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Numerous countries are trying to reach almost 100% renewable penetration. Variable

renewable energy (VRE), for instance wind and PV, will be the main provider of the

future grid. The efforts to decrease the greenhouse gasses are promising on the current

remarkable growth of grid connected photovoltaic (PV) capacity. This thesis provides

an overview of the presented techniques, standards and grid interface of the PV systems

in distribution and transmission level. This thesis reviews the most-adopted grid codes

which required by system operators on large-scale grid connected Photovoltaic systems.

The adopted topologies of the converters, the control methodologies for active - reactive

power, maximum power point tracking (MPPT), as well as their arrangement in solar

farms are studied.

The unique L(LCL)2 filter is designed, developed and introduced in this thesis. This

study will help researchers and industry users to establish their research based on connec-

tion requirements and compare between different existing technologies. Another, major

aspect of the work is the development of Virtual Inertia Emulator (VIE) in combination

of hybrid energy storage system addressing major challenges with VRE implementations.

Operation of a photovoltaic (PV) generating system under intermittent solar radia-

tion is a challenging task. Furthermore, with high-penetration levels of photovoltaic en-
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ergy sources being integrated into the current electric power grid, the performance of the

conventional synchronous generators is being changed and grid inertial response is de-

teriorating. From an engineering standpoint, additional technical measures by the grid

operators will be done to confirm the increasingly strict supply criteria in the new inverter

dominated grid conditions.

This dissertation proposes a combined virtual inertia emulator (VIE) and a hybrid

battery-supercapacitor-based energy storage system . VIE provides a method which is

based on power devices (like inverters), which makes a compatible weak grid for inte-

gration of renewable generators of electricity. This method makes the power inverters

behave more similar to synchronous machines. Consequently, the synchronous machine

properties, which have described the attributes of the grid up to now, will remain active,

although after integration of renewable energies. Examples of some of these properties

are grid and generator interactions in the function of a remote power dispatch, transients

reactions, and the electrical outcomes of a rotating bulk mass.

The hybrid energy storage system (HESS) is implemented to smooth the short-term

power fluctuations and main reserve that allows renewable electricity generators such as

PV to be considered very closely like regular rotating power generators. The objective

of utilizing the HESS is to add/subtract power to/from the PV output in order to smooth

out the high frequency fluctuations of the PV power, which may occur due to shadows of

passing cloud on the PV panels. A control system designed and challenged by providing

a solution to reduce short-term PV output variability, stabilizing the DC link voltage and

avoiding short term shocks to the battery in terms of capacity and ramp rate capability.

Not only could the suggested system overcome the slow response of battery system

(including dynamics of battery, controller, and converter operation) by redirecting the

power surges to the supercapacitor system, but also enhance the inertial response by em-

ulating the kinetic inertia of synchronous generator.
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CHAPTER 1

INTRODUCTION

This introductory chapter contains five sections. The first section describes the back-

ground of the problem. The second section introduces motivations and research purposes

of the dissertation. The third section articulates objectives and contributions of this re-

search. The summary of the literature search of the problem is presented in the fourth

section. Finally, the fifth section presents the general organization of this dissertation.

1.1 General Statement of Problem Area

The proliferation of photovoltaic (PV) power generation systems in the distribution power

grid motivate utilities to monitor the power quality (PQ) effects of these renewable power

generators in the electrical networks. The power quality may cause voltage and frequency

fluctuations, in addition to harmonic emissions from low frequency to high frequency

[8, 9]. Nowadays most companies rely on sophisticated equipments to be able to com-

pete with other competitors. This equipment could be affected by some power quality

issues which are undetectable by the naked eyes. The benefits of high power quality of

the power system are increasing the reliability of the systems, provide early prediction of

incipient problems, decreasing the energy expenditure, preventing power outages due to

hidden disturbances, assurance of data integrity and reducing corrupt data in smart grids,

etc. It is very difficult to quantify the power quality concerns since they are different

from the interaction between susceptible equipment and power quality. When ”good”

power quality for one equipment could be ”bad” for another one [10]. Therefore, the

best assessment criteria are standards. In 1982, IEEE standard 519 was first released and

then updated in 2014. It sets some rules and steady-state limitations on Total Harmonic

Distortion (THD) with reference to both current and voltage at the Point of Common

Coupling (PCC). However, exceeding these boundaries may be encountered by transient
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conditions. IEEE Standard 1547 was published in 2003 and the latest amendment was

issued in 2014. This standard contains power quality, response to unusual situations, and

installation assessment. The specified requirements are essential for interconnection of

distributed resources (DR), including power inverters/converters and synchronous gener-

ators. These standards are valid to all DR technologies, with a combined capacity of 10

MVA or less at the PCC, connected to secondary and/or primary distribution voltages.

The power quality concept has always been oversimplified and misunderstood, but due

to a significant increase in the use of sensitive electronic devices and sophisticated data

management devices, the assessment of power quality has become an inevitable task.

A typical schematic of a 180 kW photovoltaic system for industrial locations is shown

in Fig. 1.1. In this configuration, diesel generators are used as backup power. However,

generator back-up power is the only size to meet the sensitive loads. Please be advised that

this configuration is not the layout of the Photovoltaic power plant at Florida International

University and it is just an example.

In order to limit the excessive current harmonics, which are mostly produced by

sine pulse width modulation (PWM), a low-pass power filter is usually put in between

a voltage-source inverter (VSI) and the grid [11, 12]. The use of the PWM system ne-

cessitates an output filter to limit the grid-injected current harmonics, in order to satisfy

the IEEE 1547.2-2008 and IEEE 519-2014 standards. L-filters are typically used but they

have the drawbacks of slow dynamic response and big inductor value [13, 14]. The first-

order L filter can meet the standards for the grid interconnection with notably smaller

size and cost compared to an LCL filter, primarily for applications in several kilowatts

[15–17].

For industrial uses, the cost of the components is a vital aspect of selecting the power

filter for the grid-tied inverter. Owing to the growing cost of copper, various methods

have been implemented to cut down the price of the power filter. One helpful way is to

2
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Figure 1.1: Typical schematic of a 180 kW photovoltaic system for industrial locations.

increase the switching frequency of the inverter where the method, surely, depends on the

device proficiency and cost.

On the other hand, large influences of weather events on electric power systems, espe-

cially when dominated by renewable generation, and following disturbances have caused

the rising worldwide need for addressing the concern of resiliency in power system. Re-

siliency is the capability of power systems to survive high-impact but low-probability

events in an effective way while guaranteeing the smallest probable interruption in power
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supply, and enabling a fast restoration and recovery to the regular operation state. The

main purpose of introduction of Microgrids were initially addressing the appearance of

high-utilization of DERs in distribution grids. However, they recognized as valuable re-

placements to central bulk generation in power systems planning and operation. Micro-

grids present distinctive opportunities in power systems such as higher power quality,

reduction in greenhouse gases (GHG) emission, improved reliability, offering energy ef-

ficiency, employment of less costly renewable energy sources, and providing an efficient

and quick response for furnishing loads in remote regions [18]. The essential utilization

of power electronic devices such as inverters in Microgrids can significantly decrease

the equivalent rotational inertia of the electric power grid. Consequently, the Microgrids

integration to the electric can be restricted. In addition, low inertia may lead to the de-

terioration of resiliency of Microgrid that reduces its frequency-stability. In a traditional

power system, swing equations show the resilient power system that functions with a

lower ratio of change of frequency in the occurrence of power imbalance, therefore with

a higher inertia. The power imbalance mostly happens because of large active and reac-

tive load variations, momentary faults, and instants of integration Microgrids for exports

and import [19].

The inertial property in power system prevents the load shedding procedures, by ded-

icating that time for compensating control schemes to regulate generation to the varying

situation. As the renewable-based distributed generation components begin to increase

their footprint on the electric power networks, inertia in the Microgrid has become an in-

teresting topic. Generally, the main sources of inertia in the power system are the classic

steam turbines (typically synchronous generators) and the big motors in industrial units.

Conversely, the renewable electric generators such as PV cells, being connected into the

grid by application of the inverters that could not supply any inertia to the system. As

a result, in the Microgrids that are connected to a weak grid or are not grid connected,
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there is either very small or no inertial response, that might cause terrible impacts to the

Microgrid system [20].

1.2 Literature Review

As an environmental friendly and renewable energy source, solar generation has recently

observed faster propagation throughout the world. However, as a result of the stochas-

tic nature of solar irradiation, the subsequent fluctuations in solar energy significantly

handicap large-scale integration of PV into distribution power grids. Reduction of iner-

tial response which is a consequence of incompatibilities amongst the power demand and

generation in the (micro) grid is another technical challenge of adding high levels of PV

generation in the electric grid. Because of increasing the instantaneous power or loads

with large startup current, energy management and power control of a system with low

rotational inertia is a vital concern. Such a high current in a short time not only requires

greater rating of the power devices, but also can probably cause the voltage and frequency

of the system to drop in the entire Microgrid [21].

Historically, the power grid, especially the distribution system, has been designed

and optimized for power flow in one direction: from central generators to substations

through the transmission network, and then through feeders to individual consumers. As

penetration of distributed solar generators, such as rooftop PV solar panels, increases, it is

envisioned that during some hours of the day, the power generated by the solar installation

can exceed power consumption needs, and therefore, power flow will be in the reverse

direction, from individual consumers through the feeders to the substation and possibly

beyond, into the bulk power system. This can be especially true for residential customers

who are not at home during the workday.
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Figure 1.2: Two-way coupled Transmission and Distribution grid

To protect the network from threats related to PV interconnection, utilities and other

electric energy entities imposed rigorous technical requirements and grid code regula-

tions which are classified into four major categories: (i) fault ride through requirements,

(ii) active and reactive power responses following disturbances, (iii) active power control

or frequency regulation support and (iv) reactive power control or voltage regulation capa-

bility [7]. In this effort, the advanced, algorithmic and consolidated technical guidelines

for specification of large scale PV grid interconnection scheme, reactive power capability

and power control requirements for interconnection of variable generating plants to the

power system are proposed. Also smart inverter based system in laboratory scale which

follows UL 1741 IEEE 1547, 1547.a, 1547.1 and IEC 61850 and IEEE 2030.5 standards

will be implemented.

Another challenge of using power conditioning units in PV system are harmonics. A

low-pass power filter is often put in between a voltage-source inverter (VSI) and the grid

to limit the excessive current harmonics, which are mostly produced by the sine pulse

width modulation (PWM), to inject into the point of grid connection [22]. In comparison

to a first-order L filter, an LCL filter can satisfy the standards for grid interconnection with

notably smaller size and cost, primarily for applications in several kilowatts. Also LCL
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or higher order filter is needed to attenuate switching frequency harmonics too meet grid

codes. Owing to the growing cost of copper, various methods have been implemented

to cut down the price of the power filter. One helpful way is to increase the switching

frequency of the inverter where the method, surely, depends on the device proficiency and

cost.

A possible solution for regulating the fluctuating output power of a PV plant is to

integrate a hybrid energy storage system (HESS) that has both high energy density storage

battery and high power density storage super capacitor [7].

More than that, delivering high power in a short period of time is destructive to batter-

ies, but it is the challenge that supercapacitor can best mitigate. In peak power situations,

the super capacitor is capable of delivering or receiving energy, therefore it can act as

a load-flattening device for the battery. If this is done, the battery output power would

become closer to the average load demand, hence decreasing its RMS and peak currents

[23].

Another method to emulate virtual inertia with energy storage system (however in this

research a HESS is implemented) is called the Virtual Synchronous Machine (VISMA),

Virtual Synchronous Generator (VSG), or Virtual Inertia Emulator (VIE). It modify the

DG units in a way that they operate like synchronous generators, exhibiting an amount

of inertia and damping properties of conventional synchronous machines for short time

intervals. Then a significant share of DGs/RESs in islanded microgrids can be maintained

without compromising system stability by a basis from virtual inertia concept. A VIE

consists of energy storage, inverter, and a control mechanism as shown in Figure and it

is usually located between a DC bus and the grid. The VSG shows the DC source to

the network as an SG in a viewpoint of inertia and damping property. Virtual inertia is

emulated in the system by controlling the active power through the inverter in inverse

proportion to the rotor speed [24]. Aside from higher frequency noise due to switching of

7



AC/DC 
Converter

DC/DC 
Converter

DC/DC 
Converter

Control Methods 
and algorithms

D
C

 L
in

k 
B

u
s

VIE

DC/AC Inverter

Mimic Rotating 
Behavior

Electric Grid

Figure 1.3: General configuration and concept of the VIE

inverters power transistors [25], there is no difference between the electrical appearance

of an electro-mechanical SG and electronics VIE, from the grid point of view.

1.3 Motivation and Purpose of Research

As mentioned in the earlier parts and the literature reviews, power electronic devices

are increasingly used within electrical systems for efficient control and use of electric

energy. On the other hand, the renewable sources of energy are intermittent by nature.

Combination of these two parameters, impose technical challenges into the electrical grid.

These challenges can be due to changes in feeder voltage profiles, increase of harmonic

injection into the grid, lack of resiliency when renewable penetration is high and finally

frequent operation of voltage regulation devices such as load tap changers (LTCs), line

voltage regulators (VRs), and capacitor banks (CBs). There are two critical components

in a grid connected photovoltaic system, which have the most impact on the power output

quality and system performance under supply (or load) disturbance. First is the low pass
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filter, which is commonly placed at the output side of the inverter. Second is the dc bus

that needs to maintain a constant voltage in order to ensure constant and smooth power

flow to the inverter.

First part of the research that has been done in this dissertation focuses on the impact

of large PV penetration in the distribution system. A further motivation is that the na-

ture of the impact of PV in the distribution system differs from one area to another and

depends on the geographic location of solar PV site and point of interconnection in the

distribution grid. For this reason, studies performed for one area of the power system

cannot in general be sufficient for all other areas. This will help local power utility to un-

derstand the interactions, models that are required to be developed, power quality impacts

as a function of penetration level.

The second part of the research emphasis on reduction of the influence of the grid

harmonic currents and voltages. Harmonic compensation is regularly implemented for a

grid-tied inverter. However, because of the growing price of copper, many measures have

been adopted to cut down the cost of the power filter. One effective way is to raise the

switching frequency of the inverter where the solution certainly depends on the device

modeling and costs. This study fill out this gap by designing a new low pass filter topol-

ogy. Generally, there are two major sources of inertia in the power system, which are the

synchronous generators and the industrial motors. However, the future grid with domi-

nation of the renewable resources that mostly are connected to the grid through a power

electronic inverter, cannot provide required inertia to the system. Therefore, smart grids

and power systems will have either very slight or no inertia property. This phenomenon

could lead to severe problems in the grid like frequency variation and fluctuating power

output. Therefore, providing virtual inertia and smoothing the power output is increas-

ingly important.
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1.4 Research Objectives and Original Contributions

The objectives of this research are on the issues that are stated above. The main goal of

this research is to understand the interactions, potential power quality issues in different

penetration level, as well as providing advanced solutions for renewable energy integra-

tion. The nature of the impact of PV in the distribution system differs from one area to

another. The uniqueness of this research is that not only it suggests advanced solutions by

designing a new type of filter in a laboratory based prototype and virtual inertia, but also it

does fill the gap of in-depth analysis of the impact of high PV penetration in a distribution

grid. The thesis has completed the following major activities:

1. Analyzing the trends of voltage fluctuations, harmonics, and frequency of the

photovoltaic power plant, identifying threshold issues affecting performance,

and proposing solutions for maintaining or improving of distribution grid per-

formance.

• Investigation of capacitor bank operations and voltage regulator opera-

tions due to increase renewable penetration.

The purpose of this research is to conduct detailed analysis of effects of medium

scale PV plant connected on a distribution system. The evaluation of power quality

criteria for FIU photovoltaic power plant and early detection of an incipient problem

has been conducted. First, real data from Provision PQ meter and Also Energy data

acquisition system, with 1 minute resolution, was gathered a categorized. Then a

comprehensive analysis has been conducted to figure out the voltage, current THD,

and voltage violations. Furthermore, this study provide improved methodologies

that will allow local utility to select optimal control setting in order to reduce the
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number of switching operations quickly and accurately. As a result the life time of

legacy device in presence of high PV penetration will increase.

2. Design and hardware laboratory prototype implementation of a new low-pass

power filter named L(LCL)2 filter to reduce the harmonics at the switching

frequency and multiples

• Close-loop stability analysis of the current controller

• Efficiency comparison between the LLCL and L(LCL)2 filters

• Size estimation of LLCL and L(LCL)2 filters

• Small-signal model of the dc-link dynamics considering the instantaneous

power for bi-directional ac/dc power flow applications

In this research, the principles of the conventional LLCL filter and parameter

design of the L(LCL)2 filters were proposed. Since grid-side inductance of the

LLCL filter is mainly decided by the harmonic currents around double the switch-

ing frequency instead of those around the switching frequency, it was replaced by

a small trap at double the switching frequency. Compared to the LLCL filter, the

replacement results in the reduction of the total inductance size, and hence, the

total loss of the filter. The inverter-side inductance is divided into three parts to

place resonant branches in between them. The proposed L(LCL)2 filter has lower

loss and better performance at high-order harmonics attenuation. In the proposed

design, the maximum power factor variation remained unchanged and the current

THD improved by 7.77%.

3. Design of a combinatorial advanced solution for PV integration to address in-

termittency and provide inertial response. This work has been done by im-

plementing hybrid battery-super capacitor energy storage system and Virtual
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Inertia Emulator (VIE). Ramp rates are one of the measure of performance in

intermittency mitigation. Drop in power output and frequency oscillation will

be measure of inertial response of the system.

• Controller Design for the Grid connected inverter of the distributed gen-

eration System

• Controller Design for the DC/DC Converters of the hybrid energy storage

system (HESS)

• Power Smoothing of Short-Term Photovoltaic Power Fluctuations

The operation of a photovoltaic (PV) generating system under intermittent solar

radiation is a challenging task. Furthermore, with high penetration levels of pho-

tovoltaic energy sources being integrated into the current electric power grid, the

performance of the conventional synchronous generators is being changed and grid

inertial response is deteriorating. This research proposes a combined virtual inertia

emulator (VIE) and a hybrid battery-super capacitor-based energy storage system

for enhancing the inertial response and smoothing the short-term power fluctua-

tions simultaneously. The proposed system overcome the slow response of battery

system (including dynamics of battery, controller, and converter operation) by redi-

recting the power surges to the super capacitor system. Moreover, it enhance the

inertial response by emulating the kinetic inertia of synchronous generator. Control

systems for the VIE and battery-super capacitor storage system are presented in

this research. Correspondingly, simulation results are discussed to validate the ef-

fectiveness of the proposed scheme. Matlab Simulink software has been considered

to develop control designs of VIE and Hybrid Energy Storage System (HESS). The

recommended method is capable of achieving voltage and frequency regulation and

effective management of the hybrid storage system. Since the suggested technique
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focuses on short-term fluctuations and includes no long-term power regulation, it

needs no mass storage device. Thus, the method is economical.

On top of the major activities, this thesis presents an analysis of technical and financial

viability of hybrid grid/Renewable Energy System (RES) configurations for a neighbor-

hood in Miami. Assessment criteria comprised reduction in net present cost (NPC), cost

of energy (COE) and greenhouse gases (GHG). Moreover, an artificial neural network

based duty cycle estimation for maximum power point tracking in photovoltaic system is

studied. The proposed technique is implemented in Matlab/Simulink and compared with

the conventional method of incremental conductance.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 presents investigation

of standards and threshold issues affecting performance of grid-connected photovoltaic

systems. In this chapter a handy extensive investigation on grid connected photovoltaic

system is conducted. Moreover, an analysis of the challenges of photovoltaic integration

into the grid and some integration solutions are also presented. Standard requirements

for PV integration, grid codes, and power electronic inverter topologies for Photovoltaic

interconnection to the grid are studied.

Chapter 3 introduces analysis of carbon tax as an incentive toward building sustainable

grid with renewable energy utilization. For this purpose, an evaluation of the Co2 tax level

of the cost-effectiveness of the system is also conducted. Outcomes demonstrate that there

is the remarkable potential of Co2 mitigation along with COE reduction and sustainable

and resilient energy development from employing RES.

Chapter 4 discusses an artificial neural network based duty cycle estimation for max-

imum power point tracking in photovoltaic system. The proposed technique is imple-
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mented in Matlab/Simulink and compared with the conventional method of incremental

conductance. Simulation results show a good performance of the ANN based MPPT

controller.

Chapter 5 analyzes the trends of voltage fluctuations, harmonics, frequency, and legacy

devices of the photovoltaic test-bed. This chapter presents monitoring and assessment of

a 1.1MW photovoltaic power plant at Florida International University, Miami, Florida.

The assessment criteria were the IEEE 519 and 1547. It concluded that at current level of

photovoltaic penetration (16%), Current THDs violates the 5% limit value at the Point of

Common Coupling (PCC). Moreover, except from a few short duration voltage impulses,

no voltage violation has been observed.

Chapter 6 proposes a new topology of higher order power filter for single-phase grid-

tied voltage source inverters, named L(LCL)2. A comparative study and discussions on the

subject of the traditional LLCL filter and the proposed L(LCL)2 filter have been conducted

and assessed through an experimental hardware implementation on a 700 W, 120V / 60

Hz single-phase grid-tied inverter. Furthermore, a straightforward engineering design

benchmark is suggested to discover parameters of the L(LCL)2 filter. Moreover, stability

analysis, loss analysis and an optimization of the L(LCL)2 filter parameters have been

conducted in this study. The analysis shows that in comparison with the LLCL filter, the

L(LCL)2 filter not only has lower voltage drop and less total inductor size, but also has

improved performance in decreasing high order current harmonics.

Chapter 7 develops a combinatorial advanced solution for PV integration to address

intermittency and provide inertial response. This chapter proposes a combined virtual

inertia emulator (VIE) and a hybrid battery-supercapacitor-based energy storage system .

VIE provides a method which is based on power devices (like inverters), which makes a

compatible weak grid for integration of renewable generators of electricity. This method

makes the power inverters behave more similar to synchronous machines. Consequently,
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the synchronous machine properties, which have described the attributes of the grid up to

now, will remain active, although after integration of renewable energies. Through these

studies, it demonstrated that the recommended method is capable of achieving voltage

and frequency regulation and effective management of the hybrid storage system.

Chapter 8 summarizes the dissertation outcomes, concludes the significance of this

research, discuss the results, and finally makes recommendations for the future works.
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CHAPTER 2

INVESTIGATION OF STANDARDS AND THRESHOLD ISSUES AFFECTING

PERFORMANCE OF GRID-CONNECTED PHOTOVOLTAIC SYSTEMS

2.1 Overview

It has been very clear from recent studies and documentations the fossil fuels would last

only a few more decades. The cost of fossil fuel has become a major challenge for all of

human kind. Not only the economic value but the environmental impacts of fossil fuels

have clearly made us move toward alternatives [26–28]. The greatest alternatives that can

really make a difference for sustainability, such as reducing green-house gases and long

term economics, are the renewable energy sources (RES) like wind and solar power. Solar

photovoltaic (PV) industry is the dominant type of RES technology integrated to power

grid systems as its cost reduces over the next ten years, while deployment of PV systems

continues to increase quickly. As penetration of PV on the grid grows, finally reaching

hundreds of gigawatt (GW) interconnected capacity, a diversity of methods require to be

taken into account and also implemented at various scale, for reliable and cost-effective

connection into the power grid [29].

Since many PV interconnection applications involve high penetration scenarios, the

process needs to allow for a sufficiently rigorous technical evaluation to identify and

address possible system impacts. Thus, except of reducing the PV cost installation, others

issues such as standardization, simple improvements in design, better power electronics,

and simplified procedures for grid integration are already improving the economics of PV

systems.
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2.2 Problem Statement

They are many review studies on grid connected PV systems in the literature. The com-

parison of the most recent literature reviews are present in this part. In [30] authors

studied the current trend of PV power plants development in the world, comparison of

grid codes for fault ride through (FRT), voltage, frequency, active power, and reactive

power was analyzed. After that, voltage stability, frequency stability, active power reg-

ulation, and reactive power regulation was studied. At last, the compliance technologies

were investigated. Authors of [31] reviewed the technical requirements of PV systems

with microinverters by analyzing the U.S. National Electrical Codes, standards and util-

ity grid-interconnection application, Michigan state requirements, barriers and solutions

for plug-and-play Photovoltaic systems, and advantages of microinverters. Ref. [32]

studied the ratio between load and PV power, possible complications associated with

high penetration PV into the grid, grid-connected inverters, and islanding detection meth-

ods. In [33] standards and specifications of grid-connected PV inverter, grid-connected

PV inverter topologies, Transformers and types of interconnections, multilevel inverters,

soft-switching inverters, and relative cost analysis have been presented. [34] did a re-

view on prospects and challenges of grid connected PV systems in Brazil. [35] mostly

focused on the techno- economic analysis of the grid connected PV system for build-

ing application. [36] reviewed the technical barriers of PV system development. The

authors did a survey on categorizing the grid-connected and stand-alone PV systems, en-

ergy policy, a number of technologies implemented in PV cells, maximum power point

tracking (MPPT), energy management, energy optimization, issues related to storage of

energy in PV systems, hybrid PV systems, environmental and economic concerns, oper-

ation and maintenance issues. Ref. [37] provided analysis, explanation, and introduction

on typical distributed MPPT and centralized MPPT. In [38] guidelines and standards of
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the grid connected PV generation systems, effects of large PV integration into the power

grid, power quality requirements, protection methods, and control capabilities have been

investigated. As it can be seen each study mostly focus on only limited aspects of PV

technical specification, and there is no comprehensive review on this topic.

2.3 Solution Approach

In this chapter a handy extensive investigation on grid connected photovoltaic system is

conducted. The outline of the rest of this chapter is as follows. Section II analyses the

challenges of photovoltaic integration into the grid. Some integration solutions are also

presented in this section. In Section III the standard requirements for PV integration are

studied. Grid codes are studied in Section IV. Section V analyses the power electronic

inverter topologies for Photovoltaic interconnection to the grid. Most popular three phase

inverters are investigated in Section VI. Most implemented control algorithms for PV sys-

tems are presented at Section VII. Some storage systems for PV applications are studied

in Section VIII. Finally, the chapter is concluded in Section IX.

2.4 Challenges to Integrate Solar Photovoltaic

In spite of all advantages of PV, it might make some potential adverse effect on the present

power grid. Solar is known as non-dispatchable resources. There is no control over the

input these kinds of energy resources for later use when desirable [39]. The lack of control

over the input has a direct relationship with unpredictability of the output power injected

to the grid [40]. The incapability of generating on-demand power triggers stability and

reliability concerns to the power system [39, 41, 42]. Some of the challenges that come

along with using renewable energies are depicted in Fig. 2.1 [43].
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Figure 2.1: Challenges that arise when integrating renewable resources into the smart
grid.

The information collected from an extensive survey on literature shows that the PV

output power fluctuation due to solar irradiance intermittency is the most important prob-

lem of PV grid integration. Thus, large scale integration of photovoltaic system into the

distribution grid introduces corresponding problems such as voltage regulation problem,

harmonics, reactive power compensation, synchronization, energy storage, forecasting

and scheduling, and load demand management systems. A classification of technical

challenges of large-scale PV in the distribution systems are presented in Table 2.1.

Distributed system protection coordination in a feeder with high PV integration using

widespread distributed feeder measurement and utilizing OpenDSS has been studied by

[44]. Short circuit detection technique for the PV inverter by valuating the magnitude

and slope (d/dt) of the PV inverter current is introduced in [45]. In order to prevent any

contrary effects of the short circuit current, the proposed system either disconnects the in-

verter or transfers the inverter to a PV dynamic reactive power compensator (STATCOM).

The success of alternative energy is dependent upon the engineering equipment and

infrastructure which it is based upon and its ability to capture and convert this energy

[40]. The availability of solar power is dependent upon the position of the sun, angle at

which the sun-rays fall upon the surface of the earth, and cloud location [43]. The places

at which these renewable resources are available are typically far from their intended

population areas. This would require extensive investment in transmission infrastructure
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Table 2.1: Technical Challenges in Regards to Implementation of Renewable Energy to
the Smart Grid

Technical Challenge Description of challenge and how it effects the smart grid
when renewable energy is integrated.

Voltage Fluctuation / In-
termittency

Major issue due to the intermittency of these renewable resources.
This is seen to occur because of the variance of available solar
energy at any given point throughout the day. Fluctuating voltage
can disturb sensitive equipment and possibly reduce the life of
power electronic devices.

Harmonic Distortion Voltage distortion and fluctuation issues can be produced by in-
jected harmonics onto the grid. Power electronic devices and op-
erative non-linear appliances are the main sources of high per-
centage of total harmonic distortion (THD).

Reactive Power Compen-
sation

Because of variations in the active and reactive power, a fixed
capacitor or switched capacitor or static compensator can be im-
plemented as a power regulator.

Synchronization In order to ensure power quality in the grid, synchronization of
grid frequency, voltage, and phase is a crucial aspect.

Energy Storage This is another aspect that is imperative with the purpose of ensur-
ing the reliability of power delivery. Energy storage systems are
being used to bring the instability and uncertainty under control
in the production of varying types of renewable energies. Some
existing energy storage methods are listed in the Energy Storage
section in this chapter.

Forecasting and Schedul-
ing

Knowing future weather patterns will play a crucial role in the
variability of renewable energy as it is introduced into the smart
grid. In order to reduce the intermittency on the network, accurate
forecasts must be produced to produce satisfactory power quality
and to perform viable load management systems.

Load Demand Manage-
ment Systems

Planning and management of the load demand is crucial for power
quality improvement of the smart grid with renewable energy in-
tegration. With proper planning and management adequate power
quality can be supplied in a safe and efficient manner uniformly
across the entire power grid at varying loads and demands.
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in order to insure the proper and secure transfer of energy produced. For the promise of

alternative energy to be achieved, the following goals shown in Table 2.2 must be met

[46].

Similarly, for the success of renewable energy, proper technology must be available

for implementation [43]. Most researched technologies take anywhere between twenty to

twenty-five years to demonstrate the feasibility and large-scale commercialization before

they are implemented outside of the laboratory. The reason is that many of the processes

for these technologies must be perfected and optimized for different operating environ-

ments. Apart from the optimization, all of the technologies must also be patented, tested,

safety evaluations must be conducted, land procurement must be acquired, the financial

analysis must be conducted, along with several other studies must take place before such

technologies can be seen to commercial use.

Present Usage of PV Generation:Currently, it seems impossible that today’s power

grid could run on simple renewable resources unless there is a major advancement in

energy conservation and improved energy efficiency.

One way to overcome this while using the available technology is to use other dis-

patchable renewable resources which can be kept running in reserve modes. Examples of

some dispatchable renewable resources are [40]: Hydroelectric, Biomass, Geothermal.

Some of the other solutions that have been looked at is the solution of using com-

pressed air storage, batteries, and the use of molten salts in appropriated solar thermal

plants [47]. Some of the downsides from these approaches include losses in the process

of energy storage, transfer and usage along with the limited density of energy that these

systems are capable of storing with today’s available technologies [48].

The inability to produce on-demand real and reactive power, in a way that generators

have spinning reserve can be compensated by using energy storage systems. Therefore,

the power generated by renewable energy resources like solar and the wind could be stored
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Table 2.2: Required Fundamentals for Grid Integration of Renewable Energies.
Area of interest Target Goals

Standards Must abide and comply with ANSI, UL, NEC, and OSHA standards for operational usage.
Implementation planning
and future forecasting

• Must be able to perform for approximately 25-30 years.

• Modern energy management systems to incorporate variability of renewable re-
sources.

• Computational intelligent forecasting tools.

• Integrate storage elements

• Fleet management

• Closed loop control mechanism to reduce disturbances.

Performance of the com-
ponents

Over a 25-30 year projected lifetime performance the device should be able to :

• Have less than 5% internal loss while in a fully charged.

• Have an efficiency of over 90%.

• Be able to perform over 50,000 cycles of charging and discharging with no less
than 40% of PV capacity within 1 minute.

• Must be supplied at a reasonable time frame and generate power on demand
regardless of the time of day.

Financials/Cost of overall
project

• Must have feasible cost in regards to performance and return.

• Should cost less than 14 cents/ kWh after the system is fully installed.

• Cost analysis studies should include cost for proposed solutions including the
cost of the PV plant, inverters, storage devices, hardwares, software, intercon-
nection, and other devices which will ensure proper and optimal operations of
the system.

Communication to and
from components on the
smart grid • Must allow monitoring and communication to and from the components within

each sub system.

• Safe to maintain and preventative against external attack.

• Must be able to be controlled and provide feedback to the supplying utility com-
pany.

• Communication protocols must be compatible with current power electronic de-
vices on the smart grid for having a homogeneously operating smart grid.

• Protocols used in communication cannot be replicated by other industries.

• Must be able to respond to electrical market prices and have capability to respond
to load forecasting in order to determine the optimal methods to provide the best
power quality within the smart grid.
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and then later used in order to abide by the load balancing act and available energy [49].

In todays society, pumped hydro devices almost dominated large-scale energy storage

system in the USA [50]. However, some battery energy storage System also known as

(BESS) are installed [51].

Application of energy storage has been known for their ability to provide many of the

auxiliary functions such as load leveling, peak shaving, voltage regulation, VAR support,

frequency control, spinning reserve and power quality mitigation that the power system

so desperately need [39]. Renewable resources on the grid can be used in order to fix

problems with fluctuations of power by introducing storage of the produced energy and

secondly with the concept of distributed generation [52].

2.5 Grid Codes Requirements

PV capacity reached a global total of 100 GW as of 2012, establishing itself as just one

of the expeditiously growing renewable resources. With the massive injection of power

from renewable resources, into the energy grid; there is a definite need to keep power

requirements uniform to ensure reliability and stability. The use of universal and detailed

standards, that lay out specific guidelines for integrating renewable resources into the en-

ergy grid. These standards and so-called Grid codes have responsibilities such as: voltage

and frequency stability, power regulation, response to atypical energy system conditions,

and system restoration. Presented below are these topics from various national require-

ments.

2.5.1 IEEE 1547

The IEEE 1547 standards [1] were established to provide a national agreement on im-

plementing distributed resources (DR) in the power system grid. IEEE Std 1547-2014
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Table 2.3: ANSI C84.1 Voltage Ranges for 120V Base.[1]
Service Voltage Utilization Voltage
Minimum Maximum Minimum Maximum

Range A 114 (-5%) 126 (+5%) 110 (-8.3%) 125 (+4.2%)
Range B 110 (-8.3%) 127 (+5.8%) 106 (-11.7%) 127 (+5.8%)

presents obligatory prerequisites for the interconnection of DR with the electric power

networks. The focus of this standard is mostly on radial distributed feeder interconnec-

tions. For DR interconnected on the distribution grid, all parts of IEEE Std 1547-2014

needs to be fulfilled.

Standard IEEE 1547 establishes foundational criteria for all types of interconnected

distributed energy resources (DER) connected to Area Electric Power Systems (EPS).

Generally this standard is applicable up to 10 MW of distributed generation, and sets

mandatory requirements. The standard’s main objectives are: technical requirements for

interconnection and testing the interconnection, to EPS. The following sections will out-

line certain aspects of IEEE 1547.

Normally distribution voltage regulation occurs at substation level. However, Accord-

ing to IEEE 1547, photovoltaic and wind turbine systems–distributed energy resources

(DER), as they are commonly referred to should not cause area electric power systems

(EPS) to set the voltage at the point of common coupling (PCC) actively. In addition,

the DER should not force the service voltage of Area Electric Power systems outside of

operating ranges specified by ANSI C84.1-1995 (Range A). ANSI C84.1-1995 voltage

ranges are shown in Table 2.3

Area EPS are designed to have radial one-way power flow, which is from the substa-

tion to the load. This brings a unique challenge because DER possibly will cause two-way

power flow, which could affect the EPS voltage. For example, if generated power by a

DER source is injected into the power system, the load current will be offset and reduce

the voltage drop at the Area EPS; because of DER, Local EPS loads can be offset and
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Table 2.4: Interconnection system response to abnormal Voltages [1]
Voltage range (% of base voltage) 1 Clearing time (sec) 2

V <50 0.16
50 V <88 2.00

110 <V <120 1.00
V 120 0.16

possibly affect the voltage. In addition, DER sources absorb (Inductive) and supply (Ca-

pacitive) reactive power into the system. These situations accentuate the need for the

IEEE 1547 requirement that DER should not actively regulate voltage.

2.5.2 Voltage

There are system response requirements for typical voltages. When a voltage within the

specified range given in table 2.4 is detected, the DER should discontinue energizing the

Area EPS, in the period of the indicated clearing time. The time between the start of the

abnormal condition and the discontinuing the DER energization of the Area EPS is called

clearing time.

2.5.3 Frequency

When the power system frequency is detected within the ranges listed in Table 2.5, the

DER should discontinue energizing the Area EPS before clearing time limit. The Clearing

time is the period of time between the beginning of the condition and the DER discon-

tinuing to energize the Area EPS. If there is an Area EPS disturbance, the DER is not

allowed to connect back to the power system until Area EPS voltage is restored to the

specifications listed in ANSI C84.1 - 1995 (Range B) and frequency within: 59.3 Hz

1Base voltages are stated in ANSI C84.1 - 1995 as the nominal system voltages

2maximum clearing times for DR 6 30 kW
default clearing times for DR > 30kW
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Table 2.5: Interconnection system response to abnormal Frequencies [1]
DER size Frequency,range (Hz) Clearing,time (sec)

6 30 kW

>60.5 0.16
<59.3 0.16

<{59.8 57.0}
(adjustable set point)

Adjustable
0.16 to 300

>30kW <57.0 0.16

Table 2.6: Maximum Harmonic Current Distortion in Percent of Current [1]
Individual harmonic order h (odd harmonics) Percent (%)
h <11 4.0
11 <h <17 2.0
17 <h <23 1.5
23 <h <35 0.6
35 <h 0.3
Total demand distortion (TDD) up to the h=50 harmonic 5.0

to 60.5 Hz. Furthermore, the system should include a fixed or adjustable delay, up to a

maximum time of five minutes, which ensures no reconnect until Area EPS steady-state

frequency and voltage are returned to the aforementioned ranges in Table 2.5.

2.5.4 Power Quality

The dc current is not allowed to be bigger than 0.5% of the nominal output current at the

PCC. Moreover, there are limitations for injected harmonic currents into the Area EPS

at the point of DER connection; given in Table 2.6. The concern about dc current in-

jection and dc voltage bias into the grid by PV system is studied in [53]. In this section

a single-phase inverter for PV application with low-frequency transformer (LFT) inves-

tigated. Total harmonic distortion (THD) is another measure of power quality in OV

systems. Current THD has bigger values in cloudy days, even there is no resonant in the

network.
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2.5.5 Islanding

One of the most important concerns in utilizing PV in power system is islanding. Is-

landing happens when a line is disconnected and is energized by one (or multiple) DERs,

whilst that section of the EPS is electrically cut off from the remainder of the EPS. If

this situation is not discovered quickly, it may introduce dangerous safety condition [54].

During unintentional islanding, the DER shall have the means to recognize the acciden-

tal island and discontinue to energize the EPS in less than two seconds of the island’s

creation.

Other General requirements:

• IEEE 1547-4.1.3: The DER shall be in parallel with Area EPS and does not cause

any voltage deviations at PCC larger than ±5% of the nominal voltage of the Area

EPS. Furthermore, unacceptable flicker shall not be produced by the DER for other

customers on the Area EPS.

• IEEE 1547-4.1.5: the Area EPS shall not be energized by the DER while the Area

EPS is not energized.

• IEEE 1547-4.1.7: An accessible, lockable, and clearly distinguishable disconnec-

tion device shall be provided to disconnect Area EPS from DER.

• IEEE 1547-4.1.8.2: The system of interconnection should be able to tolerate cur-

rent and voltage swells in agreement to the conditions provided in IEEE standard

C37.90.1-2012 or IEEE standard card C62.41.2-2002 as applicable.

• IEEE 1547- 4.1.8.3: The connected parallel DER to the system should be able to

tolerate 220% of the interconnection system nominal voltage.

• IEEE 1547-4.2.1: The DR unit should stop energizing the Area EPS for faults on

the Area EPS circuit to which it is connected.
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• IEEE 1547-4.2.2: The DER should halt energizing the Area EPS, earlier than re-

closure by the Area EPS.

• IEEE 1547-4.2.2: The DR and its linked system should not inject dc current bigger

than 0.5% of the nominal current at the PCC.

2.6 Grid codes in Different Countries

This section will serve to outline the main objectives of various national grid codes.

1) Germany: The nation of Germany retained its world rank in 2012 as the third largest

investing country in renewable resources. 7.6 GW of solar capacity was installed, making

it the largest for any country. As such a detailed survey of Germany’s Grid code is shown

below. The Grid Code’s objectives are keeping safety and reliability of network operation

in accordance with the requirements of Energy Economy Law (ENergiewirtschaftsgesetz

EnWG). The grid code allows for on-site calculation of minimum and maximum power

at which the plant is connected to the medium voltage network. The grid code specifies

that DER shall be dynamically grid supported. More expressly DER (PV system) must

have the capability to remain connected during a fault, support or provide system with

reactive power for the time of fault, and absorb similar or smaller reactive power after the

cessation of a fault.

With respect to PV systems (specified as type 2 plants) in German grid code; they

must not disconnect from the network when a voltage drop to 0% Uc and time duration

of 6 150 ms occurs. Fig 2.2 indicates ranges for disconnection, and ranges where DER

must stay grid connected. If there is a voltage drop above borderline 1, the DER must

remain stable and connected. Voltage drops above borderline 2, but below borderline 1,

shall also be ridden through. Based upon network operation agreements certain options

are available for this range:
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Figure 2.2: Fault Ride Through Germany

Below borderline 2, brief disconnection times, and possibly longer disconnection

times are possible.

• Feed-in of short circuit current

• Based on the grid connection concept borderline 2 can be moved

• Brief disconnection times of up to 2 seconds.

In accordance with the grid active power control code’s requirements, the power gen-

eration units should be capable of reducing power output. The subsequent criteria permit

network operator to momentarily restrict injecting power, or cut-off the power generation

plant:

• Dangerous system operations risks

• Congestion in the power network risks

• Unintentional islanding risks

• Dynamic or static grid instability risks

• Unstable conditions risks owing to frequency increase

• In order to perform repairs or construction
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Figure 2.3: Dynamic response of Germanny’s power grid.

• For feed-in, production, or network security management.

In addition there shall be a set point given by the network operator that must be at-

tainable from any operation point. The generation plant must be able to reduce power in

levels of 10% or smaller of the agreed upon rated output power.

As shown in the below Fig 2.3, when system frequency rises above 50.2 Hz, there must

be a reduction in output power. The power reduction shall be reduced with a gradient of

40% / Hz of instantaneously available power, and shall not be increased until frequency

is below 50.05 Hz. For frequencies greater than 51.5 Hz and less than 47.5 Hz, the

generation plant shall be disconnected from the grid.

Static grid support:Generating plants must have the capability to deliver reactive

power at all operational points in line with the following displacement factor in the grid’s

connection point: cos(ϕ) = 0.95underexcited to 0.95overexcited

Reactive power will be delivered only for the duration of the feed-in operation. There-

fore, there is no necessity to deliver reactive power at night time when no irradiance can

be collected from the sun. Reactive powers set point can be fixed or variable signal by the

network operator. Criteria for the value of the set point are:
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Table 2.7: LVRT requirement in China grid.
Voltage Drop During Time

20% UN 1 s
40% UN 1.57 s
60% UN 2.14 s
80% UN 2.71 s
90% UN 3 s

Test should carried under three phase balanced and
unbalanced voltage drop

• Fixed displacement factor of cos(ϕ)

• Or a variable displacement factor depending on active power cos(ϕ)

• Variable reactive power depending on voltage Q(U)

2) China: In 2011, Q /GDW 617-2011 ”Technical rule for photovoltaic power sta-

tion connected to Power Grid” and Q/GDW 618-2011 ”Test Procedures for photovoltaic

power station connected to Power Grid”, were introduced in China. These standards

set requirements for PV power plant quality, Low Voltage Ride Through (LVRT), safety

and protection, metering, technical conditions, and anti-islanding (AI). Standard Q/GDW

617-2011 specified that medium and large type power stations have LVRT capability. In

addition PV power system shall assure continuous operation with the grid whilst the con-

nected point of voltage is within the voltage range provided in Fig. 2.4(a) Shown below.

If that voltage is outside the range as specified in Table 2.7, the PV power system should

discontinue supply of power to the grid.

The standard Q/GDW 618-2011 outlines the requirements when there is a grid voltage

drop of 20% of nominal voltage, the PV power station shall assure connection to the grid

for at least 1 s; with the upper limit being a voltage drop of 90% nominal voltage and time

of 3 s.

It is suggested that PV power stations provide dynamic reactive support during LVRT,

but not required. There are no requirements for power quality during a fault, however

31



current distortion should be kept to a minimum. In the case when there is a fault or

failure, PV power stations should follow timing and connection requirements. In addition

active power should be restored as quickly as possible after the fault or failure desists.

The active power should be restored to the value before the failure occurred, with a rate

of power change of 10% rated power per second.

Table 2.8 provides a comparison of national standards and grid codes for select coun-

tries; in addition the graph of Fault Ride through requirements, for various countries have

been outlined in Fig 2.4.

Recommendations:

It can be deduced from the above sections that the variety of standards and grid codes

across the world, poses a unique barrier to the future growth of PV industry. Industry de-

signers have to build, validate and sell various units for each national market. These prac-

tices drive up the cost for PV systems, and hamper the growth of the industry. The lack of

transparent standards and codes, (which are generally not universally applied within ap-

plicable markets), add to the technical problems that arise with PV systems. The different

languages that standards and grid codes are written in, cause reports to be inaccessible to

certain parts of the industry. Also necessary to improve upon standards and grid codes,

there needs to be cooperation between national governments, industry, distribution and

transmission operators; which will remedy the administrative bottlenecks opposing PV

industry expansion, as evidenced by a published document from the European Commis-

sion Renewable Energy Progress Report: ”the problems of gaining connection to the

electricity grid often result from a lack of adequate rules on grid connection and from a

failure to dedicate sufficient administrative resources to process applications. Technical

problems are also disruptive, with limited capacity of the grid to incorporate more vari-

able renewable electricity and a general lack of strategy to address the problem. There are

also financial constraints, with different and often opaque connection charging rules and
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Table 2.8: Examples of standards and grid codes for DER integration
Standard Technology

Addressed
Voltage Ride-Through Ride-Through Contribu-

tion
Frequency Ride-
Through

United King-
dom Grid
Code (Issue
4, Rev 2)

Solar,
geother-
mal, wave,
tidal, wind
or similar.
Solar, wind,
and wave are
mentioned to
as Intermit-
tent Power
Sources.

Fault ride-through requirements may
not be the same for different types
of renewable generations. Unwanted
island process should be avoided by
tripping if the voltage at PCC 6

0.8pu for more than 2s; or >1.2pu
for more than 1s.

For an intermittent gener-
ation, active power ought
to return to within 90% of
the available active power
within 1 second of the volt-
age returning within the
normal range.

fault ride-through
requirements may
not be the same for
different types of
renewable generations.
Unwanted island pro-
cess should be avoided
by tripping if the
frequency > 52 Hz or
6 47 Hz for more than
2 s.

Australian
National
Electric-
ity Market
(NEM) -
Minimum
Connection
Standards

All technolo-
gies

Voltage at the PCC: V > 0.90 p.u.
and, V 6 1.10 p.u.- operating con-
tinuously as long as ratio of volt-
age to the frequency at PCC (V/f) 6
1.15 for two minutes and 61.1 for
ten minutes.

operating continuously for
credible contingency event,
a single phase to phase, and
two-phase fault except for
<100 MW and no harm-
ful impact on power quality
and security of power sys-
tem.

Different values for
different regions, ride-
through set times of
9 seconds, 2 minutes,
and 10 minutes, except
for rate of change of
>1 Hz/second

Independent
Electricity
System Op-
erator in
Canada

Generator fa-
cilities > 50
MW or gen-
erator units >
10 MW.

Voltages for continuous operation:
115-kV, 113- 127 kV, 230-kV, 220-
250 kV, 500-kV, 490-550 kV. For
30 minutes, the upper value can go
beyond the limits in northern On-
tario. Voltage Limits for maximum
of 30-minute: 115-kV: 132,kV; 230-
kV: 260 kV. Ride-through routine
switching and design contingencies
except disconnected by configura-
tion. Connection Assessment and
Approval Process provides specific
connections requirements.

The continuous opera-
tion when 59.4 Hz 6

frequency 6 60.6,Hz,
and for a limited period
of time in these condi-
tions (0.0 s, 57.0 Hz),
(3.3 s, 57.0 Hz) and
(300 s, 59.0 Hz).

Australian
National
Electric-
ity Market
(NEM) -
Automatic
Connection
Standards

All technolo-
gies

Voltage at the POI: V > 0.90 p.u.
- Continuous 0.80,p.u. 6 V <0.90
p.u. - 10 s 0.70 p.u. 6 V <0.80 p.u.
- 2 s 0.80 p.u. 6 V <0.90 p.u. - 10
s .00 p.u. 6 V <1.10 p.u. - Con-
tinuous 1.10 p.u. 6 V <1.30 p.u. -
varies linearly between from 0.06s to
0.9s 1.3 p.u. 6 V - Instantaneous

Reactive balance control
for at least the greater of
its pre-disturbance reactive
current and 4% of the max-
imum continuous current of
the generator for each 1%
reduction (from its pre-fault
level) of connection point
voltage during the fault.
From 100 ms after discon-
nection of the faulted el-
ement, active power of at
least 95% of the level exist-
ing just prior to the fault

Different values for
different Regions,
Ride-through set times
of 2 minutes and 10
minutes, except for
rate of change of
>4Hz/s for,more than
0.25s

Mexico For a 150 ms zero voltage fault the
generator should not trip.

Not Addressed The continuous oper-
ation when 57.5 Hz
>frequency >62 Hz.
Immediate tripping
might happen at fre-
quency > 62 Hz or 6

57.5 Hz.
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Figure 2.4: Fault Ride Through Requirements in Different Countries: (a) Denmark, (b)
France, (c) Italy, (d) England, (e) Spain

risk of discrimination against smaller distributed power generators compared to large

incumbent conventional energy producers.”

Presented below are a compilation of select recommendations, from various industry

players:

• Grid codes should be comprehensive and clear; have a set of commonly shared

terms, and explicitly state requirements; thereby eliminating ambiguity
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• Requirements should be easily available from issuing body, and translated into the

most common industry languages

• PV power requirements should not be discriminatory or disproportionate.

• Technical requirements should focus on vital parts of the systems performance,

leaving openings for ancillary services.

• Requirements shall make a balance between benefits of the systems, cost, technical

performance, and be identified so those requirements satisfy total minimum system

cost.

• Drafting should only take place under pains of mandatory cooperation of all nec-

essary parties. In addition after new standards or requirements are made official,

there should be adequate transition time.

• Requirements should use as a point of reference the Point of Common Coupling

which should be defined between Transmission System Operator (TSO)/ Distribu-

tion System Operator (DSO), and the generation/consumption unit.

2.7 Topology Classification of Inverters

This part of the chapter begins with an indication of some current power inverter topolo-

gies for combining PV modules to the electric power grid. The methods are further dis-

cussed and assessed to identify the most appropriate topologies for prospect PV inverters.

The former technology, shown in Fig. 2.5(a), was based on centralized inverters that

attached a big amount of PV modules to the electric power grid.

The current technology contain the string inverters and the ac module [55]. The string

inverter, shown in Fig. 2.5(b), is a condensed version of the centralized inverter, where a

single string of PV modules is linked to the inverter.
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Figure 2.5: Summary of PV inverters technologies. (a) centralized (b) string (c) multi-
string (d) ac-module and ac cell technologies.

Fig. 2.5(d) represents the integration of the dc/AC power inverter and PV module into

a single electrical apparatus. It eliminates the gap losses among PV modules since there

is only one Photovoltaic module, in addition to supporting optimum adjustment between

the inverter and PV module and, therefore, there is an individual maximum power point

tracker (MPPT).

Fig. 2.5(c) shows a multi-string inverter which is the additional expansion of the

string inverter. This type of inverter is used when numerous strings are interfaced with

their own dc - dc converter and then those dc-dc converters are connected to a common

dc - ac inverter [56].

A classification of diverse inverter designs is presented in this section. The topologies

are classified based on the number of power processing steps, position of capacitors for

decoupling the power, if they utilize transformers or not, and kinds of grid interface.

• Stages of Power Processing:
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Figure 2.6: (a) Single power processing stage (For voltage amplification, grid current
control, and MPPT) (b) Dual power processing inverter (dcac inverter controls the grid
current, the dcdc converter is in charge of the MPPT, the Voltage amplification can be
included in both stages. (c) Dual-stage inverter.

Fig. 2.6 displays three circumstances of multiple and single stage inverters. Fig.

2.6(a) represents a single-stage inverter. This inverter must take over all the respon-

sibilities by itself, for example, grid current control, MPPT, and voltage increase.

This configuration is the typical arrangement designed for a central inverter. [55]

suggests that the inverter should design in a way that could be able to tolerate a

peak power of double of the rated power.

A dual-stage inverter is illustrated in Fig. 2.6(b). The MPPT and possibly the

voltage increase is are the dc - dc converter responsibility. The dcdc converters

output is either a pure dc voltage or modulated current to follow a rectified sine

wave. When the converter is designed to control the rated power, the output is

dc. When the dc-ac inverter is used for handling the grid current using bang-bang

operation or pulse width modulation (PWM), the output is modulated current. In
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Figure 2.7: Power decoupling capacitor locations: (a) In parallel with the PV modules (in
single-stage inverter applications). (b) in parallel with the dc-link or the PV modules (in
multi-stage inverter applications)

the later case, the dcac inverter switching frequency is equal to the grid frequency,

and the rectified current is transforming to a full sine-wave. Then the current control

is managed by the dc dc converter. In this case, a high efficiency can be reached

if the nominal power is low. Furthermore, PWM mode should be implemented for

the grid-connected inverter if the rated power is high.

The multi-string inverter is illustrated in Fig. 2.6(c). The dc - dc converters are

solely used for voltage increase and MPPT. The dc-link, which is responsible for

controlling the grid current, is the point that dc-ac inverter and the dc-dc converter

are connected. Using this method gives a better control of each PV string and

the shared dc - ac inverter may be based on standard variable speed drive (VSD)

technology.

• Power Decoupling:

is typically attained by using an electrolytic capacitor, which is the key factor in

limiting the lifetime and should be remained as small as possible and can be sub-

stituted by film capacitors if possible. As shown in Fig. 2.7, the capacitor can be

located either in the dc-link between the stages of inverter or in parallel with the PV

modules.
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tion of dc currents into the grid). (b) High-frequency transformer (HFT) is embedded in
an HF-link grid-connected ac/ac inverter. (c) HFT is embedded in a dc-link PV-module-
connected dcdc converter.

• Modes of Interconnections:

As illustrated in Fig. 2.8, some inverter applications use a line-frequency trans-

former on the way to the power grid, others use a high-frequency dc-ac inverter or

dcdc converter with an implemented transformer, and finally, some topologies do

not utilize transformers at all. Because of the large size of the e-frequency trans-

former, it is known as an inadequate component.

Just a small number of high-input-voltage transformerless topologies that can be

grounded both at the input and at the output have been introduced in the literature

[57, 58]. One configuration is illustrated in Fig. 2.9

2.8 Three Phase Grid Connected Inverters

In [59] a Multi-Functional Grid-Connected Inverter (MFGCI) has examined as shown

in Fig. 2.10. three-level PWM achieved by employing an asymmetrical leg, similar to
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Figure 2.9: High-input-voltage transformerless PV inverter (with common-mode (CM)
and differential mode (DM) EMI filters)

the single-phase H-bridge converter, that produces less voltage harmonic on the ac side

compared with a two-level design. In three phase utility, this MFGI can be employed to

as three autonomous voltage source inverters as shown in Fig. 2.10(a). It can also be used

as a combined inverter as shown in Fig. 2.10(b), in which the dc-bus is shared with three

cells and is fed by renewable energy sources and/or energy storage devices.

A three-phase MFGCI configuration utilizing soft-switching technology is shown in

Fig. 2.11 [60, 61]. This formation generally contains auxiliary active resonant commu-

tated snubber link auxiliary (ARCSL), PV array, and LCL-filter. However, the filter can

be newly proposed filters like LLCL or L(LCL)2 [8, 9, 62]. An active power filter for

integrated grid-connected PV applications and related controllers are proposed in [63].

Eliminating the harmonics and providing power from the PV are two purposes of the

controller.

A cascaded multilevel grid-connected inverter for high voltage implementation and

high power PV system is presented in [64–66]. low device rating, lesser electromagnetic

interference, and improved power quality, modularity, etc. are the advantages of this

topology for inverters. Considering a cascaded PV system, the output voltage from each

individual converter module synthesizes the total ac output voltage in one phase leg that

must satisfy grid codes or necessities. Unbalanced ac output voltage can be the result of
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Figure 2.11: Utility connected bidirectional soft-switching MFGCI

active power incompatibility of these units. The reason is that the same grid current runs

in the ac-side of each converter unit.
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Table 2.9: Comparisons of multi-functional three-phase grid-inverter topologies

U
til

ity Author Topology Current
mode

Modulation/
control

Capacity Switching
fre-
quency
(kHz)

Extra func-
tions

Application

Mohod and Aware [67] H-bridge Direct Hysteresis 50kVA - APF Battery
Marei et al. [68] H-bridge Direct SPWM/FLC,PI - - APF Micro-source
Cheng et al. [69] H-bridge Direct SPWM/droop

control
1kVA 20 UC3 Micro-source

Lv et al. [70] H-bridge Direct SPWM/PI 400kVA 12.8 APF Micro-source
Han et al. [71] H-bridge Direct SPWM/PI 30kVA 10 APF,ISWC WT
Li et al. [72] Four-bridge Direct SPWM/PI - 10 ISWC4 Micro-source
Wang et al. [73] Four-bridge Direct SPWM/PI,PR - 16 UPQC Micro-source
Yu etal. [74] Four-bridge Direct SPWM/PI - - ISWC,APF Micro-source
Dasgupta et al. [75] H-bridge Direct SPWM/Lyapunov 75VA - APF Micro-source
Cheng etal. [76] H-bridge Direct - 5kVA - PFC, UPS PV
Naderi etal. [77] H-bridge Direct Hysteresis - - APF,RPI Micro-source
Sawant etal. [78] Four-bridge Direct 3D-SVPWM - 10 APF,UC PMSG
Wang etal. [79] Four-bridge Direct SPWM/PI 1kVA 10 APF PV
Majumder etal. [80] Full-bridge Direct Hysteresis/LQR - - APF,UC Micro-source
Gajanayake et al. [81] ZVI Direct SVPWM/PI 1kVA - APF Micro-source
Tsengenes and Adamidis
[82]

Three-level NPC Direct SVPWM/PI - - APF PV

Saitou etal. [83] H-bridge Direct SPWM/PI - 15 RPI Battery
Chandhaket etal. [61] H-bridge Direct SPWM/PI 20kVA - PWM Battery
Abolhassani etal. [84] H-bridge Direct SPWM/PI 7.5kVA - APF DFIG
Wuetal. [85] H-bridge Direct SPWM/PI 1.1kVA 20 APF PV
He etal. [86] Full-bridge Direct SPWM/repetitive 5kVA - APF Micro-source
Yu etal. [87] H-bridge Direct SPWM/PI 10kVA - APF,RPI Micro-source

T
hr

ee
-p

ha
se

Kim etal. [88] H-bridge Direct Hysteresis - 20 APF PV

The reactive power, harmonic and unbalance current can also be compensated by the

MFGCI. In order to ease the procedure of reference current generation, multi-functional

grid-connected inverters (MFGCIs) mostly use direct current control. Table 2.9 and Ta-

ble 2.10 display a thorough assessment of different kinds of grid connected inverter’s

topologies in three-phase and single-phase applications, respectively.

3Dynamic voltage regulator

 4Unified power quality conditioner 

5Power factor correction 

6Uninterrupted power source 

7Real power injection 

8Harmonic voltage compensation 

9Active power filter

10Unbalance compensation

11Voltage interruption/sag/swell compensation
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Table 2.10: Comparisons of multi-functional single-phase grid-inverter topologies.

U
til

ity Author Topology Current
mode

Modulation/
control

Capacity Switching
fre-
quency
(kHz)

Extra func-
tions

Application

Bojoi etal. [89] Full-bridge Direct SPWM/repetitive 4kVA 10 APF,PFC Micro-source
Cirrincione etal. [90] Full-bridge Direct SPWM/PR - 15 APF PV
Macken etal. [91] Full-bridge Direct SPWM/PI 1kVA - APF PV
Hosseini etal. [92] Two-boost Indirect SPWM/PI 3kVA 20 DVR5,PFC PV
Dasgupta etal. [93] Full-bridge Indirect SPWM/repetitive - 10 DVR,HVC PV
Lin and Yang [94] Three-leg Direct SPWM/PI 1.5kVA 20 UPQC6 PV
Patidar etal. [95] Full-bridge Direct Hysteresis/PI 1.2kVA 25 APF PV
Hirachi etal. [96] Full-bridge Direct SPWM/PI 3kVA - APF PV
Dasgupta etal. [97] Full-bridge Direct SPWM/Lyapunov - 10 APF Micro-source
Seo et al. [98] Full-bridge Direct SPWM/PI 3kVA 20 APF PV
Wu andShen [99] Full-bridge Direct SPWM/PI 1kVA 25 APF PV
Wu etal. [100] Half-bridge Direct SPWM/PI 1.5kVA 20 APF PV
Wu et al. [101]S Full-bridge Direct SPWM/PI 1kVA 19.45 APF,PFC7 PV
ladic et al. [102] Full-bridge Direct Hysteresis - 15 APF PV
Chiang etal. [103] Full-bridge Direct SPWM/PI 1 kVA - APF,UPS8 PV
Kuo. [104] Three-leg Direct SPWM/PI 1kVA 18 APF PV
Souza et al. [105] HB ZVS Direct SPWM/PI 1kVA 100/10 APF PV
Calleja etal. [106] Full-bridge Direct Hysteresis 1kVA 14.2 APF,RPI9 PV
Mastromauroetal. [107] Full-bridge Direct SPWM/repetitive 1.2kVA 2200 DVR,HVC10 PV
Kuo et al. [108] Full-bridge Direct SPWM/PI 1.5kVA 20 APF11 PV
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ng
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-p
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se

Wu et al. [109] Full-bridge Direct SPWM/PI 1.5kVA 20 APF PV

2.9 Control of Grid Connected PV Systems

In order to connect the PV system to the grid, controlling the power conditioning devices

are the most important task that should be implemented. The controlling systems have

two major parts.

2.9.1 Renewable side controllers

These controllers are mostly implemented for maximum power point tracking systems to

extract the most from distributed sources. Moreover, these controllers may be used to

protect the converters.
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2.9.1.1 MPPT Control

MPPT plays a key role in the performance of a PV system [110,111]. Many MPPT meth-

ods have been implemented and developed based on different approaches, like computa-

tional models used in machine learning [11], fuzzy and vary in complexity, popularity,

required measurements, convergence speed, implementation hardware, cost and range of

effectiveness.

A comprehensive review was conducted in [112] for many different MPPT methods

introduced in the literature.

In Table 2.11 the main features of all the MPPT methods are presented.

2.9.2 Grid-side controllers

that are being used to perform active power control, reactive power control, DC-link volt-

age control, power quality control, and grid synchronization. These are the basic features

for grid-connected inverters. However, some utilities may request the additional service

like compensation of harmonics, voltage regulation, local frequency, etc.

2.9.2.1 Active and Reactive Power Control

Active power generation at low demand situations can cause overloading of the trans-

former or serious levels of grid voltage increase. On the other hand, the most important

preventive cause to avoid the PV integration into the grid distribution networks is voltage

rise [113]. Nominal or maximum power is provided by PV inverters during a limited time

and the remaining power capacity of the inverter can be utilized for the voltage control

purposes. Active power curtailment and reactive power control are two economical and

technically feasible solutions [114].
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Table 2.11: Examples of Different MPPT Methods
MPPT Technique PV Ar-

ray De-
pendent

True
MPPT

Analog
or
Digital

Periodic
Tuning

Convergence
Speed

Complexity Sensed
Param-
eters

Hill-climbing/P&O No Yes Both No Varies Low Voltage,
Current

lncCond No Yes Digital No Varies Medium Voltage,
Current

Fractional Voc Yes No Both Yes Medium Low Voltage
Fractional Isc Yes No Both Yes Medium Medium Current
Fuzzy Logic Control Yes Yes Digital Yes Fast High Varies
Neural Network Yes Yes Digital Yes Fast High Varies
RCC No Yes Analog No Fast Low Voltage,

Current
Current Sweep Yes Yes Digital Yes Slow High Voltage,

Current
DC Link Capacitor Droop Con-
trol

No No Both No Medium Low Voltage

Load I or V Maximization No No Analog No Fast Low Voltage,
Current

dP/dV or dP/dI Feedback Control No Yes Digital No Fast Medium Voltage,
Current

Array Reconfiguration Yes No Digital Yes Slow High Voltage,
Current

Linear Current Control Yes No Digital Yes Fast Medium Irradiance
Impp and V mpp Computation Yes Yes Digital Yes N/A Medium Irradiance,

Temper-
ature

State-based MPPT Yes Yes Both Yes Fast High Voltage,
Current

OCC MPPT Yes No Both Yes Fast Medium Current
BFV Yes No Both Yes N/A Low None
LRCM Yes No Digital No N/A High Voltage,

Current
Slide Control No Yes Digital No Fast Medium Voltage,

Current
Voltage Oriented Control Yes Yes Digital No Medium High Voltage,

Current
Extremum Seeking Control Yes Yes Digital Yes Fast Medium Voltage,

Current
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The amount of reactive power that can be provided by a PV system is limited. The

voltage might not maintain in the satisfactory limits when active power production is

high. This may happen because of inadequate inverters capacity for a reactive portion.

Furthermore, the reactive power effectiveness in low voltage (LV) networks is limited due

to bigger R/X values. In order to prevent the high voltage limit violation, it is essential

to curtail the active power. Different techniques for power curtailment are suggested by

[113, 115, 116]. These techniques are costly for the PV panel owner because of cutting

generated power. Therefore, optimal usage of present reactive power can lead to decrease

the number of power curtailments.

Local Control: Among many different proposed methods for reactive power control,

three techniques are mostly implemented: 1-local power generation measurements [113,

117, 118], 2- local voltage measurements method [113, 117, 119], and 3- combination of

both. The reference voltage is defined by local measurement method for controller design

of reactive voltage, as presented in [120]. If local parameters are not synced with the

grid, the local control techniques may cause an extreme consumption of reactive power

or maybe insufficient voltage support.

Centralized Control: The local control parameters were optimized by using a cen-

tralized optimization in [121]. Even though the PV output is in direct relationship with

the cloud covering situations, optimum points of operations are achieved by tuning the

local controllers.

Cascaded Multilevel Converters Control

A cascaded multi-level PV system for large-scale PV implementation is proposed in

[122]. This system employed cascaded multilevel inverters and a current-fed dual-active-

bridge (CF-DAB) dc - dc converters and as shown in Fig 2.12. Separate control system

for active and reactive power is designed for improving the system performance when it

is operating. Each PV converter controls the reactive power in real-time to decrease the
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Figure 2.12: Grid connected PV system with cascaded multilevel converter

chance of the over-modulation, which may result in the asymmetrical active power output

from the PV arrays. The system lifetime can be enhanced by placing film capacitors

instead of electrolytic capacitors. A large low-frequency dc voltage ripple is allowed by

the proposed PV system. This will not affect the MPPT attained by means of CF-DAB

dcdc converters.

2.9.3 Control Strategies

Joining the photovoltaic system may cause some major problems like the instability of

the grid and disturbances. By implementing control systems these effects can be miti-

gated properly [123]. Generally, controllers have six different categories based on their

applications, which is summarized in Fig. 2.13.

1. Linear controllers have three sub categories
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Figure 2.13: Summary of control strategies for Photovoltaic applications

• Classic controllers including: proportional, proportional-integral (PI), proportional-

derivative (PD), and proportional-integral-derivative (PID) controllers).

• Proportional - Resonant (PR) controller [124]: the difference between clas-

sic PI controller and PR controller is how integration part perform. The PR

controller only integrates frequencies close to the resonant frequency. Conse-

quently, phase shift or stationary error is not included.

• Linear-quadratic Gaussian (LQG) controller is a mixture of the linear-quadratic

regulator (LQR) and a Kalman filter. LQG control is applicable in both linear

time-invariant systems and linear time-varying systems[4].

2. Nonlinear controllers: has more complicated design and implementation compared

with linear controllers

3. Robust controllers: are designed by considering uncertainties to reach stability

(when there are modeling errors) and robust performance, even in multivariable

systems.
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• Sliding mode controllers (SMC) has been used for output voltage regulation.

This kind of controller does not have a sensitivity to parameter variations and

load disturbances. The limited sampling rate, chattering phenomenon, and

degrading the total system efficiency are the drawbacks of this control method

[4].

• Partial feedback linearization (PFL) controllers transform a nonlinear system

to a linear system (partially or fully), therefore, design methods for a linear

system can be implemented in this type of controller.

• Hysteresis controllers: in this controller a fixed switching frequency must be

achieved by an adaptive band of the controller.

4. Adaptive controllers [4]: automatically regulate the controller based on the op-

erational conditions of the system. Due to inaccurate parameters of the high-

performance system, the complexity of the computation of the system is high.

5. Robust controllers: are designed by considering uncertainties to reach stability

(when there are modeling errors) and robust performance, even in multivariable

systems.

• H-infinity controllers: are used in multivariable systems. However, these con-

trollers are highly complex in terms of computational analysis and they need

a precise model of the system that is going to be controlled.

• Mu-synthesis controllers: can be implemented in order to take into account

the influence of unstructured and structured uncertainties on the execution of

the system.

6. Predictive controllers: forecast the upcoming performance of the controlled param-

eters. Predefined optimization criterion is used to reach the ideal performance. The
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Figure 2.14: The general layout of a Model Predictive Control [4]

execution of this type of controller is easy, however, it has a rapid dynamic response

and multivariable cases can be implemented.

• Deadbeat controllers: In this type of controller, the dynamic behavior of the

system is defined by the differential equations. Then, the control signals are

estimated for the state variables to achieve the references at for each sampling

period.

• Model predictive control (MPC): uses a cost function criteria which needs

to be minimized in order to choose the ideal actions. The structure of this

controller is illustrated in Fig 2.14. System constraints and nonlinearities can

be easily included in the design of the controller [4, 125].

7. Intelligent controller: is a class of controller that implements a kind of computing

artificial intelligence methods which mostly were emulated the biological intelli-

gence. A number of these methods are as follows.
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• Repetitive controllers (RC): use the internal model basics to track/reject any

reference/disturbance which is injected in the closed-loop. The general struc-

ture of this controller is shown in Fig 2.15 [126].

• Neural network (NN) Controller: is a predictive and estimator controller that

use a couple of artificial neurons that mimic brain system. This type of con-

troller can be trained online or offline to provide the suitable inputs of the

plant with the intention of obtaining desired outputs.

• Fuzzy logic controllers (FLC): is a decision making mathematical logic which

has inputs with continuous values among 0 and 1. This is in contrast to digital

logic with discrete values of true or false (1 or 0). FLC has the following

components: 1- rule base which is a group of rules that defines how to control

the system. 2- Fuzzification which is the procedure of translating the algebraic

inputs to a kind that can be implemented by the inference mechanism. 3-

Information of the fuzzification are used by the inference mechanism. This

mechanism chooses which rules are employed on the current status. 4- the

decisions that are attained by the inference mechanism are transformed to a

numerical input for the plant by defuzzification.

• Autonomous controllers: are able to accomplish complex tasks individually.

High levels of computerization can be achieved by the addition of human
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knowledge and intelligence.

2.9.3.1 Reference Frames

In order to control inverters that are connected to the three-phase grid, designers are

mostly using dq reference frame or αβ reference frame.

• dq reference frame: Zero-direct-quadrature or simply dq0 transform uses Park trans-

formation to convert the abc frame to the dq frame. By using this method the grid

voltage and current waveforms will be converted to a rotational reference frame that

has the same frequency of the grid. In this way, variables of the control system will

be transformed into DC variables, which makes the controller design and filtering

much easier. The general configuration of dq reference frame controller is shown

in Fig. 2.16.

• αβ reference frame: Alpha-beta transform uses Clarke transformation to transform

the abc frame or the single-phase frame to αβ-frame. A stationary reference frame

is made by this transformation by using grid current. By using this method, the

variables of the control system will be changed to sinusoidal variables. The general

configuration of the Alpha-beta reference frame is illustrated in Fig 2.17.

2.10 Energy Storage in Photovoltaic Systems

Higher solar integration requires implementation of battery (and super-capacitor) en-

ergy storage systems to compensate high energy (and high power) fluctuations caused

by stochastic nature of renewable resources [127]. Different methods for calculating the

battery energy capacity to accommodate a specific PV penetration level with minimum

cost has been studied in the literature [128,129]. Increased use of renewable energies, es-

pecially PV, has resulted in bigger implementation of battery system in LV grid [130,131].
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Large scale integration of PV energy sources has a number of complications that need to

be overcome as PV begins to compete and in time replace more traditional means of

energy generation, i.e. coal, natural gas, and oil power plants.

In this section, we will be giving a brief description of energy storage systems as a

whole, problems that are presented with the large scale integration of PV renewable en-

ergy, and the uses of energy storage systems to provide a means to resolve those problems.

Energy Storage Systems:

There are various types of energy storage systems (ESS) that can be used in conjunc-

tion with PV each of which has their uses in the electric grid. Examples of these ESS
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are: pumped hydro energy storage (PHES) [132–134], compressed air energy storage

(CAES) [135–138, 138], flywheel energy storage (FES) [139–141], battery or electro-

chemical energy storage (EES) [142–146], flow battery energy storage (FBES) [147], su-

perconducting magnetic energy storage (SMES) [148–155], and supercapacitors or dual

layer capacitors (DLC) [156–161].

ESS can be used for multiple purposes depending on the discharge duration.

Complications of PV Integration and Uses of Energy Storage:

As PV energy sources becomes a higher percentage share of the total energy genera-

tion, complications due to PV integration become detrimental to the stability of the grid.

This is where ESS come in to play. Using ESS effectively throughout the grid, in both the

distribution and generation side of the grid will help provide stability and reliability to the

grid.Energy storage applications in grid scale renewable energy systems has been studied

in many studies [131, 162].

Voltage Support Voltage support is the ability to inject or absorb reactive power into/out

of the transmission and distribution grid in order to maintain voltage levels at nor-

mal conditions. During high voltage levels, reactive power in volt ampere reactive

(VAR) is removed from the grid. When the voltage sags, VARs are pumped in.

Voltage support is normally handled by power facilities, in the case of PV power

electronics need to be used in order to provide the necessary reactive power. How-

ever, ESS together with power electronics are best suited for voltage support for

momentary imbalance in localized areas and is especially critical during peak de-

mand when instability is worse in remote areas of the grid.

According to EPRI, most distribution system problems are due to voltage sags of

10% to 30% below nominal voltage, 120V in the USA, with a duration of 3 to 30

cycles. With electronic equipment becoming more sensitive to voltage changes,
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only able to handle from a change of 10% to 5% or less from the rated voltage

before becoming affected or damaged, voltage support is becoming much more

critical.

Load Following Due to the inherent unpredictability in PV, such as that due to weather

conditions, PV suffers from rapid loss in energy. When this happens, fast acting

ESS such as SMES, FWES, and EES can take up production of energy for short

periods of time, until PV energy production or an alternate means of generations

can take up the load. Conversely, ESS in this capacity are also used to compensate

for changes in load [163]. An increase in load will cause these ESS to discharge

and provide energy and stability to the grid, while a decrease in load will cause

ESS to charge and thus act as a load. The use of ESS in this capacity is called

load following. Load following operates primarily on an hour to hour bases. It is

especially useful in the morning and evening, when there are greater changes in

the load. Load following is currently used mainly with more traditional means of

generation as it takes time to ramp up production for a comparatively rapid increase

in load.

Frequency Regulation Similar to load following, frequency regulation allows energy

production to increase or decrease as needed in order to maintain a constant fre-

quency in the case of rapid changing load or rapid changes in generation [164]. As

PV is prone to such rapid changes in generation, frequency regulation is needed in

maintaining the stability of the power grid. However, while load following deals

primarily on the hour to hour level, frequency regulation works on a second to sec-

ond level. When energy production needs to be decreased, ESS are set to charge

and thus lowers the increased frequency due to over generation. When energy is

needed, ESS discharge the stored energy and thus increasing the lowered frequency
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due to too larger demand. This stabilizes the frequency fluctuations due to the mo-

ment by moment viability of PV systems and load.

Time Shifting One of the main problems with PV is that peak power production does not

occur during peak load times [132]. PV energy production is higher around 12:00

while peak load time is around 19:00 - 22:00. In order to meet this problem, ESS

can be used for time shifting, also called load shifting. Time shifting is used when

peak energy production does not match the time of the peak load. This is done by

storing energy during the time when producing energy is less costly or during peak

generation and using it to provide energy during peak load hours [165]. Without

ESSs, the discrepancy between peak energy production and peak load times will

cause utility companies to not be able to meet demand and require generators make

up the energy needed which can be costly to utilities. ESS used for time shifting

need to have discharge times ranging in the hours. ESS systems commonly used

for these purposes are: PHS, CAES, EES, and FBES [166].

Seasonal/Long Term Storage Another problem with PV is the change in the amount

of irradiance due to seasonal changes. Less energy can be produced during win-

ter months as compared to summer months. This means that utilities need to find

alternate means of providing energy to meet demand, usually the more traditional

forms of energy generation. ESS can potentially solve this problem by providing

seasonal storage which is the ability for energy storage systems to store energy for

a prolonged period of time compensate long term disruptions in the supply, specif-

ically for seasonal variability. For ESS to be able to provide seasonal storage, it

needs to be able to store energy and provide energy for days, weeks, or months. At

present, there is no ESS that can feasibly compensate for all of the energy loss in

PV during seasons with lower irradiance due to the size and the cost of the needed

system other than PHES and CAES. However, PV can be used to charge ESS to pro-
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vide time shifting, voltage support, load following, and frequency regulation. This

lowers the demand on traditional generators and provides an opportunity for other

forms of renewable energy, such as wind, to provide a steady amount of energy.

2.11 Future Applications of PV Renewable Energy

Distributed generation will lead to diverse sources which will average out the variation in

the production of energy across the grid. Due to the lack of or the over development of

renewable energy throughout the day, this source of power can be used in order to power

battery electric vehicles. These battery electrical vehicles will require reaching longer

distances and thus requiring more charging locations along the road. These renewable

charging stations can be used to charge automotive batteries at battery charging stations

[51].

The application of renewable energy to power and monitor electrical vehicles will

not come at a cheap price [167]. Proliferation of electric vehicles at a large scale would

require extensive infrastructure changes for production and optimization of vehicle com-

ponents and maintenance of those components [168].

Increasing the power conversion efficiency is one of the cutting edge researches world-

wide. This goal can by reducing the amount of material that is needed for each cell.

Another approach can be implementing wider spectrum to produce electricity out of the

sun. Silicon PV panels have efficiency rates of around 20%. Researchers succeeded in

producing power in both visible and near infrared regions of the solar array spectrum

[169]. The utilization of the infrared segment of the spectrum of the sun can improve the

efficiencies of solar by 30% or more. Harvesting the solar energy need space to install

ground mounted PV panels in a large scale. A French company Ciel & Terre Interna-

tional, developed floating solar in large scale on big bodies of water. Beside producing
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energy and saving land space, this method can reserve water by reducing the vaporization

of water. Energy harvesting trees are another technology that will be used to save more

space on the ground. Researchers are thinking of generating solar power in the space,

where the sunshine is always available and the definition of the weather is completely

different. Japanese Space Agency (JAXA) and Mitsubishi were able to transmit 10 kW

power from a distance of 500 meters by large antennas. The only effective way to send

wireless power over long distances is using either laser or Microwave. In cloudy weather

conditions, Microwave works properly but lasers have the same problem that solar power

does on earth [170]. One way to harvest more energy from the sun is solar clothing. The

produced energy can be used to cool down and warm up the person who wears it, charge

the smart phones, smart watches, and other personal devices. The transparent panel is one

idea that can be implemented in both clothes and buildings. Transparent panels are thin

film technology, which can be installed on high-rises, transparent bus shelters, etc.

2.12 Summary

In this chapter a comprehensive review on challenges and developments in grid connected

photovoltaic systems is provided. Many international and North American organiza-

tions such as 1547.8 group and IEEE 1547.7 are defining modeling recommendations

and methodologies for renewable energy interconnection. Photovoltaic inverter manufac-

turers, utilities, and other involved area experts are focused on designing improved smart

control strategies for PV inverters. However, there are still numerous gaps in the dynamic

analysis of grid-connected PV performance. The increase of large scale PV-penetration

circumstances needs a more thorough investigation of these gaps and systematic inter-

connection studies. Several technical challenges and required fundamentals for imple-

mentation of renewable energies in the grid was provided in this study. Secure, safe,
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and economic proper operation of the power network at voltage and frequency violations

for different countries are specified by the grid codes. Inverters can be considered as the

brain of a PV system. The inverter topologies are classified based on the number of power

processing steps, the position of capacitors for decoupling the power, if they utilize trans-

formers or not, and kinds of grid interface. Moreover, many control methods have been

suggested by researchers to control the MPPT, current, voltage, active and reactive power.

An overview of these controllers was discussed in this chapter. Finally, higher solar inte-

gration requires implementation of battery (and super-capacitor) energy storage systems

to compensate high energy (and high power) fluctuations caused by stochastic nature of

renewable resources. A brief description of energy storage systems as a whole, problems

that are presented with the large scale integration of PV renewable energy, and the uses

of energy storage systems to provide a means to resolve those problems were similarly

discussed in this chapter.
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CHAPTER 3

ANALYSIS OF CARBON TAX AS AN INCENTIVE TOWARD BUILDING

SUSTAINABLE GRID WITH RENEWABLE ENERGY UTILIZATION

3.1 Overview

This study presents an analysis of technical and financial viability of hybrid grid/Renewable

Energy System (RES) configurations for a neighborhood in Miami. Assessment criteria

comprised a reduction in net present cost (NPC), cost of energy (COE) and greenhouse

gases (GHG). Matlab R© Simulink and the RES software HOMER were utilized as the as-

sessment tool. The modeling is performed based on hourly load data of Miami, south-east

coast of the USA. Grid connection is required to provide the energy back up and as well

to commercialize the system. This research analyses cost efficacy to encourage the use

of renewable energies, specifically, wind and solar. For this purpose, an evaluation of the

Co2 tax level of the cost-effectiveness of the system is also conducted. Outcomes demon-

strate that there is the remarkable potential of Co2 mitigation along with COE reduction

and sustainable and resilient energy development from employing RES. The results show

that there are enough prospects for renewable-based DG generation in existence of appro-

priate policy allocation for GHG emission penalties and Market Price Referent (MPR).

There is a considerable quantity of literature available on renewable incentives. The focus

of the experimental studies is mostly on the comparison of the different supporting action

plans and to their advantage to promote the utilization of renewable technologies but not

on their cost to reduce Co2 emissions.
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3.2 Problem Statement

Since most of the electrical energies are generated from fossil fuels, power generation

becomes the leading source of greenhouse gases emission. This has led to severe envi-

ronmental problems and concern of global warming. The Kyoto Protocol was effective on

February 16, 2005, and most industrialized countries had to obey and endeavor to reduce

their overall emissions of greenhouse gases [171]. Furthermore, the need of the tourism

industry to adopt effective energy management strategies for reducing its impact on the

environment and reduction of greenhouse gas (GHG) emissions has been recognized by

international organizations [172]. The tourism locations are under ever increasing pres-

sure to be called as green and this prospect is often connected with local sustainability

agendas [173].

Nema et al [174] talk through sizing of Wind Turbine Generator (WTG), SPV ar-

rays and other components for a SPV-Wind-battery-converter along with generator based

power supply by simulation in HOMER (A public domain software developed by Na-

tional Renewable Energy Laboratory, US).

Exploitation of certain renewable technologies, such as wind turbines and solar panels

depends on the availability of renewable resource and as a consequence to augment the

DGs during low power periods, energy grid connection or storage devices are used [175–

177].

In 2005, DeNA Co. distributed a widespread survey on wind deployment in Germany

[178]. In addition to other findings, it evaluated the cost of Co2 diminution by reason

of wind energy taking into account the cost of feed-in tariff (FIT). It compares the net

cost and Co2 emissions of the system in 2007, 2010 and 2015 amongst two scenarios: At

first study, it was considered that the future wind capacity remains equal to 2003, and the

second one with a large wind capacity that is matured through the FIT. Consequences rely
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on the hypotheses made for the fuel and carbon prices. With a carbon price in the range of

5-10 per ton of Co2, the expected annual Co2 diminution cost of wind in the years 2007,

2010 goes from a minimum of e56.6/tCo2 to a maximum of e168.0/tCo2. All of these

studies based on forecasts [179–181].

An optimization algorithm was proposed in [182] to join in two DGs and a microgrid

into a Virtual Power Plant, having a number of loads, which will be able to produce and

sell electric energy to load and electrical power market. Other references focused on

technical issues of the penetration of RES into the grid. Because of the amplified usage

of RES in power system, the fault ride-through operation and control of the DFIG wind

power system and PV have become a research emphasis [171, 183–186].

3.3 Solution Approach

HOMER is a time-step simulator that utilizes hourly load and environmental data inputs to

assess the technical potential of RES via renewable fraction (RF) and economic viability

via net present cost (NPC). HOMER also predicts the optimized RES configuration for

a given set of constraints and sensitivity variables, based on NPC. Although simulation

times can be lengthy, depending on the number of variables used (up to 48 h on a standard

PC for some hydrogen storage configurations), its operation is simple and straightforward.

In this chapter, a case-study analysis was conducted for a neighborhood in Miami, the

USA which is one of the most important tourist locations in the world. In the remain-

ing part of the chapter, Section II reports formulas needed for modeling the system and

calculation methods that are used by the software. Section III describes in detail all in-

put data and their implementation in the simulation. Section IV provides a classification

and general discussion of the costs and cost savings associated with the use of wind and
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solar energy. Section V presents the results and sensitivity analysis. Section VI gives

conclusions.

3.4 Modeling the Proposed System

HOMER models each individual system configuration by performing an hourly time-step

simulation of its operation for a one-year duration. The available renewable power is

calculated and is compared to the required electrical load. Where the RES system is

assessed as satisfying demand, any excess electricity is then spread to other secondary

demands. Where demand is not assessed as satisfied, an alternative supply, either by

diesel or grid generation, is sought to fill the deficit. While HOMER’s 1-h time step

is small enough to capture most of the statistical variability of the load and fluctuating

renewable resources, it does not slow computation excessively.

Following calculations of one-year duration, any constraints on the system imposed

by the user are then assessed; e.g. the fraction of the total electrical demand served or the

proportion of power generated by renewable sources.

The three criteria used for the feasibility analysis of the RES were comprised net

present cost (NPC), cost of energy (COE) and Greenhouse Gases (GHG) reduction. The

projected lifespan was taken as 20 years.

The total net present cost of a system is the present value of all the costs that it incurs

over its lifetime, minus the present value of all the revenue that it earns over its lifetime.

Costs include capital costs, replacement costs, O&M costs, fuel costs, emissions penal-

ties, and the costs of purchasing power from the grid. Revenues include salvage value

and grid sales revenue. HOMER calculates the total net present cost using the following

equation:
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CNPC =
Cann,tot

CRF (i, N)
(3.1)

Where Cann,tot is the total annualized cost ($) (which is the sum of the annualized

costs of each system component). The capital recovery factor (CRF) is given by:

CRF (i, N) =
i(1 + i)N

(1 + i)N − 1
(3.2)

HOMER assumes that all prices escalate at the same rate, and applies an ’annual real

interest rate’ rather than a ’nominal interest rate’. All costs are therefore calculated in

constant dollars. This method allows ’inflation’ to be factored out of the analysis. The

overall annual (real) interest rate (i) in the simulations was taken to be 6%, which was

applied over a project lifetime assessed as 20 years. NPC estimation in HOMER also

takes into account salvage costs, which is the value remaining in a component of the

power system at the end of the project lifetime. HOMER assumes linear depreciation of

components, meaning that the salvage value of a component is directly proportional to its

remaining life. It also assumes that the salvage value is based on the replacement cost

rather than the initial capital cost. This is stated mathematically as:

S($) = Crep
Rrem

Rcomp

(3.3)

Where Crep is the replacement cost of the component ($), Rrem is the remaining life

of the component (t) and Rcomp is the lifetime of the component (t). HOMER defines the

levelized cost of energy (COE) as the average cost per kWh of useful electrical energy

produced by the system. To calculate the COE, HOMER divides the annualized cost of

producing electricity (the total annualized cost minus the cost of serving the thermal load)

by the total useful electric energy production. The equation for the COE is as follows:
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COE =
Cann,tot

Eprim,AC + Eprim,DC + Egrid,sales
(3.4)

Where Eprim,AC is the AC primary load served (kWh/yr), Eprim,DC is the DC primary

load served [kWh/yr] andEgrid,sales is the total grid sales [kWh/yr]. The capacity shortage

fraction (CSF) is the fraction of the total load plus operating reserve that the system fails

to supply (i.e. allowable blackout). A CSF of 0% of the hourly load was chosen for

all grid-connected simulations, as the grid can be considered as infinite capacity storage

(blackouts are still possible, but for a very small percentage of the time). Simulations

examining a renewable energy-only configuration had a 2% CSF.

The operating reserve constraint (commonly called spinning reserve) is the additional

reserve capacity required for a system to account for sudden increases in the electric load

or sudden decreases in the renewable power output. It was set at 10% as recommended

by Cotrell and Pratt [2]. Higher reserves were specified when using the renewable output.

The higher reserve is required due to the inherent variability in the RES output and was

set at 50% for PV and 50% for WECS.

3.5 Data Inputs

The load data was gathered through Florida Power & Light Company (FPL) End-Use

Load. FPL supplies electric service in most of the territory along the east coast of Florida

(except the Jacksonville area and five other municipalities which have municipal electric

systems), the agricultural area around southern and eastern Lake Okeechobee, the lower

west coast area, and portions of central and north-central Florida. Energy consumption

from 2004 to 2013 and forecast of rural electrical load demand in the FPL service territory

is illustrated in Table 3.1. It is predicted that from 2014 to 2023 an increase of 13.2% in

an average number of customers and 12.7% in total consumption will occur. In addition,
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Table 3.1: History and Forecast of Energy Consumption and Number of Rural and Resi-
dential Customers [2]

History of Energy Consumption

Year Population GWh
Average
No. of

Customers

Average
Consumption

(kWh/Customer)
2004 8,247,442 52,502 3,744,915 14,020
2005 8,469,602 54,348 3,828,374 14,196
2006 8,620,855 54,570 3,906,267 13,970
2007 8,729,806 55,138 3,981,451 13,849
2008 8,771, 694 53,229 3,992,257 13,333
2009 8,732,591 53,950 3,984,490 13,540
2010 8,762,399 56,343 4,004,366 14,070
2011 8,860,158 54,642 4,026,760 13,570
2012 8,948,850 53,434 4,052,174 13,187
2013 9,025,275 53,930 4,097,172 13,163

Forecast of Energy Consumption
2014 9,111,384 55,739 4,141,538 13,458
2015 9,302,665 57,047 4,228,484 13,491
2016 9,437,042 58,097 4,289,564 13,544
2017 9,571,922 58,693 4,350,874 13,490
2018 9,705,104 59,404 4,411,411 13,466
2019 9,835,541 60,036 4,470,700 13,429
2020 9,961,263 60,791 4,527,847 13,426
2021 10,079,425 61,219 4,581,557 13,362
2022 10,198,087 61,929 4,635,494 13,360
2023 10,318,293 62,870 4,690,133 13,405

the average annual electricity consumption for a Florida residential FPL customer was

13,163 kWh in 2013. As a result, load data were scaled to an average of 3.606 MWh

per day to meet a neighborhood of 100 houses energy needs. Annual electric demand

is shown in Fig. 3.1. The annual energy consumption in the neighborhood is 1,316,196

kWh/yr.

The coordinates of Miami were used in HOMER, 25◦78 N latitude and 80◦22 W lon-

gitude, to obtain monthly solar radiation values for Miami from NASA. Monthly average

values of solar data are shown in Fig. 3.2. The solar annual average is 5.05kW/m2/d.

Clearness index is a dimensionless number between 0 and 1, defined as the surface radia-

tion divided by the extraterrestrial radiation.
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Figure 3.1: Annual Electric Demand of a Neighborhood in Miami.

Figure 3.2: Hourly Solar Irradiation.

The clearness index has a high value under clear, sunny conditions, and a low value

under cloudy conditions. The average clearness index is 0.558.

In this study, wind speed data were taken out from NREL. These values are of 40 m

height and thats why it was considered that anemometer height in HOMER simulations

is 40 m. The average wind speed for each month was entered and then Homer makes a

wind profile by using Weibull K factor (a measure of the distribution of wind speed over

a year) of 2 and autocorrelation factor (randomness in wind speed from hour-to-hour) of
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Figure 3.3: Hourly wind speed data.

0.85. The monthly averages wind speed is shown in Fig. 3.

3.6 Description of the System

The main components of the system are GE 1.5 sl wind turbine, electric grid, converter,

and the loads. The capital cost, cost of operation, maintenance, and other costs contribute

to the total cost of the system. In this study, two different DG technologies have been

considered.

3.6.1 Wind Turbine

The capital cost of the wind turbine is generally ranged between $900 and $1000 per kW.

The replacement cost is about 15%20% of the original cost and the O&M cost is about 2%

of the original cost [173, 187]. A 1.5 MW General Electric wind turbine was modeled in

HOMER, meanwhile, a doubly fed induction Generator model of a 1.5-MW wind turbine

connected to a 25 kV feeder by Matlab R© Simulink was used to simulate the technical

practicability of the system.
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3.6.2 Photovoltaic panel

The price of the PV panel is highly dependent on several factors which include the vendor,

size of the panel, technology, and the trademark. In this study, SunPower modules (SPR-

305) are used for 500kW (5×100kW) PV array. Each module of this array has an open-

circuit voltage of 64.2V and short circuit current of 5.96A.

$945 as the capital cost of the PV [173] and $95/kW as the O&M cost were used as PV

inputs in HOMER model. Detailed model of Matlab Simulink grid connected SunPower

SPR-305-WHT-PV array was used for applying an assessment of the system.

3.6.3 Electric Grid

The system is grid-connected and therefore a part of the load is considered to be supplied

by the grid. The cost of buying power from the grid is selected to be $0.070 /kW and sell

back rate was selected 0.129 $/kWh based on [173]. It was also assumed that emission

factors of Co2, So2 and Nox are 632 g/KWh, 2.74 g/KWh and 1.34 g/KWh respectively.

In addition, four levels of Co2 taxes ($0, $20, $40 and $60 per ton of Co2 emission) are

also considered for GHG emissions of the grid [2].

3.6.4 Converter

Note The PV panels supply DC power which needs to be connected to an AC load or grid.

The cost of a power conversion system (PCS) is about $100 per kW. The cost summary

of the system is represented in Table 3.2. The HOMER simulation results show that

the addition of GE 1.5sl wind turbines is technically viable and economically profitable.

However as urban land space is limited in Miami, only one wind turbines and 500Kw of

PV panels are considere The cost summary of the system is represented in Table II. The
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Table 3.2: Cost Summary of the System
Component Capital ($) O&M ($) Total ($)

PV 472,917 549,601 1,022,517
GE 1.5sl 1,500,000 344,098 1,844,098

Grid 0 -2,480,628 -2,480,628
Converter 50,000 57,350 107,350

System 2,022,917 -2,198,447 -175,530

Table 3.3: Variation of NPC and COE by Tax on Co2 for Two Scenarios
Co2
Tax

NPC ($) COE ($/kWh)
WT WT+PV WT WT+PV

60 -201,397 49,620 -0.016 -0.014
40 -70,605 47,427 -0.006 0.004
20 60,187 268,940 0.005 0.021
0 190,978 488,193 0.015 0.039

HOMER simulation results show that the addition of GE 1.5sl wind turbines is technically

viable and economically profitable. However as urban land space is limited in Miami,

only one wind turbines and 500Kw of PV panels are considered. Optimized converter

size of this configuration was calculated as 300kw.

3.7 Simulation Results

The Matlab Simulink and HOMER model of the investigated systems are given in Fig.

3.4. For the HOMER simulation, two different cases are considered which are as listed

below:

• Wind Turbine System

• Hybrid Wind Turbine and PV System

Variation of net present values and leveled cost of energy (COE) of different cases

with carbon taxes is presented in Table 3.3. Increasing carbon taxes from $0 to $60 per

ton of Co2 in both Wind turbine and hybrid wind turbine and PV systems decreases the

COE from $0.015 to $-0.016 and from $0.039 to $-0.014 per kWh respectively.
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Figure 3.4: Simulated Model used in Matlab Simulink and HOMER software.

Table 3.4: GHG Emissions for Two Scenarios
Pollutant

Emissions (Kg/yr)
(WT)

Emissions (Kg/yr)
(WT + PV)

Carbon Dioxide -630,433 -1,075,281
Sulfur Dioxide -2,733 -4,662

Nitrogen Oxides -1,337 -2,280

Though carbon tax helps, primarily, in mitigating Co2 emissions, there are also sec-

ondary environmental benefits in terms of So2 and Nox emissions reductions (see Table

table:table4˙carbon). So2 and Nox emissions fall because the carbon tax leads to an over-

all reduction in thermal-based electricity generation. So2 and Nox emissions decrease at

the same rate as Co2 does at higher tax rates.

Since the system sells more power to the grid than it buys from the grid over the

year, the net grid purchases will be negative and so will the grid-related emissions of each

pollutant.

Monthly average electric productions of each component for both scenarios are shown

in Fig. 3.5 and 3.6 respectively. It is seen that around 82% of total annual load is supplied
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Figure 3.5: Average Electric Power Production for Wind Turbine System.

Figure 3.6: Average Electric Power Production for Hybrid Wind Turbine and PV System.

by Wind turbines for the first scenario and about 25% by PV panels and 66% by Wind

Turbines for the second scenario.

Furthermore, a comparison between Matlab Simulink model and HOMER model ac-

tive power output results of the wind turbine is performed and the result is illustrated in

Fig.3.7. The wind turbine power output is shown for 16th to 22nd of March as 20th of the

March had the highest wind speed during the year. There are differences between these

two simulations because in the Simulink model the inertia constant and friction factor of

turbine and generator was considered, but as it can be seen both models are technically

viable. Also, other measurements of wind turbine system like Bus B2 voltage, active

and reactive power, DC bus voltage of AC/DC/AC converter and wind speed pattern are

shown in Fig. 3.8. As the wind turbine operates in a voltage regulation mode the voltage

at grid terminals is kept constant by a voltage regulator. The output of the voltage regu-

lator is the d-axis reference current that must be injected into the rotor by the rotor side

converter. Generally speaking voltage at bus B2 is regulated by generation or absorption
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Figure 3.7: Comparison of power generated by wind turbine in A) Matlab Simulink and
B) HOMER.

of reactive power at the grid connection point. Moreover, DC link voltage is regulated by

the grid side converter. There are a lot of details in the control of the Doubly Fed Induc-

tion Generator Wind Turbine and also in Maximum Power Point Tracker of PV system

which is beyond the scope of this study.

In another comparison difference of active power generated by the PV panel on July

11, which has the most irradiance during the year, in different models is presented in Fig.

3.9. For the reason that a Maximum Power Point Tracking system is used by the PV model

in Matlab Simulink, but it was not used in HOMER model and also the effect of slope

of panels and clearness index are not considered by Simulink, the generated active power

which is simulated by HOMER is about 30% less than the active power in Simulink.

Though average of wind speed is low in Miami, Simulation results reveal that im-

plementing a grid-connected WT or WT+PV would be cost-effective even without con-

sidering Co2 taxes (comparing to 0.070$/KWh for grid electricity price). Moreover, by
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Figure 3.9: Comparison of power generated by Photovoltaic Panels in A) Matlab
Simulink and B) HOMER.

imposing a Co2 tax, cost of energy is negative when the Co2 tax is increased. Negative

numbers in table 3.2 can be interpreted as not only customers do not pay for electricity

but also they can make money by implementing RES.
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Considering mitigation of environmental pollutant gases (TABLE IV), NPC and COE

(TABLE 3.3) and the need of the tourism industry to be called green, RES could be

starting to establish apace and more research should be done to develop the utilization

of renewable energies to 20 percent by 2020. These goals are reachable by doing the

strongly advised proposal:

• Reducing GHG emission and using the Clean Development Mechanism (CDM)

credits.

• Economic and environmental benefits.

• Developing travel industry

3.8 Summary

This chapter presents an analysis of carbon tax, as strategy option, for encouraging the

use of renewable-based DGs and evaluate the cost-effectiveness of the system in terms

of GHG mitigation potentials. Different scenarios include different types of RES and

different penetration levels of the distributed generation. An economic study for the NPC

with both WT and PV+WT was also conducted which shows that, through imposing

appropriate taxes on Co2 and setting remunerative ”buy back” prices by the government,

there are remarkable potentials of Co2 mitigation along with COE reduction. Similarly,

technical analysis was accompanied by both HOMER and Matlab Simulink to show that

the proposed Renewable energy system can be used in the real world.

In summary, there are enough prospects for renewable-based DG generation in ex-

istence of appropriate policy allocation for GHG emission penalties and Market Price

Referent (MPR), as well as technical measures, in order them to be competitive with the

grid and therefore keep away from environmental emissions from the centralized grid. It
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is suggested that further studies be performed on offshore wind turbines in combination

with subsea transmission power supplies.
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CHAPTER 4

ARTIFICIAL NEURAL NETWORK BASED DUTY CYCLE ESTIMATION FOR

MAXIMUM POWER POINT TRACKING IN PHOTOVOLTAIC SYSTEM

4.1 Overview

According to a nonlinear current-voltage characteristic of Photovoltaics (PV) we need to

track maximum power output of PV generation units instantly. The aim of chapter 4 is

to introduce a non-complicated method for tracking the maximum Power Point without

any previous knowledge of the physical parameters linked with a Grid-Connected pho-

tovoltaic (PV) system using artificial neural networks (ANN) modeling. The ANN is

trained in various conditions of PV Output Voltage and PV Output Current to forecast

the Duty Cycle of DC-DC boost converter as the MPPT device. The proposed technique

is implemented in Matlab/Simulink and compared with the conventional method of in-

cremental conductance. Simulation results show a good performance of the ANN based

MPPT controller. MPPT techniques that properly detect the global MPP has been widely

investigated in the literature. They include hill climbing (HC), incremental conductance

(IncCond), perturb and-observe (P&O), and fuzzy logic controller (FLC). As the best of

our knowledge estimation of the duty cycle of the DC-DC boost converter by Artificial

Neural Network and using it in place of the whole MPPT controller and using Voltage

and current has not been done so far in the literature.

4.2 Problem Statement

Renewable energy sources of energy ,e.g. photovoltaic (PV), power play a essential role

in electric power generation, and become important these days due to unavailability and

ecological impacts of traditional fuels. In the future, PV energy will increase more rank
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due to the shortage of fossil fuels and their environmental effects. More than 45 percent

of necessary energy in the world will be generated by PV arrays [188]. Unfortunately, PV

systems have two main problems: the conversion efficiency of electric power generation

is low, and the amount of electric power generated by solar arrays changes rapidly with

weather conditions [184, 189]. Moreover, because of nonlinear IV and PV characteris-

tics of PV systems, their output power is always changing with weather conditions, i.e.,

solar radiation, atmospheric temperature and also nature of load connected [190, 191].

Maximum power point tracking (MPPT) is critical as there is a possible incompatibility

between the load characteristics and the maximum power points (MPPs) of the PV mod-

ule in order to make sure optimal exploitation of solar cells [192]. By means of MPPT

the cost of energy generated by PV panels is reduced [193]. A large number of meth-

ods have been suggested for tracking the MPP of PV systems in recent years. There

are many techniques available in the literature such as fractional opencircuit voltage and

short-circuit current [188] and the fuzzy logic control [194]. Also tracking the maximum

power by means of look-up table in the microcomputer was proposed in [195]. There are

some other popular methods like incremental conductance method (INC)[196] and the

hill climbing method (HC). These techniques are widely applied in the MPPT controllers

due to their simplicity and easy implementation. Numerous different MPPT approaches

have been proposed, but there has been no direct use of output voltage and current to

calculate the Duty cycle of the MPPT switches. The objective of this work was to bridge

this gap. In this work, the consideration will be focused on simulation comparison study

between Incremental Conductance technique and ANN, network, which used the solar

irradiance as Input signal to estimate the effects of random cloud movement on the elec-

trical parameters of the MPPT and the variables of the inverter was proposed by Giraud

and Salameh in [197].

Similarly, tracking the maximum power by implementing microcomputer with a lookup
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Figure 4.1: Block diagram of the configuration of the proposed system.

table was suggested in [198]. There are additional widely used methods like incremental

conductance method (IncCond) [199] and the hill climbing method (HC). These tech-

niques are widely applied in the MPPT controllers because of their clarity and easy appli-

cation. However, to the best of our knowledge estimation of the duty cycle of the DC-DC

boost converter by Artificial Neural Network and using it in place of the whole MPPT

controller and using Voltage and current has not been done so far in the literature. The

objective of this study is to bridge this gap. In this work, the attention will be focused

on simulation assessment study between Incremental Conductance Technique and ANN,

considering the panel output current and voltage variation in order to better performance

in actual changing irradiance conditions.

4.3 Solution Approach

The formation of the proposed system consists of the PV array, Artificial Neural Network

MPPT, DC-DC boost converter and 3level bridge inverter as shown in Fig. 4.1. Solar

irradiance (E) in W/m2 and the cell temperature (Tc) in degree Celsius are the inputs for

the PV array, where the actual voltage and current expressed in Vdc and Idc.

The coordinates of the city of Miami in the USA were used in HOMER Software,

25◦78 N latitude and 80◦22 W longitude, to obtain hourly solar radiation values. Hourly
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Figure 4.2: Hourly solar irradiation for one year.

average values of solar data are shown in Fig. 4.2. In this study the temperature was

considered constant at 25◦ C.

4.3.1 PV array characteristics

The Fig. 4.3 illustrates the equivalent circuit of the PV cell where Iph is current source of

the PV array, largely depends on the insolation and cells temperature. Rsh is an equivalent

shunt resistance, Rs is an equivalent series resistance, I and V are the output current

and output voltage of the PV array. Generally, for uncomplicatedness Rsh and Rs are

considered to be open circuit and short circuit, respectively. The shortened mathematical

model of the output current and voltage is given as:

I = npIph − npIrs(e
q

pkns
×V

T − 1) (4.1)

Where:

Irs : Cell reverse saturation current

q : Electronic charge

80



Figure 4.3: The equivalent circuit of a photovoltaic array.

k : Boltzmann’s constant (1.38×10 -23 J / ◦K )

T : Cell surface temperature (K ◦)

p : Cell ideality factor ( p =1 5)

np : Number of solar cells in parallel

ns : Number of solar cells in series

The current source of PV array, Iph varied according to solar irradiation and cell tem-

perature, is given by:

Iph = (Isc + kI(T − Tr))λ/100 (4.2)

Where:

Tr : Reference temperature;

Isc : Short circuit current at reference temperature and solar irradiation;

KI : Short circuit current temperature coefficient at reference temperature and solar irra-

diation;

λ: Solar radiation, irradiation, or insulation (W/m2).

In this study we are going to develop an artificial neural network based MPPT con-

troller for the PV arrays. In the incremental conductance method, which is used to gen-
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Table 4.1: Specification of Sunpower SPR-305 PV Module on Standard Test Conditions
(1000 W/M2, 25◦C)

Maximum power 305W
Open circuit voltage 64.2 V
Short circuit current 5.96 A
Voltage at maximum power point 54.7 V
Current at maximum power point 5.58 A

erate training data for the Artificial Neural Network in this study, the controller senses

incremental variations in current and voltage array to foresee the consequence of a volt-

age alteration. This method involves more calculation in the controller, but changing

conditions can be tracked more quickly than perturb and observe method (P&O). Similar

to the P&O algorithm, it may produce swaying in output power.

In this chapter, a 100-kW PV array of 330 SunPower modules (SPR-305) is used for

a Matlab simulation model. The array involves 66 parallel strings of 5 series-connected

modules connected in parallel (66 × 5 × 305.2W = 100.7kW ) [187]. The electrical

specification of the mentioned module on standard test condition (STC) is shown in Table

4.1. I - V and P - V curves of single module at 25 ◦C for different irradiance is illustrated

in Fig. 4.4.

4.3.2 Neural Network Architecture

Lately, the use of ANN has entered various scientific areas as an approximation technique

because of the very good pattern recognition capability [200]. A three-layer neural net-

work can fairly perfectly estimate any nonlinear function to a random accuracy. A three

layer feedforward backpropagation ANN is used: an input, a hidden and an output layer

to guess Duty Cycle of DC-DC boost converter. The input layer consists of a two dimen-

sional vector, one is the DC output Voltage of PV modules and the other is the PV current,
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Figure 4.4: I-V and P-V curves of single module at 25◦C for different irradiance

output layer is one dimensional vector consisting of Duty cycles. The training procedure

needs a set of samples of appropriate network behavior inputs and target outputs.

The procedure of training a neural network includes modification of the weights and

biases of the network to enhance network performance. Throughout the training, the con-

nection weights are modified until the best fit is attained for the inputoutput patterns based

on the minimum errors. The default performance function for feedforward networks is

mean square error (MSE) which is the average squared error between the outputs, a, and

the target outputs t. It is shown as:

F = mse =
1

N

∑
i=1

N(ei)
2 =

1

N

∑
i=1

N(ti − ai)2 (4.3)

Another performance function for neural networks is the mean absolute percentage

error (MAPE), which is a measure of exactness of the method specifically in trend es-

timation. It typically articulates accuracy as a percentage, and is well-defined by the

formula:
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Table 4.2: Training Parameter Values
Number of Hidden Layers 26
Epochs between displays 5
Learning rate 0.001
Maximum number of epochs to train 1000
Performance goal 0

MAPE =
1

N

N∑
i=1

ti − ai
ai

(4.4)

In this chapter, we used MAPE as the evaluation factor of our approximation. Training

parameter values of the proposed network are tabulated in Table 4.2.

4.4 Results and Discussions

In this study, quite a lot of inhomogeneous irradiance distributions are utilized to test

the operation of the proposed scheme. In order to generate data that can be used as

training sets of Artificial Neural Network we run the Simulink model with hourly average

irradiance of the first 42 weeks of the year from 7 am in the morning to 5 pm in the

evening. As the control system uses a sampling time of 100 microseconds for voltage

and current controllers, simulation of each day produces 20000 inputs of Voltage, Current

and Duty Cycle which are big enough for training the network. In the simulation we used

a time step of 0.1 for each hour and ran the simulation for 42 seconds. The simulation

results for extracting the training data is shown in Fig. 4.5. The simulation was run by

using the irradiance data of the last 10 weeks of the year to calculate the testing data of

the neural network which are depicted in Fig. 4.6. As it can be seen from Figs 4.5 and 4.6

stated maximum power of 100.7 kW is obtained at times of a 1000 W/m2 irradiance and

generally power is tracking the irradiance, which means that the incremental conductance

method can produce a reliable set of training and testing data. In the next step the acquired
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Figure 4.5: Irradiance, output voltage, output current duty cycle and generated power of
PV system for the first 42 weeks of the year (Training Data)

Figure 4.6: Irradiance, output voltage, output current duty cycle and generated power of
PV system for the last 10 weeks of the year (Testing Data).

data are used to simulate the neural network to train and then approximate the duty cycle

of the MPPT.

Fig. 4.7 shows the estimated (blue line) and actual (green line) values of the Duty

Cycle ratio. Undoubtedly considering the mean absolute percentage error of 1.49% the

results approved the effectiveness of the proposed technique.

The main advantages of the proposed MPPT method is that the system needs less
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Figure 4.7: Results of estimated duty cycle values compared to actual values.

computational work because of no necessity for awareness of internal MPPT system pa-

rameters and the system offers a compressed solution for this multivariable problem.

4.5 Summary

The productivity of the suggested Artificial Neural Network structures for the MPPT con-

trol and the forecast of Duty Cycle of DC-DC boost converter has been presented. Since

the duty cycle is directly achieved by using ANN, the proposed system does not need

complicated processes and cutting-edge power electronic control units. The results how

that the ANN is sufficiently accurate and can identify the duty cycle under different solar

irradiance.
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CHAPTER 5

ANALYZING THE TRENDS OF VOLTAGE FLUCTUATIONS, HARMONICS,

FREQUENCY, AND LEGACY DEVICES OF THE PHOTOVOLTAIC TEST-BED

5.1 Overview

In 1982, IEEE standard 519 was first released and then updated in 2014. It sets some

rules and steady state limitations on Total Harmonic Distortion (THD) with reference to

both current and voltage at the Point of Common Coupling (PCC). However, exceeding

these boundaries may be encountered by transient conditions. IEEE Standard 1547 was

published in 2003 and the latest amendment was issued in 2014. This standard contains

power quality, response to unusual situations, and installation assessment. The specified

requirements are essential for interconnection of distributed resources (DR), including

power inverters/converters and synchronous generators. The standards are valid to all

DR technologies, with combined capacity of 10 MVA or less at the PCC, connected to

secondary and/or primary distribution voltages. This chapter presents monitoring and as-

sessment of a 1.1MW photovoltaic power plant at Florida International University, Miami,

Florida. The assessment criteria were the IEEE 519 and 1547. Revolution power quality

recorder and AlsoEnergy power track software captured the harmonics and voltage data

with resolution on 1 minute. It concluded that at current level of photovoltaic penetra-

tion (16%), Current THDs violates the 5% limit value at the Point of Common Coupling

(PCC). Moreover, except from a few short duration voltage impulses, no voltage violation

has been observed.
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5.2 Problem Statement

The proliferation photovoltaic (PV) power generation systems in the distribution power

grid motivate utilities to monitor the power quality (PQ) effects of these renewable power

generators in the electrical networks. The power quality may cause voltage fluctuations

and flicker, DC injection, harmonic emission, over voltages, and harmonics at the switch-

ing frequency [8, 9]. Nowadays most companies rely on sophisticated equipment to be

able to compete other competitors. This equipment could be affected some power quality

issues which are undetectable by naked eyes. The benefits of high power quality of the

power system are optimizing the reliability of the systems, early prediction of incipient

problems, decreasing the energy expenditure, prevent power outages due to hidden distur-

bances, assurance of data integrity and reduced corrupt data in smart grids, etc. It is very

difficult to quantify the power quality concerns since they are different by the interaction

between susceptible equipment and power quality. When ”good” power quality for one

equipment could be ”bad” for another one [10]. Therefore, the best assessment criteria

are standards. In 1982, IEEE standard 519 was first released and then updated in 2014.

It sets some rules and steady state limitations on Total Harmonic Distortion (THD) with

reference to both current and voltage at the Point of Common Coupling (PCC). However,

exceeding these boundaries may be encountered by transient conditions. IEEE Standard

1547 was published in 2003 and the latest amendment was issued in 2014. This standard

contains power quality, response to unusual situations, and installation assessment. The

specified requirements are essential for interconnection of distributed resources (DR), in-

cluding power inverters/converters and synchronous generators. The standards are valid

to all DR technologies, with combined capacity of 10 MVA or less at the PCC, connected

to secondary and/or primary distribution voltages. The power quality concept has always

been oversimplified and misunderstood, but due to a significant increase in the use of
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1.4 MW Solar Canopy at FIU College of Engineering and 

Computing. 

(a)

Transformer
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Wireless Transmission of 

Data
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Figure 5.1: PV Plant Components: a) 4460 PV modules of three different types but each
with rated power around 315W, b) Transformer, Energy meter, and Main dosconnect at
the Point of Common Coupling(PCC), c) Smart field inverters, d) Revolution Wireless
Power Quality Recorder, e) AC disconnect box which is connected to the AC output of
the inverter, f) DAS that measures the multivariate time-series data from inverters, meter
and weather station and securely stores in a cloud server.

sensitive electronic devices and sophisticated data management devices, the assessment

of power quality has become an inevitable task.

Many researchers have done power quality monitoring and assessment. In [201] the

effect of photovoltaic power generation on current harmonics and voltage variations were

investigated. This chapter found a correlation between the generated power and harmonic

indices. A thorough power quality analysis for three different PV power plants with 4
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Table 5.1: Low-voltage System Classification and Distortion Limits [3]
Special

Applications1

General
System

Dedicated
System2

Notch Depth 10% 20% 50%
THD (voltage) 3% 5% 10%
1- Special Applications include hospitals and airports.
2- A dedicated system is exclusively dedicated to the converter load.

Table 5.2: Maximum Current Distortion in Percent of Current [3]
Individual harmonic order h (odd harmonics) Percent (%)

h <11 4.0
11<h <17 2.0
17 <h <23 1.5
23 <h <35 0.6

35 <h 0.3
Total demand distortion (TDD) (up to 50 harmonic) 5.0

MW, 1 MW , and 5MW capacities has been carried out by [202]. In this study 3 years

of supply interruption and voltage dip data has been collected for three years and the

observed disturbances compared to Grid-Code requirements. Monitoring of power quality

impacts of a PV power generator has been conducted by [203]. Trends, waveforms and

statistical analysis of the measurements was provided by this research. The power quality

of transient variation in high solar and load conditions was presented in [204].

5.3 Solution Approach

PV plant description and case study scope is this chapter presents monitoring and assess-

ment of a 1.1MW photovoltaic power plant at Florida International University, Miami,

Florida. The assessment criteria were the IEEE 519 and 1547. Voltage and current dis-

tortion classifications are shown in Table 5.1 and 5.2. Revolution power quality recorder

and AlsoEnergy power track software captured the harmonics and voltage data. The rest

of this chapter is organized as follows. First, PV plant components are described and case
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study scope is presented. Then, real results from the PV power plant are illustrated and

analyzed. The chapter is concluded in the last section.

5.4 Test-bed Description and Case Study

In order to analyze the voltage profile and power quality due to grid-tied PV, a compre-

hensive study was conducted on a 1.1MW PV power plant, shown in Fig. 6.1 (a), tied to

a distribution feeder network in Miami, Florida. Three types of solar panels are installed

in this PV power plant. Fig. 6.1 represents the Point of Common Coupling (PCC), where

the PV system is connected to the distribution feeder.

Although the substation services eight feeders, this chapter deals with the impact of

the plant on the feeder that the PV plant is connected to. The plant comprises: a) 4, 460

PV modules of three different types, each with rated power around 315W ; b) 46 smart

string inverters, each of 24kW size, and related combiner boxes shown in Fig. 6.1 (d);

c) a local weather station that records irradiance and both ambient as well as module

temperature; d) one cluster controller for monitoring the string inverters in real-time; e)

an Elkor production meter to record the plant’s net energy production (Fig. 6.1 (b)); f)

Panel boxes for testing and disconnection, which have different breakers for each inverter

module along that column; g) a SCADA controller at the plant-level that interacts with

the cluster controller; h) Revolution R©Wireless Power Quality Recorder connected to the

lower side of transformer at PCC and collects power quality data with a resolution of 1

minute from the plant including current and voltage THDs (Fig. 6.1 (d)); i) AC disconnect

box connected to the AC output of the inverter and has necessary protection devices like

switch and fuse (Fig. 6.1 (e)) ; and j) A Data Acquisition System (DAS) that measures

the multivariate time-series data from inverters, meter and weather station and securely
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stores values in a cloud server (Fig. 6.1 (f)). The plant is currently at a 15% penetration

into the grid, with a peak generation of 1.1MW on a clear, bright and sunny day.

Effective voltage profile analysis and power quality study are multi-step approaches

which require reviewing the feeder monitoring criteria recommended by grid code re-

quirements set by IEEE standard 1547.

5.4.1 Placement of Revolution

The most critical question to define compliance with IEEE 519 is, ”Where is the best point

to take the most precise measurements?” As said by the standard, the point of common

coupling (PCC) is the best place to take all the measurements, since this is the nearest

utility side point of the customer’s service where a new utility is or could be supplied,

usually at a substation or transformer. If the power quality meter is going to be installed

at a transformer, the PCC can be on either the secondary or the primary side. However,

as the secondary is close to the inverters and renewable power generators that are main

sources of distortion, it is suggested that all measurements be read from the secondary to

confirm compliance.

5.5 Results and Analysis

Based on the review of grid code requirements different feeder monitoring criteria were

elicited. It is noteworthy that the concerned feeder, which serves 700 residential and

200 commercial customers, has three capacitor banks, one voltage regulator, and two

transformers. Following subsections look at harmonics and voltage profile analysis.
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5.5.1 Power Quality Study

The power quality study under grid-integrated PV scenarios is examined in this section

under two analyses: a) Power Ramp Rate study, and b) Harmonic Distortion study. While

the power ramp rate study includes the analysis of high power density and high energy

density ramp rates, the harmonic distortion study looks at both current as well as voltage

THDs.

5.5.1.1 Power Ramp Rate Study

Ramp rates in power can be caused due to multiple reasons, of which cloud-induced

power intermittencies are considered as a major characteristic. Single-sided power ramp

rates, either ramp-up or ramp-down, at the point of interconnection (also called Point of

Common Coupling or PCC), are represented in Fig. 5.2, which shows that majority of

the power ramps are under 50kW/min, and almost 20% of them exceed the 12% limit

(corresponding to 140kW/min). Thus, it is clear that ramp rates will pose serious threat

as penetration levels increase. However, power ramps of this order can be easily mitigated

and smoothed by integrating them with hybrid energy storage systems.

The power ramp rates have been categorized in this case study as high power and

high energy density ramp rates, each of which are shown in Figs. 5.3 (a) and 5.3 (b),

respectively. A high power density ramp rate with a 771kW/min of ramp down and a

799kW/min ramp up was observed. Using supercapacitors minimizes impacts of these

ramps. The high energy density ramp exhibits an energy deviation of 13.6kWh in less

than 5 minutes, effectively mitigated by battery banks.
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Figure 5.2: Histogram of real power ramp rates for Mar 1-10, 2017

5.5.1.2 Recording Harmonics

THD is not the best measure of PV-induced harmonics, since the fundamental current

is reduced by PV generation, making harmonics larger by comparison and consequently

increasing THD values. The top graph in Fig. 5.4 shows the current THD variations by

Time and PV power production for four months in 2017. The lower graph is the side view

of the top graph. It can be further noted that the current THD has an inverse relationship

with the power output. Furthermore, there are no current THD violations when the PV

generation exceeds 451 kW (41% of nominal installed capacity). As it can be seen that the

total current THD is highly sensitive to changes in irradiance but the total voltage THD

does not maintain such a strong relation with the same (Fig. 5.5). During this period of

four months in 2017 voltage THD was always within the IEEE standards limit. However,

some violations, less than 0.3% noticed in March 2017. Nevertheless, these events happen

at night time, when no PV generation is available, or in the morning, when the PV power

output is still too low without any high fluctuations.

The effect of low solar irradiation level on injected current emissions is accounted for
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(a)

(b)

Figure 5.3: Power ramping scenarios for the PV power plant. a)High power density ramp
rate profile, b) High energy density ramp rate profile.
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Figure 5.4: Current THD variation by Time and PV Power Production. (Data imported
from Provision Power Quality meter).

in the case study. Monitored for a period of one month, the voltage and current THDs

recorded for the power plant are plotted against the real power output in Figs. 5.6 (a)

and 5.6 (b). It can be seen that the total current THD is highly sensitive to changes in

irradiance but the total voltage THD does not maintain such a strong relation with the

same. As the real power output crosses 870kW , the voltage THD does not exceed 4.1%,

with its values ranging between 4.5 and 5% when the power output is between 100 and

400kW .

The power output and current THD for March 11, 2017, when a lot of fluctuations

in irradiance was observed, is depicted by Fig. 5.7. This goes on to validate the relation

between power and current THD more precisely. It can be further noted that the shape of
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Total Voltage 
Distortion THD Limit 

(IEEE 519)
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Figure 5.5: Voltage THD variation by Time and PV Power Production. (Data imported
from Provision Power Quality meter).

current THD curve is nearly inverted to that of the output real power.
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(a)

(b)

Figure 5.6: THDs monitored over 1 month for the case study. a) Voltage THD for the PV
power plant, b)Current THD for the PV power plant.
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Figure 5.7: Current THD with respect to real power and time.

5.5.2 Voltage Measurement

The PV plant has been operational from July 19, 2016, and has since generated a cumu-

lative energy of more than 1GWh.

The top graph in Fig. 5.8 shows the 60 cycle average of voltage variations by Time

and PV power production for Feb 28, 2017 to July 27, 2017. The lower graph is the

side view of the top graph. It can be seen that voltage does no exceed limits by when PV

power output is beyond 800 kW. This is opposite of what expected in high PV penetration.

Therefore the voltage violations are not because of PV installation.

A time-series profile of the plant’s current and voltage from July 31, 2016 to July 29,

2017 is shown in Fig. 5.10, from which a seasonal pattern can be estimated. Immediately

after its commissioning, the plant experienced device failure issues due to which the data

obtained was not of good quality (that is, it lacked consistency and accuracy). Hence,

the initial few days of operation, from July 19 through 31, 2016, were removed from

this analysis. It can be observed that the plant experiences a higher generation between

the months of April and September, while it showcases a lower production profile during

the winter months between November and January.The voltage profile analysis under
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grid-integrated PV scenarios is examined in this section. As shown in the left graph in

Fig. 5.10, except from June 21, 2017 to July 13, 2017, the voltage profile was in the

IEEE 1547 ±5% limits (456V − 504V ). By a closer look at selected days of that period

(07/01/2017− 07/13/2017), it has been concluded that the voltage violations happened

at the night time, therefore they are not due to PV generations.

The main cause of these fluctuations are the load profile of the feeder. When the

working hour ends around 18 : 00 and employees start turning off the loads as computers,

lights, air conditioners, etc. the voltages start increasing and reaches to the maximum of

510 volts around 4 : 00. Then around 8 : 00 in the morning, when the employees go

to their work places, the load increases and voltage starts decreasing. In another study

the ITIC (Information Technology Industry Council) and CBEMA (Computer Business

Equipment Manufacturers Association) curve were generated to clearly represent Voltage

events. These curves define different regions based on the sensitivity of computer equip-

ment to the input voltage. As illustrated in Fig. 5.9, voltage events at the PCC may cause

problems for sensitive electronic devices or computers, but not to the distribution feeder.

5.5.3 Voltage Profile Analysis

Analyzing real time voltage data from January 2017 to July 28 2017, does not show any

voltage violation above 5%, except for days May 17 to May 24, 2017 and June 21 to July

16, 2017. Real RMS voltage of the lower side of transformer, real PV power output data

from Provision PQ meter is illustrated in Fig. 5.11. Since most of voltages out of limit

were happened during this period, these days were selected. As it can be seen from the

right side of Fig. 5.11, these violations happened mostly at night time, when there is no

PV output. Moreover, the overall voltage rises throughout the day as the load decreases

(during late night). Therefore, these voltage violations are not due to PV penetration to
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Figure 5.8: Voltage variation by Time and PV Power Production (Data imported from
Provision Power Quality meter).

the feeder. The voltage profile analysis under grid-integrated PV scenarios is examined

in this section as two analyses: a) Steady-state, and b) Time-series. While the steady-

state analysis determines the worst-case feeder response that would occur when the PV

generation changes drastically from zero to maximum, time-series analysis is conducted

for the load or PV time-of-day coincidental scenarios.

5.6 Steady-State Scenario Study

Considering steady-state scenario is static in nature, the load flow analysis for the system

is conducted for different use-cases. Each use-case has two scenarios that define it: the
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Figure 5.9: ITIC (CBEMA Curve) of Photovoltaic power plant at FIU.
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Figure 5.10: Photovoltaic Power Plant Voltage and Current at the PCC.

dynamic load profile scenario, and the different levels of PV penetration scenario. Al-

though the existing level of penetration is 15%, this study considers futuristic scenarios

where the penetration could go as high as 140% of the peak load. The load scenarios, on

the other hand, could be the Peak Daytime Load (PDL) day, or the Minimum Daytime

Load (MDL) day. Accordingly, the mapping between these two classes of scenarios as

shown in Fig. 5.12 would create multiple use-cases for which the results are shown.
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Figure 5.12: Mapping scenario classes for use-case generation

5.6.1 Voltage Deviation Study:

In order to conduct this study, the two load scenarios were each mapped to two different

penetration levels (existing and 60%), to generate four use-cases. It is to be noted that

for this setup, the voltage deviation should not exceed 0.3V. Fig. 5.13 (a) shows the

voltage deviation for the PDL scenario under existing penetration level with respect to

the distance from the substation. It is a general trend that the deviations subside as the

distance increases. Moreover, it is seen that the values are well below the recommended

one. However, at 60% penetration, shown in Fig. 5.13 (b), although the deviations are still

below the threshold, they are dangerously close to exceeding it, especially at distances

closer to the substation. Much similarly, Fig. 5.14 shows the deviation in voltage for

the MDL scenario again for existing and 60% penetration levels with respect to distance
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(a)

Figure 5.13: Voltage deviation study for PDL scenario. a)Existing Penetration, b) 60%
Penetration

from the substation. While the deviations are below the stipulated threshold for existing

penetration level, they exceed the same under levels of 60% penetration significantly by

0.15V , at a distance closest to the substation. Considering PV is located at the end of the

feeder, no significant impacts were observed.
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(a)

(b)

Figure 5.14: Voltage deviation study for MDL scenario. a) Existing Penetration, b) 60%
Penetration.
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5.6.2 Feeder Loss Study:

The feeder losses (kW) for the PDL and MDL scenarios under different penetration levels

is illustrated graphically in Fig. 5.15. It can be observed that the losses show a gradually

declining trend for the PDL scenario where the losses drop by a factor of 66% from 0 to

140% penetration, but the same cannot be said for the MDL scenario, where the losses

initially seem to decline, with the lowest losses observed for 60 − 80% penetration, but

steadily climb up again as the penetration hikes to 140%. It is incidentally seen the losses

are more or less the same for both extremities of the penetration level in this load scenario.

Figure 5.15: Feeder Losses for MDL and PDL Scenarios

5.6.3 Time-Series Scenario Study

Unlike the steady-state scenario, the time-series study requires a different kind of system

modeling. All distributed loads are assumed to be modeled as urban residential loads and

all spot loads are modeled as urban commercial loads in order to construct the load model

for the study, shown in Fig. 5.16. Further, two scenarios are considered here: a sunny day

where the sky is clear and bright blue, and a cloudy day where the sky is overcast. The

irradiance models for both these scenarios using 15-min irradiance interval data are shown

in Fig. 5.16. However, the one-hour resolution data is used by taking an average from
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Figure 5.16: Irradiance and Load models for System Modeling. Irradiance model for
a sunny day in October 2016, Irradiance model for cloudy day in October 2016, Load
Model

15-min resolution data. Further, three different PV inverter control modes are considered

for this study, namely: Power Factor control, Volt/VAr control, and Volt/Watt control.

For PF control mode, PF=0.85 was considered. The voltage profile analysis was then

conducted for a sunny day scenario, as depicted by Fig. 5.17, by varying PV penetration

levels as: existing (sky blue), 40% (orange), 60% (grey), 80% (yellow), 100% (deep blue),

120% (green), and 140% (dark blue). As shown in Fig. 5.17 (a), the maximum voltage

exceeds the threshold at 60% penetration and above for PF=0.85. Similarly, the threshold

is exceeded at the same level of penetration even for Volt/VAr control mode, shown in Fig.

5.17 (b). This might prompt the inverters to be operated at PF=1 considering the limit is

not violated. However, this contradicts the recommendations made by IEEE 1547 which

requires inverters to operate in Volt/VAr control mode. Hence, appropriate mitigation

strategies are required. It can be further noted that the number of switching operation is 6

for PF=0.85, and jumps to 36 for Volt/VAr mode

The above study was now repeated for a cloudy day scenario, and the number of

switching operations was observed for PF=0.85, and Volt/VAr control modes. The maxi-
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(a)

(b)

Figure 5.17: Maximum Feeder Voltage for different control modes on sunny day a)Power
Factor = 0.85 b) Volt/VAr mode
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(a)

(b)

Figure 5.18: Maximum Feeder Voltage for different control modes on cloudy day a)
Power Factor = 0.85 b)Volt/VAr mode

mum feeder voltage variations are shown in Fig. 5.18. At 60% penetration level and be-

yond, the maximum feeder voltage exceeds the threshold for both PF=0.85 and Volt/VAr

modes, depicted respectively in Figs.5.18 (a) and 5.18 (b), with corresponding switching

operations as 6 and 69. When compared with their operations on a sunny day, it can be

observed that when PV inverters operate in Volt/VAr mode on a cloudy day, the voltage

regulators undergo switching operations nearly twice more, which significantly reduces

their performance and spells adverse effects on the grid.

A consolidated representation of the number of switching operations for the 8 voltage

regulators operating under various control modes in both sunny as well as cloudy days.

As can be seen in Table 5.3, the number of switching operations is relatively stable be-
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Table 5.3: Total Numbers of Switching Operations.
PF= 1 PF= 0.85 Volt/Watt Volt/Watt

Sunny Cloudy Sunny Cloudy Sunny Cloudy Sunny Cloudy
20% PV 1 2 1 2 1 2 1 2
40% PV 1 2 1 2 1 2 1 2
60% PV 1 2 2 3 2 3 5 16
80% PV 1 2 3 3 6 6 22 42
100% PV 2 2 6 6 8 11 36 69
140% PV 2 3 11 15 16 19 44 113

tween 1 and 2 until 100%, with the number creeping to 3 on a cloudy day scenario. When

PF=0.85, the number of operations show a steady rise with penetration levels, peaking at

11 and 15 operations for sunny and cloudy days, respectively at 140% penetration. Simi-

larly, when operated under Volt/Watt mode, the operations peak at 16 and 19 for the same

penetration level, represented in Table 5.3. Finally, under Volt/VAR, maximum number of

switching operations is observed, with 44 on sunny and 113 on cloudy day for maximum

penetration scenario considered in this chapter. This supports the hypothesis that number

of operations increases with penetration levels, and that Volt/Watt and Volt/VAR modes

are more dramatic than PF. This might prompt the inverters to be operated at PF consid-

ering the limit is not violated. However, it contradicts recommendations made by IEEE

1547 which require inverters to operate in Volt/VAr mode. Hence, mitigation strategies

are required.

5.7 Summary

This chapter presents power quality monitoring results of an 1.1 MW Photovoltaic power

plant installed at Florida International University. Site description and list of components

are provided. Base on the analysis, steady state voltage violations has been occurred

on Jun 20 to Jul 16 (Over-voltages). However, some spikes happen during the period

of study, which were not because of PV installation. Based on ITIC curves momentary
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voltage spikes can cause problems for sensitive electric devices and computers, but not

to the grid.Voltage THD Violation only happens on phase and they were below 5.3%.

Voltage THDs may not cause major problems in the Feeder. However, current THD has

an inverse relationship with PV power production. When PV production is lower than

451kW, current THDs exceed 5% limit the IEEE 1547.

A system model and data from the plant’s data acquisition unit and power quality

recorder was constructed. Multiple use-cases and scenarios were delineated for the two

studies. Power quality issues were studied using high resolution data for current and

voltage THDs based on real measurements. It was concluded that no problematic issues

persisted at the existing penetration level of 1.1 MW. Current THDs over 5% has been

increased when the power output is less than 451 kW and it has a tight connection to the

output power. Voltage profile analyses for steady-state and time-series scenarios revealed

that at 60% penetration level, significant impacts due to voltage deviation and feeder

losses could be observed. Further, the number of switching operations for voltage regula-

tors increases dramatically when PV inverters operate in Volt/VAr control mode, followed

by Volt/Watt, and finally Power Factor. Although unity power factor causes least number

of operations, the grid codes require the use of Volt/VAr mode for inverter control. Hence,

strategies to mitigate these impacts are required.
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CHAPTER 6

A NEW TOPOLOGY OF HIGHER ORDER POWER FILTER FOR

SINGLE-PHASE GRID-TIED VOLTAGE SOURCE INVERTERS

6.1 Overview

In order to reduce the influence of the grid harmonic currents and voltages, harmonic com-

pensation is regularly implemented for a grid-tied inverter. In this study a new topology

of a higher order power filter for single-phase grid-tied voltage-source inverters (VSIs),

named L(LCL)2, is presented. The subscript is added to the name to prevent confusion

with the LLCL filter. In the proposed design, the inverter side inductance is divided into

three parts, and the grid side inductor is removed. Also, an additional resonant branch at

the double of the switching frequency is added to the traditional LLCL filter to attenuate

high-frequency harmonics. The overall inductance of the recommended filter is smaller

than the LLCL filter. A comparative study and discussions on the subject of the traditional

LLCL filter and the proposed L(LCL)2 filter have been conducted and assessed through

an experimental hardware implementation on a 700 W, 120V / 60 Hz single-phase grid-

tied inverter. Furthermore, a straightforward engineering design benchmark is suggested

to discover parameters of the L(LCL)2 filter. Moreover, stability analysis, loss analysis

and an optimization of the L(LCL)2 filter parameters have been conducted in this study.

The analysis shows that in comparison with the LLCL filter, the L(LCL)2 filter not only

has lower voltage drop and less total inductor size, but also has improved performance in

decreasing high order current harmonics.
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6.2 Problem Statement

As renewable energy systems, especially photovoltaics, are gaining more and more con-

sideration, the grid-tied inverter has been extensively accepted. In order to limit unneces-

sary current harmonics, which are typically created by pulse width modulation (PWM),

a low-pass power filter is regularly placed between a voltage-source inverter (VSI) and

the grid [11, 205]. L-filters are normally used, but they have the drawbacks of slow dy-

namic response and big inductor value [14,206]. In comparison to a first-order L filter, an

LCL filter can satisfy the standards for the grid interconnection with notably smaller size

and cost, primarily for applications in several kilowatts [207]. Due to the growing cost

of copper, various methods have been implemented to cut down the price of the power

filter. A practical procedure is to increase the switching frequency of the inverter where

the method, surely, depends on the device proficiency and cost.

Other measures, such as special topologies or controls, have been focused on by re-

searchers [208]. With the intention of achieving a higher switching frequency and ef-

ficiency, a three-level neutral point clamped (NPC) converter as a high-power renew-

able energy grid interface was presented in [209]. In [210] and [211], dual-mode time-

sharing control methods for single and three-phase inverters, correspondingly, were rec-

ommended to enlarge the modulation index and decrease the power filter size. However,

these suggestions make the control methods or topologies more complicated, which leads

to less reliability. Besides, it is very problematic for a dual-mode timesharing type in-

verter to reduce the harmonics or produce reactive power for the power grid. Ref. [212]

presents a new design technique, which employs SiC-type power devices for switching

frequency optimization and improvement of the structure of the LCL-type output filter in

transformerless PV inverters.

The total power loss of the LCL filter was used as the optimization factor in the de-
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signing of the filter parameters in [213]. The work in [213], explores the LCL filter design

method from the perspective of efficiency and reduction in size and weight (and there-

fore cost). Nowadays, most power electronic designs are limited by thermal constraints.

Power dissipation and surface area have a major influence on temperature change. The

volume and size of the component are two measures that the surface area of the object

is directly linked with. Moreover, when it comes to the industry, price is a vital aspect

of selecting the power filter in a grid-tied inverter. Recently, for more reduction of the

inductor size, the LLCL-filter has been proposed in [214]. Unlike the LCL filter, it can

save on total cost and material since the grid-side inductance can be significantly reduced.

In [215], the topology of multiple shunt RLC trap filters has been analyzed, but the

detailed design process was not given. Several optimized-filter designs, common-mode

voltage suppression methods, recommendations, and standards were also proposed in

[216–218].

6.3 Solution Approach

The objective of chapter 6 is to propose a modified high-order filter design, named L(LCL)2

filter, based on the LLCL filter. The proposed filter can reduce the harmonics at the switch-

ing frequency and multiples of the switching frequency while saving the total inductance

and thereby resulting in size reduction of the filter. The most important role of the grid-

side inductor in the traditional LLCL filter is to decrease the harmonics around twice of

the switching frequency. In the new topology, this inductor is removed, and the inverter-

side inductor is split into three parts. Then, two resonant traps at the switching frequency

and double of the switching frequency are inserted in between the inverter-side inductor.

The proposed filter is able to attenuate the current ripple components better than the LCL

and the LLCL filters.
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Figure 6.1: Schematic diagram of the LLCL filter.

The outline of the rest of chapter 6 is as follows: First, the principle of an LLCL filter

is presented. Then, a new engineering design procedure and parameter optimization of the

high-order power filter is proposed and analyzed. Additionally, the close-loop Stability is

assessed. Finally, experimental results on a 700 W, 120 V /60 Hz single-phase grid-tied

inverter prototype with LLCL and L(LCL)2 filters are carried out and compared to confirm

the correctness of theoretical analysis.

6.4 Principles of The LLCL-Filters

The circuit configuration of an LLCL-filter-based single-phase grid-tied VSI is illustrated

in Fig. 6.1. The output voltage and current of the inverter are represented as vi and ii,

and the grid voltage and current are represented as vg and ig. The switching frequency is

shown as fs (in hertz) or ωs (in radians per second). To simplify the analysis, the power

grid is assumed to be a perfect voltage source with zero impedance, to supply a continuous

voltage at the frequency of 60 Hz.

The instantaneous output voltage vi(t) of the single-phase full-bridge VSI can be cal-

culated as (6.1) while it is utilized under the situation of sine-triangle, unipolar, and asym-

metrical regular sampled PWM [219].
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vi(t) = mVdccos(ω0t)

+
∞∑
k=1

±∞∑
n=±1

2VdcJn(kπm)

kπ
sin(

nπ

2
) cos(kωst+ nω0t)

(6.1)

where m is the modulation index, Vdc is the dc-link voltage, ω0 is the fundamental

frequency, and Jn(x) is referred as the integrals of the Bessel function, which is known

as: Jn(x) =
π∫
0

cos(nπ − xsint)dt , representing the sideband harmonic magnitude.

The inverter output impedance while ω 6= ω0 can be written as

Z0(jω) =
vi(jω)

ii(jω)
|vg(jω)=0

=
(L11L21Cf + (L11 + L21)LfCf )(jω)3 + (L11 + L21)(jω)

(L21 + Lf )Cf (jω)2 + 1

(6.2)

The grid-side current ig is supposed as the ideal continuous current at the fundamental

frequency (Considering the harmonic current recommendation in IEEE 519-2014 and

IEEE 1547.2-2008 [220, 221]). With that in mind, the branch circuit of inductor L21

can be seen as being opened by considering the effects of the inverter high-frequency

harmonics.

The amplitudes of harmonics of inverter-side current ii can be derived as

|IH ||ω 6=ω0=
|VH(n, k)|
|Z0(jω)|

(6.3)

where the amplitude output voltage harmonic VH(n, k) is

VH(n, k) = |2VdcJn(kπm)

kπ
sin(

nπ

2
)| (6.4)

when k = 1, 2, ...,∞ and n = ±1,±2, ...,∞

Fig. 6.2 illustrates the major harmonic power density spectrum of the current output

of the inverter. The dc-link voltage Vdc is 210 V, inverter-side current ripple is 16.4%Iref
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Figure 6.2: Main harmonic current power density spectrum of inverter using unipolar
modulation.

(Iref is fundamental peak current), and the switching frequency fs is 20 kHz. The modu-

lation index, m, is assumed to be 0.9. It is clear that the harmonics around the switching

frequency and then multiples of the switching frequency are the topmost harmonics of

the inverter output current. Consequently, the paralleled trap LfCf is mainly limited by

the harmonics around the switching frequency and the grid-side inductor L21 is limited

by double the switching frequency [222].

Assuming that the grid is an ideal sinusoidal voltage source, the transfer functions

ii(s)/vi(s) can be calculated as

Gui→ii(s) =
ii(s)

vi(s)
|vg(s)=0

=
(L21 + Lf )Cfs

2 + 1

(L11L21Cf + (L11 + L21)LfCf )s3 + (L11 + L21)s

(6.5)

and the transfer functions ig(s)/vi(s) of LLCL filter can be expressed as
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Figure 6.3: Proposed L(LCL)2 system.

Gui→ig(s) =
ig(s)

vi(s)
|vg(s)=0

=
LfCfs

2 + 1

(L11L21Cf + (L11 + L21)LfCf )s3 + (L11 + L21)s

(6.6)

6.5 Proposed L(LCL)2 Filter

In this chapter, a new topology of the LLCL filter structure is proposed, as also illustrated

in Fig. 6.3, where the inverter-side inductance of the LLCL filter is separated into three

sections in order to allow inserting resonant traps in between them. Also, the resonant

capacitor of the traditional LLCL filter is divided into two capacitors to produce a new

resonant branch at double the switching frequency. Consequently, the grid-side induc-

tance of the LLCL filter (L21) can be removed. As a result, since the total amount of

the capacitor does not change, the capacitive reactive power at rated load will remain

constant. Compared to the conventional LLCL filter-based system, not only does the ad-

ditional trap inserted between grid-side inductance not add to the control difficulties of

the system, but also it reduces the size of the electromagnetic part of the system, which

leads to a more efficient low pass filter. Considering A(s) and M(s) definitions as below
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A(s) =
Z2(s)Zf2(s)

Z2(s) + Zf2(S)
,M(s) =

Z2(s)

Zf2(s)
+ 1 (6.7)

where Z1(s) = sL12, Z2(s) = sL22 = sL32, Zf1(s) = sLf1 + 1/sCf1 and Zf2(s) =

sLf2 + 1/sCf2. The transfer functions i1(s)/vi(s) and the transfer functions ig(s)/vi(s)

of L(LCL)2 filter can be, respectively, calculated as

Gui→ii(s) =
ii(s)

vi(s)
|vg(s)=0

=
A+ Z2 + Zf1

(A+ Z2 + Z1)Zf1 + (A+ Z2)Z1

(6.8)

Gui→ig(s) =
ig(s)

vi(s)
|vg(s)=0

=
Zf1

Z2(M + Zf1(M + Z2) + 1) +MZ1Zf1

(6.9)

Fig. 6.4 shows bode plots of the transfer function ig(s)/vi(s) of both the L(LCL)2

filter and the LLCL filter, while all the other parameters are the same, except inductances

of the traps. Also, L11 in the LLCL filter is divided into three parts and Cf is divided

into two capacitors. Fig. 6.5 presents bode plots of the transfer function ii(s)/vi(s) with

aforementioned parameters. The figures help in verifying that all the requirements are

satisfied with the design.

It is clear that within half of the switching frequency range, the L(LCL)2 filter has

a nearly identical frequency response pattern of an LLCL filter, and both resonant fre-

quencies match the resonant frequency criteria of the low-pass filters for having a stable

system. That is to say, compared to an ordinary LLCL filter, the additional Cf2Lf2 branch

of the LLCL filter does not bring any further control worries. Fig. 6.6 shows the size

of the total impedance of the L(LCL)2 filter when frequency varies from 0 to 20 kHz. It

can be seen that the impedance of the proposed filter is lower than the LLCL filter, except

around resonant frequencies of the filters.
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6.5.1 Analysis of ripple current

The time average value of the output voltage of the inverter,vAV , can be assumed constant

during the switching period Ts, if the switching frequency, fs, is greater than the grid
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Figure 6.6: Size of the impedance of the LLCL and the L(LCL)2 filters for different
frequencies.

Vi
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ωt
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Vdc

Δimax

-Δimax

Figure 6.7: Voltage and the current output waveform of typical single-phase full-bridge
inverters.

frequency, f0.

Hence, the current of the filter inductor of the grid-tied single-phase full-bridge in-

verters has a symbolic curve for the duration of any period, as illustrated by the lower

waveform in Fig. 6.7. In this situation,4ipp, the peak-to-peak value of the filter inductor

current, which is generated by the unipolar PWM switching, can be calculated as [223]

4ipp = 24imax =
Vdc − vAV

L

d

2
Ts (6.10)

where L is the inverter side inductor of any kind of filter (including LCL, LLCL, L(LCL)2,
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etc.). Moreover, grid voltage vg is supposed to be a clean sinusoidal waveform. To make

the analysis simpler, the fundamental component of the grid current in Fig.6.3 is pretended

to be zero. Consequently, the fundamental component of the voltage appears on the filter

inductor is similarly zero as

vL = vi − vg = 0 (6.11)

Therefore, when 0 < ωt < π , equations (6.12) and (6.13) can be calculated as

vAV (ωt) = d(ωt)Vdc, vg(ωt) = m.Vdcsin(ωt) (6.12)

d(ωt) = m.sin(ωt) (6.13)

and during 0 < ωt < π, the peak-to-peak value of the current of the filter inductor will be

[224]

4ipp(ωt) =
VdcTs
4L

(1−m2.sin2(ωt)) (6.14)

6.5.2 Parameter Design of the L(LCL)2 Filter

Some limitations were introduced by [14, 214] to be considered when designing the LCL

and LLCL filters, which could be used in the L(LCL)2 filter.

1. The total capacitive reactive power at rated load should be less than 5% of the

nominal power and capacitors are limited by this constraint.

2. The total inductance is limited by the voltage drop for the duration of operation

(less than 10%). If not, the dc-link voltage will be required to be higher to guarantee

controllability of current, which will cause greater losses in switching devices.

3. The range of the resonant frequency ought to be bigger than ten times the line

frequency or one-sixth of the switching frequency (whichever is higher) and one-

half of the switching frequency, with the intention of keeping away from control
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and stability problems, which possibly caused by resonance in the upper and the

lower parts of the harmonic spectrum.

4. The inverter-side inductor, L12, is constrained by the maximum ripple current re-

quirement (normally ≤40%).

5. Considering IEEE 519-2014, the harmonics greater than the 35th should be less than

0.3% of the rated fundamental current, if the short-circuit current of the system is

less than 20 times of the fundamental grid-side current.

Considering the mentioned constraints, the L(LCL)2 filter can be designed by using

the following steps

1. With the intention of meeting a particular requirement for current ripple, the induc-

tance can be designed from

Vdc
4fs(α1Iref )

≥ L11 ≥
Vdc

4fs(α2Iref )
(6.15)

where, Iref is the rated reference peak current, α1 and α2 are the inverter-side cur-

rent ripple ratio, which generally have the value of 15% and 40%, respectively. This

inductance is the amount of total inductance of the filter (L11=L12+L22+L32), while

L12=K × L11 (33%< K <60%) and L22=L32=(L11-L12)/2.

2. By selecting the absorption of reactive power, while the system is operating in rated

conditions, the capacitor value can be determined.

Cf (Total) = xCb (6.16)

where x is the absorbed reactive power percentage at full-load conditions (x < 1).

The total capacitor number is limited by (6.17)

Cmax =
5%Prated

Vg
2ω0

(6.17)
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Then the capacitor of each branch is almost half of the total capacitor in the LLCL

filter.

3. The resonant frequency of the Lf1Cf1 and the Lf2Cf2 circuits are at the switching

frequency and the double of the switching frequency, respectively. Thus, Lf1 and

Lf2 can be calculated by

1√
Lf1Cf1

= ωs1,
1√

Lf2Cf2

= ωs2 (6.18)

where, ωs1 is the switching frequency and ωs2 is twice the switching frequency.

4. In LLCL filters, grid-side inductance, L21, is mostly used to reduce each harmonic

around twice the switching frequency down to 0.3%. For an L(LCL)2 filter, due to

the additional Lf2Cf2 branch, the current harmonics near the double of the switch-

ing frequency fulfill the IEEE 519-2014 standard with far more ease. Therefore,

L21 is replaced by a portion of L11.

5. The resonant frequency can be calculated by setting the dominator of equations

(6.9) to zero, after replacing ”s” with ”jω”. If it does not satisfy the requirement

3, absorbed reactive power can be changed , then return to step 2. Otherwise, the

tolerable current ripple can be adjusted again, then return to step 1.

6. The quality factor of each resonant circuit should be 10 ≤ Q ≤ 50, that can be

calculated as

Q =
1

Rf

√
Lf
Cf

(6.19)

whereRf is the gaped equivalent resistance of the inductors in the resonant branches

(Lf1 and Lf2).

The most important limitations, such as the voltage drop across the inductor, the ca-

pacitive reactive power, and the amplitude of the harmonic currents, should be considered,

while the design procedure is iterative with the L(LCL)2 parameter values adjusted. The

algorithm for designing the L(LCL)2 filter is shown in Fig. 6.8.
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Figure 6.8: Flowchart of the parameter design procedure of L(LCL)2 filter.

6.5.3 Design example

Once designing a high-order filter for power inverters, the base values of the total impedance,

inductance, and capacitance should be defined as

Zb =
vg

Prated
, Lb =

Zb
ωb
, Cb =

1

ωbZb
(6.20)
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where ωb is the grid frequency and Prated is the rated active power of the inverter. Consid-

ering the constraints addressed in section II(A), and under the condition of that fs=20kHz,

Vdc=210V, Prated=700W, grid phase to ground voltage is 120V/60Hz. Then, the attenua-

tion of the current harmonics focused on the design processes of the L(LCL)2 filter, which

can be derived as

1. By assuming the 7.7% impedance for the inverter-side inductor, L11 is selected to

be 4.2mH. For an LLCL filter, L21 mostly designed on the objective to decrease

each harmonic around the double of the switching frequency down to 0.3%, but for

the L(LCL)2 filter, owing to the Lf2Cf2 resonate circuit, the twice of the switching

frequency harmonics are approximately eliminated. Therefore, the calculated in-

ductance for inverter-side inductance of the traditional LLCL filter is split into three

smaller inductances. The first part has a value of L12 = 2.2mH (about 53% of cal-

culated inverter-side inductance of the conventional LLCL filter), then L22 = 1mH

and L32 = 1mH . The inverter-side inductor L12 should fulfill the requirements of

(6.15). In this case, the value of inverter-side current ripple is 16.40%, which is in

the range between 10% and 40%.

2. To achieve the limitation of the maximum absorbed reactive power at rated condi-

tions, the total capacitance (Cf1 + Cf2) ≤ 0.05Cb. Hence, the capacitor value is

designed to be Cf1 +Cf2 = 2µF in order to limit the reactive power to 1.55%. This

value can be increased to the limit of 5%, if some of the constraints cannot be met.

3. The grid-side inductor of L21 is removed in the L(LCL)2 filter, but L22 and L23 are

two sections of the split inductor and both of them have the value of 1 mH.

4. The consequent resonance frequency is 3.88 kHz for the LLCL, and the L(LCL)2

filter has two resonant frequencies at 4.12 kHz and 8.01 kHz. Both resonant fre-
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Table 6.1: Size Estimation of LLCL and L(LCL)2 Filters
Components Energy Stored in Size of

the Components (j) the components (m3)

L11 + L12 0.0919 0.0496× 10−3

Lf 1.29× 10−7 0.6966× 10−10

Cf 0.0144 0.016× 10−3

L12 + L22 + L32 0.0715 0.0386× 10−3

Lf1 + Lf2 8.09× 10−8 4.3686× 10−11

Cf1 + Cf2 0.0144 0.016× 10−3

quencies of the L(LCL)2 are between one half of the switching frequency and one

sixth of the switching frequency.

5. The quality factor of resonant branches is chosen to be 50, and the equivalent resis-

tor value of Rf1 is 0.16Ω and Rf2 is 0.08Ω.

6.5.4 Size Estimation of LLCL and L(LCL)2 Filters

Exact size approximation is challenging because of different manufacturing processes and

design parameters. To generate an initial estimate, however, A number of methods were

proposed for the size estimation of filter inductors and capacitors based on peak energy

requirements. Although final recognitions probably will not obey this linear scaling, the

component choice for inductor and capacitor volume with rated energy are accurate. The

scaling factors are 1.11m3/kj for inductive component and 0.54m3/kj for capacitive

component [215], a ratio of approximately 2 to 1, where j stands for joules. In order

to give an estimate of stored energy and size of the components, using the relationship

Ec = 1
2
CV 2 and EL = 1

2
LI2, Table 6.1 is generated. By looking at Table 6.1 it is clear

that the total size of the LLCL filter is 0.0656×10−3m3 and the total size of the L(LCL)2

filter is 0.0546× 10−3m3. Therefore, by implementing the L(LCL)2 filter the size of the

filter is reduced by the factor of 16.8%.
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6.5.5 Efficiency comparison between the LLCL and L(LCL)2 Filters

The proposed L(LCL)2 filter can be more attractive than an LLCL filter as the interface

between the inverter and the grid requires reduced copper and magnetic materials. The

power losses of the filters can be separated into:

1) High-frequency passive damping loss, which can be obtained as follows

Pd(ripple) =
1

2
|IAM(n, k1)|2×Rf1 + |IAM(n, k2)|2×Rf2 (6.21)

where n = ±1,±3,±5, k1 = 1 and k2 = 2.

Passive Damping (PD) techniques use a resistance connected in series with the ca-

pacitor in order to attenuate the LC branch resonance at the cost of curtailing efficiency

[225]. Lossless Active Damping (AD) methods with virtual resistors have been widely

explored to suppress these oscillations. By using this technique, a resistance damping

characteristic emulated in the lossless method, and no resistance is physically connected

to the circuit [226]. Therefore, when using active damping method, Pd can be set to zero.

2) Power losses in inductors, can be separated into Pcore (core loss) and Pcopper (copper

loss)

Pcore = k(fαBβVe) (6.22)

where k, α, and β are material parameters generally found by curve fitting; B is the flux

density, in Tesla and Ve is the magnetic core volume, in cm3.

Pcopper = IfR
2
dc + IacR

2
ac (6.23)

where If is the RMS value of the fundamental frequency current component and Iac is the

RMS value of the ac-ripple current component. it can be assumed that Rac = Rdc in this

study. The power loss and efficiency values of the L(LCL)2 filter and the LLCL filter

for both PD and AD methods are presented in Table 6.2. It can be seen that the efficiency
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Table 6.2: Calculated Power Losses And Efficiency of The L(LCL)2 Filter and the LLCL
Filters Based on Nominal Output Power of 700w.

LLCL L(LCL)2

Pd 0.0064w 0.0345w
Pcopper 3.4432w 2.7593w
Pcore 1.8238w 1.3015w

Total Loss(PD) 5.2735w 4.0953w
Total Loss(AD) 5.2671w 4.0608w
Efficiency(PD) 99.247% 99.415%
Efficiency(AD) 99.248% 99.420%

is increased by 0.169% (for PD method) and 0.173% (for AD method) compared to that

of the LLCL filter.

The total loss of the LLCL and L(LCL)2 filters are measured in our hardware pro-

totype by means of a LaCroy WaveRunner 64Xi, 600 MHz Oscilloscope. The measured

output power was 691.55 watts for the LLCL and 692.74 watts for L(LCL)2 filter. The

input power of both filters (which is the output power of the VSC) was 697.27 watts. The

values in Table 6.2 are based on calculation, but the measured values of efficiencies are

99.17% and 99.35% for LLCL and L(LCL)2, respectively. Therefore, the measured total

power losses for the LLCL filter and the L(LCL)2 filter are higher in value by a factor

of 8.54 % and 10.63 %, respectively, comparing to calculated losses.

6.5.6 Optimization of The L(LCL)2 Parameters

Frequent trial and error in the design procedure increase the need to conduct an opti-

mization of L(LCL)2 filter on Matlab software, due to the connection between the filter

parameters and the device performance indexes, the optimization is based on the total har-

monic distortion (THD). Although, some useful trial and error solutions with computer

programs can be achieved, for instance in [227]. Changes of several performance indexes

could be caused by the variation of one of the filter parameters. For building an accu-
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rate THD model, the harmonics caused by power switches and the control-loop should be

taken into consideration. The current harmonics provided by closed-loop transfer func-

tions of L(LCL)2 filter can be expressed as follows [228] where vi(t) is calculated by

(6.1) and the open-loop transfer function of L(LCL)2 filter ,G(s), can be calculated by

(6.9). According to [228], the goal of optimization is to find the minimum values of

L12, L22, and L32 on the basis of the allowable THD. The objective function for Genetic

Algorithm (GA) optimization can be expressed as

minf(x) = (2 +
1

r
)L22(x = [L22, r, Cf1, Cf2]) (6.24)

when L22=L23 and r=L22/L12. To leave a certain margin, the restrictive value of THD can

be chosen as 3% (instead of 5%). GA is an effective method to find the optimal solution.

The constraint can be expressed as L12, L22, and L32 on the premise of the allowable

THD. The objective function for GA optimization can be expressed as

THD(x) = 3% (6.25)

The parameter variety can be obtained from Section III (B). On this basis, the allowed

range of L22, r, Cf1 and Cf2 are 0.311mH≤ L22 = L32 ≤ 1.505mH, 0.07 ≤ r ≤ 1.19,

0.5µF ≤ Cf1, Cf2 ≤3 µF . With the initial values of [0.908 mH, 0.63, 1.75 µF , 1.75

µF ], the optimized result is [0.918 mH, 0.42, 0.935 µF , 0.941 µF ]. In the real world,

capacitors have a series of fixed values. The one which is closest to 0.935µF and 0.941

µF is 1 µF . Therefore, the values of the Cf1 and the Cf2 are chosen as 1µF . When the

fixed value of Cf1 and Cf2 are considered, the parameters of L(LCL)2 filter are chosen

as [1.02 mH, 0.43, 1 µF , 1 µF ]. Compare to step by step method, these values have 2%,

2.3%, 0% and 0% error, respectively. These errors are within an acceptable range.
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Figure 6.9: Block diagram of the current control system.

6.5.7 Close-Loop Stability Analysis

Many techniques are used for the analysis of the stability of a system. A popular technique

is analysis of the eigenvalues to study the system stability [229, 230], which is explained

in this section. Fig. 6.9 shows the typical block diagram of a current controller, where

P(s), C(s), and G(s) are the model of the controller, inverter, and the proposed filter, re-

spectively. A conventional PI controller is adopted as P(s) in order to achieve the specified

dynamics, i.e.

P (s) =
(kps+ kI)

s
. (6.26)

where kp = 1 is the proportional gain and kI = 100 is integral gain. These values are

designed and tuned by the trial and error method. The system time delays due to discrete

operation and phasor PWM blocks are neglected, i.e., C(s) = 1 and G(s) is calculated by

(6.9), thus, the closed-loop transfer function of the current control system can be written

as

H(s) =
ig(s)

i∗g(s)
=

P (s)G(s)

1 + P (s)G(s)
(6.27)

The eigenvalues of (6.27) determine the dynamics of the closed-loop system. Herein, the

stability of the proposed system, with respect to the variation in system matrix parameters,

is studied. This study is based on a 700 w laboratory prototype, in which parameters

are summarized in Table 6.3. The eigenvalues of the system at this operating point are

λ1,2 = −119.04± j98.16, λ2,3 = −288.88± j25872.9, and λ4,5 = −1401.15± j50313.5.
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Table 6.3: Designed Parameters for Experimental Setup
Elements Parameters Values
Inverter dc-link voltage (Vdc) 210 V

Switching frequency (fs) 20 kHz
Rated power (Prate) 700 w

AC Grid Grid phase voltage (vg) 120 V
Grid frequency (f0) 60 Hz

L(LCL)2 filter Inverter side inductor (L12) 2.2mH
Grid side inductors (L22 = L32) 1 mH
Resonant circuit inductor (Lf1) 63.3 µH
Resonant circuit inductor (Lf2) 15.83 µH

Resonant circuit capacitors (Cf1 = Cf2) 1 µF
Equivalent resistance of the inductor (Rf1) 0.16 Ω
Equivalent resistance of the inductor (Rf2) 0.08 Ω

LLCL filter Converter side inductor (L11) 4.2 mH
Grid side inductor (L21) 1.2 mH

Resonant circuit inductor (Lf ) 31.67 µH
Resonant circuit capacitor (Cf ) 2 µF

Equivalent resistance of the inductor (Rf ) 0.11 Ω

The real parts of all six eigenvalues are negative, which signifies the linearized system’s

stability. However, the stability of the overall system cannot be guaranteed for all values

of the filter parameters. Thus, for stability analysis, the eigenvalues of the system are

plotted versus the variation of one parameter at a time, while the other nominal parameters

remain constant.

It is worth mentioning that the range oscillation of all the parameters corresponds to

the step by step design procedure in Section III. Furthermore, in transfer function (6.27),

the system eigenvalues remain almost constant with ±20% variations of the Lf1 and the

Lf2. In fact, the variation of the Lf1 and Lf2 does not affect the stability of the proposed

system.

The impacts of L12 and L32 on the eigenvalues of the system are shown in Fig. 6.10a

and Fig. 6.10b, respectively, when L1 varies from 1.39 mH to 2.52 mH and L21 varies

from 0.84 mH to 1.485 mH. Also, L22 is equal to L32, so their variations are depicted

together in Fig. 6.10b.
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Figure 6.10: Root locus of the closed-loop transfer function of the system (Hs) as (a) L11

varies from 1.39mH to 2.52mH (b) L22 and L32 vary from 0.84mH to 1.485mH (c) Cf1

varies from 0.5µF to 3µF (d) Cf2 varies from 0.5µF to 3µF (e) Rf1 varies from 0.08Ω to
0.39Ω. (f) Rf2 varies from 0.16Ω to 0.8Ω.

It can be observed that the increase of the inverter-side and the grid-side inductances,

displaces all complex eigenvalues toward the vertical axis of the s-plan. Thus, it is pre-

dictable that the whole system’s response becomes longer and less oscillatory as L12 and

L32 increase.

The variation of system eigenvalues by varying the Cf1 and Cf2 from 0.5 µF to 3 µF

are shown in Figs. 6.10c and 6.10d. As it can be seen, the impact of the Cf1 and Cf2

on the eigenvalues λ1 and λ2 are almost negligible. However, Fig. 6.10c shows that the

complex eigenvalues λ3, λ4, λ5, and λ6 move toward the real axis, which can reduce the
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system’s natural frequencies and increases the damping factor of the system. Fig. 6.10d

obviously demonstrates that all eigenvalues stay on the left half of the s-plane for the

whole effective range, which presents the stability of the proposed system over the given

range.

Figs. 6.10e and 6.10f illustrate the eigenvalues of the proposed system asRf1 andRf2

vary from 0.08 Ω to 0.39 Ω and 0.16 Ω to 0.8 Ω, respectively. As can be seen, increasing

the resistances of the filter results in moving the real part of eigenvalues λ3, λ4, λ5, and

λ6 toward the left, and therefore, a faster response and less oscillatory. However, increase

of the resistance increases the power losses of the system, which is usually undesirable.

6.6 Simulation and Experimental Results

In order to confirm the effectiveness of the proposed L(LCL)2 filter on suppressing the cur-

rent harmonics, a 700-W prototype of the single-phase full-bridge grid-tied inverter with

the ”STM32F4” Microcontroller is constructed. In addition, a Matlab Simulink-based

study is carried out to assess the experimental analysis. The experimental parameters of

the filter are the same as those for simulations listed in Table 6.3.

The experiments are evaluated and investigated under the given conditions of fs =

20kHz, Vdc = 220V , vg = 120V/60Hz, Prated = 700W , and SPWM strategy is used in

the inverter and the dc-link voltage is kept at 220V .

Case I is the traditional LLCL filter strategy and Case II is the L(LCL)2 filter strategy

with an extra trap at 40kHz. Figs. 6.11 - 6.15 show important system measurements

that are captured by a LaCroy WaveRunner 64Xi oscilloscope in experimental tests and

Matlab Simulink plots.

Figs. 6.11 and 6.12 show the grid side current-voltage waveforms and the power

density spectrum of the grid-side current for cases I and II, respectively. Figs. 6.11(b)
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Figure 6.11: LLCL filter. (a) Grid voltage and grid-side current waveforms. (b) Power
density spectrum of grid-side current (Experimental setup). (c) Power density spectrum
of grid-side current (Simulation)

and Fig. 6.12(b) illustrate that the amplitude of the dominant harmonic current at 20 kHz

is reduced by 8.80 dB/HZ from case I to case II, but at 40 kHz it increased from -102.37

dB/Hz (case I) to -97.01 dB/Hz (case II). Therefore, the most dominant current harmonics

are diminished even more than the previous design. However, a small increase occurred

at the double of the switching frequency, but as the power density is too small (-97.01

dB/Hz), it can be neglected. Thus, the size of the filter is reduced, and as a result, the total

loss is decreased. In addition, the performance of the filter is improved. Figs. 6.11 (c)

and 6.12 (c) show the simulation results of the power density spectrum of the grid-side
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Figure 6.12: L(LCL)2 filter. (a) Grid voltage and grid-side current waveforms. (b) Power
density spectrum of grid-side current (Experimental setup). (c) Power density spectrum
of grid-side current (Simulation).

current. As it can be seen, the experimental results are in accordance with the simulation

graphs.

The currents flowing through the resonant branches for Case I and Case II are shown in

Figs. 6.13 to 6.15 while the grid current is 5.8 A and the voltage is 120 V. The magnitude

of the currents in Lf1Cf1 and Lf2Cf2 traps are almost half of LfCf trap and that is

because the impedance of both traps of L(LCL)2 filter is 2.652kΩ (at 60 Hz), but the

LLCL filter has an impedance of 1.326 kΩ. Also, it can be seen that the power density

of current harmonics at the switching frequency and multiples of the switching frequency
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Figure 6.13: (a) LfCf current of LLCL filter . (b) Power spectral density of LfCf current
in LLCL filter (Experimental setup). (b) Power spectral density of LfCf current in LLCL
filter (Simulation).

are almost the same in the LfCf branch of the LLCL and Lf1Cf1 branch of the L(LCL)2

filter. In addition to that more attenuation occurs at Lf2Cf2. Then, in Figs. 6.13(c) - 6.15

(c) simulation results are depicted which are quite close to the hardware experimental

results.

The measured total harmonic distortion (THD)% of ig in Cases I, and II are 3.72%

and 2.94% which shows the effectiveness of the designed filter in improving the THD of

the grid current.

Fig. 6.16 shows the bode plots of the ig(s)/vi(s) transfer function for different values
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Figure 6.14: (a) Current of switching frequency trap Lf1Cf1 of L(LCL)2 filter. (b) Power
spectral density of Lf1Cf1 current in L(LCL)2 filter (Experimental setup). (c) Power
spectral density of Lf1Cf1 current in L(LCL)2 filter (Simulation).

of the series and the resonant branch inductances. Obviously, when the values of L12, L22

and L32 are in the range of parameter values generated by the proposed procedure, the

resonant frequency variation meets the design criteria. Therefore, the system is still able

to maintain stability. Furthermore, to guarantee that all current harmonic (≥ 35th) is less

than 0.3% of the fundamental current, while it is assumed that the parameter variation of

inductances of resonant branches are in a range of ±20%, it is essential to investigate the

ripple current harmonics both at fs and at 2fs while these inductors change ±20%. The

harmonics of current around the switching frequency with Lf1 ± 20% is 0.21% and the
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Figure 6.15: (a) Current of the double of switching frequency trap Lf2Cf2 of L(LCL)2 fil-
ter . (b) Power spectral density of Lf2Cf2 current in L(LCL)2 filter (Experimental setup).
(c) Power spectral density of Lf2Cf2 current in L(LCL)2 filter (Simulation).

current harmonics around double the switching frequency with Lf2 ± 20% is 0.017%.

At last, the response of the developed filter is compared with that of an LLCL-based

inverter in terms of voltage regulation. In order to do that, the simulations were run at

a sampling time of 2µs and the values of Table 6.3. These values were designed such

that the performance of the L(LCL)2 filter is comparable to that of the LLCL in terms of

steady state performance and the dynamic response. Fig. 6.17 shows both cases when a

0.5pu load is switched in at the point of grid connection on t = 0.15s. It can be seen that

the inverter maintains a constant dc-link voltage before and after the change. Results show
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Figure 6.16: Bode plots of transfer function ig(s)/vi(s) under different filter inductances.
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Figure 6.17: DC Link voltage when a 0.5 pu load is switched-in on t=0.15.

that, replacing the LLCL filter with an L(LCL)2 filter improves the dynamic performance

of the inverter mainly due to the reduction of dc-link voltage fluctuations.

The experimental setup of the L(LCL)2-filter-based inverter system is shown in Fig.

6.18. For building the inductances of LLCL and L(LCL)2 filters Ferrite cores with N87

material and epoxy coating is used.

6.7 Analysis and Discussion

From the simulation and experimental results, the following can be seen.

1. In both cases, dominating harmonic current meets the recommendation of IEEE

519-2014 in the experiment, however, the 20kHz current harmonic reduced and the
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Figure 6.18: Experimental Setup

40kHz current harmonic has the same value.

2. The value of the grid-side inductor is reduced in cases II, so the voltage drop during

the operation and thereby the dc link voltage are the same.

3. The value of the total inductor of L(LCL)2 filter is reduced by a factor of 22.22%,

compared to that of the LLCL filter.

4. The reactive power in the newly designed filter is the same as the traditional LLCL

filter Cf1 + Cf2 = Cf .

5. In general, the experimental results are in acceptable agreement with the theoret-

ical study, particularly with regard to the harmonic current attenuation around the

switching frequency and the double of the switching frequency.

141



6.7.1 Power Loss Analysis of the L(LCL)2 Filter components

6.7.1.1 High-frequency Damping Loss

Ignoring the grid voltage harmonics and the dead-time effect, the most dominating high-

order current harmonics contain the switching frequency and the double of the switching

frequency. The damping loss in the high-frequency can be obtained as follows [22]

Pd(ripple) =
1

2
|IAM(n, k1)|2×Rf1 + |IAM(n, k2)|2×Rf2 (6.28)

Where n = ±1,±3,±5, k1 = 1 and k2 = 2.

6.7.1.2 Power Losses in Inductors

The losses of the inductor can be separated into core loss (Pcore) and copper loss (Pcopper).

The core loss includes the hysteresis loss, the eddy current loss and the residual loss

in the magnetic material. The copper loss includes the loss produced by the current at

fundamental frequency and ripple current at the switching frequency in the windings.

The power loss of inductor differs with the type of winding, type of the core material, and

the switching frequency.

2-1) Copper losses calculation: In general, the proximity and skin effects have con-

tribution in the copper loss of the windings. In the case of the grid-side inductor L32, the

high- frequency ripple current is adequately mitigated by the filter to meet the require-

ments, thus, the power loss will only be as a result of the fundamental frequency current.

The copper loss of the series inductors excluding inverter-side inductors can be calculated

as

Pcopper = IRMS
2Rdc + Iac

2Rac (6.29)

where IRMS is the RMS value of the current in fundamental frequency and Iac is the

RMS value of the ac-ripple current component. In equation (6.29), Rdc and Rac are dc-
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resistance and the ac-resistance of the series inductances except the inverter side induc-

tance. For the solid conductor copper with the American wire gauge (AWG) of 22, the

maximum frequency for 100% skin depth is 42 kHz. Consequently, it can be assumed

that Rac = Rdc in this study. The inverter-side inductor conduction loss is given by

PLGS = IRMS1

2Rdc1 (6.30)

where Rdc1 is the resistance of the inverter-side inductor. and IRMS1 is the RMS inverter-

side inductor current, given by

IRMS1

2 = IRMS
2 +
4ipp2

12
(6.31)

2-2) Core loss calculation: The core loss can be found with the satisfactory accu-

racy using the Steinmetz equations supplied by the manufacturer’s datasheet, using the

following equation

Pcore = k(fαBβVe) (6.32)

where k, α, and β are parameters of material typically indicated by curve fitting; B is

the flux density, in Tesla and Ve is the magnetic core volume, in cm3. The equation only

works with a sinusoidal frequency and does not consider factors such as dc-offset.

Table 6.4: Parameters Which Are Used for Theoretical Converter Loss Calculation.
Parameter Description Typical

Value
IRMS1LLCL RMS value of the current 5.8333 A
IRMS1L(LCL)2 RMS value of the current 5.8336 A
RF Equivalent ON-state resis-

tance
0.1 Ω

Coss Output capacitance 120 pF
Eon + Eoff Switching volt-ampere

crossover energy losses
0.5 mJ
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6.7.2 Inverter Loss Analysis

The power loss of the inverter can be calculated by evaluating the switching and the

conduction losses of the power switches. The loss of each power switch can be written as

follow [231]

PSx =PScon + PSsw =
[
RF I

2
RMS1

]
+

[
(Eon + Eoff ) +

1

2
CossV

2
in

]
fs

(6.33)

where PScond and PSsw are the conduction and switching losses of the switch Sx respec-

tively, RF is the equivalent resistance of the switch during on state, Eon and Eoff are

volt-ampere crossover energy losses during the switch turn-on and turn-off transitions;

respectively, Coss is the output capacitance of the switch, and Vin is the input voltage.

Typical values which are used in the inverter, are presented in Table 6.4. Using equation

(6.33) and Table 6.4 the efficiency of the inverter connected to a conventional LLCL fil-

ter is 95.2359% and the efficiency of the inverter connected to the proposed L(LCL)2 is

95.2357%. Therefore, it can be concluded that the increased current ripple which is due

to the use of L(LCL)2 filter, has a negligible effect on the efficiency of the inverter.

The power loss values of the L(LCL)2 filter and the LLCL filter are presented in Table

6.5. It can be seen that besides high- frequency damping loss, other losses are less in the

L(LCL)2 filter. However, the total power loss is decreased by 3.12%, compared to that

of the LLCL filter.
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Table 6.5: Power Losses of the L(LCL)2 Filter and The LLCL Filter.
LLCL
Filter

L(LCL)2

Filter
Pd 0.0064 w 0.0345 w
Pcopper 1.1840 w 1.1092 w
PLGS 2.2865 w 1.6494 w
Pcore 1.8238 w 1.3015 w
PSx 33.3487 w 33.3501 w
Total
Loss

38.6494 w 37.4447 w

6.7.3 Small-signal model of the dc-link dynamics considering the in-

stantaneous power for bi-directional ac/dc power flow applica-

tions

If the L(LCL)2 filter is employed in bi-directional ac/dc power flow applications, the con-

verter should be able to regulate dc voltage, and the instantaneous power stored in the

ac side filter affects the dc side dynamics. In this section the small-signal model of the

dc-link dynamics considering the instantaneous power is studied.

In high-order ac-side filters applications - e.g., LCL, LLCL or L(LCL)2 filter due

to the frequency-scale separation of the high order filter dynamics and dc-link voltage dy-

namics, the filter has a negligible effect on the dc-link voltage dynamics. The fundamental

frequency is normally higher than the bandwidth of the dc-link voltage control loop (be-

tween 20 to 50 Hz). The high order ac-side filter acts mainly as an L filter (L12+L22+L32)

[232].

The dc-link dynamics model can be obtained when the total instantaneous power in

the storage devicesi.e., LDC−eq and Ceq is considered. The calculations on this section are

based on [233] and [234]. Ceq and LDC−eq are the equivalent capacitance and inductance

reflected to the dc side VSC, respectively. The power balance across the dc-link capacitor
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can be given by

Pext − Ploss −
V 2

DC

RL

−D
(
0.5LDC−eqI

2
DC

)
− D(0.5CeqV

2
DC) = PDC = Pt (6.34)

where IDC is the current of the dc inductor; Pext is the external injected power to the dc

side; Ploss is the the losses in the converter; RL is the VSC reflected dc side equivalent

static resistance; PDC is the net power as shown in Fig 6.3, that is equivalent to the

VSC ac-side power Pt; and the time-derivative operator is represented by D - i.e., Dx =

d(x)/dt. Consider that Pt does not have the same value of the grid injected power (Ps),

because of the ac-side filter.

By using similar calculation in [233] and letting x1 = VDC and x2 = DVDC; the power

balance equation can be calculated as follows

P̃ext − P̃loss − P̃DC − LDC−eqCeq
PDC−0

VDC−nominal

D̃x2

− LDC−eq
PDC−0

V 2
DC−nominal

D̃PDC + LDC−eq

P 2
DC−0

V 3
DC−nominal

x̃2

− CeqVDC−nominalx̃2 −
2VDC−nominal

Rp

x̃1 = 0. (6.35)

where ˜ indicates the perturbed signal around the equilibrium point (E.P.) of each variable.

Moreover, the equilibrium point (E.P.) can be expressed by (6.36) taken into account that

all variables are static at the equilibrium situation

(E.P.) = (x1−0, x2−0, Dx2−0PDC−0, DPDC−0, Pext−0, Ploss−0)

= (VDC−nominal, 0, 0, PDC−0, 0, Pext−0, Ploss−0) (6.36)

According to equation (6.35), with the purpose of reaching a linear time-invariant

(LTI) model that describe the connection between the output VDC and the control input

Ig, a formula which connects PDC to the control input Ig have to be calculated.
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Therefore, studying the total power balance on the ac side is necessary for analyzing

the instantaneous power of the ac-side filter. This power balance is defined as follows

PDC = Pt = Ploss R + Pfilter L + Ps (6.37)

where Ploss R is the total instantaneous power loss in the equivalent resistance of the in-

ductor L12, L22 and L32, PlossL is the total instantaneous power of the ac-side inductor

(L12 + L22 + L32) , and Ps is the total absorbed/injected instantaneous power at the point

of common coupling (PCC) for stabilizing the dc-link voltage. The total absorbed instan-

taneous power by a single phase network can be shown by

Psingle phase network = Re
{
~v(t)~i∗(t)

}
(6.38)

The total stored energy in the filter inductors is expressed by

WL = 0.5(L12 + L22 + L32)(i2g) (6.39)

where ig is the current injected into the inductors L12, L22 and L32. As a result, (6.40) is

the expression of the instantaneous power of the filter series inductors.

Pfilter L = (L12 + L22 + L32)igDig. (6.40)

and Ps can be calculated by:

Ps = IgVgs (6.41)

where Vgs is the voltage space vector at the PCC. Using (6.37) - (6.41), the relationship

between PDC , Ig can be shown by

PDC − (L12 + L22 + L32)igDig −R(Ig)
2 − IgVgs

= G(Ig, DIg) = 0. (6.42)
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Equation (6.42) is nonlinear, therefore the Taylor series expansion around one E.P. is

applied on the dynamic function G as

G(Ig, DIg) = G|(E.P.)+
∂G

∂Ig
|(E.P.)Ĩg

+
∂G

∂DIg
|(E.P.)D̃Ig + {H.O.T.}. (6.43)

The E.P. of (6.43) can be shown by

(E.P.) = (Ig−0, DIg−0) = (Ig−0, 0). (6.44)

After mathematical manipulation, (6.45) can be reached.

P̃DC = LIg−0D̃Ig +RIg−0Ĩg + Vgs Ĩg. (6.45)

In addition to (6.45), DP̃DC is also required to find the explicit transfer function between

Ig and VDC using (6.35). Using (6.45), DP̃DC and its E.P. can be given by

DPDC − (L12 + L22 + L32)((DIg)
2 + IgD

2Ig)

− 2RIgDIg − VgsDIg

= H(Ig, DIg, D
2Ig) = 0 (6.46)

(E.P.) = (Ig−0, DIg−0, D
2Ig−0)

= (Ig−0, 0, 0). (6.47)

By implementing the Taylor series expansion on the function H in (6.46), DP̃DC can be

calculated by

DP̃DC = (L12 + L22 + L32)Ig−0D
2Ĩg +RIg−0DĨg

+ VgsDĨg. (6.48)
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By combining the equations (6.35), (6.45), and (6.48), the relationship between Ig and

VDC is reached as follows

ṼDC =
P̃ext − P̃loss

As2 +Bs+ E
− as2 + bs+ e

As2 +Bs+ E
Ĩg

a
∆
= −LDC−eq(L12 + L22 + L32)

PDC−0Ig−0

V 2
DC−nominal

b
∆
= −(L12 + L22 + L32)Ig−0

− LDC−eq
PDC−0

V 2
DC−nominal

(RIg−0 + Vgs)

e
∆
= −RIg−0 − Vgs

A
∆
= LDC−eqCeq

PDC−0

VDC−nominal

B
∆
=

(
CeqVDC−nominal − LDC−eq

P 2
DC−0

V 3
DC−nominal

)
E

∆
=

(
2

RL

VDC−nominal

)
(6.49)

In many different references, e.g. [235,236], the effect of the dc filter is not taken into

the consideration, while the ac filter instantaneous power is reflected into the dynamic

analysis of the dc-link voltage. In that situation, LDC−eq is set to zero which results in

(6.50) becoming a special case of (6.49). The values of a, b, e, A, B, and E are given in
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(6.50) for LDC−eq = 0.

a = 0

b = −(L12 + L22 + L32)Ig−0

e
∆
= −RIg−0 − Vgs

A = 0 then

ṼDC =
−(L12 + L22 + L32)Ig−0s− Vgs −RIg−0

CeqVDC−nominals+ 2
RL
VDC−nominal

Ĩg

− Disturbance Signals.

B = CeqVDC−nominal

E =
2

RL

VDC−nominal (6.50)

In (6.50), in both rectification and inversion modes, the magnitude of the linearized plant

is the same. On the other hand, in the rectification mode the phase is dramatically reduced

at the same power, due to the right-hand-plane (RHP) zero. If the time constant of the

current controller is equal to zero, in order to have a stable transfer function B and E

in (6.50) should be positive. As Ceq, VDC−nominal and RL are always positive numbers,

(6.50) is always stable in bidirectional ac/dc power flow application.

6.8 Summary

In chapter 6, the principles of the conventional LLCL filter and parameter design of the

L(LCL)2 filters has been proposed. Since grid-side inductance (L21) of the LLCL filter is

mainly decided by the harmonic currents around double the switching frequency instead

of those around the switching frequency, it has been replaced by a small trap at double the

switching frequency. Compared to the LLCL filter, the replacement results in reduction of

the total inductance size, and hence, the total loss of the filter. The inverter-side inductance

is divided into three parts to place resonant branches in between them. Therefore, the

150



L(LCL)2 filter has lower loss and better performance at high-order harmonics attenuation.

In the proposed design, the maximum power factor variation remained unchanged and the

current THD has improved by 7.77%.

A 700 W single-phase grid-tied inverter is designed to compare the characteristics

of the conventional LLCL filter and the suggested L(LCL)2 filter through experimental

results. In addition, the stability of the closed-loop system has been analyzed. The results

validate that total loss and the value of the inductors of the L(LCL)2 filter, reduced by a

factor of 3.12% and 22.22%; respectively, compared to that of the LLCL filter.
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CHAPTER 7

A COMBINATORIAL ADVANCED SOLUTION FOR PV INTEGRATION TO

ADDRESS INTERMITTENCY AND PROVIDE INERTIAL RESPONSE

7.1 Overview

Operation of a photovoltaic (PV) generating system under intermittent solar radiation

is a challenging task. Furthermore, with high-penetration levels of photovoltaic energy

sources being integrated into the current electric power grid, the performance of the con-

ventional synchronous generators is being changed and grid inertial response is deteriorat-

ing. From an engineering standpoint, additional technical measures by the grid operators

will be done to confirm the increasingly strict supply criteria in the new inverter domi-

nated grid conditions. This chapter proposes a combined virtual inertia emulator (VIE)

and a hybrid battery-supercapacitor-based energy storage system . VIE provides a method

which is based on power devices (like inverters), which makes a compatible weak grid for

integration of renewable generators of electricity. This method makes the power inverters

behave more similar to synchronous machines. Consequently, the synchronous machine

properties, which have described the attributes of the grid up to now, will remain active,

although after integration of renewable energies. Examples of some of these properties

are grid and generator interactions in the function of a remote power dispatch, transients

reactions, and the electrical outcomes of a rotating bulk mass.

The hybrid energy storage system (HESS) is implemented to smooth the short-term

power fluctuations and main reserve that allows renewable electricity generators such as

PV to be considered very closely like regular rotating power generators. The objective

of utilizing the HESS is to add/subtract power to/from the PV output in order to smooth

out the high frequency fluctuations of the PV power, which may occur due to shadows of

passing cloud on the PV panels. A control system designed and challenged by providing
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a solution to reduce short-term PV output variability, stabilizing the DC link voltage and

avoiding short term shocks to the battery in terms of capacity and ramp rate capability.

Not only could the suggested system overcome the slow response of battery system

(including dynamics of battery, controller, and converter operation) by redirecting the

power surges to the supercapacitor system, but also enhance the inertial response by em-

ulating the kinetic inertia of synchronous generator.

Control systems for the VIE and battery-supercapacitor storage system are presented

in this chapter. Correspondingly simulation results are discussed to validate the effec-

tiveness of the proposed scheme. In this chapter, Matlab Simulink software has been

used for developing control designs of VIE and Hybrid Energy Storage System (HESS).

Through these studies, it will be demonstrated that the recommended method is capable

of achieving voltage and frequency regulation and effective management of the hybrid

storage system. Since the suggested technique focuses on short term fluctuations and in-

cludes no long-term power regulation, it needs no mass storage device. Thus the method

is economical. The other concerns raised by renewables (e.g., forecast accuracy, low volt-

age ride-through, etc.) have not been addressed within this study. The following are some

of the highlights of our proposed system:

Highlights:

These are the highlights of the proposed system: 1- There is no need to control the dc

link separately. It will be controlled by HESS.2- Smoothing power and enhancing system

inertial response at the same time. 3- The simulation is designed to be as close as possible

to real system. 3-Fast voltage regulation. 4- Lowering charge/discharge current rates of

battery. 5- Reducing Current stress levels on battery. 6- Improving life span of Battery.

To the best of our knowledge, we make the first attempt in approaching the mixed-

hybrid battery-supercapasitor energy storage system and virtual inertia emulator to miti-

gate the challenges of PV intermittency (in generation side) and stability (due to interrup-

153



tions and initial current of big loads).

7.2 Problem Statement

As an environmental friendly and renewable energy source, solar generation has recently

observed accelerated proliferation throughout the world [26]. One technical challenge of

adding high levels of PV generation in the electric grid is the decline of inertial response

which is a consequence of incompatibilities amongst the power demand and generation

in the (micro) grid [237].

Structure of the grid is changing in way that the traditional one-way vertical con-

figuration from power plants to consumers with very powerful, high capacity, but few

generators (fig. 7.1, right) is increasingly transforming to formless, intensely meshed

distribution system, with lots of grid connected renewable energies that have stochastic

characteristics (fig. 7.1, left)[238]. The new structure necessitates the implementation

of electronic based power conditioning devices in place of synchronous generators. Fig.

7.1 shows how the frequency stabilization increases with the number of synchronous ma-

chines.

Therefore, based on the regional distribution generations and the capacity of grid,

there might be a line impedance increase and short circuit power reduction. This can

promote or cause the mitigation and form of different disturbances. The conventional in-

verters and converters are currently utilized in integration of renewable generators, which

their properties varies by the executed control architecture. Regularly controlled inverters

for output voltage regulation by space-vector modulators are utilized to stabilize the grid

locally and provide the reactive and active power requirement of the grid. The weak-

nesses of this functioning attitude is the great dissimilarities of grid performance when
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Figure 7.1: Future grid that will be dominated by power electronic inverters (left) and
traditional grid dominated by synchronous machines (right)

grid connected inverters are exploited or the conventional synchronous machines are used

for connecting old-fashioned prime movers to the grid [25].

Currently the dynamic and static properties of the electromechanical synchronous ma-

chines enforces the operating strategy and properties of electrical grids, repeatedly bal-

ancing the power deficit between different grid areas, and the dynamic behavior of the

grid. However, this pattern is changing very fast to meet the new grid requirements.

Subject to increasing the instantaneous power or loads with large startup current, en-

ergy management and power control of a system with low rotational inertia is a vital

concern. Such a high current in a short time not only requires greater rating of the power

apparatuses, but also can possibly cause the system voltage and frequency to drop in the

entire microgrid [239].

Therefore, it is essential to improve a method by which renewable generator inverters

could be connected to any type the grid in such a way that the inverter-generator com-

bination performs similarly to a synchronous generator. Additionally, a big change in

load within a low inertia microgrid could cause a transient stability problem when it is
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islanded, and the same disturbance might pose a small-signal stability problem when it is

grid connected [240]. In recent years, the concept of virtual synchronous machines has

emerged as an effective method for adding virtual inertia to the power system through the

control of power electronic converters [241].

Because of the stochastic nature of solar irradiation, the subsequent fluctuations in so-

lar energy substantially handicap large-scale integration of PV into regional power grids.

Subject to increasing the instantaneous power or loads with large startup current, energy

management and power control of a system with low rotational inertia is a vital concern.

Such a high current in a short time not only requires greater rating of the power appara-

tuses, but also can possibly cause the system voltage and frequency to drop in the entire

microgrid [239]. What will be the effect of fluctuating real power output from renewable

sources on the normal operation and power quality of the distribution system?

• Increased switching operations for line regulators, tap changers, switched-capacitors.

• Steady-state voltage regulation over the range of real power generation, especially

on long feeders. Should PV generators be allowed/required to participate in voltage

regulation automatically, or on the basis of reactive power dispatch or scheduling?

If autonomous local automatic voltage control is allowed, can stable operation be

expected when multiple PV generators are involved on the same feeder? Will fast

automatic voltage controllers ”fight” with slower line regulators?

• Flicker due to rapidly fluctuating voltage caused by sudden changes in real power

generation.

• Transient voltage changes on sudden trip of PV generation system, especially if the

system is actively participating in voltage regulation.

• Harmonics generated by the PV inverters, and possible resonant interactions of

inverters with the distribution system.
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• Conductor and equipment loading due to new power flows resulting from the intro-

duction of local power generation in the distribution system.

A possible solution for regulating the natural fluctuating output power of a PV plant

is to integrate a hybrid energy storage system (HESS) that has both high energy density

storage battery and high power density storage supercapacitor [7].

More than that, delivering high power in a short period of time is destructive to batter-

ies, but it is the challenge that supercapacitor can best mitigate. In peak power situations,

the supercapacitor is capable of delivering or receiving energy, therefore it can act as a

load-flattening device for the battery. If this is done, the battery output power would be-

come closer to the average load demand, hence decreasing its RMS and peak currents

[23].

Finally, to the best of our knowledge, we make the first attempt in approaching the

mixed-hybrid battery-supercapasitor energy storage system and virtual inertia emulator

to mitigate the challenges of PV intermittency (in generation side) and stability (due to

interruptions and initial current of big loads).

The chapter is organized as follows, in Section II: the description of the system is

presented In Section III: the operation and modeling of the hybrid super capacitor/battery

storage systems is explained. In Section IV: the control of the Virtual Inertia Emulator

dynamic formulation of the synchronous generators are explained. In Section V: the sim-

ulation results are presented and discussed. Finally, in Section VI the conclusions that

can be drawn out of this chapter is presented .

7.3 Solution Approach

The principle of VIE is based on merging the advantages of dynamic performance of

inverter technology with the dynamic and static operational behavior of an electrome-
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Figure 7.2: Basic idea of the Virtual Inertia Emulator (VIE) [7].

chanical synchronous machines. As illustrated in Fig. 7.2, the properties of an inverter

can be programmed in such a method that it executes identical to a synchronous machine

between any storage system and/or direct voltage generator and the electric grid.

The storage is connected to the dc-link of the VIE, therefore, it can be worked in a full

four quadrant mode and its ac side thus matches the stator output of an electromechanical

synchronous machine.

In a real electromechanical machine, the mechanical system provides the energy cou-

pling point with its shaft energy conversion mechanism. However, the mechanical section

of a VIE is not a real mechanical system, it exists only as a logical model. Nevertheless,

it is completely effective electrically from a grid viewpoint, since it is modeled mathe-

matically in real time by the designed control structure. The VIE process executes in a

computer processor or microcontroller, and the physical section is the direct voltage sup-

ply circuit of the VIE inverter. In this fashion, a virtual rotating mass is shaped which is

effective electrically with regard to the grid. Moreover, it can be can program easily to

for any other parameters of a machine.
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Actually, the virtual shaft and the virtual pole system is accessed by manipulating the

equivalent factors and parameters in the software that is running on a computer, thus can

be implemented locally or through remote dispatch. When active power is required by the

grid, a virtual torque on the corresponding virtual shaft must be applied. The necessary

energy for this task is taken both from the dc voltage side of the VIE inverter system.

Correspondingly, the energy can be supplied to the dc voltage side system by the gen-

eration unit. Similarity, when reactive power is needed to be supplied to the grid, the

computer changes the virtual excitation voltage values and produce reactive power.By the

virtual values of excitation voltage and torque in combination with the power storage, the

synchronous machine behavior can be imitated. Close to traditional machines, reactive

and active power can be initiated by voltage and frequency variations in the grid, respec-

tively, by remote dispatch. Moreover, the power shortage or excess of the grid areas can

be balanced by themselves.

7.4 Technical Realization

Modelling the controller for the inverters to imitate the synchronous machine, needs mea-

surement of the current and voltage at the point of common coupling with the grid. In

addition, it requires the calculation of the synchronous machine currents in real time and

the feeding of the current into the grid.

The designed combination makes the generating of any current profile, such as direct

current component, possible. This process is not dependent on the grid voltage but it

should be within design specific limits. These current components are necessary for the

modeling of the stator current of the virtual machine when a voltage drop happens in the

grid. The program interfaces for the machine parameters and the fundamental component

management are addressed in each cycle of the algorithm. The on-going calculation of
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the machine model in real time allows a fast response to parameter changes so that newly

calculated electrical properties of the machine become effective in the grid immediately.

The controllers, which implemented in a computer program interfaces for the fun-

damental component management and machine parameters are addressed in real time.

This ongoing calculation permits a quick response to changes of parameters in a way that

newly calculated electrical properties of the virtual machine would be operational in the

grid almost instantaneously.

The reference values of the three-phase current that the inverter injects into the grid,

are the machine currents, which was calculated by the implemented program. If the in-

verter was not able to feed the calculated current value by the machine model into the grid,

the properties of the system linearity would be lost. Before starting modeling our virtual

inertia modelling, let us take a look at load frequency control in conventional synchronous

machines, which is the base of designing of our control system.

7.5 Different Virtual Synchronous Machine algorithms

Virtual Synchronous Generators (VSG) or Virtual Synchronous Machines (VISMA) al-

lows the distributed generators to function as a synchronous generator by providing damp-

ing properties and short-term inertia of typical synchronous machines. A VSG consists

of power electronics inverters (and related control structure) and an energy storage sys-

tem. By implementing the VSG, the DC source (or renewable generator) will be shown to

the network as a synchronous generator in a viewpoint of inertia and damping property.

Virtual inertia can be emulated in the weak grid by controlling the active power of the

inverter in reverse relationship to the speed of the rotor [24].

Many methods for the VSG systems has been introduced to the literature since 2008.

The VSG research team at Kawasaki Heavy Industries (KHIs) [242], the Institute of Elec-
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Figure 7.3: The VSG topology by VSYNC that uses the PLL in order to imitate the
behavior of synchronous generator .

trical Power Eng. (IEPE) at Clausthal University of Technology in Germany [25, 243–

245], VSYNC project in the sixth European Research Framework program [246–249],

and the ISE Laboratory in Osaka University [250–252] in Japan, are a number of the

most notable groups that conduct research in the area of VSG. All of these researches

proposed designs to provide dynamic characteristic. In the following section, the brief

structures of some established VSG methods are described.

7.5.1 VSG topology of VSYNC Project

The VSYNC research group at ECN Intelligent Energy Grids define the idea of VSG

system as shown in Fig. 7.3. In this model, the VSG involves of an energy storage system

(connected to a DC link), a power electronic inverter, and a grid filter (mostly LCL).

The resonant frequency of the filter is designed to be approximately between half of the

inverter switching frequency and the nominal frequency of the grid. This topology is

commonly used a current mode control for grid currents.
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Current references (Iref ) are delivered by the Phase-locked loop (PLL) circuit. The

PLL circuits are typically used to produce an output signal with the phase is similar to

the phase of an input signal or to calculate frequency. However, in this configuration it is

exploited to give the reference current of the VSG by using the terminal voltage of the grid

(Vg), and the output of the PLL drive the inverter. The electromechanical characteristics

of the synchronous generators are emulated by the PLL response that is very similar to

the machine. As explained in [253], the phase angle reference of the rotating frame for

dq control of the inverter quantities are similarly provided provide by the PLL.

A more comprehensive arrangement of the modified style of this type of VSG is illus-

trated in Fig. 7.4. All the information required to produce the error current signal (”i˙dq”)

is processed by the reference current block. The setting ofKSOC must such that the signal

of active power (P) is the same as the nominal VSG output power when the deviation of

SOC (∆SOC) is at its maximum level. Correspondingly, the Kv value must be selected

so that the maximum reactive power is produced by the VSG for an identified deviation

of voltage (e.g., 10%).

In other publication based on the VSYNC research group [254], the frequency of the

grid and the SOC of the batteries (which are collected by monitoring of the exchange of

energy between VSG and battery pack), control the DC bus current. In this approach, the

frequency is predicted by the zero crossing method, and finally, the set point of current

(Isp) is calculated by the subsequent equation:

Isp =
K1

d∆ω
dt

VDC
(7.1)

where d∆ω
dt

is the rate of frequency change, KP is expressed in kgm2/s2, and KI is a

dimensionless factor.
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Figure 7.4: structure of the VSG by using PLL, the detailed framework (top), and the
block of the reference current(below).

7.5.2 VSG topology by IEPE

The dynamic behavior of a simplified synchronous generator model was used as the basic

of suggested idea of the VSG in [25, 245]. This topology produces the reference voltage

and current from the grid current and voltage, respectively. The general VSG structure is

presented in Fig. 7.5.

In this scheme, the active and reactive power output of the VSG, damping effect, and

the inertia value are set by regulating the parameters of the model by the parameters of
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Figure 7.5: The VSG structure based on currentvoltage (voltagecurrent) model of SG: (a)
VSG topology, (b) currentvoltage model of SG.

real torque and excitation of a synchronous generator in a power system. The general

model of synchronous generator for producing the reference current (iref,abc) from the

signals of the grid voltage (vg,abc) is illustrated in Fig. 7.5. In this figure , Rs is the

stator resistance, Ls is the stator inductance, J is the moment of inertia, φ(s) is the phase

compensation term, KP is the mechanical damping factor, θ is the angle of rotation, Te

and Tm are the electrical and mechanical torque, and ω is the angular velocity. The phase
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compensation is implemented in order to ensure the offset of virtual damping force of the

opposite phase fluctuating movement of the rotor. In spite of simplifying the excitation

winding parameters, the induced electromotive force (EMF) is calculated by the rotation

angle θ and variable amplitude Ep.

7.5.3 VSG topology by ISE lab

The proposed VSG system by ISE laboratory is presented in Fig. 7.6 [252]. In this struc-

ture, the familiar swing equation of a synchronous generator, equation (7.2), is utilized as

the main tool for modeling VSG. In (7.2), Pin is the power of prime mover (input power),

Pout is output power, J is the rotors moment of inertia, ω is the virtual rotor angular speed

(∆ω = ω − ω0) and D is the damping factor.

Pin − Pout = J∆ω
d∆ω

dt
−D∆ω (7.2)

In each cycle of control process, the swing equation is solved. After that, an integrator

receives the frequency ω to calcite the momentary frequency. Furthermore, PWM pulses

are generated by using the virtual mechanical phase angle, θm.

The power frequency block calculates the grid frequency and the output power, as

shown in Fig. 7.6. Based on swing equation, the deviation of virtual angular velocity that

is presented by ∆ωm is calculated by control block of VSG. Formerly, virtual mechanical

phase angle (θm) is used to generate PWM commands.

7.5.4 VSG topology by KHI

An algebraic model was used as the heart of VGS model by Kawasaki Heavy Industries

(KHI) [242]. The current reference based on the phasor diagram of a synchronous gener-

ator is produced by a feedback of the current in order to assure the required functionality
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of the VSG when nonlinear and unbalanced load types are connected. Moreover, the miti-

gation of line voltage deviations and angular velocity changes are performed by two more

loops. The proposed block diagram of the KHI s VSG is illustrated in Fig. 7.7. In the

figure, ∆ω = ω − ωR and ∆P = P − P − 0 are the grid reactive and active power vari-

ations, respectively. ω0 is the grid rated frequency (angular velocity). The ω and ωR are

estimated and virtual rotor frequency (angular velocity) that are calculated by the PLL.

In this figure, ∆P = P − P − 0 and ∆ω = ω − ωR Rare the grid power active and

power reactive deviations, respectively. ω0 is the nominal angular velocity (frequency) of

the grid. The ωR and ω are angular velocity of virtual rotor and estimated by the PLL,

respectively.
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7.5.5 Typical Method of Implementation of Virtual Inertia Emulator

in Previous Studies

The inductance of the filter,Lf , has been involved in the internal impedance of the stator

windings of the simulated synchronous generator by the inverter. The induced e.m.f.

by the rotating rotor flux is denoted by the vector, e = [ea, eb, ec]
T . Note that e is the

fundamental frequency component of the generated voltage by the inverter.

In a synchronous machine, the electromagnetic quantities consist of the three-phase

currents, voltages, and flux linkages in the abc stationary frame are converted to the dq

rotational frame. From the machine theory, the electrical model of the synchronous gen-
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erator can be represented by the following equations [255],

vd = dλd
dt
− λq.dθdt − rid

vq = dλq
dt

+ λd.
dθ
dt
− riq

vkd = dλkd
dt

+ rkdikd

vkq =
dλkq
dt

+ rkqikq

vf =
dλf
dt

+ rf if

(7.3)

The flux linkage in (3) is defined as



λd = −Ladid + Ladfdif + Ladkdikd

λq = −Laqiq + Laqkqikq

λkd = −3
2
Ladkdid + Lkdfdif + Lkdikd

λkq = −3
2
Laqkqiq + Lkqikq

λkq = −3
2
Ladfdid + Lfdif + Lfdkdikd

(7.4)

and the generated real power P and reactive power Q (as seen from the inverter legs)

can be defined as


Te = 3

2
(λdiq + λqid)

P = 3
2
(vdid + vqiq)

Q = 3
2
(vqid − vdiq)

(7.5)

Where θ represents the rotor angle, and λd and λq are the stator flux-linkages reflected

in the dq frame respectively. Since a balanced system has been considered in this study,

the statements describing the zero-sequence winding circuit are not involved in equations

(3) to (5). Also the third and fourth lines in each set of equations in (3) to (5) are used

to describe the electromagnetic quantities of the damping circuits associated with the
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rotor, λkd,kq, vkd,kq, and ikd,kq. In the last line of (3) to (5), λf , vf , and if are the field

fluxlinkage, voltage, and current, respectively; r is the resistance of each winding; Te is

the electromagnetic torque; P and Q are the real and reactive powers; and L values are the

constant inductances. Details of the derivation of (3) to (5) can be found in [256].


Tm − Te −Dp.

dθ
dt

= J.dθ
dt
ωm

ωm = dθ
dt

(7.6)

where Tm is the mechanical torque which can be fixed as a constant value or be or-

dered to follow a real power demand. In this study the second case is implemented for

the purpose of the frequency control ; Dp is the damping coefficient; and J is the moment

of inertia required to imitate the rotational mass of a virtual rotor which is investigated

through the integration of a energy storage system.

Implementing nonlinear differential equations 7.3, 7.4, 7.5, and 7.6, which should be

solved in real time in the control loop, make the VIE controller very complex . There-

fore, it needs the application of many different connected parts that need very high speed

processors.

7.6 VIE Implementation

In this section step by step design process of the VIE is explained. The main idea of the

design came from the Load Frequency Control (LFC) in traditional synchronous genera-

tors.

7.6.1 Load frequency control

This section is written based on valuable information on [257, 258]. Power systems are,

basically, synchronous interconnected systems throughout the world. These systems are
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typical synchronous generators that are connected in a parallel manner through the trans-

mission and distribution line, in order to serve the load at the same frequency. This

chapter defines the factors of active power and frequency control of the power system in

the presence of renewables.

The power generation and load (plus losses) should be matched at every instant of

time, or a frequency deviation will happen in the interconnected power system. A small

mismatch will cause a small frequency deviation (for example casual load variations) and

a large mismatch will cause large frequency fluctuations (for example a large power plant

tripping out). The frequency deviation would be positive in case of an excess generation

with respect to load or negative in case of a deficient generation with respect to load.

The difference in energy would be stored in the rotating masses of both generation

and dynamic load (motors) in the system. Typically, excess mechanical energy in the

prime mover (generally a turbine) that will be stored as the generator inertias and cause

the acceleration of the moving masses to increase frequency.

With the purpose of understanding exactly how load frequency and control mechanism

perform in a real-world interconnected system, it is essential to recognize the connection

between the generation inertia (H, in MW-sec/MVA), the magnitude of the disturbances,

and size of the system (small or large MW systems) that cause deviations in the frequency.

The minor fluctuations might have various mismatch causes, which can include but

not limited to random alterations in load, improper forecasts of load against power dis-

patch system, fast or slow ramps that are not in synchronism with load variations, and

performance of AGC (automatic generation control) causes some differentials that will

be corrected eventually.
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7.6.2 System Modeling

The typical swing equation for a single generator that is operating by a governor droop

implementation is presented. This can be extended to several generators working in par-

allel. The AGC control is explained by using the two-area model. The concept of system

inertia, system droop, and system frequency response to a disturbance are discussed in

relation to the area models.

7.6.2.1 Dynamics of the System

Any difference between electromagnetic and mechanical torque will cause acceleration

(deceleration) synchronous generator and the prime mover (turbine). Swing equations

describes the differential equation between the mechanical and electromagnetic torque:

J
dω

dt
= Tm − Te (7.7)

In 7.7 ,J is the combined moment of inertia of the rotating mass (kg ×m2), ω is the

angular velocity of the rotor (mech.rad/s); Te is the electromagnetic torque (N×m), Tm

is the mechanical torque (N ×m), and t is the time (s).

The inertia constant (H) that is the kinetic energy of the rotor that is stored in rotating

mass, (in Joule = Watt × second) can be defined by normalizing and expressing the

equation (7.7) in per unit (p.u.) referred to the generator base rating (Sb in VA):

H =
1

2
.
Jω2

0m

Sb
(s) (7.8)

In (7.8), ω0m is the rated angular velocity of the rotor (mech.rad/s). Stating the

moment of inertia J from (7.8) as

J =
2HSb
ω2
om

(7.9)
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Figure 7.8: Block diagram of the system dynamics plus load damping

and replacing in equation (7.7) obtain

2H

ω2
0m

Sb
dωm
dt

= Tm − Te (7.10)

The difference between the electromagnetic and mechanical torques is represented in

the right-hand side of equation (7.10), which is expressed in p.u., and is almost equivalent

to the difference between the electrical output power and mechanical input power.

If a disturbance happens in the system (and therefore the system frequency deviates),

each of the generators in the system faces a decelerating or accelerating torque. By con-

sidering the electromechanical model of the generator:

2H
dω

dt
+Dω = Tm − Te ≈ Pm − Pe (7.11)

dδ

dt
= ω0ω (7.12)

where 2H = M, and M is mechanical starting time. Term D that is the self-regulation

of the load in all synchronous areas is typically supposed to be 1% / Hz. This means that

a load reduction of 1% happens in case of a frequency decrease of 1 Hz. Therefore, in the

equation D=1 if load damping is taken.

The block diagram of the dynamics of the system is shown in Figure 7.8. Simplifying

the block diagram, the two blocks can be combined into a single forward block using

1/(2Hs+D).
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The regulation of the unit is defined as droop R and equals

R =
∆ω

∆P
(7.13)

The effect of the droop on the regulation of frequency is provided in the block diagram

in Fig. 7.9.

7.6.2.2 Modelling the Prime Mover

The prime mover, as the source of mechanical power input, can be gas turbines, hydraulic

turbines at waterfalls, and steam turbines. The model for the turbine should give the rela-

tionship between the changes in mechanical power output ∆Pm to variations in position

of the steam valve ∆Pv. Various kinds of turbines have wide different characteristics.

Based on recommendations in [258] and [257], the simplest and most practical model for

the non-reheat steam turbine prime mover can be estimated by a single time constant τT

in the range of 0.2 to 20 seconds, which results in the following transfer function:

GT (s) =
∆Pm(s)

∆PV (s)
=

1

1 + τT s
(7.14)

A simple non-reheat turbine block diagram is illustrated in Fig 7.10.
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Figure 7.11: Governor steady-state speed characteristics.

7.6.2.3 Modelling the Governor

Suppose that the electrical load of the generator is increased suddenly. This results in

the excess of electrical power load in comparison to the mechanical power input. The

kinetic energy stored in the rotating system provides the deficiency of power input and

power output. The kinetic energy reduction in the system results in the decrease of turbine

speed and, subsequently, the generator frequency reduction. In a synchronous generator,

the speed change is detected by the governor of the turbine which regulates the input

value of the turbine to modifies the mechanical power output in order to set the turbine

speed to a different steady-state. Most recent governors execute electronic devices to

identify changes in speed. The governors permit a drop in speed as the load increase. The

characteristics of steady-state operation of a typical governor is illustrated in Figure 7.11.

The slope of the graph denotes the speed regulation (R). Standard speed regulation of
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governors, from zero to full load, are 5-6 percent. The mechanism of speed governor is

like a comparator with the output is ∆Pg, which is the variance of the reference set power

of ∆Pref and the power 1
R

∆ω as given from speed characteristics of the governor:

∆Pg = ∆Pref −
1

R
∆ω (7.15)

equation (7.15) in s-domain will be

∆Pg(s) = ∆Pref (s)− 1

R
∆Ω(s) (7.16)

by considering a linear relationship and assuming a time constant τg, the following s-

domain relation can be given:

∆PV (s) =
1

1 + τg
∆Pg(s) (7.17)

The block diagram of equations (7.16) and (7.17) are represented in Figure 7.12. The

block diagrams of Figures 7.9, 7.11, and 7.10, are combined and the result is shown in

Fig 7.13 . This figure is the block diagram of the load frequency control of an isolated

power generator.

As the VIE process executes in a computer processor or microcontroller, and the phys-

ical section is the direct voltage supply circuit of the VIE inverter, in order to reduce the

computational calculations, and have a close model to real LFC, the proposed VIE con-

troller is shown in Fig 7.14. In this fashion, a virtual rotating mass is shaped, which is
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effective electrically with regard to the grid. This VIE controller need much more simpler

calculations and does not have complex differential equations of the previous studies.

The VIE implemented to meet the objective of maintaining or increase the frequency

of grid-connected inverter based renewables to its nominal value. When the self-regulation

of the power system is not sufficient to establish a stable state, the frequency of the system

will decay continuously until automatic under-frequency load shedding (UFLS) arrests it

and reestablish the balance between load and generation during the time constraints in
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Table 7.1: Performance of Battery vs SC
Supercapacitor Lead Acid Battery

Specific Power Density <10,000 W/kg <1,000 W/kg
Specific Energy Density 1-10 Wh/kg 10-100 Wh/kg

Discharge Time 0.3-30 s 0.3-3 h
Fast Charge Time 0.3-30 s 1-5 h

Cycle Life >500,000 1000
Charge/Discharge Efficiency 85%-98% 70%-85%

order to prevent the system collapse.

7.7 Power Smoothing and HESS

This section describes an algorithm that is designed to decrease the effects of the unpre-

dictability of photovoltaic (PV) power output by exploiting a hybrid battery and super-

capacitor storage system (HESS). The main function of the HESS is to add/subtract power

to/from the PV output with the purpose of smoothing out the fluctuating power output of

PV plants that happens for the duration of shadows of passing cloud on the PV array.

The control method is challenged by its ability to reduce short-term PV output variability

[259].

The classic energy storage system in standalone PV structure is lead acid batteries.

Batteries have low power density and high energy density but, giving low discharge and

charge rates. The supercapacitors (SCs) supplies energy using static charge. Compared

to the batteries, SC possesses low energy density but high power density, giving high

discharge and charge rates. In Table 7.1, the performance of battery and the SC are

compared [256].

Passing clouds may cause fast oscillations in the grid voltage, possibly producing

following problems: too many operation of load tap changers, voltage regulators, and ca-

pacitor banks. For this reason, some codes and standards have been suggested in order to
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regulate the variability of a distributed PV system. For instance, the Puerto Rico Electric

Power Authority proposed a constraint to limit the ramping of the PV systems to 10% per

minute.

For a single ramp, the maximum compensation amount of energy is defined by the

time that is needed to power ramp from rated power to minimum (or zero) power rapidly

or the reverse. It worth mentioning that the batterys time constant is in range of seconds

but for the supercapacitor it can be as low as milli seconds or even less. However, a ramp

can happen in both directions, therefore, state-of-charge (SOC) of the energy storage

system (ESS) would usually be kept close to 50% to fulfill both charge and discharge

requirements. Though, it cause the nominal capacity to double. Owing to the battery

inefficiencies a real system would need a battery with a practical size of 25% to 33% of

the PV array AC size.

Some of the most important energy storage system specifications for smoothing PV

power in the literature are as follows [260]:

• Energy Capacity: Practical capacity of the battery bank in a HEES should be be-

tween 25% and 33% of the rated power of the PV array. It is essential that the en-

ergy capacity range is the ”useable capacity” of the HESS. For instance, the usable

capacity of an HESS with 80% of maximum depth of discharge of rated capacity,

would be the rated capacity × 0.8.

• Power Rating: The HESS is rated equal to the rated output of a PV array for this

application. For instance, a 500 W-AC PV system must have a 500 W-AC ESS,

which indicates that the rate discharge/charge of HESS is three to four times of the

capacity of energy of the HESS.

• Controls: The ESS should be able to handle frequent change between charge and

discharge regularly within a few milliseconds.
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However, since our suggested technique focuses on short term fluctuations and in-

cludes no long-term power regulation, it needs no mass storage device. In the renewable

energy systems with battery alone as energy storage, the PV power produced continu-

ously changes in relation to the changes of temperature and irradiance. When this highly

fluctuating and intermittent imbalance power is given to the battery, the battery experi-

ences repeated charging and discharging operations. It increases stress on the battery and

it may have harmful effect on the lifetime and performance of the battery. To prevent

this, additional energy storage element, super capacitors, are connected to the grid using

bidirectional buckboost converter. Since the super capacitor can react faster to quick fluc-

tuations, the stress on the battery can be reduced [261]. Supercapacitors offer a viable

solution for power quality upgrading and energy sustainability, as an energy storage de-

vice with low power loss, long cyclic life, and high energy density [262]. The Hybrid

Energy Storage System (HESS) charges and discharges according to the PV power gen-

eration to keep the dc grid voltage constant. The initial SOC of both the battery and super

capacitor is set as 50%.

7.8 Modeling of the Energy Storage System

An exact model of a hybrid energy storage system for PV power smoothing study is

needed to accurately model the whole system. The detailed supercapacitor bank and

battery bank models which utilized in our simulation platform are presented in this section

[263].

7.8.1 Modeling the Supercapacitor Bank

Numerous supercapacitors models have been recommended in the literature so far based

on different applications [264–266]. Resistive capacitive networks, achieved by fre-
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Figure 7.15: Equivalent circuit of supercapacitor: (a) first order model,(b) third order
model by implementing a voltage dependent branch.

quency domain or time domain analysis, typically demonstrate supercapacitors. The most

widespread supercapacitor equivalent circuits are shown in Fig 7.15 and Fig 7.16 . The

traditional first order estimate model of the supercapacitor is shown in Fig 7.15(a). This

model is have three modules: the equivalent resistance REPR , which is a parallel resis-

tor and characterizes the effect of leakage current or the self-discharging, the capacitance

CSC , which is the capacitance of the supercapacitor owing to the double layer effect, and

the resistance RESR , which is the equivalent series resistance and simulates the volt-

age drop and ohmic loss of the supercapacitor throughout the discharging and charging

procedure.

The parameters of the first order model can be easily extracted and the model can be

found in the datasheet of the manufacturers, however, the nonlinear fall and rise of the

voltage of the supercapacitor, specifically throughout fast discharge and charge, cannot

be captured. Consequently, a better-detailed model is shown in Fig 7.15 (b) that is a third

order model for supercapacitor using a voltage-dependent differential capacitor in the first

branch. In order to reveal the internal charge distribution procedure, each of the branches

has a different time constant that will cause easy parameter measurements. The voltage-

dependent capacitor branch (first branch), shows the instantaneous performance of the
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Figure 7.16: Models for supercapacitor bank with a sixth order equivalent circuit.

supercapacitor (in time range of seconds), whereas the second branch determine terminal

behavior in the range of minutes and third branch for times longer than 10 minutes. In

addition, the last branch has a leakage resistor that models the self-discharge character-

istic. Although this model is good for voltages beyond 40% of the rated dc link voltage

and for small frequencies, its accuracy is not enough for lower voltage ranges and high

frequencies.

Fig. 7.16 presents a sixth order supercapacitor model that uses nonlinear least-squares

fitting and impedance spectroscopy technique. In the electrochemical impedance spec-

troscopy, method the analysis of the electrochemical cells complex impedance in a widespread

range of frequencies from millihertz to megahertz is allowed. This model does not have

a unique topology of the circuit for each order, although, it has a very good precision in

various applications since it properly spreads each branchs time constant [265]. The time

step of the simulation should be less than double of the fastest branch time constant.

The simulation comprises a 6.4 F supercapacitor bank that supplies high power to the

pulsed load instantaneously, so it functions as an energy buffer. The supercapacitor bank

is composed of 10 Maxwell’s 58-F, 16-V modules and rated 80 V. The specifications of

supercapacitor bank are listed in Table 7.2.
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Table 7.2: Supercapacitor bank Specification.
Parameter Specification

Type Maxwell (BMOD0058)
Rated Capacity 6.4 F

Maximum Voltage 80 V
Number of Cells 10

Table 7.3: Parameters of the sixth order model of the 6.4 F supercapacitor bank.
R1 1.02069 ω C1 0.9193 F
R2 0.17034 ω C2 1.5428 F
R3 0.05069 ω C3 0.5481 F
R4 0.05862 ω C4 0.0594 F
R5 0.22828 ω C5 0.0008 F
L 2.2413E-3 mH

Because the dynamic and the transient features of the dc link in the system is our main

purpose, we used the sixth order supercapacitor bank model in our simulation platform.

The parameters of the detailed model of a 6.4 F supercapacitor are presented in Table 7.3.

The total supercapacitor energy that can be supplied is expressed by [239]

E =
1

2
C(V 2

max − V 2
min) (7.18)

where Vmin is its minimum voltage and Vmax is the maximum voltage of a supercapacitor

bank throughout a pulse load. The maximum variation of dc bus voltage is considered to

5% in the proposed system.

7.8.2 Modeling of the Battery Bank

The lead-acid battery is a nonlinear and complex device. The lead-acid batteries mod-

eling for dynamic operation and transient investigation need the analysis of the battery

parameters dependence on the battery storage capacity, battery state of charge, internal

heating losses, and self-discharge. In [267,268] an electrical-analytical model for battery

is provided that has sufficient precision for a battery energy storage system. This model
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Table 7.4: Parameters of the battery model.
Parameter Specification

Internal Voltage (U0) 60 V
Battery Capacity (Q) 60 Ah

Internal Resistance (Rbatt) 0.01 ω
Exponential Zone Voltage (A) 61.0855 V

Exponential Zone Time Constant Inverse (B) 0.2 (Ah)−1

considered that the voltage of the battery terminals is related to the charge reduction of

the battery and internal voltage sue to equation (7.19).

U(q) = U0 −K(
Q

Q− q
) + Ae−BqVbatt = U(q)−Rbatt

dq

dt
(7.19)

whereU0 is the internal voltage of the battery, K is the polarization constant, A is the expo-

nential zone amplitude of voltage, Q is the battery capacity, Rbatt is the internal resistance

of the battery, and B is the exponential zone time constant inverse. The parameters of the

detailed model of lead-acid battery bank that is implemented in our simulation model is

presented in Table 7.4.

7.9 Design of Controllers for the HESS

In the charging and discharging (buck and boost mode) of bidirectional dc to dc converter

a merged controller can be used [256]. This means that a single controller can control both

of the switched. In this chapter, the boost mode is considered to design the controller.

The block diagram of control strategy of the hybrid battery-supercapacitor is shown

in Fig. 7.17. The basic idea of this control strategy is that the battery supports slow tran-

sients, whereas supercapacitor supports fast transients. Therefore, the average DC link

voltage (Vdc) is compared with reference voltage (Vref ) and passed through compensator.

The compensator gives the total current that is to be supplied from HESS. This reference

current (Iref ) is multiplied by the reference of dc-link voltage to give total power that is
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Figure 7.17: Control system designed for a HESS.

to be supplied from HESS (Preftotal). This total power gives is compared with the mea-

sured power (Pmeas) and gives the total reference current (Ireftot), which is divided into

average current component and dynamic current component using a rate limiter as shown

in Fig. 7.17. The average component is given as reference (IB−ref ) to the battery cur-

rent control loop , whereas dynamic power component is given as reference (ISC−ref ) to

supercapacitor current control loop.

The supercapacitor has a quicker discharge and charge rates than the battery, therefore,

the proportional-integral controllers (PI controllers) are adjusted based on the supercapac-

itor stage of power. In order to prevent oscillations, the bandwidth (BW) of inner current

loop of supercapacitor can not be exceeded by sixth of the switching frequency (fsw/6)

[269]. With the intention of diverting the transient and fast changing to supercapacitor,

the current loop BW of the battery is kept less than current loop BW of supercapacitor, for

example at fsw/10. For operation in a stable mode, the BW of the converter is kept much

smaller than the right half plane zero frequency of supercapacitor [270]. The calculation

of the right half plane zero (RHPZ) frequency is as follows:

fRHPZ =
(1−DS)2R

2πLS
. (7.20)

The control loop of current is faster than the control loop of the voltage; consequently,

the BW of the control loop of voltage is kept less than control loop of current of superca-

pacitor. The switching frequency is assumed 10 kHz in this study.
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Figure 7.18: The battery bank controller block diagram.

7.9.1 Design of Current Control Loop of Battery

Fig. 7.18 illustrates the battery bank controller block diagram. The transfer function of

control current loop is given as [271]

Gid B =
ĩB

d̃B
=

VoCs+ 2 Vo
R

LBCs2 + LB

R
s+ (1−DB)2

(7.21)

where d̃B and ĩ are duty ratio of battery converter and small perturbations in current of

battery, respectively. V0 is dc grid voltage, C is dc link capacitor, R is load resistance,

LB is the battery inductance, and DB is the duty ratio of the battery dc-dc converter. The

current control loop transfer function can be given by

Gpi B = Kp B +
Ki B

s
. (7.22)

7.9.2 Design of Current Control Loop of SC

Fig. 7.19 illustrates the SC bank controller block diagram. The reference current of

supercapacitor (ISC−ref ) is created by the control loop of voltage. This reference current

is provided to control loop of current. The transfer function of current control loop can

be given by [271]

Gid S =
ĩS

d̃S
=

VoCs+ 2 Vo
R

LSCs2 + LS

R
s+ (1−DS)2

(7.23)
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Figure 7.19: The SC bank controller block diagram.

where d̃s and ĩs are duty ratio of supercapacitor converter and small perturbations in

current of supercapacitor, respectively. Ls is the SC inductance, and Ds is the duty ratio

of the dc-dc converter of the SC.

The transfer function of control loop current can be given by

Gpi S = Kp S +
Ki S

s
. (7.24)

7.9.3 Design of Rate Limiter

The Rate Limiter block in Fig7.17 performs as a limiter of the first derivative of the signal

passing through it. The variations of the output signal is never faster than the indicated

limit. The calculation of the derivative is as follows [272]:

rate =
u(i)− y(i− 1)

t(i)− t(i− 1)
(7.25)

t(i) and u(i) are the time and the current block input, and t(i1) and y(i1) are the time

and output at the previous step. The output is controlled by matching the rate of change

to the Rising slew rate and Falling slew rate parameters[272]:

If the Rising slew rate parameter (R) is less than the rate of change, the output will be:

y(i) = ∆t.R + y(i− 1). (7.26)
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If the Falling slew rate parameter (F) is bigger than the rate of change, the output will

be

y(i) = ∆t.F + y(i− 1). (7.27)

If rate of change is between the values of F and R, the output change will be equal to

the input changes:

y(i) = u(i) (7.28)

The block output at the start time (t = 0) is considered as if rate of change is not inside

the bounds of F and R. At the start time (t = 0), the rate is calculated as follows:

rate =
u(0)− y(−1)

ts
(7.29)

where ts is the sample time of simulation.

7.10 System Description

As illustrated in Fig. 7.20, to allow the frequency control function of the PV system a

HESS is added to the grid-tied inverter. The inverter is controlled to imitate a synchronous

generator in its ability to deliver inertia to the electric power grid. This form of inverter

control is also known as VIE. In this chapter, the topology of a VIE principally contains

VIE controller with governor, turbine and iertia model, provided in Fig. 7.14, the voltage

controller, and the output filter, as shown in the dotted box in Fig. 7.20. In the VIE,

the stator terminal voltage of the virtual synchronous generator, v = [va, vb, vc]
T , are

represented by the voltages across the filter capacitors.

A grid-connected PV system consisting of PV panel, battery, and supercapacitor ar-

rangement with a virtual inertia emulator and their related controllers is shown in Fig.

7.20. The PV panel is connected to dc bus using a boost converter. Here, the boost con-

verter is used to extract the maximum power from PV panel by using maximum power
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Figure 7.20: An overview of the proposed system a)Hybrid Energy Storage Controller
b)Virtual Energy Inertia Controller

point tracking (MPPT) algorithm. HESS is connected to dc bus using bidirectional dc/dc

converters. HESS is used to maintain the constant dc bus voltage (Vdc) due to intermit-

tency of solar irradiance.

The grid-interfaced inverter is controlled to convert the DC to alternating current

and regulates the real and reactive powers flowing into the grid instantaneously and au-

tonomously. The inverter controller can be designed to simulate traditional generators, as

is the case to be presented in this chapter.

7.11 Simulation Results

To confirm the usefulness of the proposed control configurations, a grid connected PV

system with VIE and HESS controller was modeled in Matlab Simulink. The PV system

consists of 500W generating modules. The PV model uses the simulated solar irradiation

data with high fluctuation in 15 seconds (Fig 7.21). The study conducted in two scenarios.

In the first scenario, the high ramp rate fluctuations of PV is modeled and the effect of

designed HESS controllers was analyzed. In this scenario, the load remained unchanged.

In the second scenario, it was assumed that the PV has a constant output and a 1.2 pu load
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Figure 7.21: The output power of photovoltaic arrays .

connected at the point of common coupling (PCC). The dc bus has been regulated to a

constant voltage of 320 V.

Furthermore, the state of charge of battery has initially adjusted at 50%. In this model

a 500w three level bridge inverter with a carrier-based three level PWM controller has

been implemented. The dc link has used a 6 milli farad capacitor. The sampling time

of the simulation is set to 25×10−6 seconds. The values of the LC filter are L=1mH

and C=6.15µF. In this model a generic battery that model most popular battery types has

been used. The rated capacity of the batteries are 12 Ah, with nominal voltage of 12 V.

The number of series batteries are 5. The supercapacitor model in this simulation is a

generic model of Electric Double Layer Capacitors (EDLCs) with rated capacity of 58 F

and rated voltage of 16 V. The capacitor bank consists of two sets of five series capacitors

in parallel.
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Figure 7.22: Battery and Supercapacitor power output.

7.11.1 Performance of HESS in high ramp PV output fluctuations

In the first part of the simulation, the load was considered constant and the mitigation of

the solar intermittency is the purpose of the study. The battery and supercapacitor charges

and discharges according to the PV intermittency to keep the dc grid voltage constant.

The terminal voltage of the battery and supercapacitor will fluctuate depends on the PV

output power imbalance nature. The power output of the battery and supercapacitors in

the combined energy storage mode is illustrated in the Fig 7.22. It can be observed from

this figure that the high-frequency rise and fall appearing in Fig. 7.21 are mostly accom-

modated by the super-capacitors. In this study, the worst case scenario was considered by

a surge change in power output at t=4s. At this time, the PV output became zero in one

second. At this time supercapacitor compensates the high power fluctuation ramp rate by

injecting power in a short period of time. Then the power output remained zero from t=5s

to t=9s.

As it can be seen, the battery start injecting power with a lower ramp rate at t=4s

and then continue injecting power at an approximately constant power of 500 watts until

t=9s. As the PV power output start increasing, the battery power decreases with a slow
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rate of 50w per seconds until t=12s. From t=12s to t=15s, the battery power output rate

increases to 116.67w per seconds, and finally it reaches zero at t=15s. A supercapacitor

does not have any activity after the high PV power drop of 500w per seconds. Therefore,

currents with low variations are taken by the battery units within the HESS. Using HESS

has another advantage of increasing the life expectancy of the battery pack by directing

the high-frequency fluctuation to the supercapacitor. Fig. 7.23 illustrates the SOC of the

battery bank and supercapacitor bank during short term operation of the system. When

the PV power output is maximum, during 0s < t < 4s, SOC of both battery and super-

capacitor are increasing. At t=4s, the PV power output ramp down sharply and reaches

0w in one second. The SOC of the battery stop increasing in less than a second and the

battery discharges from t=5s to t=12s. On the other side, the supercapacitor discharges

0.843%, but start charging again since it is only responsible for the fast ramp rates. The

battery starts changing after t=15s, when the PV power output increased enough to meet

the load.

The main purpose of HESS is to keep the dc-link voltage constant. Fig. 7.24 shows

that the dc-link voltage variation during the PV fluctuations is an acceptable range of

±5%. To be more precise, the dc-link voltage drops only 1% or 3.1 v during the time

that PV output drops from maximum power to zero. Fig. 7.25 illustrates the total power

output of the HESS. This figure shows how the sum of battery and supercapacitor, with a

maximum of 6% error or 30w, is equal to the power deficiency of the PV power.

7.11.2 Dynamic operation of Virtual Inertia Emulator

For the second part of the simulation, the DC voltage is considered as constant and the

effect of a pulsed load connecting into the grid is analyzed. In this simulation, the incre-

mental load change occurs at t=2s, and its value changes from 500w to 1100w. This load
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Figure 7.23: SOC of the battery banks and Supercapacitor bank during intermittencies.

will be disconnected at t=2.5s which causes frequency variations at the time of connection

and disconnection. In this case, the VIE-based control scheme delivers inertial response

support. For this study, we assume that the inertia constant (H) has four different values

of H=10 j/VA, H=30j/VA, H=50 j/VA, and H=70 j/VA and the frequency variations are

illustrated for all four values in Fig 7.26. With higher values of H, the frequency at the

point of common coupling (POC) dropped with a smaller amount. When the H has a

low value of 10, the frequency drops to 59.83 Hz at t=2s. However, by increasing the

inertia constant the frequency have fewer fluctuations, for example, by the highest inertia
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Figure 7.24: DC link voltage variation by solar intermittency.

Figure 7.25: Total power output of Hybrid Energy Storage System (HESS).

constant (H=70j/VA), the frequency drops to 59.88 Hz and the error have been improved

from 0.17 Hz to 0.12 Hz. At t=2.5s, the lowest inertia does not result in the highest fre-

quency deviation, however, when H=70 j/VA (highest value of this study), the frequency

has an overshoot of 60.10Hz, which is less than other cases.

The simulation results of reference currents and voltages in synchronously rotating
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Figure 7.26: Variation of Frequency at POC while a big load connects at t=1s and discon-
nects at t=2.5s.

reference frame are shown in Fig 7.27. It can be seen how the per unit values of the Id

and Iq change to maintain the voltage and frequency constant when 2s≤ t ≤ 2.5s.

Fig 7.28 shows the variation of active and reactive power during pulsed load event.

At t=2s and H=70 j/VA, both active and reactive power are increased to mitigate the load

increase. Active power rises from 411w to 437.9w and reactive power surges from zero to

47.55 Var to compensate the voltage drop. After a peak of 437.9w and providing enough

inertia to the grid, active power starts decreasing to 371.5w at t=2.5s. It worth mentioning

that the PV provides 45.5% of the load and the rest is injected by the grid. In in contrast

to active power, reactive power increases to 101.6Var during pulsed load event to keep the
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Figure 7.27: Variation of IdIq references while a big load changes at t=1s.
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Figure 7.28: Active and Reactive power variation during pulsed load event.

voltage at acceptable 5% range.

As it can be seen in Fig. 7.29, implementing virtual inertia emulator helps the voltage

remain constant during 2s≤ t ≤ 2.5s. The RMS voltage without VIE drops to 110.8v

at t=2s, and has an overshoot of 127.6v at t=2.5. However, these vales are 118.9v and

121.1v when VIE is applied to the system. Therefore, the voltage violation improves by

a factor of 6.75% at t=2 and 5.41% at t=2.5s.
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Figure 7.29: Voltage variation when a puled load is switched in.

7.12 Summary

The VIE idea as offered in this chapter makes it easier to connect renewable electrical

generators, such as PV into weak grids. Owing to the similarity of the proposed system

to the electromechanical synchronous machine: 1- all the usual dynamic and static prop-

erties of the conventional grid operation is possible. 2- Parallel operation with the grid is

possible with any number of generators and without supplementary lines for communica-

tion. Another objective of the VIE development is to create a power station by designing

control system of a virtual machine. The proposed system also offers the advantages of

changing the parameters of the system throughout the operation.

Moreover, a hybrid energy storage system (HESS) including a battery energy storage

system (BESS) and a super-capacitor is assessed in this study. This system is designed

to accommodate fast solar power fluctuations because of the intermittent nature of irradi-

ance situations. Also, as conventional generators are replaced by high-penetration levels

of renewable energies (mostly PV generation), the existing rotating kinetic energy in the

power system will be notably reduced, causing in a loss of system inertia. A PV sys-
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tem with Virtual Inertia Emulator system equipped with a HESS was investigated in this

chapter to help improve system inertial response.

Control systems for the VIE and DC-DC converters of the HESS are designed which

have the following advantages: 1) fast voltage regulation; 2) smoothing the PV output

power 3) lowering charge/discharge current rates of battery; 4) reducing current stress

levels on battery; 5) improving life span of battery; and 6) enhancing system inertial

response.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

The integration of renewable energy generators with has been of extreme attention to the

researchers and power system operators recently. Universities and other research centers

are still performing cutting-edge studies to find and evaluate the opportunities for enhanc-

ing the large utilization of renewable energy sources. However, grid integration of large

these sources of energy, particularly in the weak grid can cause the undesirable effects on

the legacy grid performance in many considerable ways. Some examples of these effects

could be frequency and voltage stability, significant harmonics injection, and increasing

the number of capacitor bank and voltage regulator operations. To decrease the influence

of these threats, this dissertation has developed the advanced methods for renewable en-

ergy integration into the grid addressing intermittency, harmonics, and inertial response.

In this dissertation, several features related to the control, design, implementation, and en-

ergy management of the Microgrid systems with renewable energy sources are presented.

To fulfill the objectives of this dissertation, first, a comprehensive review on chal-

lenges and developments in grid-connected photovoltaic systems is provided. Many in-

ternational and North American organizations such as 1547.8 group and IEEE 1547.7 are

defining modeling recommendations and methodologies for renewable energy intercon-

nection. Photovoltaic inverter manufacturers, utilities, and other involved area experts are

focused on designing improved smart control strategies for PV inverters. However, there

are still numerous gaps in the dynamic analysis of grid-connected PV performance. The

increase of large-scale PV-penetration circumstances needs a more thorough investigation

of these gaps and systematic interconnection studies. Several technical challenges and re-

quired fundamentals for implementation of renewable energies in the grid was provided in
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this study. Secure, safe, and economic proper operation of the power network at voltage

and frequency violations for different countries are specified by the grid codes.

Inverters can be considered as the brain of a PV system. The inverter topologies

are classified based on the number of power processing steps, the position of capacitors

for decoupling the power, if they utilize transformers or not, and kinds of grid inter-

face. Moreover, many control methods have been suggested by researchers to control the

MPPT, current, voltage, active and reactive power. An overview of these controllers was

discussed in this dissertation.

Higher solar integration requires implementation of battery (and super-capacitor) en-

ergy storage systems to compensate high energy (and high power) fluctuations caused by

stochastic nature of renewable resources. A brief description of energy storage systems as

a whole, problems that are presented with the large-scale integration of PV renewable en-

ergy, and the uses of energy storage systems to provide a means to resolve those problems

were similarly discussed in this dissertation.

Furthermore, to assess the effects of renewable energies on the reduction of GHG,

this dissertation presents an analysis of carbon tax, as strategy option, for encouraging the

use of renewable-based DGs and evaluate the cost-effectiveness of the system in terms

of GHG mitigation potentials. Different scenarios include different types of RES and

different penetration levels of the distributed generation. An economic study for the NPC

with both WT and PV+WT was also conducted which shows that, through imposing

appropriate taxes on Co2 and setting remunerative ”buy back” prices by the government,

there are remarkable potentials of Co2 mitigation along with COE reduction. Similarly,

technical analysis was accompanied by both HOMER and Matlab Simulink to show that

the proposed Renewable energy system can be used in the real world.

In summary, there are enough prospects for renewable-based DG generation in ex-

istence of appropriate policy allocation for GHG emission penalties and Market Price
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Referent (MPR), as well as technical measures, in order them to be competitive with the

grid and therefore keep away from environmental emissions from the centralized grid. It

is suggested that further studies be performed on offshore wind turbines in combination

with subsea transmission power supplies.

According to a nonlinear current-voltage characteristic of Photovoltaics (PV) we need

to track maximum power output of PV generation units instantly. This study introduces

a non-complicated method for tracking the maximum power point without any previous

knowledge of the physical parameters linked with a Grid-Connected photovoltaic system

using artificial neural networks (ANN) modeling.The productivity of the suggested Arti-

ficial Neural Network structures for the MPPT control and the forecast of Duty Cycle of

DC-DC boost converter has been presented. Since the duty cycle is directly achieved by

using ANN, the proposed system does not need complicated processes and cutting-edge

power electronic control units. The results show that the ANN is sufficiently accurate and

can identify the duty cycle under different solar irradiance.

In order to analyze the voltage profile and power quality due to grid-tied PV, a com-

prehensive study was conducted on a 1.1MW PV power plant, tied to a distribution feeder

network in Miami, Florida. Power quality monitoring results of the Photovoltaic power

plant (as our testbed) installed at Florida International University. Site description and list

of components are provided. Base on the analysis, steady state voltage violations have

occurred on Jun 20 to Jul 16 (Over-voltages). However, some spikes happen during the

period of study, which was not because of PV installation. Based on ITIC curves momen-

tary voltage spikes can cause problems for sensitive electric devices and computers, but

not to the grid.Voltage THD Violation only happens on phase and they were below 5.3%.

Voltage THDs may not cause major problems in the Feeder. However, current THD has

an inverse relationship with PV power production. When PV production is lower than

451kW, current THDs exceed 5% limit the IEEE 1547.
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A system model and data from the plant’s data acquisition unit and power quality

recorder was constructed. Multiple use-cases and scenarios were delineated for the two

studies. Power quality issues were studied using high-resolution data for current and

voltage THDs based on real measurements. It was concluded that no problematic is-

sues persisted at the existing penetration level of 1.1 MW. Current THDs over 5% has

been increased when the power output is less than 451 kW and it has a tight connection

to the output power. Voltage profile analyses for steady-state and time-series scenarios

revealed that at 60% penetration level, significant impacts due to voltage deviation and

feeder losses could be observed. Further, the number of switching operations for voltage

regulators increases dramatically when PV inverters operate in Volt/VAr control mode,

followed by Volt/Watt, and finally Power Factor. Although unity power factor causes the

least number of operations, the grid codes require the use of Volt/VAr mode for inverter

control. Hence, strategies to mitigate these impacts are required.

In order to reduce the influence of the grid harmonic currents and voltages, harmonic

compensation is regularly implemented for a grid-tied inverter. In this dissertation, the

principles of the conventional LLCL filter and parameter design of the L(LCL)2 filters

has been proposed. Since grid-side inductance (L21) of the LLCL filter is mainly decided

by the harmonic currents around double the switching frequency instead of those around

the switching frequency, it has been replaced by a small trap at double the switching

frequency. Compared to the LLCL filter, the replacement results in a reduction of the

total inductance size, and hence, the total loss of the filter. The inverter-side inductance

is divided into three parts to place resonant branches in between them. Therefore, the

L(LCL)2 filter has lower loss and better performance at high-order harmonics attenuation.

In the proposed design, the maximum power factor variation remained unchanged and the

current THD has improved by 7.77%.

A 700 W single-phase grid-tied inverter is designed to compare the characteristics
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of the conventional LLCL filter and the suggested L(LCL)2 filter through experimental

results. In addition, the stability of the closed-loop system has been analyzed. The results

validate that total loss and the value of the inductors of the L(LCL)2 filter, reduced by a

factor of 3.12% and 22.22%; respectively, compared to that of the LLCL filter.

Finally, a hybrid energy storage system (HESS) including a battery energy storage

system (BESS) and a super-capacitor is assessed in this dissertation. This system is de-

signed to accommodate fast solar power fluctuations because of the intermittent nature of

irradiance situations. Also, as conventional generators are replaced by high-penetration

levels of renewable energies (mostly PV generation), the existing rotating kinetic energy

in the power system will be notably reduced, causing a loss of system inertia. A PV sys-

tem with Virtual Inertia Emulator system equipped with a HESS was investigated in this

chapter 7 to help improve system inertial response.

Control systems for the VIE and DC-DC converters of the HESS are designed which

have the following advantages: 1) fast voltage regulation; 2) smoothing the PV output

power 3) lowering charge/discharge current rates of battery; 4) reducing current stress

levels on battery; 5) improving lifespan of battery, and 6) enhancing system inertial re-

sponse.

8.2 Future Work

The topics covered in this dissertation illustrated the new challenges in real-time control

and optimal operation of smart grid system with integration of large renewable energy

sources. Due to essential needs for understanding, recognizing and solving probable is-

sues and obstacles of future power systems, it recommended to consider the following

topics as the future works:

1. There are several interesting future research areas for the study presented in chapter

7. Fog computing applications as one of the most useful techniques for the future
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smart grid development. Virtual energy storing can be proposed to keep supply

and demand curve all through peak hours. For this purpose, optimization (real-

time and online), the control flow of energy, and prediction will be done using

Fog framework. Moreover, Controller optimization for virtual power flow which

will operate in both islanded mode and normal mode with any intermittencies of

renewable power generation.

2. Considering further expansion of the L(LCL)2 filter the proposed filter in chap-

ter 6 can pave the path for the utilization of this filter as an output filter for newly

introduced power electronic devices such as solid state transformers (SST). These

multilevel converters are a combination of high power semiconductor units, tradi-

tional high-frequency transformers and a control mechanism to provide a flexible

control for powering the distribution networks.

3. The concept of HESS in chapter 7 focuses on short term fluctuations and includes

no long-term power regulation. For longer term variations in PV output, a new

control system can be presented which includes the SOC for the battery and super-

capacitor.
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