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Abstract: The incidence of high-risk Human Papillomavirus (HR-HPV)-driven head and neck squa-
mous cell carcinoma (HNSCC) is on the rise globally. HR-HPV-driven HNSCC displays molecular
and clinical characteristics distinct from HPV-uninvolved cases. Therapeutic strategies for HR-HPV-
driven HNSCC are under investigation. HR-HPVs encode the oncogenes E6 and E7, which are
essential in tumorigenesis. Meanwhile, involvement of E6 and E7 provides attractive targets for
developing new therapeutic regimen. Here we will review some of the recent advancements observed
in preclinical studies and clinical trials on HR-HPV-driven HNSCC, focusing on nanotechnology
related methods. Materials science innovation leads to great improvement for cancer therapeutics
including HNSCC. This article discusses HPV-E6 or -E7- based vaccines, based on plasmid, messenger
RNA or peptide, at their current stage of development and testing as well as how nanoparticles can be
designed to target and access cancer cells and activate certain immunology pathways besides serving
as a delivery vehicle. Nanotechnology was also used for chemotherapy and photothermal treatment.
Short interference RNA targeting E6/E7 showed some potential in animal models. Gene editing by
CRISPR-CAS9 combined with other treatments has also been assessed. These advancements have the
potential to improve the outcome in HR-HPV-driven HNSCC, however breakthroughs are still to be
awaited with nanomedicine playing an important role.

Keywords: HPV-related cancer; oropharyngeal cancer; cancer vaccine; nanotechnology; immunotherapy;
photoimmunotherapy; cancer nanomedicine

1. Introduction

High-risk human papillomavirus (HR-HPV)-related head and neck squamous cell
carcinoma (HNSCC) is found in all anatomical sites of the head and neck, especially in the
oropharyngeal region (OPSCC) [1]. Incidences of HR-HPV-driven OPSCC are rising, while
those of tobacco use and alcohol consumption are decreasing worldwide [1]. Compared
with HPV-negative OPSCC, HR-HPV-driven OPSCC exhibits different genomic features,
nonkeratinized histology, an increased and early tendency toward lymph node metastasis,
higher sensitivity to conventional treatment and, as a result, a better clinical prognosis,
as reviewed elsewhere [1,2]. The 8th edition of the American Joint Committee on Cancer
(AJCC) revised the tumor node metastasis classification (TNM) staging system of HPV-
associated OPSCC and suggested a de-intensified treatment for these patients if the neck
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staging is correct [3]. Recommendations on HPV-related OPSCC treatments and achieve-
ments from ongoing research have been updated in recent National Comprehensive Cancer
Network (NCCN) Guidelines [4]. However, many challenges remain in the development
of a de-escalation protocol of conventional treatment. For example, randomized phase III
trials have demonstrated that cetuximab plus radiation therapy (RT) does not exhibit supe-
rior effects compared with cisplatin plus RT [5]. One reasonable explanation is that these
treatments were generally not well tolerated. Although dose-reduced RT may minimize
functional impairment of the salivary glands, the swallowing tract and neck tissues with
a similar progression-free survival in p16-positive OPSCC, there is a lack of randomized
phase III trials to date to validate these findings [4]. Additionally, HPV testing by p16
immunohistochemistry (IHC) alone as the biomarker determinizing HPV-related HNSCC
has some limitations. As analyzed in a previous meta-analysis, p16+/HPV-HNSCC may
characterize a new relevant HPV-independent subtype [5]. Immune checkpoint inhibitor
(ICI) trials have demonstrated inferior effects in both p16+ and p16- HNSCC in different
trials (KEYNOTE-012, KEYNOTE-048, and KEYNOTE-040). A recent study found high
CD103+ intratumoral immune cell expression was evaluated to stratify patients with low-
risk (the low-risk subgroup was defined by Ang et al. in RTOG 0129 clinical trial regarding
to the risk of death) HPV-associated OPSCC who received cetuximab plus RT for superior
prognosis [6,7]. While new, possibly more reliable biomarkers are under evaluation for
selecting patient cohorts who will benefit from de-escalation treatment, improving the
current treatment protocol and developing new therapeutic regimens, such as targeting
HPV E6/E7 or vaccines, which are equally important.

Advances in material science, nanotechnology, and CRISPR technology can now pro-
vide platforms to study combinations of current conventional therapy with new therapeu-
tics aimed at specific biological targets on cancer cells [8,9]. These approaches demonstrate
the advantages of site-specific drug delivery with reduced toxic effects that can widen
the therapeutic window or improve the therapeutic index [9–14]. In this review, we illus-
trate current technological innovations for HPV-related HNSCC treatments and discuss
promising new insights for new therapeutic targets.

2. Cancer Biology

In this review, we define HR-HPV-driven HNSCC as HPV-induced carcinogenesis
mainly driven by two HPV oncogenes (E6 and E7) while HPV-related HNSCC may include
the cases detected as an innocent bystander of concurrent HPV infection [1,5]. The carcino-
genic activities of E6 and E7 proteins are related to the increased degradation of p53 and
Rb, respectively, resulting in genomic instability and resistance to apoptosis [1]. The Cancer
Genome Atlas (TCGA) analysis shows that TP53 mutations and CDKN2A gene changes are
common in HPV-negative HNSCC but are rare in HR-HPV-driven tumors [15]. Genome
changes in HR-HPV-driven tumors mainly include mutation of the helical domain of the
PIK3CA oncogene, frequent deletion of TRAF3, and amplification of the cell cycle-related
gene E2F1 (TCGA) [15]. In addition, higher viral apolipoprotein B mRNA editing catalytic
polypeptide-like (APOBEC) mutation rates were found in HR-HPV-related OPSCC with a
high APOBEC mutation burden by analyzing paired human somatic and HPV genomes,
which suggests that APOBEC mutagenesis is involved in HR-HPV-driven carcinogene-
sis [16]. The off-target APOBEC activity in HR-HPV-driven OPSCC may lead to driver
mutations such as PIK3CA [17,18]. These genetic and epigenetic alterations induced by
HR-HPV infection are believed to lead to HR-HPV-driven cancer. However, the underlying
mechanism remains elusive.

In HR-HPV-driven cancer, HPV-specific antitumor host immune responses are also
observed, as reviewed in many publications [2,19]. These findings have stimulated much
optimism and research into stimulating and modifying the natural host immune response
to control the growth and spread of cancer cells or to even kill them. However, HPV-driven
cancer is able or evolves to evade by several mechanisms of immune surveillance that
allow the malignancy to become established in the host and to form metastases. Known
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immune evasion mechanisms are downregulation of major histocompatibility complex
(MHC)-I expression, passive immune evasion by suppressing antigen presentation during
both the early and late phases of infection in epithelial layers, and E6/E7 oncoprotein-
mediated blockade of immune-related genes or signaling pathways [19,20]. Within the
tumor microenvironment (TME), tumor infiltrating lymphocytes (TILs) have been shown
to be associated with the survival of many different tumor types, including HNSCC.
In most HR-HPV-related OPSCCs, there are usually more TILs and a better prognosis
than in HPV-negative tumors. However, the survival rate of low-level TILs in HR-HPV-
related patients was low, similar to that of HPV-negative HNSCC patients. In addition,
the decrease in TIL permeability affected by tobacco exposure is associated with late
and local recurrence [21,22]. In an analysis of the transcriptional signatures of immune
cells in the TME, HR-HPV-related HNSCC demonstrated different helper CD4+ T-cell
and B-cell transcriptional signatures compared with HPV-negative tumors [23]. PD L1
expression was found to be more frequent in HR-HPV-related OPSCC and associated
with TILs compared with HPV-negative tumors [18,24]. Interestingly, one study revealed
HR-HPV genome integration in the immune checkpoint genes PD L1 or PD L2, which
led to elevated expression of such genes in 3 of 73 HR-HPV HNSCC samples [24]. In
HPV-related HNSCC, virus-specific CD8+ T cells directed against epitopes from HPV E2,
E5, and E6 expressed PD1 and were found in CD8 TILs in the TME. Among those TILs,
three subsets of PD1+ stem cells and transitory and terminally differentiated TILs were
found [25]. HPV-specific PD1+ stem-like CD8+ T cells are more frequent in the TME but
very rare in the circulation [25]. HPV-specific B-cell responses have also been reported in
HPV-related HNSCC as localized HPV-specific IgG antibody-secreting cells against E2, E6,
and E7 HPV proteins in the TME [26]. In addition, analyzing the data from The Cancer
Genome Atlas (TCGA) portal, HPV-related non-OPSCC tumors in other anatomic subsites
of the head and neck region demonstrated different immunogenomic features, i.e., lower
estimated scores of B cells and CD8+ T cells and higher estimated scores of cancer-associated
fibroblasts and M2 macrophages compared with HPV-related OPSCC [27]. These findings
add to current knowledge of the biology of HPV-related HNSCC and help to develop
potential therapeutic options regarding immunotherapeutic approaches such as HPV
therapeutic vaccination.

Cancer stem cells (CSCs), a small group of stem-like cells in tumors, play a critical
role in HNSCC development, recurrence, and metastasis [28]. An early study reported
that HPV-related HNSCC had a higher proportion of CSCs than HPV-negative HNSCC,
which may be attributed to p53 inactivation by HR-HPV [29]. CSCs are the cell population
that is most resistant to radiation and chemotherapy. Despite the fact that in HR-HPV
HNSCC, CSCs are found at a high proportion in primary tumors and their metastases,
which occur earlier than in non-HPV-related HNSCC, this is no contradiction to the clinical
observation that HR-HNSCC and their CSCs are generally more susceptible to therapy.
HR-HPV HNSCC maintains an intact apoptotic pathway through p53 that is successfully
activated by radiation. This may explain why HPV-related HNSCC, which does not have
higher ALDH expression than HPV-negative HNSCC [30], may still be more therapy
resistant, as clinically observed due to mutation-inactivated p53. Deregulation of p53
by the HR-HPV E6 protein may reverse NOTCH and NANOG inhibition, leading to
stemness features [31]. In a cervical cancer model, overexpression of the HPV oncoprotein
E6 can maintain the stem-cell phenotype and stemness of CSCs through upregulation of
Hes1, and short interfering RNA (siRNA) silencing of E6 or Hes1 leads to redifferentiation
loss of self-renewability/stemness of CSCs [32]. Moreover, the HPV receptor integrin
alpha 6 (ITGα6) regulates the stemness phenotypes of HR-HPV HNSCC cells partially by
mediating the AKT pathway [33]. For more detailed discussions, please refer to recent
reviews [31,34]. Using CD44+/ALDH+ as CSC markers, CSC proportions in both HPV-
related and HPV-negative cell lines were elevated after irradiation [35]. While further
studies on various CSC markers with expanded sample sizes are necessary, it is important
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to elucidate the immunity of CSCs in HPV-driven HNSCC that can help to develop novel
therapeutic strategies.

Alternative HPV splicing has been reported to be involved in the carcinogenesis of
cervical cancer and HNSCC; for example, RNA-binding proteins that control HPV RNA
processing can be provided as potential targets (see a recent review) [36]. A recent study
revealed that the ecdysoneless (ECD) protein could interact with the HPV E6 protein and
regulate E6/E7 RNA splicing to promote HR-HPV-driven oncogenesis [37]. In summary,
HPV-related HNSCC shares specific biological causes and characteristics that provide
targets on which research for future therapies currently focuses.

3. Vaccine

Therapeutic vaccines for HR-HPV-driven cancer have been investigated in many
preclinical studies and clinical trials [38]. While most of these early efforts targeted cervical
cancer, HR-HPV HNSCC is attracting increasing attention as its incidence continues to
rise globally. Vaccines with tumor-specific or tumor-associated antigens aim to stimulate
an immune response and induce cytotoxic activity against tumor cells. Several different
types of viral and nonviral antigens have been explored for this effect. In particular,
for HR-HPV HNSCC, the viral oncoproteins E6 and E7 offer promising antigen targets,
although there was a recent report suggesting that HPV E2 and E5 should also be considered
for inclusion [25].

Various types of strategies utilizing DNA [39,40], RNA [41,42], protein [43,44], pep-
tide [45–48] or tumor or cell lysate [49], and tumor-derived autophagosomes [50] have
been explored with various degrees of success (Figure 1). While several clinical trials for
cancer of the cervix uteri have completed phase III, all the therapeutic vaccines for HNSCC
in clinical trials are currently at the stage of clinical phase I or II trials. Supplemental
Table S1 provides an overview of ongoing clinical trials. For example, MEDI0457 (also
named INO-3112) [51], a DNA vaccine with a synthetic plasmid targeting E6 and E7 of
HPV-16/18 and IL-12, was tested in combination with the PD-L1 targeting antibody durval-
umab in a phase Ib/II clinical trial for patients with recurrent/metastatic HPV-associated
HNSCC (NCT03162224). Another vaccine in trial ADSX 11-101 uses a live attenuated,
recombinant Listeria monocytogenes bacterium that has been bioengineered to secrete an
antigen-adjuvant fusion protein that includes a truncated fragment of listeriolysin O fused
to the full-length E7 peptide of HPV-16. A phase II clinical trial (NCT02002182) on HR-HPV
OSCC is expected to be completed in 2023.
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By itself, the effect of these vaccines against advanced HNSCC may be limited due to
the same suppressive tumor microenvironment that immune checkpoint blockers face. The
transport and targeting of antigen, adjuvant, and other therapeutic agents also needs to be
optimized to achieve synergistic effects. Using properly constructed nanocarrier systems
as delivery vehicles may offer a suitable path to overcome these challenges [52,53].

Nanocarriers are designed to protect their cargo from destruction and to deliver it to a
target-defined destination. In this manner, the bioavailability of the drugs is high at the
intended target and may remain low elsewhere. Significant progress has been made in
recent years, and two nanocarrier-based vaccines have entered clinical trials. Tables 1 and 2
summarize the preclinical and clinical studies on nanocarrier-based vaccines.

Table 1. Nanovaccine clinical trials studies for HPV-related HNSCC.

Vaccine Type Combination Phase Antigen Disease Delivery
Platform

Status (as of
1 September

2022)
Identifier

PDS0101 Peptide

M7824
(Targeting both

PD-L1 and
TGFβ),

NHS-IL12 (im-
munocytokine)

I/II HPV16
E6/E7

locally
advanced or

metastatic HPV
associated

cancer

R-DOTAP
containing

lipid
nanoparticle

Recruiting NCT04287868

PDS0101 Peptide Pembrolizumab II HPV16
E6/E7

HPV16+
Recurrent

and/or
Metastatic
HNSCC

R-DOTAP
containing

lipid
nanoparticle

Recruiting NCT04260126

PDS0101 Peptide Pembrolizumab I/II HPV16
E6/E7

Locally
Advanced HPV

Associated
Oropharynx

Cancer

R-DOTAP
containing

lipid
nanoparticle

Recruiting NCT05232851

BNT113 mRNA Anti-CD40 I/II HPV 16
E6/E7

Advanced
HPV16+ cancer RNA-lipoplex Recruiting NCT03418480

BNT113 mRNA Pembrolizumab II HPV 16
E6/E7

Unresectable
recurrent or
metastatic

HPV16+ and
PD-L1+
HNSCC

RNA-lipoplex Recruiting NCT04534205

Kranz et al. demonstrated that cationic lipid carriers can be formulated to pro-
tect RNA from degradation and improve the uptake efficiency by dendritic cells and
macrophages [54]. Administration of such a liposomal HPV16 mRNA formulation (RNA-
LPX) elicits a robust E7 antigen-specific CD8+ T-cell response in HPV-positive TC-1 and
C3 tumor murine models [41]. Analysis of tumor samples from vaccinated mice revealed
upregulation of proinflammatory molecules, DC activation markers, markers for mono-
cyte/macrophage recruitment, and immune checkpoint molecules, indicating that vac-
cination was associated with polarization toward a proinflammatory and less immune-
suppressive contexture. The combination with anti-PD-L1 treatment resulted in complete
remission of the tumors in 10 of the 15 TC-1 tumor-bearing mice and improved overall
survival to approximately 70% from less than 10% for anti-PD-L1 alone and 30% for the
RNA-LPX vaccine alone. The RNA-LPX-based vaccine BNT113 is currently in a phase II
clinical trial (NCT04534205 & NCT03418480) for HR-HPV HNSCC. The synergy between
the E7 RNA-LPX vaccine and local radiotherapy was also investigated recently in a pre-
clinical model [55]. It was demonstrated that the combination of E7 RNA-LPX and local
radiotherapy showed potent therapeutic effects exceeding those of either monotherapy.
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A nanocarrier can also be designed to trigger various immune pathways to en-
hance immunological effects. The lipids that form the nanoparticles can also serve as
potent adjuvants. It was reported that the cationic lipid enantiomer R-1,2-dioleoyl-3-
trimethyl-ammonium-propane (R-DOTAP) stimulates endosomal TLRs, resulting in Myd88-
dependent production of type I IFN [56]. R-DOTAP nanoparticles containing HPV-16 E7
peptides resulted in a potent antigen-specific CD8 T-cell response and antitumor activity in
a mouse model with implanted TC-1 tumors. The R-DOTAP-based HPV vaccine PDS0101 in
combination with ICB is now in a phase I/II clinical trial (NCT05329532, NCT04287868) [47].
Miao et al. conducted a combinatorial library search of ionizable lipids for their mRNA
delivery vehicle and found that the top-performing lipids induce APC maturation via the
intracellular stimulator of interferon genes (STING) pathway and demonstrated enhanced
antitumor efficacy [42].

Nanocarriers can also be engineered to codeliver proper adjuvants to induce synergistic
immune activation. For example, Kuan et al. loaded two Toll-like receptor agonists, MPLA
and CpG, onto synthetic high-density lipoprotein (sHDL) nanodiscs (NDs) [57]. This adjuvant
system combined with the HPV-16 E7 peptide (E7+ND-MPLA/CpG) elicited stronger E7-
specific CD8+ T-cell responses in tumor-bearing mice than soluble E7+MPLA/CpG. By this
treatment, complete regression of established TC-1 tumors in all treated animals was achieved.
This sHDL ND system was also used in a vaccination trial against aldehyde dehydrogenase
(ALDH), which is a marker for cancer stem cells [58]. Vaccination against ALDH combined
with anti-PD-L1 therapy prolonged overall survival in murine models of melanoma and
breast cancer. Given the high expression of ALDH in HNSCC stem cells [59], this new
immunotherapy approach may also hold promise for the treatment of HNSCC.

Mesoporous silica microrods (MSRs) are another interesting platform for delivering
vaccines and adjuvants [60,61]. MSR carries antigen and adjuvant by absorption and
thus does not require modification of the antigen. Li et al. showed that injection of
a vaccine composed of MSR absorbed with polyethyleneimine (PEI) and H16-E7 pep-
tides can eradicate large established tumors in ~80% of mice with TC-1 tumors and
generate immunological memory [60]. Manganese (Mn4+)-doped silica nanoparticles
were also explored as vehicles for peptide-base vaccines, where the nanoparticles served
as self-adjuvants [62].

Other types of nanocarriers include nanosatellites formed by polymer-coated iron
oxide cores with inert gold satellites [63], self-assembled peptide-formed nanofibers or
nanoparticles [64,65], virus-like particles [66], and bacterial outer membrane vesicles [43].
Magnetic nanoparticles that include iron oxide can also be used for tracking dendritic cell
migration using magnetic resonance imaging [67]. It was shown that MRI intensity in
lymph nodes correlated with DC trafficking and can identify vaccine responders early.

In another interesting work, photosensitizer-induced HPV16 E7 nanovaccines were
constructed by linking bovine serum albumin with the E7 antigen and then encapsulating
the photosensitizer and adjuvant through disulfide bonds [68]. Infrared laser irradiation of
photosensitizers produced a photo-oxygen response that induced the maturation of den-
dritic cells and stimulated T-cell effects. The enhanced antitumor effect was demonstrated
in TC-1 tumor-bearing mice.

The effect of the vaccine on tumor recurrence after surgery for HNSCC was also
investigated in a recent report [69]. In this study, mEERL95 cells were injected into the
submental space of mice to generate a tumor model. The HPV E7 peptide vaccine only had
a marginal effect on tumor growth or overall survival for mEERL95 tumors, as vaccine-
induced CD8+ T cells can only poorly infiltrate this type of tumor. However, the vaccine
injected prior to surgery successfully prevented tumor recurrence in all the mice, while
unvaccinated mice had a 60% recurrence rate. All vaccinated mice survived until the end
of the experiment, but only 35% of the unvaccinated mice survived.

In addition to antigens such as HPV-E6, E7 or NANOG [70] that are shared by many pa-
tients, therapeutic vaccines can also be engineered to target patient-specific antigens [71,72].
However, preparing such personalized vaccines is labor, time, and cost intensive, and the
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effects are difficult to analyze scientifically. Thus, an alternative approach called in situ
vaccination has been developed, which has the advantage of being both personalized and
off-the-shelf [73]. In this approach, the death of tumor cells caused by methods such as radia-
tion, chemotherapy agents or photothermal therapy leads to the release of tumor-associated
antigens, which are then processed and presented by APCs. Immunomodulators can be
administered at the same time to enhance particular steps of this process. Several phase I or
phase II clinical trials (NCT02643303, NCT02423863, NCT03789097) of in situ vaccination
involving HNSCC have been carried out. Many carefully designed nanocarriers have been
utilized for the delivery of immunomodulators for in situ vaccines. Chen et al. constructed
lipidoid nanoparticles that can promote cross-presentation of tumor-associated antigens
(TAAs) and deliver 2′5′-3′5′ cyclic guanosine monophosphate-adenosine monophosphate
(cGAMP) to activate the STING pathway, resulting in an enhanced antitumor effect [74].
Wang et al. injected a genetically attenuated strain of Salmonella coated with antigen-
adsorbing cationic polymer nanoparticles to promote the accumulation of antigen at the
tumor periphery [75]. Hollow mesoporous organosilica nanoparticles were used to trans-
port Annexin A5 in another study [76]. Release of Annexin A5 in both the oxidative TME
and bioreductive intracellular environment blocks immunosuppressive apoptosis and
promotes immunostimulatory secondary necrosis. While these nanocarrier-enabled in
situ vaccines have not specifically targeted HNSCC, they represent an alternative path for
therapeutic vaccine development.

4. Gene Silencing and Editing

The growth of neoplasms often depends on a certain set of genes, many of which
were identified in previous studies. One viable approach to induce tumor regression in
cancer patients is to suppress these genes through gene silencing and editing. In HPV+
head and neck cancer, the genes of choice are usually the viral oncogenes HPV E6 and
E7. Gene silencing and editing are often carried out through RNA interference (RNAi) or
CRISPR/Cas9.

One potential pitfall for such an approach targeting E6/E7 is whether HR-HPV HN-
SCC can become independent of HPV when HPV viral gene expression is suppressed. HPV
E6/E7 oncogenes were not expressed in up to 50% of HPV DNA-positive HNSCC [77,78].
Such HPV-inactive HNSCC has a worse overall survival and higher recurrence rate than
HPV-active HNSCC [79]. In a recent study, Abboodi et al. [80] reported that in HPV-16-
transformed keratinocytes, knockout of p53 by CRISPR/Cas9 resulted in a 5-fold decrease
in E7 mRNA levels and suggested that HPV-16-transformed cells can lose dependence
on the continuous expression of viral oncogenes for proliferation. HPV-inactive HNSCC
often has mutated p53, while it is rarely mutated in HPV-active HNSCC. Whether knock-
down or knockout of HPV E6/E7 in HPV-dependent cells with wild-type p53 can give
rise to cells that are HPV inactive but can still proliferate is unknown and needs to be
carefully monitored.

4.1. RNA Interference

Sequence-specific RNA templates can be designed to guide the intended knockdown
of the targeted genes in RNAi. While most of the RNAi studies against HPV are carried
out in cervical cancer cells or animal models, several studies have demonstrated that in the
HR-HPV HNSCC cell line, E6- and/or E7-targeting shRNA or siRNAs can downregulate
E6 and E7 and upregulate the expression of p53 and pRb proteins [81–83]. A significant
inhibitory effect of E6 and/or E7 siRNA compared with those of control groups was
observed both in vitro and in vivo [82]. To fully realize the therapeutic potential of the
RNAi method, improved delivery vehicles are needed. In a recent study, lipid nanoparticles
coated with anti-epithermal growth factor receptor antibodies were used to deliver anti-
E6/E7 siRNA [84]. This approach demonstrated significant suppression of viral oncogenes
and induction of apoptosis, resulting in antitumor activity both in vitro and in vivo.
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4.2. CRISPR/Cas9

While RNAi can knock down the targeted mRNA, the presence of the relevant gene in
the genome is not affected, so constant interference is required for treatment. To perma-
nently knockout the targeted genes, gene editing tools such as CRISPR/Cas, zinc finger
nucleases, or transcription activator-like effector nucleases are needed. The CRISPR/Cas9
system has emerged as the most promising tool for genome editing due to its robustness
and versatility. To fully reach the therapeutic potential of the CRISPR/Cas9 system, safe
and efficient delivery vehicles must be developed, and liposomes or lipid nanoparticles
may provide the best option [85]. The CRISPR/Cas9 system can also come in different
forms, such as plasmid DNA, mRNA, or ribonucleoprotein, each with its own advantages
and challenges. Various lipid compositions have been explored in numerous studies to
obtain the desirable effects of prolonging circulation time, improving targeted delivery and
cellular uptake, reducing immunogenicity, and minimizing toxicity. The interim results
from the first clinical trial with lipid nanoparticles as delivery vectors for CRISPR/Cas9
demonstrated successful knockout of the targeted gene with only mild adverse effects for
the treatment of hereditary transthyretin amyloidosis with polyneuropathy [86].

For HR-HPV HNSCC, the HPV E6/E7 genes are again logical choices as targets for
genome editing to suppress tumor growth. Cas9 and sgRNAs specific for E6/E7 can cause
inactivation of the E6/E7 genes in cervical cancer cells, resulting in induction of p53 or
Rb and leading to cell cycle arrest and eventual cell death [87–89]. Similar approaches
also resulted in an inhibition of tumor growth in nude mice inoculated with Cas9/sgRNA-
treated cervical cancer cells [89]. It is worth noting that nearly all cervical cancers are
HPV-dependent, so concern regarding the HPV inactive form is not as grave as in HNSCC
cases. The synergistic effect of E6/E7 knockout and chemotherapy [90] or PD1 blockade [91]
was also explored. A phase I clinical trial (NCT03057912) was also carried out to assess the
safety and efficacy of CRISPR/Cas9 in the treatment of HPV-related cervical intraepithelial
neoplasia I. In HR-HPV OPSCC, it was reported that targeting E7 alone did not affect
cell viability, while targeting E6 and E7 simultaneously resulted in a 50% loss of cell
viability [92]. In these OPSCC cells, CRISPR/Cas9-mediated loss of E7 restored the cGAS-
STING response, so it was suggested that the combination of E7 knockout may be combined
with a STING agonist to induce favorable antitumor effects.

In addition to virus-based vectors [93,94], lipid nanoparticles can also be used to
deliver CRISPR/Cas for editing HPV genes. Jubair et al. used PEGylated liposomes as
vehicles for the in vivo delivery of CRISPR/Cas9 targeting E7 in a cervical cancer xenograft
mouse model, resulting in tumor elimination and a significant survival advantage [95,96].
Poly (β-amino ester)-based polyplex nanoparticles were utilized in other studies to deliver
CRISPR/Cas9 recombinant plasmids targeting the HPV16 E7 oncogene, which inhibited
xenograft growth in a mouse model when administered via peritumoral injection [97–99].

Nanoparticles can be designed to deliver the cargo more specifically to the tumor site.
In a proof-of-concept study, Tang et al. designed phenylboronic acid (PBA)-derived lipid
nanoparticles to deliver Cas9 mRNA and HPV E6-targeting sgRNA preferentially to cancer
cells through the interaction between PBA and sialic acid on the cell surface [100]. An 18.7%
insertion-deletion of the HPV18E6 gene and a 50% decrease in cell viability were observed
in treated HeLa cells. In another study, pH-responsive cationic liposomes with strong
tumor targeting and gene knockout efficiency were designed to deliver CRISPR/Cas9 [101].
Intratumoral injection of such cationic liposomes effectively inhibited the proliferation of
HPV16+ cervical cancer cells and induced apoptosis by inactivating the E6/E7 oncogene
in nude mice. In a different approach, Lao et al. proposed that a carrier with a lower
charge density may be a better choice for Cas9 plasmid delivery, as they hypothesized that
a high charge density carrier may lead to sustained Cas9 expression and result in more
off-target effects [102]. They designed a self-assembled micelle composed of quaternary
ammonium-terminated poly (propylene oxide) (PPO-NMe3) and amphiphilic Pluronic
F127 optimized for delivering the Cas9 plasmid to knock out HPV16 E7, which led to
significant inhibition of HPV-induced cancerous activity both in vitro and in vivo.
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While the CRISPR/Cas9 system has shown tremendous potential in the treatment
of HR-HPV-related cancers, it is still limited by a low efficiency of editing and nonneg-
ligible off-target effects. To overcome these difficulties, a modified Cas9 system [103] or
other related enzymes, such as Cas13 [104], was also explored and demonstrated to signifi-
cantly improve the gene knockout efficiency or specificity of HPV oncogenes. How well
such systems work in vivo and which delivery vehicles will be most suitable remain to
be investigated.

4.3. p53

The HPV oncogene E6 drives the carcinogenic process mainly by promoting the
degradation of p53. Therefore, upregulating p53 expression or restoring p53 bioavailability
by gene editing may have potential as a therapy for HR-HPV-driven cancers [105]. Early
attempts to reactivate p53 function focused on using adenoviral vectors to deliver wild-type
p53. Such efforts resulted in Gendicine (approved by state FDA in China) [106], the first
gene therapy product with a combination of human wt p53 gene and adenovirus serotype-5
vector (Ad5) in 2003 for the treatment of head and neck cancer, and—later on—other
types of cancer. In an early clinical trial, 42 patients with nasopharyngeal carcinoma were
treated with Gendicine combined with standard radiotherapy compared to the control
group of 40 patients received only radiotherapy [107]. While the group receiving Gendicine
demonstrated higher complete response rate (66.7% vs. 24.4%, p = 0.01) and lower 5-year
recurrence rate (2.7% vs. 28%, p = 0.002), the benefit for 5-year overall survival rate and
5-year disease free survival rate are not statistically significant. The benefit for long-term
overall survival rate remains to be established as seen in clinical trials summarized by
Zhang et al. [106]. The development of the CRISPR/Cas9 system has provided new tools
for accurate and safe gene manipulation. It was proposed that CRISPRa/dCas9, a variant
of the CRISPR system, can be utilized for activation of p53 [105].

5. Extracellular Vesicles

Extracellular vesicles (EVs) are nanoparticles naturally released by cells that are as-
sociated with multiple pathological conditions, including cancer [108,109]. Biomolecules
such as E6 oncoproteins, E6/E7 mRNA, and other molecules were identified in EVs of
HR-HPV-driven cancer, including cervical cancer and OPSCC [110]. For example, fewer
cancer-associated fibroblasts (CAFs) were infiltrated in HR-HPV HNSCC. This may be
because the enriched miR-9 in EVs secreted from HR-HPV HNSCC cells could transfer into
fibroblasts via EVs that can significantly reduce the phenotypic transformation of fibrob-
lasts [111]. Moreover, HR_HPV HNSCC-derived exosomal miR-9 induces macrophage M1
polarization and increases tumor radiosensitivity [112].

Given the complex interaction of nanoparticles with the biological TME, which may
lead to a protein corona and, therefore, failures, as seen in some clinical trials, engineering
cell-released biological nanoparticles, EVs, as drug delivery systems is employed by taking
advantage of their biofeatures [113,114]. Endogenously engineered EVs loaded with tumor
antigen were developed as a therapeutic HPV vaccine [115]. In one study, the Nefmut/anti-
HPV16-E7 scFv chimeric product was efficiently loaded in EVs, bound HPV16-E7, and
inhibited the proliferation of HPV16-E7-expressing cells [116]. In another study, synergistic
effects of exosomal crocin or curcumin compounds and the HPV L1-E7 polypeptide vaccine
construct on tumor eradication were observed in a C57BL/6 mouse model [117]. With
emerging EV biology, therapeutic EVs warrant further study (Figure 2A).
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6. Targeting PI3K/AKT Pathway

As mentioned previously in Section 2, PIK3CA are frequent altered in HNSCC. Over-
expression of PI3K often leads to hyperactivation of the PI3K/AKT pathway, which is
vital for tumor development. Therefore, targeting PI3K and its substrates is considered a
promising strategy for cancer treatment. Several small molecule PI3Kα inhibitors are now
under investigation in clinical trials [118].

Small molecules inhibiting PI3Kα can also be packaged into nanocarriers to improve
its efficacy and safety. To achieve targeted delivery of drug to the tumor site, Mizrachi et al.
encapsulating BYL719, a PI3Kα inhibitor currently in clinical development, into dextran
sulfate-based nanoparticles that targets P-selectin, a cell adhesion molecule often over-
expressed in the vasculature of several human cancers [119]. In animal HNSCC models be-
ing established either by cell-line-based tumor or patient-derived xenograft, nano-particles
carrying BYL719 demonstrated tumor growth inhibition and radio-sensitization effects
which are similar to the effect of a seven-fold higher dose of BYL719 alone.

The combination of irreversible electroporation (IRE) with liposome-encapsulated
NVP-BEZ235, a dual PI3K/mTOR inhibitor was also explored for HNSCC treatment [120].
For head and neck cancer xenografts in nude mice, this combination effectively eradicated
the tumor masses, with no palpable or extractable tumor mass observed after two months,
while either IRE alone or IRE + oral NVP-BEZ235 fail to achieve the same effects.

In another study, a small molecule inhibitor PHT-427 that targets AKT/PDK1, down-
stream substrates of PI3K, was loaded onto α-tocopheryl succinate-based polymeric nanopar-
ticle and tested in hypopharynx squamous cells carcinoma [121]. Nanoparticles loaded with
PHT-427 effectively suppressed AKT/PDK1 expression and produced high oxidative stress
levels leading to apoptosis.

7. Combination Therapies

For HNSCC, the standard treatment option is surgery and radiation therapy for early-
stage cancer, while surgery followed by a combination of systemic chemotherapy and
local-regional radiation therapy for advanced disease is established. Given the distinct
onco-genomics of HR-HPV-driven HNSCC compared with HPV-negative tumors, HR-HPV-
dependent selective therapy warrants innovative approaches. Another important strategy
is utilizing combination therapy to target cancer cells, especially with less harmful effects on
healthy cells. Recently, a screening of 864 diverse compounds potentially causing cell death
was performed on HNSCC cell lines and validated in patient-derived xenograft (PDX)
models of HR-HPV-related OPSCC [122]. The authors found that aurora kinase inhibitors
had a more profound effect on HR-HPV HNSCC that was Rb level-dependent. Moreover,
in relation to Rb degradation caused by the oncoprotein E7, the mitotic checkpoint genes
MAD2L1 and BUB1B were highly expressed in HR-HPV HNSCC. Depletion of the MAD2L1
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regulator TRIP13 can enhance Aurora kinase inhibition-induced apoptosis. Combining
Aurora kinase inhibition with TRIP13 depletion had synergistic effects on HR-HPV HNSCC
but not HPV-negative HNSCC with intact Rb expression [123]. In addition, anti-E6/E7
siRNA coupled with anti-epidermal growth factor receptor (EGFR) antibodies delivered
via targeted lipid-based nanoparticles (tLNPs) have shown successful antitumor effects
in a xenograft HR-HPV HNSCC model [84]. These findings add to current HPV-specific
treatment strategies and warrant further translational research. Additionally, as we have
introduced in the above section, cancer vaccines such as the HPV16 E6/E7 RNA-LPX
vaccine combined with pembrolizumab are currently being evaluated in a phase II clinical
trial for patients with HPV16+ and PDL1+ HNSCC (NCT04534205).

Radiation is utilized to treat more than half of HNSCC patients; as a result, boost-
ing the therapeutic ratio or improving the radiation impact in tumors while protecting
the surrounding healthy tissues is a critical therapeutic goal [123]. The latest develop-
ments in nanomedicine make it possible to improve the efficacy of radiotherapy through
radio-sensitization or radiation protection technology. For example, PEG-coated Au–
Ag alloy nanoparticles (BNPs) are one example that can readily enter the cytoplasm
of KB cells (derived from an epidermal carcinoma of the mouth) and have shown sig-
nificant in vitro radio-sensitization with an enhancement ratio of 1.5–1.7 [124]. Stan-
dard radiotherapy enhancement for HNSCC is concurrent platinum-based chemotherapy.
Prateek Bhardwaj et al. [60] successfully created a dual nanocarrier-in-hydrogel platform
(PTX-CDDP-PH) to enhance the site-specific delivery of radiosensitizers such as cisplatin
and paclitaxel [125]. Interestingly, the nanoparticles delayed the two chemotherapeutic
medicines’ tumor bioaccumulation period and lowered systemic absorption, thus improv-
ing the situation in vivo. Moreover, a recent study demonstrated that the antitumor activity,
referring to the survival benefit and the rate of complete responses by combined local
radiotherapy with the HPV16 E6/E7 RNA-LPX vaccine, was synergized in mouse models
of HPV16+ cancer [55]. The E7 RNA-LPX vaccine leads to intratumoral E7-specific CD8+
T-cell responses, and local radiotherapy can further enhance these effects.

Photodynamic and photothermal therapy (PDT/PTT) are techniques to eliminate
cancer cells by generating reactive oxygen species (ROS) or by converting photon energy
into thermal energy. To destroy cells, cytotoxic ROS are generated by the reaction between
the photosensitizer and the oxygen in the surrounding tissue under light. Moreover, PDT
treatment can also trigger antitumor immunity [1]. This has been shown to be a promising
and noninvasive approach for several cancer treatments [126]. In recent years, nanoma-
terials have gained popularity for their applications in PDT/PTT due to their numerous
advantages, such as repeatable synthesis, high affinity, and adaptability to various modifica-
tion techniques. For example, chlorin e6 (Ce6) is a highly effective photosensitizer that can
be employed in several studies for optical imaging and PDT/PTT. Song et al. developed
nanotechnology-based drug delivery systems (CECMa NPs) based on cisplatin (CDDP) and
metformin (chemotherapeutic sensitizer), of which Ce6 and polyethylene glycol diamine
(PEG) were synthesized as the shell, and an anti-LDLR antibody was modified on the
surface. In in vivo studies, CECMa NPs increased the phototherapy effects on HNSCC and
reduced the systemic toxicity of chemotherapy [127]. In addition, given the important role
of ICB treatment, recent efforts have been made to combine ICB treatment with PDT/PTT,
which can enhance the antitumor immune response, as reviewed elsewhere [128]. More-
over, photoimmunotherapy (PIT) that combines phototherapy and immunotherapy has
been developed with the aim of eliminating both the primary tumor and recurrence or
metastasis of cancer (Figure 2B). RM-1929 PIT, which uses cetuximab sarotalocan sodium,
an antibody targeting EGFR conjugated with a light-activatable dye, combined with a
laser system to target only tumor cells, is emerging as an important treatment strategy
for recurrent HNSCC. In a recent phase 1/2a trial in patients with locoregional recurrent
HNSCC, RM-1929 PIT demonstrated a safety profile [129]. A novel proof-of-concept photo-
dynamic image-guided surgery was also developed utilizing EGFR monoclonal antibody
conjugated with the fluorophore IRDye800CW in an HNSCC mouse model [130]. To in-
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tegrate a novel immunotherapy with phototherapy, nanotechnology has been employed
due to its multifunctional ability, such as drug-loading capacity, site-specific delivery, and
ability to serve as photothermal agents or photosensitizers [131]. For example, a nanoplat-
form was developed based on mesoporous copper sulfide nanoparticles (CuS) conjugated
with the tumor target ligands folic acid (FA) and docetaxel and further fabricated with
polyethylenimine-protoporphyrin IX (PEI-PpIX) conjugates to improve water solubility for
successful CpG delivery [132]. These nanocomposites demonstrate a good PPT and PDT
effect in a 4T1 tumor model. Moreover, when anti-PD-L1 antibody (aPD-L1) is combined
with these nanocomposites, aPD-L1 + PDT + PTT may increase infiltration of CTLs and
suppress myeloid-derived suppressor cells (MDSCs) as well as polarize MDSCs toward
the M1 phenotype in tumor sites [132]. Although current PDT/PTT/PIT therapies are not
designed, especially for HPV-related HNSCC, research on their application to HPV-related
cancer is clinically meaningful and warrants investigation.

Table 2. Nanovaccine preclinical studies for HPV-related HNSCC.

Antigen Type Combination Adjuvant Delivery Platform Cancer Model References

HPV-16 E7 Peptide Anti-41BB CpG-B 1826
oligonucleotide

Poly (propylene
sulfide) nanoparticle

TC-1
tumor-bearing mice [133]

HPV-16 E7 Peptide R-DOTAP cationic
lipid nanoparticle

TC-1
tumor-bearing mice [56]

HPV-16 E7 mRNA PD-L1 antibody DOTMA/DOPE
liposome

TC-1 & C3
tumor-bearing mice [41]

HPV-16 E7 DCs Poly (I:C) PLGA nanoparticles TC-1
tumor-bearing mice [134]

HPV-16
E6/E7 Protein Anti PD-L1,

Cisplatin

Poly (I:C),
R848,

CpG ODNs
PLGA nanoparticles

TC-1
tumor-bearing

mice, cynomolgus
monkey

[44]

HPV-16
E6/E7 RNA DOTMA/DOPE

liposome
TC-1

tumor-bearing mice [54]

HPV-16 E7 Peptide MPLA,
CpG

Synthetic
high-density

lipoprotein nanodisc

TC-1
tumor-bearing mice [57]

HPV-16 E7 Peptide
Polyethyleneimine,

GM-CSF,
CPG-ODN

Mesoporous silica
micro-rod

TC-1
tumor-bearing mice [60]

HPV-16 E7 Peptide Q11 peptide
assembled nanofiber

TC-1
tumor-bearing mice [64]

HPV-16 E7 Peptide Poly (I: C),
CpG-ODN

Hyaluronic
acid-modified

cationic lipid-PLGA
hybrid nanoparticles

TC-1
tumor-bearing mice [135]

HPV-16 E7 RNA Heterocyclic lipid
nanoparticle

TC-1
tumor-bearing mice [42]

HPV-16 E7 DNA/Protein Supercharged green
fluorescent protein

TC-1
tumor-bearing mice [136]

HPV-16 E7 Protein Anti-CD40 Pam3CSK4,
Poly (I: C) PLGA nanoparticle TC-1

tumor-bearing mice [137]

HPV-16 E7 Peptide GM-CSF HIV tat peptide TC-1
tumor-bearing mice [65]
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Table 2. Cont.

Antigen Type Combination Adjuvant Delivery Platform Cancer Model References

HPV-16 E7 Peptide MPLA PEG-PE micelle TC-1
tumor-bearing mice [138]

HPV-16 E7 Protein Bacterial outer
membrane vesicles

TC-1
tumor-bearing mice [43]

HPV-16
E6/E7 Peptide Anti-PD-L1 Nanosatellite

Mouse HNSCC
(PCI-13,

UMSCC22b,
UMSCC47, and

FaDu cells)

[63]

HPV-16 E7 DNA
Branched

amphiphilic peptide
capsules

TC-1
tumor-bearing mice [139]

HPV-16 E7 Peptide Virus-like particles TC-1
tumor-bearing mice [66]

HPV-16 E7 Peptide Liposome TC-1
tumor-bearing mice [140]

HPV-16 E7 Peptide GM-CSF,
CpG-ODN

Mesoporous silica
rods

Mouse HNSCC
(MOC2-E6E7 cells) [61]

HPV-16 E7 Peptide R837 Crosslinked BSA- E7 TC-1
tumor-bearing mice [68]

HPV-16 E7 mRNA Local
Radiotherapy

DOTMA/DOPE
liposome

TC-1
tumor-bearing mice [55]

HPV-16
E6/E7 Peptide PHAD-3D6A,

QS-21 CPQ liposome TC-1
tumor-bearing mice [141]

HPV-16 E7 Peptide Surgery CpG-B 1826
oligonucleotide

Poly (propylene
sulfide) nanoparticle

mEERL95
tumor-bearing mice [69]

HPV-16 E7 Peptide manganese-doped
silica nanoparticles

TC-1
tumor-bearing mice [62]

HPV-16 E7 Peptide CpG-ODN Mannose-Modified
Liposome

TC-1
tumor-bearing mice [142]

HPV-16
E6/E7 Peptide

Bintrafusp alfa
(M7824),

NHS- IL12

R-DOTAP containing
lipid nanoparticle

TC-1 and mEER
tumor-bearing mice [47]

HPV -16
L1/E6/E7 DNA Archaeosome TC-1

tumor-bearing mice [143]

HPV -16 E7 Peptide Anti-PD-1
(G4C2) CpG-1826 Spycatcher modified

Ferritin nanoparticle
TC-1

tumor-bearing mice [144]

8. Summary

This review highlights strategies such as vaccines or combination therapy for de-
veloping nanotherapeutics for patients affected by HR-HPV-driven HNSCC. The vari-
ous benefits and characteristics of these nanocarriers summarized in this review that
form the knowledge basis are discussed. The major advantages of nanotherapeutics in-
clude the multifunctionality of drug-loading capacity, targeted delivery and prolonged
circulation time, synergistic effects with pharmacological and physical cotreatments, and,
therefore, improved drug delivery, reduced toxicity, and enhanced therapeutic efficacy.
Nanocarriers can also sensitize cancer cells to conventional therapeutic agents by modu-
lating the TME and mechanism-based specific targets, i.e., by targeting CSCs specifically.
Additionally, utilizing nanoparticles for manufacturing the spatiotemporal delivery of
CRISPR nanocarriers or mRNA and siRNA technologies is promising for developing com-
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bination therapy or cancer vaccines. In conclusion, nanomedicine-based approaches are
strongly encouraged for clinical oncology and have the potential to develop treatments for
HR-HPV-driven HNSCC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14122824/s1, Supplemental Table S1. Clinical trials of vaccines
or vaccines included combination therapies for HPV-related HNSCC. References [145–149] are cited
in Supplementary Materials.
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