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ABSTRACT

This paper presents a novel method for leaf species iden-
tification combining local and shape-based features. Our
approach extends the shape context model in two ways.
First of all, two different sets of points are distinguished
when computing the shape contexts: the voting set, i.e. the
points used to describe the coarse arrangement of the shape
and the computing set containing the points where the shape
contexts are computed. This representation is enriched by
introducing local features computed in the neighborhood of
the computing points. Experiments show the effectiveness
of our approach.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms

Theory
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1. INTRODUCTION
Identifying a plant can be a tricky task even for expe-

rienced botanists, considering the huge number of species
existing in the world. This task is of great importance for
a number of professionals such as land managers, foresters,
agronomists, etc., and can be also useful for amateur gar-
deners. Plant identification is generally based on the obser-
vation of the morphological characteristics of the plant (such
as general character, structures of stems, roots and leaves,
embryology and flowers) followed by the consultation of a
guide or a known database. An important amount of infor-
mation about the taxonomic identity of a plant is contained
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in its leaves. Moreover, leaves are present on the plants for
several months in a year, whereas flowers and fruits may
remain only several weeks. This is why most plant identifi-
cation tools based on Content-Based Image Retrieval tech-
niques work on leaf image databases [17, 29, 20, 24, 31, 10,
4, 7, 23, 25, 6, 3, 8, 9, 13]. A leaf can be characterized
by its color, its texture, and its shape. The color of a leaf
may vary with the seasons and climatic conditions. In addi-
tion, as most plants have similar colors, this feature is not
discriminant enough for the species recognition. Thus, gen-
erally, only shape and texture information are taken into
account in similarity based leaf image retrieval schemes.
Several techniques have been introduced to solve the prob-
lem of automatic leaf identification.
Existing methods generally use a shape-based approach. This
is not the case for [13] where shape and texture descriptors
on oriented patches centered around Harris points are com-
puted and a large scale matching method [16] performs the
leaf identification. No prior segmentation is made and Harris
points are not necessarily located on the leaf margin. This
approach is generic and works well on scans of leaves [14] but
may be fastidious for images with a cluttered background.
Shape-based approaches mainly work on the overall shape
or on the contour of the leaves.
A first group of methods extracts morphological plant char-
acters commonly used in botany. Du et al. [10] compute
eight features, Aspect Ratio, Rectangularity, Convex Area
Ratio, Convex Perimeter Ratio, Sphericity, Circularity, Ec-
centricity and Form Factor, from the boundary of the leaves.
Morphological features are also retained and used in the
identification process in the parameterized segmentation rep-
resentation of leaves proposed by Cerruti et al. [9]. Eccen-
tricity is used in the two-stage approach of Wang et al. [29]
and of Caballero and Aranda [7] to reduce the search space.
Other shape feature extraction techniques [19] have been
adapted or introduced to solve the plant retrieval problem.
Neto et al. [24] used elliptic Fourier functions on the leaf
shape. Statistical methods based on the method of Com-
plex Networks [3, 8] on the contour of the leaf or extracting
fractal dimension [6] on the contour and the venation of the
leaf have been proposed. Yanikoglu et al. [32] obtain good
results on leaf scans with a combination of texture, shape
and color descriptors among which some are based on al-
gorithms of mathematical morphology. Different types of
2D histograms using geometric features, such as curvature,
lengths, relative orientation, distances, etc., computed on
the boundary points of the leaf have been presented in [31,



18, 7]. In [31], a 2D directional fragment histogram com-
putes directions and relative lengths on a succession of ele-
mentary fragments on the contour. Another 2D histogram
derived from the shape context [5] computing inner distances
and angles between sample points of the leaf margin is pro-
posed in [18, 4]. Curvature of the leaf contour is used in
the Curvature Scale Space representation [21, 1] and in Ca-
ballero and Aranda ’s approach [7]. Note that the shape fea-
tures computed from the leaf margin can be enriched with
venation features [25, 23]. Most of these shape-based ap-
proaches are adapted to the leaf identification problem, but
their effectiveness may depend on the quality of the contour
obtained by the segmentation process.
In this paper, we combine local and shape-based features to
obtain an efficient and effective leaf identification method.
For this purpose, we select appropriate salient points of the
leaf and model local information and spatial relations by a
shape context based approach [5].
This paper is structured as follows. A family of shape con-
text based approaches is introduced in section 2. They work
on different sets of selected points of the leaf. Local features
are then introduced in our model to enrich the image de-
scription. Experimental results are presented in section 3.
The last section concludes the paper and presents our future
work.

2. ADVANCED SHAPE CONTEXT
Shape context technique [5] has proven its efficiency for

shape retrieval, even for leaf images, with the inner shape
context [18, 4]. To describe properly the boundary of a
shape and obtain good retrieval results, a dense sampling
of the contour points is necessary. Then a large number of
histograms are computed and compared, making the over-
all technique expensive. To solve this problem, Xie et al.
[30] have introduced the skeletal shape context, which uses
a medial axis transform to produce an optimal sampling of
the shape contour with a smaller number of points.
Shape context retains only global shape information of an
image region. To enrich this description Amores et al. [2]
have extended the shape context approach for object class-
recognition, introducing color and edge information in the
histogram. They first perform region segmentation and use
the region boundaries as contours of the image. Their ”gen-
eralized correlograms”, encoding both local and spatial in-
formation, are computed on a sampled set of contour points.
In our case, spatial and local information (see Section 2.2)
are computed separately for each salient point and com-
bined through concatenation. Moreover, we use here another
strategy to encode the spatial information in the images.
In our shape context based approach, we want to reduce
the computational cost while preserving or increasing the
shape matching precision. We think that introducing two
different sets of points that play different roles in the shape
context scheme and choosing them appropriately will help us
to achieve this goal. Thus we distinguish the voting points,
which is the set of points used to build the shape context
histograms from the computing points on where the shape
contexts are computed.
In fact, the computing points correspond to characteristic
or salient points of the object and, for efficiency purposes,
the cardinality of this set has to be low. The voting points
are other points belonging to the object and must add in-
formation on the shape when involved in the computation

of shape context on the computing points. Here, as these
points are used only once for each histogram, we can use
a representative number of voting points. The notion of
saliency depends on the application and on the type of the
considered dataset. For example, for a polygonal shape, the
computing points can be the extrema of boundary curvature
points and the voting points the boundary points.
Let us now present our approach in more details.

2.1 Advanced shape context
Given a set of n points V and a point p of R2, the advanced

shape context of V on p is a discrete representation of the
set of n vectors defined by the pairs of points (p, q) with
q ∈ V. It is represented by a coarse histogram aSC(p,V)
where each pair of points (p, q), represented by a radius r

and an angle θ, contributes to the bin k using the log-polar
quantization introduced in [5] and used more recently in [2,
18, 28].

aSC(p,V)k = #{q ∈ V : q − p ∈ binp(k)}

In our implementation, the radius is quantized into 5 bins
and the angle into 12 bins.
In the rest of this paper, the set V is denoted the voting set
of points and the set C of points p of R2, where the advanced
shape context aSC(p,S) is computed, is called the comput-
ing set. The sets C and V are not necessarily distinct.
Let us now return to our application.
We suppose in this paper that a leaf image consists in a
leaf picture with a nearly white uniform background. A leaf
is not only characterized by its margin: its venation net-
work may be significant. Some plant species have a high
intra-variability of the leaf shape, and leaves from different
species may have globally similar shapes as shown in Figure
1. Thus, in this case, the venation network information may

Figure 1: Top row: Overall shape similarity between
different species (Pittosporum tobira, Arbutus unedo,

Rhamnus alaternus). Bottom row: Intra-variability
of the species Ficus carica

be useful for an identification task and the shape context
based approaches that consider only the leaf margin [18, 4,



30] may be insufficient.
In fact, according to botanists, characteristics (salient) points
of a leaf are extrema of curvature on the margin, when leaves
are lobed or toothed, and junction points, when the vena-
tion network can be extracted from the image.
In our case:
- The leaf margin is a closed contour calculated by using
the Otsu thresholding method since the image background
is homogeneous.
- The salient points are approximated using the generic Har-
ris detector, which is known to detect edge corners efficiently.

In order to test our approach on images of leaves, three
scenarios are proposed by varying the computing set C and
the voting set V of points in the image.

SCO Spatial relations between margin points.
Here the computing set C and the voting set V are
identical. They involve the margin points, i.e. n points
extracted from the margin by a uniform quantization
(as illustrated on the first leaf of Figure 2).

C = V = {margin points}

This scenario corresponds to the shape context pro-
posed by Belongie et al. [5]. Note that the venation
network is not introduced here.

SC1 Spatial relations between salient points.
As in the previous case, C and V represent the same set.
They both contain n salient points computed with the
Harris corner detector (the cross points on the second
leaf of Figure 2).

C = V = {salient points}

This scenario is similar to the logo retrieval approach
[27]. The goal here is to determine whether the spatial
relationships between salient points on the leaf area
can characterize leaves of a given species and to eval-
uate the influence of the number of considered salient
points on the plant identification performance.

SC2 Spatial relations between salient and margin
points
Here we want to measure the spatial relationships be-
tween the salient points described in the context de-
fined by the leaf margin (respectively the cross points
and the circles of the rightmost leaf of Figure 2). The
voting set of points V is composed of all the margin
points. The Harris points form the computing set C.

C �= V, C = {salient points} and V = {margin points}

As mentioned above, the salient points may lay inside
the leaf or may belong to the leaf margin. Our aim is
to study the correlation between the venation network
and the margin of the leaves belonging to the same
species.

2.2 Local properties
The advanced shape context captures a spatial configura-

tion of points without taking into account local properties
of the image around the set C of computing points. Thus, to
enrich the description, a set of local features computed on
the neighborhood of each point of C is introduced. As the

Figure 2: From left to right: points used in scenario
SC0, SC1 and SC2. The small circles represent the
sample points on the leaf margin. The cross points
represent the salient points computed with Harris
detector.

color is not a discriminant feature for leaves, we focus on
texture and shape. To describe the texture and the shape,
three local features are extracted from the grey-level of an
image patch located around each computing point:
- A 16 dimensional Hough histogram, hough 4 4, based on
the Hough transform, is used to represent simple shapes in
an image [11]. The histogram computes the tangential flow
of pixels along the edges in the image projected to the posi-
tion vector of each pixel.
- A Fourier histogram, fourier 8 32 [11], based on the Fourier
transform, which contains information about texture and
scale: two histograms are computed in the complex plane
from the Fourier transform. They represent two types of
distributions of the energy: the first one is computed with a
circular partition, the second uses a wedge partition. Both
have an equal importance in the final signature, which gives
a description of the energy in the image at several scales as
well as a description of the local small scale behavior in a
number of predefined directions.
- A 8 dimensional classical Edge Orientation Histogram,
which is known to be suitable for non-uniform textures.
These three features have given promising results when as-
sociated with Harris points on scans of leaves in [14].
In the following, the combination of the Hough, the Fourier
and the edge orientation histogram is denoted by std.

2.3 Matching Method
The matching process is the same for all the scenarios.

Let I be an image and let n be the number of points of I in
the computing set CI . I is represented by n feature vectors
F1, F2, ..., Fn where Fi is the feature vector associated to the
ith point of C. Fi is of dimension k with:

k = nbinsr × nbinsθ or k = nbinsr × nbinsθ + nstd

where nbinsr and nbinsθ are respectively the number of bins
for quantified log-polar distances and the number of bins for
quantified angles and nstd is the size of the std feature vec-
tor presented in Section 2.2.
The features matching, is done by an approximate similar-
ity search technique based on a Locality Sensitive Hashing
(LSH) method [26]. We use here the Multi Probe Locality
Sensitive Hashing technique proposed by Joly and Buisson
[15] and the distance L2 to compute the similarity between
two feature vectors. The principle of this algorithm is to
project all the features in an L dimensional space and to use
hash functions to reduce the search and the cost time. At
query time, the features F1, F2, ..., Fn of the query image are
mapped onto the hash tables and the knn nearest neighbors



of each feature Fi are searched in the buckets associated to
Fi. These n lists of candidate feature matches are used as
input for a voting system to rank images according to the
number of matched features.
One can notice here that if scenario SC0 has the same his-
tograms as the shape context methods [5, 22], the overall
approach is not identical, as our matching method is dif-
ferent. It is the same for the SC1 scenario and the logo
retrieval approach of [27] as, in their case, the LSH approx-
imate search is performed on shapeme histograms.

3. EXPERIMENTAL RESULTS
All the approaches presented above have been tested on

the Pl@ntLeaves dataset that was used for the plant iden-
tification task organized within ImageCLEF 2011 [12]. The
Pl@ntLeaves dataset contains three categories of images:
scans of leaves acquired using a flat-bed scanner, scan-like
leaves acquired using a digital camera and free natural pho-
tos. We first tested our approaches on the training subset
of scans of leaves, which contains 2349 images. Then all
the scan and scan-like images of the ImageCLEF2011 (train
+test images) have been used to evaluate the previous sce-
narios (except scenario SC1 whose performance was not con-
vincing). We also compared our results with the scores of
identification of ImageCLEF2011 obtained on two categories
of images: scans and scan-like leaf images. Figure 3 gives a
view of the different species present in the database.

Figure 3: A selection of scan-like leaves (first two
rows) and scan leaves of the Pl@ntNet test dataset
(Only one leaf per species is kept).

To evaluate the three scenarios SC0, SC1 and SC2, we use
the precision P and recall R measures defined respectively

by

P =
#relevant images

#retrieved images
and

R =
#retrieved relevant images

#relevant images

and the Mean Average Precision (MAP). It is measured on
a set of queries Q and is defined as follows:

MAP =

∑
q∈Q

AP (q)

|Q|

where the average precision score AP (q) is computed for
each query q:

AP (q) =

n∑
k=1

(P (k) x f(k))

#retrieved relevant images for q

P (k) is the precision at cut-off k in the list of retrieved im-
ages and f(k) is equal to 1 when the image at rank k is
relevant and 0 otherwise. The MAP value is correlated with
the precision value P . It gives a more general result taking
into account all the possible queries of the database.

3.1 Results on the training scan dataset
Scenarios SC0, SC1, SC2 have been tested with comput-

ing sets of points of cardinality 50 and 400. Precision Recall
curves are shown in Figure 4. The std curve corresponds to
the retrieval using only Harris points associated with local
features around them. Enriched SC2 is presented by the
curve SC2+std.

Figure 4: Recall/Precision curves on the training
scan dataset using 50 points (Left) and 400 points
(right).

Approach SC0 SC1 SC2 std SC2+std
MAP (50 points) 0.36 0.14 0.40 0.45 0,50
MAP (400 points) 0.40 0.25 0.42 0.57 0,68

Table 1: MAP values for the different scenarios on
the training scan dataset

Examining these precision-recall curves and the MAP values
of Table 1, we can notice that:

- All the scenarios give better results with 400 points com-
pared to 50 points.
- The information provided by the Scenario SC1 is less mean-
ingful compared with other scenarios. This is due to the fact



Figure 5: Top row: the query image used in Figure
6 and a response example using SC0, red points on
the right image are the points that matched with
contour points of the query image. Bottom row:
the query image used in Figure 6 and a response
example using SC2, red points on the right image
are the points that matched with Harris points of
the query image

that, when only 50 Harris points are computed, they provide
a very coarse representation of the margin and the venation
network.
- Scenario SC2 obtains the best R/P curve and MAP value
compared to SC1 and SC0. However, the std method that
computes local features around Harris points, is more ef-
fective than SC2. Moreover, the results are improved when
local features are associated to Harris points in scenario SC2,
which corresponds to the enriched SC2 (SC2+std).
- The enriched SC2 (SC2+std) outperforms all the other
scenarios. It has the best Recall/Precision curves and the
best MAP value. When 400 computing points are used, the
MAP value of SC2+std is 0.68. This proves that the joint
use of spatial information and local information increases
the identification rate on the training Scan dataset.
- SC2 obtains good results with a small number of computing
points. When SC2 is used with only 50 points, it gives sim-
ilar performances to SC0 with 400 computing points. This
enables to speed up the running time of the matching step
without a loss of performance. In fact, in this case, most
of significant points, from a botanic point of view, are de-
tected and the spatial information computed with SC2 is
relevant. When 400 points are used, SC2 results increase
slightly: when all the characteristic points of the leaf have
been found, the remaining Harris points will not increase
the accuracy of the spatial information. However, SC2+std
has a better score thanks to the local texture and shape
information added around the computing points.

Let us compare the retrieval results obtained using scenarios
SC0 and SC2 on a Rhamnus alaternus leaf in Figure 6.
With SC0, only four images are relevant among the first
15 returned images which gives a precision P = 27% for
knn = 15. In fact, the overall shape of all the returned

(a)

(b)

Figure 6: Two retrieval responses with the same
query image using SC0 for (a) and SC2 for (b).
Query image Q is framed by a solid line, relevant
retrieved images i.e leaves from the same species of
Q are framed by a dashed line and false positive
images are framed by a dotted line



# of # of # of
images individual plants users

Scan train 2349 151 17
test 721 55 13

Scan-like train 717 51 2
test 180 13 1

Table 2: Statistics of the composition of the training
and test data of the Pl@ntLeaves dataset

leaves is very similar. Consequently, additional information
about the leaf taxonomy is needed to be robust to shape
similarity between the species.

This was our first motivation to build SC2 by separating
two sets of points. Figure 6(b) shows the retrieval response
using SC2 without including local features. The precision for
the first 15 returned images is P = 80% which is much higher
than the results of SC0. This can be explained by the fact
that SC2 includes, with the use of salient points, informative
characters within the leaf area such as venation, texture,
etc. Note that the information on the contour is not lost in
this schema since the voting set contains points of the leaf
margin. Moreover, salient points computed with a Harris
detector may be located on the boundary, in particular, for
the toothed leaves contour.

In Figure 5, we show two retrieval results with the same
query image of Figure 6. In the case of SC0, an important
number of points of the returned image matched with the
contour points of the query image. However, the returned
image belongs to another species. In fact, the entire configu-
ration of the shape is very similar but the venation network
is different.

Thus, the spatial representation provided by SC0 may not
be appropriate in this particular case. On the other hand,
matched points computed with SC2 are either on the nerva-
tion, on the contour or inside the leaf. The main advantage
of SC2 is that the contour is not considered as an exclusive
source of information. Here, the retrieved image and the
query image belong to the same species.

3.2 Comparison with ImageCLEF2011 results
Let us now introduce the context of the organized identi-

fication task ImageCLEF 2011[12]. The goal of the task was
to find the correct tree species of each test image. The iden-
tification score is quite different from the classic measures
presented above such as the MAP value and recall-precision
curves. Two assumptions guided the identification score S

definition:
- The leaves from the same tree may be more similar than
leaves from different trees (the classification rate on each in-
dividual plant is averaged).
- Photos taken by the same person will have nearly the same
acquisition protocol (S measures the mean of the average
classification rate per user).
Then, S is defined as follows in ImageCLEF 2011:

S =
1

U

U∑

u=1

1

Pu

Pu∑

p=1

1

Nu,p

Nu,p∑

p=1

su,p,n

U : number of users (who have at least one image in the
test data).

species Test ScL Test Sc Train Sc

Acer campestre 9 22 24

Acer monspessulanum 22 45

Acer negundo 21 17

Acer platanoides 10 12

Aesculus hippocastanum 4 25

Albizia julibrissin 45

Alnus glutinosa 8

Arbutus unedo 1 41 34

Betula pendula 3 76

Carpinus Betulus 33

Castanea sativa 45 24

Celtis australis 24 39

Cercis siliquastrum 11 20 49

Corylus avellana 20 55

Cotinus coggygria 29 64

Crataegus azarolus 38

Crataegus monogyna 54 23

Diospyros kaki 7 43

Eriobotrya japonica 21 14

Fagus sylvatica 28

Ficus carica 19 43

Fraxinus angustifolia 74

Fraxinus ornus 33

Ginkgo biloba 15 34

Gleditsia triacanthos 32

Ilex aquifolium 26 40

Juglans nigra 22 16

Juglans regia 4 30

Laburnum anagyroides 30

Laurus nobilis 16 6 36

Ligustrum vulgare 26

Magnolia grandiflora 23

Malus sylvestris 17

Nerium oleander 8 88

Olea europaea 25 125

Paliurus spina-christi 7 65

Phillyrea angustifolia 15

Pistacia lentiscus 36 41

Pistacia terebinthus 47

Pittosporum tobira 67

Platanus x hispanica 2 49

Prunus mahaleb 49

Prunus serotina 24

Prunus spinosa 40

Punica granatum 38

Quercus coccifera 33 16

Quercus ilex 29 18 123

Quercus petraea 14

Quercus pubescens 18 24

Rhamnus alaternus 52 54

Rhamnus cathartica 27

Robinia pseudoacacia 26 32

Salix caprea 26

Sambucus nigra 9

Sophora japonica 32

Sorbus domestica 21

Syringa vulgaris 20 51

Tilia cordata 23

Viburnum lantana 17

Viburnum tinus 94 47

Vitex agnus-castus 2 55

Table 3: Species appearing either on the test scan or
on the scan-like dataset versus the train scan dataset
on Pl@ntLeaves database of ImageCLEF 2011.



Pu: number of individual plants observed by the uth user.
Nu,p: number of pictures taken from the pth plant observed
by the uth user.
su,p,n: classification score (1 or 0) for the nth picture taken
from the pth plant observed by the uth user.

We focus on scans and scan-like images. Table 2 and Ta-
ble 3 describe the number of images and their distribution
between the different datasets.

The evaluation metric S is used to compare our approach
with the others. Only the top 10 scores of ImageCLEF2011
are presented in Table 4. More details about the methods
and the complete list of scores can be found in [12]. We
present here the score of SC0 and SC2 using 50 computing
points.
Both SC0 and SC2 outperform all the other approaches on
the scan-like dataset. We obtain the best identification score
using SC0 (S=0.706). SC2 is also better than the top ten
scores of ImageCLEF 2011 with a score S=0.677. In fact,
Harris detector is known to be more robust to illumination
changes than other interest points detectors. But in scan-
like images, some Harris points can be located on light re-
flection points, which are not characteristic points of the leaf
shape. That is why the spatial description provided by SC2
is less accurate than SC0.
We also obtain good results on the scan images. SC2 per-
forms better than SC0 on the scans and they are respectively
positioned in the third and the fourth place with respect to
ImageCLEF 2011 runs.
In scans and scan-like dataset, SC2+std, which had the best
result on the training scan dataset, loses its first position.

run id Scans Scan-like
IFSC USP run2 0.562 0.402

inria imedia plantnet run1 0.685 0.464
IFSC USP run1 0.411 0.430

LIRIS run3 0.546 0.513
LIRIS run1 0.539 0.543

Sabanci-okan-run1 0.682 0.476
LIRIS run2 0.530 0.508
LIRIS run4 0.537 0.538

inria imedia plantnet run2 0.477 0.554
IFSC USP run3 0.356 0.187

SC0 0.654 0.706
SC2 0.676 0.677

SC2+std 0.650 0.590

Table 4: Normalized classification scores of the scan
and scan-like images on the Pl@ntLeaves dataset us-
ing the evaluation metric of [12]. Top 6 results per
image type are highlighted in bold.

Approach SC0 SC2 std SC2+std
MAP (50 points) 0.32 0.36 0.32 0,44

Table 5: MAP values for the whole Pl@ntLeaves
dataset (scan and scan-like, train and test images)

We have computed the MAP values for the whole Pl@nt-
Leaves dataset. These results are presented in Table 5.
Now, it is clear that our method performs better on MAP:

SC2 is better than SC0 and SC2+std obtains the best MAP
value. That confirms the results obtained in the training
scan dataset. The ranking difference between MAP and the
ImageCLEF scores may be due to the normalizations made
on users and individual plants while computing the score S.
In fact, by examining the statistics of the composition of the
Pl@ntLeaves dataset in Table 2, we notice that the number
of users is much smaller than the number of images (17 users
for 1349 images for the traning scan dataset) and that the
number of images is also about ten times the number of
individual plants. Then the difference between MAP and
S scores can be explained by the fact that the combination
of local and spatial relationships between Harris points is
more efficient to retrieve almost identical images (taken by
the same user or images of leaves belonging to the same
individual plant) than similar ones.

4. CONCLUSION
In this paper, we have presented a new approach extend-

ing the shape context method for plant species identification
on leaf images. To compute histograms, two sets of points
have been introduced: the computing set and the voting set.
Several scenarios based on different computing and voting
sets have been proposed and tested on scans and scan-like
leaf images. Scenarios SC0 and SC1 work respectively only
on leaf margin points and only on salient points. Scenario
SC2 uses both contour points and salient points of the leaf
in the spatial representation. Experiments on the training
scan dataset of ImageCLEF 2011 have shown that combin-
ing the contour and the local texture and shape information
is suitable for leaves description. In some cases, as in Figure
5, the leaf margin information is not sufficient for the species
identification, which strengthens our choice of adding salient
points in the spatial description. This is one of the main con-
tribution of our advanced shape context method compared
to other shape context approaches [18, 4, 30].
We have shown the effectiveness of the enriched SC2 on scans
of leaves: SC2+std obtains the best Recall/Precision curves
and the best MAP value. Furthermore, our approach has
been compared favorably to ImageCLEF2011 runs.
The notion of saliency depends on the application. In this
framework, we used a generic corner detector (Harris) to
compute salient points on the images. Work in progress ex-
tends this approach in two ways:
- We are studying specific detectors for leaf salient points
based on botanical expertise
- We are investing new scenarios using venation network and
margin points.
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