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Abstract 

Recent progresses allow imaging specific neuronal populations at single-axon level 

across mouse brain. However, digital reconstruction of neurons in large dataset 

requires months of human labor. Here, we developed a tool to solve this problem. Our 

tool offers a special error-screening system for fast localization of submicron errors in 

densely packed neurites and along long projection across the whole brain, thus 

achieving reconstruction close to the ground-truth. Moreover, our tool equips 

algorithms that significantly reduce intensive manual interferences and achieve 

high-level automation, with speed 5 times faster compared to semi-automatic tools. 

We also demonstrated reconstruction of 35 long projection neurons around one 

injection site of a mouse brain at an affordable time cost. Our tool is applicable with 

datasets of 10 TB or higher from various light microscopy, and provides a starting 

point for the reconstruction of neuronal population for neuroscience studies at a 

single-cell level. 
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Introduction 

Mapping neuronal morphology at single-cell level will bridge the gap between micro 

scale and macro scale studies
1-3

, and play an important role in cell type, neural circuits, 

and neural computing studies
4-6

. Recent breakthroughs in imaging
7-10

 and molecular 

labeling
11, 12

 techniques have provided Terabytes (TBs)-sized dataset from which we 

can measure almost the complete morphology of the neuronal population at a 

single-axon resolution (Video 1). Special data format and data splitting mode have 

been developed to browse or visualize TB
13, 14

 or PB (Petabytes)
15

 dataset. However, 

tracing these brain-wide neuronal projections is challenging
16, 17

. Automatic tracing 

tools
18-22

 applicable to local neuronal population (Gigabytes size) cannot extend to 

whole brain. Just like “snowball effect”, for a neuron with tree-like structure, a 

micron-sized error in tracing will result in a huge error
23

, as subsequent tracing is not 

credible and may extend to the whole brain (Supplementary Fig. 1). The densely 

packed neurite makes this situation even worse, as dense neurite tracing is still an 

open question
1, 17, 23, 24

, usually leads to lower tracing accuracy. Practically 

semi-automatic tools
25, 26

 have been applied for neuronal tracing in large dataset and 

its precision is well acknowledged. However, it is extremely laborious and 

time-consuming for brain-wide reconstruction, as these tools usually work at very low 

automatic level. Reconstructing a population of neurons at brain-wide scale will 

require thousands of hours of manual labors. 

Here, we built a global tree reconstruction system (GTree) for brain-wide population 

reconstruction. In GTree, we developed a selective display mode to boost local dense 

reconstruction and acquired a higher accuracy than the well-acknowledged 

reconstruction accuracy generated with semi-automatic software. Moreover, we 

introduced brain-wide error-screening system to improve the precision across whole 

brain. Furthermore, we introduced algorithms that significantly reduce intensive 

manual interferences and thus achieve high-level automated reconstruction. With all 

these efforts, we demonstrated a brain-wide population reconstruction, with precision 

close to ground-truth, speed at least 5 times faster compared to semi-automatic tools. 
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We also demonstrated a successful reconstruction of 35 long projection neurons 

around one injection site of a mouse brain at an affordable time cost.  

Design of GTree 

In addition to local neuronal population reconstruction, GTree can achieve brain-wide 

reconstruction (Online Methods). In the design of GTree for brain-wide 

reconstruction, we built functions corresponding to key reconstruction steps, which 

included dendrite reconstructions, axon reconstructions and checking the 

reconstructions on a brain-wide scale (Fig. 1). In addition, a technique for 

multi-resolution representation of a TB-sized dataset is necessary (Supplementary 

Note 1).  

We divided the whole-brain dataset into many sub-blocks with a multi-resolution 

representation technique
15

 and selected the first sub-block (e.g., a 3D region of 

interest (ROI) including the target neuron (soma)) to begin tracing (Fig. 1a). In 

general, the first ROI mainly contains somas and dendrites. In the first ROI, we used 

NeuroGPS-Tree
18

 to automatically reconstruct the target neuron and other neurons. 

We revised the automated reconstruction of the target neuron in a selective display 

mode (Fig. 1b) in which reconstruction errors can be easily found. GTree can 

automatically record the locations where traced dendrites touch the boundary of the 

first ROI simultaneously. These locations provide cues to select the subsequent ROIs 

to trace the dendrites of the target neuron.  

After completing the reconstruction of dendrites, we located the initial part of the 

axon for axonal tracing. Similar to the tracing of dendrites, a human-supervised 

checking procedure was implemented for trustworthy reconstruction (Fig. 1c). Note 

that except for the first ROI, in which packed neurites are usually included, the 

neurites in all ROIs are sparsely distributed in our analysis. Therefore, we traced 

neurites in the first ROI with NeuroGPS-Tree and others with SparseTracer
27

, as 

SparseTracer presents a faster reconstruction speed than NeuroGPS-Tree when 

neurites are sparsely distributed.  

As described for the above procedures (Figs. 1b-c), human-supervised reconstruction 
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is performed in every sub-block. Brain-wide reconstruction of a neuron requires the 

analysis of hundreds of sub-blocks, and reconstruction errors are still unavoidable. 

GTree uses reconstruction navigation (Supplementary Note 2) to identify 

reconstruction errors on a brain-wide scale (Fig. 1d). With this navigation, we can 

vastly browse the reconstruction and the neighboring image region. The browsing 

information is used for checking the reconstructions. By using this navigation module, 

one can vastly check a brain-wide reconstruction within 1.5-2 hours. Furthermore, for 

the generation of a ground-truth reconstruction, the general strategy is that different 

annotators reconstruct the same neuron and regard the common consent as the ground 

truth 
28

. In this process, locating the difference between the reconstructions (Fig. 1e) 

is an indispensable step. Based on hash query method (Supplementary Note 3), 

GTree locates differences between brain-wide reconstructions within a second, which 

is several hundred times faster than the common way (Supplementary Fig. 2).  

Based on the entire process of reconstruction, we demonstrated that, in addition to the 

selective display mode (Online Methods), GTree offers a system for thoroughly 

checking reconstruction errors on a brain-wide scale (Online Methods). This system 

runs through the pipeline of reconstruction and assures a high-precision 

reconstruction.  

Dense reconstruction  

We evaluated the dense reconstruction performance of GTree using a typical dataset 

from the neocortex. The dataset contained packed neurites with a wide range of signal 

intensities (Fig. 2a and Video2) and therefore challenged current automatic 

reconstruction methods (Supplementary Fig. 3). For highly accurate dense 

reconstruction, we designed the selective display mode in GTree (Online Methods). 

This mode enabled us to focus on checking the target reconstructions and their related 

signals (Fig. 2b) by removing other unrelated signals. Without the selective display 

mode, it is time consuming and laborious for a skilled annotator to find reconstruction 

errors due to interference from other signals (upper panels in Fig. 2b). The selective 

display mode eliminated this kind of interference and allowed effective checking for 
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reconstruction errors (bottom panels in Fig. 2b). In the design of the selective display 

mode, we considered the fact that the reconstructed neurons could be mapped as a tree 

graph in which a node represents a traced neurite (Supplementary Fig. 4). Due to this 

mapping, the corresponding reconstructions and their neighborhood images can be 

visualized when selecting the sub-structure of the tree graph (Fig. 2c). In the selective 

display mode, we revised the automated reconstruction from the population dataset 

(Fig. 2a) generated with NeuroGPS-Tree. We present the revised reconstruction in 

which an individual neuron is displayed with a different color (Fig. 2d and Video 2).  

To quantify the performance of the reconstructions driven by GTree and 

semi-automatic software, we designed a procedure for reducing reconstruction 

variance among different annotators. Two annotators were classified into one group. 

One presented the reconstructions, and the other checked the presented 

reconstructions. The total time was set to 4 hours (a third of the time was occupied by 

checking reconstructions) or 12 hours per neuron for GTree and the semi-automatic 

software (Amira
26

), respectively. Using this procedure, GTree produced two 

reconstructions of the same population (GTree-a and -b). We present the 

reconstruction of one neuron from GTree-a that exhibited obvious differences from 

the reconstruction provided by NeuroGPS-Tree but was close to the ground-truth 

reconstruction (Fig. 2e).  

We quantified the reconstructions from the population dataset (Fig. 2a), including 5 

neurons with recall and precision rates (Fig. 2f). To calculate these two evaluation 

indexes, ground-truth reconstruction is necessary and can be achieved via the strategy 

employing voting to reach a consensus on the discrepancies among the 

reconstructions performed by three annotators
28

. We found that GTree could provide 

higher reconstruction accuracy than NeuroGPS-Tree (Fig. 2f). The recall and 

precision rates were 96% and 97%, respectively, for GTree (GTree-a) versus 70% and 

69%, respectively, for our previously developed software, NeuroGPS-Tree. This 

difference in reconstruction was significant. We also found that there were no 

significant differences between the two groups of reconstructions generated with 

GTree (Kolmogorov–Smirnov test, precision: p > 0.2; recall: p > 0.69), indicating that 
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GTree can provide robust reconstructions.  

Furthermore, we demonstrated that GTree provided more accurate reconstruction than 

the semi-automatic software, which shows a widely accepted high accuracy. 

Considering a few false reconstructions, we used weighted recall to quantify the 

population reconstructions driven by GTree and semi-automatic software. Weighted 

recall refers to the weighted average recall rate of the reconstructions of individual 

neurons. The weight was proportional to the total length of the neurites of an 

individual neuron identified through ground-truth reconstruction. GTree reconstructed 

the neuronal population with an integral degree of 96% (Fig. 2g). The time cost was 

within 4 hours per neuron. In contrast, the semi-automatic software provided 

reconstruction accuracy with an integral degree of 88%, and the time cost was set to 

12 hours per neuron. In addition, increasing the reconstruction time (from 8 to 12 h) 

did not boost reconstruction accuracy (Fig. 2g). This phenomenon demonstrates that it 

is an extremely difficult task for semi-automatic software to even slightly improve the 

accuracy for a population dataset with massively packed neurites (Fig. 2h). 

High-precision reconstruction on a brain-wide scale 

We evaluated performance of GTree in brain-wide reconstruction with the 10 

TBs-sized images. The dataset contained specially labeled neurons whose 

morphologies spanned different brain regions or even the whole brain. This imaging 

dataset provide sufficient information for trustworthy reconstruction including 

dendrites and distal axons. We randomly selected five neurons in this dataset and 

generated their ground-truth reconstruction (Online Methods) to evaluate 

reconstruction performance between GTree and the semi-automatic software. We 

present the reconstructions of these five neurons obtained with GTree (Fig. 3a). The 

results indicated that the reconstructed neurons exhibited many neurites and that these 

neurites were distributed in different brain regions. We also used semi-automatic tool 

(Amira) to manually reconstruct these five neurons. When we compared the 

semi-automatic reconstruction of a neuron with the reconstruction provided by GTree, 

we found that the differences between these two reconstructions were negligible (Fig. 
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3b & Supplementary Fig. 5). We further quantified the reconstructions of these five 

neurons based on recall and precision rates (Figs. 3c & d). The results showed that the 

weighted average recall and precision rates were 96% and 98%, respectively, for 

GTree, versus 95% and 94% for the semi-automatic software. The weights were 

proportional to the total length of neurites identified in the ground-truth reconstruction. 

The reconstruction results were similar between GTree and semi-automatic software. 

We concluded that GTree, like the semi-automatic software, can provide a brain-wide 

reconstruction close to the ground truth. Furthermore, we quantified the time costs of 

the reconstruction of these five neurons using GTree and semi-automatic software. 

The results showed that GTree spent approximately 9 hours on the reconstruction of a 

single neuron, which was at least five times faster than the semi-automatic software 

(Fig. 3e). In this comparison, we selected annotators who were well trained (Online 

Methods), and these annotators acquired the reconstruction on the same computing 

platform equipment with Redundant Arrays of Independent Disks (RAID).  

 

High-level automatic reconstruction  

In GTree, we developed a series of algorithms for those reconstruction steps that 

required intensive manual labor. Two algorithms are provided here as examples. One 

is used for detecting the optimal skeleton of a neurite, and the other is used for 

identifying the neurites with weak signals. We based on a Lasso model
29

 to correct the 

reconstructed skeleton points, including bifurcation points, to their optimal positions. 

The optimal positions are generally located at the centerline of a neurite and exhibit 

the maximum signal intensities. We evaluated the Lasso-based model using the 

dataset of axons (Supplementary Fig. 6a). In the reconstruction process, there were 

19 sub-blocks in which the reconstructed skeletons of the tortuous neurites had to be 

revised. With the Lasso model, the reconstructed skeletons in 17 sub-blocks were 

automatically corrected, avoiding the corresponding human editing. We present two 

typical detection examples (Supplementary Figs. 6b-e) showing the effectiveness of 

the Lasso-based model. We also built a machine-learning method for identifying 
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neurites with weak signals
30

. We demonstrated that the identification method could 

vastly reduce the human editing of the reconstructions using 3 sub-blocks of datasets 

(Supplementary Fig. 7a). In the analysis of these selected datasets, when the 

identification method is equipped, the total number of human edits was reduced to 18, 

versus 136 without the identification method (Supplementary Figs. 7b-d). In 

addition, we calculated the signal-to-background ratios of the points in the 

reconstructed skeletons (Supplementary Fig. 7e). The points with SBR < 1.3 

occupied 80% percent of all skeleton points, which can explain why a large amount of 

human editing is required without the use of the identification method.  

Brain-wide population reconstruction  

We used GTree to reconstruct a population of neurons from the whole mouse brain 

imaging dataset. The imaging dataset included 35 pyramidal neurons which are from 

one injection site. Despite the sparse labeling, packed neurites were still commonly 

found in the imaging dataset. Using GTree, all of the labeled neurons in this imaging 

dataset could be thoroughly reconstructed (Figs. 4a &b, Video 3, Supplementary Fig. 

8). A typical neuron could be nearly completely reconstructed, such that dendrites, 

local axons, and distal axons can be easily identified (Fig. 4c). The reconstructions 

allowed the application of quantitative morphological measures, such as the total 

length of neurites per neuron (Fig. 4d) and Sholl analysis
31

 (Fig. 4e). According to the 

information on the reconstruction speed (Fig. 3e) and the measurement of the 

reconstructions (Fig. 4d), we roughly estimated that reconstructing all 35 of these 

neurons with semi-automatic software would require more than 1300 hours (total 

length of neurites, 396.7 cm; speed, 3.4 hours per centimeter). GTree reduced the time 

cost to less than 250 hours (speed, 0.6 hours per centimeter). These results indicated 

that extremely heavy labor is required for brain-wide population reconstruction with 

semi-automatic software, and this current reconstruction status can be changed using 

GTree.  
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Applicability 

In addition to the fMOST datasets, we demonstrated the applicability of GTree to 

other types of datasets. These datasets were collected with different imaging 

modalities, such as serial-two-photon tomography
8
, light-sheet

32-34
, two-photon 

microscopy
35

 and so on. The axial resolution of an STP dataset is low, at 10 m. In 

this case, GTree reconstructed all four labeled neurons spanning different brain 

regions. The reconstructions were consistent with the ground truth
36

 (Supplementary 

Fig. 9). We further used GTree to reconstruct 5 groups of datasets collected via 

light-sheet microscopy
33

 (Supplementary Fig. 10 & Supplementary Fig. 11). The 

results suggested that GTree could provide a high-precision reconstruction from a 

dataset with a low optical spatial resolution. In addition, two types of public datasets, 

the Diadem and BigNeuron datasets acquired using wide-field, confocal, or 

two-photon microscopy, were used to test GTree. In the Diadem datasets
37

, we 

selected Neocortical Layer 1 Axons (Supplementary Fig. 12) and Hippocampal CA3 

Interneuron image stacks (Supplementary Fig. 13) and used GTree to analyze them. 

The reconstructions showed that GTree behaved well in dense reconstructions and in 

the presence of extremely weak signals. Using BigNeuron datasets
6, 38

, we 

demonstrated that GTree could detect weak signals in the presence of strong noise 

points (Supplementary Fig. 14) and could also detect torturous neurites 

(Supplementary Fig. 15). From the above testing results, we concluded that GTree 

can be widely used in neuron reconstruction.   

Discussion  

In this study, we built the software tool GTree to achieve a dense reconstruction 

of the brain-wide neuronal population that challenges semi-automatic reconstruction 

with semi-automatic software. GTree achieved brain-wide reconstruction of neuronal 

populations with a speed gain of at least five times over semi-automatic software. 

Besides encompassed our established work, such as multiresolution representation of 

a dataset
15

, neurite tracing
27

, automatic reconstruction of a local neuronal population
18

, 

and identification of weak signals
30

, in GTree, we designed a suite of new techniques 
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to overcome a series of challenges in brain-wide reconstruction, including the 

identification of packed neurites, checking for reconstruction errors in a TB-sized 

dataset, and improvement of automatic levels of reconstruction. Furthermore, GTree 

offers a system to check the reconstructions on different scales, from a local neurite to 

an entire single neuron. Due to these multitudinous and indispensable functional 

modules, GTree is an effective tool for brain-wide population reconstruction and may 

be helpful for many purposes, such as the identification of neuron types, investigation 

of the projection pattern of neurons, and mapping the neuronal circuitry.   

Accurate brain-wide reconstruction of neuronal populations requires a series of image 

processing technologies, which can be integrated into a target software tool. As 

described previously, GTree has this characteristic and can therefore achieve 

brain-wide reconstruction with a high precision and relatively high throughput. This 

high precision can be attributed to the following factors. First, the selected display 

mode of dense reconstructions largely eliminates the interference from other 

reconstructions and can therefore effectively check the reconstructions. Second, 

online feedback for reconstructions from sub-blocks of brain images and editing 

function modules are combined to achieve supervised reconstructions. Third, fast 

navigation of the reconstructions and locating the differences in the reconstructions 

enable us to check the reconstructions on a brain-wide scale. There are two primary 

reasons for the relatively high-throughput reconstructions: one is the contributions of 

many automatic algorithms, including algorithms for neurite tracing
27

, spurious links 

between neurite identification
18

, weak signal identification
30

, and optimal skeleton 

detection 
29

, among many others; and the other is the user-friendly visualization and 

editing functions, which allows fast revision of reconstruction errors.  

Dense reconstructions must essentially resolve closely spaced neurites, which is one 

of the most challenging problems in neuronal population reconstruction
1, 17, 23, 24

. To 

overcome this challenge, our previously developed automatic tool, NeuroGPS-Tree
18

, 

partially mimicked human strategies to identify individual packed neurites and 

achieved dense population reconstruction with an approximately 80% reconstruction 

accuracy. For a more challenging dataset packed with massive axons (Fig. 2a), the 
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reconstruction accuracy was further decreased (Fig. 2f). This reconstruction accuracy 

was not sufficient for neuroscience research in many cases
4, 17

. In addition, the noted 

reconstruction accuracy was generated from the analysis of a GB-sized dataset. When 

NeuroGPS-Tree
18

 was extended to a TB-sized dataset, the corresponding 

reconstruction is not acceptable due to its fully automatic character (Supplementary 

Fig. 1). Considering this situation, we developed GTree for dense reconstruction. 

GTree integrates NeruoGPS-Tree and a selective display mode, thus effectively 

checking reconstructions provided by NeuroGPS-Tree. GTree vastly boosts the 

capability of NeuroGPS-Tree in dense reconstruction. GTree can generate dense 

reconstructions close to the ground truth (Fig. 2f) and therefore presents more 

applications. It should be noted that the selective display mode in GTree requires an 

initial population reconstruction. At present, NeuroGPS-Tree is a suitable tool for this 

purpose. 

In GTree, the size of the dataset and the data format are essentially not restricted. The 

current version of GTree supports the tagged image file format (TIFF, 8/16 bits). 

Other data formats can be freely and easily converted into TIFF using third-party 

software such as ImageJ
39

. The data organization method (Supplementary Note 1) 

based on HDF5 was developed and integrated into GTree. Therefore, GTree can 

reconstruct neurons from hundreds of GBs sized dataset, without the help of other 

software. When the analyzed dataset increases to TBs or greater in size, this large data 

requires to be transformed into the big data format including TDat
15

. GTree supports 

the TDat format and thus can be suitable for reconstruction on TBs sized dataset. We 

also noted that other tools like Terafly
14

 and BigDataViewer
13

 perform well in the big 

data organization. However, these two tools have no related plugins for other software 

tools at present. So, the data formats generated with these two tools can’t be used in 

GTree. 

The tree-like structure of neurons means that reconstruction error exerts a highly 

correlated effect on subsequent reconstructions. Without human supervision, one false 

reconstruction will lead to missing neurites or miss-assigned neurites, which explains 

why semi-automatic reconstruction is still the primary method for quantifying neurons 
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17
, despite the existence of numerous automatic algorithms. Whole-brain images are 

even more challenging, and human supervision is therefore necessary to obtain 

trustworthy results. However, the available semi-automatic reconstruction software 

lacks some key algorithms and editing functions to accurately identify an error in the 

presence of interference from densely paced neurites and cannot locate local 

reconstruction errors in centimeter-long projections
4, 17

. Therefore, semi-automatic 

reconstruction becomes time-consuming and laborious, making it difficult to match 

the development of neuronal images
16

. GTree fills this gap to a certain extent. In the 

near future, the level of automatic reconstruction by GTree will be further enhanced 

by introducing vast IO formats and automatic identification of potential errors. 
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Online Methods  

1. A brief description of the software tool  

The GTree software is written in C++ and is freely available for academic 

research (https://github.com/artzers/AdTree). GTree can be divided into three 

components according to its functions: 1) reconstruction of a local neuronal 

population; 2) reconstruction of a brain-wide population; and 3) checking of 

reconstructions on a brain-wide scale.  

Reconstruction of a local neuronal population: In this mode of reconstruction, the 

supported format of an input image is an 8 or 16 bit TIFF series (gray image stacks), 

and the output results are swc files
40

, which include the positions of skeleton points 

and the connections between the points. This component integrates the selective 

display mode and the editing function into our previously developed software tool 

NeuroGPS-Tree
18

. This integration greatly extends the ability of NeuroGPS-Tree and 

can provide a dense reconstruction close to the ground truth.  

Reconstruction of a brain-wide neuronal population (Video 4): Brain-wide 

reconstruction involves the analysis of TB-sized datasets. Therefore, a 

multi-resolution representative of a TB-sized dataset is required. Here, we convert a 

whole-brain dataset into a big data format, TDat
15

, in which the sub-blocks can be 

effectively loaded into computer memory. The reconstruction of a brain-wide 

neuronal population consists of reconstructions from a series of sub-blocks. 

SparseTracer
27

 is used for reconstructing neurites in sub-blocks. The corresponding 

editing functions are also matched for correcting reconstruction errors.  

Checking reconstructions at brain-wide scale: Despite the editing function allowing 

checking of reconstructions from sub-blocks, brain-wide reconstruction is a long 

reconstruction process and includes the analysis of hundreds of sub-blocks. Thus, 

reconstruction errors are unavoidable. GTree provides two functions for checking 

reconstructions. One is reconstruction navigation on a brain-wide scale (Video 5); the 

other is localization of differences between reconstructions of the same neuron (Video 

6). Reconstruction navigation can browse the reconstructed skeletons and their 
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neighboring regions. The browsing information is used for checking reconstructions. 

The other function is to locate differences between different reconstructions of the 

same neuron. This function is necessary for high-precision reconstruction from a 

challenging dataset and ground-truth reconstruction.  

2. Selective display mode for dense reconstruction 

This mode is used for checking errors in dense reconstruction. When an automated 

method reconstructs a neuronal population with packed neurites, reconstruction errors 

are unavoidable and difficult to find because of the interference from other neurites, 

especially those that are closely positioned. In fact, a neuron can be mapped to a 

tree-graph in which a node and the connections between nodes represent a neurite and 

the links between neurites
18

, respectively (Fig. 2c & Video 7). Accordingly, the 

reconstructed neuron has the same map, meaning that when the sub-structure of this 

mapping graph is selected, the corresponding reconstruction (i.e., the reconstructed 

skeletons of neurites) is confirmed. Centered on the reconstructed skeleton, the 

cylindrical neighborhood regions are extracted from the original image. The radius of 

the neighborhood region is manually set. The reconstructions and the corresponding 

neighborhood images remain simultaneously and black out all of the signals that are 

not in the current regions. Using this operation, we can display the cylindrical region 

and the included reconstructions without interference from other signals. This display 

method is named after the selective display mode. In the selective display mode, we 

can focus on the interesting reconstructions and check them (Video 8). We 

recommend that checking is performed in the selective display mode (Video 9) to 

ensure that every neurite in the reconstruction is checked.  

3. Brain-wide error-screening system  

GTree is equipped with an error-screening system for high-precision reconstruction. 

The system includes three components: 1) human-supervised reconstruction from 

sub-blocks; 2) reconstruction navigation on a brain-wide scale; and 3) online 

localization of differences between reconstructions of the same neuron. Using this 

system, we can easily identify reconstruction errors hidden in densely packed neurites 

and TB-sized datasets.  
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Human-supervised reconstruction from sub-blocks: Brain-wide reconstruction 

requires the analysis of TB-sized datasets, which are far beyond computer storage 

limits. Therefore, a whole-brain dataset must be divided into sub-blocks, and 

reconstructions from a large number of sub-blocks constitute a reconstructed neuron 

on a brain-wide scale. The tree-like structure of neurons means that one reconstruction 

error will accumulate in subsequent reconstructions. Thus, human-supervised 

reconstruction from each sub-block is essential for obtaining high-precision 

reconstructions at a brain-wide scale. This function allows the visualization of 

reconstructions from sub-blocks and enables us to check reconstruction errors. If there 

are no errors, we click the button and import the next sub-block automatically. 

Otherwise, we revise reconstruction errors, such as a missing neurites or 

miss-assigned neurites, to avoid the accumulation of errors in the subsequent imported 

blocks. 

Reconstruction navigation at a brain-wide scale: As described above, a series of 

human-supervised reconstructions from sub-blocks constitute the brain-wide 

reconstruction of a neuron. The sub-block is tens of MBs in size, and the whole-brain 

dataset has a size of TBs. Thus, the brain-wide reconstruction of a neuron requires the 

analysis of hundreds of sub-blocks at a minimum. The long reconstruction process 

means that errors are unavoidable, despite the human response to the reconstruction. 

Therefore, we designed brain-wide reconstruction navigation for easily finding 

reconstruction errors hidden in TB-sized dataset. The tree-like structure of neurons 

can be mapped to a tree-graph, in which the root node represents the soma, while the 

nodes in the first layer represent neurites connected with the soma, and so on. Hence, 

by visiting the nodes of the tree-graph from the top down, the reconstructed neurites 

can be browsed in an orderly manner. When browsing the reconstructed neurite along 

with its skeleton, the neighboring image region is extracted and visualized, and all 

reconstructions included in the extracted region are simultaneously visualized. The 

checking of the reconstruction is based on the visualized information.  

Online localization of differences between reconstructions of the same neuron: 

For a more challenging dataset, the general strategy for producing trustworthy results 
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is for two or more skilled annotators to perform reconstruction of the same neuron and 

take the consensus results among annotators as the output reconstruction
28

. This 

strategy is built on fast localization of differences between reconstructions of the same 

neuron. A reconstructed neuron at a brain-wide scale generally contains hundreds of 

thousands of skeleton points. The localization of the differences between two 

reconstructions can essentially be performed by quantifying the differences in position 

between two groups of reconstructed skeleton points. We constructed a 

multi-dimensional Hash container
41

 for quantifying these differences rapidly in detail 

(Supplementary Fig. 2). Briefly, we assigned two groups of skeleton points to their 

own Hash containers and searched the matching points in these two Hash containers. 

Based on the search results, the locations where differences between two 

reconstructed skeletons appeared were labeled. Thus, the localization of differences 

between reconstructions of the same neuron could be achieved.  

4. Methods for high-level automated reconstruction.  

The GTree software contains algorithms for reconstructing neurons, including 

algorithms for locating and segmenting soma, tracing neurites, and network 

partitioning, which are commonly used for automated reconstruction. There are also 

two specific algorithms integrated into GTree for this purpose. One identifies weak 

neurite signals, and the other detects the optimal skeleton of neurons.  

Identification of neurites with weak signals30
: It is a common sense that 

small-radius neurites will exhibit weak signals, which challenges neurite-tracing 

methods. Hence, we observed the characteristics of neurites and identified rules to 

propose a method for the identification of weak neurite signals. We found that in 

neuronal images, the local background was smooth, and neurites presented a strongly 

anisotropic shape. These image characteristics were converted into feature vectors, 

from which the difference between the signal and background could be displayed. A 

combination of these feature vectors and the machine learning method were used to 

construct this identification method.  

Detection of the optimal skeleton of neurites: The reconstructed skeleton of a 

neurite consists of a series of sequential points generated by tracing algorithms. 
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Detection of the neurite’s optimal skeleton is essential for post-neuron morphological 

analysis, such as the assessment of bifurcation numbers and lengths. Here, we 

consider two premises upon which to correct the positions of skeleton points: a 

skeleton point should present the maximum image intensity in its neighborhood 

region; and local smoothness should be retained at most sites in a neurite skeleton. 

Considering on these two premises, we designed an Lasso-based model to detect the 

optimal skeleton. We further extended this Lasso-based model to locate the 

bifurcation points of a reconstructed neuron. A bifurcation point is one terminal point 

of a neurite linked with another neurite. It is difficult for tracing methods to detect the 

position of bifurcation points where neurites are tortuous or unevenly imaged. The 

extended model was built on our observation that at a very small scale, the 

smoothness of neurites can still be satisfied. These two detection models were applied 

to correct the automatically reconstructed skeleton to the centerline of the neuron.  

5. Evaluation of reconstructions.  

We applied high precision and recall rates to quantify the reconstructions driven 

by the software tools employed in this study. To calculate these two indexes, the 

ground-truth reconstruction is necessary. We generated the ground-truth 

reconstruction in GTree because GTree includes an error-screening system and 

achieves high-precision reconstruction more easily than semi-automatic software (See 

Figs. 3 c & d). We briefly describe how to obtain the ground-truth reconstruction and 

calculate the indexes for evaluating reconstructions. 

The pipeline for generating the ground-truth reconstruction was general. It included 

the following steps: 1) reconstruction of the same neuron performed by three skilled 

annotators; 2) import of the reconstructions into GTree to automatically locate the 

differences between reconstructions; and 3) rechecking of the locations of 

disagreements and application of the voting method to reach an agreement among 

annotators regarding the reconstruction of rechecked locations. Some additional notes 

about the above pipeline are as follows. In step 1), when reconstructing a neuron at a 

brain-wide scale, reconstruction navigation was employed to reduce the number of 

reconstruction errors. In step 2), a Hash container was employed in GTree for rapidly 
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locating differences in the reconstructions at a brain-wide scale. In step 3), careful 

checking of the reconstructions, especially in 2D view mode, can confirm whether the 

checked reconstruction is accepted or not (Video 10). By analyzing the massive 

datasets, we found that if attention was focused on the reconstruction, errors were 

actually commonly avoidable. Therefore, the statistical model with stricter criteria for 

ground-truth reconstructions was not employed here.  

By comparing the ground truth to reconstructions driven by software tools, we 

calculated two reconstruction evaluation indexes 
18

: the precision and recall rates. The 

reconstruction consists of a series of skeleton points that are located at the center of 

neurites and connect to each other. Hence, for a given skeleton point in the 

ground-truth reconstruction, we searched the point from the reconstruction to be 

evaluated that was nearest to the given point. If the distance of these two matched 

points was less than the predetermined threshold (8 μm), both the given point and the 

searched point were regarded as true positive points. Thus, we could label all positive 

points in the ground-truth reconstruction and the reconstruction to be evaluated. The 

recall rate refers to the ratio of the number of true positive points to the number of all 

skeleton points in the ground-truth reconstruction. The precision rate refers to the ratio 

of the number of true positive points to the number of all skeleton points in the 

reconstruction to be evaluated. A predetermined parameter is required to calculate 

these two evaluation indexes. We set this parameter as 8 µm in our application. This 

setting is reasonable and is explained in detail 
18

. We also note that the Diadem score
42

, 

a popular index for evaluating reconstructions, was not used in our analysis because in 

both GTree and the semi-automatic software, human-supervised reconstruction was 

performed and could achieve highly accurate results, leading to very high Diadem 

scores.  

6. Other methodology  

Sample preparation. The experiments were performed in accordance with the 

guidelines of the Experimental Animal Ethics Committee of Huazhong University of 

Science and Technology. We used the C57BL/6J mouse line (adult P56 male mice) for 

our analysis. We adopted AAV to sparsely label neurons in the cortex.  
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Data acquisition. The whole mouse brain was imaged using fluorescence 

micro-optical sectioning tomography microscopy
43

. In this imaging procedure, the 

chemical reactivation technique was employed for high-quality images. The 

experimental spatial resolution of this imaging system was 0.32 µm in the lateral 

dimension and 1 µm in the axial dimension.  

Quantification of the time cost of reconstruction. To accurately estimate the time 

cost of reconstruction using GTree and semi-automatic software, we carefully selected 

the annotators and trained them. Two annotators performed reconstructions using 

semi-automatic software. The training time for these two annotators was more than 

200 hours. After this long training period, the annotators were proficient in the use of 

the semi-automatic software. The training time for the GTree annotators was also 200 

hours.  

Based on these conditions, we present the statistics regarding the time cost for 

reconstruction in Fig. 2g and Fig. 3e. Note that if the training time were to be further 

increased, the reconstruction time cost would be increased negligibly.  

Computing platform. In quantifying the time cost of the reconstructions, the 

annotators worked on workstations with Windows 7 or Windows 10. The CPU of the 

workstations was an E5 CPU. The workstations were equipped with a dedicated video 

card (NVidia GTX 960) and were directly connected RAID, which included the 

whole-brain dataset.  

Software availability. GTree is a freely available and can be downloaded from 

https://github.com/artzers/AdTree , in which some test datasets and a user guide are 

also included.  
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Figure legends  

Figure 1 | The pipeline of brain-wide reconstruction of neuronal population. (a) Divide the whole brain 

images into sub-blocks with the same size, and select the 3D region of interest (the 1st ROI) according 

to the known position of a soma that corresponds to the target neuron. ROI refers to the interested 

dataset including some divided sub-blocks. (b) Reconstruct the target neuron and other neurons in 

the1st ROI. Revise the reconstruction of the target neuron in selective display mode, and find the initial 

part of the axon for axonal tracing. (c) Trace axons in the current ROI and revise the traced results; 

determine the new ROI that contains the locations where traced axons touch the boundary of the 

current ROI. (d) Reconstruction navigation for spotting reconstruction errors at brain-wide scale. (e) 

Online locate the differences between the reconstructions of a neuron performed by two annotators, and 

check the reconstruction differences for trustworthy reconstruction. 

 

Figure 2 | GTree achieved a dense reconstruction with high precision. (a) The imaging dataset from the 

neocortex had a size of 1343 × 1120 × 302 voxels and contained packed dendrites and axons. The red 

curve represents the reconstruction of a neuron generated with the automatic method. (b) 

Reconstruction errors are shown without (upper panels) and with (bottom panels) the selective display 

mode and are labeled with orange arrows. The neurites labeled with blue arrows (upper panels) 

seriously hinder error checks and were removed in the selective display mode. The dashed and red lines 

represent the ground-truth reconstruction and the automated reconstruction, respectively (bottom 

panels). (c) For the reconstructed neuron (red in (a)), the reconstruction of neurites in layer 1 (blue 

curves) and their neighboring image regions are displayed (left). This display is based on the tree-like 

structure in which neurites can be assigned to their corresponding layer (right). (d) A population of five 

neurons was reconstructed from (a), and the neurons are displayed with different colors. (e) 

Comparison of the reconstruction of a neuron with GTree and the ground-truth reconstruction. The 

automated reconstruction with NeuroGPS-Tree is also presented. (f) Quantification of the 

reconstructions driven by GTree and NeuroGPS-Tree with recall and precision rates. GTree-a and -b 

refer to the reconstructions of the same population performed by two groups of skilled annotators. (g) 

Comparison of the reconstruction performance of GTree and semi-automatic software (Amira). (h) 

Spatial neurite density distribution, obtained by calculating the total length of neurites in a sub-block 
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with a size of 100 × 100 × 25 voxels (10
-5

 mm
3
). 

 

Figure 3 | High-precision reconstruction on a brain-wide scale with GTree. (a) Reconstruction of five 

neurons using GTree. (b) Comparison of the reconstructions of a neuron derived from GTree and 

semi-automatic software. A difference (gray arrow) between the two reconstructions is shown. 

Quantification of the reconstructions based on precision (c) and recall rates (d). (e) Comparison of 

reconstruction time costs using GTree and semi-automatic software.  

 

Figure 4 | Reconstruction of the neuronal population on a brain-wide scale. (a) The neuronal 

population across the whole mouse brain, including 35 neurons, was reconstructed. The imaging 

dataset was 10 TBs in size. The individual reconstructed neurons are identified using different colors. 

(b) The reconstructions are displayed in the coronal view. (c) A reconstructed neuron, including 

dendrites, local axons and distal axons. (d) The total length of neurites identified in the individual 

reconstructed neuron. (e) Sholl analysis of reconstructed neurons. In this analysis, a series of sphere 

surfaces are generated in 20 µm radial increments centered on the neuronal soma, and the reconstructed 

neurites that intersect each sphere surface are then counted. This operation constructed the relationships 

between the number of intersections and distances from the soma.  
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