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ABSTRACT
Ontology-based data access is a powerful form of extending
database technology, where a classical extensional database
(EDB) is enhanced by an ontology that generates new inten-
sional knowledge which may contribute to answer a query.
The ontological integrity constraints for generating this in-
tensional knowledge can be specified in description logics
such as DL-Lite. It was recently shown that these for-
malisms allow for very efficient query-answering. They are,
however, too weak to express simple and useful integrity
constraints that involve joins. In this paper we introduce
a more expressive formalism that takes joins into account,
while still enjoying the same low query-answering complex-
ity. In our framework, ontological constraints are expressed
by sets of rules that are so-called tuple-generating depen-
dencies (TGDs). We propose the language of sticky sets of
TGDs, which are sets of TGDs with a restriction on multiple
occurrences of variables (including joins) in the rule bodies.
We establish complexity results for answering conjunctive
queries under sticky sets of TGDs, showing, in particular,
that ontological conjunctive queries can be compiled into
first-order and thus SQL queries over the given EDB in-
stance. We also show how sticky sets of TGDs can be com-
bined with functional dependencies. In summary, we obtain
a highly expressive and effective ontological modeling lan-
guage that unifies and generalizes both classical database
constraints and important features of the most widespread
tractable description logics.

1. INTRODUCTION
Ontological Database Management Systems. We

are currently witnessing the rise of a new type of database
management systems equipped with advanced reasoning and
query processing mechanisms. The necessity of combin-
ing ontological reasoning and description logics (DLs) with
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database techniques has emerged in both the DL commu-
nity and in the database world. The marriage of techniques
arising from both contexts is indeed seen as a great com-
mercial opportunity. This is not surprising, given that the
raw data on top of which ontological reasoning tasks are ex-
ecuted reside, in the business world, in enterprise databases.
Making such enterprise data available to ontological reason-
ing is thus a key step towards the commercial breakthrough
of DL and Semantic Web technology. Both small and large
database technology providers have recognized this need and
have recently started to build ontological reasoning modules
on top of their existing software.

Oracle Inc. offers a DBMS enhanced by modules perform-
ing ontological reasoning tasks in order to provide seman-
tic technologies for enterprises. Their product Oracle Spa-
tial 11g Semantic Technologies [2] has applications in several
areas of ontological data processing, among which we list:
enterprise information integration, intelligence, law enforce-
ment, knowledge mining, threat analysis, finance, web and
social network solutions, life science research, in particu-
lar, bio-pathway analysis and protein interaction. A recent
example of a new company dealing with ontological data
access is Data-Grid Inc. [1], which develops OWL-DBMS,
a DBMS offering semantic web technology and ontological
querying. Integrating DLs and databases is also at the heart
of several research-based systems, among which QuOnto [4]
and FaCT [23]. Quonto is based on the DL-lite description
logic family [15], and has interfaces to Oracle, DB2, and
SQL Server; it takes advantage of the optimization capabil-
ities of the underlying DBMS.

In ontology-enhanced database systems, an extensional
relational database D (also referred-to as ABox in the de-
scription logic community) is combined with an ontologi-
cal theory Σ (also called TBox) describing rules and con-
straints which derive new intensional data from the ex-
tensional data. A query is not just answered against the
database D, but against the logical theory D∪Σ. Thus, for
a Boolean conjunctive query (CQ) q, one checks whether
D ∪ Σ |= q rather than just checking whether D |= q.
Similarly, if q(X) = ∃Ybody(X,Y) is a conjunctive query
with output variables X, then its answer in the ontologi-
cal database consists of all tuples t of constants such that
D ∪ Σ |= ∃u body(t,u). Moreover, answering a conjunctive
query q against D ∪ Σ has been shown to be equivalent to
answer the same query q against the chase-expansion of D
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Figure 1: Query answering: chasing vs. rewriting.

according to Σ, which we denote by chase(D,Σ) [24, 14,
22, 20]. This expansion can be obtained via the well-known
chase algorithm [25, 24, 20], which we will review in Sec-
tion 2. Informally, the chase adds new tuples to D (possibly
involving null values) until the final result chase(D,Σ) sat-
isfies all constraints in Σ. A picture of ontological querying
via the chase is given in Figure 1 (a).

Research Challenges. A particularly critical issue is
that the chase expansion chase(D,Σ) may be infinite, and
thus not explicitly computable. This may be the case even
for extremely small databases D and very simple ontological
theories Σ. The following simple example illustrates this and
also exhibits a Boolean query q that evaluates to true over
chase(D,Σ), while it is false over D alone.

Example 1. Consider a database D = {person(john)}
that contains a single fact stating that john is a person,
and the ontological theory Σ stating that every person has
a father, who is himself a person:

person(X) → ∃Y father(Y ,X )
father(X,Y ) → person(X ).

chase(D,Σ) is then the infinite atom set {person(john),
father(z1, john), person(z1), father(z2, z1), person(z2),
father(z3, z2), person(z3), . . .}, where all the zi are (labeled)
null values. Clearly, the Boolean conjunctive query

q = ∃X∃Y ∃Z father(X,Y ), father(Y, Z)

is positively answered on this infinite expansion, and indeed,
D ∪ Σ |= q; however, D 6|= q. Note that the two constraints
in the ontological theory Σ are actually the inclusion depen-
dencies person[1] ⊆ father [2] and father [1] ⊆ person[1].

Procedures for effectively answering queries even when
the chase does not terminate were first developed in the
database context by Johnson and Klug [24] for the special
case where Σ contains inclusion dependencies only. In short,
they showed that for each Boolean conjunctive query q, a
finite initial part C0 of chase(D,Σ) can be computed, whose
size depends on the size of q and Σ only, such that for each
database D, C0 |= q iff chase(D,Σ) |= q iff D ∪ Σ |= q.

Inclusion dependencies alone, however, are not powerful
enough to capture some popular ontological constraints. For
this reason, a recent, important research direction is to find
more expressive formalisms, for which query answering un-
der constraints is still decidable. Moreover, to be able to
work with very large databases, it is desirable not only that

query answering is decidable, but also tractable in data com-
plexity (i.e., when both Σ and q are fixed), and possibly
feasible by use of relational query processors.

A significant step forward in this direction was the intro-
duction of the DL-lite description logic family by Calvanese
et al. in [15, 27]. Conjunctive query answering in DL-lite
has the advantage of being first-order (FO) rewritable. In
other terms, a pair 〈Σ, q〉, where Σ is a DL-lite ontology and
q a conjunctive query defined as q(X) = ∃Ybody(X,Y),
can be rewritten as a first order query qΣ, defined as
qΣ(X) = ∃YbodyΣ(X,Y), such that for every possible an-
swer tuple t (of constants) it holds D ∪ Σ |= ∃u body(t,u)
iff D |= ∃u bodyΣ(t,u). Given that each first order query
can be equivalently written in SQL, in practical terms this
means that a conjunctive query q based on an ontology Σ
can be rewritten as an SQL query over the original database
D. Figure 1 (b) depicts the notion of rewriting.

DL-lite was more recently embedded into a slightly more
expressive language called linear Datalog± [10], which is in
turn a sub-formalism of a noticeably more expressive formal-
ism called guarded Datalog±. Such languages are part of the
Datalog± family, whose languages extend the well known
Datalog language [3] by allowing existential quantifiers in
rule heads, thus using tuple generating dependencies (TGDs)
instead of classical Datalog rules. This feature is also known
as value invention (see, e.g., [26, 8]). Guarded Datalog± re-
stricts rule bodies to be guarded, which means that each rule
body has a guard atom, which has among its arguments all
the body variables. Linear Datalog± further restricts rule
bodies to contain a single atom only (which is then auto-
matically a guard). Linear Datalog± is FO-rewritable, while
guarded Datalog± is not. However, query answering under
guarded Datalog± was shown to be tractable in case the
ontology Σ and the query q are assumed to be fixed (data
complexity). For more details see [10].

Unfortunately, none of the above formalisms is expressive
enough to be able to model real-life cases such as the one in
the example below.

Example 2. Consider the following relational schema,
which shall be used as our running example.

dept(Dept Id,Mgr Id),
emp(Emp Id,Dept Id,Area,Project Id),
runs(Dept Id,Project Id),
in area(Project Id,Area),
project mgr(Emp Id,Project Id),
external(Ext Id,Area,Project Id).

The fact that each department has an employee as manager
can be expressed by the TGD

dept(V,W )→ ∃X∃Y ∃Z emp(W,X, Y, Z).

The following TGD expresses the fact that each employee
works on some project that falls into his/her area of special-
ization ran by his/her department.

emp(V, W, X, Y )→ ∃Z dept(W, Z), runs(W, Y ), in area(Y, X).

The fact that for each project run by some department
there exists an external controller, specialized on the area of
the project, that works on it can be expressed by the TGD

runs(W,X), in area(X,Y )→ ∃Z external(Z, Y,X).

Notice first that the above TGDs do not guarantee the
termination of the chase for all initial databases. Moreover,
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the third TGD of Example 2 contains a join over variable
X in its rule body; but precisely such joins cannot be ex-
pressed by guarded TGDs, let alone by DL-lite. Query an-
swering with TGDs involving joins is generally undecidable
(see, e.g., [7], and [9] for examples of very tight undecidable
classes). We observed, however, that this undecidability re-
sult is due to rather “contorted” cases that are unlikely to
occur in practice. The main research challenge underlying
our work is thus to find expressive classes of constraints
that: (1) generalize DL-lite and other prominent ontology
formalisms; (2) allow for joins in rule bodies (with some re-
alistic restrictions to ensure decidability), and (3) still keep
the most beneficial property of FO-rewritability, or at least
of tractability of query answering when data complexity is
considered. Clearly, such new classes must be based on some
new decidability paradigm, that significantly differs from the
paradigm of rule guardedness.

Results. As a novel Datalog± language, we introduce the
class of sticky sets of TGDs. Stickiness is formally defined
in Section 3.1 by an efficiently testable condition involving
variable marking. In Section 3.2 we give a number of com-
pelling reasons for the adoption of sticky sets of TGDs in
data modeling and ontology querying.

In Section 3.3 we first tackle the data complexity of the
CQ answering problem under sticky sets of TGDs. An ac0

upper bound is proved by showing that sticky sets of TGDs
enjoy the bounded derivation-depth property (BDDP) [10],
which ensures that a number δ of chase steps, where δ de-
pends on the query and the ontolology but not on the size
of the initial instance, are sufficient for query answering.
The BDDP ensures FO-rewritability, which in turns implies
membership in ac0. In Section 3.3 we also tackle the com-
bined complexity of the CQ answering problem under sticky
sets of TGDs, i.e., the complexity in the case where the input
is constituted by the query, the constraints, and the data.
We show that the problem in this case is exptime-complete.
The hardness is proved by showing the exptime-hardness of
the fact inference problem for lossless Datalog, whose rules
are a special case of sticky sets of TGDs. Membership in
exptime is proved by exhibiting an alternating pspace al-
gorithm which guesses a proof of the query.

In Section 4 we address the problem of the interaction
between TGDs and functional dependencies (FDs), a spe-
cial case of equality-generating dependencies (EGDs). We
provide a sufficient, syntactic condition (the non-conflict
condition) that ensures the separability between TGDs and
FDs [14, 10]. Separability guarantees that queries can be
answered by considering only the TGDs, apart from an ini-
tial check. Therefore, all our results on TGDs extend to the
case where FDs are present, that do not conflict with the
TGDs.

Finally, in Section 5, we show that we can incorporate neg-
ative constraints in a knowledge base constituted by sticky
sets of TGDs without increasing the complexity of query
answering. This allows us to show that our work properly
generalizes several prominent and tractable formalisms for
ontology reasoning, in particular the DL-lite family [15, 27].

Notice that all our complexity results, derived for Boolean
CQs, carry over, as usual, to the (decision) query answering
problem for general (non-boolean) CQs (see, e.g., [9]), as
well as to the CQ containment problem.

Our study aims at investigating the fundamental proper-
ties of our newly-introduced language, bringing to light the

primary sources of the decidability and complexity issues
underlying them. Given that sticky sets of TGDs, in gen-
eral, neither enjoy the chase termination property, nor the
bounded treewidth property, let alone guardedness, we had
to look for new decision procedures way beyond the state of
the art. We do believe that our work paves the way to the
development of efficient query answering techniques appli-
cable in real-world cases, and scalable to large data sets.

For most proofs in this paper, and for more details, we
refer the interested reader to a report available online [11].
Additional results extending sticky sets of TGDs are pub-
lished in [13].

2. DEFINITIONS AND BACKGROUND

2.1 Technical definitions
In this section we recall some basics on databases, queries,

TGDs, and the TGD chase procedure.
General. We define the following pairwise disjoint (infi-

nite) sets of symbols: (i) a set Γ of constants (constitute the
“normal” domain of a database), (ii) a set Γf of labeled nulls
(used as placeholders for unknown values, and thus can be
also seen as variables), and (iii) a set Γv of variables (used
in queries and dependencies). Different constants represent
different values (unique name assumption), while different
nulls may represent the same value. A lexicographic order
is defined on Γ ∪ Γf , such that every value in Γf follows all
those in Γ.

A relational schema R (or simply schema) is a set of re-
lational symbols (or predicates), each with its associated ar-
ity. We write r/n to denote that the predicate r has arity
n. A position r[i] (in a schema R) is identified by a pred-
icate r ∈ R and its i-th argument (or attribute). A term
t is a constant, null, or variable. An atomic formula (or
simply atom) has the form r(t1, . . . , tn), where r/n is a re-
lation, and t1, . . . , tn are terms. For an atom a, we denote
as dom(a), var(a) and pred(a) the set of its terms, the set
of its variables and its predicate, respectively. These nota-
tions naturally extends to sets and conjunctions of atoms.
An atom is called ground if all of its terms are constants of
Γ. Conjunctions of atoms are often identified with the sets
of their atoms.

A substitution from one set of symbols S1 to another set
of symbols S2 is a function h : S1 → S2 defined as follows:
(i) ∅ is a substitution (empty substitution), (ii) if h is a
substitution, then h ∪ {X → Y } is a substitution, where
X ∈ S1 and Y ∈ S2, and h does not already contain some
X → Z with Y 6= Z. If X → Y ∈ h, then we write
h(X) = Y . A homomorphism from a set of atoms A1 to a set
of atoms A2, both over the same schema R, is a substitution
h : dom(A1)→ dom(A2) such that: (i) if t ∈ Γ, then h(t) =
t, and (ii) if r(t1, . . . , tn) is in A1, then h(r(t1, . . . , tn)) =
r(h(t1), . . . , h(tn)) is in A2. The notion of homomorphism
naturally extends to conjunctions of atoms.

Databases and Queries. A database (instance) D for
a schema R is a (possibly infinite) set of atoms of the form
r(t) (a.k.a. facts), where r/n ∈ R and t ∈ (Γ ∪ Γf )n. We
denote as r(D) the set {t | r(t) ∈ D}.

A conjunctive query (CQ) q of arity n over a schema R,
written as q/n, has the form q(X) = ∃Yϕ(X,Y), where
ϕ(X,Y) is a conjunction of atoms over R, X and Y are
sequences of variables or constants in Γ, and the length of
X is n. ϕ(X,Y) is called the body of q, denoted as body(q).
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A Boolean CQ (BCQ) is a CQ of zero arity. The answer to
a CQ q/n over a database D, denoted as q(D), is the set of
all n-tuples t ∈ Γn for which there exists a homomorphism
h : X∪Y → Γ∪Γf such that h(ϕ(X,Y)) ⊆ D and h(X) = t.
A BCQ has only the empty tuple 〈〉 as possible answer, in
which case it is said that has positive answer. Formally,
a BCQ has positive answer over D, denoted as D |= q, iff
〈〉 ∈ q(D), or, equivalently, q(D) 6= ∅.

Tuple-Generating Dependencies. Given a schema
R, a tuple-generating dependency (TGD) σ over R is a
first-order formula ∀X∀Yϕ(X,Y) → ∃Zψ(X,Z), where
ϕ(X,Y) and ψ(X,Z) are conjunctions of constant-free
atoms over R, called the body and the head of σ, de-
noted as body(σ) and head(σ), respectively. Henceforth, to
avoid notational clutter, we will omit the universal quan-
tifiers in TGDs. Such σ is satisfied by a database D for
R iff, whenever there exists a homomorphism h such that
h(ϕ(X,Y)) ⊆ D, there exists an extension h′ of h (i.e.,
h′ ⊇ h) such that h′(ψ(X,Z)) ⊆ D.

We now define the notion of query answering under TGDs.
Given a database D for R, and a set Σ of TGDs over R, the
models of D w.r.t. Σ, denoted as mods(D,Σ), is the set of all
databases B such that B |= D∪Σ, which means that B ⊇ D
and B satisfies Σ. The answer to a CQ q w.r.t. D and Σ,
denoted as ans(q,D,Σ), is the set {t | t ∈ q(B) for each B ∈
mods(D,Σ)}. The answer to a BCQ q w.r.t. D and Σ is
positive, denoted as D∪Σ |= q, iff ans(q,D,Σ) 6= ∅. Recall
that query answering under general TGDs is undecidable
[7], even when the schema and the set of TGDs are fixed [9].

We recall that the two problems of CQ and BCQ evalua-
tion under TGDs are logspace-equivalent. Moreover, it is
easy to see that the query output tuple problem (as a deci-
sion version of CQ evaluation) and BCQ evaluation are ac0-
reducible to each other. Henceforth, we thus focus only on
the BCQ evaluation problem. All complexity results carry
over to the other problems.

The TGD Chase. The chase procedure (or simply
chase) is a fundamental algorithmic tool introduced for
checking implication of dependencies [25], and later for
checking query containment [24]. Informally, the chase is
a process of repairing a database w.r.t. a set of dependen-
cies so that the resulted database satisfies the dependencies.
We shall use the term chase interchangeably for both the
procedure and its result. The chase works on an instance
through the so-called TGD chase rule. The TGD chase rule
comes in two different equivalent fashions: oblivious and
restricted [9], where the restricted one repairs TGDs only
when they are not satisfied. In the sequel, we focus on the
oblivious one for better technical clarity (unless explicitly
stated otherwise). The TGD chase rule defined below is the
building block of the chase.

TGD Chase Rule: Consider a database D for a schema
R, and a TGD σ = ϕ(X,Y) → ∃Zψ(X,Z) over R. If σ
is applicable to D, i.e., there exists a homomorphism h such
that h(ϕ(X,Y)) ⊆ D then: (i) define h′ ⊇ h such that
h′(Zi) = zi for each Zi ∈ Z, where zi ∈ Γf is a “fresh” la-
beled null not introduced before, and following lexicograph-
ically all those introduced so far, and (ii) add to D the set
of atoms in h′(ψ(X,Z)) if not already in D.

Given a database D and set of TGDs Σ, the chase algo-
rithm for D and Σ consists of an exhaustive application of
the TGD chase rule in a breadth-first fashion, which leads
as result to a (possibly infinite) chase for D and Σ, denoted

as chase(D,Σ). A formal definition is given in Appendix A.
The (possibly infinite) chase for D and Σ is a universal

model of D w.r.t. Σ, i.e., for each database B ∈ mods(D,Σ),
there exists a homomorphism from chase(D,Σ) to B [22,
20]. Using this fact it can be shown that for a BCQ q,
D ∪ Σ |= q iff chase(D,Σ) |= q.

2.2 Ontology Languages and Rewriting
DL-lite is a family of languages based on the notions of

concepts (sets of objects) and roles (binary relations be-
tween concepts). DL-lite languages include several con-
structs, including: functional and mandatory participation
constraints (where the participation is that of a concept to
a role), role and concept inclusion, and others. We do not
give the syntax and the semantics of such constructs here,
and we refer the reader, for instance, to [15, 27]. Inter-
estingly, DL-lite languages can be translated into inclusion
dependencies, with the addition of non-conflicting key con-
straints as in [14] and of negative constraints as in [12]. As
an example, let us retake Example 1. First, notice that the
two inclusion dependencies can be expressed in DL-lite with
the assertions: person ⊑ ∃father− and ∃father ⊑ person,
where ∃father (resp. ∃father−) denotes the set of objects
that participate at least once to the relation father as
first argument (resp. as second argument), i.e., fathers of
some object (resp. sons of some object). Consider now the
Boolean query q = ∃X∃Y ∃Zfather(X,Y ), father(Y, Z) ask-
ing whether there is any grandfather. The query evaluates
to true iff the initial instance is nonempty, and a possible
rewriting of q is qΣ = ∃X∃Y father(X,Y ) ∨ ∃Zperson(Z),
which is expressible in SQL, being a first-order query.

DL-lite, in spite of its good capability of modeling ontolo-
gies, cannot capture any of the TGDs in Example 2 – its
extension DLR-lite [16], which admits roles with arbitrary
arity, can express the first two. One fundamental limitation
of DL-lite languages (as well as of DLR-lite) is that there is
no way they can express joins, as in the TGD

runs(W,X), in area(X,Y )→ ∃Z external(Z, Y,X)

of Example 2. Joins are beyond the expression capabilities
of DL-lite. Nevertheless, sticky sets of TGDs, though more
expressive, are FO-rewritable, like DL-languages.

As a simple example of rewriting, let us consider the
CQ q defined as q(Y ) = ∃X external(X, toys, Y ), asking
for projects in the area of toys for which there are ex-
ternal controllers. Intuitively, due to the above TGD,
not only we have to query external , but we also need to
look for projects that are run by a department, as such
projects will have an external controller. The rewriting
qΣ will thus be the logical union of q and of the query
q1(Y ) = ∃W runs(W,Y )∧in area(Y, toys); qΣ is a first-order
query, and thus expressible in SQL:

SELECT E.project_id FROM external E

WHERE E.area=’toys’

UNION

SELECT R.project_id FROM runs R, in_area I

WHERE I.area=’toys’ AND R.project_id=I.project_id

In the following section we introduce a novel class of FO-
rewritable ontologies (sets of TGDs in this case).

3. STICKY SETS OF TGDS
In this section we introduce sticky sets of TGDs. We show

that query answering under sticky sets of TGDs is highly
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tractable in data complexity, specifically in ac0, and it is
exptime-complete in combined complexity.

3.1 Definition of Sticky Sets of TGDs

Definition 1. Consider a set Σ of TGDs over a schema R.
We mark the variables that occur in the body of the TGDs
of Σ according to the following marking procedure. First,
for each TGD σ ∈ Σ and for each variable V in body(σ),
if there exists an atom a in head(σ) such that V does not
appear in a, then we mark each occurrence of V in body(σ).
Now, we apply exhaustively (i.e., until a fixpoint is reached)
the following step: for each TGD σ ∈ Σ, if a marked variable
in body(σ) appears at position π, then for every TGD σ′ ∈ Σ
(including the case σ′ = σ), we mark each occurrence of the
variables in body(σ′) that appear in head(σ′) at the same
position π. We say that Σ is sticky if there is no TGD
σ ∈ Σ such that a marked variable occurs in body(σ) more
than once.

Example 3. Consider the relational schema R given in
Example 2, and let Σ be the set of TGDs over R in Exam-
ple 2. According to the marking procedure in Definition 1,
we mark the variables as follows (we mark variables with a

cap, e.g., X̂):

dept(V̂ , Ŵ )→ ∃X∃Y ∃Zemp(W, X, Y, Z),

emp(V̂ , Ŵ , X̂, Ŷ )→ ∃Z dept(W, Z), runs(W, Y ), in area(Y, X),

runs(Ŵ , X), in area(X, Y )→ ∃Z external(Z, Y, X).

Clearly, for each TGD σ ∈ Σ, there is no marked variable
that occurs in body(σ) more than once. Therefore, Σ is a
sticky set of TGDs. It is important to observe that the set Σ
is neither weakly-acyclic [22], nor guarded [9], nor weakly-
guarded [9]. In fact, the class of sticky sets of TGDs is
incomparable to the above three known classes.

It is interesting to see that an equivalent criterion for stick-
iness, based on the chase, can be defined. Given a database
D for a schema R, and a set Σ of TGDs over R, we define

the (binary) relation
D,Σ
−→ as follows. Suppose that in the

construction of chase(D,Σ) we apply a TGD σ ∈ Σ, with
homomorphism h, and the atom a is generated. Then, for

each atom b ∈ body(σ), we have that h(b)
D,Σ
−→ a. We now

define when the chase enjoys the so-called sticky property.

Definition 2. Consider a database D for a schema R, and
a set Σ of TGDs over R. Suppose that in the construction of
chase(D,Σ) we apply a TGD σ ∈ Σ, with homomorphism h,
that has a variable V appearing more than once in its body,
and the atom a is generated. We say that chase(D,Σ) has
the sticky property iff h(V ) occurs in a, and in every atom

b such that 〈a, b〉 is in the transitive closure of
D,Σ
−→.

The following result implies that the sticky property char-
acterizes the class of sticky sets of TGDs; the proof is found
in Appendix B (Theorem B.3)

Theorem 1. Consider a set Σ of TGDs over a schema
R. Σ is sticky iff, for every database D for R, chase(D,Σ)
has the sticky property.

3.2 Usefulness of Sticky Sets of TGDs
Sticky sets of TGDs are arguably a very relevant and ap-

plicable modeling tool:

• Together with standard constructs such as keys and neg-
ative constraints (see Sections 4 and 5), sticky sets of TGDs
can express whatever is expressible in the well-known DL-
lite versions DL-liteA, DL-liteR, and DL-liteF , and actually
more (Theorem 10). Therefore, wherever DL-lite is appro-
priate for modeling ontological constraints, so are, a fortiori,
sticky sets of TGDs.
• Sticky sets of TGDs can be used with relational database
schemas of arbitrary arity. Note that the above mentioned
DL-lite languages are, as most description logics, usable for
binary relations only. In this sense, sticky sets of TGDs are
closer to the paradigm of database constraints, that make no
assumption about arity. In particular, sticky sets of TGDs
generalize the class of inclusion dependencies, while DL-lite
constraints generalize unary and binary inclusion dependen-
cies only. DLR-lite, a recent generalization of DL-Lite to
arbitrary arities, is also strictly generalized by sticky sets of
TGDs.
• Sticky sets of TGDs can express constraints and rules
involving joins. We are convinced that the overwhelming
number of real-life situations involving such constraints can
be effectively modeled by sticky sets of TGDs. Of course,
since query-answering with TGDs involving joins is undecid-
able in general, we somehow needed to restrict the interac-
tion of TGDs, when joins are used. But we believe that the
restriction imposed by stickiness is a very mild one. Only
rather contorted TGDs that seem not to occur too often in
real life violate it. For example, each singleton multivalued
dependency (MVD) is sticky, as are many realistic sets of
MVDs.
• Sticky sets of TGDs very significantly generalize some
other constructs that were introduced to enhance descrip-
tion logics with joins. Noticeably, Rudolph and Krötsch [29]
introduce the concept product, which, through rules of the
form p(X) ∧ q(Y )→ r(X,Y ), expresses the cartesian prod-
uct of two concepts (unary relations) p and q. This way one
can, for instance, express that all elephants are bigger than
all mice: elephant(X) ∧ mouse(Y ) → bigger than(X,Y ).
Several convincing arguments are given in [29] to support the
introduction of the concept product in DLs. Note that con-
cept products are very special cases of sticky sets of TGDs;
moreover, the addition of a concept product to a sticky set
of TGDs can never make the resulting set non-sticky.
• Weakly-sticky sets of TGDs, a natural extension of sticky
sets of TGDs, are able to capture both Datalog and weakly-
acyclic sets of TGDs, by paying of course a price in com-
plexity. Roughly, in a weakly-sticky set of TGDs, the vari-
ables that occur more than once in the body of a TGD are
non-marked, or occur at positions where a finite number of
symbols can appear during the chase. Weakly-sticky sets of
TGDs are formally defined in Appendix D, and we refer the
reader to [11] for the complexity results.

3.3 Algorithms and Complexity
In this subsection we study the data and combined com-

plexity of query answering under sticky sets of TGDs. To
this aim we first exhibit an alternating algorithm, which
guesses a proof of the given query, and establish its sound-
ness and completeness. We recall that query answering un-
der (general) TGDs is equivalent to query answering under
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TGDs with just one atom in their heads [9]. This is estab-
lished by providing a logspace transformation from (gen-
eral) TGDs to TGDs with singleton atoms in their heads.
Since this transformation preserves the syntactic condition
of sticky sets of TGDs, henceforth we assume w.l.o.g. that
every TGD has just one atom in its head. In addition, for
technical reasons, we do not allow repetition of variables in
the head-atom. Note that most realistic examples do not
have repeated head-variables.

Algorithm QAns. QAns has as input a BCQ q over a
schema R, a database D for R, and a sticky set Σ of TGDs
overR, and outputs “Accept” iff D∪Σ |= q, or, equivalently,
chase(D,Σ) |= q. The algorithm works as follows:

1. Guess which variables in var(q), during the evaluation
of q over the chase(D,Σ), are mapped onto a constant
of dom(D) (and which constant), and also which are
mapped onto the same null. Let S be the set of vari-
ables that are mapped onto a null.

2. Guess, for each variable V ∈ S, an atom aV (possibly
containing constant values) that represents the atom
in which zV is invented during the chase, where zV is
the null onto which V is mapped.

3. Halt and “Accept” iff for each variable V ∈ S, each
occurrence of V is mapped onto the same null. This is
done by applying an alternating procedure which uses
the guessed atoms for the variables in S.

For more details on the algorithm QAns we refer the reader
to Appendix B. The formal definition of QAns is found
in [11]. The following result implies that the algorithm QAns

is sound and complete for query answering under sticky sets
of TGDs.

Theorem 2. Let R be a relational schema. Consider a
sticky set Σ of TGDs over R, a database D for R, and a
BCQ q over R. It holds that D ∪ Σ |= q iff QAns(q,D,Σ)
outputs “Accept”.

Data Complexity. A class C of TGDs is first-order
rewritable, henceforth abbreviated as FO-rewritable, iff for
every set Σ of TGDs in C, and for every BCQ q, there ex-
ists a first-order query qΣ such that, for every database D,
D ∪ Σ |= q iff D |= qΣ [27, 10]. Since answering first-order
queries is in the class ac0

1 in data complexity [30], it imme-
diately follows that for FO-rewritable TGDs, query answer-
ing is in ac0 in data complexity.

To establish FO-rewritability of sticky sets of TGDs,
we first prove that they enjoy the so-called bounded
derivation-depth property (BDDP) [10]. Roughly speaking,
chase(D,Σ) can be decomposed in levels, where D has level
0, and an atom has level γ + 1 if it is obtained, during the
chase, due to atoms with maximum level γ. We refer to the
part of the chase up to level γ as chaseγ(D,Σ). For the
formal definitions see Appendix A.

A class C of TGDs enjoys the BDDP iff for every BCQ q,
for every instance D, and for every set Σ ∈ C, if D ∪Σ |= q,
then chaseγ(D,Σ) |= q, where γ depends only on q and Σ,
i.e., γ is constant w.r.t. the size of the data. To establish this
result we exploit the alternating algorithm QAns described
above.

1This is the complexity class of recognizing words in lan-
guages defined by constant-depth Boolean circuits with an
(unlimited fan-in) AND and OR gates.

Theorem 3. The class of sticky sets of TGDs enjoys the
BDDP.

Proof idea. Roughly, the alternating algorithm QAns

described above, given a BCQ q over a schema R, a
database D for R, and a sticky set Σ of TGDs over R,
constructs a finite portion of the chase P ⊆ chaseγ(D,Σ)
such that P |= q iff D ∪ Σ |= q. The claim follows by
observing that γ depends solely on |var(q)| and Σ, but does
not depend on D. For more details see [11]. 2

It is known that if a class of TGDs enjoys the BDDP, then
it is FO-rewritable [10]. Thus, we get the desired result.

Corollary 4. BCQ answering under sticky sets of
TGDs is in ac0.

Combined Complexity. First, observe that query an-
swering under a fixed sticky set of TGDs is np-hard. This
is derived from np-hardness of query containment (which in
turn is polynomially equivalent to query answering) without
constraints [17]. We continue to show that query answering
under (general) sticky sets of TGDs is exptime-hard. Before
we proceed further we give some preliminary definitions.

A lossless Datalog rule is a Datalog rule such that the
variables that appear in the body occur also in the head. A
lossless Datalog program P is a set of lossless Datalog rules.
The Datalog fact inference problem is the following: given a
database D for a schema R, a Datalog program P over R,
and a ground atom a, decide whether D∪P |= a. The same
problem, if we consider lossless Datalog programs, is exp-
time-hard; the proof is found in Appendix B (Theorem B.4).

Theorem 5. The lossless Datalog fact inference problem
is exptime-hard.

Since each lossless Datalog program is a sticky set of
TGDs, from Theorem 5 we immediately get the following
result.

Corollary 6. BCQ answering under sticky sets of
TGDs is np-hard, if the set of TGDs is fixed, and it is
exptime-hard in general.

We now establish that query answering under sticky sets
of TGDs is in np in case that the set of constraints is fixed,
and in exptime in general. We prove this result by using
the alternating algorithm QAns presented above.

Theorem 7. BCQ answering under sticky sets of TGDs
is in np, if the set of TGDs is fixed, and it is in exptime
in general.

Proof idea. The alternating algorithm QAns runs in
npalogspace = np (resp., npapspace = exptime) in case the
set of TGDs is fixed (resp., is part of the input), where
alogspace and apspace denote alternating logspace and
alternating pspace, respectively. We refer the interested
reader to [11] for a full proof. 2

The following complexity characterization follows imme-
diately from Corollary 6 and Theorem 7.

Corollary 8. BCQ answering under sticky sets of
TGDs is np-complete, if the set of TGDs is fixed, and it
is exptime-complete in general.
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4. ADDING EGDS
So far, we have dealt only with TGDs. In this section

we also consider equality-generating dependencies (EGDs).
The interaction of general TGDs and EGDs has been proved
to lead to undecidability of query answering. In fact, this
is true even in simple cases such that of functional and in-
clusion dependencies [18]. Thus, we cannot hope to extend
the results established in the previous section to cover also
EGDs. We are looking for suitable syntactic restrictions
which would guarantee decidability of query answering.

An equality-generating dependency over a schema R is a
first-order formula ∀Xϕ(X) → Xi = Xj , where ϕ(X) is
a conjunction of atoms over R, and Xi, Xj ∈ X. Such
an EGD is satisfied by a database D iff, whenever there
exists a homomorphism h such that h(ϕ(X)) ⊆ D, then
h(Xi) = h(Xj). In the context of description logics, general
EGDs cannot be formulated, but only functional dependen-
cies (FDs) [3]; thus, we restrict our attention on FDs.

A functional dependency over a schema R is an assertion
of the form r : A → B, where r ∈ R and A,B are sets
of attributes of r. Such a FD is satisfied by a database D
iff, whenever there exist two (distinct) tuples t1, t2 ∈ r(D)
such that t1[A] = t2[A], where t[A] is the projection of
tuple t over A, then t1[B] = t2[B]. Observe that FDs
can be identified with sets of EGDs. For example, con-
sider the FD φ = r : {1} → {2, 4}, defined on a predi-
cate r/4. Clearly, φ can be identified by the set of EGDs
ΣE = {r(X,Y2, Y3, Y4), r(X,Z2, Z3, Z4) → Yi = Zi}i∈{2,4}.
It is easy to verify that for every database D it holds that
D satisfies φ iff D satisfies ΣE .

As for TGDs, a FD chase rule can be defined. Roughly,
during the application of the FD chase rule, we unify sym-
bols in order to satisfy the violated FD. If two constants are
unified, the we have a so-called hard violation and the chase
fails; for the formal definition see Appendix C.

Given a database D and a set Σ = ΣT ∪ ΣF , where ΣT

and ΣF are sets of TGDs and FDs, respectively, the chase
of D relative to Σ is computed by iteratively applying: (i)
a single TGD once, and (ii) the FDs, as long as they are
applicable (i.e., until a fixpoint is reached); for an example
see Appendix C (Example C.1).

We now recall the notion of separability which formulates
a controlled interaction of TGDs and FDs, so that FDs do
not increase the complexity of query answering [14, 10].

Definition 3. Let R be a relational schema. Consider a
set Σ = ΣT ∪ ΣF over R, where ΣT and ΣF are sets of
TGDs and FDs, respectively. Σ is separable iff for every
database D for R the following conditions are satisfied: (i)
if chase(D,Σ) fails, then D violates ΣF , and (ii) if there is
no chase failure then, for every BCQ q over R it holds that
chase(D,Σ) |= q iff chase(D,ΣT ) |= q.

Non–Conflicting Sets of TGDs and FDs. In what
follows we provide a sufficient syntactic condition for sepa-
rability. For a TGD σ = ϕ(X,Y) → ∃Z r(X,Z), we define
the set Uσ as the set of attributes of r at which we have a
universally quantified variable. The following definition gen-
eralizes the notion of non-key-conflicting TGDs [10], which
in turn generalizes the notion of non-key-conflicting inclu-
sion dependencies [14].

Definition 4. Let R be a relational schema. Consider a
set Σ = ΣT ∪ΣF over R, where ΣT and ΣF are sets of TGDs

and FDs, respectively. Σ is non-conflicting if for each pair
〈σ, φ〉 ∈ ΣT × ΣF , where σ = ϕ(X,Y) → ∃Z r(X,Z) and
φ = r : A→ B, Uσ is not a strict superset of A.

The next result shows that non-conflicting sets of TGDs
and FDs are separable. The proof is found in Appendix C
(Theorem C.1).

Theorem 9. Let R be a relational schema. Consider a
set Σ = ΣT ∪ ΣF over R, where ΣT and ΣF are sets of
TGDs and FDs, respectively. If Σ is non-conflicting, then it
is separable.

The above result implies that, in the non-conflicting case,
FDs do not increase the data and combined complexity of
query answering.

5. ADDING NEGATIVE CONSTRAINTS
We now come to negative constraints. A negative con-

straint is a first-order sentence of the form ∀Xφ(X) → ⊥,
where ⊥ denotes the truth constant false (the universal
quantification is usually omitted for brevity).

Example 4. Let R be the relational schema given in Ex-
ample 2. The fact that departmental managers cannot be
project managers can be represented by the negative con-
straint: dept(U, V ), proj mgr(V,W ) → ⊥. Moreover, the
fact that projects which fall in the area of security cannot
be assigned to external controller can be represented by the
negative constraint: dept(U, security , V )→ ⊥. Observe that
in the body of a negative constraint we can have both vari-
ables and constants.

In [10], it is shown that checking negative constraints is
tantamount to query answering. In particular, given an in-
stance D, a set Σ⊥ of negative constraints, and a sticky
set Σ of TGDs, for each negative constraint ν of the form
φ(X) → ⊥, we answer the BCQ qν = ∃Xφ(X). If at least
one of such queries answers positively, then D∪Σ∪Σ⊥ |= ⊥
(i.e., the theory is inconsistent), and therefore for every BCQ
q it holds D ∪ Σ ∪ Σ⊥ |= q; otherwise, given a BCQ q, we
have D ∪ Σ ∪ Σ⊥ |= q iff D ∪ Σ |= q, i.e., we can answer q
by ignoring the negative constraints.

The following result can be proved exactly as the analo-
gous result in [10] for linear TGDs by observing that a set
of inclusion dependencies is trivially sticky.

Theorem 10. Non-conflicting sticky sets of TGDs and
FDs, with the addition of negative constraints, are strictly
more expressive than DL-liteA, DL-liteR and DL-liteF .

6. CONCLUSIONS
In this paper, we have presented a complete picture, with

data and combined complexity bounds, of the computational
complexity of conjunctive query answering under sticky sets
of TGDs. The new ontology language we have introduced,
which is a member of the Datalog± family, is based on a
completely novel paradigm called stickiness. We have also
shown that all results extend when we combine TGDs and
FDs, as long as the FDs do not interact with TGDs. This is
particularly important since, in ontological reasoning, FDs
are essential to represent, for instance, functional participa-
tion constraints of a class (concept) to a relationship (role).
The addition of negative constraints also does not increase
the complexity of query answering.
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A more general class, which we call weakly-sticky sets of
TGDs, and which constitute weakly-sticky Datalog±, is dis-
cussed in Appendix D.

Interestingly, stickiness is a sufficient syntactic property
that ensures that the TGDs are a so-called finite uni-
fication set (fus). A fus is semantically characterized
as a set of TGDs that enjoy the following property: for
every conjunctive query q, the rewriting qΣ of q obtained
by backward-chaining through unification, according to the
rules in Σ, terminates. We refer the reader to [5] for a formal
definition. Notice that under certain conditions, as specified
in [5], a fus can be combined with a bounded treewidth
set (bts), i.e., a set of TGDs such that the chase under such
TGDs has bounded treewidth, while retaining decidability
of query answering. Therefore, query answering under sticky
sets of TGDs and weakly-guarded sets of TGDs (a general-
ization of guarded TGDs [9]) is decidable, providing that
the conditions specified in [5] are fulfilled.

In the present paper we have considered entailment under
arbitrary (finite or infinite) models; when this coincides with
entailment under finite models only, it is said that finite
controllability [24, 28, 6] holds. Whether sticky sets of TGDs
are finitely controllable is an open problem, which we plan
to solve. Another direction we intend to pursue is finding
a decidable class of TGDs that generalizes both guarded
TGDs and sticky sets of TGDs.
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APPENDIX

A. THE TGD CHASE
The notion of the (derivation) level of an atom in a TGD

chase is defined as follows. Let D be the initial database
from which the chase is constructed. The atoms in D have
zero level. Now, let a TGD ϕ(X,Y) → ∃Zψ(X,Z) be ap-
plied at some point in the construction of the chase, and let
h and h′ be as in the TGD chase rule. If the atom with
highest level among those in h(ϕ(X,Y)) has level k, then
every atom in h′(ψ(X,Z)) has level k + 1.

Let D be a database for a schema R, and let Σ be a set
of TGDs over R. The chase of D relative to Σ, denoted as
chase(D,Σ), is the database built by an iterative applica-
tion of the TGD chase rule as follows. Let I1, . . . , Ik be all
possible images of bodies of TGDs in Σ relative to some ho-
momorphism, and ai be the atom with highest level in Ii; let
M be such that level(aM ) = min16i6k{level(ai)}. Among
the possible applications of TGDs, choose the lexicograph-
ically first among those that utilize a homomorphism from
the body of a TGD to IM . For brevity, the application of
the chase rule with a TGD σ on a database D is called
application of σ on D.

Example A.1. Let R = {r, s}. Consider the set Σ of
TGDs over R constituted by the TGDs

σ1 = r(X,Y ), s(Y )→ ∃Z r(Z,X),
σ2 = r(X,Y )→ s(X).

Let D be the database for R consisting of the two atoms
r(a, b) and s(b). During the construction of chase(D,Σ)
we first apply σ1, and we add the atom r(z1, a), where
z1 is a “fresh” null. Moreover, σ2 is applicable and we
add the atom s(a). Now, σ1 is applicable and the atom
r(z2, z1) is obtained, where z2 is a “fresh” null. Also,
σ2 is applicable and the atom s(z1) is generated. It
is clear that there is no finite chase. Satisfying both
σ1, σ2 would require to construct the infinite instance D ∪
{r(z1, a), s(a), r(z2, z1), s(z1), r(z3, z2), s(z2), . . .}.

The chase of level up to k > 0 for D and Σ, denoted as
chasek(D,Σ), is the set of all atoms in chase(D,Σ) of level

at most k. We denote as chase [k](D,Σ) the initial segment
of the chase for D and Σ obtained by applying k > 0 times
the TGD chase rule.

B. STICKY SETS OF TGDS
In the definition of sticky sets of TGDs, we consider a

variable in the body of a TGD as marked, during the initial
step of the marking procedure, if there exists some atom in
the head in which it does not occur (and not if it does not
exist in the head). This fact is crucial since without it, we
would instead define a class that captures lossless TGDs, i.e.,
TGDs where every variable appearing in the body appears
also in the head, for which query answering is undecidable.

Theorem B.1. BCQ answering under lossless TGDs is
undecidable. The problem remains undecidable even in the
case of atomic BCQs.

Proof. The proof is by reduction from the more general
problem of BCQ evaluation problem under (general) TGDs
which is undecidable. Let R be a relational schema. Con-
sider a database D for R, a set Σ of TGDs over R, and a

BCQ q over R. We construct from Σ a set Σ′ of lossless
TGDs such that Σ and Σ′ are equivalent w.r.t. query an-
swering. For each TGD σ = ϕ(X,Y)→ ∃Zψ(X,Z) ∈ Σ, if
Y is not empty, then replace σ with the TGD ϕ(X,Y) →
∃Zψ(X,Z), rσ(Y), where rσ is an auxiliary predicate sym-
bol of arity m, where m is the number of variables in Y.
It is easy to see that Σ′ is a set of lossless TGDs. Observe
that, except for the atoms with an auxiliary predicate sym-
bol, chase(D,Σ) and chase(D,Σ′) coincide. The auxiliary
predicates, being introduced only during the above construc-
tion, do not match any predicate symbol in q. Therefore,
chase(D,Σ) |= q iff chase(D,Σ′) |= q. The claim follows.

Moreover, according to the definition of sticky sets of
TGDs, it is not allowed to have a marked variable that oc-
curs more than once in the body of a TGD, even if it occurs
only in one atom, i.e., it is not in a join; a variable in the
body of a TGD is in a join, if it occurs more than once, but
not in the same atom. Again this fact is critical since with-
out it, we would instead define a class that captures joinless
TGDs, i.e., TGDs where every variable in their body is not
in a join, for which query answering is undecidable.

Theorem B.2. BCQ answering under joinless TGDs is
undecidable. The problem remains undecidable even in the
case of atomic BCQs.

Proof. The proof is by reduction from the more general
problem of BCQ evaluation problem under (general) TGDs
which is undecidable. Let R be a relational schema. Con-
sider a database D for R, a set Σ of TGDs over R, and
a BCQ q over R. We construct from Σ a set Σ′ of joinless
TGDs such that Σ and Σ′ are equivalent w.r.t. query answer-
ing. For each TGD σ ∈ Σ (that does not have the desired
syntactic property), if {X1, . . . , Xk}, for k > 1, is the set of
all ∀–variables in body(σ) that are in a join, and {Y1, . . . , Yℓ},
for ℓ > 0, is the set of all ∀–variables in body(σ) that are not
in a join, then replace σ with the following TGDs:

body(σ)′ → rσ(X1
1 , . . . , X

n1

1 , . . . , X1
k , . . . , X

nk

k , Y1, . . . , Yℓ),

rσ(X1, . . . , X1
| {z }

n1

, . . . , Xk, . . . , Xk
| {z }

nk

, Y1, . . . , Yℓ)→ head(σ),

where body(σ)′ is obtained from body(σ) by replacing the
j-th occurrence of Xi with Xj

i , rσ is an auxiliary predicate,
and ni is the number of occurrences ofXi in body(σ). For ex-
ample, the TGD σ = r(X,Y, Z, Y ), s(X,Z) → ∃Wp(Y,W ),
will be replaced with the TGDs

r(X1, Y, Z1, Y ), s(X2, Z2) → rσ(X1, X2, Z1, Z2, Y ),

rσ(X,X,Z,Z, Y ) → ∃Wp(Y,W ).

It is easy to see that Σ′ is a set of joinless TGDs. Observe
that, except for the atoms with an auxiliary predicate sym-
bol, chase(D,Σ) and chase(D,Σ′) coincide. The auxiliary
predicates, being introduced only during the above construc-
tion, do not match any predicate symbol in q. Therefore,
chase(D,Σ) |= q iff chase(D,Σ′) |= q. The claim follows.

Theorem B.3. Consider a set Σ of TGDs over a schema
R. Σ is sticky iff for every database D for R, chase(D,Σ)
has the sticky property.

Proof. Suppose first that Σ is sticky. Consider an arbi-
trary database D for R. Let σ ∈ Σ be a TGD such that
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there exists a variable V which occurs in body(σ) more than
once. Note that if there is no such a TGD in Σ, then trivially
chase(D,Σ) has the sticky property. Suppose that during
the construction of chase(D,Σ) the TGD σ is applicable
with homomorphism h, and the atom a is generated. Let A
be the set of atoms

{a} ∪
n

a′ | 〈a, a′〉 is in the transitive closure of
D,Σ
−→

o

.

We need to show that the symbol h(V ) occurs in every atom
b ∈ A. The depth of an atom b ∈ A is defined as the

cardinality of the maximal subset of
D,Σ
−→ of the form

˘
〈a, a1〉, 〈a1, a2〉, . . . , 〈an−2, an−1〉, 〈an−1, b〉

¯
,

where n > 1; the depth of a is zero. We denote as Ad, for
d > 0, the subset of A that contains the atoms up to depth
d. The proof is by induction on d. Base Step. Clearly, in
A0 we have only the atom a. The symbol h(V ) occurs nec-
essarily in a, otherwise the variable V in body(σ) is marked
which is a contradiction since Σ is sticky. Inductive Step.
Suppose that the symbol h(V ) occurs in every atom of the
set A0∪ . . .∪Ad−1. We are going to show that occurs also in
every atom of Ad. Consider an arbitrary atom b ∈ Ad, ob-
tained by applying some TGD σ′ ∈ Σ with homomorphism
h′. Suppose that h(V ) does not occur in b. This implies,
by induction hypothesis, that there exists a variable W in
body(σ′) such that h(V ) = h′(W ), but W does not occur
in head(σ′). Thus, the variable W in body(σ′) is marked.
Hence, the variable V in body(σ) is also marked, which is
a contradiction since Σ is sticky. We conclude that h(V )
occurs also in b.

Conversely, suppose that Σ is not sticky. We need to show
that there exists a database D for R such that chase(D,Σ)
has not the sticky property. Clearly, since Σ is not sticky,
there exists a TGD σ ∈ Σ such that a variable V occurs in
body(σ) more than once, but V does not occur in head(σ).
Now, consider a database D for R such that there exists a
homomorphism h from body(σ) to D, and for any other vari-
able W in body(σ) it holds that h(V ) 6= h(W ). Therefore,
during the construction of chase(D,Σ), the TGD σ is ap-
plicable with homomorphism h, and the atom a is obtained.
Observe that the symbol h(V ) does not occur in a. This
implies that chase(D,Σ) does not have the sticky property.
The proof is now complete.

Theorem B.4. The lossless datalog fact inference prob-
lem is exptime-hard.

Proof. The proof is by reduction from the more general
problem of datalog fact inference. We recall that this prob-
lem is exptime-complete, even if we restrict our attention on
databases over the domain {0, 1} (see, e.g., [19]). Consider
an instance 〈R, D,P, a〉 of the datalog fact inference prob-
lem, where D is a database for R, P is a datalog program
over R, and a is a ground atom. Let dom(D) = {0, 1}. We
construct an instance 〈R⋆, D⋆,P⋆, a⋆〉 of the lossless datalog
fact inference problem as follows.

– For each predicate r/m ∈ R, we add in R⋆ a predicate
r⋆ of arity m + n + 2, where n > 1 is the maximum
number of variables in the body of any rule in P.

– D⋆ = {r⋆(c1, . . . , ck,0, 0, 1) | r(c1, . . . , ck) ∈ D}, where
0 = {0}n (sequence of n zeros).

– For each rule σ = r(X) ← r1(X1), . . . , rm(Xm) in P
we add in P⋆ the rule

r⋆(X, Y1, . . . , Yn, Z0, Z1) ← r⋆
1(X1,Z0, Z0, Z1), . . . ,

r⋆
m(Xm,Z0, Z0, Z1),

where Z0 = {Z0}
n, and if {V1, . . . , Vℓ}, for 1 6 ℓ 6 n,

is the set of variables in the body of σ (the order is
not relevant), then Yi = Vi, for each i ∈ {1, . . . , ℓ}, and
Yj = V1, for each j ∈ {ℓ + 1, . . . , n}. Intuitively, by
adding σ⋆ we actually convert the rule σ to a lossless
datalog rule. Note that the variable Z0 (resp., Z1) is
a placeholder for the value 0 (resp., 1). Clearly, each
atom generated during the inference process due to σ⋆

can be of the form r⋆(c1, . . . , ck,B, 0, 1), where B ∈
{0, 1}n. In case that B 6= 0, then we need to ensure
that the atom r⋆(c1, . . . , ck,0, 0, 1) will be generated.
This can be achieved by adding the following rules. For
each predicate r⋆ ∈ R⋆, if m is the arity of r ∈ R, then,
for each i ∈ {1, . . . , n}, we add in P⋆ the rule

r⋆(X1, . . . , Xm, Y1, . . . , Yi−1, Z0, Yi+1, . . . , Yn, Z0, Z1)←

r⋆(X1, . . . , Xm, Y1, . . . , Yi−1, Z1, Yi+1, . . . , Yn, Z0, Z1).

– If a = r(c1, . . . , ck), then a⋆ = r⋆(c1, . . . , ck,0, 0, 1).

It is straightforward to see that P⋆ is indeed a lossless dat-
alog program. Furthermore, it is clear that the above trans-
formation can be done in polynomial time. In what fol-
lows we show that for any ground atom b = r(c1, . . . , ck),
D∪P |= b iffD⋆∪P⋆ |= b⋆, or, equivalently, chase(D,P) |= b
iff chase(D⋆,P⋆) |= b⋆, where b⋆ = r⋆(c1, . . . , ck,0, 0, 1).

Suppose first that chase(D,P) |= b. We are going
to show that chase(D⋆,P⋆) |= b⋆. We proceed by in-
duction on the number of applications of the TGD chase
rule during the construction of chase(D,P). Base Step.

Clearly, since chase [0](D,P) = D, the claim follows im-
mediately by construction. Inductive Step. Suppose that
chase [i](D,P) |= b. If b ∈ chase [i−1](D,P), then the claim
follows by induction hypothesis. Now, suppose that b is
the atom generated during the i-th application of the TGD
chase rule due to the TGD σ = r1(X1), . . . , rm(Xm) →
r(X). This implies that there exists a homomorphism h

such that h(body(σ)) ⊆ chase [i](D,P), and h(head(σ)) =
b. Since the set of ground atoms {rj(h(Xj))}16j6m

is a subset of chase [i−1](D,P), by induction hypothesis,
the set of atoms {r⋆

j (h(Xj),0, 0, 1)}16j6m is a subset of
chase(D⋆,P⋆). Moreover, by construction, the TGD σ⋆

r⋆
1(X1,Z0, Z0, Z1), . . . ,

r⋆
m(Xm,Z0, Z0, Z1) → r⋆(X, Y1, . . . , Yn, Z0, Z1)

is in P⋆. Let h⋆ = h ∪ {Z0 → 0, Z1 → 1}. Observe that
h⋆(body(σ⋆)) = {r⋆

j (h(Xj),0, 0, 1)}16j6m ⊆ chase(D⋆,P⋆),
and thus h⋆(head(σ⋆)) = r⋆(h(X), h(Y1), . . . , h(Yn), 0, 1) ∈
chase(D⋆,P⋆). If h(Yj) = 0, for each j ∈ {1, . . . , n}, then
b⋆ ∈ chase(D⋆,P⋆), as needed. Now, suppose that there
exists j ∈ {1, . . . , n} such that h(Yj) = 1. By construction,
if m is the arity of r ∈ R, then the TGD

r⋆(X1, . . . , Xm, Y1, . . . , Yj−1, Z1, Yj+1, . . . , Yn, Z0, Z1) →

r⋆(X1, . . . , Xm, Y1, . . . , Yj−1, Z0, Yj+1, . . . , Yn, Z0, Z1)

is in P⋆. Hence, the atom

r⋆(h(X), h(Y1), . . . , h(Yj−1), 0, h(Yj+1), . . . , h(Yn), 0, 1)
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occurs in chase(D⋆,P⋆). It is straightforward to see that
eventually the atom b⋆ = r⋆(h(X),0, 0, 1) is generated, and
the claim follows.

Conversely, assume that chase(D⋆,P⋆) |= b⋆. We are
going to show that chase(D,P) |= b. The proof is by in-
duction on the number of applications of the TGD chase
rule during the construction of chase(D⋆,P⋆). Base Step.

Clearly, since chase [0](D⋆,P⋆) = D⋆, the claim follows im-
mediately by construction. Inductive Step. Suppose that
chase [i](D⋆,P⋆) |= b⋆. If b⋆ ∈ chase [i−1](D⋆,P⋆), then the
claim follows by induction hypothesis. Now, assume that
b⋆ is the atom generated during the i-th application of the
TGD chase rule. There exists an atom c ∈ chase [i](D⋆,P⋆)
of the form r⋆(c1, . . . , ck,B, 0, 1) obtained due to a TGD σ⋆

of the form

r⋆
1(X1,Z0, Z0, Z1), . . . ,

r⋆
m(Xm,Z0, Z0, Z1) → r⋆(X, Y1, . . . , Yn, Z0, Z1),

such that either c = b⋆ or the set of pairs
˘
〈c, c1〉, 〈c1, c2〉, . . . , 〈cj−2, cj−1〉, 〈cj−1, b

⋆〉
¯

is a subset of
D,Σ
−→, and each pair occurs in

D,Σ
−→ due to a TGD

of the form

r⋆(X1, . . . , Xk, Y1, . . . , Yj−1, Z1, Yj+1, . . . , Yn, Z0, Z1) →

r⋆(X1, . . . , Xk, Y1, . . . , Yj−1, Z0, Yj+1, . . . , Yn, Z0, Z1),

for some j ∈ {1, . . . , n}. This implies that there exists a ho-

momorphism h such that h(body(σ⋆)) ⊆ chase [i−1](D⋆,P⋆),
and h(head(σ⋆)) = c. Since the set of ground atoms

{r⋆
j (h(Xj),0, 0, 1)}16j6m is a subset of chase [i−1](D⋆,P⋆),

by induction hypothesis, the set of atoms {rj(h(Xj))}16j6m

is a subset of chase(D,P). Furthermore, by construction,
the TGD σ = r1(X1), . . . , rm(Xm) → r(X) occurs in P.
Clearly, h(body(σ)) = {rj(h(Xj))}16j6m ⊆ chase(D,P).
Since chase(D,P) satisfies all the TGDs in P, it follows
that the atom h(head(σ)) = r(h(X)) = b ∈ chase(D,P), as
needed. The proof is now complete.

Algorithm QAns. QAns has as input a BCQ q over a
schema R, a database D for R, a sticky set Σ of TGDs over
R, and outputs “Accept” iff D ∪ Σ |= q, or, equivalently,
chase(D,Σ) |= q. The algorithm works as follows:

1. Non-deterministically guess a substitution µ : S1 →
S2 ∪ dom(D), where S1 ⊆ var(q) and S2 ⊂ var(q) are
disjoint sets. Let S = var(q) \ S1. Roughly, the al-
gorithm guesses which of the variables in the body of
q, during the evaluation of q over the chase(D,Σ), are
mapped onto a constant of dom(D), and which con-
stant, and also which of these variables are mapped
onto the same null.

2. For each variable V ∈ S, QAns non-deterministically
guesses an atom aV . Let G = {〈V, aV 〉}V ∈S . Intu-
itively, QAns guesses, for each variable V ∈ S, an atom
aV (possibly containing constant values) that repre-
sents the atom in which zV is invented during the chase,
where zV is the null onto which V is mapped.

3. Halt and “Accept” iff Check(q,D,Σ, µ, S,G) accepts.

Check. Intuitively, the subroutine Check verifies, for each
variable V in the body of q that is mapped onto some null
during the evaluation of q over the chase(D,Σ), that each
occurrence of V is mapped onto the same null.

1. If µ(body(q)) ⊆ D, then halt and output “Accept”;
otherwise, universally select all atoms a in h(body(q))
that do not occur in D.

2. Let Ga = {〈V, aV 〉 | V ∈ dom(a)} ⊆ G.
3. Existentially guess a TGD σ ∈ Σ such that there exists

a homomorphism h from the head of σ to a. We replace
with “⋆” the variables that occur in the body of σ but
not in the head. Note that each of these variables occur
only once in body(σ), since Σ is sticky.

4. If at some position π in a some variable V occurs, and
at the same position π in head(σ) we have an ∃–variable
then, if aV can be obtained from a by replacing “⋆” (if
any) with other terms, then halt and output “Accept”;
otherwise, halt and output “Reject”.

5. If h(σ), after replacing “⋆” with constants, is a subset
of D, then halts and “Accept”; otherwise, universally
select all atoms a in h(σ) from which we cannot obtain
an atom in D by substituting “⋆” with constants, and
goto step (2).

C. ADDING EGDS
FD Chase Rule: Consider a database D for a schema R,

and a FD φ of the form r : A→ B over R. If φ is applicable
to D, i.e., there exist two (distinct) tuples t1, t2 ∈ r(D)
such that t1[A] = t2[A] and t1[B] 6= t2[B], then for each
attribute i ∈ B such that t1[i] 6= t2[i]: (i) if t1[i] and t2[i]
are both constants of Γ, then there is a hard violation of
φ and the chase fails, (ii) replace each occurrence of t2[i]
with t1[i], if t1[i] precedes t2[i] in the lexicographic order,
or vice-versa otherwise.

In Section 4, for technical reasons, we make use of the re-
stricted TGD chase rule. The difference between the obliv-
ious and the restricted TGD chase rules is that the latter
introduces a new atom only when the TGD is not satisfied.
Formally, given a database D for a schema R, and a TGD
σ = ϕ(X,Y) → ∃Z r(X,Z) over R, σ is applicable to D iff
there exists a homomorphism h such that h(ϕ(X,Y)) ⊆ D,
and there is no extension h′ of h such that h′(r(X,Z)) ∈ D.
Note that, under TGDs, both the restricted and the oblivi-
ous chase are universal models [9].

Example C.1. Let R be the schema given in Example 2,
and ΣT be the set of TGDs overR constituted by the TGDs:

σ1 = runs(W,X), in area(X,Y )→ ∃Z emp(Z,W, Y,X),
σ2 = emp(V,W,X, Y )→ ∃Z dept(W,Z).

The fact that each department has a unique id can be ex-
pressed by the FD:

φ = dept : {1} → {2}.

Let D be the database for R consisting of the atoms
runs(d, p), in area(p, a) and dept(d,m). Observe that dur-
ing the first application of the TGD chase rule we get the
atom emp(z1, d, a, p), where z1 ∈ Γf . Then, σ2 is applicable
and we get the atom dept(d, z2), where z2 ∈ Γf . Now, ob-
serve that the FD φ is applicable. Therefore, we substitute
z2 with m, and the atom dept(d, z2) is eliminated.

Theorem C.1. Let R be a relational schema. Consider
a set Σ = ΣT ∪ ΣF over R, where ΣT and ΣF are sets of
TGDs and FDs, respectively. If Σ is non-conflicting, then it
is separable.
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Proof. Let D be a database for R such that D satisfies
ΣF , otherwise the claim holds trivially. We need to show
that (i) chase(D,Σ) does not fail, and (ii) for every BCQ q
over R, chase(D,Σ) |= q iff chase(D,ΣT ) |= q. To establish
the latter statement it suffices to show that chase(D,Σ) and
chase(D,ΣT ) are homomorphically equivalent, i.e., there ex-
ists a homomorphism from chase(D,Σ) to chase(D,ΣT ),
and vice-versa. The existence of a homomorphism from
chase(D,ΣT ) to chase(D,Σ) is trivial. It remains to show
that chase(D,Σ) does not fail, and also that there exists a
homomorphism from chase(D,Σ) to chase(D,ΣT ).

The proof is by induction on the number of applications
of the chase rule in the construction of chase(D,Σ), i.e., a
single application of a TGD, and then exhaustively applying
FDs. We need to prove that for each i > 0, chase [i](D,Σ)
does not fail, and there exists a homomorphism hi such that
hi(chase

[i](D,Σ)) ⊆ chase(D,ΣT ). Base Step. Since D sat-

isfies ΣF we get that chase [0](D,Σ) does not fail. Moreover,
since D ⊆ chase(D,ΣT ) there exists trivially a homomor-

phism h0 that maps chase [0](D,Σ) to chase(D,ΣT ); in fact,
h0 is the identity homomorphism. Inductive Step. Suppose
that during the i-th application of the chase rule we apply
the TGD σ = ϕ(X,Y) → ∃Z r(X,Z). This implies that
there exists a homomorphism λ that maps ϕ(X,Y) to a set

of atoms of chase [i−1](D,Σ), and the atom a = λ′(r(X,Z))
is obtained, where λ′ is an extension of λ as in the TGD
chase rule. Before we proceed further, we establish the fol-
lowing auxiliary lemma.

Lemma C.2. There is no FD in ΣF that is applicable to
chase [i−1](D,Σ) ∪ {a}.

Proof. Consider an arbitrary FD φ ∈ ΣF of the form
r : A → B. Suppose that a = r(t). It suffices to show

that there is no tuple t′ ∈ r(chase [i−1](D,Σ)) such that
t[A] 6= t′[A]. According to the Definition 4, we identity the
following four cases:

• Uσ = A. Suppose, in the sake of contradiction, that
t[A] = t′[A]. Since each existentially quantified vari-
able in σ occurs just once, it follows that σ is not appli-
cable with homomorphism λ which is a contradiction
(recall that we consider the restricted chase). There-
fore, t[A] 6= t′[A].

• Uσ ⊂ A. Clearly, A \Uσ 6= ∅. This implies that t[A]
contains nulls introduced during the i-th application of
the chase rule, and thus t[A] 6= t′[A].

• Uσ ∩A 6= ∅ with Uσ \A. Necessarily A \Uσ 6= ∅,
otherwise Uσ is a strict superset of A which is not
allowed by Definition 4. Hence, t[A] 6= t′[A].

• Uσ ∩A = ∅. Obviously, A \Uσ 6= ∅, and thus t[A] 6=
t′[A].

The claim follows.

By Lemma C.2 we immediately get that chase [i](D,Σ) =

chase [i−1](D,Σ) ∪ {a}; thus, chase [i](D,Σ) does not fail.
There exists a homomorphism µ = hi−1 ◦ λ that maps
ϕ(X,Y) to chase(D,ΣT ). Since chase(D,ΣT ) satisfies ΣT

it follows that there exists µ′ ⊇ µ that maps µ′(r(X,Z)) to
a set of atoms of chase(D,ΣT ). Denoting Z = Z1, . . . , Zm,
we define the substitution

hi = hi−1 ∪ {λ
′(Zi)→ µ′(Zi)}16i6m.

Obviously hi is a well-defined substitution. Observe that
hi(a) = hi(λ

′(r(X,Z))) = r(hi−1(λ(X)), hi(λ
′(Z))) =

r(µ(X), µ′(Z)) = µ′(r(X,Z)) ∈ chase(D,ΣT ). Therefore,

hi(chase
[i](D,Σ)) ⊆ chase(D,ΣT ), as needed.

Eventually the desired homomorphism from chase(D,Σ)
to chase(D,ΣT ) is h =

S∞
i=0 hi.

D. WEAKLY-STICKY SETS OF TGDS
In this final section we give the definition of a class, called

weakly-sticky sets of TGDs, that generalizes both sticky sets
and weakly-acyclic sets of TGDs [21, 22], for which conjunc-
tive query answering is decidable.

We first recall the notion of the dependency graph, as
defined by Fagin et al. [22]. Given a set Σ of TGDs over a
schema R, the dependency graph of Σ is the directed graph
constructed as follows. There exists a node for each position
r[i] in R, where r/n ∈ R and i ∈ {1, . . . , n}. For each
TGD σ ∈ Σ, for each ∀–variable V in head(σ), and for
each occurrence of V in body(σ) at position r[i], apply the
following two steps:

1. For each occurrence of V in head(σ) at position s[j],
add an arc from r[i] to s[j] (if it does not already exist).

2. For each ∃–variable W , and for each occurrence of W
in head(σ) at position t[k], add a special arc from r[i]
to t[k] (if it does not already exist).

The rank of a position r[i] is the maximum number of special
arcs over all (finite or infinite) paths ending at r[i]. The set
of positions in R can be partitioned into two sets ΠF (R,Σ)
and Π∞(R,Σ), where ΠF (R,Σ) (resp., Π∞(R,Σ)) is the
set of positions with finite (resp., infinite) rank. Intuitively,
ΠF (R,Σ) (resp., Π∞(R,Σ)) is the set of position where a
finite (resp., infinite) number of nulls can appear. We are
now ready to define our extended version of sticky sets of
TGDs.

Definition D.1. Consider a set Σ of TGDs over a schema
R. We say that Σ is weakly-sticky iff for each σ ∈ Σ and
for each variable V that occurs more than once in body(σ),
at least one of the following conditions holds: (i) V is a
non-marked variable2, or (ii) at least one occurrence of V
in body(σ) occurs at some position in ΠF (R,Σ).

Recall that a set Σ of TGDs over a schema R is weakly-
acyclic iff all positions of R are in ΠF (R,Σ). This immedi-
ately implies that every weakly-acyclic set of TGDs is also
weakly-sticky.

Theorem D.1. BCQ answering under weakly-sticky sets
of TGDs is decidable.

For complexity results on conjunctive query answering un-
der this extended class we refer the reader to [11].

2Marked variables are defined as in the Definition 1.
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