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The	 implementation	of	advanced	 reactor	engineering	 concepts	employing	additive	manufacturing	 is	demonstrated.	 The	

design	 and	 manufacturing	 of	 miniaturised	 continuous	 flow	 oscillatory	 baffled	 reactors	 (mCOBR)	 employing	 low	 cost	

stereolithography	 based	 3D	 printing	 is	 reported	 for	 the	 first	 time.	 Residence	 time	 distribution	 experiments	 have	 been	

employed	 to	demonstrate	 that	 these	 small	 scale	 reactors	offer	 improved	mixing	 conditions	 at	 a	millimetre	 scale,	when	

compared	to	tubular	reactors.	Nearly	monodisperse	silver	nanoparticles	have	been	synthesised	employing	mCOBR,	showing	

higher	temporal	stability	and	superior	control	over	particle	size	distribution	than	tubular	flow	reactors.	

Introduction		

The	 development	 of	 continuous-flow	 processes	 is	 a	 topic	 of	

increasing	 interest	 both	 in	 academia	 and	 in	 industry.	 Indeed,	

carrying	 out	 reactions	 in	 intensified	 continuous	 flow	 reactors	

(CFR)	 is	 highly	 beneficial	 in	 applications	 requiring	 precise	

mixing,	 rapid	 heat	 transfer	 (highly	 exothermic)	 and	 fast	

reactions	 (high	 kinetics)	 as	 opposed	 to	 batch	 processing.
1
	

Processing	 advantages	 in	 using	 continuous	 flow	 techniques	

include	 minimisation	 of	 waste	 through	 efficient	 use	 of	

reactants,	 enhanced	 handling	 of	 hazardous	 chemicals
2
	 and	

improved	reactions	yields.
3
	Due	to	the	large	surface-to-volume	

ratio	 in	 flow	 reactors,	 reactants	 can	 be	 effectively	 cooled	 or	

heated	 during	 the	 reaction	 process.
4
	 Asides	 the	 numerous	

benefits	of	heat	transfer,	mixing	and	kinetics,	continuous	flow	

reactors	allow	to	characterise	 the	product	stream	 in-line	with	

no	disruption	of	the	flow	using	spectroscopic	techniques,	thus	

allowing	the	real	time	monitoring,	feedback	and	development	

of	self-optimisation	techniques.
5,	6

	

Intensified	 reactors	 have	 found	 an	 ever	 increasing	 range	 of	

applications	 in	 synthetic	 chemistry	 from	 discovery
7,	 8

	 to	 the	

processing	 of	 high	 added	 value	 reactions	 including	

pharmaceuticals,
9
	 nanostructured

10
	 and	 advanced	 molecular	

materials.
3,	 11

	 In	 the	 microfluidic	 scale,	 the	 flow	 regime	 is	

laminar.	 Mixing	 on	 such	 small	 scale	 relies	 on	 intermolecular	

diffusion,
12
	thus	being	limited	to	small	dimensions	in	the	order	

of	 tens	 to	 few	 hundreds	 of	 microns.	 Therefore,	 their	

applications	in	industrial	processes	are	limited	due	to	inherently	

low	productivity	associated	to	the	channel	size.	Numbering	up	

strategies	might	help	to	overcome	this	 limitation,	but	there	 is	

limited	evidence	of	 this.
13
	A	slight	 increase	 in	 the	scale	of	 the	

reactor,	 in	 the	millimetre	 scale,	 known	as	mesoscale	 reactors	

can	offer	a	balance	between	productivity,	by	increasing	the	flow	

rates	 of	 the	 reagents	 and	 therefore	 the	 throughput	 of	

substrates	being	processed	and	energy	demands	(e.g.	pumping	

power).	 Nevertheless,	 the	 increase	 in	 the	 dimensions	 has	 an	

associated	reduction	in	the	mixing	properties	of	the	reactor.		

Advanced	reactor	design	can	be	employed	to	optimise	mixing	at	

the	 milli-	 and	 mesoscale.	 An	 example	 of	 this	 consists	 of	

employing	static	mixers	and	a	 technology	developed	over	 the	

past	 few	 decades,	 the	 continuous	 oscillatory	 baffled	 reactor	

(COBR).
14-16

	 The	 unique	 features	 of	 the	 technology	 that	

differentiates	it	from	the	tubular	reactor	are	the	combination	of	

baffles	placed	at	controlled	intervals	in	the	flow	path,	and	the	

mechanical	 oscillation	 of	 the	 fluid.
14
	 The	 oscillatory	 flow	

coupled	with	the	baffles	results	in	vortex	rings	being	formed	in	

the	 system	 leading	 to	 unique	 mixing	 patterns	 that	 allow	

achieving	near	plug	flow	conditions	at	 low	Reynolds	numbers.	
17
		In	this	way,	an	even	velocity	profile	in	the	direction	of	flow,	

complete	mixing	 in	 the	radial	direction	and	minimal	mixing	 in	

the	axial	direction	can	be	achieved	employing	this	technology.	

Baffled	 cells	 can	 be	 envisioned	 as	 a	 number	 of	 continuous	

stirred	 tank	 reactors	 (CSTRs)	 in	 series.	 COBRs	 have	 been	

demonstrated	 in	 several	 synthesis	 applications	 including	

production	 of	 biodiesel
15,	 18

	 and	 continuous-flow	

crystallisation.
19,	 20

	 Improved	 mixing,	 facile	 handling	 of	 solids	

and	reduced	fouling	have	been	reported	as	process	advantages	

compared	to	tubular	reactors.	

COBR	 can	 help	 to	 close	 the	 gap	 between	 the	 discovery	 to	

manufacturing	of	chemicals	and	materials.	This	requires	to	be	

able	to	configure	the	reactors	across	the	scales	from	laboratory,	

to	 pilot	 and	 up	 to	 industrial	 scale.	 However,	 an	 important	

limitation	 in	 the	 uptake	 of	 this	 technology	 is	 the	 difficulty	 to	

configure	 and	 manufacture	 the	 reactors	 employing	
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conventional	 techniques.	 The	 down-scale	 of	 the	 reactor	

geometries	is	particularly	challenging.		

Additive	 manufacturing	 (AM),	 commonly	 referred	 to	 as	 3D	

printing	 is	 an	 emerging	 concept	 in	 manufacturing,	 where	

complex	geometries	are	manufactured	layer-by-layer	from	a	3D	

model	data	(e.g.	CAD	design).
21
	It	is	a	rapidly	evolving	field	with	

capabilities	 to	 fabricate	 complex	 geometrical	 shapes	 at	

increasingly	 high	 resolutions.	 AM	 has	 led	 to	 the	 spring	 up	 of	

research	 areas	 in	 applications	 involving	 chemical	 synthesis.	

Cronin	 and	 co-workers	 reported	 for	 the	 first	 time	 the	

application	 of	 3D	 printing	 to	 chemical	 synthesis,	 coining	 the	

term	“reactionware”,
22,	23

	 including	the	development	of	fluidic	

devices	for	continuous-flow	synthesis.
24-26

	This	work	has	led	to	

a	 new	 area	 of	 research,	 mostly	 in	 the	 development	 of	 3D	

printed	 microfluidic	 devices	 for	 analytical	 applications.
27
	 AM	

techniques	 have	 been	 employed	 in	 the	 fabrication	 of	 reactor	

devices	 by	 fused	 deposition	 modelling,
21,	 24

	 selective	 laser	

sintering,
21
	ink-jetting,

21,	28
	and	stereolithography.

21,	29
		

Here	we	report	the	first	example	of	a	miniaturised	continuous	

oscillatory	baffle	reactors	(mCOBR)	in	a	facile	and	cost	effective	

fashion	 employing	 SLA	 based	 3D	 printing	 techniques.	 The	

mixing	 properties	 of	 the	 3D	 printed	 mCOBRs	 have	 been	

demonstrated	 by	 residence	 time	 distribution	 (RTD)	 tracer	

experiments.	The	superior	flow	dynamics	of	mCOBRs	compared	

to	 tubular	 reactors	 of	 comparable	 dimensions	 has	 been	

demonstrated	 in	 the	 continuous-flow	 synthesis	 of	 silver	

nanoparticles.	Indeed,	the	employment	of	a	3D	printed	mCOBR	

yields	 nanoparticle	 solutions	 with	 a	 narrower	 particle	 size	

distribution	 (PSD)	and	enhanced	temporal	stability	due	to	the	

improved	mixing	and	reduced	fouling	of	the	nanomaterials	on	

the	surface	of	the	reactor.	

A.	SLA	based	3D	printing	of	baffled	reactors	

A	 conventional	 tubular	 reactor	 and	 baffled	 reactors	 were	

designed	 and	 manufactured	 using	 a	 stereolithography	 (SLA)	

based	 3D	 printer	 as	 a	 proof	 of	 principle	 (see	 files	 in	 SI).	

Computer	Aided	Design	(CAD)	representations,	like	the	example	

presented	in	Figure	1	were	designed	on	CREO	Parametric.	The	

CAD	 files	 were	 then	 converted	 to	 .STL	 format,	 which	 is	 a	

common	 file	 type	 that	 interfaces	 between	CAD	 software	 and	

additive	manufacturing	platforms.	The	reactors	were	fabricated	

on	a	Formlabs	Vat	Polymerisation	platform	(Form	2)	using	the	

commercially	 available	 Formlabs	 Clear	 FLGPCL02	 proprietary	

resin.	 The	 lowest	 resolution	 available	 in	 the	 machine	 was	

employed	 (0.1	mm)	 for	 the	printing.	A	 tough	and	 rigid	device	

was	 created	 layer-by-layer	 employing	 a	 laser	 which	 scanned	

traces	on	the	photopolymer	resin.	The	device	was	then	cleaned	

and	flushed	through	with	Isopropyl	Alcohol	(IPA)	to	avoid	curing	

of	 resin	on	the	walls	and	 internal	channels.	A	post	processing	

step	 of	 fine	 polishing	 shortly	 after	 fabrication	 with	 this	 resin	

produced	clean	and	transparent	reactor	devices	(e.g.	Figure	S1).		

This	offers	the	possibility	of	visualising	the	flow	patterns,	thus	

enabling	 the	 employment	 of	 visual	 techniques
30
	 and	 in-line	

spectroscopy
31
	for	process	characterisation.		

	

Figure	1:	The	stages	of	AM	fabrication	of	a	mini-OBR	device.	(i)	A	CAD	model	

was	designed	 to	meet	 requirements.	 (ii)	The	 reactor	device	was	 fabricated	

using	 Form2	 SLA	 printer.	 (iii)	 The	 reactor	 was	 polished,	 cleaned	 and	

extensively	flushed	with	IPA	to	remove	residual	uncured	resin.	

The	mini-oscillatory	 baffled	 reactor	 device	was	 designed	with	

two	 inlets	 for	 residence	 time	 distribution	 studies	 (RTD)	 and	

three	 inlets	 for	 synthesis	 of	 silver	 nanoparticles.	 The	

supplementary	inlet	in	both	cases	was	required	to	introduce	the	

oscillatory	regime	in	the	flow	device.	These	reactor	connectors	

were	 designed	 to	 fit	 to	 1/16”	 standard	 fittings.	 The	 reactor	

devices	had	a	similar	volume	of	2.7	mL	with	diameter	of	2.5mm.	

Table	1	shows	the	key	design	parameters	employed	to	generate	

the	 internal	 geometry	of	 the	mCOBRs.	 Important	 geometrical	

parameters	 that	 have	 been	 found	 to	 directly	 affect	 the	

formation	 of	 the	 vortices,	 and	 which	 were	 deployed	 for	 this	

study	are	the	baffle	open	area	α=(Di/Do)
2
,	baffle	spacing	(L)	and	

thickness(δ).	 An	optimal	 value	of	 the	baffle	 spacing	 results	 in	

even	and	fully	propagated	vortices	in	inter-baffle	zones	leading	

to	 uniform	 and	 effective	 mixing.	 The	 mini	 –	 OBR	 featured	 a	

baffle	spacing	of	1.6Do	and	baffle	open	area	of	16	per	cent.	The	

dimensions	 used	 are	 in	 close	 range	 to	 effective	 geometry	

demonstrated	 in	 literature	of	1.5Do	baffle	spacing	and	16	per	

cent	open	baffle	area.
32
	Processing	at	such	optimal	range	lead	

to	increased	vortex	width,	promoting	advection	and	minimised	

mixing	time.	Thinner	baffle	thickness	(δ)	are	recommended,	as	

larger	 baffles	 lead	 to	 longer	 ‘cling	 time’	 and	 reduced	 flow	

separation.
32
			

Table	1:	Parameters	employed	for	the	manufacturing	of	the	mCOBR.	

Parameter	 Symbol	 Value	

Baffle	thickness	 δ	 0.5mm	

Baffle	spacing	 L	 4mm	

Inner	baffle	diameter		 Di	 1mm	

Outer	baffle	diameter	 Do	 2.5mm	

	

In	 terms	 of	 fabrication,	 the	 tubular	 reactor	 including	 support	

structure	 required	 51.61mL	 of	 resin	 taking	 4h	 53min	 to	

complete,	whilst	the	mini-OBR	required	54.9	mL	of	resin	and	5h	

2	min.	This	works	out	to	a	material	cost	of	£7.74	and	£8.24	for	

the	 tubular	 and	mCOBR	 reactor	 respectively.	 The	 large	 build	

platform	 of	 the	 Form2	 printer	 allowed	 both	 designs	 to	 be	

printed	simultaneously	(see	SI,	Figure	S2).	In	this	case,	the	total	

time	of	manufacturing	was	7h	39min.	
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Table	2:	A	comparison	of	the	AM	fabricated	tubular	and	mCOBR.	

Parameter	 Tubular	reactor	 mCOBR	

Reactor	Volume	 2.7mL	 2.5mL	

Diameter	 2.5mm	 2.5mm	

Resin	volume	 51.67mL	 54.9mL	

	Fabrication	time	 4hrs	53mins	 5hrs	2mins	

Device	Cost	 £7.74	 £8.24		

	

To	ascertain	the	quality	and	durability	of	the	fabricated	reactor	

connectors,	 the	 devices	 were	 pressure	 tested.	 This	 was	

achieved	by	connecting	a	device	with	a	single	 inlet	and	outlet	

with	 standard	 fittings	 to	 a	 rig	 consisting	 of	 an	 HPLC	 pump,	 a	

pressure	 transducer,	 the	 3D	 printed	 module	 and	 a	 back	

pressure	 regulator.	 The	 reactor	 device	was	 pressurised	 to	 85	

bars	without	any	breaks	or	leaks	observed	(see	SI,	video	1).	To	

the	best	of	our	knowledge,	this	represents	an	increase	of	over	

4-fold	compared	to	the	previously	highest	pressure	reported	in	

a	printed	flow	device.
33
	This	is	due	to	the	high	resolution	of	the	

Form2	printer,	which	allowed	printing	devices	with	high	quality	

connectors.	Although	the	surface	roughness	of	fabricated	parts	

will	depend	on	the	print	resolution	selected,	at	a	100	µm	z-axis	

resolution	 of	 the	 SLA-based	 device,	 the	 root	 mean	 square	

surface	roughness	obtained	was	2.9	µm. 

	The	materials	were	also	 found	 to	be	compatible	with	 several	

solvents	 of	 interest	 for	 synthetic	 chemistry	 and	 engineering,	

including	 isopropanol,	 EtOH,	 CH3CN	 and	 water.	 This	 was	

determined	by	soaking	the	polymerised	resin	in	the	respective	

solvents	for	24	hours,	drying	them	in	a	vacuum	oven	overnight	

and	then	measuring	the	ATR-IR	and	TGA	and	comparing	them	

to	 the	 original	 resin	 (see	 SI,	 Figure	 S3).	 Even	 though	 some	

differences	were	observed	in	the	TGA,	the	core	structure	of	the	

polymers	 remained	 unchanged	 as	 evidenced	 by	 ATR-IR,	 thus	

suggesting	 that	 the	 reactors	 can	 be	 employed	 for	 synthetic	

applications.		

B.	RTD	studies	and	Reactor	modelling		

Residence	 time	 distribution	 (RTD)	 studies	 were	 employed	 to	

explore	 the	 behaviour	 of	mCOBR	 and	 to	 test	 them	 against	 a	

tubular	 reactor	 as	 benchmark.	 RTD	 has	 been	 employed	 as	 a	

valuable	 tool	 for	 understanding	 the	 quality	 of	 mixing,	 mean	

residence	 time	 of	 materials	 and	 to	 model	 the	 flow	 within	 a	

reactor	 vessel.
34
	 They	 allow	 for	 the	 preservation	 of	 selected	

flow	 patterns	 during	 the	 reactor	 design	 and	 serve	 as	 a	

quantifiable	 measure	 of	 the	 degree	 of	 back	 mixing	 in	 a	 flow	

system.
35
	 RTD	 describes	 the	 quantity	 of	 time	 fluid	 elements	

have	spent	in	the	reactor	in	a	flow	system.
36
	Therefore	the	RTD	

of	a	continuous	reactor	is	influenced	by	the	rate	of	diffusion,	the	

flow	dynamics	and	internal	geometry	of	the	tubular	reactor,	e.g.	

baffles.	 RTD	 studies	 are	 also	 particularly	 important	 in	making	

comparisons	 between	 reactors	 of	 different	 architectures	 and	

dimensions.	A	thorough	understanding	of	the	nature	of	mixing	

in	the	reactor	can	aid	in	scale-up.		

Figure	2:	Schematic	for	residence	time	distribution	studies,	comprising	

of	 two	 syringe	 pumps	 controlling	 the	 net	 and	 oscillatory	 flow,	 an	

automated	 6-way	 Rheodyne	 valve,	 a	UV-Vis	 flow	 cell	 connected	 to	 a	

light	source	and	a	UV-Vis	spectrometer.	This	allows	a	pulse	of	tracer	to	

be	injected	into	the	flow	stream.		

The	setup	is	schematically	described	in	Figure	2	(see	Figure	S4	

for	 a	 picture	 of	 the	 rig)	 and	 comprises	 of	 two	 programmable	

C3000	 Tricontinent	 pumps	 equipped	with	 5	mL	 syringes.	One	

pump	 controls	 the	 net-flow	 through	 the	 reactor,	 while	 the	

second	the	oscillation	of	the	fluid,	thus	creating	no	net	flow.	A	

programmable	Rheodyne	6-way	injection	valve	controlled	with	

an	Arduino	and	equipped	with	a	50	µL	 loop	was	employed	to	

inject	 a	pulse	of	 a	1mM	aqueous	 solution	of	methylene	blue.	

The	experiments	were	done	employing	water	as	a	a	solvent.	An	

Avaspec	 UV/Vis	 spectrometer	 and	 an	 Avantes	 DH-2000	 light	

source	were	employed	to	collect	the	UV-Vis	data.	RTD	data	was	

obtained	 by	 injecting	 a	 pulse	 of	 inert	 tracer	 into	 the	 reactor	

whilst	 the	 effluent	 stream	 was	 analysed	 by	 UV-Vis	

spectroscopy,	with	respect	to	time.	The	system	was	controlled	

with	in-house	developed	Labview	VIs.		

The	 RTD	 of	 the	mCOBR	 under	 different	 oscillatory	 conditions	

was	recorded	and	compared	to	the	results	obtained	in	a	tubular	

reactor.	 In	 the	 tubular	 reactor,	 a	 single	 pump	 was	 used,	

connected	to	 the	6-way	valve	before	 the	 inlet	whilst	 the	 light	

source	 and	 spectrometer	 were	 coupled	 to	 the	 outlet.	 This	

allowed	 flowing	 the	 tracer	 through	 the	 reactor.	 To	 produce	

oscillation	of	the	fluid	in	the	OBR,	another	pump	was	attached	

to	the	second	inlet.	Silicon	oil	was	used	in	oscillating	the	fluid	to	

avoid	 back-mixing	 of	 reagents	 and	 tracers	 between	bulk	 flow	

and	the	oscillating	fluid.	The	system	was	designed	to	have	the	

oil	 just	 before	 the	 reactor	 inlet	 of	 the	 continuous	 flow,	 thus	

avoiding	dead	volume	in	the	reactor	(Figure	S5).
34
	

To	 compare	 the	 reactors	 under	 similar	 conditions,	 the	 two	

reactors	 were	 tested	 at	 a	 flow	 rate	 of	 1	 mL	 min
-1
	 with	 the	

mCOBR	having	an	oscillatory	frequency	and	amplitude	of	24Hz	

and	2mm	respectively.	Figure	3B	shows	the	E(q)	curve	for	both	

reactor	 configurations.	 The	 mathematical	 development	 to	

calculate	 E(q)	 can	 be	 found	 in	 the	 SI.	 Under	 the	 conditions	

studied,	the	mCOBR	showed	a	narrower	and	more	symmetrical	

RTD	 compared	 to	 the	 tubular	 reactor.	 The	 symmetrical	 curve	

indicated	a	less	dispersed	and	uniform	flow	through	the	reactor,	

hence	coming	closer	to	ideal	plug	flow	conditions.
37
	In	the	case	

of	the	tubular	reactor,	the	E(q)	curve	showed	an	early	peak	of	

tracer	followed	by	a	long	tail	of	tracer,	indicating	a	high	degree	
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of	 back	 mixing	 due	 to	 the	 parabolic	 flow	 profile	 typically	

associated	with	laminar	flow.
34
		

Figure	3.	Comparison	of	 the	 residence	 time	distribution	of	 a	pulse	of	

tracer	 in	 the	 AM	 fabricated	 tubular	 reactor	 (red)	 compared	 to	 the	

mCOBR	 (black).	 A)	 scheme	 of	 the	 flow	 injection	 in	 each	 reactor	

configuration.	B)	Dimensionless	plot	of	RTD	curves	for	a	tubular	reactor	

(red	curve)	and	mCOBR	(black	curve).	

After	demonstrating	the	increased	efficiency	in	mixing	from	the	

3D	 printed	 mCOBR	 as	 compared	 to	 the	 tubular	 reactor,	 the	

influence	 of	 the	 oscillatory	 conditions	 (frequency	 and	

amplitude)	on	the	RTD	profiles	were	explored.	At	a	flow	rate	of	

1	mL	min
-1
	and	an	oscillatory	amplitude	of	2mm,	the	frequency	

of	the	system	was	altered	between	0.5	–	40	Hz.	The	RTD	curves	

are	shown	in	Figure	4B.	 In	the	 lower	frequency	values	(0.5-12	

Hz)	 a	 qualitative	 improvement	 of	 mixing	 was	 observed.	 It	 is	

worth	noting	that	under	low	frequency,	a	saw-like	profile	was	

observed,	 due	 to	 the	 oscillatory	 conditions	 of	 the	 system.	 As	

frequency	 increased,	 this	effect	was	minimised.	At	 the	higher	

frequencies	 evaluated	 (>24	 Hz)	 there	 was	 no	 significant	

reduction	in	the	variance	of	the	RTD	curve.	

The	 oscillatory	 amplitude	 of	 the	 system	 showed	 also	 a	

remarkable	 influence	on	 the	 axial	 dispersion	 (Figure	 4C).	 This	

was	 demonstrated	 by	 testing	 different	 amplitudes	 between	

0.18mm	and	3.6mm	at	a	constant	flow	rate	of	1mL	min
-1
	and	a	

frequency	 of	 24Hz.	 Indeed,	 an	 increase	 in	 amplitude	 led	 to	 a	

reduction	 in	 the	 dispersion	 of	 the	 E(q)	 curves.	 At	 high	

amplitudes	 and	 frequencies	 plugs	 of	 silicon	were	observed	 in	

the	 reactor.	 Therefore,	 higher	 values	 of	 frequency	 and	

amplitude	above	40Hz	and	4mm	respectively,	were	avoided.	

Figure	4.	Graph	showing	the	residence	time	distribution	of	the	tracer	in	

the	 AM	 fabricated	 mCOBR.	 A)	 Scheme	 of	 the	 oscillatory	 conditions	

summarising	the	parameters	studied.	All	experiments	undertaken	at	a	

constant	flow	rate	of	1	mL	min
-1
.	B)	E(q)	curves	recorded	at	increasing	

oscillatory	frequencies	in	the	range	0.5–40Hz.	B)	Effect	of	the	oscillatory	

amplitudes	on	E(q) curves	in	the	range	0.18-3.6mm.	

Increasing	the	frequency	and	amplitude	of	the	oscillation	led	to	

narrower	 distributed	 RTD	 curves,	 indicating	 a	 closer	

resemblance	to	plug	flow	or	perfect	mixing.
38
	The	experimental	

results	 were	 fitted	 to	 the	 axial	 dispersion	model	 using	 open-

open	boundary	condtion.
34
	This	model	assumes	the	movement	

of	the	fluid	is	made	of	the	convective	component,	as	a	result	of	

the	 bulk	 motion,	 and	 the	 diffusive	 component	 arising	 from	

random	 motion	 of	 the	 fluid	 elements.
39
	 Similar	 RTD	 studies	

employing	 pulse	 tracer	 experiments	 and	 an	 axial	 dispersion	

models	have	been	demonstrated,	aiding	the	modelling	of	flow	

and	packed	bed	reactors.
37
	

The	 experimental	 data	 shows	 an	 excellent	 fit	 to	 the	 axial	

dispersion	model	(Figure	5).	Similar	to	the	oscillatory	frequency	

results,	the	oscillatory	amplitude	data	obtained	fit	with	the	axial	

dispersion	 model.	 This	 is	 consistent	 with	 a	 homogeneous	

distribution	 of	 the	 flow	 through	 the	 reactor,	 without	 any	

indication	 of	 channelling	 or	 dead	 volumes.	 Increasing	 the	

oscillatory	 frequency,	 led	 to	an	 increase	of	 the	Peclet	module	

values	 (Pe),	 which	 is	 inversely	 correlated	 with	 the	 axial	

dispersion	coefficient	(see	SI).	Hence,	it	can	be	observed	that	as	

previously	mentioned,	 the	 reduction	of	dispersion	varies	with	

the	 frequency	 until	 a	 threshold	 of	 24	 Hz	 and	 afterwards,	 no	

subsequent	improvement	was	observed.		

The	velocity	ratio	(ψ=Reo/Ren)	is	key	in	COBR	design	as	a	value	

of	1	shows	an	overall	flow	reversal	whilst	larger	values	will	lead	

to	an	increase	in	the	domination	of	the	oscillatory	effects	over	

the	fluid	flow.
40
		Achieving	close	to	plug	flow	conditions	in	this	

study	required	much	higher	ψ	than	previously	reported	as	the	

scale	studied	is	smaller	scale	compared	to	the	literature.
40
	The	

tested	ψ	range	here	is	between	1.85	to	160.	In	the	mCOBR,	the	

best	oscillatory	conditions	studied	(f	=	24Hz	&	A	=	2mm)	showed	

a	ψ	=88.83	Pe	(N	tanks-in-series	=	Pe/2)	=	82.	 In	 fact,	 the	 low	

axial	 dispersion	 obtained	 at	 such	 a	 scale	 cannot	 be	 achieved	

without	similar	advanced	mixing	technology.	

	

Figure	 5:	 Examples	 of	 fitting	 experimental	 RTD	 curves	 (dashed	 lines)	 at	

increasing	oscillatory	frequency	to	the	axial	dispersion	model	(red	lines).	This	

allows	for	the	peclet	values	(inset	figure)	to	be	calculated.	The	peclet	values	

are	found	to	increase	to	a	maximum	value	of	82	and	plateau.	
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C.	Silver	nanoparticle	synthesis	

Silver	 nanoparticles	 (Ag-NPs)	 are	 of	 major	 interest	 for	 a	

manifold	of	applications,	such	as	photovoltaics
41
,	biological

42
	-	

and	chemical	catalysis
43
due	to	their	unique	optical

44
,	chemical

45
	

and	 electronical
46
	 properties.	 Consequently,	 the	 synthesis	 of	

Ag-NPs	in	continuous	flow	is	an	area	of	high	interest.
47
	

Ag-NPs	 show	 a	 general	 tendency	 to	 agglomerate,	 leading	 to	

fouling	 on	 the	 reactor	 walls.
48
	 Under	 continuous	 flow	

conditions,	this	causes	a	constant	change	 in	the	nature	of	the	

reactor	walls,	which	prevents	a	controlled	and	stable	formation	

of	 nanoparticles	 under	 steady	 state.	 Furthermore,	 the	

formation	 of	 Ag-NPs	 is	 strongly	 dependent	 on	 chemical	 and	

physical	 properties	 such	 as	 temperature,	 pH,	 stabilizer,	 all	 of	

them	 influencing	 the	 different	 kinetic	 processes	 typically	

responsible	 for	 this	 type	 of	 synthesis.
49-51

	 Hence,	 it	 is	 very	

challenging	 to	 generate	 monodisperse	 solutions	 of	 NPs	 with	

controlled	size.
52,	53

	 In	this	work,	3D	printed	mCOBR	was	used	

for	the	continuous	synthesis	of	Ag-NPs.	We	hypothesized	that	

the	 improved	mixing	observed	 in	 these	 reactors	 should	 allow	

the	 generation	 of	 small	 nanoparticles	 (NPs)	 with	 narrow	 size	

distribution	in	a	controlled,	stable	and	reproducible	fashion.								

The	platform	assembled	to	synthesise	Ag-NPs	 is	schematically	

shown	in	Figure	6A	and	a	picture	of	the	platform	can	be	found	

in	Figure	S6.	Two	HPLC	pumps	were	employed	to	pump	a	0.25	

mM	solution	of	AgNO3	in	CH3CN,	and	another	with	0.75	mM	of	

NaBH4	and	0.75	g	PVP	in	CH3CN.	A	programmable	syringe	pump	

equipped	with	 a	 5	mL	 syringe	was	 employed	 to	 generate	 the	

oscillation	 (0.1mm	 &	 40Hz)	 with	 an	 immiscible	 silicon	 oil	 to	

prevent	back	mixing	of	 the	 reagents.	A	mCOBR	and	a	 tubular	

reactor	were	employed	 to	generate	 the	nanoparticles.	All	 the	

experiments	 were	 performed	 at	 room	 temperature.	 The	

formation	of	the	Ag-NPs	was	monitored	by	UV-Vis	at	the	outlet	

of	the	reactor	as	a	function	of	time.		The	system	was	maintained	

under	 controlled	 pressure	 (4	 bar)	 employing	 a	 back-pressure	

regulator.		

	

	

Figure	6.	A)	Schematic	representation	of	the	platform	employed	to	synthesise	Ag-NPs	under	continuous-flow	conditions.	The	platform	was	composed	of	two	

HPLC	pumps,	a	programmable	syringe	pump,	a	3D	printed	reactor,	a	UV-Vis	spectrometer,	light	source	and	a	flow	cell	and	a	back	pressure	regulator.	B)	Time	

series	extinction	spectra	corresponding	to	the	Ag-NPs	synthesis	from	a	side	view	(above)	and	a	top	view	(below)	for	i)	a	mCOBR	and	ii)	tubular	reactor.	Spectra	

collected	every	10	seconds.	C)	Comparison	of	the	LSPR	profiles	as	a	function	of	time	in	a	mCOBR	and	a	tubular	reactor;	i)	Example	of	the	modelling	of	an	LSPR	

spectrum	(blue	line)	fitted	to	a	Lorentzian	function	(red	line).	This	was	repeated	to	spectra	from	the	mCOBR	(black	squares)	and	tubular	reactor	(red	dots)	at	

regular	time	intervals	(500	s).	The	values	of	 ii)	lmax	 iii)	 full	width	at	half	maximum	(FWHM)	and	iv)	maximum	absorption	plotted	as	a	function	of	time	are	

compared	for	both	reactor	configurations.	D)	TEM	images	and	histograms	showing	the	particle	size	distribution	of	the	Ag-NPs	generated	in	the	mCOBR	(left)	

and	in	the	tubular	reactor	(right).	Both	samples	taken	at	90	min	time.	
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The	synthesis	of	Ag-NPs	was	run	for	100	minutes	at	a	combined	

flow	 rate	 of	 2	mL	min
-1
	with	 the	 tubular	 reactor	 and	mCOBR	

devices.	In	the	mCOBR	the	third	inlet	allows	for	oscillation	to	be	

imposed	on	the	flow	of	the	reagents.	The	extinction	spectra	as	

a	 function	of	 time,	 after	 reaching	 the	 steady	 state,	was	more	

stable	 in	 the	mCOBR	compared	 to	 the	 tubular	 reactor,	where	

the	 absorption	 was	 increased	 during	 the	 experiment	 (Figure	

6B).	 The	 spectra	were	 analysed	 in	more	 detail	 to	 get	 further	

insights	into	these	observations.		

In	the	first	place,	it	is	worth	mentioning	that	the	NPs	synthesized	

under	oscillatory	conditions	showed	a	small	shoulder	at	385	nm	

(Figure	6Ci),	albeit	being	less	pronounced	in	a	tubular	reactor.	

This	could	be	due	to	dipole-dipole	interaction	of	NPs	or	solvent	

polarisation.
44
	It	is	well	known	that	the	UV-vis	spectra	of	Ag,	Au	

and	 Cu	 nanoparticles	 can	 be	 described	 as	 a	 lorentzian	 type	

function,	where	 the	width	describes	 the	 size	distribution,	 the	

maximum	absorption	the	average	size	and	the	intensity	of	the	

absorption	the	concentration	of	the	formed	NPs.
54
	Hence,	the	

spectra	 acquired	were	 fitted	 to	 a	 lorentzian	 function	 and	 the	

characteristic	 parameters	 were	 plotted	 against	 time.	 Initially,	

until	 the	steady	state	was	achieved,	both	tubular	and	mCOBR	

reactors	showed	relatively	broad	particle	size	distributions	(see	

Figure	 S7).	 After	 the	 steady	 state	 was	 established,	 mCOBR	

showed	a	remarkable	stability,	evidenced	by	a	stable	plasmon	

resonance	at	approximately	413	nm	with	a	constant	value	of	full	

width	at	half	maximum	(FWHM)	 	of	 ca.	72	nm	and	maximum	

absorption	(see	Figure	6	ii-iv,	black	squares).	On	the	other	hand,	

in	the	tubular	reactor,	lmax	increased	from	410	nm	to	417	nm,	

while	an	almost	linear	shift	from	82	nm	to	110	nm	in	FWHM	was	

observed	after	2000	s.	This	indicated	an	increase	in	particle	size	

and	size	distribution	with	time.	Furthermore,	the	concentration	

of	 the	NPs	 synthesized	under	mCOBR	 seemed	more	 constant	

than	 in	 a	 tubular	 reactor	 as	 indicated	by	 the	 total	 absorption	

(Figure	6C	iv).	The	increase	of	absorbance	in	the	tubular	reactor	

can	be	associated	to	scattering	from	the	nanoparticles	due	to	a	

larger	 particle	 size,	 broader	 particle	 size	 distribution	 and	 less	

regular	 patterns.	 The	 improved	 results	 obtained	 with	 the	

mCOBR	can	be	explained	by	an	 improved	mixing	and	reduced	

fouling	 leading	 to	 more	 stable	 reaction	 conditions.	 A	 visual	

analysis	 of	 the	 different	 reactors	 clearly	 indicates	 a	 much	

reduced	amount	of	 fouling	 in	the	mCOBR	as	compared	to	the	

tubular	 reactor	 (Figure	 S8).	 The	 production	 of	 silver	

nanoparticles	in	the	mCOBR	was	run	for	a	further	100	minutes	

to	 assess	 the	 long	 term	 stability.	 The	 results	 obtained	 were	

consistent	with	the	previous	time	series	without	any	apparent	

change	 in	 the	 UV-Vis	 spectra	 and	 no	 visual	 changes	 in	 the	

deposition.	

The	 analysis	 of	 the	 UV-Vis	 spectra	 for	 both	 reactor	

configurations	was	 supported	by	means	of	TEM,	using	a	 JEOL	

2000FX	 operated	 at	 200kV.	 TEM	 images	 displayed	 a	 narrow	

distribution	of	Ag-NP	with	a	particle	size	of	5.0	nm	±	1.2	nm	for	

the	NPs	prepared	under	oscillatory	conditions	(Figure	6D,	left).	

The	 NPs	 present	 of	 evenly	 spherical	 structure	 and	 small	

amounts	of	agglomerates	can	be	observed	(See	Figure	6D,	left).	

However,	Ag-NP	prepared	in	a	traditional	tubular	reactor	tend	

to	form	more	polydisperse	solutions	with	greater	proportion	of	

agglomerates,	 resulting	 in	particles	 sizes	of	 8.3	nm	±	3.0	 (see	

Figure	6D,	 right).	 In	 fact,	NPs	obtained	 from	a	 tubular	 reactor	

were	not	of	uniform	spherical	structure,	see	SI,	Figure	S9.	It	 is	

important	 to	 emphasise	 that	 the	 narrower	 silver	 particle	 size	

and	reduced	 fouling	observed	 is	as	a	 result	of	both	 the	micro	

and	macro	mixing	effects	 created	by	 the	 interaction	between	

the	fluid	oscillation	and	the	baffles	in	the	flow	channel.	

The	 crucial	 role	 of	 oscillation	 was	 proven	 by	 repeating	 the	

synthesis	 in	 a	 baffled	 reactor	 operated	 without	 oscillation.	

Under	 these	 conditions,	 unstable	 Ag-NP	 were	 formed	 and	 a	

colour	 change	 of	 the	 samples	 was	 observed	 (SI,	 Figure	 S10).	

Furthermore,	 TEM-measurements	 indicated	 a	 high	 poly	

dispersity	of	 the	sample	and	consequently	 the	sample	cannot	

be	described	by	a	Gaussian	distribution	(see	SI,	Figure	S10).		The	

excessive	 silver	 deposited	 on	 the	 walls	 of	 the	 reactor	 was	

removed	 by	 carefully	 flushing	 the	 reactor	 with	 strong	 acids	

(aqua	 regia)	 followed	 by	 extensive	 washing	 with	 deionised	

water.	 The	 reactors	 recovered	 the	 original	 aspect.	 However,	

upon	reutilisation,	a	shift	in	the	plasmon	of	resonance	of	the	Ag-

NPs	to	425	nm	was	observed	(Figure	S11),	presumably	due	to	

modifications	 in	 the	 nature	 of	 the	 polymer	 material	 at	 the	

surface.		

Conclusions	

The	possibility	of	manufacturing	advanced	reactors	employing	

3D	printing	 has	 been	demonstrated	 in	 this	work.	 In	 this	way,	

miniaturised	continuous	 flow	oscillatory	baffled	reactors	have	

been	manufactured	employing	 low	cost	SLA	machines	 for	 the	

first	time.	The	high	resolution	of	the	printer,	coupled	with	the	

satisfactory	 solvent	 compatibility	 of	 the	 photopolymers	

employed,	enabled	the	development	of	reactors	with	advanced	

features,	 such	 as	 regularly	 spaced	 and	 geometry	 controlled	

baffles	by	simple	CAD	design.	Furthermore,	the	direct	printing	

of	high	quality	threads	allowed	working	under	controlled	back	

pressure.	 Indeed,	 the	 mCOBR	 manufactured	 here	 showed	

improved	mixing	patterns	over	the	conventional	tubular	reactor	

employed	as	a	control.	The	frequency	and	amplitude	of	the	flow	

oscillation	was	 found	to	have	a	significantly	positive	effect	on	

the	 residence	 time	 distribution.	 Narrowly	 dispersed	 silver	

nanoparticles	 with	 very	 small	 particle	 size	 have	 been	
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manufactured	with	an	excellent	stability	over	time	due	to	the	

reduced	fouling	obtained	in	the	mCOBR.	

The	scale	of	the	reactors	demonstrated	in	this	work	bridges	an	

important	 gap	 between	 the	microfluidic	 laboratory	 scale	 and	

the	industrial	scale,	speeding	up	the	discovery	to	manufacturing	

process.	The	simplicity,	low	cost	and	rapid	uptake	of	3D	printing	

technology	 will	 enable	 the	 development	 of	 numerous	

applications	 of	 advanced	 reactor	 engineering	 in	 continuous-

flow	chemical	manufacturing.		
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