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ABSTRACT In this paper, we outline the historical evolution of RF and microwave design optimization

and envisage imminent and future challenges that will be addressed by the next generation of optimization

developments. Our journey starts in the 1960s, with the emergence of formal numerical optimization algo-

rithms for circuit design. In our fast historical analysis, we emphasize the last two decades of documented

microwave design optimization problems and solutions. From that retrospective, we identify a number of

prominent scientific and engineering challenges: 1) the reliable and computationally efficient optimization

of highly accurate system-level complex models subject to statistical uncertainty and varying operating or

environmental conditions; 2) the computationally-efficient EM-driven multi-objective design optimization

in high-dimensional design spaces including categorical, conditional, or combinatorial variables; and 3)

the manufacturability assessment, statistical design, and yield optimization of high-frequency structures

based on high-fidelity multi-physical representations. To address these major challenges, we venture into

the development of sophisticated optimization approaches, exploiting confined and dimensionally reduced

surrogate vehicles, automated feature-engineering-based optimization, and formal cognition-driven space

mapping approaches, assisted by Bayesian and machine learning techniques.

INDEX TERMS ANN, Bayesian, Broyden, CAD, cognition, design automation, EDA, features, Gaussian

process, Kriging, machine learning, multi-objective, multi-physics, optimization, Pareto, polynomial chaos,

sensitivity, space mapping, statistical, surrogate, tolerances, uncertainty quantification, yield.

I. INTRODUCTION

Formal numerical optimization procedures as applied to cir-

cuit design started in the 1960s [1], with RF and microwave

passive filter design being perhaps the most fertile application

area for the pioneering design optimization techniques [1].

That decade [2] saw the advent of several then-called heuris-

tic optimization methods relying solely on objective function

values, e.g., pattern search [2]. The 1970s followed with the

rapid adoption of powerful gradient-based optimization meth-

ods, typically based on quasi-Newton methodologies [2], [3],

where the underlying model exploits information contained

in available derivatives. By that time, automatic optimization

was identified as the most significant advance in microwave

CAD [4]. Design centering and tolerance-driven design en-

tered the microwave arena also in the 1970s [5]. Powerful

minimax algorithms emerged from the Technical University

of Denmark [6] in the 1970s and 1980s, consolidating quasi-

Newton gradient methods. Early applications involving a large

number of design variables and error functions include the

optimization of waveguide multiplexers for satellite appli-

cations [7], [8]. These nonlinear minimax algorithms have

stood the test of time, finding their way into modern com-

mercial design automation software. The early 1990s saw the

first industrial implementation of gradient-based, direct EM
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optimization applied to microwave filter design. Response

surface techniques involved interpolation, gradient estimation,

and on-the-fly database updates [9].

Discovered in 1993, published in 1994 [10], the space map-

ping concept surprised the engineering community. EM-based

optimization immediately took off when the first implementa-

tion demonstrated EM-validated design solutions obtained in

only a handful of full-wave EM simulations [10].

In 2002, Steer, Bandler, and Snowden [11] provided a solid

forecast for EM-based design optimization, predicting that

knowledge-based approaches would allow us to directly incor-

porate full-wave EM simulators into the linear and nonlinear

microwave design process [11].

Sailing from the historical evolution of microwave design

optimization, and with emphasis on the first two decades of

the current century, this paper highlights the most promising

current and future trends in advanced design optimization

techniques. In particular, we venture on projecting that space

mapping, machine learning, Bayesian, feature- and surrogate-

based, as well as cognition-driven approaches, will address

current and future challenges in optimizing RF and microwave

devices, circuits, and systems, including multi-objective and

multi-physics design optimization.

II. SPACE MAPPING, MACHINE LEARNING, AND

BAYESIAN APPROACHES: TOWARDS HIGH-FIDELITY

SYSTEM-LEVEL AND MULTI-PHYSICS DESIGN

OPTIMIZATION

Space Mapping (SM) is one of the most powerful and com-

putationally efficient optimization approaches for RF and mi-

crowave engineering. SM methods belong to the general class

of surrogate-based optimization (SBO) algorithms [12]. SBO

approaches are specialized for the efficient optimization of

computationally expensive objective functions [13]. A distinc-

tive feature of SM, reflected in its origin as clearly described

by its inventor [14], lies in its intriguing relationship to the

human cognition process.

Since its first appearance in 1994 [10], space mapping has

experienced an impressive evolution in terms of variations,

improvements, and engineering/scientific applications. Com-

prehensive reviews of the first generations of SM methods

for modeling and design optimization are available in [15]

and [16]. A specific review of SM-based optimization ex-

ploiting artificial neural networks is in [17]. An updated and

schematically summarized overview of the evolution of space

mapping is shown in Fig. 1 [18]. Clearly, the most recent

optimization techniques originating from the space mapping

concept are also the most sophisticated and robust formula-

tions. From those, feature-based and cognition-driven design

developments are perhaps the most promising techniques to

address future design automation challenges.

On a different perspective, a historical narrative of the orig-

inal, simplest, and most widely adopted space mapping algo-

rithmic approach to design optimization is in [18], where the

Broyden-based input space mapping algorithm, better known

as aggressive space mapping (ASM), is reviewed over more

FIGURE 1. Design optimization methods emerged from the space mapping
(SM) concept: aggressive SM [19]; hybrid ASM [20]; neural SM [21]–[23];
implicit SM [24]–[28]; neural inverse SM [29], [30]; output SM [31], [32];
linear inverse SM [33]–[36]; manifold mapping [37][39]; aggressive output
SM [40]; tuning SM [41]–[48]; adaptive response correction (ARC) [49],
[50]; shape-preserving response prediction (SPRP) [51], [52]; SM with
adjoint sensitivities [53], [54]; SPRP exploiting SM [55]; SPRP using adjoint
sensitivities [56], [57]; response features [58]–[61] (emerged from ARC and
SPRP); cognition-driven SM [62]–[65]; one-step ASM [66], [67].

than two decades of academic and industrial applications [68].

Significant successes include the ASM design of a 10-channel

dielectric resonator output multiplexer with 140 variables

[69].

Along with ASM, tuning space mapping (see Fig. 1) is

among the most intuitive approaches to SM-based design.

Tuning SM in its various manifestations of port tuning, has

demonstrated profound success in shortening the design cy-

cles for filter design [41]–[48], allowing filters to be tuned

with EM accuracy at circuit theory speed.

Space mapping emerged from the need to perform efficient

numerical optimization of microwave circuits using full-wave

EM simulators [14]. However, SM optimization has now been

applied to a diversity of engineering disciplines, well beyond

RF and microwave engineering. For instance, the Broyden-

based input space mapping algorithm has been applied in

areas such as magnetic circuits, materials design, environmen-

tal sciences, medical instrumentation, biomedical, chemical,

civil, mechanical, aerodynamic, aeronautical, and aerospace

engineering [18]. Models of the optimized structures have

been implemented using a variety of numerical simulators,

including commercially available EDA systems and internal

CAD tools. More recently, measurement-based physical plat-

forms have also been incorporated as “fine models” [70]–[73].

The great majority of design optimization cases solved by

the fundamental methods summarized in Fig. 1 have been

applied at the device-, component-, or circuit-level. How-

ever, the application of SM, including cognition-driven and

feature-based techniques, to high-fidelity system-level design

optimization is in its infancy. A few preliminary emerging

demonstrations [72], [74] have been reported in the area

of post-silicon electrical validation of high-speed computer

platforms, as illustrated in Fig. 2 [74], where the optimal
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FIGURE 2. Optimizing equalization coefficients of high-speed
input/output links in a computer platform to maximize eye diagram
functional margins under varying operating conditions (e.g., voltage,
temperature) and devices (e.g., silicon skew, external devices).
Broyden-based input SM is applied [74], with a coarse metamodel built
from a frugal amount of physical platform measurements.

equalization coefficients of a physical platform that maximize

the receiver eye diagram functional margins (so called PHY

tuning process) are found following a Broyden-based input

space mapping approach, reducing the PHY tuning process

from several days to a few hours [74]. Design optimization

of highly accurate system-level complex models is particu-

larly challenging, especially when those models are based on

physical measurements subject to statistical uncertainty and

varying operating or environmental conditions. A promising

strategy to deal with such a challenging scenario consists of

complementing advanced feature-based and cognition-driven

SM approaches with Bayesian [75] and machine learning

techniques [76]–[78]. Bayesian optimization is inherently ad-

equate to deal with stochastic or noise-corrupted responses, in

high-dimensional design spaces that can be even categorical,

conditional, or combinatorial [76], making it a natural candi-

date to address high-frequency system-level expensive indus-

trial optimization problems, such as those typically found in

signal- and power-integrity [79]–[84].

Highly accurate multi-physics microwave design optimiza-

tion is another very challenging application area, even at the

device-, component-, or circuit-level. RF and microwave de-

sign automation considering multi-scale modeling combined

with multi-physics simulation remains a “grand scientific and

engineering challenge” [85]. Ultimately, the multi-physics ap-

proach to design optimization aims at intelligently coupling

the most relevant physical domains, typically including trans-

port phenomena, full-wave electromagnetics (EM), electrical,

thermal and mechanical domains. Pioneering work on multi-

physics optimization of RF and microwave circuits has been

reported [86]–[90]. Manufacturability assessment, statistical

design and yield optimization of high-frequency structures

considering high-fidelity multi-physical performance is still

absent in the scientific literature.

III. FEATURE-BASED STATISTICAL DESIGN

Engineering systems are affected by several types of uncer-

tainties, including fabrication tolerances [5], [8], technologi-

cal spread (e.g., the lack of precise knowledge of substrate pa-

rameters), as well as varying operating conditions (e.g., input

power level, temperature) [91]. For microwave passive com-

ponents, the most relevant types of uncertainties are geometry

parameter deviations with respect to their nominal values [5],

[8]. These are caused by imperfect manufacturing procedures,

e.g., chemical etching in the case of microstrip devices, and

can be quantified by means of probability distributions. The

primary detrimental effect of the tolerances may be an in-

ability of the circuit to fulfill the performance requirements

imposed upon it. Hence, reliable quantification of the circuit

sensitivity to uncertainties and its reduction during the design

process is important to ensure circuit robustness [92]. In prac-

tice, this is realized by lessening the statistical moments of

the circuit performance figures, particularly their variances

[93]. Notwithstanding, design specifications for microwave

components are often formulated in a minimax form (i.e.,

through lower and upper bounds for the figures of interest)

[94], in which case a more suitable statistical performance

metric is a yield [95].

An important stage of uncertainty quantification is sta-

tistical analysis [96], which is a computationally expensive

endeavor when executed at the level of full-wave EM simu-

lation models, otherwise required to ensure reliability. In par-

ticular, EM-based evaluation is imperative for many classes

of modern microwave components including compact struc-

tures: considerable cross-coupling effects therein cannot be

accounted for using, e.g., equivalent network models [97].

At the same time, the standard statistical procedures, such as

Monte Carlo (MC) analysis, require massive system evalua-

tions, the cost of which may be unmanageable.

Several methodologies have been developed to alleviate the

aforementioned difficulties. Worst-case analysis is one of the

simplest [5], [8], [98]; however, it assumes the most disad-

vantageous scenarios, which leads to overly pessimistic per-

formance estimations. Perhaps the most efficient approaches

today rely on surrogate modeling methods [99]. The popular

techniques employed in this context include response sur-

face approximations [100], neural networks [101], and poly-

nomial chaos expansion (PCE) [102], [103]. The attractive-

ness of PCE comes from the possibility of computing the

statistical moments of the system outputs directly from the

expansion coefficients with no need to run the MC simula-

tion [104]. Clearly, certain performance metrics such as the

yield, still require MC for their evaluation. The bottleneck

of surrogate-based statistical analysis is high computational

cost of model construction, which becomes a problem for

higher-dimensional spaces, but also when the model domain

is large (e.g., to cover sufficiently broad ranges of the system

parameters). To a certain extent, this can be mitigated by
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techniques such as PC Kriging [105], where more complex

trend functions (e.g., PCE) are employed instead of low-order

polynomials. The dimensionality issues can be also alleviated

by the principal component analysis [106], the use of variable-

resolution models (space mapping [107], co-Kriging [108],

Bayesian model fusion [109]), or by combining surrogate

modeling techniques with model order reduction methods

[110].

Diminishing the effects of uncertainties is even more im-

portant than their quantification. The procedures that aim at

reducing the sensitivity of the system outputs to manufactur-

ing tolerances are referred to as robust design, tolerance-aware

design or yield-driven design [111]–[113]. Practical imple-

mentation requires the adjustment of the system parameters

directed towards maximization of suitably defined statistical

performance metrics. For the most widely used case of mini-

max specifications, one normally aims at improving the yield,

i.e., the probability of fulfilling design specifications for given

deviations of geometry and material parameters. The latter

are described by the assumed probability distributions, e.g.,

Gaussian. Tolerance-aware design is an expensive procedure

because it requires numerous yield estimations. In particu-

lar, it is normally prohibitive when conducted directly at the

level of EM simulation models. Practical EM-driven statistical

design can be realized using surrogate modeling techniques

[99]–[104]. Widely used methods include response surface

approximations [100], neural networks [114], space mapping

[115] and polynomial chaos expansion [116]. Although it is

possible to set up a single surrogate valid for the entire region

of interest (from the point of view of yield optimization), the

bottleneck is the curse of dimensionality. From this perspec-

tive, iterative methods, especially sequential approximate op-

timization (SAO) [117], seem to be more attractive. Therein,

the surrogate is constructed in a small domain defined as a

vicinity of the current design; it is subsequently relocated

along the optimization path. This approach requires a repeated

construction of the surrogate but at a considerably lower cost

due to restricted domain.

Recently reported feature-based optimization (FBO) [118]

is an alternative method that relies on reformulating the design

task in terms of appropriately defined characteristic points

of the system outputs. The feature points are defined to be

sufficient for evaluating the circuit performance. At the same

time, their dependence on geometry parameters is less non-

linear than the dependence of the primary characteristics. As

demonstrated (e.g., [119], [120]) modeling at the level of fea-

tures is more efficient in computational terms as compared to

traditional techniques. Feature selection is generally problem

dependent and might be related to the circuit transfer func-

tion (e.g., pole and zero location) [121], or may be directly

extracted from the circuit responses (e.g., locations of the

resonances [122] or local maxima of the filter return loss

characteristic in the passband [123]).

The response feature technology has been applied to sta-

tistical analysis and yield optimization of microwave fil-

ters [123], microstrip couplers [124], as well as multi-band

FIGURE 3. Fifth-order waveguide bandpass filter: a) parameterized filter
geometry [123]; b) reflection response (—) at the optimum design with
respect to minimax specifications marked with horizontal lines, and the
response at a perturbed design (- - -). Circles and squares denote feature
points for both responses corresponding to the –1 dB and –20 dB levels as
well as the response maxima in the passband.

TABLE 1. Yield Optimization: 5th-Order Waveguide Filter

∗.These particular yield values result from arbitrary assumptions concerning the geome-

try parameter deviations (see text).

#.Estimated cost in number of EM analyses.

antennas [125]. Fig. 3 shows a 5th-order waveguide filter

along with the response features selected for the purpose of

statistical design (Fig. 3(b)). The surrogate model constructed

at the level of features is accurate and covers a sufficiently

large region to enable yield optimization using SAO, despite

being based on only 19 star-distributed training data samples.

The total optimization cost is only 76 EM analysis of the

filter. Fig. 4 shows the MC analysis at the nominal and the

yield-optimized designs, whereas Table 1 compares the yield

estimated using MC and the feature-based surrogate. The

agreement between the two data sets is very good.

Surrogate modeling techniques appear to be amid very

few approaches capable of carrying out EM-based statistical

design in a computationally feasible manner. Among these,
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FIGURE 4. Fifth-order waveguide filter [123]: yield estimation assuming a
Gaussian probability distribution with standard deviations of 0.02 mm
(Case 4) at (a) the nominal design (Y = 0.25), and (b) the optimized design
(Y = 0.46). Gray lines correspond to 500 EM-simulated random samples for
MC analysis, circles mark the feature points predicted by the surrogate.

the methods capable of addressing the traditional challenges

of approximation surrogates (the issue of dimensionality and

parameter ranges) seem to be particularly attractive. The re-

sponse feature technology belongs to this group. Its further

development, including automated feature definition and ex-

tending the application range to other types of high-frequency

structures, may lead a way to set up generic frameworks for

accelerated statistical design.

IV. SIMULATION-DRIVEN SURROGATE-ASSISTED

MULTI-OBJECTIVE DESIGN OPTIMIZATION

Practical design of high-frequency components, including

microwave devices, requires accounting for several perfor-

mance figures that are pertinent to both electrical properties

(impedance matching, bandwidth, etc.), field properties (gain,

radiation pattern for antenna arrays, etc.), as well as geomet-

rical constraints (e.g., the circuit footprint). In other words, it

is an inherently multi-objective task, and the goals are typi-

cally at least partially conflicting [126]. In particular, an im-

provement of a specific objective has, in general, detrimental

effects on the remaining performance figures. Miniaturization

of planar microwave passives or antennas is a representative

example here: reduction of the circuit area normally results in

difficulties in achieving satisfactory impedance matching or

bandwidth [127], or in frequency misalignment of the trans-

mission/matching responses of couplers [128], or in degrada-

tion of gain and efficiency of antennas [129]. Any realistic

design is, in fact, a compromise (or a trade-off) between the

considered goals.

Multi-objective (MO) design differs quantitatively from

single-objective tasks already at the level of comparing the de-

signs, which is most often realized using Pareto dominance re-

lation [126]. This fosters reformulation of MO problems into

single-criterial ones that can be solved using well-established

numerical routines [130], [131]. Popular reformulation meth-

ods include objective aggregation (e.g., the weighted sum

method [132]) or objective prioritization (selecting the pri-

mary objective and handling the remaining ones through

constraints [133]). Having the designer’s preferences clearly

stated, such approaches might be effective. A representative

example would be footprint reduction under hard acceptance

thresholds set up for electrical performance figures [134].

Notwithstanding, proper MO design has a considerable ad-

vantage of yielding the entire set of trade-off solutions (also

referred to as a Pareto set), which may be useful to evaluate

suitability of a specific structure for a particular application

or to compare competing circuit solutions in a conclusive

manner. The most popular methods for solving MO prob-

lems are population-based metaheuristics, e.g., evolutionary

algorithms [126], particle swarm optimizers [135], differential

evolution [136], etc. Their major advantage is the ability of

generating the entire Pareto set in a single algorithm run.

Unfortunately, their computational complexity is high, which

is a serious bottleneck whenever the structure under design

needs to be evaluated using full-wave electromagnetic (EM)

simulation, otherwise necessary for reliability reasons. Con-

sequently, solving EM-driven MO problems directly is not a

practical option.

Surrogate-assisted methods seem to be the most suitable

approaches to alleviate the aforementioned difficulties. The

main idea is to replace the expensive EM simulation model

by the fast surrogate model, which allows for identification

of the Pareto set using, e.g., population-based metaheuristic

algorithms, at low computational cost. The popular modeling

methods utilized in this context include response surfaces

Kriging interpolation [137]–[141], Gaussian process regres-

sion [142], [143], artificial neural networks [144], [145], or

combination of various techniques [146]. The application ar-

eas range from the design of microwave devices [142], and

antennas [139], [146], through optimization of radar absorbers

[141], to electromagnetic machine optimization [140], [144].

MO design combined with tolerance analysis is also con-

sidered [144], [146]. Typically, the surrogate model is ren-

dered in the entire parameter space or its construction is

interleaved with the optimization process using sequential

sampling methods [142]. The major disadvantage of such

approaches is a strong limitation on the number of the sys-

tem parameters that may be considered in the optimization

process, which is due to the curse of dimensionality, i.e., the

rapid increase of the number of training samples necessary

to build a reliable surrogate as a function of the number of

parameters. The typical size of the test cases considered in the

aforementioned works [137]–[146] is two or three variables,

with the maximum of five [141] or six [144], [146]. Thus, the

basic surrogate-assisted MO design is attractive as a concept
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FIGURE 5. Flowchart of the surrogate-assisted procedure for
computationally efficient MO design [148]. The framework employs initial
parameter space reduction, variable-fidelity simulation models, and design
refinement scheme required to bring the Pareto-optimal designs to the
high-fidelity level of accuracy.

but it may not be practical for real-world problems featuring a

dozen or more parameters.

The range of applicability of surrogate-assisted MO de-

sign can be extended by the employment of variable-fidelity

models, where the surrogate is constructed at the level of

low-fidelity representation (e.g., equivalent circuit or coarse-

mesh EM analysis [129]). This requires subsequent refine-

ment of the initial approximation of the Pareto set, which can

be achieved using response correction methods, e.g., output

space mapping [147]. However, the most important factor to

improve the efficacy of the MO process is an initial reduction

of the parameter space that aims at approximating the location

of the Pareto front. This allows for a considerable reduction

of the surrogate domain and for making the model construc-

tion computationally feasible. The simplest space reduction

approach is to consider single-objective optima xk
∗ obtained

by considering one design objective at a time, k = 1, …,

Nobj. These “extreme” Pareto optimal design determine the

front span and allow for defining the lower and upper bounds

of the restricted domain as l = min{x1
∗, …, xNobj

∗} and u

= max{x1
∗, …, xNobj

∗}, respectively. The flowchart of the

surrogate-assisted MO procedure capitalizing on the above

mechanisms is shown in Fig. 5 [148]. The framework has

been successfully applied to antenna and microwave struc-

tures [148], [149], also described by over twenty parameters

[150].

To yield further improvements, a more precise allocation

of the Pareto set is needed, which can be obtained using

FIGURE 6. Surrogate-assisted MO design of three-section impedance
matching transformer: a) compact microstrip resonant cell (CMRC) cell; b)
transformer geometry; c) Pareto-optimal solutions: (o) initial set obtained
by optimizing the surrogate model, (∗) selected designs for refinement, (�)
EM-simulated selected designs, (O) EM-simulated refined designs.

TABLE 2. Comparing Surrogate-Assisted MO Design Cost

∗. The cost of surrogate model optimization is negligible.

#. The total cost (equivalent number of EM simulations; CPU time shown in brackets);

N×R stands for the number of EM simulations.

performance-driven modeling techniques [151], [152]. Al-

though more information about the front geometry (e.g., its

curvature) requires a certain computational effort necessary to

produce additional reference designs, it is justified by the con-

siderable savings in terms of training data acquisition when

constructing the surrogate model. Fig. 6 shows the results of

MO design of the 15-parameter impedance matching trans-

former optimized with respect to two objectives: reduction of

the circuit footprint and improvement of the in-band match-

ing. Table 2 makes a comparison of MO cost for the frame-

work of [148] and the technique exploiting the nested-Kriging

surrogate [153]. Over sixty-percent cost reduction is observed

when the surrogate model constructed in the initially-reduced

space is replaced by the nested-Kriging surrogate of [153],

which gives a better account for the Pareto front geometry.

It seems that the employment of fast surrogate models is

a prerequisite for computationally-efficient EM-driven MO

design. Although the curse of dimensionality is the biggest

bottleneck here, the incorporation of various mechanisms
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such as appropriate confinement of the surrogate model do-

main, the usage of variable-fidelity models, machine learning

techniques, as well as dimensionality reduction methods may

serve as effective workarounds. On the other hand, alternative

methods that do not rely on quasi-global surrogates but rather

on Pareto front exploration are also possible and may be useful

for certain problems (e.g., point-by-point Pareto front explo-

ration [154], sequential domain patching [155], or generalized

bisection algorithm [156]).

V. QUALITATIVE CHARACTERIZATION OF OUR DESIGN

OPTIMIZATION PARADIGMS

This section provides a brief qualitative characterization of the

main design optimization paradigms reviewed in this paper. In

Table 3 , we outline their major advantages, potential issues,

scope of applications (limited to high-frequency engineer-

ing), as well as practical challenges related to their usage for

solving real-world problems. This characterization is by no

means exhaustive, and its only purpose is to give the reader

a rough idea of how our considered classes of techniques can

be placed in the realm of microwave design methodologies. A

more detailed characterization, apart from what was already

contained in Sections II to IV, goes well beyond the scope of

this work.

VI. COGNITION-DRIVEN DESIGN

In the previous sections, we briefly reviewed and projected

advanced RF and microwave design optimization techniques,

including space mapping, machine learning, and Bayesian

approaches, as well as featured-based statistical design and

surrogate-assisted multi-objective optimization. In this sec-

tion, we speculate on future developments by going beyond

current artificial intelligence, looking into direct analogies

with human intelligence. We believe that design optimization

will benefit from algorithms based on advanced neuroscience,

leading to cognition-driven design approaches.

We interpret the term cognition-driven as a mentally in-

spired process that encompasses knowledge, comprehension,

good judgement, expertise, and a thought-out evaluation of

alternative solutions and decisions.

This interpretation already sounds like the basis for engi-

neering design optimization. Cognition-driven in engineering

design implies an optimization process that employs a strat-

egy based on an underlying simplified model (surrogate)—

perhaps mental—a model to iteratively drive the chosen de-

sign parameters of the accurately simulated engineering de-

vice under consideration—a model useful for a particular

purpose—to a solution that meets certain design requirements.

All this, preferably using all immediately prior knowledge

gained during the iterative process.

The initial disbelief by engineers that such a simple tech-

nique as space mapping could cover such a wide range of

design optimization problems evolved to the conviction that

the idea had intuitively (cognitively) been in widespread use

already. Indeed, those with “expert” (cognitive) knowledge,

TABLE 3. Qualitative Characterization of our Optimization Paradigms as
Applied to RF and Microwave Engineering

knowingly or unknowingly, harness the aggressive space map-

ping concept in activities ranging from everyday human expe-

riences to expert tuning and design of complex engineering

systems with electromagnetic accuracy.

Pattern search [2] followed by so-called “classical” Taylor-

based optimization algorithms that exploit local linear and/or

quadratic approximations with no underlying physics [2], [3],

[5] are clear precursors to space mapping. But these algo-

rithms depend on coarse models of a simplified mathematical

nature, while space mapping enhances physics-based surro-

gates (physically based coarse models) of corresponding high-

fidelity (fine) models. Design engineers came to see space
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FIGURE 7. [161] Parachute landing illustration of space mapping in action
as originally devised by Cheng and Bandler [159], further developed by
Bandler and Tajik [160]. (a) possible initial alignment vertically above the
target (if there is no information about the expected trajectory); (b) the
landing missing the target; (c) the next alignment for the next parachute
taking the outcome of the first iteration into account. Iterations continue
in this manner.

mapping as a programmable manifestation of an experienced

engineer’s traditional “quasi-global” intuition or mysterious

“feel” for a complex problem. Tuning space mapping, for

example, embodies this synergy.

Bandler first recognized the parallels between space map-

ping and cognition in 2002 [157].

Many common-sense examples soon emerged, prominent

among them the cheese-cutting problem [14], [15] and the

shoe selection problem [14]. Space mapping seems like a

natural mechanism for the brain to relate objects, images and

patterns with other objects, images, reality, or experience.

The mental processes of System 1, fast and intuitive, and

System 2, slow and effortful, proposed by Kahneman [158],

adds a new dimension to the ideas of low-fidelity and high-

fidelity models. “Expert intuition strikes us as magical, but

it is not. Indeed each of us performs feats of intuitive ex-

pertise many times each day,” Kahneman says [158] (p. 22).

He continues, “Our everyday intuitive abilities are no less

marvelous than the striking insights of an experienced fire-

fighter or physician—only more common.” Indeed, this is how

common sense (cognition) works.

Aggressive space mapping [14], [15], [18], [19] is a clear

manifestation of a cognitive underpinning. In the words of

Bandler [14], “Aggressive space mapping efficiently invokes

inner loops of conventional optimization—common sense

at work—often yielding excellent results in an acceptable

two or three iterations.” “The aggressive space mapping up-

date/execution process ... uncannily mimics both common

sense and the expert’s ‘feel’.”

One of many simple examples is a certain interactive illus-

tration [159], [160]: “to iteratively position parachutes to land

on the target in the fewest number of trials.” See Fig. 7 [161].

Initially, the player positions the parachute above the target.

When the player notes that the parachute drifts and lands away

from the target, the player repositions the next parachute to

correct for this drift. When the player again sees the parachute

missing the target, hopefully by a smaller margin, the player

tries again, assuming common sense, repositioning the third

parachute, taking into account (mentally) trends observed in

all previous iterations. How subsequent parachutes quickly

converge to the target is what forms the game or challenge.

More examples of the coarse/fine duality as it relates to

cognition are easily found in Wikipedia, examples such as

spatial cognition, mental model, mental rotation, and so on:

“Mental rotation is the ability to rotate mental representa-

tions of two-dimensional and three-dimensional objects as it

is related to the visual representation of such rotation within

the human mind.” In terms of object recognition and cat-

egorization: “People can quickly and accurately categorize

objects ... and recognize them as familiar, despite changing

viewing conditions ...” [162], and dual process concepts: C-

system: reflective (fine), X-system reflexive (coarse) [163].

From Wikipedia: “In psychology, a dual process theory pro-

vides an account of how a phenomenon can occur in two

different ways, or as a result of two different processes. Often,

the two processes consist of an implicit (automatic), uncon-

scious process and an explicit (controlled), conscious pro-

cess.” For more on dual process concepts, see [164]–[166].

We see clear parallels between space mapping and human

behavior and decision-making. Humans are cognition-driven.

Good algorithms are cognition-driven. Their effectiveness de-

pends on the degree of relevant expertise harnessed in match-

ing process to goal [67], [167]. Key developments in our

cognition point of view: many simple, intuitive examples of

space mapping like the cheese-cutting problem [15]; the pop-

ularity of aggressive space mapping [18]; the parallels with

space mapping found in Kahneman [158] and others; and

continual advances in space-mapping-based design exploiting

cognition-style markers such as response features [62], [64],

[123].

Space mapping and surrogate-based optimization con-

tinue to evolve into cognition-driven design, a cornerstone

in the push towards multiphysics-based modeling and de-

sign. Crucial, physics-based surrogates and feature-based and

cognition-driven paradigms will lead to solution-based com-

mercial offerings. Eventually, we will automate the once mys-

terious engineer’s “feel” for accurate predictions of successes

rather than explanations of failures, facilitating important di-

verse applications in medical imaging, detection, diagnostics,

inverse problems, and more.

VII. CONCLUSION

We foresee a number of imminent and future challenges in

RF and microwave design optimization. They include the

reliable and computationally efficient optimization of highly

accurate system-level complex models, especially when those

system-level representations are subject to statistical uncer-

tainty and varying operating or environmental conditions.

They also include the computationally-efficient EM-driven

multi-objective design optimization in high-dimensional
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design spaces including categorical, conditional, or combi-

natorial variables. Another prominent challenge consists of

the manufacturability assessment, statistical design, and yield

optimization of high-frequency structures considering high-

fidelity multi-physical performance.

The future will testify to the development of sophisti-

cated algorithmic optimization approaches to address these

major challenges, including confined and dimensionally re-

duced surrogate vehicles, automated feature-engineering-

based optimization, and formal cognition-driven space map-

ping approaches, supported by Bayesian and machine learning

techniques.
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