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Advanced Numerical Methods and Software Approaches for

Semiconductor Device Simulation

Graham F. Carey; A. L. Pardhanani* and S. W. Bova~

Abstract

In this article we concisely present severalmodern strategiesthat are applicable to
drift-dominated carriertransport in higher-orderdeterministicmodels such as the drift-
diffusion,hydrodynamic, and quantumhydrodynamic systems. The approachesinclude
extensions of “upwind” and artificialdksipation schemes, generalizationof the tradl-
tional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwindPetrov

Galerkin (SUPG), “entropy” variables, transformations, least-squaresmixed methods
and other stabilized Galerkinschemessuch as Galerklnleast squaresand dkcontinuous
Galerkin schemes. The treatment is representativerather than an exhaustive review
and several schemesare mentioned only briefly with appropriatereferenceto the liter-
ature. Some of the methods have been applied to the semiconductor device problem
while others are still in the early stages of development for this class of applications.
We have included numerical examplesfrom our recent researchtests with some of the
methods. A second aspect of the work deals with algorithmsthat employ unstructured
grids in conjunction with adaptive refinementstrategies. The full benefits of such ap-
proaches have not yet been developed in this application area and we emphasize the
need for further work on analysis, data structures and software to support adaptivity.
Finally, we briefly consider some aspects of software frameworks. These include dial-
an-operator approaches such as that used in the industrial simulatorPROPHET, and
object-oriented software support such as those in the SANDIA National Laboratory
frameworkSIERRA.

Keywords: semiconductor TCAD, device modeling, drift-diffusion, hydrodynamic, finite

element, adaptive grids, software frameworks.

1 Introduction

The dramatic advances in microelectronics during the past two decades are largely a re-

sult of “shrinking” the technology. The semiconductor device is an integral part of the
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hardware, and device size is now well below a micron with channel lengths from source to

drain less than 0.1 micron and gate oxide layers less than 10 nanometers in thickness. For

given voltage bias and operating conditions, as device size shrinks the local field strength

inside the device increases and the interior layers in the property fields become more abrupt.

Other physical effects such as quantum tunneling in the inversion layer become significant

and several numerical difficulties commonly arise. These numerical difficulties are typically

associated with the following issues: (1) an inadequate physical model that ignores physics

(such as the quantum effect) that was negligible at the previous scale; (2) numerical effects

associated with the high local gradients in the solution that adversely impact the conver-

gence of the nonlinear iterative solver; (3) other numerical effects such as oscillations in the

approximate solutions that are intrinsically tied to the resolution of the underlying grid and

the stability of the chosen discretization scheme. These three difficulties are obviously not

unique to the semiconductor device problem. In fact, they are endemic to numerical simu-

lation of convection-dominated transport processes. Yet the device problem does embody

some of the most extreme behaviors one may encounter in this class of problems. Part of

the difficulty has to do with the scale and the reliability of a deterministic mathematical

model such as those based on augmented drift-diffusion or hydrodynamic PDE systems.

This is particularly evident in the vicinity of a charge accumulation region at the gate-oxide

interface. Other discrete models using Monte Carlo solutions are possible but still not a

practical alternative for the device designer’s needs. Extending the deterministic models

to include quantum tunneling in this regime is one approach that is proving very useful

for present generation technology. For example, the use of WKB asymptotic expansion

solutions to Schroedinger’s equation extends the applicability of drift-diffusion and hydro-

dynamic models to smaller length scales[41, 42]. Since the issue of multiscale capability

is a topical research subject in a number of modeling applications areas, we suggest that

this is a good framework for interpreting the above problems – that is, difFerentmicroscale

(here quantum level) and macroscale (carrier transport by drift diffusion) effects need to be

accommodated. This concept has not yet been explored to develop alternative simulation
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models and strategies and remains an open research opportunity.

The second difficulty - convergence of the nonlinear scheme – is also more sensitive in the

device simulation application [40] than in many other convection-diffusion problems. This

is partly due to the strength of the solution gradients but a more significant issue appears

to be the nonlinear source terms that describe carrier recombination (a reaction-like term

[74]). Finally, the local strength of the electric field in the drift terms is extreme relative

to the practical grid size, again because of the small length scales over -which significant

solution variations and sharp gradients occur. (The doping concentration of modern devices

varies by several orders of magnitude over very short lengths.) Likewise, the potential and

carrier concentration solutions to the device equations will have abrupt interior layers. This

implies the “usual” stabilization needs for treating convection (the drift term) as well as a

strong recommendation for graded meshes to avoid excessive dissipation introduced by the

stabilization mechanisms. These last two items – stabilization of deterministic models and

adaptive grid refinement – are the focus of the technical discussion in Sections 3 and 4.

As the scale of the devices shrinks, more complex models are needed and different types

of analysis components are being linked to integrate simulation and design capability. This

latter aspect implies a greater demand for computational flexibility and interoperability

between analysis modules or simulation models and systems for both process and device

simulation. Likewise, there is a need for improved pre- and post- processing, from geo-

metric modeling and CAD, to automated grid generation, through integrated simulations,

to collaborative visualization and visual steering. In section 5 we sketch some recent and

ongoing ideas related to software frameworks to support these endeavors. Here we briefly

describe the dial-an -operator approach in the industrial simulator PROPHET developed

at Lucent and the work in progress on the SANDIA national Laboratory system SIERRA.

Another consequence of the growing complexity of the PDE systems and the need for rapid

simulation of high resolution grids is the increase in computational requirements to solve the

problems. Advances in commodity processor speed have been instrumental in providing the

needed computing power economically via desktop systems, area networks, tightly linked
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clusters of personal computers or workstations, and large scale distributed supercomputer

systems. Affordable parallel shared and distributed memory systems are now available and

are beginning to be used for semiconductor applications. In section 6 we briefly summarize

some recent developments related to parallel computation.

2 Transport Equations

The best known models for device simulations are based on the stationary drift-diffusion

(DD) equations for electrostatic potential # and carrier concentrations n and p

–v. (ev#) = q(p-n+c)

V. (Jn) = q R(+,n,p)

v “ (Jp) = –q R(’lfo,n,p)

(1)

with

J. = q~.nE + qD.Vn

Jp = q/+PE – qDpvP

where pn and pP are electron and hole nobilities, Dn and

E= –V+ is the electric field, q is the unit charge, C

(2)

Dp are corresponding diffusivities,

is the electrically active impurity

concentration, and R is the electron-hole recombination term [27, 53, 55].

An augmented system that permits a simplified treatment of hot electron effects can

be constructed by making the mobility p. a function of the local field gradient, such as

pn = pn (~) where ~ corresponds to the gradient of -E in the field direction. A more

rigorous “hydrodynamic” model for hot carriers can be obtained by including transport

of energy density w as an additional (the third-order) moment of the Boltzman transport

equation [52]. Introducing the electron temperature 7’ and a closure relation for the heat

flux in the moment system we obtain an additional convection-diffusion equation for 2’ of

the form
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where the subscript c denotes collision contributions and the closure relation for the heat

flux Q is an “appropriate” constitutive relation (a Fourier type relation Q = –kVT is

frequently assumed with some question as to both the validity of this form and the value

of k [52]).

Quantum effects can be included by modifiing these underlying hydrodynamic transport

equations using potential solutions for Schroedinger’s equation in subregions or by more

general treatments. For example, the momentum displaced Wigner distribution function

may be introduced in the moment expansion [33, 39].

These PDE systems are discretized and the resulting nonlinear system is solved for a

sequence of applied voltages to determine the I —V curve for the device design in question

and to analyze other effects concerning the performance or breakdown of the device. The

potential and transport systems are often solved in an iteratively decoupled form (Gummel

iteration) but other algorithms are also applicable and used.

3 Stabilization

It is easy to verify that the central difference scheme permits oscillatory approximations

to a monotone analytic solution of the model 1-D drift-diffusion problem with zero source

when the grid is not adequately refined. To see this, consider the 1-D convection-diffusion

equation expressed in the form u“ – ~u’ = Oon the domain O < x <1. A standard Galerkin

scheme with linear elements or the standard central difference scheme both yield the same

3-point difference equation at a representative node i of a uniform mesh. By writing this

difference equation in terms of slopess+ and s– to the right and left of the center node i of

this difference patch and simpli~ing we find that the sign of the ratio s + /s– is negative,

so the computed solution will be oscillatory if the mesh size h exceeds 2.D/l?. This classical

result is known as the cell Peclet condition (~ < 2).

As with many other transport problems, in the semiconductor device problem it is the

convective or ‘drift’ term in the carrier and energy transport equations that leads to the

use of so-called ‘stabilization’ strategies to suppress numerical oscillations. In the case of
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the device problem the difficulty is compounded by the fact that these oscillatory errors

have large gradients that alternate in sign and usually promote divergence of the nonlinear

iterative solution scheme for the system [54]. Since there is natural diffusion in the system,

this suggests that stabilization may not be necessary provided the grid is graded to a

sufficiently fine resolution into the regions where there are Klgh solution gradients. The

adaptive grid strategies that we discuss later provide a logical approach to achieve this

goal. Nevertheless some form of stabilization that accommodates the near-hyperbolic nature

of the problem is desirable, especially since the graded mesh and adequate initial solution

iterate on that mesh are not known a pn”on”. Instead, they must be arrived at incrementally

horn an initial coarse grid and iterate using some form of continuation process. In our studies

we have achieved some success by the following type of continuation process: generate an

initial coarse grid and solve a simpler problem at low applied voltage (e.g. the potential

problem at zero bias); improve the grid, adjust the model to drift-diffusion and use a strongly

stabilized scheme to compute the next iterate; improve the grid and adjust the model to

hydrodynamic and use a moderately stabilized scheme to solve the problem; repeat the

last step to convergence at this applied voltage with adaptive refinement and modified

stabilization; apply Euler-Newton continuation [64] to obtain the starting iterate for the

next point on the I —V curve and proceed in a similar vein to the last part of the previous

1 – V step.

It is clear from the above that stabilization and mesh adjustment are key components

of a successful algorithm. The ‘bear hyperbolic” nature of the transport problem implies

that the convective term should be treated with care. This is well known both in the device

simulation community and in other flow and transport applications such as high speed gas

dynamics where convective effects are strong and shock-like layers can arise [49, 56]. In

fact, the behavior of the charge carriers in the device problem is analogous to an “electron

gas” [32, 34]. Classical approaches for ensuring stability of hyperbolic problems involve

“upstream” or “upwind” differencing to incorporate the directional property of the drift,

ideally within some modified method of characteristics formulation. These upwind schemes
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introduce numerical diffusion corresponding to the leading order truncation error terms

from the discretization. This artificial diffusion is a function of the grid size and convective

coefficient. One consequence is that approximations on coarse grids may be very dissipative

and the layers are smeared. Since the numerical or artificial diffusion added by these schemes

is much greater than any physical diffusion in the original problem this often makes the

solution of little practical use other than as a starting iterate for a new solution on an

improved grid. However, at a sufficiently fine grid resolution, such as the 1-D resonant

tunneling QHD studies in Gardner [33], a uniform fine grid can be used to obtain good

results, but solutions in 2D or 3D can not be efficiently obtained.

Degradation of the physical layers (smearing over several grid cells) can be mitigated

by the introduction of higher-order upwind schemes that still suppress oscillations, such

schemes being frequently adapted horn computational fluid dynamics (CFD). Some ex-

amples are the flux limiter schemes [73] and similar total variation diminishing (TVD) or

bounded (TVB) schemes [21, 46, 78] or the non-oscillatory ENO schemes [19, 70]. This

latter strategy has been applied to simple diode simulations to obtain non-oscillatory ap-

proximations with sharp fronts [29, 35].

The idea of discretizing the drift term to better reflect the underlying physics is also

the key to the well known Scharfetter-Gummel strategy [68]. A superior one-dimensional

upwind difference approximation is constructed by first assuming the electric field E = –@’

is constant on each cell (or element) and analytically solving a simplified differential equation

locally for the current density Jn in terms of grid point (nodal) electron concentrations

2ai+l/2

( )(

71i+leffi+112 — 7?ie-ai+112

Jiali+l/z= Dn ~
)

(4)
i

eai+llz — e–ai+l/’2

where ~i+112 = ~Ei+l/2hi = ‘*(#i+l – ‘@i) ‘ith ‘i = ‘i+l – ‘i ‘he Ceu lenkXh between

nodes i and i+l.

Then setting [Jn] = O at x = ~i, where [.] denotes the jump in the quantity, yields

the desired upwind weighted three-point difference approximation. Note that the resulting

scheme involves exponential (or hyperbolic cotangents) in the difference coefficients and
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that these can be interpreted in terms of the local Green’s function for the linearized equa-

tions on the cell. We remark also that these same hyperbolic cotangents arise in the choice

of weights for exact superconvergence of the Galerkin method with linear elements applied

to the model convection-diffusion equations.

The exponential weighting in the Scharfetter-Gummel weighted difference scheme can

be interpreted as related to the underlying Green’s function for the linear drift-diffusion

operator. That is, introducing the integrating factor e– ~x and simpli~ing, we can obtain

the corresponding Green’s function for a source C$(Z– Q. By incorporating the local effect

of the approximate Green’s function at the cell or element level, the Scharfetter-Gummel

difference weighting provides a good stabilization and suppresses oscillations that would

otherwise arise from a standard central difference treatment of the drift-diffusion equations

in one dimension.

Motivated by the success of upwind differencing the convective term, analogous upwind-

biased Galerkin schemes have been introduced and refined in various ways. These usually

are posed as a Petrov-Galerkin formulation in which the test functions are weighted in

the upstream direction. A simple construction for the model problem that is conceptually

linked to the previous Green’s function ideas is to introduce an integrating factor to express

the problem in self-adjoint form and then write the standard Galerkin formulation of this

transformed problem to obtain

J

1

u’(e–~xv’)dx =

J
~1~(e-%)dz (5)

o

which yields a non-oscillatory approximate method . This scheme can be related to expo-

nentially upwinding the test function [12].

In higher dimensions the upwinding issue is more complicated. A common approach

for finite difference schemes on Cartesian grids has been to apply the ID formula in the

respective coordinate directions. However, since the field .E is in general oriented at some

angle to $he axes, simply using its components as

will yield a scheme with excessive cross-dissipation.

8
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transport applications in CFD where this approach has been followed.) An alternative

is to rotate the coordinate frame into a “streamline-normal” system and apply the ID

formula in the streamline direction, then rotate back to the original frame. Similarly, in the

higher dimensional Petrov-Galerkin scheme the upwind bias for the test function can be

constructed to be aligned with the field vector. The resulting scheme is then a streamline

upwind Petrov-Galerkin (SUPG) form [9, 44].

A streamline diffusion scheme can be constructed simply by adding artificial diffusion

in the streamline direction. For our model steady drift-diffusion equation we then obtain

the following weak statement: find u such that

J
(e. Vu)wdv + ~ ~ Vu “ Vwdv + ~(lEl, h) Jo u,cewdv = O

$-l
(6)

holds for all admissible u, where & is the unit vector in the direction of E, the artificial

diffusivity ~ is a function of the electric field strength and ~ is in the direction of the field.

(In two dimensions Uf = Uzzf+uyyg = Eluz+l%uv where 131,Ez are the field components.)

This weak statement is equivalent to solving the “dissipative” differential equation:

(7)

The function coefficient yin the stabilization term is chosen to satisfy -y= Oif e = D/ll?l >

h; that is, the mesh size is such that there are grid points in the solution layers. Hence

wemayset~=h– e if h > e and ~ = O otherwise to get a viable stabilization scheme.

Howeverj since this dissipation is an O(h) modification of the original problem it is not

surprising that the asymptotic accuracy is now only O(h). That is, this scheme is only

first-order accurate.

The streamline upwind Petrov-Galerkin construction recovers the second-order accuracy: “

First, consider the degenerate hyperbolic problem obtained by letting D ~ O. We then have,

E” Vu = ~ or, equivalently, u< = f/lEl. Biasing the weight in the upstream direction –6

we set G = w +~b with b = W,C,and amplitude -yis to be specified. Then the weak statement

becomes: find u satisfying

9
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Re-introducing the diffusion term (D # O) we write similarly,

J
(UC- eAu)(w + ‘)’W<)dV =

J
~ A(W + ‘yWodv

Cl

and reorder terms to get

(9)

The construction is completed by “interpreting” the last term on the left as a sum of

element integral contributions. (Note that this implies that interface jumps are ignored in

computing this contribution and that for linear elements Aue = O in the element interior

implies that this term is zero.) In our opinion this is a less than satisfactory situation, but

the fact that ey scales the term with both e and -y small implies that asymptotically the

“correction” is valid. It should also be kept in mind that we are, in fact, perturbing the

original problem in the sense that a higher-order artificial dissipation may be associated

with the upstream bias term.

The time dependent SUPG scheme follows in a similar fashion with E” Vu replaced by

ut + E. Vu and the remainder of the formulation as above. This, however, also allows us to

introduce other treatments that have been the subject of recent study in other applications

areas. Of particular interest are the space-time and discontinuous Galerkin methods [2, 6,

22, 47].

Let us consider the 1-D case. Introducing the “pseudo-material derivative” -Du/llt =

ut + E. Vu = u<, then in the new E(z, t) space-time frame we have

uc – DUZZ= f, U< = ut + EUZ (11)

Adding an artificial diffusion -yuz. we can construct a corresponding spac~time Galerkin

Scheme

T1

1/

T1

//

T1

/1

T1

ucwdxdt + e u=wzdzdt + T u=wzdxdt =
IJ

fwdxdt
00 00 00 00

and similarly, a space-time SUPG scheme follows of the form

T1

H

T1

UC(W + yw<)dxdt –
/1

CWZZ(W + ywf)dzdt =
1/

T 1~(w + ~wc)adt

00 00 00

10
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or in higher dimensions

T

H

T

Uf(w + ‘yw&K?dt – E
H

Vu “VW(W + ~w&)dQdt =
//

T f(W + y@d$2dt (14)
on 0$2 0$2

The space-time formulations can also be applied on individual time strips S. = fl x

[in, tn+l] where Atn = tn+l – tn is the time interval of interest and !2 is the spatial domain

(0= [0, 1] in the example above). For example, a Petrov-Galerkin space-time formulation

could be introduced of the form: find u satisfying the “initial” condition at t = tn and the

essential boundary conditions on 17~= 80 x [tn, tn+l] and such that “

J /
(U,W + E - VUW + DVU .Vw)df2dt = fwd~dt (15)

s. s.

holds for all admissible test functions w(fl, t). (Here, for convenience, we have taken u(f2, t)

to be specified on l?~, so w = O on this part of the strip boundary as well as on the

surface $2 of the strip at t = tn.) A finite element strip method follows on discretizing

the space time strip as a single layer of elements and introducing an appropriate basis

for the approximation trial and test functions. For example, a tensor product bilinear

basis for trial and test functions on a strip of rectangular elements will yield an implicit

difference scheme similar to those encountered in the Crank Nicolson difference method

and the Crank Nicolson Galerkin semidiscrete strip schemes. In a similar manner, a strip

of triangular elements with a continuous conforming basis might be applied to yield a more

general fully discrete space-time algebraic system for the strip, and the strip need not be of

fixed width in time. Other generalizations are also feasible. For instance, the test functions

in the previous tensor product discretization of rectangles may be constant in time and

continuous piecewise linear in space. This implies a test basis that is discontinuous across

the time interfaces between adjacent strips. This Petrov G,alerkin scheme also yields an

implicit system to be solved for each time interval. Error estimates and superconvergence

properties (in time) have been shown for this type of scheme applied to the model diffusion

equation [3].

The continuity of the trial space across the strip interfaces at tn can also be weakened

to obtain a discontinuous-in-time Galerkin or Petrov-Galerkin formulation. Let u+ and u–
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denote the approximations as tn is approached from above or below, respectively. Then

the strip interface jump condition [u] = O on the initial surface can be enforced weakly in

the variational statement on each strip. That is, we add surface integrals to the variational

problem on S’n of the form J~@]2df2. Note that in this scheme the trial and test spaces as

well as the mesh need not be conforming across time strip boundaries. These schemes can

also be extended to include upwind strategies and additional stabilisation treatments such

as SUPG to accommodate the drift term in the semiconductor device problem. A further

generalisation to treat drift-dominated and hyperbolic PDE problems is to use discontinuous

Galerkin schemes at the individual element level. In this case the “inflow” and “outflow”

boundaries are identified for a specified field direction and an arbitrarily oriented element.

The approximation and test functions are now discontinuous across interelement faces with

jump conditions enforced weakly using the correct directional drift inclusion. This concept

is applicable to arbitrary space-time elements but has not apparently been investigated to

date in this broader context.

The time-dependent transport problem also can be treated by introducing an equiva-

lent numerical dissipation term via the time discretization. This is, in fact, the basis of

the familiar Lax-Wendroff approach for hyperbolic problems. The basic idea is to use the

differential equation as an auxiliary relation. This relation can be differentiated and manip-

ulated to express the leading time truncation error as a spatial dissipation term that can in

turn be difference or similarly discretized. A simple illustrative example is afForded by the

fundamental drift equation ut = –Euz. Forward differencing with respect to time we get

?P+l (z) – Un(z’)

At
= –EUZ(Z, t.)+ $Utt(Z, tn) + -.. (16)

Differentiating ut = –Euz with respect to t and simpli~ing we have utt = E2UZZso that

the time discretized equation becomes

ZP+l (Z) – Uqfc)

At
= –EUZ(Z, tn) + E2~JUzx(Z, tn) + O((Ai)2) (17)

Neglecting terms of O((At)2) and differencing centrally in z yields the Lax-Wendroff dissi-

pative stabilized scheme.

12

,
I

I

I

(

I

I

I

I

I

.n- -..F.7..—,----K ... . ,,, ---V.W;-.-T .— ,... . .———.. .—



.

In like fashion, we can take this resulting dissipative form and integrate against a test

function W(Z) to obtain a Taylor-Galerkin scheme. This idea has been generalized to con-

struct a number of higher-order stabilized difference schemes [71, 72]. Note that the artificial

dissipation in x varies as the square of E and linearly with At. This implies that care must

be exercised that both the scheme not be excessively dissipative (E2 and At large) and

that At not be so small that oscillations arise. Results for a simple 0.4pm silicon diode are

shown in Figure

2 x 1015 cm–3 in

state.

1 (from [9]). Here the doping is 2 x 1018 cm–3 at source and drain with

the channel. The solution shown is obtained by time-marching to a steady

Other variants of the SUPG scheme may also be developed. For example, in [10] a

transformation to “entropy” variables is introduced and used to symmetrize the flux jaco-

bian matrix for the hydrodynamic system. Consider, for example, the non-parabolic energy

band transport system

WT
~ + Al(u) ~zl—+ A2(U)~ = S(U)+ V “kVU (18)

Introducing a change of variables U = U(V) we have
-;

W
— +A2(v)g = s(v)Ao(V)~ + Al(v) ~zl (19)

where now the entropy variable transformation is constructed such that A. = ~ is sym-

metric positive definite and Ai = AiAo are symmetric. The SUPG scheme can then be

formulated for the transformed system.

For example, in the above case we introduce the transformation for U = (n, nu, nv, nw)T

to V = (5/3 – s – w, u/wit v/wi2 –l/wi)T with s = ln(p/n513), Wi = W – (U2 + ‘U2)/2,

where p = 2/3nwi arises horn the Wiedemann-l?ranz assumption for Q = –kVU.

In fact, SUPG is a member of a broader class of stabilized finite element methods

known as Galerkin/Least-Squares (GLS) [45]. In this approach, the symmetric form of the

governing differential equation may be written as

w
,CV = Ao(U)~+i&(V)~ + A2(v)~ – s(v) = o. (20)

13
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Then Galerkin’s method may be written as

/
Wt.CVdfl = O. (21)

c1

The GLS method adds a functional to (21) of least-squazes form, namely

where ~ is a matrix of local element intrinsic time scales which is constructed from the

modal matrix of the differential operator. In (22), if ,CW is replaced by the convective part

of the operator A” VV, then the SUPG method is recovered. Similarly, GLS and SUPG

coincide for purely convective, steady-state problems.

There is a famous theorem of Godunov [36] which asserts that, in general, no linear

numerical scheme for hyperbolic problems may simultaneously be monotonic and better

than first-order accurate in space. Hencej modern numerical methods for capturing steep

layers in convection-dominated problems typically incorporate some sort of nonlinear feed-

back mechanism to enforce monotonicity of the solution. In this way, the magnitude of the

artificial dissipation is made proportional to the solution gradients. This is the motivation

behind the so-called “discontinuity capturing operators” in the SUPG/GLS literature, and

slope limiters for TVD and ENO methods. In this way, the formal order of accuracy of the

numerical solution may be improved in regions where the solution is smooth, and reduced in

regions of large, local gradients to suppress spurious oscillations and enforce monotonicity

of the solution.

The first order system for carrier transport in (l)-(2) can also be approximated directly

using a mixed method [31] by introducing the current densities Jn and Jp as additional

variables. This incresses the number of nodal unknowns and therefore the size of the al-

gebraic system to be solved so these ideas have not been pursued in practice. However, in

other applications areas such ss coupled fluid flow and transport mixed methods are re-

ceiving increased attention because the flux quantities are approximated directly to greater

accuracy. Moreover, local conservation can be enforced at the element level using appro-

priate elements such as the Raviart-Thomas family. This approach can also be applied to
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the electrostatic potential equation and, for simplicity of exposition, we will describe the

formulation for this case. Accordingly, let us first write the electrostatic equation as a first

order system by introducing a flux c to obtain

1
–0 = –v+
e

V“G = f

where we have also set j = q(n – p + C). In the following we assume

as in a block iteration where carrier concentration iterates are available

step with the decoupled carrier transport equations. Note that the full

(23)

that ~ is known ,

from the previous

system could also

be considered as a single large first-order system using the mixed Galerkin formulation.

The Galerkin statement for the mixed formulation follows after introducing test functions

w and v corresponding to the variations of u and # in a weighted residual statement: find

J J
C-10 . wdx – ~@V . wdx =

/
~w . nds

n an

J
(V. a)vdz =

J
fvdx (24)

$-l Q

hold for all admissible w c ~div(~) and # G L2 (!2). (The function space notation implies

that both # and V . w are square integrable.) Introducing the approximation subspaces

and simplifying , this saddle point problem yields a block system of the form

(25)

which can be solved for the nodal values S, @ of u and ~. Note that this system can be

reduced by static condensation to the Schur’s complement system

(BA-lBT)@ = Z’ + BA-lG (26)

which corresponds to the symmetric positive system obtained using the standwd Galerkin

method for the second order electrostatic potential equation in (l). The low order Raviart-

Thomas spaces are frequently chosen to develop the system in (26). For a rectangular
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.

element this implies a constant electrostatic potential approximation on each element and a

corresponding center node . The flux components are approximated using tensor products

of linears in the component direction and by constants in the remaining directions. That

is ai~ = CYiZi+ fli are linear in the i–th coordinate direction and constant in the other

directions. ( e.g., This implies nodes for ~i at the midpoint pair in direction i on opposite

sides of a rectangle.) For the triangle, the electrostatic potential is again constant on the

element with a node at the centroid, and the flux is linear of the form ~i~ = ~~i+~i with flux

nodal values normal to the edges at the edge center nodes such that ./&e Ch” nds = 0. The

mixed treatment for the carrier transport equations in (l)-(2) follows in similar fashion: the

weighted residual statement for the first order system is constructed and the approximation

spaces introduced to give a saddle point problem and algebraic system of the same structure

as that appearing previously in (25), where the electrostatic potential and electric field are

now presumed known from the above electrostatic Gummel step.

The Galerkin approach leading to a saddle point problem is not the only mixed weighted

residual formulation that can be developed. One such alternative is to use a least squares

minimization formulation for the residuals in the first order problem . This avoids the

restrictions associated with a saddle point formulation and generates a mixed system that

is symmetric positive definite. The analysis of this type of treatment and variations of

this approach are under investigation. For the electrostatic potential problem (23) a least

squares residual functional can be easily written

(27)

where a is a weight and we seek a minimizer of 1 for (c, 4) in ~div x L2. The approximate

problem is obtained by introducing finite element expansions oh and ~h in (27) and setting

the first variation of I to zero to obtain a system for the nodal vectors that is now symmetric

and positive [14, 15].
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4 Adaptive Grids

Wehavecommented previously that locally adapting the~idcan bevery beneficial. Ob-

viously, grading the mesh into the layers will improve accuracy and efficiency. Furtherj

numerical oscillations arise as a consequence of discretizing on a grid that is too coarse.

While adding dissipation or applying other strategies to suppress oscillations is important,

the underlying difficulties stem from the mesh. The best approach is to combine a stabilized

scheme with mesh adaption.

The main approaches for adapting the mesh are by (1) redistributing the nodes or (2) re-

fining cells. The redistribution approach is best suited to computations using stencil-based

finite difference schemes on mapped structured grids. For example, in a recent study we

developed a mapped formulation for the device problem as follows: (1) first a coordinate

mapping is introduced between a Cartesian reference grid and. a topologically equivalent

curvilinear graded mesh in the physical domain; (2) then the governing device transport

equations are mapped to the reference domain and difference (together with the metric

coefficient introduced by the inverse map) on the Cartesian grid. This is standard practice

for similar discretization schemes on structured grids in aerodynamics and CFD. The dis-

tinction now is that we have extended the Scharfetter-Gummel discretization procedure to

the mapped equation and

For example, consider

along the edges of the grid cells in the reference domain [57].

the following hydrodynamic model for electron transport [7, 8]

V“(J.) = o

n(w – ‘q)
v.(sn)+Jn. v# = – ~w (28)

where Jn and S’n respectively denote the current density and energy flux, which are defined

by the following equations
.

J. = rpq
[ 1&V(B(w)nw) – ~nV@

s. = Q – L?wJn/q (29) ‘

The momentum and energy relaxation times, TPand ~W,are empirical functions, which are

17



chosen from the work of Bordelon et al. [8] as

Tw= 0.46 X 10–12 S (30)

The system is closed by assuming a Fourier type constitutive relation for the heat flux, Q,

of the form

(31)

The other quantities in equations (28) - (31) are defined as follows: B(w) = (l+a~)/(1+

2a~), q = electron charge = 1.602 x 10–19 C, m* = effective mass = 2.367 x 10–31 kg,

(5 = permittivity of silicon = 11.9 co, Co= 8.854 x 10–12 C2/(joule m), KB = Boltzmann

constant = 1.381 x 10–23 joule/kelvin, wo = ~~BTL joule, TL = lattice temperature in

kelvin, and a = 0.5eV–1, Q = 1.3, -y = 4.2 x 10–26 (watt m2)/kelvin, R = O to 0.5 are

empirical constants.

The mapped Scharfetter-Gummel approach is derived for the current-density and energy-

flux terms in this hydrodynamic system. Details of this derivation for the case of a general

coordinate mapping are given in [57]. Here we state these results in the original coordinate

system, and give the usual one-dimensional version that is used in a finite-volume setting to

discretize the V. Jn and V. Sn terms. Accordingly, if we use subscript i to denote quantities

at node i, the (constant) current-density and energy flux components on the mesh segment

between nodes i and i + 1 are given by

J. 2 c,.B(wy) ‘ni+l

[

(Wi+~ – Wi)

~@(x) - ~p(-x)] lIl(Wi+l/ZUi)

7 = ~ m*Ax

S. = V[Wi+~/3(Y) – Wi~(–Y)]

where

x=
[ 1
3 q (A+l -A) _ z In (Wi+l,wi)

2 B(’W~) (Wi+l – Wi)

H In ~i+l

()

ni~~’lli
v——

= AX ni ni~~ —ni

18
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,, .

and /3(z) = x/ (eZ — 1) denotes the Bernoulli function. The other quantities introduced in

(32) - (33) are

c. =

Ax =

W? =

coefficient of 7P= 0.007 x 10–12,

local mesh spacing = (Z~+l – Z~),

average energy along edge Ax = ~ (wi+l + Wi)
,4

Note that the transformation takes into account the way the mesh is graded and this

permits grading the mesh into regions where solution gradients or errors are large.

The second approach for improving the grid is to add new grid points locally to enrich

the mesh in certain regions and simultaneously remove grid points in those parts of the

domain where they are not needed. The ID FETG result in Figure 1 was first computed

on a uniform grid of 100 elements and generated solution profiles with strong oscillations

near regions of large solution gradient. The non-oscillatory results in the Figure are for a .

final nonuniform grid of 150 elements obtained by point insertion. The situation in higher

dimensions is obviously more difficult. However, points can be added conveniently as part

of a Delaunay triangulation process [13]. The Delaunay triangulation is optimal in the

sense that it connects the nodes (grid points) so that the local triangle shape is the best

possible in a certain geometric sense (in the sense of maximizing the minimum angle via

edge swaps). The refinement algorithm for grid point insertion is very straightforward:

assume a new point p is to be added in a designated element based on the solution behavior

or a local error “indicator”; add the point and identi~ any neighboring triangles that will

be influenced by the Delaunay process; remove the corresponding interior edges to define

a “cavity” around p and connect p to the vertices of the cavity. This process is repeated

recursively until the point insertion is completed. Similarly a vertex center of an interior

patch can be deleted to form a polygonal cavity which can then be retriangulated to again

meet the Delaunay requirement. Local coarsening can thus be achieved by successive point

deletions, again guided by a local error or feature indicator. The approach can be extended

to point insertion into tetrahedral grids.
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.

Not only is this point insertion strategy simple, but it also incurs little overhead to

the data structure, using only the edge neighbor information available from the Delaunay

process. Yet, surprisingly, it appears to be little used for adaptive grid enrichment. In the

case of existing industrial software that uses unstructured triangulation, this point insertion

approach is appealing because it is relatively straightforward to retrofit the adaptive com-

ponent to the analysis software. Hence, this is the easiest path for upgrading existing device

and process simulators to include adaptivity and yield more accurate, reliable simulations

that are more stable and not oscillatory.

A more common approach for adaptive refinement that does not require a Delaunay

property is to simply insert points at the midpoints of specified edges of a triangulation.

For example, we can refine a designated triangle to a quartet of similar subtriangles by

simply connecting new nodes at the midpoints of the three sides. The neighbor triangles

can then be refined by connecting these midpoint nodes to the opposing vertices or a

similar strategy. This idea has been applied by Bank et al [4, 5] to device simulations

using adaptive refinement with a multigrid solver. The approach could also be combined

with Delaunay swaps to help avoid generating poorly-shaped sub-triangles. Such a scheme

relies on an element-based data structure using an element error indicator. A variant of

this method is to split designated edges (rather than elements) guided by an edge-based

error indicator. A point is then inserted in a given edge and the adjacent triangles are

appropriately subdivided. (Clearly this can also be done using the previous Delaunay

procedure). These strategies and variants of them can easily be generalized to tetrahedral.

For example, see Plaza and Carey [62, 63] for recent tessellations based on longest edge

bisection of tetrahedral using the skeleton triangulation. The sketch in Figure 2 shows a

tetrahedron refined in this manner.

The approach of subdividing the triangle to a quartet of sub-triangles or the tetrahedron

to an octet of sub-tetrahedra generates respectively a quadtree and an octree data structure

that can be exploited in the simulation to yield a more efficient adaptive algorithm [18].

Rather than reconnect midside nodes of edges shared by unrefined neighbor elements, one
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can include constraints on the solution behavior along these edges to ensure appropriate

continuity or smoothness of the approximation (conformity). This approach can also be

applied to quadrilateral and hexahedral (quadrilateral brick) elements with their associated

quadtree and octree data structures. One of the first studies of this type for device sim-

ulation used quadrilateral elements for a MOSFET simulation [17, 69]. A sketch of the

potential field from that early calculation is given in Figure 3. More recently Dutton et

al [20, 26, 37] and Hitschfield et

device simulations respectively.

Instead of refining the mesh

al [43] have developed adaptive schemes for process and

to improve accuracy, one may increase the order of the

difference scheme or the degree p of the finite element basis. The latter p-type or spectral

element approach is particularly appealing, since the grid with mesh parameter h remains

fixed and the element degree can be increased as needed. For elliptic boundary value

problems with smooth solutions, a polynomial element basis of degree p will yield a global

asymptotic rate of convergence in the L2 norm that is O(h~+l). This high accuracy and rapid -

convergence can be achieved by increasing p to the necessary level on a relatively coarse grid.

The element matrices increase with p and the bandwidth grows correspondingly, but the high

accuracy implies that these methods will be more efficient when the solution is sufficiently

regular. However, for problems with singularities, the reduced global regularity restricts the

rate of convergence: if the solution is in H’ then the rate in L2 becomes p = min(p + 1, r) ,

so r limits the rate of a p scheme. In this case it is desirable to adapt by refining the mesh

towards singularities (local h refinement) and increase the polynomial degree on elements

remote from the singularities. Such schemes are called adaptive hp methods and have not

yet been applied to semiconductor device or process simulation although they are used in

other field problems in engineering mechanics and electromagnetic.

A uniform p refinement scheme has been applied to compute solutions to the augmented

drift-diffusion equations mentioned previously. This study involved the use of parallel mul-

tilevel iterative solution techniques in which the level corresponded to the degree of the

element polynomial basis [24]. Adaptive p schemes can be constructed in a manner similar
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to the adaptive h schemes where now the polynomial degree varies across the elements of

the discretization. This implies that, as in the case of h-refinement, a strategy is needed

to permit transition between refined and unrefined elements. In the adaptive h scheme on

simplices this can be achieved by connecting the “hanging” node on the element interface

to the opposite vertices of the adjacent unrefined element. For hexahedral grids, special

transition elements can be constructed or techniques for locally constraining the solution

by penalties or Lagrange multiplier methods can be introduced. Similarly, in the adaptive

p scheme, continuity of the approximation across the element interface can be enforced by

constraining the higher degree basis functions on the element interface. If a hierarchic basis

is used, then this simply implies that the appropriate degree of freedom be set to zero at

the interface node of the refined element. Further details on adaptive p and hp strategies

are provided in [60].

5 Software Frameworks

The use of more sophisticated algorithms such as those with complex data structures for

grid adaption has increased the complexity of the associated software. In addition there is

a desire from the applications area to be able to handle a more diverse class of problems

in more general settings (variable spatial dimensions, coupled fields, etc.). Finally, and this

is particularly the case for the device problem, the formulation, algorithms and software

should be easily extensible to treat new models or a gradation of models. We have seen that,

depending on the application, one may wish to solve in order of increasing complexity the

potential problem, the drift-diffusion system, the hydrodynamic system, quantum hydro-

dynamic systems or higher order models. Moreover, the “constitutive” models for mobility

(augmented mobility models), inversion layer treatment, thermal closure etc. should be

encompassed within the one software framework. These requirements imply a concomitant

demand on the software design and the use of higher level programming languages and tools

to facilitate a flexible, extensible package.

The use of object-oriented software paradigms certainly facilitates design of such systems
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[25, 28,30, 80] and this approach has been applied in both the commercial and university

sectors to varying degrees (Avanti, Floods, Maple, Mathematical) [16, 51]. The Stanford

University ALAMODE simulator [79] is another example of an object oriented dial-an-

operator tool for TCAD simulations.

Symbolic manipulators have also been receiving increasing attention as a mechanism for

expressing differential equations explicitly in software using, for instance, Mathematical or

Maple. While symbolic manipulation does incur a modest overhead, it facilitates design of

a framework which can accommodate a broad applications set. This implies that changes to

the differential equation system may often be possible directly in the higher level symbolic

language without affecting the discretization procedure, data structure and solvers.

Part of our recent work on device simulation has involved the industrial simulator

PROPHET. This software framework was originally developed for semiconductor process

simulation and we have been collaborating with the Lucent developers and colleagues at

Stanford on the extension of the capability to device analysis [67]. One long-term goal is to

provide a single integrated framework for both process and device simulation. PROPHET

embodies some of the features mentioned above - in particular, it provides a ‘(dial-an-

operator” capability that allows the user to “build” a differential equation system. This

implies that the analyst may even construct mathematical models for other classes of ap-

plications beyond the process and device problems of immediate interest [59].

Of course, the ability to handle very general differential systems at the symbolic level

presumes that individual differential operators such as div, grad, curl and integral operators

can be discretized appropriately. This, in turn, places considerable demand on the data

structure at the next lower level. Some operators will require element or cell information,

others edge or patch information and so on. For example, discretization strategies for

stabilization such as streamline upwinding or exponential weighting via a local Green’s

function may use patch or edge data structures in specific ways.

The basic strategy used in PROPHET consists of decomposing equations into terms,

and treating each term as a combination of a geometric and a physical operator. New
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. .

application models can be treated by either combining the predefine geometric and physical

operators to construct new PDE systems, or by creating new physical operators via a well-

defined interface. The package also includes a database library which enables easy access

to any coefficients, parameter values or other properties that pertain to pre-configuring the

supported applications. More comprehensive details regarding the set up of PDE systems

and the structure of the database library are discussed in the references [65, 66].

The analyst may ‘interact’ with the PROPHET framework in three main modes: (1)

at the top-most application level; (2) at the middle “dial-an-operator” level; and (3) at the

lower-most discretization level. For instance, adding the new drift capability (grad opera-

tor) for the device problem using the mapped S-G approach on edges requires expanding

the discretization capability at the lowest level, whereas modifying the differential equa-

tions with operators from the existing library involves the mid level and simpler parameter

changes involve only the top level. An example of a MOSFET simulation with PROPHET

is given in Figure 4. Further details are provided in [58].

Over the past three years the SIERRA C++ framework [75] has been under development

at Sandia National Laboratories as part of the U.S. Department of Energy’s Accelerated

Strategic Computing Initiative (ASCI). The goals of this project are to provide software

support services that are common to finite element applications. An important aspect

of this effort is the construction of a set of high-level abstractions that allows the details

of services such as adaptive mesh refinement, cache management, message-passing, linear

solvers, and so forth to be hidden from the applications developer.

The basic paradigm is that a finite element code is a set of nested computational me-

chanics objects. The highest level, called a domain, is essentially a container for one or more

procedures that manages the time integration of a set of regions. Each region is responsible

for solving nonlinear sets of strongly coupled equations at a single timestep. Different sets

of physics correspond to loosely coupled regions. In turn, the region contains lower-level

element mechanics, which perform the actual element integrations, etc. At the lowest level,

the element mechanics may contain nested material mechanics that provide the constitutive
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relations such as stress-strain, thermal conductivity, etc. Boundary conditions are typically

implemented as mechanics classes that are owned by the region and hence are peers of the

element mechanics.

In this way, separate physics may be loosely coupled at the procedure level, by

a region that contains each distinct set. For example, a microelectromechanical

defining

systems

(MEMS) problem might consist of several regions: one (or more) in which fluid motion is

modeled, another in which structural deformation is modeled, a region for electromagnetic

field calculations and regions for heat transfer and radiation modelling. Data transfer among

regions occurs at the procedure level via abstract transfer objects that hide the details of

the mesh projections from the developer. Regions may overlap and it is not necessary that

the two meshes align. As another example, a transistor might be modeled as two .non-

overlapping regions: the first could be the oxide, in which the nonlinear Poisson equation is

solved for the electric field, and the second might contain the rest of the device, in which the

coupled Poisson equation and the charge transport equations are solved. Alternatively, if

Gummel iteration is used to decouple the electrostatic potential and transport calculations,

then the first region corresponding to the nonlinear Poisson equation could span the entire

device, and thus overlap with the second, in which only transport equations are solved. In
‘,

this case, the transfer object would pass the electric field from the first region to the second,

and also pass the carrier concentrations from the second region to the Poisson region. In

this latter strategy, adaptive refinement could be used to obtain two separate meshes in

the semiconductor, one optimized for the potential solution and the other optimized for the

concentration solution. The details of determining the mesh intersections on distributed

memory computers and projecting solutions from one mesh to another are transparent to

the application developer.

6 Parallel and distributed computing

The need for more sophisticated physical models leading to larger coupled PDE systems

together with the requirement of high resolution grids has fostered interest in parallel de
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vice simulation [23, 76]. Traditionally, the device designer has depended on uniprocessor

workstation capability, but the recent emergence of multithreaded parallel shared-memory

workstations and of tightly-coupled distributed parallel PC workstation clusters provides

an inexpensive means of scaling up the application and reducing run time [38].

A standard approach for parallelizing PDE simulation is via domain decomposition:

The domain and grid are partitioned to a set of subdomains and corresponding subdo-

main grids. Both overlapping and non-overlapping domain decomposition strategies are

.
applicable. Typically, the subdomain calculations are carried out on their respective pro-

cessors with overlap or interface communication using MPI between adjacent processors

[1, 11, 23, 38]. To date there has been little use of these ideas for device and process sim-

ulation except in a few university research studies [61, 77], but but they are now widely

used for other engineering applications. We will see more widespread interest and use in

the near future, particularly as software frameworks are developed to support parallelism

for process and device simulation.

We are particularly interested in parallel solution strategies that can accommodate un-

structured grids. Hence, it is important that the grid partitioning problem be efficiently

treated and that the resulting partition have good load balancing properties for parallel

computation. Sandia software package CHACO [50] provides several algorithms of varying

complexity ranging fi-om simple inertial bisection to more costly spectral schemes. These

approaches have been continued in the METIS software which is widely available [48]. Both

software systems provide effective means for partitioning unstructured grids in applications

to the stationary device equations.

A representative example is included here from a recent study. The test problem was

the n-channel depleted MOSFET described in [11] using the drift-diffusion model on a mesh

of 7722 triangles generated by Delaunay triangulation. A partitioning of the unstructured

grid to 6 subdomains is indicated in Figure 5. See [11] for numerical results as well as more

details of the algorithm and implementation.



.

7 Concluding remarks

Advances in models, methodology, software and computer processing hardware continue

to enhance our ability to provide reliable and detailed simulation capabilities for device

analysis and design. However, the continuing trends to shrink technology make this area

one of great challenge in all these respects. At the same time, the need to shorten the design

cycle and accelerate delivery of new products to market places a greater weight on the use

of simulation technology. There is ample evidence that increased research and development

funding at the universities and in industry is needed in this area if it is to achieve these goals.

It is also clear that in many respects semiconductor modeling and simulation lags similar

work in other engineering areas and that this problem is increasing. It is surprising that

this situation has arisen, given the importance of microelectronics to the high technology

and the information Technology infrastructure.
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List of figures

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Finite element Taylor-Galerkin solution of hydrodynamic model for a 0.4pm silicon

diode with 3 volts bias. The initial mesh, which consists of 100 uniform elements, is

adaptively refined to yield a final mesh containing 150 elements (from [9]).

Example showing 3D skeleton based refinement of tetrahedron. The initial mesh is

shown in (a) and the edges of one tetrahedron are bisected in (b). New edges in

the neighbor tetrahedron are bisected in (c) and the surface triangles (skeleton) are

refined in (d). The interior of each tetrahedron is refined in (e) to yield the final mesh

(from [62]).

Electrostatic potential surface plot for a 2D MOSFET using a finite element scheme

with adaptive refinement and flux-upwinding to solve the drift-diffusion system (from

[69]).

PROPHET simulation of hydrodynamic model for a 2D MOSFET structure with bias

condition VG = VD = 4 volts (from [59]).

(a) A triangular mesh of the MOSFET geometry containing 7,722 triangles and 3,921

nodes. (b) METIS computed partitioning of the mesh into subdomains for 6 processors

(from [11]).


