inversely proportional to the number of

class samples were applied during training. This ensured that the

network learned the features of even the most underrepresented

classes. The NN base classifier was fed with different combina-

tions of features, with the final results obtained with the 100-D

feature vector containing HS, RGB, MS LiDAR, NDSMs, and

topics described in Section V-A. The network contains a total

of ∼ 22 k trainable parameters. Ensembles of five and ten NN

classifiers, merged with majority voting, have also been tested.

These led to mild and negligible improvements in training and

testing accuracies, respectively, so they were not used to produce

the final results.

2) Ad Hoc Detectors: The base classifications described in

the previous section were complemented with dedicated detec-

tors for bare earth, residential and non-residential buildings,

crosswalks and cars. These ad hoc detectors are briefly illus-

trated in the following paragraphs; see also [15] for a comple-

mentary description of the methods used in each detector.

1) Bare earth: This class, driven by spectral features, was

improved by applying a spectral angle mapper classifier

Fig. 8. Detail of crosswalk detection in VHR RGB data. The detected cross-
walks are highlighted in red.

Fig. 9. Detail of pixel-wise car segmentation in VHR RGB data. The detected
cars are highlighted in blue.

to the HS data, complemented by two cycles of morpho-

logical openings and closings (with a disk of radius two as

the structuring element). The resulting map was overlaid

on the base classification.

2) Residential and non-residential buildings: Both types of

buildings were segmented by thresholding the NDSM

without making a distinction between residential and non-

residential. This separation was achieved with a random

forest classifier using features extracted from RGB and

NDSM [43], and later refined by overlaying the output

of a fully CNN (same input features) for the residential

buildings class only.

3) Crosswalks: A limited number of samples for crosswalk

patterns was selected in the 5-cm RGB ground truth and

used to train a detector based on normalized cross corre-

lation. Fig. 8 illustrates the details of the results for this

dedicated crosswalk detector.

4) Cars: After extending the labeling of cars in the train-

ing set in a semi-automatic way, a pre-trained fully CNN

[44] was trained on the 5-cm RGB dataset. The resulting

network was then used to perform pixel-wise car segmen-

tation as shown in Fig. 9. The car mask was improved by

applying morphological opening and dilation (with a disk

of radius one as the structuring element) and by masking

out cars on the highways which were yielding some false

alarms.

3) Final Classifier: The results of the base classifiers and ad

hoc detectors need to be carefully combined to retain the merits

of each individual method. Fig. 6 details the adopted end-to-

end workflow of our final classifier, including the classification

fusion step. Fig. 10 shows instead, from left to right: 1) the

accuracy obtained in the training phase using different input

datasets; 2) the results of the base classifiers (CNN and NN) and

their combination on the 16-class problem detailed above; 3)

how these are improved by ad hoc detectors and post-processing;

and 4) subsets of classification results that help justifying our
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Fig. 10. Summary of classification results. (a) Classification accuracies (producer’s accuracies) and final classifier components. The training accuracies for sample
NN base classifications are shown when using HS only (column 4), LiDAR only (column 5), and HS, LiDAR, and RGB altogether (column 6). The per-class
test accuracy of the base classifier is reported for different combinations of NN and CNN (with and without the output of ad hoc detectors) in columns 7–10,
with the dominant base classifier color-coded in the background and values reported in blue wherever ad hoc detectors or post-processing played a relevant role
in recognizing or improving a specific class. The final results are reported in the last column. The overall accuracy, Cohen’s Kappa, and average accuracy for all
classifiers are reported in the last three lines. (b)–(e) Details of sample classification maps using the CNN (left) and NN (right) base classifiers for evergreen trees,
grass (healthy and stressed), major thoroughfares, and railways. Such differences are mostly confirmed by the performances of NN and CNN on the undisclosed
test samples.

choices for the classification fusion. Please refer also to [15] for

additional details regarding our classification procedure.

Overall, the NN base classifier performs better for natural

classes such as grass, trees, or artificial turf. These are classes

for which pixel-wise information is usually enough—without

taking into account more complex contexts—to achieve a satis-

factory classification. Note nevertheless that the NN base classi-

fier does consider spatial interactions to some degree through

the extracted topic features, which can be useful to charac-

terize stationary textures such as tree crowns for evergreen

trees. Fig. 10(b) explicitly shows that NN outperforms CNN for

this class. The same happens for grass (healthy and stressed),

cf. Fig. 10(c). In contrast, CNN outperforms NN for man-

made structures including buildings, roads, and trains. These

are classes where context and shape information—at which deep

convolutional networks excel—are crucial for classification. The

superior performance of CNN is evident for major thoroughfares

[see Fig. 10(d)] and railways [see Fig. 10(e)].

The relative advantages of NN and CNN were analyzed during

the training phase, and have been at the basis of the classification

fusion strategy shown in the top right of Fig. 6. In particular,

our final classifier consisted of a sequential overlay of three

components:

1) the full CNN classification map;

2) the NN classification map for selected classes (see Fig. 10

for selection);

3) the ad hoc detector maps for the corresponding classes.

The dominant classifiers for each class are identified in the

table of Fig. 10(a) (columns 7 through 10). As the CNN output

is used as a bottom layer for the final classification map, final

results contain no unlabeled pixels.

4) Classification Refinements and Post-processing: In order

to get our final classification results the following refinements

were applied.

1) Stadium seats: A dedicated stadium seat detector based

on the architecture of the NN base classifier but using a

restricted set of input data was designed and trained to

improve the prediction for this class.

2) Healthy and stressed grass: At first, the REIP was used

as a discriminative feature since it has been shown to be

more effective at detecting vegetation stress than broad-

band indices such as NDVI [45]. Nevertheless, these first

attempts failed, as the central wavelengths of the avail-

able bands differed significantly from the optimal spectral

features needed to correctly compute the REIP, which em-

ploys narrow bands and is very sensitive to such variations.
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Fig. 11. Overview of test scene and corresponding classification. Top: RGB mosaic of the whole University of Houston scene. Middle: Classes belonging to the
ad hoc detectors and classifiers—bare earth (sienna), residential buildings (yellow), non-residential buildings (pink), crosswalks (cyan), and cars (red), overlaid on
the image directly above. Bottom: Final classification results.

Therefore, in the end a simpler approach using NDVI has

been preferred. The grass detected by the NN base clas-

sifier was separated into healthy and stressed components

with an NDVI threshold of 0.535.

3) Highways: The confusion between highways and similar

classes was reduced by extracting the three main highway

directions with the help of the Hough transform. Samples

formerly classified as roads or major thoroughfares close

to the extracted highway directions were reclassified as

highways.

4) Morphological filtering: Morphological openings and

closings (with a disk of radius two as the structuring ele-

ment) were applied three times to all classes except cars

and crosswalks.

C. Discussion

Our final classification map is presented in Fig. 11 along with

the original RGB scene and the outcome of our ad hoc detec-

tors. As detailed in Table II and Fig. 10(a), our last submission
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achieved an overall accuracy of 80.74%, a Cohen’s Kappa of

0.80, and an average accuracy of 76.32%. Given the complexity

of the scene and the detailed list of LULC classes, we consider

these to be rather satisfactory results. The high average accuracy

obtained (cf. Table II) is particularly noteworthy. As mentioned

in Section V-B, our classification strategy was designed to learn

the features of all the classes evenly, in an effort to maximize

the average classification accuracy. This necessarily implied the

overweighting of underrepresented classes (e.g., water) in the

training set. Therefore, a better overall accuracy could have been

obtained with the same classification scheme at the expense of

an inferior average accuracy.

Before examining the strengths and pitfalls of our approach

on a class-by-class basis, it is worth pointing out that we have

only participated in the data fusion track of the contest. The

importance of data fusion for our classification strategy is evi-

dent when considering the sample training accuracies for the NN

base classifier in Fig. 10(a) (columns 4–6). The three columns

show the training accuracies per class when using only HS data,

only LiDAR data, and HS, LiDAR, and VHR RGB data. For

all classes, the addition of data acquired from different sensors

yields improvements ranging from mild (for natural classes such

as grass or trees) to substantial (for man-made objects such as

buildings or roads). The overall and average training accura-

cies increase significantly, as does Cohen’s Kappa from 0.66

(HS only) or 0.61 (LiDAR only) to 0.81 (all). Our classification

procedure thus clearly benefits from the availability of multi-

modal data for training (and eventually testing) and it would

yield poorer results for single-source datasets. Although the rel-

evance of data fusion is by no means surprising, it is important

to explicitly show it for the classification of complex scenes as

the one considered here.

The performance of CNN, NN, and their combination on

the 16-class problem is reported in columns 7–9 of Fig. 10(a).

Merging the CNN and NN base classifiers yields an improve-

ment of 7.4% with respect to the use of CNN alone. If the four

missing classes were ignored, the joint classifier (column 9)

would yield an overall accuracy around 73%. Even though NN

clearly outperforms CNN for trains, major thoroughfares, and

sidewalks, the user’s accuracy (not reported) is much lower in

NN results with respect to CNN, as the false alarms increase

at least by a factor of two. Therefore, we believe that adopt-

ing CNN as the classifier of choice was correct also in these

cases.

The results of applying post-processing steps and overlaying

the ad hoc detectors are reported in columns 10–11, for the cases

of CNN alone and the combined use of CNN and NN, respec-

tively. Also here, the overall accuracy improves considerably

(6.4%) if the output of both classifiers is used. This confirms that

the classification procedures of CNN and NN are complemen-

tary, and both contribute significantly to the final performance.

The test accuracies obtained for our final submission, reported

in the last column in Fig. 10(a), show several interesting trends.

First, the ad hoc detectors performed very well, with test ac-

curacies above or very close to 90%, including cars (97.0%),

bare earth (94.0%), non-residential buildings (90.6%), and res-

idential buildings (83.1%). The exception is crosswalks with

an accuracy of 30.6%. The main difficulty in recognizing this

class correctly was the difference in shape, size, and color of

the crosswalks across the scene—the set used for training the

template matching algorithm could capture all these variations

only partially. Second, the CNN and NN base classifiers excelled

with accuracies over 90% for artificial turf (95.7%, NN), trains

(93.4%, CNN), railways (93.2%, CNN), and water (90.8%, NN).

The performance for artificial turf and water is remarkable given

their reduced number of samples in the training set (cf. Table I).

Moreover, the NN classification of evergreen and deciduous

trees (96.5% and 81.6%, respectively) was effective without the

need for an ad hoc detector. The refinements applied to the final

classifier also proved effective as attested by the test accuracies

for healthy grass (94.5%), stressed grass (88.7%), and stadium

seats (92.4%).

However, the performance of our classification scheme shows

some limitations. Apart from crosswalks (discussed above), the

other cases with test accuracies below 80% are road-like classes

(roads, sidewalks, major thoroughfares, and highways) and park-

ing lots (paved and unpaved). The task of identifying and

separating between roads (70.4%), sidewalks (60.3%), major

thoroughfares (35.7%), and highways (72.4%) proved very diffi-

cult even for the CNN base classifier. Our results could certainly

be improved with dedicated graph-based road segmentation al-

gorithms. On the other hand, despite several attempts during

the submission phase of the contest, our classifiers performed

poorly for paved parking lots (65.6%) and completely missed

unpaved parking lots (0.0%). We could not pinpoint the reason

for this shortcoming in the test phase.

The presented approach shows the advantages of combining

different strategies for the classification of complex scenes ac-

quired by multimodal sensors. On the one hand, context-driven

classes are better characterized by deeper NNs. On the other

hand, for natural classes a shallower network yields more ho-

mogeneous results as the focus is shifted from an object to a

single image element. Finally, classes demanding specific de-

tectors have been analyzed separately, and for the case of cars

a pre-trained deep network went a long way in improving de-

tection results. The use of such different techniques introduces

nevertheless additional problems—the parameters to be adjusted

and the computational resources increase considerably, hinder-

ing an automatic or semi-automatic production of final classifi-

cation results comparable to the ones presented here.

VI. CONCLUSION

In this paper, we summarized the organization and we pre-

sented the scientific results of the 2018 IEEE GRSS DFC, or-

ganized by the IEEE GRSS IADF Technical Committee. We

described the multi-source data and the outcomes of the land-

use/land-cover classification competition. We analyzed the algo-

rithms used by the participants, with a focus on the two winning

strategies.

Regarding the algorithms, given the variety of classes (20)

and the amount of available data for training, convolutional and

shallow NNs performed extremely well. They also prove to be

handy for data fusion, even if particular care is required for the

design of the architecture. This is a change with respect to pre-

vious DFC [5], [10] where limited labeled data led to the use
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of other algorithms such as random forests or boosting. Indeed,

it shows how our community can benefit from extended, la-

beled datasets and should pursue the development of such public

resources.

It is also worth noting that for both winning entries, ad hoc

classifiers and post-processing also made the difference, allow-

ing a 15% increase of the overall accuracy. While decision fu-

sion methods were already proposed in this paper, much work

remains to be done for integration and fusion of expert knowl-

edge into the NNs, especially to do it automatically. Moreover,

such expertise usually makes sense for everyone and validates

the decision. Further research to make CNN explainable will

be profitable to help the public approval and diffusion of these

methods. With respect to the data, fusion of multiple sources and

even multi-spectral LiDAR alone prove to be especially infor-

mative since the best LULC classifications were obtained with

such sensors (accuracies over 80% overall and 71% on average).

Also, LiDAR information was processed using rasterized 2.5D

only. This suggests promising paths for developing approaches

able to process and classify real 3-D outputs of the sensors.

After the contest, the data has been made available again and

will remain in open access for the benefit of the community. Peo-

ple interested can find all the relative information on the IEEE

GRSS website.2 After registering on the IEEE GRSS DASE

server,3 one can download the training data with the correspond-

ing labels or the test data and then submit classification results

to obtain the performance statistics, compare with other users

and hopefully, improve the results presented in this paper. We do

believe this dataset might have a great impact for fostering re-

search in data fusion, but also for development of single-sensor

processing, since it is the largest freely available HS dataset,

with ten times more labeled data than the widely used Salinas or

Pavia datasets [46], or the first available multispectral-LiDAR

dataset.
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