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Advanced Multilevel Solution of 
the EHL Line Contact Problem 
The application of multilevel multi-integration to the calculation of the elastic defor­
mation integrals and the use of an alternative relaxation process in the multilevel 
solution of the governing equations have resulted in an algorithm solving the EHL 
line contact problem in 0(n In n) operations, also for highly loaded situations. The 
reduction in computing time thus obtained was used to solve the problem using large 
numbers of nodal points and to study the pressure spike. The presented algorithm 
will enable fast and accurate solution of surface roughness and transient problems. 

1 Introduction 

Over the years, following among others Petrusevich [1] and 
Dowson and Higginson [2], Elasto Hydrodynamic Lubrica­
tion (EHL) has received much attention in tribological 
literature. This extensive interest in both EHL line- and point 
contact problems has resulted in several numerical algorithms 
of varying efficiency for solving these problems. Most of the 
papers deal with the line contact problem and the most widely 
used numerical solution method is a system Newton Raphson 
approach [3-7]. One of the disadvantages of this method with 
respect to the solution of the EHL problem is that the com­
plexity is 0(/73); if n is the number of calculational points. 
Because of the elastic deformations, the Jacobian matrix is a 
full nxn matrix, and inverting it requires 0 ( n 3 ) operations. 
For large n, i.e. for point contact problems, this will lead to 
rather excessive computing times. This problem was partly 
overcome by using large mainframe and super computers and 
local grid refinement techniques. Another disadvantage of the 
method is that, with increasing load, the Jacobian matrix 
becomes almost singular, making the solution of highly loaded 
situations rather cumbersome. Finally, a straightforward ex­
tension of a Newton Raphson algorithm to point contact 
problems is not possible because of the cavitation condition, 
see [4]. Improvements regarding both complexity and stability 
have been reported. For instance, Houpert and Hamrock [6] 
managed to obtain solutions for high loads, and recently 
Chang et al. [8] reduced the complexity to 0(n2) by trun­
cating the Jacobian matrix to a tridiagonal matrix, discarding 
the terms that reflect the global relation between filmthickness 
and pressure caused by the elastic deformation. However, 
since these terms become increasingly important for higher 
loads, the truncation can not alleviate the difficulties of solv­
ing the highly loaded situations. 

An alternative method of solution was introduced by 
Lubrecht et al. [9-11]. They employed a Gauss Seidel relaxa­
tion process to solve the equations together with multilevel 
techniques to accelerate convergence. The complexity of their 
multilevel algorithm was 0(n2) mainly caused by the calcula­
tion of the elastic deformation integrals (see also section 4). 
The reduction in computing time, enabled them to solve both 

line- and point contact problems with a rather large number of 
nodes on a relatively small computer (VAX 11/750). Solutions 
up to a maximum Hertzian pressure of ±2.0 GPa have been 
presented. However, with increasing load, underrelaxation 
and local relaxation with local film thickness updates were 
needed to obtain a stable relaxation process. 

This paper describes the development of a new relaxation 
process for solving the EHL line contact equations. No local 
updates or recalculations of film thicknesses are needed and 
also large underrelaxation factors can be avoided. Further­
more, the complexity of the calculation of the elastic deforma­
tion integrals was reduced from 0 ( n 2 ) to 0{n In n) by using a 
newly developed multilevel technique "multilevel multi-
integration." The result is an algorithm solving the EHL line 
contact problem up to maximum Hertzian pressures well over 
4.0 GPa in 0(n In n) operations. With the presented 
algorithm the EHL line contact problem can be solved using 
over 30.000 calculational points in a reasonable computing 
time on a mini computer. This allows a detailed study of 
characteristic features such as the pressure spike in many 
situations. Furthermore, it will enable the fast solution of 
transient and surface roughness problems. 

2 Equations 

All equations are made dimensionless using the Hertzian 
dry contact parameters, (see nomenclature) The Reynolds 
equation then reads: 

d ( dP \ _ 
~d~XK dX ) ~' 

d(pH) 
dX 

= 0 (1) 

with the cavitation condition: P>0. 
e is given by: 

pH3 

where 
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The dimensionless lubricant density p is assumed to depend 
on the pressure according to the Dowson and Higginson rela­
tion [2]. Moreover, the Roelands viscosity pressure relation is 
used. It reads: 

'-i-^tK)1-']] « 
where P0 =p0/ph and p0 = 1.98 108 [Nm"2] 

Using second order central discretization for the first term 
of (1) and first order upstream discretization of the wedge 
term, the discretized Reynolds equation in node / on a grid 
with mesh size A reads: 

A"2(e,- mpi- I - (e,--1/2 + «/+ \ii)P; + e,-+ 1/2A+1) 

- A " 1 (/>,#,-£,_ ,#,_,) = <> (3) 
with the cavitation condition Pt > 0. 
Similarly the dimensionless film thickness equation reads: 

H(X)=H0+
 l-\X" P(Y)\a\X-Y\dY (4) 

2 7T J * , , 

Discretization results in: 

Hi=H0+^--±-tKtPj (5) 

where 

*r=('W+4-)4(1"(l'-^T-lA)-1) 

-("-rMKh-J-h)-) 
The dimensionless force balance equation, stating that the in­
tegral over the pressure should equal the externally applied 
load, reads after discretization: 

(Pj+PJ+l) * = 0 (6) 
j=i 

3 Multigrid Method 

The three discretized equations (3), (5), and (6) are 
simultaneously solved using multilevel, i.e. multigrid, tech­
niques. For a description of the multigrid method applied to 

EHL problems the reader is referred to Lubrecht et al. [9-11]. 
For more information on multigrid techniques in general the 
reader is referred to Brandt [12]. An introduction to multigrid 
techniques is given in [13]. In this paper only the relaxation 
process, which is in fact the basis of the algorithm, is discussed 
in detail in section 5. 

4 Multilevel Multi-Integration 
Recently Brandt and Lubrecht [14], [15] developed a 

multilevel algorithm for the fast calculation of integrals of the 
type of the elastic deformation integrals in equation (4). As 
can be seen from equation (5) the calculation of the elastic 
deformation in one point requires O(n) operations and thus 
the calculation of all H, costs 0(n2) operations. Using 
multilevel multi-integration computing time can, without loss 
of accuracy, be reduced from 0(n2) to 0(n In n), see [14]. 
For large n this is approximately O(n) since In (n) increases 
fairly slow with n. This technique was implemented in the 
multilevel solver of equations (3), (5), and (6). It is extensively 
described in [14] and [15] and will not be discussed here. 

5 Relaxation Process 

One of the problems encountered in the numerical solution 
of the EHL line contact problem is that the coefficient e in (1) 
varies several orders of magnitude over the calculational do­
main. In both the inlet and the outlet region e « l since in 
those regions ij is small and if3 large. On the contrary, in the 
contact region ij is very large and H3 is relatively small and 
thus e<<l . The relaxation process employed in a multilevel 
solver of the equations (3), (5), and (6) should be a good error 
smoother for both large and small values of e. The perfor­
mance of the multilevel algorithm (incorporating this relaxa­
tion process) is determined by the efficiency of this relaxation 
to reduce the amplitude of error components with wavelengths 
of the order of the mesh size. Regarding the low frequency 
components of the error, the only demand the relaxation pro­
cess should meet is that they are not amplified, otherwise the 
process will be unstable. The amplitude reduction factor of 
those components is in fact not very important since they are 
solved on the coarser grids. 

A new relaxation process for the EHL line contact problem 
was developed based on the results obtained from the analysis 
of some model problems resembling the full problem. The 
first problem studied was the following: 

Nomenclature 

b = half-width Hertzian con­
tact region, 

b = 
8wR 
T T E ' 

E' = reduced modulus of 
elasticity, 

2 _ 1 - v\ \-v\ 
E' E[ E2 

E = elasticity modulus 
(Young's modulus) 

G = material parameter, 
G = aE' 

H = dimensionless film 
thickness, 

hR 

H0 = integration constant in 
dimensionless film 
thickness equation 

Hmin = dimensionless minimum 
film thickness (Moes) 

Hm = dimensionless minimum 
film thickness 

h . R 

b 2 

^min = minimum film thickness 
h = film thickness 

K\j^f\ = discretized kernel in film 
thickness equation 

L 

M 

n 

O(n) 
P 

Ps 
p 

Ph 

= dimensionless material 
parameter (Moes), 
L = G(2U)lM 

= dimensionless load 
parameter (Moes), 
M=W(2U)~l/2 

= number of calculational 
points 

= proportional to n 
= dimensionless pressure, 

ph 
= dimensionless spike height 
= pressure 
= maximum Hertzian 

pressure, 
2w 
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d /' dP\_ 
lx\t~dx~)~' 

dH 

~dX~ 
- = 0 

simple Gauss Seidel relaxation, changes 5, and — 5,-
(') calculated for respectively P, and P ,_ i . All P, 's 

where H is given by equation (4) and e was initially assumed to 
be a constant. This equation is in fact a linearized version of 
the Reynolds equation. Discretization of the equation results 
in: 

A-'(e,- iPi-\-ki- < + e,-4. 2)-f>; + ei+i/2-P;+i) 

- ( / / , - / / , _ 1 ) = 0 

In case of constant e this equation reduces to: 

—(P,_i -2P, + Pi+i)~(#/~H,_,) = 0 

(8) 

(9) 

Since this equation is linear, a smoothing rate analysis can 
be carried out for different types of relaxation. For detailed 
information on smoothing rate analysis the reader is referred 
to [12]. In case of this model problem the smoothing rate, i.e., 
the amplitude reduction factor for an error component with a 
certain wavelength, depends on e/A, and is thus grid depen­
dent. To measure the performance of the relaxation in a 
multilevel algorithm the asymptotic smoothing rate is used. 
This is the maximum of all smoothing rates for the high fre­
quency components. This asymptotic smoothing rate deter­
mines the error reduction that can be obtained in one coarse 
grid correction cycle ( F o r If cycle, see [12]). Two relaxation 
types were considered in particular. The first is simple Gauss 
Seidel relaxation on P without local updates or recalculations 
of film thicknesses. This relaxation is very well suited to solve 
the problem for large values of e/A, resulting in an asymptotic 
smoothing rate of 0.5. This is no surprise since for large values 
of e/A the equation resembles the one dimensional Poisson 
equation, because the second term in equation (9) becomes 
negligible compared with the first term. For small values of 
e/A however, low frequency components of the error are no 
longer reduced and the Gauss Seidel relaxation diverges. Local 
recalculation of some filmthicknesses in the vicinity of the 
point where the pressure is changed does not alter this 
behavior. The lower limit of the stability range is approx­
imately e/A = 0.01. However, on very coarse grids the relaxa­
tion may even be unstable for larger values of e/A. 

A Jacobi dipole relaxation on the contrary, is very well 
suited to solve the problem for small values of e/A and even 
for e = 0 (asymptotic smoothing rate 0.4). Instead of changing 
only P) to satisfy the discrete equation in gridpoint / as in the 

are 
are 

simultaneously adjusted at the end of the relaxation sweep. 
This relaxation process becomes unstable for larger values of 
e/A. If an underrelaxation factor of 0.6 is used the relaxation 
is stable even for large values of e/A. For values of e/A where 
both relaxation types are stable, the Gauss-Seidel relaxation 
generally outranks the Jacobi dipole relaxation. 

Using the overlap in stability regions of both relaxation pro­
cesses, provided an underrelaxation factor 0.6 is employed in 
the Jacobi dipole relaxation, an efficient multilevel algorithm 
solving equation (9) for all values of e was developed. On grids 
where e/A< 0.01, generally the coarsest grids, the Jacobi 
dipole relaxation was employed, whereas on grids where 
e/A > 0.01 the simple Gauss Seidel relaxation was used. 

The next step was allowing e to vary over the domain and 
thus to develop an algorithm solving equation (8) for different 
functions e (X). For instance e (X) was chosen: 

e(X)-
'X6^ \X\>1 

0 otherwise 
(10) 

A function that resembles the e occurring in equation (1). In 
the multilevel algorithm described above, the relaxation type 
used on a specific grid depended on the value of e/A on that 
grid. Since relaxation is, by its nature, a local process, both 
relaxation types can also be combined on one grid. Thus, in 
regions of the domain where e/A > 0.01 simple Gauss Seidel 
changes are applied, whereas in regions where e/A < 0.01 
Jacobi dipole changes are calculated and applied when the 
sweep is completed. Using this hybrid relaxation type in a 
multilevel solver for equation (9) with e(X) given by (10) a 
reduction of the residuals of one order of magnitude per 
coarse grid correction cycle (V(2,2) or W(2,2) cycle) was easily 
obtained. 

Finally this hybrid relaxation process was successfully im­
plemented in a multilevel solver of the full nonlinear EHL line 
contact problem. Because of the nonlinearity, an underrelaxa­
tion factor varying from 0.5 to 1.0 was used for the Gauss 
Seidel changes and similarly an underrelaxation factor varying 
from 0.3 to 0.6 (the aforementioned upper limit) for the 
Jacobi dipole changes. The relaxation process was found to be 
stable up to maximum Hertzian pressures well over 4.0 GPa. 

6 Calculational Details 

Most solutions presented in this paper have been calculated 

Nomenclature (cont.) 

Po constant in Roelands' 
relation 

Pi, 

R = reduced radius of 
curvature 

U = dimensionless speed 
parameter, 

Vo^s 
2U--

E'R 

us = sum velocity 
W - dimensionless load, 

w 
W=-

E'R 

w = load per unit width 

X = dimensionless coordinate, 

X 

z 

a 

a 
A 

e 
X 

X=± 
b 

= coordinate 
= Roelands' pressure 

viscosity parameter 
= dimensionless pressure 

viscosity index, a = aph 
= pressure viscosity index 
= distance between two 

neighboring gridpoints 
= coefficient in equation 
= dimensionless velocity 

parameter, 

X = 6 ^ 2 

vPh 

V 

V 
Vo 

V 

P 

Po 

P 

= Poisson's ratio 
= viscosity 
= viscosity at atmospheric 

pressure 
= dimensionless viscosity, 

-_ *> 
Vo 

= dimensionless density, 
P 

P=— 
Pn ro 

= density at atmospheric 
pressure 

= density 
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Table 1 Computing time in hours:minutes:seconds as a func­
tion of the number of nodes. (HP 9000/800 computer) 

level 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

n 

225 

449 

897 

1793 

3585 

7169 

14337 

28673 

57345 

114689 

2V-cycles 

12 

24 

. 48 

1:38 

3:17 

6:38 

13:20 

26:50 

1:03:00 

2:08:00 

2W-cycles 

25 

58 

2:18 

5:18 

11:44 

27:45 

58:30 

2:04:00 

5:04:00 

10:45:00 

M-5,10,20 and L 4 0 

-4.00 -3.50 -3.00 
0.00 

150 

EHL Line Contact. 

Fig. 2 Pressure distribution and film thickness for (W = 5, L = 
M = 10, L = 10(B), and M = 20, L = 10(C) 

10 (A), 

M i l l 1 1 1 I I I I I 
0.1 0.2 05 i 2 5 lo 20 50 iOO 200 500 

Hmin according to formula presented by Lubrecht [11] M 
alphaxPhertz 

* Calculated values 

Fig. 1 The calculated value of the Moes dimensionless minimum film 
thickness number (*) as a function of M and L. The solid lines give the 
predicted values according to the formula presented by Lubrecht [11]. 
The dashed lines are lines of constant a. 

on a domain extending from Xa = - 4 to Xb = 1.5. In some 
low load situations however, a larger inlet area was used to 
avoid numerically starved lubrication whereas in highly loaded 
situations a smaller inlet area was sufficient. A Full Multi Grid 
algorithm [12] with 2 V cycles per refinement gave converged 
solutions up to the level of the truncation error for low load 
situations. With increasing load the solution of the force 
equilibrium equation becomes more difficult. This equation is 
in fact a global boundary condition and is only relaxed on the 
coarsest grid (by adjusting H0) [9], [12]. Thus for higher loads 
the coarsest grid should be visited more often. In those situa­
tions 2 W cycles were used. In all cases the coarsest grid 
employed in the V or W cycle consisted of 15 nodes. Con­
vergence to the level of the truncation error was checked as 
described in [9] and [10]. Calculation times as a function of 
the number of nodes for Full Multi Grid with either 2 V or 2 W 
cycles per refinement [12], are given in Table 1. The results, 
presented in this table clearly demonstrate the 0(n In n) com­
plexity of the algorithm. The larger increase going from level 
12 to 13 is caused by the change from a 6th order to a 10th 
order transfer operator in the multilevel calculation of the 
elastic deformation integrals, in order to keep the additional 
error introduced by the multilevel calculation small compared 
to the discretization error. All calculations have been carried 
out on a HP 9000/800 computer. 

7 Results 

All results are presented in terms of the Moes dimensionless 
parameters. The calculated dimensionless minimum film-
thickness number Hm[a as a function of the load parameter M 
and material parameter L is presented in Fig. 1. Several 
asymptotic solutions, known from literature, can be drawn in 
this plot. These asymptotic solutions are: the rigid-isoviscous 
asymptote, describing the solid as nondeformable and the 
fluid as being of constant viscosity, calculated by Martin [16] 
and Giimbel [17]. Secondly the elastic-isoviscous asymptote, 
taking the elastic deformation of the solids into account, but 
the fluid remains of constant viscosity [18]. Lubrecht [11] 
presented a formula for Hmin as a function of M and L. The 
formula incorporates the aforementioned asymptotic solu­
tions. The solid lines in Fig. 1, give the predictions based on 
this formula. For reasons of comparison, the dashed lines are 
lines of constant a. Assuming a = 1.7 x 10~8 [Pa -1], solu­
tions have been calculated up to a maximum Hertzian pressure 
of ± 8.0 GPa. It should be noted that these extreme situations 
are of little practical importance and are only presented to 
demonstrate the stability of the algorithm. 

Pressure distribution and film thickness for L = 10 and 
three different values of Mare shown in Fig. 2. Blowups of the 
pressure distribution in the spike region for these situations 
are presented in Fig. 3. The number of calculation points in 
the parts of the domain presented are given below the figures. 
Figure 4 shows pressure distribution and filmthickness, 
together with a blow up of the pressure distribution in the 
spike region, for a much higher load, i.e., M = 200 and L = 
8. In all four situations presented the number of nodes used is 
large enough to describe the pressure distribution accurately, 
even in the spike region. The results clearly show that in these 
situations the spike is smooth, provided it is studied at a suffi­
ciently small length scale, see also section 8. 

Since a first order upstream discretization was used for the 
wedge term in equation (1), all characteristic results such as 
the minimum film thickness Hm, and the pressure spike height 
Ps, converged in most situations first order to a limiting value 
with successively halving the mesh width. For M = 20 and L 
= 10 this convergence is illustrated in table 2. 

8 The Pressure Spike 

One of the most interesting phenomena in EHL is the occur­
rence of a second local maximum in the pressure distribution 
located near the outlet. It is generally referred to as the 
"pressure spike" and was firstly reported by Petrusevich [1]. 

Although it is generally accepted that this spike is caused by 
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Detail spike (A) 
L4000-3-

0.6200 

Fig. 3A 
M = 5,L 

uooo 

IZXO-. 

I " | i n i | i i i i | i | in • |i ii i | i i i i | i u i | i ii i | i i i i |n 
0.6300 0.6400 0.6500 0.6600 0.6700 0.6800 0.6900 0.7000 0.7100 0.7200 0.73OO 

Blowup of the pressure distribution in the spike region for 
= 10. 573 nodes in presented region 

Detail spike (B) 

02000-^ 

) T i i i i < i » . i | i i n | . l i j | . . i . | . n i | i i i , , . . , , | i i i t [ . j i l | . j j j | j i i i | i i i . | i i j n j j i . | i i n | . i i i | i i i i | i n i | i m t i i i i | i i 

0.6000 0.8050 0.8100 0.8150 0.8200 0.8250 0.8300 0.8350 0.8400 0.8450 08500 0S550 
X 

Fig. 3B Blowup of the pressure distribution in the spike region for M = 
10, L = 10. 286 nodes in presented region 

Detail spike (0 
14000-q-

0.8900 0.8925 0.8950 0.8975 0.9000 0.9025 05050 0.9075 0.9100 0.9125 09150 03175 

X 

Fig. 3C Blowup of the pressure distribution in the spike region for 
M = 20, L = 10. 573 nodes in presented region 

the exponential relation between the viscosity and the pressure 
[9], [19] (no spike is found in case of an isoviscous lubricant), 
its height has been the subject of many discussions. See for ex­
ample [7], [9], [21], and references therein. 

140-3 

1204 

UXK 

0.80-j 

0.60-j 

0.40-j 

0.20-1 

200 -150 -100 -0.50 
X 

0.00 0.50 , 
100 

- 0.070 

j - 0.060 

E- 0.050 

j-0.040 

[-0.030 

H 0.020 

\ 0.010 

150 

Fig. 4(a) Pressure distribution and film thickness for M = 200, L = 8 

Detail spike 

09827 03836 05845 09855 05864 05873 05882 05891 05900 

X 
Fig. 4(b) Blowup of the pressure distribution in the spike region for 
M = 200 and L = 8. 208 nodes in presented region 

Table 2 Convergence of spike height and minimum 
filmthickness with increasing number of nodes for M= 20 and 
£ = 10 

level 

6 

7 

8 

9 

10 

11 

12 

13 

14 

n 

449 

897 

1793 

3585 

7169 

14337 

28673 

57345 

114689 

Hm 

0.0750 

0.0744 

0.0741 

0.0739 

0.0738 

0.0737 

0.0737 

0.0737 

0.0737 

Ps 

0.677 

0.710 

0.758 

0.787 

0.825 

0.850 

0.867 

0.875 

0.879 

Since the newly developed algorithm enables the use of large 
nodal densities, the spike can be captured in many situations. 
Both occurrence and height of the spike as a function of the 
governing parameters were investigated. The results of this 
study are reported in [20]. The parameter range where a spike 
can be expected and the effect of the compressibility and of 
the viscosity pressure relation applied, on this parameter 
range, as well as results of spike height calculations for both 
an incompressible and compressible lubricant, are presented. 

The variation of the spike height with the governing 
parameters observed for the situation considered in this paper, 
i.e., using the Roelands equation and assuming a compressible 
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Spike Height 
(Roelands/compressible) 

0.2 

- + - L = 6 - * - L = L = 10 - • - L = 12 

Fig. 5 The calculated dimensionless spike height Ps as a function of 
M for some values of L 

Spike Height 
(roelands/compressible) 

0.4 

Pon/Hamrock 
(L = 10.59) 

»- authors' 
(L = 10.59) 

Fig. 6 The calculated dimensionless spike height for L = 10.59 as a 
function of M compared with results presented by Pan and Hamrock [21] 

lubricant, is shown in Fig. 5. Only situations where, within the 
current limitations of both computing time and computer 
storage, convergence of the spike height with increasing 
number of nodes could be shown, are displayed. To obtain 
results beyond this parameter range, local grid refinement 
techniques are recommended. Figure 5 shows that, within the 
parameter range presented, the spike height decreases with in­
creasing load. A behavior that can also be observed from Fig. 
3. Since convergence of the spike height with increasing 
number of nodes was checked this decrease is not a numerical 
effect. 

Finally, Fig. 6 compares the spike heights calculated in a 
number of situations with results presented by Pan and 
Hamrock [21] for the same conditions. Although their data 
show a somewhat steeper decrease of the spike height with in­
creasing load, the two sets of results agree reasonably well. 
Part of the differences observed might be caused by the use of 
different values of the parameters a and z in the Roelands 
equation. 

9 Conclusions 

An alternative relaxation process for the EHL line contact 
was developed. The use of the recently developed multilevel' 
technique "multilevel multi-integration" in the calculation of 
the elastic deformation integrals and common multigrid 
techniques to accelerate convergence of the relaxation process, 
have resulted in an algorithm solving the EHL line contact 
problem in 0(n In n) operations. Solutions up to maximum 

Hertzian pressure well over 4.0 GPa have been obtained. The 
complexity 0(n In ri) makes it possible to solve the problem 
using large numbers of calculational points in a reasonable 
computing time on a mini computer, as well as to study the 
pressure spike. The algorithm presented can be extended to 
point contact situations and will enable fast and accurate solu­
tion of transient and surface roughness problems. 
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D I S C U S S I O N 

R. Verstappen1 

The authors deal with the problem of computing the deflec­
tion of a surface caused by a pressure loading. In addition, an 
alternative relaxation procedure is introduced in the multilevel 
algorithm for solving Reynolds' equation. Both the new in­
tegration and relaxation techniques are of a high standard. 
Yet, it seems that these advanced techniques are applied in 
solving physical unrealistic problems, using needless dense and 
uniform grids. 

With respect to the grid it may be observed that taking 10+i 

or more gridpoints for a contact of 0.01 to 0.1 mm. gives a 
stepsize of a few Angstrom. Phenomenon on such scales is 
certainly not described by Reynolds' equation. So, why is the 
grid that dense? 

Taking the parameter setting as in the paper, i.e., alfa= 1.7 
10 8 Pa.-1,p0=1.98 10+s Pa, z = 0.68, and maximum Hert­
zian pressures of 2, 4, or 8 GPa leads to viscosities up to the 
order of 1, 10+5, and 10+15 GPa»s, respectively. These high 
values suggest the question: "What is the physical relevance of 
the presented results?" 

More so since the viscous shear stresses in the fluid and at 
the fluid-solid contact boundaries also become extremely 
large. To illustrate this, note that 

•qdyv=iriv_/h (11) 

where y is the coordinate across the fluid film, v the velocity 
along the film and v_ the difference between the velocities of 
the surfaces. Evaluating (11) for v_= 1 m/s, ?/ = 1 GPa»s, and 
/? = 0.1 micron gives a shear stress of approximately 10+1 

GPa. It is unnecessary to say that this (tangential) loading is 
much larger than the pressure. Consequently, the deformation 
of the surfaces caused by the shear stresses cannot be 
neglected. A detailed analysis of the effect of the viscous 
stresses can be found in [22] or in a forth-comming paper [23]. 
In brief, the deformation caused by the shear stresses can be 
neglected compared to the deformation due to the pressure if 
riv_ = 0(q2)w, where q denotes the quotient of the 
characteristic height and the characteristic length of the fluid 
domain. 
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significant pressure variations at the scale of a few A ngstrom 
would, at least locally, be in contradiction with the as­
sumption that the fluid behaves as a continuum on which 
Reynolds equation is based. However, the situation depicted 
by the discusser is somewhat exaggerated. In practical bear­
ing applications the half width of the Hertzian contact varies 
from 0.1 to 0.5 mm. The size of the calculational domain 
is a number of times this half width and in most situations 
it is at least O(l) mm. Assuming the most extreme situation 
of 105 nodal points on the full domain the resulting mesh 
size is still not "a few" Angstrom. 
This discussion on the physical relevance of the solution of 
the differential problem should, in our opinion, be viewed 
separately from the subject of accurate numerical solution 
of the problem. In our situation, the solution of the discre-
tized equation is an O(h) approximation of the solution of 
the continuous differential problem. Hence, in regions of 
large gradients, at least locally, a sufficiently small mesh 
size is required. This means that, using uniform grids, a 
relatively large number of nodes is needed. One might argue 
that a similar accuracy can be obtained using less nodes and 
a non-uniform grid. That argument however, does not hold 
in case of rough surfaces where only to describe the rough­
ness profile already a considerable number of nodes will be 
required. 
Nevertheless, solving the smooth surface stationary line con­
tact problem with O(105) nodal points gives results which 
are far more accurate than needed for practical applications. 
This large number of nodes should be seen as a demonstra­
tion that the presented techniques provide a solid basis for 
a fast solver of the point contact problem where such large 
numbers of nodes will be needed especially if surface rough­
ness effects should be taken into account. 

9 In the paper it is explicitly stated that the solutions for 
extreme high loads such as 8.0 GPa are of little practical 
importance. In addition to the unrealistically high viscosities 
mentioned by the discusser one could for example mention 
that in case of steel surfaces beyond some 3.0 GPa plastic 
deformation will occur which is not taken into account in 
the model. Besides, at such high pressures the lubricant will 
most likely behave as a solid instead of a fluid. 
To investigate the effects of surface roughness on pressure 
profile and film thickness in both stationary and transient 
situations will require a very stable algorithm. The extremely 
high loaded situations included in the paper should therefore 
be seen as a demonstration that the presented algorithm 
provides the possibility to carry out such studies. Another 
reason to include these situations was to demonstrate that 
solutions do exist. Hence, the problems with respect to the 
solution of highly loaded situations reported in the past were 
numerical problems. 

8 As far as shear stress calculations are concerned it is well 
known that, the use of the model should be limited to no 
slip conditions. When slip occurs, the model predicts un­
realistically high shear stresses and coefficients of friction. 
According to the discusser, tangential deformation should 
be included in the model. If the purpose is to accurately 
predict shear stresses and coefficients of friction in practical 
situations the authors would recommend to take into account 
the effect of shear heating instead. The viscosity of the 
lubricant decreases significantly with increasing temperature 
and the resulting shear stresses will be small compared to 
the maximum pressure in the contact, e.g. [22]. 
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