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Abstract

The emerging fifth-generation (5G) mobile networks are empowered by softwarization and programmability, leading to the

huge potentials of unprecedented flexibility and capability in cognitive network management such as self-reconfiguration

and self-optimization. To help unlock such potentials, this paper proposes a novel framework that is able to monitor and

calculate 5G network topological information in terms of advanced spatial metrics. These metrics, together with enabling and

optimization algorithms, are purposely designed to address the complexity of 5G network topologies introduced by network

virtualization and infrastructure sharing among operators (multi-tenancy). Consequently, this new framework, centred on a

topology monitoring agent (TMA), enables on-demand 5G networks’ spatial knowledge and topological awareness required

by 5G cognitive network management in making smart decisions in various autonomous network management tasks including

but not limited to virtual network function placement strategies. The paper describes several technical use cases enabled by

the proposed framework, including proactive cache allocation, computation offloading, node overloading alerting, and load

balancing. Finally, a realistic 5G testbed is deployed with the central component TMA, together with the new spatial metrics

and associated algorithms, implemented. Experimental results empirically validate the proposed approach and demonstrate

the scalability and performance of the TMA component.

Keywords 5G networks · Topology management · Spatial network metrics · Cognitive management

1 Introduction

Network management in the forthcoming fifth-generation

(5G) mobile networks is notably influenced by the soft-

warization of network infrastructures where several hardware

components are virtualized and by the multi-tenancy of

the network infrastructures where hardware components are

shared by different mobile operators. The main motivation

of these 5G capabilities is the reduction of both capital

and operational costs. 5G virtual network functions (VNFs)

can now be deployed automatically and on-demand on the

Edge and the Core segments of the 5G network and can be

migrated between the computers that belong to the same net-
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work segment or across network segments as required. These

characteristics, along with the mobility of 5G users across

the different antennas of 5G networks, make 5G network

topologies highly dynamic and dependent of the status of the

network and the dynamics of the human behaviour. This com-

plicates the optimal management of resources and services

in the 5G networks.

Unlike previous 3G/4G networks, the dynamic nature of

the novel 5G topologies imposes continuous decisions about

the concrete location where to perform VNF placements

and migrations to maximize the effectiveness of the ser-

vices delivered by such VNFs (e.g., cache, load balancer,

and baseband unit). For example, a cache service will reduce

bandwidth consumption in the network links located after

such a cache service due to the hits into the cached content

and will reduce the latency in the delivery of cached content

to the final users. Thus, the placement strategy of such a cache

service will play a vital role in deciding where is the current

most effective location to maximize latency reduction and to

minimize bandwidth consumption.
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A way to address the placement strategy of services in 5G

networks is to make use of spatial network metrics to identify

critical locations in the 5G network topology, represented as

evolving graphs with hardware and software resources. Spa-

tial network metrics are indices that provide insights about

the centrality of the vertices of a graph and can be interpreted

as a level of effectiveness of a given resource due to the spa-

tial location with respect to the whole topological structure

of the network.

Spatial network metrics can be combined with other key

5G performance metrics to create composed metrics used to

enhance the dynamic placement of services. A cognitive net-

work management framework that monitors, calculates and

aggregates in real time such metrics, can make use of them

to perform autonomous decisions, such as dynamic VNF

placements, load balancing, caching, network communica-

tion dynamics and VNF migration, among others.

In this research work, we present a new cognitive network

management framework, focusing on topology monitoring

based on new spatial metrics in 5G networks. There are sev-

eral use cases that can benefit from our cognitive framework.

For instance, composed spatial metrics can be used to infer

the optimal placement for key 5G architectural components

such as Centralized Unit (CU), Distributed Unit (DU) or

User Plane Function (UPF) for providing support to dif-

ferent 5G use cases such as ultra Reliable, Low-Latency

Communications (uRLLC) and enhanced Mobile Broad-

Band (eMBB) where latency and throughput need to be

minimized or maximized, respectively. Massive Machine-

Type Communications (mMTC) refer to Internet of Things

(IoT) networks where millions of 5G devices create complex

topologies and where IoT services can be offloaded to the

Mobile/Multi-access Edge Computing (MEC) platform, to

perform computation offloading of the resource-constrained

IoT devices to the network edges, thereby overcoming

the resource constraints and achieving energy consump-

tion reduction in the IoT devices. Spatial metrics can help

determine the closest geographical areas to perform such

offloading. Analogously, the optimal placement of caches

and load balancers in the network will further enhance the

effectiveness of such uses cases. In case the reader is inter-

ested, Kim et al. (2017) provide a comprehensive description

of the 5G architecture and its components.

Recent research work such as Salva-Garcia et al. (2018)

and Neves et al. (2016) rely on diverse performance metrics

to trigger autonomous behaviours in the cognitive network

management framework according to the current status of the

network. These metrics encompass resource metrics (e.g.,

memory, disk, CPU), network metrics (e.g., throughput,

latency, delay, capacity), wireless metrics (e.g., Received Sig-

nal Strength Indicator or RSSI, and Received Signal Code

Power or RSCP) and service metrics (e.g., cost, revenue,

request/second). However, 5G cognitive management frame-

works should consider not only those traditional performance

and capacity metrics, as it has been studied so far, but also spa-

tial network metrics that can empower the cognitive network

management framework to make more meaningful manage-

ment decisions by leveraging the spatial context-awareness

in determining optimal operation locations. To the best of

our knowledge, there is not yet any framework able to cal-

culate or make use of 5G spatial network metrics combined

with traditional ones to make valuable network management

decisions. A cause that has contributed to this lack of sup-

port has been the complexity associated to the calculation of

this type of metrics, which increases exponentially according

to the size of the topology, and thus it is impractical, even

for small topologies (hundreds of devices), to calculate these

metrics in a useful time scale, i.e. seconds, to enable real-time

cognitive network monitoring and management.

This research work demonstrates how spatial network

metrics can be monitored and calculated for large-scale 5G

topologies, and how they can be combined with traditional

performance metrics to serve as an enabler for our 5G cog-

nitive management framework, to make valuable decisions

that optimize the allocation and management of 5G VNFs

and traffic. Specifically, our new composed spatial met-

rics would allow higher 5G network resources utilization

efficiency, reduced latency, increased availability, optimal

VNF allocation, migrations of VNFs, balancing the network

traffic, and balancing the computational load among edge

nodes. Nonetheless, the computation of spatial metrics on 5G

network topology with millions of resources (switches, phys-

ical machines, virtual machines, users, etc.), is challenging.

To meet this challenge, we propose an efficient 5G topol-

ogy monitoring agent (TMA) to quantify those new spatial

metrics. This agent has been significantly optimized over

the traditional ways to calculate spatial centrality metrics

in graphs. Our TMA makes computationally feasible the

on-demand quantification of combined 5G metrics in large

topologies with hundreds of thousands of nodes.

The contributions of this paper are manifold:

– This paper defines a new 5G cognitive network manage-

ment framework for continuous monitoring and calculat-

ing spatial metrics in 5G networks.

– The paper proposes new 5G-tailored, efficient and scal-

able spatial network metrics over evolving 5G network

topologies to meet 5G multi-tenant and virtualized net-

working requirements.

– The paper proposes new composed metrics useful for the

cognitive management framework to make allocations

decisions such as cache allocation, load balancing, func-

tion computation offloading in 5G networks.

– Finally, the proposed approach has been successfully

designed, implemented and deployed in a realistic 5G

testbed. The paper demonstrates the feasibility and scal-
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Table 1 Analysis of the state of the art with respect to our contribution against the challenges required to achieve Advanced Spatial Network

Metrics for 5G Cognitive Network Management

Exploits Spatial

information

Applies closeness

centrality

Metric

based

Optimized for

5G topologies

ScalableSolution

Kourtellis et al. (2015) � × × × ×

Dolev et al. (2010) � × � × ×

Kchiche and Kamoun (2010) � � × × ×

Wang et al. (2017) � � × × ×

Musumeci et al. (2016) × × � � ×

Baştuğ et al. (2014) and Baştuğ et al. (2016) � × × × ×

Tulu et al. (2018) � × × × ×

Li et al. (2017) � × � � ×

Zhao et al. (2018) � � × × ×

Dourado et al. (2013) � × � × ×

Bajpai and Schönwälder (2015) × × � × ×

Goel et al. (2015) × × � × ×

Sheu et al. (2017) � � × × ×

Tizghadam and Leon-Garcia (2010) � � × × ×

Our contribution � � � � �

ability through empirical performance evaluation in this

testbed.

The rest of this paper is structured as follows. Section 2

reviews related work. Section 3 introduces the 5G cogni-

tive network management framework. Section 4 delves into

the design of the novel 5G spatial metrics, followed by

Sect. 5, which describes concrete use cases for the usage of

the proposed metrics. Section 6 describes the most relevant

implementation details of the proposed framework focusing

on the TMA. Subsequently, Sect. 7 is devoted to the perfor-

mance evaluation in a realistic 5G testbed. Finally, Sect. 8

concludes the paper highlighting the main achievements.

2 Related work

Table 1 provides a comparative analysis of the current state of

the art against the challenges proposed in this research work

and how our contribution compares with them to allow the

reader to clearly identify our contribution. Each column in

the table is a key enabler to achieve the proposed challenges.

Spatial network metrics such as Closeness Centrality

proposed in Sabidussi (1966) and Betweenness Central-

ity in Freeman (1977) can identify influential nodes in a

graph, but, as it is known, they are difficult to be applied

in large-scale networks due to the computational complex-

ity as reported by Chen et al. (2012), even more in evolved

graphs such as those resultant of 5G monitored networks as

the algorithm runs in 0(n2) time.

Calculating centrality metrics over large graphs is a

challenging problem. The problem of efficiency in central-

ity metrics calculation has been studied in the past and

recently. Kourtellis et al. (2015) propose a scalable algorithm

for betweenness centrality in large graphs using MapReduce

that scales by adding more compute nodes. Even with this

kind of parallelization optimization, it might take 105 s with a

100k graph size, which makes this unfeasible for 5G network

real-time management. Therefore, in our approach, instead

of betweenness centrality, we leverage closeness centrality

metric that provides similar insights about network graphs,

but with less complexity time O(nm) to make practicable

real-time and online network management.

In Dolev et al. (2010), the authors present a Routing

Betweenness Centrality metric for communication networks,

by considering network flows created by arbitrary loop-free

routing strategies, where routing decisions depend on the

packet target alone and considering the source-target of the

packet.

In Kchiche and Kamoun (2010), the proposed scheme

relies on centrality index to calculate the best placement

of access points for vehicular networks, or to deploy Road

Side Units (RSUs) proposed in Wang et al. (2017). However,

in both cases, the results are based on simulation environ-

ments and they considered small network topologies (20–200

nodes) that are not actually affected by the complexity of spa-

tial metrics.

Musumeci et al. (2016) propose an optimization algo-

rithm of DU placement optimization in 5G for Cloud-based

Radio Access Networks (C-RAN), considering diverse net-
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work metrics such as traffic requests, fibre per link, fronthaul

latency, network metrics, but they do not consider centrality

metrics.

In Baştuğ et al. (2014) and Baştuğ et al. (2016), the

authors analyze the spatial structure of networks to perform

effectively a proactive caching in 5G small cells networks.

Unfortunately, they do not deal with large-scale graphs and

do not consider optimal centrality indexes to maintain up-to-

date metrics in the evolving 5G graphs.

The work in Tulu et al. (2018) resorts to spatial network

metrics to calculate influence nodes to serve as content-

centric mobile 5G networks. However, again, they focus their

experiments on small network graphs (85 nodes).

Li et al. (2017) propose a “Caching-as-a-Service” (CaaS)

for 5G, either cloud-based radio access networks and virtual-

ized Evolved Packet Core (EPC). They discuss the allocation

performance evaluation according to diverse metrics, but they

just mention the possible usage of shortest path betweenness

centrality as a potential metric, without delving into details.

Recently, Zhao et al. (2018) study the optimal placement

of cloudlets in IoT access points (MEC nodes) for access

delay minimization in large scale IoT networks. Their fitness

function considers several attributes, including the evaluation

of closeness centrality of the access points. However, they

have validated the approach in a simulated environment with

only 1000 IoT devices and 40 access points.

Network metrics aggregation and composition are still

not being broadly adopted in currently available monitoring

tools, even less on inter-domain and complex communica-

tions networks. In this regard, some software implementa-

tions such as Dourado et al. (2013) allow metric compo-

sition considering intra-domain performance measurements

in communications networks. They analyse metrics for

quantifying end-to-end minimum-mean delay in spatial com-

position, but they do not consider spatial centrality metrics.

Indeed, given the current state of the art surveyed in Baj-

pai and Schönwälder (2015) and Goel et al. (2015), there

is not any implemented model or monitoring tool for com-

puting aggregated spatial metrics for 5G networks, and they

focus only on network metrics end-to-end latency, last-mile

latency, latency-under-load, mean latency, end-to-end packet

loss or jitter, upstream-downstream throughput-goodput, net-

work availability, etc.

Similarly, the work in Sheu et al. (2017) leads to a routing

algorithm for Software-Defined Networking (SDN), evalu-

ated at small scale that considers Centrality in the weight

functions to prevent the bottleneck in the multicast routing

and choose the nodes or links that can balance the loads across

the network.

Spatial metrics can be used to enrich the graphical

representation of network topologies, thereby helping on

human-centric network management, where administrators

can directly govern the network resources and flows.

In Tizghadam and Leon-Garcia (2010), the authors dis-

cuss the usage of centrality indexes for control algorithms

in communications networks, including allocation capaci-

ties, design and dynamic control of physical/virtual network

topologies.

To the best of our knowledge, this is the first proposal of

monitoring and calculate efficient and optimized spatial cen-

trality metrics, used as a baseline for cognitive management

at the scale of evolving 5G networks.

3 Cognitive 5G networkmanagement
framework

Figure 1 introduces the 5G multi-tenant network deployment

and the proposed cognitive management framework to man-

age such networks, according to the contextual information,

including our proposed spatial metrics to be defined in Sect. 4.

The following subsections provide details of the framework.

3.1 5Gmulti-tenant network

The bottom part of Fig. 1 depicts the deployment of a 5G

multi-tenant network where both physical and virtual layers

are presented. The physical layer is composed of the hard-

ware available in the infrastructure. The antennas provide

coverage to the 5G users to gain radio access to the network.

These antennas are connected by means of the front-haul to

a DU. A DU controls the new 5G radio interface, sending the

radio signals through the mid-haul network segment to the

edge of the network. The edge is the closest location where

a VNF can be deployed close to the final users, in order to

achieve computational off-loading and low-latency capabili-

ties. Usually, a CU can be deployed in this network segment

to do not insert delays in the control of the radio interface,

to allow quick handovers. The edges of the network are con-

nected by means of the back-haul to the core network where

the main 5G VNF Core services are deployed. The UPF VNF

is the mobile anchor where all the mobile traffic is received to

get access to the Internet. In the control plane, An Access and

Mobility Function (AMF) VNF provides mobile equipment

authentication, authorization and mobility management. A

Session Management Function (SMF) VNF is responsible

for session management and allocates IP addresses to UE

devices. It is noted how all the different 5G architectural com-

ponents are virtualized with the only exception of the DU and

that multiple instances of such components are instantiated

inside the same physical machine in multi-tenancy scenarios.

The Core network is finally connected to the Internet through

the backbone network segment.

In production-ready deployments, the idea is to maximize

the number of 5G subscribers that can be supported with
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Fig. 1 5G cognitive management framework

the minimal set of hardware resources while providing the

expected quality of service.

3.2 5G cognitive management framework

The upper part of Fig. 1 illustrates the 5G cognitive man-

agement framework proposed. The architecture has been

aligned with the H2020 5G SliceNet project, which is a

high-profile EU project on cognitive network management

for 5G networks and whose consortium comprises 16 part-

ners including leading telecommunication operators, vendors

and other 5G stakeholders. The 5G multi-tenant network

has been instrumented with sensors, actuators and discovery

agents in order to enable the management of the infrastruc-

ture. They are depicted in the Control layer of Fig. 1. The

sensors provide metrics to the management framework. The

discovery agents provide topological information about the

5G multi-tenant infrastructure. The actuators are in charge

of controlling resources, communications and services of the

infrastructure.

The autonomic layer depicted in Fig. 1 contains all the

components that provide cognitive management capabilities.

First, the monitoring component collects both topological

information and sensed metrics to make them homogeneous

and processable over a common format. The aggregator

component produces composed metrics that are defined as

a temporal or spatial aggregation of the elemental metrics

sensed. The analyzer component is in charge of identifying

alerts in the 5G network. An alert is an alarm that requires

attention by the administrator. A sub-optimal device config-

uration, hardware failure or bad configuration in devices or

services or an external attack are good examples of alerts. The

analyzer correlates the information received from the moni-

toring component in order to determine existing or emerging

issues. The policy framework component then performs deci-

sions about actions to deal with such alerts. This decision is

an implementation plan that indicates how to overcome the

issues expressed in the alerts. The orchestrator component

is in charge of executing, step by step, in an orderly manner

the plan provided by the policy framework. This plan is exe-

cuted by interacting with actuators and VNF Management.

The architecture is fully aligned with the ETSI NFV Man-

agement and Orchestration (MANO) architecture. The VNF

Manager deals with the life cycle and controls services, while

the Virtual Infrastructure Manager (VIM) manages the life

cycle of virtual resources in a multi-tenant environment.

This architecture enables a closed control loop where the

system can react autonomously through executing a mit-

igation plan against several alerts that have been defined

in the system without any human intervention. Finally,

the SliceNet one-stop Application Program Interface (API)

allows onboarding new autonomic capabilities and control-

ling the exposure of information to the final users about the

status of the network, among others.
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3.3 Monitoring and discovery of 5G network
topologies

Figure 2 shows a detailed description of the part of the cogni-

tive management plane dealing with monitoring and topology

discovery. This is a zoom of the components under the dotted

square labelled as A in Fig. 1. On the topology discovery side,

our architecture proposes the following three components to

provide updated information about the topology.

– The Physical Topology Agent (PTA) relies on traditional

technologies such as the Simple Network Management

Protocol (SNMP) to provide information about the phys-

ical topology of the 5G network. There is only one PTA

deployed in the infrastructure. This component performs

a periodic SNMP walk from different entry points defined

by the administrator. This SNMP walk interrogates recur-

sively the status of the LLDP learned neighbours of each

node and then their neighbours.

– The Multi-Tenant Topology Agent (MTTA) utilizes the

cloud stack APIs to retrieve information about the vir-

tual topologies available in the 5G network and about the

tenants that own such topologies. To this end, some key

management APIs such as OpenStack and Kubernetes

have been integrated. It retrieves periodically the list of

containers and virtual machine allocated in each physi-

cal machine in order to generate the virtual topological

information. There is only one MTTA deployed in the

infrastructure.

– The 5G-Topology Agent (5G-TA) provides information

about the attachment of the 5G mobile users to the spe-

cific 5G DUs and keeps tracking the user mobility across

antennas. To achieve this, it has been integrated with the

control plane of both 4G and 5G networks by retriev-

ing such information from the 4G Mobility Management

Element (MME) and 5G AMF/SMF, respectively. To be

concrete, this integration has been performed by cre-

ating an ad-hoc API in the MME implementation of

the Mosaic 5G project as described by Nikaein et al.

(2018). Marco Alaez et al. (2017) provide a comprehen-

sive explanation of this API.

These three monitoring components pull topological

information from the infrastructure at periodic intervals. This

periodic interrogation is used to maintain in memory the

updated network topology. Then, they only report the topo-

logical information when there are changes with respect to

the previously reported state to deliver only the topological

changes. The three components report the topological infor-

mation using a common topological model to a common

message bus. The key is the separation of responsibilities

of each of the components with respect to the devices being

reported by them. To be concrete, the PTA reports on physical

devices and their connections, including switches, routers,

and DUs. The MTTA reports on virtual machines and con-

tainers and their connections with the physical machines.

And finally, the 5G-TA reports on UE devices and their con-

nection to the DUs.

On the sensing side, our architecture employs four com-

ponents. Firstly, the following three provide performance

metrics about resources, flows and operating system pro-

cesses (services) respectively.

– The Resource Monitoring Agent (RMA) reports metrics

about the following: i) the physical device where it is

installed, such as CPU Usage, Memory Size, Memory
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I/O, Disk Size, Disk I/0, Cache faults, and kWatt/Hour; ii)

the virtual machines allocated in such physical machine,

such as Memory I/O, Disk I/O, and Memory Used; iii)

both physical and virtual network interfaces, such as

Bandwidth Consumed, Bandwidth Capacity or Band-

width Negotiated. This component is installed in each

physical machine of the 5G infrastructure.

– The Flow Monitoring Agent (FMA) reports metrics about

the flows of the interfaces that are being monitored.

These metrics include Experienced Data Rate (Down-

link), Experienced Data Rate (Uplink), Area Traffic

Capacity (Downlink), Area Traffic Capacity (Uplink),

Overall User Density and End-to-End Latency. This com-

ponent is installed in each physical machine of the 5G

infrastructure.

– The Process Monitoring Agent (PMA) is installed in each

physical machine of the 5G infrastructure. It reports met-

rics about each of the services/processes that are running

in such machines. These metrics include process I/O,

memory I/O, disk I/O, context switches, sleep time, idle

time, and so on.

In addition, a Topology Monitoring Agent (TMA) is

proposed as the cornerstone component of the monitor-

ing framework. It is in charge of computing in real time

the 5G spatial metrics (defined later in the next section,

Sect. 4), according to both sensing and topological informa-

tion. Unlike the rest of the sensor’s components, the TMA

receives both topological information from all the topology

discovery sensors and metrics from the other sensing compo-

nents as inputs. The TMA keeps the 5G topology updated in a

graph structure using the add/remove primitives described in

the next section. The TMA performs periodic calculation of

the 5G spatial metrics. The calculation of the spatial metrics

is detailed in the next section and it may require the usage

of performance metrics, and this is the reason why this com-

ponent also receives such information. The TMA computes

dynamically diverse metrics over the 5G network, which is

represented as an evolving graph. The graph changes con-

tinuously according to the reports coming from the topology

discovery sensors. The framework computes continuously

the metrics for each node, as the nodes and resources evolve

along the time. Then, it provides periodic reports of the spa-

tial metrics associated with such nodes of the 5G topology.

Those metrics are then exploited by the cognitive layer of the

framework to make advanced context-aware decisions for 5G

network management.

Both the spatial and performance metrics are received by

the aggregator, which is able to compute composed metrics

based on spatial or temporal aggregation of the elemental

metrics. Thus, the aggregator combines diverse network met-

rics, resource metrics, and topology information, along with

spatial metrics, to come up with complex 5G spatial network

metrics. Such composed metrics are also reported back again

to allow the cognitive system to utilize them.

4 Spatial 5G closeness centrality network
metric

All the segments of the 5G network including Radio Access

Network (RAN), Edge, Core network as well as mobile users

are continuously monitored by the topology discovery sen-

sors, which allow modelling dynamically the 5G network as a

connected directed graph G = (N , E), consisting of a set N

nodes or vertices, corresponding to the 5G network devices,

and set E of edges corresponding to the network connections

between devices.

Our graph G changes continuously as the 5G network

evolves, considering physical devices holding virtual net-

work functions (VNFs), and their connections. The network

links are directed edges with associated metrics, which are

calculated continuously and reported by the sensing compo-

nents per node, such as for instance, latency l(v, v′), band-

width utilized b(v, v′) and bandwidth available ba(v, v′).

Figure 3 represents graphically the graph of the 5G net-

work topology, where nodes N are represented in circles and

edges E are represented in lines. As explained in Sect. 3.1,

UE represents the users mobile terminal, DU and CU repre-

sent Distributed Units and Centralized Units, respectively. It

is noted that some nodes have a “v” prefix, representing that

this is a virtual machine where such a service is running. The

VNFs are the set of virtual network functions deployed in

the 5G network to perform computational off-loading to the

edges. The vSMF, vAMF, vPCF, vUDM, vAUSF are all the

architectural components of the 5G network running in virtu-

alized machines. In the figure, nodes with heptagonal shape

represent Physical Machines P located in both the Edge and

the Core Networks that are potential candidates for deploying

virtual machines V for implementing virtual network func-

tions. Thus, V = {v ∈ N | v.t ype == V irtual Machine}

and P = {p ∈ N | p.t ype == Physical Machine}.

Spatial networks metrics rely on networks graphs, obtained

dynamically from the topology discovery agents to calculate

meaningful information that is ultimately used by the cogni-

tive network management framework to make wise control

decisions to manage the 5G network. However, the current

state of the art in sensing tools, topology discovery tools,

and inventory systems are not yet capable of providing spa-

tial network metrics of 5G multi-tenant infrastructure. So far,

4G networks did not have to deal with virtualization of the

network functions and the multi-tenancy capabilities needed

to enable concurrent operations over the 5G infrastructure.

These 5G characteristics combined with the dense deploy-

ments foreseen in 5G networks where thousands of UEs can

be connected to the same DU lead to an explosion of the num-
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ber of nodes (physical/virtualized and 5G users) and their

connections in the network topology.

It can result in topologies with hundreds of thousands of

Vertices and Edges, which makes the management of 5G

network topology graphs impracticable, above all when com-

puting those metrics in real time and considering the whole

5G Network topology.

Certain network management decisions require the whole

network picture to make valuable decisions, for instance,

allocation of caches functions in a proper MEC node depends

on the number of connected nodes (including users) and their

spatial locations and demands. The load balancing function

allocation is also influenced by the combination of the cur-

rent flows, and spatial network representation, since such a

network function should be allocated on-demand wisely in

central and strategic locations to perform balancing to the

network traffic wherever and whenever is needed.

4.1 Tailored spatial metric for multi-tenant 5G
networks

Our tailored spatial metric for multi-tenant 5G network fea-

tures several optimizations over traditional spatial metrics

based on centrality. Such optimizations make the calcula-

tion of the metrics treatable and computationally feasible for

real-time management of the 5G network.

CC(v) =
1∑

n∈N dG(v, n)
(1)

Our proposal extends and adapts the Closeness Centrality

metric by Sabidussi (1966), defined as how close a node is

to all the other nodes of the network. Nodes are more central

as they are closer to the majority of the other nodes. Close-

ness Centrality (CC(v)) is mathematically defined in Eq. 1,

where dG(v, n) is the function that calculates the distance

of the shortest path from node v to node n in the Graph G.

This distance is the minimum length of any path between

both nodes in the graph. Being the path the sequence of

vertices and edges beginning in v and ending in n, where

each edge connects its previous with its subsequent ver-

tex. The distance is the sum of the weights of its edges,

where the weight measures the strength of a link. In our

case, the weight will be embodied by additional 5G network

performance metrics calculated by our sensing components,

such as latency or bandwidth, depending on the specific
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use case being addressed (e.g. cache allocation, load bal-

ancing, computation offloading, etc., as shown in the next

section). The distance function requires an algorithm sup-

porting weighted graphs able to calculate the shortest-path

to other vertices, such as Dijkstra’s algorithm, which runs

in time O(m + n log n) (being m the number of edges and

n the number of nodes) and as a result, the complexity of

traditional Closeness Centrality (Sabidussi 1966) is defined

as O(nm + n2 log n).

Our newly proposed 5G closeness centrality (5GCC) met-

ric, presented in the following subsections, performs two

main optimizations over the traditional way of calculating

closeness centrality in a whole graph: node selection opti-

mization which defined the set x as a subset of N as nodes

to calculate the metric (O(xm + xn log n) where x < n).

This complexity is further reduced by the node prune opti-

mization which decreases the set of destination nodes y,

defined as a significantly reduced subset of N , leading to

a decreased complexity when calculating the shortest path

defined as O(xm + xy log y) where y < n.

4.1.1 Node selection optimization

This optimization aims to create a subset of nodes P = {p ∈

N | p.t ype == PhysicalServer} which includes only

those nodes that are subject to serve as possible candidates

v to allocate VNFs, i.e. only physical nodes p in the graph

G(N , E) will be considered for calculating their CC(v). It

significantly reduces the number of nodes v required to cal-

culate the 5GCC(v), and therefore the number of pairs to

which quantifying the distance functions dG(v, n), and con-

sequently the weighted shortest-paths. It should be noted

that reducing the number of nodes needed for calculating

the 5GCC(v) does not imply reducing the number of target

vertexes n of the distance function dG(v, n) that will still

consider the whole Graph G(N , E). Therefore, it requires

calculating the shortest path between the candidate physical

node v to every single node n in the graph (either physical,

virtual or mobile-UE nodes).

4.1.2 Node prune optimization

The second optimization is the pruning of the leaves nodes

of the 5G graph, i.e. the user mobiles attached to DU nodes

while maintaining the same resultant closeness centrality

index values when computing CC(v) for each n ∈ P . This

optimization reduces significantly the number of nodes in the

graph, as the mobiles represent the vast majority of nodes

in the 5G network topology. It minimizes the time needed

to quantify the distance function dG(v, n) (which implies

quantifying the shortest-path).

D = {d ∈ N | d.t ype ! = Ue AN D d.t ype ! = Du},

R = {r ∈ N | r .t ype == Du}

5GCC(v) =
1∑

d∈D dG(v, d) +
∑

r∈R 5GdG(v, r)
(2)

Thus, our 5G closeness centrality metric, defined in Eq. 2,

splits the closeness centrality quantification in two spaces.

For those 5G nodes n in set D, which are not part of UE

mobiles or DU sets, it computes the distance function as

it is done traditionally in CC(v) metric, i.e. using function

dG(v, n), whereas for those nodes r of type DU (set R),

the distance is calculated with our new function 5GdG(v, r)

defined in Algorithm 1.

Function 5GdG(v, r) requires two structures that are kept

in cache memory. The first one U E I nDu(DU ) holds up-

to-date the actual UE mobiles belonging to each DU. The

second one U EsW eight I nDu(DU ) maintains the sum of

the weights for each edge connected to the DU. These two

structures are needed to allow the system to get the shortest

path to every UE. Basically, when the shortest path to a DU is

calculated from a node n, the shortest path from this node n to

every UE connected to this DU is the same plus the additional

weight for every UE connected to the DU. These structures

are managed by our topology manager that performs the net-

work graph management and quantifies the metrics, adding

and removing continuously the nodes in these structures and

in the graph, as the 5G network evolves.

Data: G(N , E), U E I nDu(DU ), U EsW eight I nDu(DU )

1 Function 5GdG(v, r):

2 out ← 0;

3 du PathW eight ← dG(v, r);

4 mobiles Path ←

du PathW eight ∗ U E I nDu[r ] + U EsW eight I nDu[r ];

5 out ← out + du PathW eight + mobiles Path;

6 return out ;

7 End Function

Algorithm 1: 5G distance function

As can be seen the function 5GdG(v, r) defined in Algo-

rithm 1, adds to the total summation of dG(v, r), the weights

from the DU towards each UE connected, taking those

weights from the U EsW eight I nDu structure.

As a result, our 5GCC metric, using as baseline CC(v),

and after applying the optimizations, is defined in Algo-

rithm 2. This algorithm requires access to the whole graph

G(N , E). Also, it requires access to a set of Physical Servers

(P S) containing the candidate nodes selected to calculate

their 5G Closeness Centrality. The set of all DUs used in the

calculation of the shortest path for the optimized 5GCC. U E

set comprises the UEs available in the graph. And finally, a

set D containing the rest of destination nodes in the graph

for which the shortest path to them must be calculated. The

algorithm returns the vector with the 5G Closeness Centrality
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values for each node that is worth calculating the 5G spatial

metrics, i.e. those physical nodes that might allocate a VNF.

Data: G(N , E),

P S = {ps ∈ N | ps.t ype == PhysicalServer},

DU = {du ∈ N | du.t ype == Du},

U E = {ue ∈ N | ue.t ype == Ue},

D = {d ∈ N | d /∈ U E AN D d /∈ DU }

Result: 5GCC[]

1 for ps ∈ P S do

2 out ← 0;

3 for du ∈ DU do

4 out ← out + 5GdG(ps, du);

5 end

6 for d ∈ D do

7 out ← out + dG(ps, d);

8 end

9 5GCC[ps] ← 1
out

;

10 end

11 return 5GCC[];

Algorithm 2: 5G closeness centrality algorithm

4.2 5G network graphmanagement

5G networks are subject to continuous topology changes that

require autonomous and dynamic management of the asso-

ciated evolving network graph. The topology changes are

motivated by different factors. On one hand, due to 5G mobil-

ity, users are continuously performing handovers from one

DU to another. Besides, UE devices are continuously con-

necting/disconnecting from the network, e.g. user devices

restart or simply lose their coverage. These kind of changes

are minimal for the topology but sufficient to force a recal-

culation of the closeness centrality in the whole graph. On

the other hand, the virtualization and on-demand provision-

ing of VNFs lead to continuous and dynamic changes in the

network topology beyond the leaves nodes in the graph that

requires recalculating our 5GCC indexes, as this quantifica-

tion depends on the overall status of the graph. This section

defines the procedure followed by our topology manager to

maintain in real time the graph and associated structures, as

well as calculate efficiently the 5GCC metrics.

4.2.1 Add and remove nodes/edges in 5G graph

The 5GCC is calculated by the TMA of the framework, updat-

ing the 5G graph according to those dynamic changes, and

recalculating the 5GCC for each node in the graph. To this

aim, it relies on two main functions defined in Algorithm 3.

The add Edge() function updates the graph when a

new connection whose source (or destination) is a phys-

ical or virtual 5G node. However, when the change is

minor, i.e. a connection related to a UE node has been

added, it only updates the cache structures U E I nDu and

U EsW eight I nDu. The add Node() function basically adds

the node in the graph, but only if it is not UE, thereby avoiding

changes that might trigger a recalculation of the 5GCC in the

whole 5G graph. The removeNode() and removeEdge()

functions are intended to detach the UE from a DU in the

event of a handover or disconnection, and they are defined in a

similar way as the add ones, but subtracting the weights from

the U EsW eight I nDu and removing the node and edges

whenever necessary in the graph (i.e. if it is not UE). When

an add Edge implies any node beyond UE devices, then it

triggers the execution of Algorithm 2.

Data: G(N , E), U E I nDu(DU ), U EsW eight I nDu(DU )

1 Function addEdge(e):

2 if (e.getSource()==UE) then

3 U E I nDu(e.get Dest()) ←

U E I nDu(e.get Dest()) + 1;

4 U EsW eight I nDu(e.get Dest()) ←

U EsW eight I nDu(e.get Dest()) + e.weight ;

5 else

6 G(N , E) ← G(N , E) + e ;

7 end

8 End Function

9 Function addNode(n):

10 if (n.type!=UE) then

11 G(N , E) ← G(N , E) + n ;

12 end

13 End Function

Algorithm 3: Graph Management. Add nodes/edges

functions

4.3 5GCC retrieval optimization

This optimization is intended to minimize the number of

times needed to recalculate the entire 5GCC when a topol-

ogy change is produced in the 5G network. To this aim, we

exploit the memory structures presented previously so that

when there is only a minor change i.e. a variation related to

UE nodes, the 5GCC index for the rest of the nodes does

not need to be recalculated entirely as it is traditionally done,

which avoids executing fully Algorithm 2.

Thus this optimization avoids computing the shortest-

path dG(ps, d) each time a UE node is added to the graph,

reducing to the minimum the complexity to keep up-to-date

the 5GCC metric in the entire 5G network topology. Thus,

for these cases, which might represent more than 95% of

changes in the 5G network, Algorithm 2 is given as input

the set D empty, meaning the loop of lines number 6–8,

which calculates distance function dG(ps, d) are not exe-

cuted. In addition, for this case, we have defined another 5G

distance function 5Gd ′
G(v, r) similar to the one defined in

Algorithm 1, but slightly changed, without code of line num-
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ber 3, meaning the distance function dG(v, r) is obtained

from another structure DistanceV R kept in memory-cache

that holds the distance values for each pair physical server

and DU. The rest of the function description is kept, where

lines 4–5 in Algorithm 1 update the weights, and there-

fore the resultant 5GCC, according to the added/removed

UE in the graph. It is noted that when this function is exe-

cuted, the U EsW eight I nDu structure is up-to-date since

the add/remove functions managed by the TMA have already

updated those structures.

4.4 Network function placement optimization based
on 5G-spatial metrics

When a service request reaches the cognitive management

framework, the policy framework component must decide

how to allocate optimally certain VNFs in the substrate phys-

ical nodes, depending on the service request necessities and

the current status of the entire 5G management network,

including physical and virtual appliances.

∀p ∈ P,∀r ∈ Rv :
∑

v∈Vp
Cd

r (v) ≤ Ca
r (p) − Cs

r (v′) (3)

We formulate the placement problem as an optimization

procedure that starts firstly by checking hard constraints,

either, placement constraint (e.g. nodes resource restrictions

and current status in terms of computing, memory, etc.),

as well as network constraints (e.g. resource’s connections

bandwidth, latency constraints, or flows). This hard con-

straints phase ends up with a subset of potential candidates to

allocate the VNF, as defined in Eq. 3, where Vp denotes the

subset of V that are already allocated in a physical p machine

and Rv is the set of resource requirements for a given node v.

Thus, an r ∈ R, might refer, for instance, to resource storage

requirement or a memory requirement of the VNF v.

Cd
r (v) refers to the constraint function that gets the

requirement value r , deployed d for a given virtual node

v. Similarly, Ca
r (p) denotes the constraint function value for

that requirement r , currently available a in a given physi-

cal node p. Similarly, Cs
r (v) denotes the constraint function

value of the requested of the requirement r , of the virtual

service s to be allocated, in a given v′ virtualized node.

When the inequality is met ∀r ∈ Rv , the node p sat-

isfies the constrains requirements and becomes potential

candidate to allocate the VNF in the node v. Thus, the set

P S = {p1..pn} that satisfies the requirements is used as

input for Algorithm 2, which calculates the 5GCC for each

p ∈ P S.

The objective function for the allocation problem in those

candidates depends on the use case being faced by the

cognitive framework. In the case of the cache allocation,

the objective function minimizes the latency, selecting less

loaded physical edge in the graph, which is closer to the final

UE terminals, and at the same time, is central to the max-

imum number of UE terminals to maximize the number of

cache hits.

For this second phase, the 5G spatial metric defined

above, combined with the actual network conditions, such

as consumed bandwidth or latency retrieved from the FMA,

RMA and PMA components of our framework, can help to

determine optimally those allocations. The following section

delves into complex and novel spatial metrics that combine

both our 5GCC metric and other network metrics to address

the particular objective of certain 5G use cases.

5 Spatial-based networkmanagement: 5G
use cases

This section outlines a number of representative technical 5G

use cases, where the proposed spatial metric can be further

augmented to create new composed metrics that meet the

specific requirements of the services for the purpose of smart

5G network monitoring/management.

5.1 Proactive cache allocation for 5G ultra-reliable
and low-latency communication (URLLC)

Content distribution networks (CDN) are composed of data

centre and a set of cache proxy servers deployed in strategic

geographic locations to maximize the availability and per-

formance in the network while reducing the latency of the

content delivery applications such as video streaming and

software downloads. The CDNs can be deployed over the

5G networks, exploiting the capabilities of the 5G infras-

tructure, thereby deploying on-demand the proxy caches as

VNFs in Edge nodes.

The proper place to allocate those virtual caches (vCaches)

varies dynamically as the network topology changes due

to the user’s mobility, and the geographic video demands,

among others. Spatial metrics are perfect allies in this sce-

nario to quantify the most influential physical edges to

increase the content cache hits, and they can be combined

with the actual end-to-end latency metrics to quantify loca-

tions with the lowest latency from the end-user to the cache

through diverse network hops.

Thus, the proposed 5G Closeness Centrality metric, as

defined in Sect. 4 and calculated by the TMA component

of our framework, can be weighted with the latency mea-

surements calculated in real time by the RMA component,

resulting in a new metric called 5G-Cache Closeness Central-

ity, which computes the indexes for each of the best physical

nodes in the network topology represented in the graph to

deploy a vCache VNF, thereby minimizing the delay of the

user towards the cache.
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Thus, the resultant metric is directly influenced by the

network graph, the number of mobile users attached to the

set of DUs connected to the Edge, along with the physical

network conditions and the actual network conditions, net-

work latency from the UE towards the edge node that deploys

the vCache. The low mean UE-Edge latency values assigned

to the Edge nodes will prioritize them in the spatial metric

against physical machines in the core.

5.2 Computation offloading inmMTC

The 5G-Cache Closeness Centrality metric can also be

employed in the MEC scenario to assist in the Computation

offloading in mMTC.

The metric can be employed to find out the best Edge node

in the 5G network to allocate certain IoT computing tasks,

performing computation offloading of IoT devices towards

those nodes. Distributed MEC nodes (e.g. Fog Nodes as

VNFs) allows reducing the data traffic at the Core network.

In addition to 5GCC and latency, the decision-making

considers other indicators such as the number of available

resources in the MEC node in terms of hardware/software

capacities, during the constraint satisfaction defined in 4.4.

5.3 Node over-provisioning

Network operators need to quantify continuously network

dimensions to satisfy committed network service guarantees

specified in the Service-Level Agreements (SLAs). Over-

provisioning considers, on one hand, the contracted SLAs

e.g., in terms of bandwidth and latency, and, on the other

hand, what is currently demanded in real time, consider-

ing the network’s topology, and on-going measurements and

metrics such as the consumed bandwidth.

The degree centrality metric is the simplest centrality

index and is defined as the number of connections a node

has in a graph. The degree centrality can be calculated using

weights, and concretely for this case, the weights can refer

to the bandwidth consumed in each of the network interfaces

(connections) by a node.

Ev = Edges of V

OPC(v) = Capacityb(v) −
∑

e∈Ev

Bandwidthc(e) (4)

Our proposed Node Over-provisioning Centrality OPC(v)

metric, combines the degree centrality weighted with the cur-

rent bandwidth consumed. The resultant metric is defined in

Eq. 4. This metric allows the operator to identify proactively

those nodes that are near to be overloaded and could lead to

a breach in the contracted SLA.

According to this metric’s values, when the node is about

to be overloaded OPC(v) < threshold under a certain

threshold, the planner module of our cognitive management

framework is notified, and it can infer certain actions to miti-

gate the over-provisioning, such as disconnecting certain UE

terminals from the DU to force a reconnection to a less over-

loaded DU (it is noted that the RMA has means to monitor the

on-going DU’s reachability by the UE). In another example,

if the OPC(v) affects a physical node in the Core network,

the planner can migrate a particular VNF to another physical

node with a higher OPC(v) value.

5.4 Optimal location of load balancers

Load balancers address scalability in distributed systems by

balancing the workload among different servers. The optimal

allocation of such VNFs can have a significant impact on the

global performance of the network. Different criteria can be

used to perform load balancing. It can be done based on real-

time bandwidth, latency, the number of requests, etc. Let us

consider bandwidth since it is widely adopted nowadays to

take load balancing decisions. Our 5GCC can be combined

with such metrics to determine the critical point in the net-

work where more bandwidth is concentrated and, at the same

time, where this selected node is more in the middle of the

paths between servers and clients. To achieve this, db
G(s, d) is

defined as the shortest path weighted by bandwidth between

the source (s) and the destination (d). Thus, replacing this

function in equation 2, we can define the metric for the Opti-

mal Location of Load Balancers (OLLB).

Therefore, human dynamics such as sleeping, working,

relaxing, and moving to different locations will have an

impact on the spatial aggregation of the real-time consumed

bandwidths along the time, causing a recalculation of the

OLLB. This OLLB metric can then be utilized to determine

the location where to migrate or deploy a load balancer in

real time to keep optimum the placement to maximize the

balancing of the workloads in the network. OLLB considers

available resources in MEC nodes, thereby it allows bal-

ancing the load among MEC and Core virtual and physical

network nodes.

6 Implementation details

The proposed cognitive network management framework has

been prototyped by focusing on implementing the core con-

tribution of this paper, i.e., the TMA, the 5G spatial metrics

and the enabling and optimization algorithms, all in a realistic

5G infrastructure testbed.

Specifically, the TMA has been implemented in Java 8

using RabbitMQ v3.7.161 as a message broker to receive

both topology information and performance metrics, and

1 RabbitMQ is available at https://www.rabbitmq.com/.
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also to publish the calculated spatial metrics into the pub-

lication/subscription message bus. The TMA uses as an

in-memory graph database, Apache Tinkerpop v3.4.2 back-

end.2

The TMA has been implemented using three different

execution threads. Firstly, a reception thread is in charge of

receiving information from both topology and metrics and

updating the graph database accordingly. This thread main-

tains the cache structures required for the calculation of our

5GCC metric. Secondly, a calculation thread is running at

periodic intervals and it performs the update of the values of

the spatial network metrics for all the devices of the graph.

To do so, the definition of the metric is implemented in the

graph engine using the Gremlin query language. Gremlin is

a functional, data-flow language that enables users to express

queries over their graph. The execution of the Gremlin query

makes uses of the cached structure or triggers the complete

recalculation of the metrics depending on the status of the

cache. To allow this optimization to happens, we have com-

bined Java code with Gremlin queries in order to create the

optimized iteration of the graph. As a result, this thread keeps

in memory the updated values of the spatial metrics. The third

and last thread is the sender, in charge of sending periodically

the metrics of the devices that have changed with respect to

previous values (due to a recalculation). This is a way to opti-

mize the overhead of the cognitive management framework

which needs to deal with several metrics for thousands of

devices and thus it improves scalability.

The TMA allows on-boarding different metrics from a

configuration file where the metrics are defined based on

their gremlin query associated. Each metric runs in a dif-

ferent calculation thread. The node selection optimization

has been implemented directly as a filter of the Gremlin

language whereas the node prune optimization has been

implemented by a wrapper of the management functions of

the graph (add/remove vertex/edge) to decide if the node

needs to be added to or removed from the graph and if the

cache structure needs to be updated. The implementation of

the algorithm matches exactly the approach presented in the

previous section. For the cache, the TMA has implemented

the UEInDu structure as a HashMap<String,Set<String>>

and the UEsWeigthInDu structure as a HashMap <String,

Long> as a way to make the most efficient acceleration in

the calculation of the spatial metrics.

7 Empirical validation

All the empirical executions performed in this research work

have been carried out in a Cyberserve XE5-308S v4 com-

puter, with Dual E5-2660 v4 Intel Xeon, 14 Cores, 2.00 GHz,

2 Apache TinkerPop is available at http://tinkerpop.apache.org/.

35M Cache, 105 W with hyperthreading activated, 128GiB

DIMM DDR4 Synchronous 2400 MHz, 1.6 TB Intel SSD

PCIe, and Ubuntu 18.04.2 LTS. That computer runs the TMA

software component for the calculation of the spatial met-

rics. Our 5G infrastructure is composed of nine Cyberserve

computers with the same specifications indicated. They run

OpenStack Newton3 where one computer is the cloud con-

troller and the other eight are computes employed for a

5G mobile edge computing network. These computes have

deployed inside the Mosaic 5G stack.4 The infrastructure is

deployed with Ethus USRP X310 as DU. All the switches

of the infrastructure are Netgear GS724T at 1 Gbps ethernet.

Three different testbeds have been designed and executed

to validate the suitability of the approach proposed. They

are explained in the following subsections together with the

results achieved.

7.1 5G topology scalability results

Firstly, a scalability test has been conducted with the main

aim to show how the proposed metrics can be calculated

on large scale infrastructures. To emulate large-scale infras-

tructures with up to 1 million UE devices, we have collected

our own topological information of the 40 UE devices and 3

DUs we have in our premises and then created an augmented

dataset for different sizes and topology shapes. The dataset

created triggers real 5G events such as adding or removal of

nodes/edges in the network. For this purpose, we use exactly

the same APIs as those used in our 5G deployment in produc-

tion in order to make sure we gather the same results in terms

of performance as if running in such large-scale infrastruc-

ture. Our 5G deployment matches that described in Sect. 3.2.

The different topologies analyzed are depicted in Table 2

where the number of UE devices connected to a DU is

ranged exponentially from 1 to 1024, the number of physical

machines in the edge of the network is ranged exponentially

from 1 to 256, and the number of physical machines in the

core of the network is ranged from 16 to 64. The rest of the

values have been kept constant and set to realistic numbers.

Four DUs have been allocated per edge physical machine and

Eight tenants share each of these physical machines in both

edge and core. In 5G operations, it implies that Eight differ-

ent telecommunication operators share the same edge, which

is a very realistic scenario. For instance, Edotco which is a

tower company owned by Asian telecommunications group

has at least six subsidiary mobile operators sharing the same

infrastructure (GSMA 2019). Also, it is expected an incre-

ment on the number of tenants sharing the same edges due to

the accessibility of 5G networks for start-ups network com-

panies (Gabriel 2020). In addition, it has been decided to

3 OpenStack is available at https://www.openstack.org/.

4 Mosaic 5G is available at http://mosaic-5g.io/.
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Table 2 Ranging of generated

scenarios for empirical

validation experiments

Property Min value Max value Function

Number of U E × DU 1 1024
∑10

i=0 2i

Number of DU × Edge 4 4 C O N ST (4)

Number of T enants × Edge 8 8 C O N ST (8)

Number of Edge 1 256
∑8

i=0 2i

Number of Servers × T enant 1 1 C O N ST (1)

Number of T enants × Core 8 8 C O N ST (8)

Number of Core 16 64
∑6

i=4 2i

Bandwidth R AN − Edge 10 Gbps 10 Gbps C O N ST (10 Gbps)

Bandwidth Edge − Core 100 Gbps 100 Gbps C O N ST (100 Gbps)

Global latency 30 µs 30 µs C O N ST (30 µs)

connect only one server to each of the physical machines of

the core network. Such computer represents an access point

to the Internet. Finally, the bandwidth available and latency

values have been fixed to specific values to represent real sce-

narios. However, these values don’t affect the performance

of TMA but only the result value of the metric. The band-

width has been fixed to 10 Gbps between the RAN and the

Edge and 100 Gbps between Edge and Core. These values are

expected values in 5G networks due to the maximum capac-

ity of network cards used in these segments. The latency has

been fixed to 30 µs for all the segments which are a typical

average value.

It is noted that the largest scenario represented in Table 2

to be executed corresponds to a 5G topology with 1024 ∗

4 ∗ 256 = 1,048,576 mobile users connected which is the

size of a very realistic medium-size city. For that scenario,

Fig. 4 shows the description of the population of nodes and

edges that conform that topology in order to allow a reader

to understand the nature of the graph. As shown in Fig. 4,

99.21% of the nodes and connections represent UE devices.

It is also worth remarking that only the 0.03% represented

physical machines in edge and core network segments are

the candidates to allocated VNFs. This largest scenario is

composed by a graph with 1,056,724 vertices and 1,059,291

edges.

To facilitate a 3D representation of the spatial-temporal

relationship, we represent each dimension of the three in dif-

ferent figures. Thus, Figs. 5, 6 and 7 represent analogous

graphs when it exponentially increases the number of phys-

ical machines used in the core network segment. Each of

these figures shows an exponential increase in both the num-

ber of UE (x-axis) and the number of edges (y-axis). The time

shown in the z-axis follows a linear increase. From the three

figures, in all the cases, it can be seen how the increase in

the number of UE does not affect the time to calculate the

5GCC metric. This is a significant achievement since they

are the vast majority of nodes connected to the 5G network.

It can be seen as well in all the figures that when the number

Fig. 4 Distribution analysis of the population of the 5G network topol-

ogy

of edges is increased, the calculation time increases accord-

ingly. Similarly, comparing the same data series in different

plots, it can be seen how increasing the number of cores,

the calculation time also increases, accordingly. It means

that the internal topology of the 5G network has an influ-

ence on the calculation time, mainly due to the fact that the

algorithms calculate the shortest paths. The overall execution

time increases almost linearly regardless of the workload in

the number of edges.

Let us focus on the largest scenario, with 1 million 5G UE

connected to the 5G network. The reader can see how each

of Figs. 5, 6 and 7 represents three series plotted in different

colours. They represent different scenarios over the same 5G

topology. Specifically, they represent the levels of stress of

the 5G topology. If the infrastructure is not running any ser-

vice inside, all the physical machines can be candidates to

host services due to the fact that the constraint satisfaction

will not discard any unsuitable candidates. However, if the

infrastructure is running several services and close to be out

of remaining free capacity, the number of physical machines

that can be candidates to be selected to allocated services

is significantly reduced. The different series represent the

percentage of physical machines that are suitable to allocate

the new service. They are 100% candidates (theoretical—
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Fig. 5 Time required by TMA to calculate 5GCC without cached data

for a topology with 16 Core physical machines when ranging the number

of edge machines and the number of UE devices connected to the DU

of such edges

Fig. 6 Time required by TMA to calculate 5GCC without cached data

for a topology with 32 Core physical machines when ranging the number

of edge machines and the number of UE devices connected to the DU

of such edges

no stress), 20% of candidates (realistic—highly stressed

scenario) and 80% of candidates (realistic—low stressed sce-

nario). Other intervals have been calculated and they follow

the expected trend. It is noted that when the infrastructure is

more stressed, the time to calculate the metric is significantly

reduced. It helps on the scalability of the calculation of the

metric. For 256 edges, 16 core machines and 1 million UE

devices in Fig. 5, the metric is calculated in fewer than 20 s

for very realistic scenarios with 80% of suitable candidates,

thereby allowing decision-making related to the structure of

the network in a very short time, e.g., allocating a virtual

Cache or a virtual Load Balancer. For a similar scenario but

with a much more complex core network of 64 core machines,

the time to calculate the metric is 60 s, which is still within a

very acceptable boundary in practical terms. It is very impor-

tant to remark that all the results presented herein do not make

use of the 5GCC retrieval optimization and they are the time

to calculate the metric without any cached data (i.e., worst

case scenario).

Figure 8 shows how the number of core physical machines

affects the calculation time of the metric when fixing the num-

ber of edges to 128. It can be seen how the impact on ranging

the edges is more dominant than ranging core machines.

Fig. 7 Time required by TMA to calculate 5GCC without cached data

for a topology with 64 Core physical machines when ranging the number

of edge machines and the number of UEs connected to the DU of such

edges

Fig. 8 Time required by TMA to calculate 5GCC without cached data

for a topology with 128 Edge physical machines when ranging the

number of core machines and the number of UE devices connected to

the DU of such edges

Moreover, in all the cases analyzed, the metric shows a lin-

ear trend despite the exponential aspect of the axis. This is

a clear sign of the high scalability results achieved with our

proposal, and thus the proposed approach can be applied in

large-scale networking scenarios such as the Load balanc-

ing case in mMTC. These results make the metric usable

and feasible and can bring significant improvements over the

decision-making in the cognitive framework.

7.2 Algorithm computational efficiency results

Secondly, a comparison of performance has been under-

taken to show the improvement in computational complexity

achieved with the different optimization schemes proposed

in the calculation of the spatial metrics over the traditional

reference CC metric.

Figure 9 shows the time to calculate the spatial metric

for a small-size scenario with 4 DUs, 256 UE devices per

DU, 4 Edge machines and 4 Core machines where all of

the machines are potential candidates to allocate a VNF. It is

noted that this small-size scenario is to establish a comparison

with the traditional Closeness Centrality (CC) metric shown

in the “No optimization” series of Fig. 9. The reader can see

that it follows an exponential trend in complexity. The points
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Fig. 9 Comparison of computational complexity in the calculation of 5GCC metric over the different optimization schemes

of the graph for 2048 and 4096 UE devices are plotted out of

the scale, and this is why the small sub-figure embedded in

the right side has been embedded to allow the reader to see

the impractical nature of this CC metric due to the complex-

ity associated to its calculation. It takes about 1500.000 ms to

compute the largest scenario. The complexity is significantly

reduced by two levels of magnitude when the node selection

optimization is executed, leading to about 10,000 ms. It is fur-

ther optimized by another level of magnitude when the prune

optimization is also applied over the previous optimization,

resulting in about 1000 ms. These results are plotted in Fig. 9.

When the 5GCC retrieval optimization is further utilized and

the calculation of the metric is cached, the execution time is

reduced by yet another extra three levels of magnitude. The

y-axis in Fig. 9 does not show enough resolution, and this

is why it has been decided to create the sub-graph located

in the left-side of Fig. 9 with a zoom in the scale. It can be

seen that the calculation time is remarkably reduced to only

around 1 ms for the largest scenario analyzed. This excellent

result clearly indicates that the proposed approach is able

to support real-time use cases such as the proactive cache

allocation case and also the computation offloading case. It

is noted that it is foreseen that in the vast majority of the

time the metric will be cached and only when new VNFs

are deployed or migrated it will need to invalidate the cache.

These results clearly validate the scalability and practicality

of the results achieved in this contribution and the feasibility

of the practical application into the 5G networks.

7.3 Graphmanagement results

Lastly, Fig. 10 depicts the analysis of the performance of

the TMA component in terms of the management of topo-

logical changes in the infrastructure. This experiment has

monitored the time required to insert each of the elements

of the largest graph utilized in this research work, i.e. the

scenario composed by 64 Cores, 256 Edges, 8 tenants which

implies 8 VMs in every Core and Edge, 1 server per Core VM,

4 DUs per Edge and 1024 UEs per DU, in total 1,048,576

mobile users. The graph is composed of 1,056,724 vertices

and 1,059,291 edges, representing devices and connections

between devices respectively. This times plot includes both

the addition of the components to the Gremlin graph frame-

work and the updates for all the different cache structures

used in the TMA for optimizing the calculation of the metrics

(described in previous sections). Figure 10 shows a whisker

plot with the analysis of such behaviours. It is worth mention-

ing that the four quartiles of the distribution are concentrated

in one point, representing almost 100% of the cases, yielding

around 0.05753782 and 0.05263078 ms, respectively for the

insertion of vertices/devices and edges/connections. These

results show very similar behaviour between the management

of topological changes for both devices and connections.

Moreover, these results are at the microsecond scale, which

clearly demonstrates the stability on the behaviour of the

proposed system and the efficiency in dealing with constant

topological changes. It is noted how there are some outliers

shown in both plots, which may be due to the fact that the
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Fig. 10 Whisker plot showing insert time to the database for vertices

(Devices) and edges (Connections)

calculation of the metrics maybe work in parallel in another

thread while the topological change has arrived, thus causing

some sharing of resources of the same machine. They repre-

sent the 0.00001% of the cases and the worst-case scenario

is around 200 ms, which is still acceptable in use cases that

do not have a strict time constraint.

8 Discussion

This section presents a discussion about other alternatives

that could be considered and developed in future work. In

this paper, four different use cases for the novel multi-tenant

5G networks have been analyzed. However, the solution pro-

posed in this work is not restricted to these use cases since it

is based on the universal definition of closeness centrality.

Our proposal has optimized the number of nodes where

5GCC has been calculated by selecting a smaller subset. The

reader may think of a possible optimization where the met-

ric is tailored for specific purposes and the destinations used

for the calculation of the shortest path are also restricted to

a smaller subset, shaping the graph according to a specific

problem faced. E.g. to calculate the closeness to respect to a

concrete type of VNF, rather than the closeness to respect to

all the other nodes in the network. However, we would lose

generality achieved in our proposed 5GCC metric. More-

over, the algorithm would need to iterate anyway to all the

nodes available to determine their type of node (e.g. type of

VNF) and, in consequence, it will not be any improvement in

terms of performance. The alternative would be to have am

in-memory graph for each type of metric, which its associ-

ated consumption in memory and scalability limitations are

associated with.

Another possible optimization could be based on the

extension of the support in the framework for additional

kind of spatial metrics. For instance, Degree Centrality, a

much simpler metric in computational cost, can provide the

number of neighbours that every node has connected. This

metric can be applied when deciding where to deploy a new

router in the infrastructure depending on whether a router can

route the maximum number of different destinations. In addi-

tion, Betweenness Centrality metric that measures how many

times a node appears in the shortest path between any other

nodes in the graph might be applied in similar 5G scenarios

as the ones discussed in this paper, giving meaningful infor-

mation about the centrality. However, such a metric requires

higher computation cost on average, and cannot be easily

optimized simplifying the graph, as it is done in our pro-

posal.

As future work, authors would like to parallelize the calcu-

lation of the metrics using a map-reduce or other alternative

distributed framework to further increase both efficiency and

scalability. In addition, authors will look into the adaptation

and applicability of the proposed model to efficiently manage

beyond 5G networks and IoT complex network topologies.

9 Conclusions

5G cognitive network management requires advanced net-

work topological knowledge in a new complicated network-

ing paradigm featured with virtualization and multi-tenancy.

This paper has proposed a novel framework that is capable of

meeting such challenging requirements for various use cases

such as cache allocation, computation offloading and load

balancing. In particular, within this framework, new spatial

metrics especially a 5G Closeness Centrality metric has been

designed, and a set of enabling or optimization algorithms

have been proposed. Furthermore, a new 5G architectural

component TMA is introduced to monitor such spatial met-

rics over virtualized, multi-tenanted 5G networks. Moreover,

a set of optimization schemes have explored to accelerate the

calculation of the new 5G spatial metrics. A realistic testbed

has been deployed to test, validate and evaluate the proposed

approach. Empirical results have demonstrated the high scal-

ability of the approach over varied network topologies of

large scales (with over 1 million mobile user devices and over

1 million connections), and the real-time performance in cal-

culating the spatial metrics to allow timely cognition (only

about 1 ms when optimization schemes are applied) and in
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handling constant topology changes in 5G networks (in the

order of 10s of ms).
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