Advanced Phasmatodea Population Evolution Algorithm for Capacitated Vehicle Routing Problem

 and Jeng-Shyang Pan ${ }^{1,2,4}$
${ }^{1}$ School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou 350118, China
${ }^{2}$ College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
${ }^{3}$ College of Artificial Intelligence, Yango University, Fuzhou 350015, China
${ }^{4}$ Department of Information Management, Chaoyang University of Technology, Taichung 413310, Taiwan
Correspondence should be addressed to Jeng-Shyang Pan; jengshyangpan@gmail.com

Received 30 June 2021; Accepted 24 February 2022; Published 20 March 2022
Academic Editor: Chi-Hua Chen
Copyright © 2022 Jiawen Zhuang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Capacitated Vehicle Routing Problem (CVRP) is difficult to solve by the traditional precise methods in the transportation area. The metaheuristic algorithm is often used to solve CVRP and can obtain approximate optimal solutions. Phasmatodea population evolution algorithm (PPE) is a recently proposed metaheuristic algorithm. Given the shortcomings of PPE, such as its low convergence precision, its nature to fall into local optima easily, and it being time-consuming, we propose an advanced Phasmatodea population evolution algorithm (APPE). In APPE, we delete competition, delete conditional acceptance and correspondingevolutionary trend update, and add jump mechanism, history-based searching, and population closing moving. Deleting competition and conditional acceptance and correspondingevolutionary trend update can shorten PPE running time. Adding a jump mechanism makes PPE more likely to jump out of the local optimum. Adding history-based searching and population closing moving improves PPE's convergence accuracy. Then, we test APPE by CEC2013. We compare the proposed APPE with differential evolution (DE), sparrow search algorithm (SSA), Harris Hawk optimization (HHO), and PPE. Experiment results show that APPE has higher convergence accuracy and shorter running time. Finally, APPE also is applied to solve CVRP. From the test results of the instances, APPE is more suitable to solve CVRP.

1. Introduction

The population-based algorithm is a kind of metaheuristic algorithm, and it is widely used in transportation [1, 2]. Particle swarm optimization (PSO) [3, 4], equilibrium optimizer [5, 6], flower pollination algorithm (FPA) [7-9], fish migration optimization (FMO) [10], and quasiaffine transformation evolutionary (QUATRE) [11, 12] are some popular population-based algorithms. PPE, as a novel swarm intelligence algorithm, is proposed by Song [13], and the enlightenment of PPE is from the stick insect population's evolution process.

As a novel population-based algorithm, PPE was introduced in 2020. It has some merits, e.g., the principle of the algorithm is simple and easy to implement. However, there
are also some disadvantages, e.g., it is time-consuming, it has low precision, and it falls into the local solution easily. Therefore, the improvement of PPE is a challenging and meaningful study.

VRP was proposed by Dantzig and Ramser in 1959 and has been developed for many years [14], and as a branch of VRP, the related research of CVRP was very popular in transportation. CVRP refers to some customers with known demands served by some vehicles with certain capacity limits.

CVRP is an important issue. On the one hand, it is a practical problem because many real-world problems can be abstracted into CVRP. For example, in a restaurant, a waiter needs to serve multiple tables to meet customers' order needs. When only one waiter is considered, the problem is
abstracted into CVRP. Another example is that the heart of the human body supplies blood to other organs, and the blood vessels are regarded as pathways. After simplification and hypothesis, this process can be modeled as a CVRP. On the other hand, CVRP is also a challenging scientific issue. VRP is an NP-hard problem $[15,16]$ that is difficult to a use precise algorithm to get the optimal solution in finite time.

Many scholars have studied CVRP. In 2006, Wu et al. used a new real number encoding method of PSO for solving VRP [17]. Chen et al. proposed a novel hybrid algorithm for CVRP, and in the hybrid algorithm, discrete PSO searches for optimal results and simulated annealing are used to jump out of the local optimum [18]. In 2009, Ai and Kachitvichyanukul proposed two solution representation methods, namely SR-1 and SR-2, for CVRP [19]. In 2015, Zhang and Lee proposed a routing-directed artificial bee colony algorithm to solve CVRP [20]. In 2019, Altabeeb et al. put forward an improved hybrid firefly algorithm for CVRP, and it was tested by 82 instances [21]. In 2020, Khairy et al. put forward the enhanced group teaching optimization algorithm to solve CVRP, and it was tested by 14 instances with promising time results [22]. In 2021, Fu et al. proposed the parallel equilibrium optimizer algorithm to solve CVRP [23].

In this paper, the proposed APPE deletes competition, deletes conditional acceptance and corresponding evolutionary trend update, combines a novel jump mechanism, and adds a history-based searching for population's position update and the population closing moving method for early phase searching. Then, the algorithms are tested by CEC2013 [24]. We also apply APPE to solve CVRP.

The following is the remaining of this paper. The CVRP model is described in section 2. Section 3 introduces PPE. APPE is described in section 4 . In section 5, the experiments of CEC2013 functions and CVRP are described. In section 6, a conclusion is given.

2. CVRP

The objective of CVRP is to minimize the sum of distance. The path taken by each vehicle satisfies the capacity constraint. There is only one warehouse or depot. The model of CVRP is as follows:

$$
\begin{equation*}
\min f(X)=\sum_{k=1}^{K_{\text {vehicl }}} \sum_{i=0}^{N_{c}} \sum_{j=0}^{N_{c}} c_{i j}^{k} x_{i j}^{k} . \tag{1}
\end{equation*}
$$

$$
\text { s. } t \text {. }
$$

$$
\begin{align*}
x_{i j}^{k} & = \begin{cases}1 & \text { if vehicle } k \text { go from customer } i \text { to } j, \\
0 & \text { otherwise },\end{cases} \tag{2}\\
i & =1,2, \ldots, N_{c} ; j=1,2, \ldots, N_{c} ; k=1,2, \ldots, K_{\text {vehicle }}
\end{align*}
$$

$$
y_{i}^{k}= \begin{cases}1 & \text { if vehicle } k \text { serves customer } i \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

$$
i=1,2, \ldots, N_{c} ; k=1,2, \ldots, K_{\text {vehicle }}
$$

$$
\begin{gather*}
\sum_{i=1}^{N} d_{i} y_{i}^{k} \leq Q_{k}, k=1,2, \ldots, K_{\text {vehicle }} \tag{4}\\
\sum_{k=1}^{K} y_{t}^{k}=1, i=1,2, \ldots, N_{c} \tag{5}\\
\sum_{i=1}^{N} x_{i j}^{k}=y_{j}^{k}, i=1,2, \ldots, N_{c} ; k=1,2, \ldots, K_{\text {vehicle }} \tag{6}\\
\sum_{j=1}^{N} x_{i j}^{k}=y_{i}^{k}, i=1,2, \ldots, N_{c} ; k=1,2, \ldots, K_{\text {vehicle }} \tag{7}\\
\sum_{i=0}^{N} x_{i t}^{k}=\sum_{j=0}^{N} x_{t j}^{k}, t=1,2, \ldots, N_{c} ; k=1,2, \ldots, K_{\text {vehicle }} \tag{8}\\
\sum_{i, j \in S \times S} x_{i j}^{k} \leq|S|-1, S \subset\{1,2, \ldots, N\}, S \neq \Phi \tag{9}\\
k=1,2, \ldots, K_{\text {vehicle }}
\end{gather*}
$$

where N_{c} is the customer number, $K_{\text {vehicle }}$ is the vehicle number, $c_{i j}^{k}$ is the distance from the i th customer to the j th customer by the k th vehicle, and d_{i} is the i th customer's demand. The k th vehicle's capacity is Q_{k}.

Formula (1) is the objective function. Formulae (2) and (3) describe the decision variables. Formula (4) shows the vehicle's capacity constraint. Equation (5) guarantees that every customer is served only once. Equations (6) and (7) ensure that one vehicle serves one custom. Equation (8) ensures the continuity of the route so that every vehicle coming in from the customer point would go out from that point, as well as back to the depot. Formula (9) is to eliminate the subloop.

3. PPE

PPE is inspired by the evolution process of the stick insect population. PPE initializes $N p$ solutions randomly like other population-based algorithms. Every solution x has two properties, the first property is population number p, and the second property is population growth rate $a . \mathrm{ev}$ reflects the current evolution trend.

Then, calculate the fitness value, and find the global optimum, which is denoted as g best. The first k best solutions are stored in $H o$, and k is equal to $\log (N p)+1$.

Next, in iteration, the new position is the sum of old position and evolution trend, which is as follows:

$$
\begin{equation*}
x^{t+1}=x^{t}+e v \tag{10}
\end{equation*}
$$

where t is the current generation, and x^{t} means the current solution's position. Then, calculate new solutions' fitness and update the global optimum gbest and Ho.

When the new solution's fitness is better, the current solution is absolutely replaced with it. Growth rate a, population quantity p, and population evolution trend $e v$ are updated as follows:

$$
\begin{align*}
a^{t+1}= & a^{t}\left(1+\frac{f\left(x^{t}\right)-f\left(x^{t+1}\right)}{f\left(x^{t+1}\right)}\right) \tag{11}\\
p^{t+1}= & a^{t+1} * p^{t}\left(1-p^{t}\right) \tag{12}\\
e v^{t+1}= & \alpha *\left(1-p^{t+1}\right)\left(s\left(H o, x^{t}\right)-x^{t}\right) \tag{13}\\
& +p^{t+1} * e v^{t}+\beta * p^{t+1} * m
\end{align*}
$$

In equation (13), the population evolution trend $e v$ consists of three parts. In the first part, $s\left(H o, x^{t}\right)$ means the nearest solution to x^{t} in Ho. This part reflects similar evolution. The second part preserves the inertia of evolutionary trends. The final part is the mutation.

When the new solution's fitness is worse, the current solution is conditionally updated by the new solution. If a generated random number in $[0,1]$ is less than the population number p, namely acceptance probability, the worse solution is accepted, and growth rate a and population quantity p are conditionally updated as equations (11) and (12). The evolution trend $e v$ will change, irrespective of whether conditional acceptance probabilities are met, as follows:

$$
\begin{align*}
e v^{t+1} & =\left(s\left(H o, x^{t}\right)-x^{t}\right) * \operatorname{rand}+s t^{t+1} * r d n \tag{14}\\
s t^{t+1} & =\left(\frac{1}{t}\right)^{\frac{\left|f\left(x^{t+1}\right)-f_{\min }^{t+1}\right|}{f_{\max }^{t+1}-f_{\min }^{t+1}} * c^{t+1}} \tag{15}\\
c^{t+1} & =0.99 * c^{t} \tag{16}
\end{align*}
$$

where $s t^{t+1}$ controls the exploration range. c initializes to 2 , and cis updated by using (16), when the new solution of the algorithm is a worse solution.

Competition also affects population evolution trend. When two solutions' distance is less than G, competition will occur. Population quantity p and population evolution trend $e v$ are updated in competition as follows:

$$
\begin{gather*}
p_{i}=p_{i}+a_{i} p_{i}\left(\frac{1-p_{i}-p_{j} f\left(x_{j}\right)}{f\left(x_{i}\right)}\right) \tag{17}\\
e v^{t+1}=e v^{t+1}+\frac{f\left(x_{j}\right)-f\left(x_{i}\right)}{f\left(x_{j}\right)}\left(x_{j}-x_{i}\right) \tag{18}
\end{gather*}
$$

where x_{j} is a random selected solution from $N p-1$ solution. The distance from x_{i} is less than that from G. PPE's pseudocode is shown in Figure 1.

4. Advanced PPE

PPE also has shortcomings, such as low convergence precision, high consumption of time, and it falls into local optimum easily. Given the shortcomings of PPE, we propose APPE, which deletes competition, deletes conditional acceptance and correspondingevolutionary trend
update, and adds jump mechanism, history-based searching, and population closing moving.
4.1. Without Competition. The competition mechanism exists in many algorithms. The imperialist competitive algorithm is based on imperial competition, in which weaker empires collapse and stronger empires take over colonies [25]. In the PPE, the competition mechanism is also considered. When the distance between the two solutions is too close, the population quantity p and population evolution trend $e v$ will be updated. However, when the algorithm converges to the global or local optimal solution, this competition mechanism will affect its convergence tendency. At the same time, the calculation of particle distance takes time. Therefore, we remove the competition mechanism, thus effectively reducing the algorithm's running time. It is equivalent to deleting the $d i s t(x j, x i)<G$ part of the PPE pseudo-code.
4.2. Without Conditional Acceptance and CorrespondingEvolutionary Trend Update. Some algorithms adopt the method of conditionally accepting a worse solution to improve the algorithm diversity, such as simulated annealing [26, 27]. Similarly, PPE will adopt a worse solution with probability, increasing the algorithm diversity and also increasing the algorithm running time. Therefore, we delete the conditional acceptance and corresponding evolutionary trend update of the PPE to save time consumption and maintain a certain convergence trend. It is equivalent to deleting the $f($ newx $)>f(x)$ part of the PPE pseudo-code.
4.3. Jump Mechanism. We introduce a kind of jump mechanism, increasing the algorithm's probability of jumping out of local optimum. When the algorithm enters the late iteration, the optimal solution will either keep the $I N V$ generation unchanged or the standard deviation of the optimal solution in the $I N V$ generation will be less than the threshold value INVGate, and we let the solution jump by the following formula:

$$
\begin{equation*}
x_{n}^{t+1}=g \text { best }+\tan \left(\pi\left(r_{0}-0.5\right)\right) *\left(g \text { best }-x_{n}^{t}\right) \tag{19}
\end{equation*}
$$

where x_{n}^{t+1} is a $t+1$ generation solution modified by the jump mechanism to replace the nth solution. x_{n}^{t} is a selected solution from population. g best is current generation's optimal solution. r_{0} is the random number, and it obeys uniform distribution from 0 to 1 . In this paper, we use the jump mechanism to modify Jump Num $=5$ solutions, i.e., the worst solutions from the second to the sixth. When the probability is greater than $r_{\text {Jump }}$ and the current population is not less than 8 , we delete the worst solution. Moreover, when the number of Ho is more than the current population number, the number of Ho is reset again by $k=\log (N p)+1$, and the redundant poor solutions are deleted as well.
4.4. History-Based Searching. Most swarm intelligence algorithms use the current information to interact with the

```
Algorithm 1 : PPE
Initialize \(N p\) solutions, evolution trend \(e v=0\), population number \(p=1 / N p\), population growth
    rate \(a=1.1\) and \(k=\log (N p)+1\)
Calculate fitness and find global best solution gbest and initialize the Ho
While not meet termination do
    Update \(x\) to newx use (10)
    Calculate new solution's fitness, update gbest and Ho
    for \(i=1\) to \(N p\) do
    if \(f(\) new \(x) \leq \mathrm{f}(x)\) then
        Accept better solution
        Update \(a_{i}, p_{i}\) and \(e v_{i}\) use (11), (12), (13)
        if \(f(\) new \(x)>\mathrm{f}(x)\) then
        if \(r d<p i\) then
            Accept worse solution
            Update \(a_{i}\) and \(p_{i}\) use (11), (12)
            Update \(e v_{i}\) use (14), (15) and (16)
        Randomly choose a solution \(x_{j}, j \neq i\)
        if dist \((x j, x i)<G\) then
            Update \(p_{i}\) use (17), updated \(e v_{i}\) use (18);
        if \(p i \leq 0\) or \(a i \leq 0\) or \(a i>4\) then
```

 Eliminate x and reinitialize
 Figure 1: PPE's pseudocode.
information of the last generation, and the information before the last generation is lost, however, this information will also affect the convergence performance of the algorithm. Therefore, we design a history-based container $H A$, whose capacity is HAnum.

If the container is not full, the optimal new solution generated in each round adds to the container, which is the best particle of x^{t+1} generated by equation (10). Otherwise, the global optimal solution g best of the previous generation is used to replace any solution in the container. Meanwhile, in the second half of the iteration, if the random number generated is less than 0.5 , the worst new solution generated in each round is used to replace any solution in the container, which is the worst particle of x^{t+1} generated by equation (10).

Based on the above container, we design a history-based searching method, which is used to update the population. The history-based searching formula is as follows:

$$
\begin{equation*}
x_{H A, i}^{t+1}=x_{H A b e s t}+r_{1}\left(x_{i}^{t}-x_{H \text { Arandom }}\right)+r_{2}\left(x_{p}^{t}-x_{q}^{t}\right) \tag{20}
\end{equation*}
$$

where $x_{H A}^{t+1}$ is a new solution generated by history-based searching method, $x_{H A \text { best }}$ is a solution randomly selected from the top 5 better solutions of HA. $x_{H \text { Arandom }}$ is randomly selected from HA. x_{i}^{t} means the i th solution of the current iteration, and x_{p}^{t} and x_{p}^{t} are the randomly selected solutions from the population that are different from $x_{i}^{t} \cdot r_{1}$ is
an indirect random number, and $r_{1}=0.1 \tan \left(\pi\left(r_{3}-0.5\right)\right)$. r_{2} and r_{3} are the direct random numbers, and they obey uniform distribution from 0 to 1 .

In this paper, the population position update of APPE combines PPE's update with history-based searching, and the detailed equation is as follows:
new $x_{i}^{t+1}= \begin{cases}x_{i}^{t}+e v_{i}^{t}, & \text { if } \mathrm{t} \text { is less than H Anum or, } \\ x_{H A \text { best }}+r_{1}\left(x_{i}^{t}-x_{H \text { Arandom }}\right), & \text { rand is less than }<0.5, \\ +r_{2}\left(x_{p}^{t}-x_{q}^{t}\right), & \text { otherwise, }\end{cases}$
where t is the current generation. When a random number r and is less than 0.5 or the current generation is no more than HAnum, the population position is updated by equation (10) or equation (20).
4.5. Population Closing Moving. Swarm intelligence algorithm in the early stage is mainly exploration. Here, we use $H A$, and in the first half of the iteration cycle of the algorithm, when the random number is greater than 50%, the whole PPE population is moving toward the HA solution to produce new solutions. The moving formula is as follows:

$$
\begin{align*}
\operatorname{PCM} x^{t+1} & =x^{t}+\operatorname{step} *\left(x^{t}-x_{H A}^{t+1}\right), \tag{22}\\
\text { step } & =\frac{2 * r d n 1}{r d n 2 * r \text { and }}, \tag{23}
\end{align*}
$$

where x^{t} and $x_{H A}^{t+1}$ are the whole population, $r d n 1$ and $r d n 2$ are random number matrices that follow standard normal distribution, and ran d is the random number matrix that follows uniform distribution from 0 to 1 . The number of rows in $x^{t}, x_{H A}^{t+1}, r d n 1, r d n 2$, and r and matrix is the population size, and the number of columns is the dimension. The $*$ symbol is the multiplication of the corresponding positional elements of the matrix and is neither matrix multiplication nor convolution. Notice that $2 * r d n 1$ means that every element of the matrix $r d n 1$ is multiplied with 2 . Then, we compare the new solution by equation (21)with thenew solutiongenerated by moving method (18) and retain the excellent solution as the new solution.
4.6. APPE. In this paper, we combine the above methods to form APPE. The following are the detailed steps of APPE.
(1) Initialization: $N p$ stick insect populations x^{t} are initialized, and p, a, and $e v$ of each stick insect are initialized to $1 / N p, 1.1$, and 0 , respectively. Initialize the parameter k of $H o$, and $k=\log (N p)+1$. Initialize parameter $I N V=4$ of jump mechanism and threshold value $I N V$ Gate $=10^{-6}$. Initialize parameter HAnum of history-based archive $H A$ and HAnum $=N p$. Initialize current iteration $t=1$ and the maximum iteration MAXGENS. Calculate fitness $f\left(x^{t}\right)$. Update the global best solution gbest and global best value gbestval. If $t=1$, initialize Ho with the current best k solutions. The global best solution gbest is put into $H A$.
(2) Jump mechanism: If the global best solution gbest has kept the $I N V$ generation unchanged and the algorithm enters the late iteration or the standard deviation of the optimal solution in the INV generation is less than the threshold value INVGate, then the jump mechanism is applied. Using (19) to modify worse solutions from the second to the sixth. If a uniform random number is larger than probability $r_{\text {Jump }}$ and the current population number is not less than 8 , then delete the worst solution of PPE population and $H A$ solutions. Moreover, when the number of Ho is more than the current population number, the number of $H o$ is reset again by $k=\log (N p)+1$, and the redundant poor solutions are deleted.
(3) Population position updating: In our algorithm, equation (21) is used for position updating. New solution is new x_{i}^{t+1}. Calculate fitness f (new x^{t+1}).
(4) Population closing moving: In the first half of the iteration cycle of the algorithm, when the random number is greater than 0.5 , the whole PPE population is moving toward the $H A$ solution, and new solutions PCM_{x}^{t+1} are generated by equation (22).

Figure 2: SR-1 method example.
Calculate fitness $f\left(\mathrm{PCM}_{x}^{t+1}\right)$. Then, compare the new solution generated by equation (22) with the new solution generated by equation (21), the good one is reserved as current iteration's new solution.
(5) HA and Ho update: If $H A$ is not full, $H A$ is filled one-by-one with optimal new solution of each round. If $t>$ HAnum, the g best of each round replaces the random one solution of $H A$. When the number of iterations is more than half, the algorithm has a 50% chance of randomly replacing one of the $H A$ solutions with the worst new solution per round. Update the global best solution g best and the global best value g bestval. If $t>1$, the current best k solutions are comparing with the corresponding solution of Ho , the good ones replaces the solution in Ho.
(6) Absolutely accept: When the new solution's fitness is better than that of the old one, accept it, and update p, a, and $e v$ of each stick insect by equations (11)-(13).
(7) Parameter border check: If $p_{i} \leq 0, a_{i} \leq 0$, or $a_{i}>4$, reinitialize the corresponding stick insect.
(8) Termination: Steps 2 to 7 are repeated until reaching the maximum generation. Finally, record the best fitness gbestval and the best solution g best.
4.7. Setting for CVRP. We adopt the SR-1 method for solution representation, which means that the dimension of the PPE's particle is $n+2 \mathrm{~m}$ [19]. The first n dimensions of the solution are related to the customer, and each dimension represents the corresponding customer. The smaller the value of this dimension, the higher the priority of the customer. Thus, the priority list of the customer can be obtained. The last dimension of 2 m represents the coordinates of m vehicles. According to the distance of coordinates, the priority matrix of vehicles for each customer can be obtained. Arrange customer points to vehicle route one byone according to customer priority order. For a customer point, which vehiclepath it is arranged into is determined by

Table 1: Benchmark functions of CEC2013 (Test APPE's performance).

No.	Type	Optimum	No.	Type
F1		-1400	F15	Optimum
F2	Unimodal	-1300	F16	100
F3		-1200	F17	BasicMultimodal
F4	-1100	F18	200	
F5		-1000	F19	300
F6	-900	F20	400	
F7	-800	F21	500	
F8		-700	F22	600
F9		-600	F23	700
F10	BasicMultimodal	-500	F24	800
F11		-400	F25	Composition
F12	-300	F26	900	
F13	-200	F27	1000	
F14	-100	F28	1100	

Table 2: Comparison of the best result of 51 runs on 10D in 28 benchmark functions.

Fun	DE	SSA	HHO	PPE	APPE
F1	739.79074	0	1.548022	1.5277E-06	0
F2	3699523.589	16892.6651	675269.84	16924.6562	68.614074
F3	588747385.1	13.3876934	689596211	74894.9703	0.000959781
F4	7128.473	988.32578	7833.35511	121.0451	68.06974
F5	50.3104	0	39.12572	$8.5511 \mathrm{E}-05$	$1.05729 \mathrm{E}-11$
F6	68.95087	0.0109923	4.216561	8.1355E-06	$1.07889 \mathrm{E}-09$
F7	55.7164	15.0799	47.66596	7.27598	0.44489
F8	20.1983	20.1385	20.1618	20.1326	20.2161
F9	7.2138	2.78402	5.1737	1.90882	0.822382
F10	78.52804	0.243969	13.60727	0.135769	0.0270174
F11	46.2114	3.97984	29.0232	5.1115E-06	$2.69438 \mathrm{E}-11$
F12	55.7539	15.9193	24.9419	14.9245	4.9748
F13	61.5672	23.5856	37.8746	16.0905	8.16871
F14	761.00596	35.1763	369.54088	137.2404	12.39519
F15	1162.7414	515.11843	208.5453	225.1287	458.76209
F16	0.780144	0.190384	0.260976	0.10284	0.679173
F17	89.55631	19.0217	41.6638	10.4437	5.15832
F18	91.67574	31.03869	34.0257	12.8986	19.6821
F19	11.1484	0.351582	3.319064	0.0606383	0.348941
F20	3.60832	3.11728	3.22622	1.83506	1.2217
F21	454.7408	200	306.5969	100.0283	400.1939
F22	1287.114	178.2702	291.18665	15.40419	14.11783
F23	1497.5974	765.85882	986.55529	73.788553	271.18111
F24	184.698	132.6267	124.3565	138.2729	105.7783
F25	173.5373	208.2578	219.6212	132.3753	109.5371
F26	168.4389	119.8991	132.0062	119.9186	105.9698
F27	560.8726	312.6709	415.0833	307.2788	301.8725
F28	476.735	100	734.1271	100.0221	100
W/D/L	0/0/28	3/0/25	1/0/27	6/0/22	20/0/8

the vehicle priority matrix.According to the priority order of vehicles, arrange a customer point into thevehicle path with higher priority. If the current vehicle path meets thecapacity constraint, arrange the customer in this vehicle path. If the currentvehicle path exceeds the capacity constraint, place the customer in the lowerpriority vehicle path. Then, the corresponding path is formed. The example of SR-1 is as shown in Figure 2.

We use some local searching methods to optimize the routes. These methods are divided into inter-route
optimization and intra-route optimization. Inter-route optimization mainly consists of three-point communication and deleting-adding communication, and the search time is the sum of the instance's points and vehicles. Three-point communication refers to the random selection of three paths in the solution. A point of each path is randomly selected, and the points of the path are exchanged in the order of 3,1 , and 2 . If the newly generated three paths are better than the original three paths, then the original path will be replaced [28]. Deleting-adding communication refers to the random

Table 3: Comparison of the mean result of 51 runs on 10D in 28 benchmark functions.

Fun	DE	SSA	HHO	PPE	APPE
F1	1416.5787	$1.605 \mathrm{E}-13$	811.9416	9.9958E-06	$2.675 \mathrm{E}-14$
F2	10084933.05	197537.945	6878233.51	78209.7076	6115.1032
F3	3118637483	152909331	7255467596	116898667	944921.1013
F4	12971.2353	7083.6651	15628.6068	641.8292	702.1065
F5	83.7238	$1.226 \mathrm{E}-13$	398.3362	0.00037539	$4.16834 \mathrm{E}-10$
F6	116.0168	12.8841	107.4564	18.6264	7.63911
F7	78.7358	84.1336	105.41	37.9462	16.6702
F8	20.3327	20.3472	20.3168	20.3303	20.4067
F9	8.94373	7.22868	8.71324	4.84641	3.76595
F10	181.5071	2.21159	178.7806	0.627955	0.206199
F11	69.3683	16.8379	73.7286	0.254539	3.49337
F12	79.6579	59.2814	80.4332	38.9032	17.5971
F13	80.0367	62.5323	97.0562	36.2642	29.1881
F14	1314.4366	371.4428	1017.8572	354.5957	286.6114
F15	1529.7766	1120.4131	872.7005	715.3729	1080.2465
F16	1.13441	0.661732	0.747968	0.357594	1.15523
F17	125.3906	84.2239	96.2605	11.3378	19.3253
F18	129.3592	139.6976	95.3178	31.9006	40.797
F19	35.1423	1.96173	150.0135	0.806923	0.900422
F20	3.97465	3.73039	3.97293	3.01931	2.82778
F21	507.7433	396.2685	413.4744	388.4232	400.1939
F22	1603.7803	544.8418	1458.3753	362.7106	296.2929
F23	1842.0891	1518.7686	1649.8481	1124.1341	1095.8663
F24	223.9939	221.1283	226.6401	216.8546	198.7732
F25	216.4075	222.4582	228.3634	212.0031	192.7499
F26	196.4968	197.3708	232.3701	161.1619	154.8035
F27	629.3467	562.4606	638.4348	393.6886	387.5239
F28	746.0777	699.0044	912.4083	578.1929	344.4934
W/D/L	0/0/28	1/0/27	1/0/27	8/0/20	18/0/10

Table 4: Comparison of the standard deviation result of 51 runs on 10D in 28 benchmark functions.

Fun	DE	SSA	ННО	PPE	APPE
F1	336.29231	$1.1409 \mathrm{E}-13$	840.7906	6.8679E-06	$7.3986 \mathrm{E}-14$
F2	3591008.967	126630.817	4663751.77	43253.9733	6050.4934
F3	1017194416	357131948	4644005056	183252405	3551542.55
F4	3315.33688	3588.503	2250.98706	404.5624	745.7658
F5	17.8996	$5.4962 \mathrm{E}-14$	321.9183	0.00018596	$4.76424 \mathrm{E}-10$
F6	22.96358	18.2449	56.81199	27.8417	8.28299
F7	12.4518	39.8206	38.77687	19.4452	13.3872
F8	0.0648398	0.0660583	0.0803062	0.084776	0.0790714
F9	0.489928	1.4337	1.17197	1.4601	1.48489
F10	49.44543	1.39021	120.7778	0.364935	0.115752
F11	8.12773	9.77683	28.7959	0.684481	2.17383
F12	9.1472	27.3009	31.8621	15.4218	7.28016
F13	8.76245	22.1908	28.2487	11.3712	10.3039
F14	162.82672	204.7426	238.51942	141.844	190.2989
F15	136.11119	289.33376	279.989	294.5977	301.37034
F16	0.178596	0.307342	0.226042	0.185098	0.212344
F17	13.70235	45.1711	26.9561	0.595998	7.21938
F18	15.4126	28.03248	24.9926	8.60915	7.23762
F19	19.6514	1.16874	239.7625	0.328438	0.509409
F20	0.156375	0.26237	0.341358	0.415301	0.609363
F21	25.66769	28.03275	24.7686	58.84134	$3.21555 \mathrm{E}-14$
F22	139.6671	261.2185	414.21438	178.3056	182.963
F23	142.08612	346.663	349.63326	388.70003	494.49528
F24	9.186187	13.39515	17.40012	16.21229	32.52391
F25	14.01808	4.603786	3.639165	15.41364	32.96771
F26	7.597635	56.24498	64.94274	34.55174	41.58459
F27	22.37158	85.9428	89.94543	33.9609	41.40027
F28	130.9133	265.6456	89.81761	225.5822	191.5919
W/D/L	12/0/16	1/0/27	2/0/26	5/0/23	8/0/20

Table 5: Comparison of the average running time result of 51 runs on 10D in 28 benchmark functions.

Fun	DE	SSA	HHO	PPE	APPE
F1	0.727436531	0.8287859	1.15685042	7.18115574	0.671487292
F2	0.791050904	0.924853635	1.3439542	7.20013287	0.70339359
F3	0.774887343	0.907082424	1.29866165	7.21305981	0.790544096
F4	0.763615047	0.903257461	1.30124119	7.14854095	0.386089429
F5	0.764020171	0.887531624	1.26940391	7.26179316	0.686430051
F6	0.726979804	0.844920447	1.16895654	7.2806207	0.670751492
F7	0.894148461	1.040195514	1.60901454	7.41189731	0.803711176
F8	0.855579947	1.018726375	1.54419505	7.22193355	0.322570457
F9	2.219833976	2.641704835	4.92032594	8.67749507	2.310656547
F10	0.773372886	0.891785363	1.28616139	7.27650189	0.668267453
F11	0.816651865	0.962051961	1.4769969	7.27590196	0.746390108
F12	0.843791384	0.99691912	1.51443125	7.49711857	0.609939676
F13	0.83997619	0.98404201	1.48591037	7.3828366	0.510813414
F14	0.822789535	0.943898739	1.47654896	7.28391574	0.582743498
F15	0.829717169	0.957212175	1.48187512	7.38718168	0.461557804
F16	1.83420029	2.180153114	4.0038432	8.25544575	1.247958082
F17	0.781633394	0.907479276	1.36932876	7.24234632	0.577252965
F18	0.79514379	0.932933855	1.42243596	7.20300338	0.388129488
F19	0.743986608	0.862446631	1.27623414	7.29507605	0.715902753
F20	0.801560351	0.916730906	1.4320129	7.30689116	0.494742363
F21	1.065321725	1.263061847	1.98997494	7.57730783	0.883767925
F22	1.159216551	1.320134182	2.28246203	7.58581411	0.931372729
F23	1.168561278	1.348461751	2.30642576	7.61082738	0.817745671
F24	2.571608424	3.024779602	5.6708838	8.99084936	2.541635441
F25	2.591145233	3.013362006	5.71097513	8.91483909	2.597728576
F26	2.784730184	3.323031224	6.20988149	9.09719149	2.571828318
F27	2.745837339	3.261529955	6.11941155	9.10913397	2.372727906
F28	1.288557314	1.523347316	2.596839	7.62935641	1.087740337
W/D/L	3/0/25	0/0/28	0/0/28	0/0/28	25/0/3

Table 6: Comparison of the best result of 51 runs on 30D in 28 benchmark functions.

Fun	DE	SSA	HHO	PPE	APPE
F1	20965.5117	$2.2737 \mathrm{E}-13$	3115.0987	$3.4641 \mathrm{E}-05$	$2.2737 \mathrm{E}-13$
F2	184302669.7	556561.902	42409000.72	1551822.08	36796.10533
F3	99304872220	10402522.9	24129867958	14277792	11979.52113
F4	47671.1384	17895.2805	41958.6448	436.4169	277.24218
F5	2736.1858	$4.5475 \mathrm{E}-13$	845.64218	0.00122154	$2.01521 \mathrm{E}-09$
F6	2192.6367	2.59305	371.83971	0.304544	$1.69745 \mathrm{E}-05$
F7	326.5177	107.2508	227.7295456	44.6206	39.1504
F8	20.8505	20.7428	20.7042	20.8119	20.7702
F9	36.6723	27.5559	34.1636	23.3817	15.4945
F10	2740.0071	0.0640834	544.29708	0.0702674	$6.77581 \mathrm{E}-08$
F11	475.3545	93.52546	342.582	15.122	17.9093
F12	536.0034	303.4593	288.8458	251.7349	72.63182
F13	477.1505	333.4405	499.8886	261.1692	190.6686
F14	6284.6022	1787.2956	2549.475	766.94606	431.50235
F15	6306.8434	2999.2399	3353.0779	2500.5042	5525.0534
F16	1.64039	0.267507	0.822458	0.193588	1.58162
F17	1008.295	287.815	323.721	43.6346	65.20754
F18	1102.4916	350.691	487.3008	174.6342	156.3594
F19	43694.72938	9.84876	342.97435	2.91789	2.43391
F20	14.521	12.6801	14.5097	13.8654	9.58436
F21	2801.7822	100	929.77219	100.2957	100
F22	6985.8846	1760.6213	4701.2418	592.84675	362.0814
F23	7504.1003	3830.2633	3760.2452	3520.5278	3135.9944
F24	325.3054	282.8699	307.7325	251.8537	234.3891
F25	336.8065	291.219	310.1113	308.9248	270.7536
F26	216.1884	200.0521	204.6498	200.0465	200.0016

Table 6: Continued.

Fun	DE	SSA	HHO	PPE	APPE
F27	1365.8604	936.36559	1246.5007	945.20441	746.8349
F28	3662.6068	300	3717.7686	100.27997	100
W/D/L	$0 / 0 / 28$	$2 / 0 / 26$	$1 / 0 / 27$	$4 / 0 / 24$	$22 / 0 / 6$

Table 7: Comparison of the mean result of 51 runs on 30D in 28 benchmark functions.

Fun	DE	SSA	HHO	PPE	APPE
F1	32193.5619	$6.5537 \mathrm{E}-13$	9711.9121	8.1178E-05	$4.6812 \mathrm{E}-13$
F2	368242452.8	2081301.22	179774792.8	3096187.31	126305.9182
F3	$7.10045 E+11$	698447995	$9.77373 E+13$	434470674	31758287.64
F4	75322.0536	28653.0937	52077.4646	930.919	1330.2804
F5	4522.474	$1.0867 \mathrm{E}-11$	2695.5244	0.00195401	$5.23523 \mathrm{E}-08$
F6	3552.4961	30.175	1758.4039	59.1902	6.12643
F7	747.6163	211.4113	108509.3088	94.8052	84.0757
F8	20.9546	20.922	20.9005	20.9443	20.9755
F9	39.276	33.915	39.5487	30.821	24.7972
F10	4134.0267	0.211734	1991.4149	0.44158	0.0650486
F11	579.6098	240.4308	584.3916	28.1263	33.9158
F12	628.6948	511.8694	606.0292	353.5071	183.0126
F13	624.5928	440.3657	701.2616	379.6572	266.1043
F14	7069.1658	2731.909	4328.8102	1243.0858	1814.8754
F15	7431.2237	4754.6443	4829.5591	3951.5532	6617.3184
F16	2.49294	1.25122	1.56921	0.745032	2.49028
F17	1262.8753	652.2582	666.9315	62.4704	108.3917
F18	1269.4583	702.0829	684.1028	287.4171	300.5752
F19	167474.7719	19.342	4354.8665	6.46873	5.63526
F20	14.9018	14.7589	14.8377	14.6797	12.2536
F21	3210.8721	364.2293	1623.5516	315.6636	320.9034
F22	7723.8174	3374.4772	6251.9555	1336.6024	940.461
F23	8097.5094	5851.2557	6602.7644	5180.4845	6658.3955
F24	334.942	303.6476	339.2056	286.0378	263.803
F25	353.4227	314.6729	343.4621	348.9108	297.3444
F26	241.288	363.4894	384.4514	315.0175	200.0092
F27	1428.7773	1254.8879	1429.8648	1145.826	927.6687
F28	4413.077	3213.3913	4978.1659	3248.566	690.8847
W/D/L	0/0/28	1/0/27	1/0/27	9/0/19	17/0/11

Table 8: Comparison of the standard deviation results of 51 runs on 30D in 28 benchmark functions.

Fun	DE	SSA	HHO	PPE	APPE
F1	3909.09245	$2.4761 \mathrm{E}-13$	3561.6764	$2.2148 \mathrm{E}-05$	$1.5362 \mathrm{E}-13$
F2	74221490.37	941488.26	89397375.81	816426.966	83074.86122
F3	$7.20796 E+11$	1065594457	$3.23802 E+14$	358944299	85733576.72
F4	8466.66261	4475.09793	3760.44355	309.9896	1143.5652
F5	755.38339	$1.8485 \mathrm{E}-11$	1543.1381	0.00050402	$5.65084 \mathrm{E}-08$
F6	640.64055	24.7472	1147.0894	25.2244	6.49659
F7	393.6556	106.0421	271133.1512	19.8107	26.8212
F8	0.0491254	0.0573101	0.0718902	0.0532219	0.0504813
F9	1.1558	3.41188	2.12293	2.9527	3.79688
F10	540.80016	0.114618	984.78042	0.220342	0.0490094
F11	44.57488	75.69394	105.7453	7.26775	9.97949
F12	46.49799	134.3097	119.1011	53.33428	50.99063
F13	262.46923	76.22904	83.99332	48.55205	40.97781
F14	271.96764	730.40653	819.82348	236.31161	1441.8054
F15			835.72922	627.96769	417.02913

Table 8: Continued.

Fun	DE	SSA	HHO	PPE	APPE
F16	0.320608	0.547221	0.43001	0.300076	0.346913
F17	107.2886	136.14	97.29982	7.74407	21.66193
F18	78.052688	126.3105	83.33826	53.92487	41.8762
F19	67584.43532	5.63479	3353.4627	2.11375	1.76896
F20	0.114222	0.529039	0.231521	0.282559	0.684561
F21	172.3487	96.53369	301.79304	72.4779	85.50782
F22	269.7388	869.43735	845.09278	295.70899	339.5195
F23	243.52231	856.05385	1075.8917	756.67546	1221.6536
F24	4.086933	9.678988	18.7233	16.02537	14.32264
F25	4.969392	11.83765	16.5024	21.20163	13.09351
F26	8.458015	66.57767	64.77045	82.44704	0.005305383
F27	27.630268	109.75615	75.82382	82.797679	89.73993
F28	269.10614	1467.6047	630.94737	773.56802	916.4915
W/D/L	11/0/17	1/0/27	0/0/28	7/0/21	9/0/19

Table 9: Comparison of the average running time result of 51 runs on 30D in 28 benchmark functions.

Fun	DE	SSA	HHO	PPE	APPE
F1	2.733809878	2.65437004	4.1709789	21.8721739	2.407070994
F2	3.238093776	3.28368366	5.52267889	22.1806176	3.242242859
F3	3.387544408	3.44985781	5.79780013	22.1986548	2.802126447
F4	3.033938118	2.98933781	5.04895915	21.8332192	1.460134582
F5	3.060770578	3.05556757	4.96295184	22.2294468	2.630876359
F6	2.912188557	2.89667259	4.5023418	22.1873498	3.894232227
F7	4.585807916	4.73127061	9.05654281	23.5809211	4.413959241
F8	3.954471206	4.07066223	7.33255408	22.9174646	1.585859245
F9	17.05689298	18.9060265	40.0398491	35.2771729	12.41038709
F10	3.334638673	3.29820511	5.4339282	22.2756434	2.716332702
F11	3.444212914	3.48815126	5.99635844	22.3046879	3.0724273
F12	3.981317933	4.03849017	7.26727993	22.886067	2.921447771
F13	3.976971841	4.00729305	7.10558566	22.9836765	1.930308529
F14	3.685780082	3.67497535	6.60276835	22.7189149	2.713648625
F15	3.830101522	3.86078174	6.65525209	22.8490806	1.75100859
F16	13.45326515	14.7837753	29.2868758	31.7040965	8.918082525
F17	3.147515716	3.21549638	5.08030391	22.1923851	2.652192106
F18	3.500081333	3.59570355	5.83726951	22.3467761	1.447078869
F19	3.011889486	3.04511699	4.66262677	21.9862949	3.609727229
F20	3.670195529	3.77716328	6.92572923	22.390139	1.774093445
F21	5.8482322	6.27261929	10.5518727	24.3638556	4.451286106
F22	6.232905657	6.51323347	12.1217653	24.7453143	5.447029629
F23	6.791029171	7.08679317	13.3236218	25.1882066	4.829456082
F24	20.09962069	22.2324157	43.2164071	37.7097732	14.63043557
F25	20.0838764	22.4150292	42.3260732	37.7248481	14.5165233
F26	21.67665217	24.595264	46.7010523	39.2097254	24.28157111
F27	21.23823786	24.2659194	46.0547195	38.9343311	15.58041748
F28	8.259479129	8.96047216	16.5444839	26.6793565	6.434003169
W/D/L	3/0/25	1/0/27	0/0/28	0/0/28	24/0/4

selection of two paths in the solution, with a point randomly selected in each path. One of the paths deletes the selected points and adds the selected points to the other path. If the new two paths are better than the original two paths, then the original path is replaced [29]. Intra-route optimization consists of path scrambling, path inversion, and path 2-point swapping. The number of executions of these methods is the square of the number of points in each path of the solution. Path scrambling refers to the random rearrangement of
paths, except the starting and ending points, which are rearranged using the randperm function of Matlab. If the generated new path is better than the best solution, then it replaces the original best solution, and the next searching will still change the original path, however, the comparison object is the best solution. Path inversion means that two points of the path are selected each time, and then the paths between the two points are rearranged in the reverse order. If the new solution produced is good, then retain it as the best

Table 10: Comparison of the best result of 51 runs on 50D in 28 benchmark functions.

Fun	DE	SSA	HHO	PPE	APPE
F1	68441.6877	6.8212E-13	4421.5318	$9.1774 \mathrm{E}-05$	$1.13687 \mathrm{E}-12$
F2	796828451.2	897706.17	27754539.4	2311976.79	114810.9289
F3	$4.11102 E+11$	36730944.5	45009339893	64993978.4	3218012.379
F4	103396.927	33164.3416	56242.6043	233.6512	428.55484
F5	9117.13317	$2.2907 \mathrm{E}-09$	991.73975	0.00229062	2.2956E-07
F6	6066.8624	29.1158	444.7514	39.7167	0.128249
F7	321.54597	96.81021	282.559833	70.85565	56.4843
F8	21.0487	21.051	20.9601	21.0257	21.0471
F9	70.0516	49.8706	65.8906	48.0806	39.9872
F10	8540.84996	0.0394587	760.25367	0.857053	$3.88815 \mathrm{E}-05$
F11	1120.4763	382.0615	591.099	69.93432	62.6823
F12	1157.4674	587.01751	695.9241	461.6641	204.9601
F13	1132.7369	640.2518	953.41855	566.5412	421.8479
F14	12375.2343	3470.8789	5201.6947	1011.1859	1039.3238
F15	13171.1787	6238.7238	7676.88995	5808.5115	11569.9181
F16	2.68248	0.689805	1.27295	0.546151	2.42801
F17	2686.1285	502.0316	782.54144	112.7755	155.0626
F18	2698.9651	987.4102	870.71601	451.2733	360.0513
F19	466278.7647	24.3778	912.66167	7.4999	7.79172
F20	24.4448	21.9486	23.6975	21.8148	18.6627
F21	5875.3627	836.4425	1831.4087	836.4425	100
F22	13466.9914	5826.1274	7811.75043	1936.8612	1064.7735
F23	14407.6167	8117.39148	9107.61415	7311.61553	8301.79767
F24	432.5152	371.4055	415.414	327.2399	310.6605
F25	488.8236	387.3883	412.8656	434.7963	380.0998
F26	296.6734	440.0132	469.8953	200.2743	200.0272
F27	2321.1044	1775.5901	2151.7305	1692.6655	1292.2378
F28	7644.2744	400	6451.9363	474.57092	400
W/D/L	0/0/28	3/0/25	1/0/27	7/0/21	18/0/10

Table 11: Comparison of the mean result of 51 runs on 50D in 28 benchmark functions.

Fun	DE	SSA	ННО	PPE	APPE
F1	80496.6275	1.2528E-12	9600.2818	0.00017649	$3.49487 \mathrm{E}-11$
F2	1170022441	2226137.48	192268997.5	4042717.04	400359.6315
F3	$4.40463 E+12$	1369573907	$2.04922 E+11$	392037714	69788181.12
F4	136314.9379	53168.688	69134.0056	674.8522	1286.1218
F5	15201.5539	$1.821 \mathrm{E}-08$	1625.4642	0.00374727	$1.4891 \mathrm{E}-06$
F6	7949.0109	72.5883	902.9159	86.2859	35.1058
F7	1086.8641	192.4685	11581.7115	116.5335	83.5833
F8	21.1353	21.1317	21.1175	21.1177	21.1504
F9	72.941	65.2474	73.2972	57.8761	52.102
F10	10371.6231	0.202345	1961.669	1.52074	0.0368955
F11	1327.7597	547.3071	745.3906	110.0593	93.4338
F12	1336.6887	1014.754	916.3933	570.8822	412.2794
F13	1324.4015	956.3305	1168.9616	725.9276	536.2261
F14	13453.7746	5825.0496	7675.3836	1963.8542	2825.8275
F15	14290.1024	8553.19	10356.5828	7728.0556	12892.3516
F16	3.28518	1.83319	2.27207	1.2382	3.31238
F17	3020.4296	981.1095	1024.8344	146.7249	226.2728
F18	3053.1201	1155.8584	1096.2182	593.7946	627.5738
F19	1429662.26	49.627	2624.7591	13.2586	12.7787
F20	24.8789	24.3835	24.485	24.0914	21.9659
F21	7181.9716	998.9602	3051.678	948.5251	870.4084
F22	14742.4834	7413.6214	10468.5507	3276.6393	2423.8416
F23	15334.0567	10546.0751	12655.7041	10424.3902	13606.4302
F24	464.8197	391.9212	470.8258	373.7801	342.4159
F25	502.6936	415.216	459.7346	504.9336	408.2602
F26	368.9144	470.2997	495.343	411.5417	283.8361
F27	2446.8166	2076.0709	2433.0726	2107.7286	1650.236
F28	8778.8527	5148.5057	9186.8097	5936.9657	1470.4027
W/D/L	0/0/28	2/0/26	1/0/27	7/0/21	18/0/10

Table 12: Comparison of the standard deviation result of 51 runs on 50D in 28 benchmark functions.

Fun	DE	SSA	HHO	PPE	APPE
F1	5405.61377	$3.9217 \mathrm{E}-13$	2679.9505	4.1786E-05	7.0273E-11
F2	170612616.4	824253.494	89445562.68	1007133.92	179412.3457
F3	$3.2854 E+12$	1557568439	$4.01457 E+11$	379016850	94471867.3
F4	11084.63859	11809.0884	5827.04834	184.5265	668.48665
F5	2116.93995	$1.7468 \mathrm{E}-08$	324.03013	0.00084021	$1.5852 \mathrm{E}-06$
F6	955.60891	31.5493	456.9381	32.6704	18.3843
F7	525.90396	79.70547	13589.3232	21.04326	14.1085
F8	0.0363517	0.0364229	0.0481815	0.0365593	0.042277
F9	1.36303	4.67854	3.15456	3.72436	5.71436
F10	882.747601	0.115331	607.18573	0.256366	0.024425
F11	81.157358	92.02943	70.68308	20.84648	15.7099
F12	64.758226	116.40179	97.13284	56.83782	96.05942
F13	77.218129	183.0932	94.733558	69.5969	66.06756
F14	326.008925	1029.6185	1404.319	399.01654	2150.2895
F15	393.289928	960.32527	1506.75168	942.05543	609.042346
F16	0.239473	0.61187	0.531921	0.350457	0.371027
F17	146.22569	147.6494	75.297952	14.74808	36.31978
F18	125.67353	46.142709	79.748497	71.51158	94.5146
F19	322868.2211	16.5907	1522.0331	2.10674	4.34599
F20	0.1289	0.482846	0.129266	0.631614	1.0936
F21	362.66356	142.9595	313.42278	140.9302	306.9437
F22	365.40434	1019.4687	1239.58645	838.11989	1044.5246
F23	367.202851	1354.96456	1416.92288	1245.35206	1138.12779
F24	11.07239	13.63289	38.71835	25.27126	18.62976
F25	7.704087	17.48497	35.64058	36.57497	19.04745
F26	26.48411	14.2354	11.83787	105.9412	110.0795
F27	44.650405	136.27279	144.65187	159.38326	122.3399
F28	416.1356	3120.0947	991.68671	988.11438	1868.8146
W/D/L	12/0/16	3/0/25	1/0/27	5/0/23	7/0/21

Table 13: Comparison of the average running time result of 51 runs on 50D in 28 benchmark functions.

Fun	DE	SSA	HНO	PPE	APPE
F1	5.371938416	4.57383823	7.23377461	38.1038224	4.446575594
F2	7.157403912	6.62089211	11.3540526	39.1676853	7.158186551
F3	7.839430525	7.3246534	12.5236647	39.9919087	6.214457253
F4	6.484470433	5.91526308	10.1147916	38.58679	3.307264696
F5	6.159703835	5.54299413	9.14633452	37.6149204	4.968641435
F6	6.300308008	5.60679982	9.2921294	37.6352779	6.911794831
F7	11.10656359	10.7296947	20.4603011	41.5075489	10.88083133
F8	9.318202392	8.70874237	16.4839356	39.6187509	3.878486443
F9	46.05065865	48.7456533	101.389658	75.4380672	32.79673965
F10	7.527485204	6.72485453	11.9008743	40.0126535	6.521356616
F11	7.303516457	6.65447378	11.9370057	40.183341	6.179351049
F12	9.596861269	9.09086465	17.1752837	42.2132078	6.93119691
F13	9.743597688	9.1466903	17.1017582	42.4066013	4.65911769
F14	7.889016759	7.25925715	13.828576	40.8411437	6.670441894
F15	8.824859059	8.19700595	15.6963778	41.2855432	4.436260716
F16	35.43426225	38.0182758	78.9101852	66.163459	23.73375013
F17	6.545739804	5.81661149	10.4148023	38.0207576	5.578457125
F18	8.349048814	7.82492584	14.3796084	39.1149567	3.9553397
F19	6.863519427	5.93801426	10.3868958	37.8526068	7.639078567
F20	8.741159843	7.85354537	15.0667554	38.94757	3.508262818
F21	15.61953418	16.2938313	29.2424287	45.2747967	11.12546115
F22	15.09370126	15.3303718	29.6861623	45.1094114	13.92498259
F23	17.74963977	18.3327347	35.4951246	47.3597377	11.49145802
F24	55.77218786	61.9013014	118.547038	81.9097344	39.63127379
F25	52.60461786	63.011092	116.425617	82.0330892	39.2314303
F26	57.51527773	70.9420056	132.969794	86.6588994	58.37427563
F27	56.10193225	69.4253279	129.134722	85.362875	42.25193263
F28	21.45543076	24.3204501	46.9656329	51.9634444	18.04838259
W/D/L	1/0/27	4/0/24	0/0/28	0/0/28	23/0/5

Table 14: Comparison of the best result of 10 runs in CVRP instances.

Instances	BKV	DE	SSA	PSO	PPE	APPE
A-n32-k5	784	794.4865	787.0819	787.2024	787.0819	787.0819
A-n33-k5	661	678.0007	662.2642	673.1471	662.2642	662.1101
A-n33-k6	742	746.125	742.6933	742.6933	742.6933	742.6933
A-n34-k5	778	787.6693	786.437	786.437	786.7965	786.437
A-n36-k5	799	808.5726	802.1318	802.1318	802.1318	802.1318
A-n37-k5	669	688.7647	672.7407	672.7407	672.5174	672.5174
A-n37-k6	949	960.1145	956.8075	966.0936	957.0298	957.0298
A-n38-k5	730	747.4928	738.0118	734.4416	734.4416	733.9458
A-n39-k5	822	836.0773	829.4541	829.5219	829.5219	829.5219
A-n39-k6	831	841.5609	833.2046	835.2518	835.2518	835.2518
A-n44-k7	937	955.3702	943.4791	948.8242	952.5564	943.6351
A-n45-k6	944	984.3388	959.2347	994.68528	970.79579	945.3614
A-n45-k7	1146	1186.559	1159.7315	1165.812	1170.0275	1153.0785
A-n46-k7	914	942.1947	921.7679	921.8017	918.1274	918.1274
A-n48-k7	1073	1134.015	1095.2564	1106.6835	1100.3926	1094.9122
A-n53-k7	1010	1098.815	1042.8605	1054.9787	1030.8244	1045.9452
A-n54-k7	1167	1226.547	1184.6926	1188.767	1196.2087	1182.8441
A-n55-k9	1073	1135.431	1082.8527	1082.9222	1088.2412	1078.39
A-n60-k9	1408	1434.627	1364.6654	1386.0294	1369.973	1379.077
A-n61-k9	1035	1182.316	1071.5384	1147.6217	1080.8725	1104.0151
A-n62-k8	1290	1372.683	1348.8174	1339.6425	1338.6479	1331.7414
A-n63-k10	1315	1384.93	1352.951	1363.3655	1345.4533	1323.9144
A-n63-k9	1634	1725.011	1661.5273	1701.0925	1692.2855	1639.9246
A-n64-k9	1402	1501.943	1425.8711	1446.1263	1424.9294	1433.2557
A-n65-k9	1177	1267.51	1201.895	1260.8151	1186.6736	1208.8699
A-n69-k9	1168	1243.583	1183.333	1198.7175	1190.5865	1183.0729
A-n80-k10	1764	1911.073	1828.1481	1828.8761	1831.7224	1823.0898
W/D/L		$0 / 0 / 27$	$10 / 0 / 17$	$3 / 0 / 24$	$8 / 0 / 19$	$18 / 0 / 9$

Table 15: Comparison of the mean result of 10 runs in CVRP instances.

Instances	BKV	DE	SSA	PSO	PPE	APPE
A-n32-k5	784	802.3796	791.6953	789.5103	794.8186	788.8223
A-n33-k5	661	684.0878	675.9522	678.5661	671.0078	665.5313
A-n33-k6	742	754.7865	747.2399	745.6267	744.6511	743.8523
A-n34-k5	778	792.6542	792.4126	792.1176	792.9502	788.4026
A-n36-k5	799	816.6452	808.0167	810.3682	811.9299	807.2603
A-n37-k5	669	700.4381	689.2895	687.5505	683.889	678.6079
A-n37-k6	949	981.1734	970.0739	974.8255	970.9061	967.2458
A-n38-k5	730	758.8868	749.0006	751.4792	741.9858	740.0858
A-n39-k5	822	847.8701	837.9498	844.841	833.7223	833.781
A-n39-k6	831	852.229	838.8618	838.0234	836.9315	836.5501
A-n44-k7	937	978.7361	962.6828	969.9482	967.2578	951.4784
A-n45-k6	944	1021.858	997.9943	1038.8207	1034.7167	999.428
A-n45-k7	1146	1200.789	1182.0618	1184.3241	185.3844	1164.4213
A-n46-k7	914	964.4004	940.755	950.2408	941.6035	933.0219
A-n48-k7	1073	1144.862	1109.3274	1112.9579	1116.9883	1103.2999
A-n53-k7	1010	1106.072	1064.1732	1073.4099	1063.4356	1057.0531
A-n54-k7	1167	1245.638	1204.771	1228.5166	1231.2475	1202.2122
A-n55-k9	1073	1150.691	1106.4484	1113.959	1117.2283	1095.4729
A-n60-k9	1408	1443.306	1396.0582	1406.6868	1408.4423	1395.4768
A-n61-k9	1035	1206.694	1160.0295	1190.2004	1139.945	1146.3305
A-n62-k8	1290	1388.059	1360.9244	1356.5061	1363.7038	1345.357
A-n63-k10	1315	1412.946	1385.1111	1393.813	1372.8607	1348.2184
A-n63-k9	1634	1743.69	1690.8434	1735.573	1727.2144	1695.1167
A-n64-k9	1402	1518.639	1463.5227	1463.5476	1448.9618	1450.4584
A-n65-k9	1177	1306.929	1244.3624	1283.902	1257.6103	1239.5486
A-n69-k9	1168	1269.933	1208.9972	1228.6695	1216.934	1203.1344
A-n80-k10	1764	1929.862	1864.3596	1874.9804	1868.4458	1852.7933
W/D/L		$0 / 0 / 27$	$2 / 0 / 25$	$0 / 0 / 27$	$3 / 0 / 24$	$22 / 0 / 5$

Table 16: Comparison of the best result of 10 runs of APPE with the algorithms proposed by Korayem et al.

Instance	Optimum	KmeansFnO	KmeansFnP	KmeansFnR	APPE
A-n33-k6	742	828	754	754	742.6933
A-n34-k5	778	792	822	839	786.437
A-n36-k5	799	814	846	846	802.1318
A-n39-k6	831	868	856	837	835.2518
A-n60-k9	1354	1395	1421	1423	1373.4651
A-n62-k8	1288	1366	1329	1329	1346.9532
B-n31-k5	672	684	672	672	676.0884
B-n34-k5	788	793	817	817	790.9678
B-n39-k5	549	571	564	566	553.1565
B-n41-k6	829	845	920	877	836.7407
B-n44-k7	909	940	954	944	932.0102
B-n50-k7	741	765	783	774	745.16
B-n50-k8	1312	1348	1359	1361	1341.876
W/D/L		0/0/13	2/0/11	2/0/11	11/0/2

Table 17: Comparison of the best result of 20 runs of APPE with the algorithms in Yan et al.

Instance	CO-HS	PSO	GA	APPE
A-n32-k5	807	829	818	797.7186
A-n33-k5	669	705	680.4111	
A-n34-k5	790	832	786.437	
A-n39-k6	852	872	842.8981	
W/D/L	$1 / 0 / 3$	$0 / 0 / 4$	866	$3 / 0 / 1$

Table 18: Comparison of the best and mean results of 10 runs of APPE with the algorithms in Zhao et al.

Instance	QDE/Best	QDE/Mean	QEA/Best	QEA/Mean	DE/Best	DE/Mean	APPE/Best	APPE/Mean
P-n76-k4	718	728	718	728	746	765	615.72618	622.3824
P-n76-k5	740	751	740	751	803	813	643.98732	664.62492
A-n32-k5	784	810	835	861	910	924	787.08189	788.26212
A-n33-k5	707	716	707	716	724	735	662.2642	664.95601
A-n33-k6	785	787	785	787	857	872	742.69326	743.77421
W/D/L	$1 / 0 / 4$	$0 / 0 / 5$	$0 / 0 / 5$	$0 / 0 / 5$	$0 / 0 / 5$	$0 / 0 / 5$	$4 / 0 / 1$	$5 / 0 / 0$

Table 19: Comparison of the mean result of 10 runs of APPE with the algorithms in Khairy et al.

Instance	GA	ACO	GTO	APPE
A-n32-k5	812.9	982.5	901.7	790.3117
A-n33-k5	674.9	787.7	746.7	667.0751
A-n34-k5	803.4	911.8	862.8	790.7029
A-n36-k5	839.3	1008	903.3	809.091
A-n39-k6	894.9	1085	975.9	835.5559
A-n46-k7	987.8	1206	1138	932.0442
A-n80-k10	1987	2369	2470	1840.5895
X-n106-k14	28897	30450	31928	27751.5143
X-n129-k18	33893	38098	41710	30742.9103
X-n143-k7	21664	22674	39979	17318.072
X-n167-k10	28347	28859	48205	22904.9479
X-n209-k16	42587	42286	70080	33887.9638
W/D/L	0/0/12	0/0/12	0/0/12	12/0/0

F2 Dimension $=10$

F7 Dimension $=10$

F12 Dimension $=10$

F22 Dimension $=10$

F27 Dimension $=10$

$$
-\mathrm{O} \text { DE }
$$

$$
\neg \text { SSA }
$$

$$
\div \text { HHO }
$$

$$
\rightarrow-\mathrm{PPE}
$$

* APPE

F9 Dimension $=10$

F13 Dimension $=10$

F24 Dimension $=10$

F28 Dimension $=10$

Figure 3: APPE's convergence curve with the dimension of 10.
solution for the next search [28]. Path 2-point swapping means that two points of the path are selected each time, and then the two points are exchanged. If the new solution produced is good, then retain it as the best solution for the next search [28].

5. Experiment and Application

In this section, we utilized CEC2013 to test our proposed algorithm, as shown in Table 1. APPE experiment results are shown in Tables 2-13. Then, the CVRP results are as shown in Tables 14-15. These are the results APPE compares with DE, SSA, PSO, and PPE. We also compare APPE with some existing work in Tables 6-19.

Three types of functions are included in CEC2013, as shown in Table 1. The first type is the unimodal function, which tests the exploitation ability. The second is the basic multimodal function, which tests the exploration ability. The third type is the composition function, which is composed by the above-mentioned function, representing the challenging problems. The search range is $[-100,100]$ for each dimension.
5.1. Experiment Setting. In this experiment, we compare APPE with DE, SSA, HHO, and PPE. Each algorithm has 100 solutions, i.e., $p s=100$, with $\operatorname{Di} m=10,30,50$. Each algorithm has 51 independent runs in each benchmark, and Maxgen equal to $10000 \times \mathrm{Dim} / p s$. The parameter setting is

Figure 4: The best route result of the A-n32-k5 by APPE.
as follows: for $\mathrm{DE}, F=2, C R=0.9$, and it uses $\mathrm{DE} /$ rand $/ 1 /$ bin. For HHO, $\beta=1.5$. For SSA, the number of producers accounts for $20 \%, S D=20$, and $S T=0.8$. For PPE, $k=\log (N p)+1, p, a$, and $e v$ of each stick insect are initialized to $1 / N p, 1.1$, and 0 , and $G=(u b-l b)$ $(($ Maxgen $+1-t) /$ Maxgen $) / 10$. For APPE, $I N V=4$, INVGate $=10^{-6}$, JumpNum $=5, r_{\text {Jump }}=0.05$, HAnum $=$ $N p=p s$, and other parameters are the same as the PPE.

The qualitative metric uses the convergence curve, and the quantitative measure comprises the best, mean, standard deviation, and average running time of the specific benchmark functions.
5.2. Experiment Test. Table 2 is the best experimental result of APPE with Di $m=10$, which is the best of 51 runs. Table 3 is the mean experimental result of APPE with Di $m=10$, which is the mean of 51 runs. Table 4 is the standard deviation experimental result of APPE with Di $m=10$, which is the standard deviation of 51 runs. Table 5 is the time experimental result of APPE with Di $m=10$, which is the average running time of each algorithm in 51 runs. Similarly, Tables 6-9 are the result of Di $m=30$, and Tables $10-13$ are the result of Di $m=50$. We use fitness error $f-f_{\text {optimum }}$ for simplicity. We also use W/D/L to record each algorithm's win/draw/loss number in 28 benchmark functions from Tables 2-13. Under a benchmark function test, if the algorithm has the best performance (minimum fitness value), then W adds one. If the algorithm is equal to other algorithms (with the same fitness value), then D adds one. Otherwise (the algorithm's fitness value is not minimum), L adds one. Figure 3 shows the convergence curves of APPE, and the dimension is 10 . APPE compares with DE, SSA, HHO, and PPE.

As shown in Tables 2, 6, 10, APPE's W/D/L of the best experimental result are 20/0/8, 22/0/6, 18/0/10, respectively. It indicates that APPE can search better solutions and is more likely to jump out of local solutions. From Tables 3, 7, 11, APPE's W/D/L of mean experimental result are 18/0/10, 17/0/ $11,18 / 0 / 10$, respectively. It means that APPE has a higher convergence accuracy. As shown in Tables 4, 8, 12, APPE's W/ D/L of standard deviation experimental result are 8/0/20, 9/0/ $19,7 / 0 / 21$, respectively. Compared with other algorithms in these tables, it can be seen that APPE has moderate convergence stability. From Tables 5, 9, 13, APPE's W/D/L of time experimental result are $25 / 0 / 3,24 / 0 / 4,23 / 0 / 5$, respectively. It shows that the running time of APPE is relatively short compared with other algorithms. Therefore, the convergence precision and running time of APPE are quite well.

As shown in Figure 3, the convergence accuracy of APPE at the beginning of iteration is at a general level. In the middle of iteration, many algorithms are in a stable convergence state, which is similar to falling into the local optimum, while APPE still continues to search at this time, which has a certain exploration ability and can jump out of the local optimum. In the latter part of iteration, it enters the stable convergence stage like many algorithms. In Figure 3, APPE's convergence curve is basically at the bottom, i.e., the convergence precision is the best. In addition, APPE convergence curve obviously has a steep slope of decline, i.e., APPE can get a better solution faster.
5.3. Applying for CVRP. In this section, we apply APPE for solving CVRP. We use instances from [30, 31] to test APPE's performance. We compare APPE with DE, SSA, PSO, and PPE. For more effectively, we run 10 times for getting more reliable data. The BKV item means the best-known value of

Figure 5: APPE's convergence curve with the dimension of 30.
instance. The particles are 50. The iteration is 1000 . The setting of DE, PPE, and APPE are the same as aforementioned. For SSA, the number of the producers accounts for $20 \%, S D=20$, and $S T=0.8$. For PSO, $\omega=0.8$, and $c_{1}=c_{2}=2$. We also use W/D/L to record each algorithm's win/draw/loss number in instances from Tables 14-19, and the compared fitness value is the sum of distances here. The CVRP experiment is shown in Tables 14 and 15.

In Table 14, obviously, the performance of APPE searching for the global optimum is better than that of the comparison algorithms. Most of the instances obtain solutions close to BKV. Similarly, in Table 15, APPE has a better convergence accuracy for CVRP than the contrast algorithms. Figure 4 is the best route result of A-n32-k5 solved by APPE. It has 5 routes, and its fitness is 787.0819 that is close to BKV. It is proved that APPE can effectively solve CVRP.

We also compare APPE with some existing results. Table 16 is the comparison results of APPE with the results of

Korayem et al. [32]. The setting is consistent with [32] that the population is 20 , the maximum generations are 500 , and each instance runs 10 times. In Table 16, the convergence precision of APPE is better than KmeansFnO, KmeansFnP, and KmeansFnR that are all cluster-first route-second methods, and they combine k -means with gray wolf optimizer [32]. Table 17 shows the comparison results of APPE with the results of Yan et al. [33]. The setting is consistent with [33], and each instance runs 20 times. In Table 17, the convergence precision of APPE is better than the constraint optimization harmony search (CO-HS) of [33], PSO, and GA, and three comparison algorithm's data comes from [33]. Table 18 shows the comparison results of APPE with the results of Zhao et al. [34]. The setting is consistent with [34] that the population is 200 , the maximum generations are 500 , and each instance is run 10 times. It can be seen from Table 18 that APPE is superior to quantum $\mathrm{DE}(\mathrm{QDE})$, quantum evolution algorithm (QEA), and DE in both best and mean performance,

Figure 6: APPE's convergence curve with the dimension of 50 .
with data from [34]. Table 19 shows the results of APPE and the work of Khairy et al. [22]. The setting is consistent with [22] that the population is 40 , the maximum generations are 1000, and each instance is run 10 times. In Table 19, the convergence accuracy of APPE is significantly better than GA, ant colony optimization (ACO), and group teaching optimization (GTO), with data from [22].

6. Conclusions

We propose APPE that deletes competition and conditional acceptance and corresponding evolutionary trend update for shortening the algorithm's running time. It also adds a jump mechanism, history-based searching, and population closing moving for making PPE more likely to jump out of the local optimum and improving PPE's convergence accuracy. Then, we test APPE by CEC2013, which compares with DE, SSA,

HHO, and PPE. Experiment results show that APPE has higher convergence accuracy and shorter running time. Finally, APPE is applied to solve CVRP. From the test results of instances, APPE is more powerful to solve CVRP than DE, SSA, PSO, and PPE. We also compare our algorithm with some existing work. The results show that APPE is able to solve CVRP.

In the future, APPE can be improved by hybrid other algorithm, such as Flower Pollination Algorithm,Harmony Search [35] and adding cubic chaotic mapping [36], a version of multi-objective APPE can be proposed by referring to inverse model [37]. APPE can also be applied to other fields, such as power system problems [38, 39], wireless sensor network problems [39, 40], dispatching system of public transit vehicles [41, 42], traffic forecasting [43], sensor ontology matching [44, 45], feature selection [46], surrogate approach [47, 48], and deep learning [49, 50].

Appendix

In the CEC2013 experiment, for the convergence curves of the three dimensions are approximate, we only put the convergence curves of Di $m=10$ in the text and put Di $m=$ 30 and Di $m=50$ in the appendix. Figures 5 and 6 are the convergence curves of $\operatorname{Di} m=30$ and $D i m=50$. It is similar to Figure 3, however, the convergence curve of APPE in Figures 5 and 6 has a relatively good convergence precision in the early stage of iteration. For Figures 5 and 6, in the middle of the iteration, APPE still continues to search at this time. In the latter part of the iteration, it enters the stable convergence stage like many algorithms. APPE's convergence curve is also basically at the bottom, i.e., the convergence precision is the best. To sum up, APPE has better convergence performance.

Data Availability

The data used to support the findings of this study are included in the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61872085) and the Natural Science Foundation of Fujian Province (2018J01638).

References

[1] H. Ceylan, H. Ceylan, S. Haldenbilen, and O. Baskan, "Transport energy modeling with meta-heuristic harmony search algorithm, an application to Turkey," Energy Policy, vol. 36, no. 7, pp. 2527-2535, 2008.
[2] Z. Beheshti and S. M. H. Shamsuddin, "A review of pop-ulation-based meta-heuristic algorithms," International Journal of Advances in Soft Computing and Its Applications, vol. 5, no. 1, pp. 1-35, 2013.
[3] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of the ICNN'95 - International Conference on Neural Networks, pp. 1942-1948, Perth, Western Australia, December 1995.
[4] J.-F. Chang, S.-C. Chu, J. F. Roddick, and J.-S. Pan, "A parallel particle swarm optimization algorithm with communication strategies," Journal of Information Science and Engineering, vol. 21, no. 4, pp. 809-818, 2005.
[5] A. Faramarzi, M. Heidarinejad, B. Stephens, and S. Mirjalili, "Equilibrium Optimizer: A Novel Optimization Algorithm," Knowledge-Based Systems, vol. 191, 2020.
[6] J.-S. Pan, J. Zhuang, L. Liao, and S.-C. Chu, "Advanced equilibrium optimizer for electric vehicle routing problem with time windows," Journal of Network Intelligence, vol. 6, no. 2, pp. 216-237, 2021.
[7] X.-S. Yang, "Flower Pollination Algorithm for Global Optimization," in Proceedings of the International Conference on Unconventional Computing and Natural Computation, pp. 240-249, Orléans, France, September 2012.
[8] X.-S. Yang, Nature-inspired Optimization Algorithms, Elsevier, Chennai, India, 2014.
[9] J.-S. Pan, J. Zhuang, H. Luo, and S.-C. Chu, "Multi-group flower pollination algorithm based on novel communication strategies," Journal of Internet Technology, vol. 22, no. 2, pp. 257-269, 2021.
[10] J.-S. Pan, P. Hu, and S.-C. Chu, "Binary fish migration optimization for solving unit commitment," Energy, vol. 226, 2021.
[11] Z. Meng and J.-S. Pan, "QUasi-Affine TRansformation Evolution with External ARchive (QUATRE-EAR): an enhanced structure for differential evolution," Knowledge-Based Systems, vol. 155, pp. 35-53, 2018.
[12] T.-W. Sung, B. Zhao, and X. Zhang, "Quasi-affine transformation evolutionary with double excellent guidance," Wireless Communications and Mobile Computing, vol. 2021, Article ID 5591543, 2021.
[13] P.-C. Song, S.-C. Chu, J.-S. Pan, and H. Yang, "Simplified Phasmatodea Population Evolution Algorithm for Optimization," Complex \& Intelligent Systems, 2021.
[14] G. B. Dantzig and J. H. Ramser, "The truck dispatching problem," Management Science, vol. 6, no. 1, pp. 80-91, 1959.
[15] J. K. Lenstra and A. H. G. R. Kan, "Complexity of vehicle routing and scheduling problems," Networks, vol. 11, no. 2, pp. 221-227, 1981.
[16] T. K. Ralphs, L. Kopman, W. R. Pulleyblank, and L. E. Trotter, "On the capacitated vehicle routing problem," Mathematical Programming, vol. 94, no. 2-3, pp. 343-359, 2003.
[17] B. Wu, W. Wang, Y. Zhao, X. Xu, and F. Yang, "A Novel Real Number Encoding Method of Particle Swarm Optimization for Vehicle Routing problem," in Proceedings of the 2006 6th World Congress on Intelligent Control and Automation, pp. 3271-3275, Dalian, China, June 2006.
[18] A. Chen, G. Yang, and Z. Wu, "Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem," Journal of Zhejiang University - Science, vol. 7, no. 4, pp. 607-614, 2006.
[19] T. J. Ai and V. Kachitvichyanukul, "Particle swarm optimization and two solution representations for solving the capacitated vehicle routing problem," Computers \& Industrial Engineering, vol. 56, no. 1, pp. 380-387, 2009.
[20] S. Z. Zhang and C. K. M. Lee, "An Improved Artificial Bee colony Algorithm for the Capacitated Vehicle Routing problem," in Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 2124-2128, Hong Kong, China, October 2015.
[21] A. M. Altabeeb, A. M. Mohsen, and A. Ghallab, "An improved hybrid firefly algorithm for capacitated vehicle routing problem," Applied Soft Computing, vol. 84, 2019.
[22] O. M. Khairy, O. M. Shehata, and E. I. Morgan, "Enhanced Group Teaching Optimization Algorithm for Solving the Capacitated Vehicle Routing Problem," in Proceedings of the 2020 8th International Conference on Control, Mechatronics and Automation (ICCMA), pp. 222-226, Moscow, Russia, November 2020.
[23] Z. Fu, P. Hu, W. Li, J.-S. Pan, and S. Chu, "Parallel equilibrium optimizer algorithm and its application in capacitated vehicle routing problem," Intelligent Automation and Soft Computing, vol. 27, no. 1, pp. 233-247, 2021.
[24] J. J. Liang, B. Y. Qu, P. N. Suganthan, and A. G. HernándezDíaz, "Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization," Technical Report, Nanyang Technol. Univ, Singapore, 2013.
[25] E. Atashpaz-Gargari and C. Lucas, Imperialist Competitive Algorithm: An Algorithm for Optimization Inspired by

Imperialistic Competition, pp. 4661-4667, IEEE congress on evolutionary computation, Singapore, 2007.
[26] R. A. Rutenbar, "Simulated annealing algorithms: an overview," IEEE Circuits and Devices Magazine, vol. 5, no. 1, pp. 19-26, 1989.
[27] L. Teng and H. Li, "A new frog leaping algorithm based on simulated annealing and immunization algorithm for lowpower mapping in network-on-chip," Journal of Information Hiding and Multimedia Signal Processing, vol. 9, no. 3, pp. 716-722, 2018.
[28] M. Xiang and Q. Zhang, "Discrete cuckoo algorithm for capacitated vehicle routing problem," Journal of Northeast Petroleum University, vol. 45, no. 1, 2021.
[29] I Ilhan, "An Improved Simulated Annealing Algorithm with Crossover Operator for Capacitated Vehicle Routing Problem," Swarm and Evolutionary Computation, vol. 64, 2021.
[30] P. Augerat, J. M. Belenguer, E. Benavent, A. Corberán, D. Naddef, and G. Rinaldi, Computational Results with a branch and Cut Code for the Capacitated Vehicle Routing Problem, Institut National Polytechnic, Dhaka, Bangladesh, 1995.
[31] E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, and A. Subramanian, "New benchmark instances for the capacitated vehicle routing problem," European Journal of Operational Research, vol. 257, no. 3, pp. 845-858, 2017.
[32] L. Korayem, M. Khorsid, and S. S. Kassem, "Using Grey Wolf Algorithm to Solve the Capacitated Vehicle Routing Problem," in Proceedings of the 3rd International Conference on Manufacturing, Optimization, Industrial and Material Engineering (MOIME 2015), Bali, Indonesia, May 2015.
[33] T. Yan, L. Wang, J. Zhou, and J. Wang, "An improved harmony search algorithm for CVRP," Computer Technology and Development, vol. 26, no. 9, pp. 187-191, 2016.
[34] Y. Zhao, H. Jiang, and J. Zhang, "A quantum differential evolution algorithm for the vehicle routing problem," Journal of Zhejiang University of Technology, vol. 48, no. 1, pp. 68-72+111, 2020.
[35] O. Abdel-Raouf, I. El-Henawy, and M. Abdel-Baset, "A novel hybrid flower pollination algorithm with chaotic harmony search for solving sudoku puzzles," International Journal of Modern Education and Computer Science, vol. 6, no. 3, pp. 38-44, 2014.
[36] M. Kohli and S. Arora, "Chaotic grey wolf optimization algorithm for constrained optimization problems," Journal of computational design and engineering, vol. 5, no. 4, pp. 458472, 2018.
[37] X. Xue, C. Jiang, H. Wang, P.-W. Tsai, G. Mao, and H. Zhu, "An Improved Multi-Objective Evolutionary Optimization Algorithm with Inverse Model for Matching Sensor Ontologies," Soft Computing, vol. 25, 2021.
[38] H. M. Dubey, M. Pandit, and B. K. Panigrahi, "A biologically inspired modified flower pollination algorithm for solving economic dispatch problems in modern power systems," Cognitive Computation, vol. 7, no. 5, pp. 594-608, 2015.
[39] X. Cheng, Y. Jiang, D. Li, Z. Zhu, and N. Wu, "Optimal operation with parallel compact bee colony algorithm for cascade hydropower plants," Journal of Network Intelligence, vol. 6, no. 3, pp. 440-452, 2021.
[40] J. Wu, M. Xu, F.-F. Liu, M. Huang, L.-H. Ma, and Z.-M. Lu, "Solar wireless sensor network routing algorithm based on multi-objective particle swarm optimization," Journal of Information Hiding and Multimedia Signal Processing, vol. 12, no. 1, pp. 1-11, 2021.
[41] X. Dong, Y. Zhang, and S. Yu, "An uneven clustering routing protocol based on improved K-means algorithm for wireless
sensor network in coal-mine," Journal of Information Hiding and Multimedia Signal Processing, vol. 10, no. 1, pp. 53-62, 2019.
[42] M. Zhu, S.-C. Chu, Q. Yang, W. Li, and J.-S. Pan, "Compact sine cosine algorithm with multigroup and multistrategy for dispatching system of public transit vehicles," Journal of Advanced Transportation, vol. 2021, Article ID 5526127, 2021.
[43] R. L. Abduljabbar, H. Dia, P.-W. Tsai, and S. Liyanage, "Shortterm traffic forecasting: an LSTM network for spatial-temporal speed prediction," Future Transportation, vol. 1, no. 1, pp. 21-37, 2021.
[44] X. Xue, X. Wu, C. Jiang, G. Mao, and H. Zhu, "Integrating sensor ontologies with global and local alignment extractions," Wireless Communications and Mobile Computing, vol. 2021, Article ID 6625184, 2021.
[45] S.-C. Chu, X. Xue, J.-S. Pan, and X. Wu, "Optimizing ontology alignment in vector space," Journal of Internet Technology, vol. 21, no. 1, pp. 15-22, 2020.
[46] Y. Zhang, Y. Liu, and C.-H. Chen, "Review on deep learning in feature selection," in Proceedings of the 10th International Conference on Computer Engineering and Networks, pp. 439-447, Xi'an, China, January 2020.
[47] J.-S. Pan, N. Liu, S.-C. Chu, and T. Lai, "An efficient surrogateassisted hybrid optimization algorithm for expensive optimization problems," Information Sciences, vol. 561, pp. 304325, 2021.
[48] H. Yu, Y. Tan, J. Zeng, C. Sun, and Y. Jin, "Surrogate-assisted hierarchical particle swarm optimization," Information Sciences, vol. 454-455, pp. 59-72, 2018.
[49] Y. Zhang, Y. Liu, and C.-H. Chen, "Survey on Blockchain and Deep Learning," in Proceedings of the IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 1989-1994, Guangzhou, China, December 2020.
[50] L. Wu, C.-H. Chen, and Q. Zhang, "A mobile positioning method based on deep learning techniques," Electronics, vol. 8, no. 1, 2019.

