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ABSTRACT Arrhythmia is less frequent than a normal heartbeat in an electrocardiogram signal, and the

analysis of an electrocardiogram measurement can require more than 24 hours. Therefore, the efficient

storage and transmission of electrocardiogram signals have been studied, and their importance has increased

recently due to the miniaturization and weight reduction of measurement equipment. The polygonal approxi-

mationmethod based on dynamic programming can effectively achieve signal compression and fiducial point

detection by expressing signals with a small number of vertices. However, the execution time and memory

area rapidly increase depending on the length of the signal and number of vertices, which are not suitable for

lightweight and miniaturized equipment. In this paper, we propose a method that can be applied in embedded

environments by optimizing the processing time and memory usage of dynamic programming applied to the

polygonal approximation of an ECG signal. The proposed method is divided into three steps to optimize

the processing time and memory usage of dynamic programming. The first optimization step is based on

the characteristics of electrocardiogram signals in the polygonal approximation. Second, the size of a data

bit is used as the threshold for the time difference of each vertex. Finally, a type conversion and memory

optimization are applied, which allow real-time processing in embedded environments. After analyzing the

performance of the proposed algorithm for a signal length L and number of vertices N , the execution time

is reduced from O(L2N ) to O(L), and the memory usage is reduced from O(L2N ) to O(LN ). In addition,

the proposed method preserve a performance of fiducial point detection. In a QT-DB experiment provided

by Physionet, achieving values of -4.01 ± 7.99 ms and -5.46 ± 8.03 ms.

INDEX TERMS Dynamic programming, electrocardiogram, embedded system, fiducial point, optimization,

polygonal approximation, signal compression.

ABBREVIATION

The following abbreviations are used in this manuscript:

ECG electrocardiogram

PA polygonal approximation

DP dynamic programming

I. INTRODUCTION

With the development of life science and technology, the per-

centage of deaths from heart disease is gradually increasing

The associate editor coordinating the review of this manuscript and

approving it for publication was Donghyun Kim .

as society ages due to the increased average life expectancy.

Research on electrocardiogram (ECG) signals is actively

being carried out for the early diagnosis of heart disease,

especially since the development of hardware has resulted

in the miniaturization and weight reduction of equipment [1]

and the size of the related market is gradually increasing. As a

result, various studies have been being conducted on real-time

analysis of ECG signals in embedded environments [2].

ECG signals are electronically converted from the depolar-

ization and repolarization of the atria and ventricle [3], and

P-wave, QRS complex and T-wave waveforms are periodi-

cally repeated [4], [5]. Since arrhythmia causes changes in the
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shape of the waveform, it is possible to detect arrhythmia by

analyzing thewaveform’s characteristic values [6]. The onset,

peak, and offset of the P-wave, QRS complex, and T-wave

waveforms are called the fiducial points of the waveform.

Because these points are used to acquire the feature values

of the waveform, the detection of a correct fiducial point is

the basis for ECG signal analysis [7]–[10].

Fig. 1 shows the fiducial points and feature values of each

waveform.

FIGURE 1. The fiducial points and features of an ECG signal.

Arrhythmia is rare and appears to be nonperiodic in ECG

signals. It takes a long time to obtain enough arrhythmia data

for an accurate analysis of a heart disease, sometimes more

than 24 hours. ECG signals are sampled using high frequen-

cies above 100 Hz, so a vast amount of data is recorded

in a short time. Therefore, signal compression techniques

are required to effectively store and transmit the data. How-

ever, conventional signal compression techniques, such as

the Fourier transform, Walsh transform [11], wavelet trans-

form [12], [13] and Karhunen-Loeve transform [14], result

in loss in during the data compression process. In particular,

signal distortion causes the nondetection or false detection of

the fiducial point [15].

Polygonal approximation (PA)-based fiducial point detec-

tion [16] has been proposed as a method to express an ECG

signal as a small number of vertices to determine the fiducial

points. The advantage of this approach is that ambiguous

fiducial points can be represented as vertex points using

features that are boundaries between the baseline area, with

small amplitude changes, and the waveform area, with large

amplitude changes. Fig. 2 illustrates the PA in which ambigu-

ous areas are simplified by vertices.

As shown in Fig. 2(b), the number of candidates of the

fiducial point is decreased, and the features of the vertices

are highlighted.

The PA not only enables an effective signal compression

but also emphasizes the feature value with the fiducial point

included as the vertex; it makes it easier to detect the fiducial

FIGURE 2. Illustration of the PA: (a) the existing method and (b) the PA.

FIGURE 3. Result of the PA for an ECG signal: (a) result in the R-R interval
and (b) zoom-in of the black box region in (a).

point and has the advantage of not requiring a signal restora-

tion. Fig. 3 is a result of PA in the ECG signal.

Approximately 300 samples of the signal are compressed

by the PA into approximately 30 vertices. The onset, peak,

and offset of the waveform are well represented as vertices,

and the small approximation error maintains the shape infor-

mation of the signal well.

However, the PA has difficulty in real-time processing

under low-power and low-capacity constraints, such as in an

embedded environment, because the optimization technique

is based on the dynamic programming (DP) method [17],

which requires more memory area and a longer execution

time with an increase in the signal length and number of

vertices.

In addition, the method used to record the time information

of each vertex is inefficient. The number of approximated

vertices is small, but the time differences between the vertices

are irregular. Therefore, additional memory is required to

store the vertex time information. In particular, ECG sig-

nals require a long measurement time, which significantly

increases the number of bits allocated to the time information,

resulting in a lower compression ratio.

To solve this problem, in this paper, we propose an

improved PA method that enables real-time processing in an

embedded environment by optimizing the DP based on the

characteristics of ECG signals.

Fig. 4 compares the complexity problem of conventional

DP and the improved result of the proposed DP method in

this paper. The time and space complexity of the algorithm

are greatly reduced.
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FIGURE 4. The problem of the conventional DP method and the improved
performance of the proposed DP method: (a) the execution time of
conventional DP (O(L2N)), (b) memory usage of conventional DP
(O(L2N)), (c) execution time of the proposed DP method (O(L)),
and (d) memory usage of the proposed DP method (O(LN)).

The proposed method consists of three stages. First,

the computation and memory usage are optimized based on

the characteristics of ECG signals and a bottom-up operation.

Then, the time information of a vertex is stored as the time

difference between the vertices with a given time threshold.

In this step, the time-difference threshold improves the per-

formance time by reducing theDP computation. Additionally,

the threshold minimizes the memory usage through the type

conversion of data and a memory optimization during the

calculation.

The composition of this paper is as follows. First, the exist-

ing DP method and the problem are briefly described in

Section II, and each step in the DP optimization is described

in Section III. In Section IV, the performance of the optimized

DP method is verified through experiments in an embedded

environment. Finally, we conclude the paper in Section V.

II. REVIEW OF THE EXISTING METHODS

A. CONVENTIONAL POLYGONAL APPROXIMATION

The algorithm flow of the PA for an input ECG signal is

summarized as follows, and Fig. 5 shows the results of each

step.

1) The R-R section of the input signal is separated.

2) After calculating the curvature of the separated R-R

section, the curvature-based PA [18] is applied to select

the initial vertices. However, many of the fiducial

points, specifically the onsets and offsets, are not rep-

resented by vertices due to their similar features with

the samples around them and their low curvature.

3) The sequential PA [19] is applied to the interval

between each initial vertex to select additional vertices.

The fiducial points are well expressed through the addi-

tional vertices, but the large error is a problem.

FIGURE 5. The results of the PA according to the algorithm flow for
the (a) curvature-based PA, (b) sequential PA, (c) optimization, and
(d) zoom-in of the black box region in (c).

4) DP is applied to the additional vertices to optimize their

positions.

5) Steps 2–4 are repeated to proceed with the PA for the

entire input signal.

B. DYNAMIC PROGRAMMING

In the PA, DP optimizes the location information of the

vertices selected in the sequential PA. This not only mini-

mizes the error between the approximated signal and the input

signal but also helps to represent the fiducial point as a vertex,

which is the boundary point separating the baseline region

from the waveform region.

DP is a global optimization technique in which the optimal

path between two points is optimized based on the optimal

principle of Bellman as the global optimal path between any

two points on the global optimal path. The top-down recursive

approach simplifies and optimizes the problem, especially by

using memoization to remember the computational results,

which eliminates redundant operations to enable a high-speed

global optimization. In this case, the size of the cost matrix

and path matrix required for memoization is O(L2N ) when

L is the length of the input signal and N is the number of

vertices.

Algorithm 1 shows the existing DPmethod using the recur-

sive method.

Fig. 6 represents the cost matrix for DP. Ck (i, j) represents

the cost optimization result for k vertices in the partial sig-

nal for the samples from i to j, and C0 is the base matrix,

which represents the approximation error if there is no vertex

inside the partial signal and a practical error operation is

performed.

For a signal with length L, the optimization of the partial

signal from i to j, including the k vertices, is recursively
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Algorithm 1 Conventional DP

1 Goal: Calculate CN (1,L)

2 S : input signal

3 L : length of the signal

4 N : number of vertices

5 Ck : cost matrix of size L × L, k = 1, · · · ,N

6 C0 : base matrix of size L × L

7 R : range of vk

8 % By using the recursive function DP, CN (1,L) is

calculated

9 CN (1,L) = DP(1,L,N )

10 Function: Ck (i, j) = DP(i, j,N )

11 if N is 0 then

12 if C0(i, j) is ∞ then

13 Calculate the linear approximation error

between i to j and save as C0(i, j)

14 else

15 Return C0(i, j) % Memoization

16 else

17 if C0(i, j) is ∞ then

18 R = [1, · · · ,L]

19 Ck (i, j) = min
vk∈R

{DP(i, vk ,N − 1) + DP(vk , j, 0)}

20 else

21 Return Ck (i, j) % Memoization

FIGURE 6. The composition of the cost matrix for DP.

computed as (1).

Ck (i, j) = min
vk∈[1,··· ,L]

(Ck−1(i, vk ) + C0(vk , j)), (1)

where vk denotes the position of the k
th vertex.Ck (i, j) divides

the partial signal including k−1 vertices and the partial signal

that does not include vertices based on vk and stores the result

inCk (i, j) when the sum of the partial signal is at its minimum.

At this time, the path vk is stored in the path matrix Pk (i, j),

as shown in (2).

Pk (i, j) = argmin
vk∈[1,··· ,L]

(Ck−1(i, vk ) + C0(vk , j)) (2)

Therefore, the DP method using memoization has a disad-

vantage inmemory usage is needed to record the cost and path

matrices. Fig. 7 shows the execution time of the conventional

DP method according to the signal length and number of

vertices.

FIGURE 7. The execution time of conventional DP.

As shown in Fig. 7, it is difficult to apply real-time process-

ing with conventional DP in embedded environments due to

the rapid increase in the execution time with the signal length

and number of vertices.

III. OPTIMIZATION OF DYNAMIC PROGRAMMING

FOR AN ECG SIGNAL

In this paper, the proposed improvement for the real-time

application ofDP in embedded environments has three stages.

First, the calculation and memory usage are optimized based

on the characteristics of ECG signals and the PA, and then

a bottom-up method is performed to improve the process-

ing time and memory usage instead of a top-down method.

The time difference between vertices is used to effectively

record a vertex’s time information, which further improves

the processing time by reducing the computational range of

the cost matrix according to the threshold NBit for the time

difference. Here, NBit is a number determined by the number

of allocated bits. For example, when the number of allocated

bits is 3, NBit is 8 = 23. Finally, a conversion of the data

type and an adaptive determination of the weight value are

proposed to optimize the memory usage. Then, by modifying

the bottom-up method’s computational sequence, the mem-

ory optimization of the base matrix is performed to minimize

the memory usage.

A. CHARACTERISTICS OF THE POLYGONAL

APPROXIMATION OF AN ECG SIGNAL

As shown in Fig. 7, DP increases the amount of memory and

operations required according to the signal length and number

of vertices. However, the characteristics of the PA for ECG
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signals can substantially reduce the memory required for the

operation.

The approximation error in ECG signal does not change

when the signal is inverted, and the cost matrix can be

expressed as (3):

Ck (i, j) = Ck (j, i) (3)

Thus, the cost matrix is a symmetric matrix, and we denote

that the cost matrix has a symmetry characteristic. The area in

which the operation cost is actually required in the cost matrix

becomes the area of the upper triangular matrix, as shown

in Fig. 8.

FIGURE 8. Decrease in the memory usage in the cost and base matrices
according to the symmetry characteristic.

In addition, the symmetry is enhanced by the characteristic

in the PA applied to the ECG signal. The ECG signal is

inputted over time, and time information at each vertex of the

PA is monotone increasing; we denote that the vertices of the

PA have amonotone characteristic. The monotone increasing

of time information of each vertex can be expressed as (4):

x1 = xv0 < xv1 < · · · < xvN < xvN+1 = xL (4)

where xi and xvk denote the time information of the ith sample

and k th vertex, respectively, and N denotes the number of

vertices.

Therefore, the range of vk in (1) is computed only between i

and vk+1, and (1) is modified as shown in (5):

Ck (i, j) = min
i<vk<vk+1

(Ck−1(i, vk ) + C0(vk , j)) (5)

In addition, for the ECG signal, DP is applied to the signal

inside the initial vertices and always starts and ends at the

first and last samples of the input signal, which are the initial

vertices. Therefore, only the first row of each layer of the cost

matrix, except the base matrix, is used for the computation.

That is, the computational component used for Ck (i, j) in the

cost matrix is always i = 1, and the existing cost matrix

Ck (i, j) is expressed as C(k, j), as shown in (6).

C(k, j) = min
1<vk<j

(C(k − 1, vk ) + C0(vk , j)) (6)

The modified cost matrix can be represented as shown

in Fig. 9. Accordingly, the improved algorithm can be

expressed as Algorithm 2. Since the path matrix can be

expressed in the same form, we can confirm that the spatial

complexity improves from O(L2N ) to O(L2).

FIGURE 9. Decrease in the memory usage in the cost and base matrices
according to the monotone characteristic.

Algorithm 2 Advanced DP by Using the Characteristics

of an ECG Signal

1 Goal: Calculate C(N ,L)

2 S : input signal

3 L : length of the signal

4 N : number of vertices

5 C : cost matrix of size N × L

6 C0 : base matrix of size L × L

7 R : range of vk

8 % Initialize the base matrix

9 foreach i from 1 to L do

10 foreach j from i+ 1 to L do

11 Calculate the linear approximation error

between i to j and save as C0(i, j)

12 % Calculate the first row of cost matrix

13 foreach j from 3 to L − N + 1 do

14 R = [2, · · · , j− 1]

15 C(1, j) = min
vk∈R

{C0(1, vk ) + C0(vk , j) }

16 % Calculate the second to N − 1th row of cost matrix

17 foreach d from 2 to N − 1 do

18 foreach j from 2 + d to L − N + d do

19 R = [d + 1, · · · , j− 1]

20 C(d, j) = min
vk∈R

{C(d − 1, vk ) + C0(vk , j) }

21 % Calculate C(N ,L)

22 R = [N + 1, · · · ,L − 1]

23 C(N ,L) = min
vk∈R

{C(N − 1, vk ) + C0(vk ,L) }

B. TIME CONSTRAINT BETWEEN VERTICES

The PA transmits the information at the vertices, which

also has the effect of signal compression. The existing ECG
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signals are periodically sampled signals, but the vertices of

the approximated signals are chosen nonperiodically, which

results in the need to store additional time information. How-

ever, ECG signals generally involve a long-term measure-

ment, resulting in a larger number of bits being needed to

express the time information, which undermines the signal

compression performance. Especially in embedded environ-

ments, these problems need to be solved because an improved

signal compression performance is necessary to minimize the

power consumption.

For this purpose, we suggest storing the time information

of the current vertex as the time difference from the pre-

vious vertex. The current vertex’s time information can be

computed by accumulating the time difference information

based on the initial vertex’s time information. In general,

the time difference between vertices is approximately 30 sam-

ples (based on 250 Hz signals), so allocations of 5 bits in

size will result in a sufficient time information expression.

However, when using the simplified form of an ECG signal,

the number of vertices decreases, resulting in a sharp increase

in the time difference between vertices. To avoid such an

exceptional case, we add a time constraint to the sequential

PA and DP steps.

First, during the PA step, the additional vertex selection

stage using the sequential PA is improved. The sequential

PA is a technique that is used to add vertices, with previ-

ous samples added as vertices if the approximation error is

larger than a threshold. At this time, when adding a vertex,

a condition is added such that the time difference between the

fixed point and the vertex does not exceed the threshold value

NBit corresponding to the given number of bits. Additionally,

the DP method must be modified to maintain the time differ-

ence threshold in the optimization process. By modifying the

search interval of the k th vertex in (5) as (7), the optimiza-

tion value is calculated only when the interval between the

k th vertex and the k + 1th vertex does not exceed NBit :

Ck (i, j) = min
ThrL<vk<vk+1

(Ck−1(i, vk ) + C0(vk , j)), (7)

where ThrL = max(i, vk+1 − NBit ).

Since the time difference between the two vertices is lim-

ited by NBit , the computation for the base matrix (C0) is

reduced, as shown in Fig. 10.

C. MEMORY OPTIMIZATION

1) TYPE CONVERSION

The result of the approximation error calculation usually

includes a decimal point, so a data type such as a float or

a double is used. We propose to reduce the memory to less

than half by converting a 32-bit or 64-bit data structure to a

16-bit unsigned int type. However, when a simple type cast is

applied, decimal deviations of less than 0 are recognized as a

difference of 0 or 1 in the quantization process, so a normal

error calculation cannot be applied. To solve this problem,

it is necessary to consider appropriate weights. Small weights

may still cause a large distortion of the matrix due to the

FIGURE 10. Decrease in the memory usage in the base matrix according
to the threshold of time difference NBit .

FIGURE 11. Calculation of the maximum error limit and determination of
the scaling weight ω.

small deviation, and large weights may cause the matrix

to exceed the limit of the 16-bit unsigned int type–65,535,

in this case. Each component of the cost matrix represents

an approximation error, but the maximum component cannot

be obtained until the cost matrix is completed. In this study,

we suggest a scaling weight ω based on the maximum error

limit of the signal. The maximum error limit is determined as

shown in Fig. 11.

The two points with the maximum distance difference

from the straight line connecting the two ends of the signal

are obtained in the + and - directions. Then, the rectangles

passing through both the end points of the signal and the two

points with the maximum distance difference are obtained.

The area of the obtained rectangle becomes the upper limit of

the approximation error. The area of the rectangle is used as

the maximum error to determine the scaling weight ω.

By appropriately determining the weights, it is possible

to greatly reduce the memory usage while maintaining the

deviation between the data in the type conversion.

2) MEMORY OPTIMIZATION

The existing bottom-up operation computes the base matrix

and then computes the cost matrix row-by-row. Since each

row of the cost matrix uses the previous row of the cost matrix
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FIGURE 12. Minimizing the base matrix in a row-wise bottom-up
operation.

in the computation process, it can be reduced to a memory

space of two rows in size, and the base matrix can compress

the column length, as shown in Fig. 12

However, the base matrix, which accounts for most of

the memory, will not be significantly improved, because the

memory usage reduction rate is not large. To improve the

effective memory usage, we propose to reorganize the order

of the bottom-up operations. To obtain the components of

the cost matrix C(k, j), the k − 1th row of the cost matrix

and the jth column of the base matrix are required. In other

words, the jth column of the base matrix is only used when

calculating the jth column of the cost matrix. Therefore, when

the cost matrix is computed in units of columns instead of in

units of rows, the base matrix can be represented by a column

with a size of L × 1 instead of a matrix with a size of L × L.

Algorithm 3 shows a DP scheme in which the memory

is optimized by applying an operation in units of columns.

Additionally, cost matrix can be minimized to NBit × 1 in

size, as shown in Fig. 13.

FIGURE 13. Column-wise bottom-up operation and minimized base
matrix.

As shown in Fig. 12, additional memory can be reduced

by compressing the upper triangular matrix component of the

cost matrix into a trapezoid shape. Therefore, the sizes of the

cost matrix and base matrix are reduced from L × L × N

Algorithm 3 Advanced DP by Optimizing the Memory

Usage

1 Goal: Calculate C(N ,L)

2 S : input signal

3 L : length of the signal

4 N : number of vertices

5 C : cost matrix of size N × L

6 C0 : base matrix of size NBit × 1 column vector

7 CT : temporary row vector used in the first row of the

cost matrix

8 R : range of vk

9 % Calculate the CT
10 foreach j from 3 to 1 + min(NBit ,L − N − 1) do

11 Calculate the linear approximation error between 1

to j and save as CT (j− 1)

12 % Calculate the cost matrix until L − 1th column

13 foreach j from 3 to L − 1 do

14 % Update the base matrix according to jth column of

cost matrix

15 foreach i from max(1, j− NBit ) to j− 1 do

16 Calculate the linear approximation error between

i to j and save as C0(i− (j− NBit ) + 1, 1)

17 % Calculate each row of jth column of cost matrix

18 foreach d from max(1, j−W − 1) to

min(N − 1, j− 2) do

19 if d is 1 then

20 R = [max(2, j− NBit ), · · · , j− 1]

21 C(1, j) =

min
vk∈R

{CT (vk − 1) + C0(vk − j+ NBit + 1) }

22 else

23 R = [max(d + 1, j− NBit ), · · · , j− 1]

24 C(d, j) =

min
vk∈R

{C(d − 1, vk ) + C0(vk − j+ NBit + 1) }

25 % Update the base matrix according to L th column of

cost matrix

26 foreach i from max(1,L − NBit ) to L − 1 do

27 Calculate the linear approximation error between i to

L and save as C0(i− (L − NBit ) + 1)

28 % Calculate C(N ,L)

29 R = [max(d + 1,L − NBit ), · · · ,L − 1]

30 C(N ,L) = min
vk∈R

{C(N −1, vk )+C0(vk − (L−NBit )+1)}

and L × L to N ×W and NBit × 1, respectively, through the

proposed memory improvement of DP.

IV. EXPERIMENT AND ANALYSIS OF THE RESULTS

A. EMBEDDED SYSTEM

For the experiment with the proposed algorithm, a Raspberry

Pi 3 Model B is used for wireless transmission with a

162856 VOLUME 7, 2019
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FIGURE 14. Raspberry Pi circuit with Healthy Pi and a power debugger.

microcontroller unit (MCU), and Healthy Pi v3 is used as the

sensor, configured as shown in Fig. 14.

Healthy Pi v3 is well designed to measure ECG signals

using 3-lead electrodes, and the Raspberry Pi is also compat-

ible with Healthy Pi. A power debugger is used to measure

the change in the power consumption of the proposed algo-

rithm. The data used in the experiments are roughly divided

into three types. First, an experiment is carried out with a

signal lasting 10 seconds acquired at a sampling frequency

of 125 Hz in the embedded system. To emphasize the excel-

lence of the proposed algorithm, the same experiment is also

performed on a MIT-BIH ADB record [20]. The MIT-BIH

ADB is recorded for approximately 30 minutes at a high

frequency of 360 Hz. Finally, an experiment is conducted on

the QT-DB of Physionet [21] in the same manner, and the

results are compared to verify that the fiducial point detection

performance of the conventional PA is preserved during the

improvement process. Each signal used in the experiment is

preprocessed by applying a 1-25 Hz Butterworth bandpass

filter to suppress the baseline wander (0.15 up to 0.3 Hz)

and power line interference (30 Hz or 60 Hz). The polygonal

approximation is performed after detecting the R-peak in the

filtered signal [7].

B. TIME COMPARISON

This section provides experimental results on data obtained

directly at a 125 Hz sampling frequency and on MIT-BIH

ADB record obtained at a 360 Hz sampling frequency to

confirm the improved performance in an embedded system.

Fig. 15 shows the results of a detailed recording of the varia-

tions in the execution time according to the improved DP for

each of the initial vertex intervals within one R-R interval in

the signal with a 125 Hz sampling frequency in the embedded

system.

In the case of interval 8, the length of the interval is

10 and the number of vertices is 0, but in the experiment of

Section III-C, the execution time increases because the vertex

is added by the time difference threshold of NBit = 8. How-

ever, because there are more intervals where the execution

time is reduced and the reduction ratio is also large, the overall

execution time is greatly reduced.

FIGURE 15. Processing time for the data measured at 125 Hz in an
embedded system.

FIGURE 16. Processing time for the MIT-BIH ADB record at 360 Hz.

The experimental results for the MIT-BIH ADB record

with a sampling frequency of 360 Hz are shown in Fig. 16.

In this way, the execution time is improved through the

improvement of the DP. The longer the input signal and the

larger the number of vertices, the greater the improvement in

the execution time is, as in the case of interval 7 of Fig. 15

and interval 5 of Fig. 16.

C. MEMORY COMPARISON

Regarding the memory usage, the initial space complexity

is O(L2N ) but is improved to O(L2) and finally to O(NL),

as shown in Sections III-A and III-C.2.
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FIGURE 17. Memory usage of the MIT-BIH ADB record for each RR
interval.

Fig. 17 shows the memory usage in applying the improved

DP method in Fig. 16 when the transform is added and after

the final optimization.

The existing DP method increases the memory usage

as the interval length increases and cannot be applied in

a low-capacity embedded environment due to the memory

overflow. However, as a result of the proposed improve-

ment to the DP method, the memory usage of the first

interval, which has the largest memory usage, is greatly

reduced from 5,141 KB to 14 KB. Thus, the memory

usage of DP is greatly improved, and the memory usage

can be maintained in a stable manner since the mem-

ory usage for a long interval is reduced more, as shown

in Fig. 17.

D. POWER CONSUMPTION

As shown in the previous experiment, the proposed DP

improvement can greatly reduce the execution time andmem-

ory usage. This can be expected to reduce the power con-

sumption, and we conduct an experiment as shown in Fig. 18

for the same data used in Fig. 15.

As shown in Fig. 18, the improved DP reduces the total

power consumption due to the reduction in the execu-

tion time. Thus, we confirm that the proposed DP method

can be effectively applied even in a low-power embedded

environment.

E. SUMMARY OF THE EXPERIMENTS

Fig. 19 summarizes the processing time and memory usage

performance according to the DP improvement stages.

Regarding the change in the memory usage, the spatial

complexities of the cost matrix and base matrix are O(L2N )

and O(L2), respectively, but the proposed algorithm sig-

nificantly reduces the complexities to O(NL) and O(NBit ),

respectively. In the case of the execution time, the time

complexity of conventional DP with a top-down operation

is O(L2N ), which is similar to the spatial complexity of the

cost matrix. In Sections III-A and III-B, however, the time

complexities of O(L2) and O(NBitL) corresponding to the

memory usage of the base matrix are shown. Since NBit is

given as a constant, the execution time is not influenced by

the number of vertices, as shown in Fig. 19. In Section III-C,

the type conversion and the operation order are changed to

optimize the memory usage. Since the amount of opera-

tion does not change, the execution time result is the same.

Regarding the power consumption, a large amount of power

is required, because the execution time andmemory usage are

large. However, the power consumption is reduced due to the

reductions in the execution time and memory usage.

Fig. 20 shows a graph of the execution time and mem-

ory usage changes for each RR interval of the data used

in Fig. 17.

For interval 1, the execution time and memory usage

decrease by 95.44% and 97.08%, respectively. Comparing the

results of Sections III-A based on the characteristics of the

ECG signal, the execution time and memory usage decrease

by 89.54% and 90.67%, respectively.

Fig. 21 shows the experimental results comparing the mea-

suredmemory usage and processing time for each RR interval

in a 30-minute MIT-BIH ADB record consisting of 2271 RR

intervals.

As shown in Fig. 20 and Fig. 21, the proposed method

dramatically improves the DP in terms of the execution time

and memory area.

FIGURE 18. Power consumption of Fig. 15: (a) conventional DP, (b) the DP method in Section III-A, and (c) the DP method in Section III-B.
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FIGURE 19. Performance comparison with the improved DP method.

FIGURE 20. Comparison of the changes in the execution time and
memory usage of DP in Fig. 17: (a) execution time and (b) memory usage.

F. FIDUCIAL POINT DETECTION

Finally, to verify the effects on the detection of the fiducial

points, we apply the improved PA and compare the detec-

tion results when applying the same fiducial point-detection

method. A fiducial point is detected by analyzing three fea-

ture values: the amplitude difference (A), time difference (T ),

and angles with neighboring vertices (θ), as shown in Fig. 22.

FIGURE 21. Comparison of the changes in the execution time and
memory usage of DP in 2271 heartbeats of the MIT-BIH ADB record:
(a) total results and (b) zoom-in of the green box region in (a).

The experiment is conducted in the same way as with the

existing PA for QT-DB provided by Physionet, and the results

are shown in Table 1.

The experimental results show no meaningful error in

the fiducial point detection, and the conventional DP

method can be sufficiently replaced with the improved DP

method.
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FIGURE 22. Three features of each vertex.

TABLE 1. QRS segmentation performance comparison in the QT-DB.

V. CONCLUSION

The PA requires a long execution time and a large memory

usage during the application of DP. It is inefficient to apply

in embedded environments. Accordingly, in this paper, DP is

improved in three steps to enable real-time application in

embedded environments. In the first step, the characteristics

of the PA are effectively analyzed in ECG signals to ensure

that the DP performance is maintained while the execution

time and memory usage are improved. In the second step,

the time information at the vertex is expressed using the

time differences with the previous vertex, and time difference

thresholds are applied together. The second step significantly

improves the execution time while maintaining most of the

fiducial point detection performance, enabling a real-time

application in embedded environments. In the third step,

by determining the adaptive thresholds based on the maxi-

mum error when calculating the optimization errors, the error

is effectively scaled to maintain the error deviation in the

type conversion, enabling a stable memory improvement.

In addition, in the bottom-up operation, the size of the base

matrix is reduced significantly after replacing the row-by-

row operation of the cost matrix with a column-by-column

operation, which can operate stably even in an embedded

environment with a low memory capacity.

The proposed method can improve the performance by

effectively analyzing the characteristics of ECG signals and

the DP method for a one-dimensional signal. This result is

expected to be applicable not only to ECG signals but also to

similar one-dimensional signals. In particular, it is expected

that this approach will be useful for signal compression

and transmission in an application to signals such as photo-

plethysmography (PPG) and electroencephalography (EEG)

signals.
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