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ABSTRACT Polarimetry is typically restricted to far-field characterization of a target using beam-like

waves, which results in a 2 x 2 scattering matrix representation under two orthogonal in-plane polarization

bases. However, a short-range (or radiative near-field) microwave polarimetric approach can recover a 3 x 3

polarimetric matrix representing a full vector polarimetric response of the imaged object. The computational

imaging method retrieves this full polarimetric response by utilizing an ensemble of randomly polarized

probing fields from a cavity-backed metasurface antenna as the enabling technology. In this paper, we

describe the polarization states of the non-planar vector sensing fields with three-dimensional (3D) Jones

vectors and examine the polarization diversity with the polarization ellipses in 3D space. Corresponding 3D

polarimetric target parameters are derived from the 3D polarimetric matrix and the diagonalization process

of this matrix. The generalized 3D target parameters disclose direct details of the imaged object which

are otherwise inaccessible to the conventional 2 x 2 polarimetric scattering matrix description, especially

the polarimetric features along the range direction. The target parameters reconstructed in experiments

validate the effectiveness of our 3D polarimetric near-field imaging framework and the parameterization.

The advanced processing and parameterization of 3D polarimetry indicate great potential applications in

many short-range microwave imaging scenarios.

INDEX TERMS Microwave Polarimetry; Computational Imaging; Radiative Near Field; Electromagnetic

Metasurface

I. INTRODUCTION

P
OLARIMETRIC microwave imaging exploits the vector

nature of electromagnetic waves to measure scattering

responses of a target using different polarization combi-

nations of the transmitter and the receiver. Many aspects,

including geometrical and electrical characteristics of scat-

terers and the observation geometry, can contribute to the

complicated local scattering response of the target [1], [2].

With interpretation of the polarimetric response by separat-

ing these aspects, polarimetric imaging has shown to un-

veil more characteristics of the target-wave interaction than

purely scalar microwave imaging [3], [4]. In conventional

microwave polarimetry, the polarimetric signature of the

target can be represented by a 2×2 scattering matrix, which is

commonly measured by four combinations of two orthogonal

polarization states of the transmitting and receiving anten-

nas. For more general scenario, a covariance matrix or a

Mueller matrix is used to describe the spatially averaged

polarimetric responses of distributed targets in multi-looked

imaging [5], [6]. Due to the complexity of local polarimetric

scattering mechanism, it is challenging to interpret the com-

plex scattering matrix or other formats of scattering matrices

intuitively. Polarimetric target decomposition methods, first

formalized by Huynen [7], aim at extracting physical target
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parameters from the polarimetric scattering matrices [8].

Common polarimetric target decomposition methods include

model-based decomposition, such as Freeman-Durden three-

component decomposition [9], and eigendecomposition anal-

ysis, such as Cloude decomposition [10]. With the advent of

these target decomposition methods, microwave polarimetry,

e.g., polarimetric synthetic aperture radar (PolSAR), has

demonstrated a plethora of applications in remote sensing,

agriculture and geoscience, including terrain and land-use

classification [11]–[13], soil moisture assessment [14], [15],

and ocean surface observation [16], [17]. Despite plenty of

applications, polarimetry imaging is restricted to character-

izing the scene with only the cross-range components in the

far-field of the antenna. This limitation drives the research

interest of implementing three-dimensional(3D) full vector

polarimetry imaging, where a nontrivial target response along

with the range direction, can be retrieved. This 3D polarime-

try requires new description for the polarization states of

waves and the corresponding polarimetric scattering response

of the target other than the established methodology for

conventional far-field polarimetry. In the optical range, some

theoretical analyses and experimental demonstrations, e.g.

in a reverberating chamber, have been made to extend the

polarization description to non-planar waves [18]–[21]. Here,

we use 3D Jones vector description of the sensing fields

along with a 3 × 3 susceptibility tensor of the target for the

microwave polarimetric imaging. 3D polarimetry depends

on the sensing fields with all three vector components of

the field. In our preliminary study [22], we exploit the

non-planar nature of radiative near field of a cavity-backed

antenna along with the computational imaging concept to

achieve 3D polarimetric imaging with significant simplifi-

cation of the hardware. Computational imaging leverages

optimization algorithms for inverse problems and advancing

computation resources to transform the imaging system con-

figuration and the process of interrogating the scene [23]–

[27]. This technique aims to circumvent some limitations

faced by conventional imaging methods, for example, large

spatial-bandwidth-product(SBP) imaging [28], [29] which

achieves high resolution and wide field simultaneously, or

to noticeably simplify the system hardware requirement with

drastically reduced cost, e.g., single-pixel imaging [30]–

[32]. Computational imaging paradigm typically encodes the

signal of interest into a series of indirect measurements, often

in compressive sensing fashion, and reconstructs the scene

by solving an optimization problem. In our system, we use

an ensemble of random sensing fields with frequency, spa-

tial and polarization diversity to multiplex 3D polarimetric

responses of an imaging domain into one single complex

measurement at each frequency point over some bandwidth.

To generate the random probing field set for the 3D

computational polarimetric imaging purpose, we utilize a

cavity-backed metasurface aperture antenna. Metasurface an-

tenna possesses large degrees of freedom in engineering its

scattering property and has recently shown great fulfillment

of demands for novel computational imaging systems [33]–

[36]. Specifically, the cavity-backed metasurface aperture in

our study has been demonstrated to radiate a series of pseudo-

orthogonal electromagnetic field patterns indexed by the

driving frequency and these patterns have sufficient spatial

and frequency diversity to probe the target scene [37]. This

characteristic of the metasurface aperture has further been

exploited to reconstruct the reflectivity contrast and phase of

the target space phase using intensity-only measurements in

the microwave range [38], [39]. For the aim of polarimetric

imaging, we show that the field patterns radiated by this

metasurface aperture possess polarization diversity which

paves the way for the compressive 3D polarimetric imaging

application.

In this paper, we first revisit the architecture of compu-

tational microwave polarimetric imaging proposed in our

preliminary work [22], [40]. It is demonstrated that our

system has the ability to retrieve spatially-resolved three-

dimensional polarimetric scattering matrices with huge sim-

plification on the hardware. In our system, the active com-

ponents necessary to reconfigure the fields interrogating the

domain to be imaged are eliminated. Another simplification

is that a single transmit-receive chain is used for this demon-

stration. It should also be noted that analogous work oriented

towards the detection of non-cooperative thermal sources has

allowed the reconstruction of different 2D polarization states

with a cavity-backed metasurface [41]. Built on our previous

work [22], [40], this paper enunciates the further physical

interpretation of this 3D scattering matrix by proposing

different eigendecomposition analysis compared with [22]

and deriving multiple parameters which are directly related

to local geometric and scattering features of the target. We

characterize the 3D polarization state using the 3D Jones

vector and corresponding polarization ellipses to demon-

strate the underlying polarization diversity of the sensing

fields. Characteristic target parameters for 3D polarimetry

are developed to extract local orientation of the target in

3D space and its polarimetric scattering properties in the

near-field. This target parameterization process enables the

physical interpretation of the 3×3 complex scattering matrix

with a series of quantitative scalar parameters in an anal-

ogy to the Huynen’s decomposition in far-field polarimetry.

These parameters describe the target’s responses to not only

different polarization states as in 2D polarimetry but also

various local propagation directions of the wave. This 3D

polarimetry technique and 3D target parameterization yield

rich polarimetric information that can be used to enhance the

contrast in the scene or obtain target features along the range

direction. These pieces of information are useful in short-

range imaging application scenarios, for example, concealed

threat detection and classification [42]. This framework can

be further translated to other application scenarios at different

electromagnetic wave frequency ranges, for instance, near-

field scanning optical microscopy where the electric field is

in nature three-dimensional [18].
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II. THREE-DIMENSIONAL POLARIZATION STATE

DESCRIPTION OF RANDOM FIELDS

In this section, our computational 3D polarimetric imaging

system initially introduced in [22] is first revisited for the

completion of this paper. We then elucidate the theory of the

three-dimensional Jones vector and the polarization ellipse in

3D space which effectively characterizes the fully-polarized

random fields. Based on these concepts, we demonstrate

with 3D polarization ellipses the polarization diversity of the

spatially-varying but fully-polarized random fields generated

by a cavity-backed metasurface aperture antenna.

The cavity-backed metasurface aperture antenna employed

is illustrated in Fig.1(a). It consists of a 28.5cm(W ) ×
28.5cm(L) × 15.2cm(H) high quality-factor (Q = 12000)
air-filled metallic cavity which supports several thousands

of diverse modes switched by the feeding frequency [35].

Randomized holes on the front surface of the cavity over an

area of 15cm×15cm couple out cavity modes to an ensemble

of radiation patterns indexed by the feeding frequency. Two

coaxial cables connect the rear surface with a vector network

analyzer (VNA) which takes coherent measurements g(f) at

4001 evenly-spaced discrete frequency points f in K band

(17.5 − 26.5GHz). This metasurface antenna radiates effec-

tively as a collection of in-plane magnetic polarizable dipoles

my,mz [22]. These magnetic dipoles are characterized in

the experiment by equivalently measuring the fields over the

antenna aperture in its near field with an open-end waveguide

antenna using a planar near-field scanner(NSI 200V). The

measurements of Ey, Ez at two subsequent frequency points

are shown in Fig.1(c). With a small frequency shift of 2MHz,

the field patterns show a substantial difference. The three-

dimensional incident fields and the receiving fields,which by

reciprocity is identical to the radiated fields from the exci-

tation of the port 2, in any domain of interest are known by

computationally propagating the equivalent in-plane dipoles

to the target space using dyadic Green’s function [43]–[45].

With ŷ, ẑ components of magnetic dipoles, the radiation

fields are of three dimensions in the radiative near field. [22].

This 3D polarimetry imaging system, depicted in Fig.1,

provides non-planar sensing fields radiated from the ran-

domized cavity surface. Since the radiation field of this

aperture antenna has nontrivial components of Ex, Ey, Ez

due to near-field operation, we have proposed, in the pre-

liminary study, to use the electric susceptibility tensor χ

to characterize the local scattering process in the radiative

near field. Assuming first Born approximation [43], [46],

the computational polarimetric imaging forward model with

the full-vector random fields and the susceptibility tensor

description of the target is expressed as, at each frequency

f ,

g(f) =

∫

V

ET
r (r)χ(r)Et(r)dr (1)

where Er = [Ex,r, Ey,r, Ez,r]
T and Et = [Ex,t, Ey,t, Ez,t]

T

are the vector electric fields generated from exciting the

receiving port or the transmitting port respectively, χ denotes

FIGURE 1: (a)Front and rear image of the cavity-backed

metasurface aperture antenna.(b)Cavity-backed metasurface

aperture and computational polarimetric imaging setup. Red

and blue ellipses demonstrate different polarization states

for the transmitting and receiving ends. (c)Near field scan

results with port 1 for dual-polarization at two neighboring

frequency points.

the target electric susceptibility tensor and r is the location

in the scene. The susceptibility tensor χ(r), in the Cartesian

coordinates, can be expressed in the matrix format as,

χ(r) =





χxx χxy χxz

χyx χyy χyz

χzx χzy χzz



 . (2)

If the propagation medium is reciprocal (not valid for ferro-

magnetic object), the reciprocity theorem ensures the sym-

metry of the matrix χ, or χxy = χyx, χxz = χzx and

χyz = χzy . The 3D polarimetric response of the whole target

scene is multiplexed by the vector field patterns (Et,Er)
into one single complex measurement at single frequency.

With a simple frequency sweep of m points, we can obtain

the compressive measurements in the format of m complex

numbers g(fi), i = 1, 2, ...,m. To recover the spatially

resolved polarimetric response χ(r) requires the knowl-

edge of the spatially varying illumination and sensing fields

Er(r),Et(r) for all the frequency points. In our system,

these fields are numerically calculated by propagating the

experimentally measured near fields (shown in Fig.1) to the

domain of interest by using dyadic Green’s function of free

space. By forming a measurement vector g = [g1, ..., gm]T

and discretizing the target space into voxels r = [r1, ..., rn]
T ,

the integral in Eq.(1) can be replaced by matrix multiplication

VOLUME 4, 2016 3
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as

g =
∑

i=x,y,z

∑

j=x,y,z

Hijχij = Hχ (3)

where Hij is the m × n sub-block of sensing matrix

formed by the product of i component of the transmitting

field component and j component of the receiving field,

i.e. Hij = [Ei,t(ν, r) ◦ Ej,r(ν, r)], for i, j = x, y, z.

Rows and columns of Hij correspond to frequency points

(measurements) and discrete voxels receptively. H is the

m×(n×9) complete sensing matrix formed by concatenating

the sub-block sensing matrices as [Hxx,Hxy, ...,Hzz]. And

χij is the n × 1 vectorized χij of all voxels in the scene

and χ is the combined (9 × N) × 1 vector of χij with

[χT
xx,χ

T
xy, ...,χ

T
zz]

T . From Eq.(3), the nine sub-block sens-

ing matrices Hij interrogate the corresponding polarimetric

scattering terms χij and coherently sum to the complex

measurement. The polarimetric responses are reconstructed

by solving a least-squares problem posed as

χ̂(r) = argmin
χ

‖g −Hχ‖2 (4)

As examined in [22], the radiation fields from this meta-

surface antenna has low spatial correlation and pseudo-

orthogonality over the nine sub-block sensing matrices. The

correlation matrix is defined as

X(m,n, p, q) = H†
mnHpq = [

〈

E∗
m,tE

∗
n,rEp,tEq,r

〉

ν
],

for m,n, p, q = x, y, z
(5)

where
〈

·
〉

f
denotes the ensemble average over the frequency

points,i.e. different coherent measurements. For (m,n) =
(p, q) cases, the diagonal X represents the spatial diver-

sity of fields of different frequency at different voxels. For

(m,n) 6= (p, q) cases, the randomness and low magnitude of

X represents the polarization diversity of different frequency

which ascertain low cross-talk among different polarimetric

channels.

In our previous work [22], [40], the vector field is de-

scribed in one Cartesian reference frame with Ex, Ey, Ez

components. Since the wave in the near field is locally propa-

gating in different directions, using Cartesian coordinates can

not intuitively indicate the local polarization state. To better

examine polarization states of the sensing fields in the radia-

tive near field, we utilize 3D Jones vector and 3D polarization

ellipse [47]. Jones vectors describe fully polarized state of

paraxial fields where the local electric field vectors lie in a

common transverse plane perpendicular to the propagation

direction [5]. A Jones vector which can describe any fully

polarized state consists of two in-plane complex amplitudes

[Exe
jδx , Eye

jδy ]T along two orthogonal axes. It corresponds

to a polarization ellipse on the transverse plane given by

points of (Re{Exe
jδxe−jωt}, Re{Eye

jδye−jωt}) with t as the

time. This ellipse illustrates the trajectory of the end-point on

the electric vector rotating with time. While Jones vectors,

or Stokes parameters, are originally limited to polarization

states of 2D fields, many literature have derived the gen-

eralization for 3D non-paraxial case with the purpose of

characterizing near field [47]–[51]. Without common prop-

agation direction, the polarization state of random near field

can be properly described by a 3 × 3 polarization coherence

matrix. This matrix is generated by the second-order cross-

spectral density of random fields at any point r [48]. The

nine elements in the coherency matrix W 3×3 are

Wij(r, ω) = 〈E∗
i (r, ω)Ej(r, ω)〉 (6)

where i and j denotes the index for Cartesian coordinates and

〈·〉 is the ensemble average over all the realizations of the

random fields. This 3 × 3 matrix is positive semi-definite

Hermitian matrix which has three non-negative eigenvalues

λ1, λ2, λ3 and three corresponding orthogonal eigenvectors

u1,u2,u3. The unit-norm complex eigenvector ut can be

in general form expressed as [a1e
jδ1 , a2e

jδ2 , a3e
jδ3 ]T . This

represents, in reality, a unit 3D Jones vector. The general 3D

Jones vector is expressed as

E = [Exe
jδx , Eye

jδy , Eze
jδz ]T (7)

which has five real parameters excluding a common phase. It

has been shown that this complex vector given by (7) with

e−jωt term corresponds to an ellipse lying on an arbitrary

plane in 3D space [48], as depicted in Fig.2(a). The local

propagation direction is perpendicular to the plane that the

polarization ellipse resides in. With the physical meaning of

the eigenvectors, the coherence matrix can be decomposed

into incoherent sum of three polarization states given by ut:

W 3×3 =
3

∑

t=1

λtut ⊗ u
†
t (8)

where ⊗ is the outer product and † is conjugate transpose.

The necessary and sufficient condition for the field to be fully

polarized is that λ2 = λ3 = 0, equivalently rank(W ) = 1.

Therefore, 3D Jones vectors alone are able to represent the

3D fully polarized state.

For the following study, the sensing field radiated by

the cavity-backed aperture antenna is considered as fully

polarized everywhere within the imaging domain. Therefore,

the 3D polarization state is represented by 3D Jones vector

and the polarization ellipse included above. Figure 2(b)(c)

illustrate the polarization ellipses of the transmitting(Tx) and

receiving(Rx) sensing fields over a 0.2m × 0.2m 2D plane

at x = 0.3m from the front surface of the antenna. The

polarization ellipses for four neighboring frequency points

are illustrated against the gray-scale as the magnitude of the

sensing fields. It demonstrates the diverse polarization states

(different orientation of the major axes and different local

propagation directions) over the target scene. Each voxel

in the scene experiences a series of different combinations

of polarization states on the Tx and Rx ends, as depicted

in Fig.2(a). The red and blue ellipses are the Tx and Rx

sensing field polarization at five subsequent frequency points.

This imaging system is retrieving the full 3D polarimetric

4 VOLUME 4, 2016
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response by measuring and receiving with a large number

(frequency points) of different in-plane polarization states

and different local propagation directions. It should be noted

that these ellipses correspond to electric fields of different

temporal frequencies. We assume that the polarimetric re-

sponse χ of the target has low temporal dispersion in the

K-band we use and is more related to the polarization state

described by the actual geometric feature of the polarization

ellipses. Moreover, the reconstructed polarimetric response

can be viewed as the averaged response over the bandwidth

in the frequency sweep for a more general target.

III. CHARACTERISTIC XPOL-NULL POLARIZATION

STATES IN 3D POLARIMETRY

In this section, we demonstrate the extraction of target char-

acteristics from the experimentally reconstructed 3D polari-

metric matrix χ of a letter "U" target. This 13× 8cm2 target

is made of a copper wire with a diameter of 5 mm, shown

in Fig.3(a). This conductive wire is placed at x̂ = 0.24 cm,

with the origin plane set at the near field scan location. The

near fields of the aperture are characterized at around 10cm

from the antenna aperture. Since the reconstruction uses the

near fields directly, it is convenient to take the near field

scan plane as the origin plane. From the definition of the

field boundaries presented in [43], [52], we calculate the

boundary distance between the reactive and radiative near-

field region as d1 = 0.29m and the distance between the

radiative near-field and far-field regions as d2 = 3m. The

selected imaging distance is 0.24m from the near field scans,

making it at d = 0.34m offset from the antenna aperture. It

remains within this radiative near field range, d1 < d < d2. A

vector network analyzer (VNA, Agilent N5245A) takes S12

measurements g(f) at 4001 different frequency points evenly

spaced within the K band from 17.5 GHz to 26.5 GHz.

The domain of interest is a 0.04m(x̂)×0.2m(ŷ)×0.22m(ẑ)
cuboid and is discretized to 4 × 40 × 44 voxels in three

dimensions. Each voxel is of 10mm(x̂)×5mm(ŷ)×5mm(ẑ),
determined by the range and cross-range resolution of this

aperture antenna. Each voxel has a 3 × 3 complex matrix χ

to describe the averaged 3D polarimetric scattering response.

The whole scene is reconstructed by solving Equation (4)

with generalized minimal residue method (GMRES) [53],

[54]. The symmetry of χ is asserted by averaging the off-

diagonal symmetric components, e.g., ’xy’ and ’yx’. The

reconstructed polarimetric scattering matrix χ of the letter

"U" is illustrated in Fig.3(b) as nine different polarimetric

channels.

The magnitude figures of nine channels are shown respec-

tively in Fig.3(b). It demonstrates that our system is able to

resolve target signatures in all nine polarimetric channels,

as proved in [22]. Note that the resolution is not degraded

for the polarimetric reconstruction compared to scalar re-

construction using the same measurements. However, the

polarimetric information in the sub-resolution volume is the

main usage of polarimetric imaging instead of the spatial

resolution. The polarimetric responses are relatively small

FIGURE 2: (a)Polarization ellipses at five subsequent fre-

quency points. Red is the transmitting field and blue is

receiving field. Polarization ellipses in y−x and z−x views

are depicted. (b)(c)The gray-scale 2D figures are the sensing

field magnitude at 4 subsequent frequency points. The 3D

ellipsoids denote the polarization states at different locations

in the scene.

in the range (x̂) related channels,e.g χxx, χxz , compared to

the other four cross-range components (χyy, χyz, χzy, χzz).

In the magnitude comparison of co-polarized components,

illustrated in Fig.3(c), the co-polarized range channel χxx

VOLUME 4, 2016 5
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FIGURE 3: Reconstructed χ tensor for the Letter "U".

(a)Imaging setup. The photo of letter ’U’ is shown. (b)Nine

polarimetric channels of the χ matrix. The magnitude are

normalized to global maximum among all nine channels. The

opacity of each voxel is coded with the magnitude level.

(c)The magnitude value of the three diagonal channels along

the red dashed line depicted in χxx. Red arrows denote the

reconstructed but small χxx value.

tends to pick out the edge of the wire. It should be noted

that despite small values, the two vertical parts of the letter

’U’ have significant values of χyx,χxy and the bottom part

of the letter ’U’ has a significant value of χxz,χzx. The

range-related channels are inaccessible to the conventional

2D polarimetric imaging.

With the reconstructed 3D polarimetric matrix, in this

paper, we aim to extract target parameters with physical

meaning by extending the target decomposition methods of

2D polarimetry to 3D cases. The direct method for coherent

polarimetric matrix is eigendecomposition-based analysis.

We first formalize the 3D coherent power polarimetric matrix

G3×3 in an analogy to 2D Graves matrix [5] as

G = χ∗χ

=




|χxx|
2 + |χxy|

2 + |χxz|
2 χxxχ

∗
xy + χxyχ

∗
yy + χxzχ

∗
zy χxxχ

∗
xz + χxyχ

∗
yz + χxzχ

∗
zz

χyxχ
∗
xx + χyyχ

∗
yx + χyzχ

∗
zx |χxy|

2 + |χyy|
2 + |χzy|

2 χyxχ
∗
xz + χyyχ

∗
yz + χyzχ

∗
zz

χzxχ
∗
xx + χzyχ

∗
yx + χzzχ

∗
zx χzxχ

∗
xy + χzyχ

∗
yy + χzzχ

∗
zy |χzx|

2 + |χzy|
2 + |χzz|

2





where ∗ denotes complex conjugate. This matrix is positive-

semidefinite which has three real non-negative eigenval-

ues λ1 > λ2 > λ3 > 0 in non-increasing order and

three corresponding orthonormal complex 3×1 eigenvectors

u1,u2,u3, i.e.

G[u1,u2,u3] = [u1,u2,u3]





λ1 0 0
0 λ2 0
0 0 λ3



 . (9)

Each eigenvector ui represents a unit 3D Jones vector which

corresponds to some 3D polarization state. (u1,u2,u3) form

one complete set of 3D polarization bases under which the

coherent power matrix G is diagonal. The 3D polarimetric

matrix χ can be diagonalized by a unitary transform of U =
[u1,u2,u3] as

χD = U∗χU † =





χ1 0 0
0 χ2 0
0 0 χ3



 . (10)

The transform format is different from ordinary unitary trans-

form in the conjugate operation ∗ on U due to the choice

of backscattering alignment coordinates. This diagonaliza-

tion of χ indicates that measuring cross-polarized scatter-

ing parameters of any combination within 3D polarization

states given by u1,u2,u3 leads to zero. Therefore, eigen-

vectors (u1,u2,u3) represent the local characteristic cross-

polarization minimization (XPOL-Null) polarization states

in the 3D polarimetry case. Compared to the XPOL-Null

states in 2D polarimetry [5], the characteristic propagation

direction is also recovered by these 3D Jones vector in addi-

tion to the in-plane polarization states. The three eigenvalues

of G are proportional to the radar cross-section for the co-

polarized scattering of corresponding XPOL-Null polariza-

tion states, similar to 2D polarimetry [5].

Following this process, three characteristic XPOL-Null

polarization states are retrieved for every voxel of the letter

"U" target using the reconstructed χ matrices presented in

Fig.3(b). Figure 4 illustrates three characteristic XPOL-Null

polarization states ui, i = 1, 2, 3 by the corresponding 3D

polarization ellipses. These ellipses all situate in different

planes of 3D space. The plane of the first two XPOL-

Null polarization ellipses (u1,u2) is almost parallel to the

transverse plane of this planar target. These two characteristic

polarization states are similar to the two XPOL-Null states in

2D far-field polarimetry. Nevertheless, it is worth noting that

these ellipses have projected areas along the range direction,

which can be seen in the top-down view such that they do

not fully reside in the transverse plane. The plane of the

third XPOL-Null polarization ellipses (u3) is predominantly

perpendicular to the target plane. This range-related state is

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3021418, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

defined uniquely for the near-field polarimetry, different from

the 2D case. For the in-plane orientation, the major axes of

u1 ellipses (with the largest eigenvalues) align with the ori-

entation of the copper wire. This is well demonstrated by the

u1 ellipses on the two vertical bars of ’U’ and the horizontal

bottom of ’U’. The u2 states are orthogonal (not necessarily

geometrically but in the sense of polarization state) to first

states u1 with primarily transverse components. As depicted

in Fig.4, the major axes of u2 ellipses are, in reality, geo-

metrically orthogonal to the orientation of the thin wire. This

geometric orientation feature of u1,u2 polarization ellipses

result from the local flat-surface like structure of copper wire,

which has two orthogonal XPOL-Null polarization states

parallel to the plane as in 2D polarimetry [5]. Moreover, in

the macro view, fields polarized along the wire have a larger

scattering response. Consequently, between u1 and u2,the

XPOL-Null polarization states whose ellipses is along the

wire have larger eigenvalues. These ellipses noticeably have

small elliptical angles, and their shape is close to a line, which

refers to a linear polarization state of different orientation

in 3D space. This is valid for the metallic wire target since

scattering from it should be anisotropic.

Eigenvalues of all the voxels that contain the target are

compared in Fig.5. The eigenvalues are normalized by the

trace of the 3D coherent power polarimetric matrix G, i.e.

λ̂i = λi/tr(G), leaving the unit sum of all three eigenvalues

for every voxel. The two larger eigenvalues are comparable,

while the third eigenvalue for the primarily range XPOL-Null

state is 10−4 smaller than the other two dominant ones. This

is as expected since the eigenvalues of coherent power matrix

G denotes the cross-section levels for different co-polarized

XPOL-Null states. This planar thin wire target has a small

scattering response in the range direction compared to the

transverse dimensions.

Figure 6 depicts the normal vector and the major-axis

vector of u1 ellipses on one constant-height slice (z = 0m)

crossing the two vertical bars of ’U’. The color of the vectors

is given by the absolute value of three directional cosines

[cos(a), cos(b), cos(c)] such that the vector is red when close

to the x̂ axis, green when close to the ŷ axis and blue when

close to the ẑ axis. The top-down view of these vectors on

a constant-z slice in Fig.6 clearly illustrates that the normal

vector (red) rotates along the curved surface of the wire while

the major-axis vector not fully points along the wire direction

but with some angle to the wire and distributed symmetrically

with regard to the center-line of the wire. These detailed local

structure information offers more insights into the detailed

features of the target, which is not deliverable by conven-

tional 2D polarimetry. The presented result is a testament to

the advantage of near-field operation in that range probing

of the target is achieved, extending the conventional 2 x 2

polarization bases in far-field to 3 x 3 by also leveraging the

range component.

FIGURE 4: Eigenvectors of 3D coherent scattering power

matrix of letter "U" target. The polarization ellipses represent

u1,u2,u3 respectively. Top-down view (xy plane) is given

on the side.

IV. TARGET PARAMETERIZATION OF 3D POLARIMETRY

In this section, we propose to parameterize the XPOL-Null

states and the diagonalized χ matrix to further quantitatively

characterize the target with 3D polarimetry data. Take the
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FIGURE 5: Eigenvalues of 3D coherent scattering power

matrix of letter "U" target. (a)Three normalized eigenvalues

for target voxels. (b)First two dominant eigenvalues in the

reconstruction domain.

FIGURE 6: (a)Top-down view of the direction vectors on the

constant-z plane (z = 0m) Black dashed circles denotes the

location of the letter ’U’. (b)Front view of the aforementioned

constant-z plane.

first eigenvector u1. As shown above, each eigenvector refers

to an ellipse oriented arbitrarily in 3D space, as shown in

Fig.7(a). There exists a real rotation matrix o3×3 such that

oTu1 is the same ellipse rotated to coincide with the Y0Z0

plane and the major axis of the rotated ellipse coincide with

Y0 axis. Let u1 = [axe
jφ1 , aye

jφ2 , aze
jφ3 ]T , and the rotation

process is expressed as

oTu1 = [0, ay, aze
±jπ/2]T , (11)

where o is a 3 × 3 orthonormal real matrix denotes a 3D

rotation. This rotation matrix can be determined by finding

the unit vectors of the intrinsic axes x̂1, ŷ1, ẑ1 affixed to the

ellipse, maintaining the right-handedness. Then the rotation

matrix is found to be o = [x̂1, ŷ1, ẑ1]. The rotation matrix can

be represented by three Euler angles α, β, γ [55]. Following

the extrinsic rotation sequence of ZY X , the three Euler

angles can be found by comparing the rotation matrix o with

[56]

Z1Y2X3 =





c1c2 c1s2s3 − c3s1 s1s3 + c1c3s2
c2s1 c1c3 + s1s2s3 c3s1s2 − c1s3
−s2 c2s3 c2c3





(12)

where 1, 2, 3 are the three Euler angles α, β, γ and c, s denote

cosine and sine respectively. Since the rotation matrix o is

defined by the rotation from the in-plane ellipse oTu1 to

the 3D ellipse u1, the rotation process can be viewed as a

sequence of three elementary extrinsic rotations as such: 1)

a rotation of γ around X0 axis; 2) a rotation of β around

Y0 axis; 3) a rotation of α around Z0 axis. The three Euler

rotation angles of the first eigenvector u1 of the letter ’U’

are depicted in Fig.7(b-d). The Euler angles of the other two

eigenvectors u2,u3 can be found with the same process.

FIGURE 7: (a)Polarization ellipse in 3D space and the ro-

tated ellipse to lie in the Y Z plane. (b)(c)(d)Three Euler

angles (ZYX sequence) of the first eigenvector u1.

Similar to the helicity angle in 2D polarimetry, the ellip-

ticity angle τm of the 3D polarization ellipses also denotes

the anisotropy of the scattering with 0 as the anisotropic

scattering and π/4 as the isotropic scattering. For the 3D

case, the ellipticity angle can be easily found in the rotated in-

plane ellipse oTu1 by simply retrieving the inverse tangent

of az/ay . The in-plane ellipticity angle of the first XPOL-

Null polarization state of the letter ’U’ is shown in Fig.8. The

angle τm is close to zero for points on the target, indicating

the anisotropic scattering of this metallic target.

Using the rotation matrix and the Euler angles, the geomet-

ric rotation parameters of α, β, γ and the anisotropy param-

eter τm can be found for the three XPOL-Null polarization
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states. Under the polarization bases formed by XPOL-Null

polarization states, the 3D polarimetric matrix χ is diagonal,

and it can be parameterized in the similar way as Huynen did

for the 2D polarimetric coherent polarimetric matrix [7]. The

diagonalized polarimetric matrix χD can be written in the

general form of

χD =





χ1 0 0
0 χ2 0
0 0 χ3





= mejδ





1 0 0
0 tan2 γ1e

−j4ν1 0
0 0 tan2 γ2e

−j4ν2





in an analogy to 2D Euler parameter definition [5]. γ denotes

the common phase term. γ1 and γ2 denote the magnitude

ratio between the co-polarized scattering parameters of the

three XPOL-Null polarization states. It is related to the target

polarization sensibility to different states. It ranges from π/4
for a flat surface target which has no preference over the

two orthogonal XPOL-Null polarization states, to 0 for a

linear dipole-like target which has stronger response in one

XPOL-Null polarization state than the other. ν is the phase

difference between the co-polarized scattering responses be-

tween two XPOL-Null states, which is related to scattering

bounce times. It also changes from phase difference of (π/4),
meaning double or multiple bounces to 0 difference means

single bounce. Figure 9 illustrates the distribution of these

four target parameters on the target. γ1,2 is close to π/4 at

most points on the target, suggesting that every local point

has no dominant preference over the first two XPOL-Null

states after leaving out the local surface orientation effect.

It is the situation that every point on the wire target would

locally have identical polarimetric scattering sensitivity. γ1,3
is close to zero due to the extremely small response in the

range direction. The in-plane skip angle ν12 is zero for most

points while the two corners of the letter ’U’ have the double

bounce scattering. More points have large ν13 values due

to stronger multiple scattering when the wave is traveling

parallel to the target plane.

FIGURE 8: In-plane Helicity Angle (Ellipticity Angle of the

ellipse)

FIGURE 9: Four generalized target parameters

(γ12, γ13, ν12, ν13) for the letter "U" target

V. IMAGING TARGET WITH ROTATION IN SPACE

In this section, we apply the computational polarimetric

imaging scheme to a letter "D" wire target with different

rotation in three dimensions and a planar target made of

copper tapes. These results serve to demonstrate the consis-

tency of the proposed target parameterization in describing

the 3D polarimetric scattering characteristics. The letter "D"

target, depicted in Fig.10 inset, is made of copper wire bent

to form the D shape, placed at around 0.20 m in front of

the metasurface aperture. We studied how XPOL-Null po-

larization states would change with the rotation of the target.

When the target is rotated, different sections of the spherical

cylinder part of the letter "D" are seen by the metasurface

aperture. Figure 10 illustrates the two orthogonal XPOL-

Null polarization states of the letter "D" with four different

rotation angles (0◦, 3◦, 6◦ and 12◦) with respect to ẑ axis. For

the rotation angles where the reflected signal is not captured

by the metasurface aperture, the corresponding parts of the

object can not be visible in the reconstructions. However, this

is not a limitation of the polarimetric imaging technique but

rather a physical phenomenon of reflection specularity that

applies to monostatic imaging systems in general. From the

reconstructed part of the target, the XPOL-Null polarization

ellipses rotate along with the change in the position of the

letter "D" to the antenna aperture. The polarization ellipses

consistently demonstrate the local geometric structure by

examining the orientation of the ellipse plane and the major-

axis direction.

VI. CONCLUSION

A scheme of computational polarimetric imaging using a

cavity-backed metasurface aperture antenna has been pre-

sented. The sensing fields from the cavity-backed metasur-
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FIGURE 10: Two orthogonal XPOL-Null polarization el-

lipses (cyan and magenta) of letter "D" with rotation angle

of 0◦, 3◦, 6◦ and 12◦ with respect to ẑ axis.

face aperture antenna has low spatial correlation and diver-

sity of polarization states to multiplex the 3D polarimetric

response over the image domain into a single complex mea-

surement. Built on our preliminary work, we have further

characterized the spatially varying but locally fully polarized

coherent random fields from the metasurface antenna using

generalized Jones vector and polarization ellipses in 3D

space. From the diagonalization process of the 3D polarimet-

ric matrix, three orthogonal XPOL-Null polarization states

have been retrieved. It has been shown that the orientation of

the major axis and the ellipse plane offers insight into the

local geometric structure and scattering mechanism. Euler

angles denoting the rotation matrix can be retrieved from

the ellipse plane. After leaving out the effects of rotation,

the in-plane ellipticity angle of the polarization ellipse yields

information of the scattering anisotropy. Four generalized

coherent target parameters are retrieved from the diagonal-

ized polarimetric matrix, which serve for the polarization

sensitivity and multiscattering. Imaging results of different

targets consolidate our 3D polarimetry scheme modeling for

consistently characterizing the 3D polarimetric scattering re-

sponse of the target. Furthermore, the assumptions made here

for establishing the 3D matrix model are still valid for differ-

ent frequencies, and therefore, this technique could readily

be implemented at higher frequencies, including millimeter-

wave and terahertz frequencies for more application scenar-

ios.
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