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Abstract—Hyperspectral image classification has been a vi-
brant area of research in recent years. Given a set of observa-
tions, i.e., pixel vectors in a hyperspectral image, classification
approaches try to allocate a unique label to each pixel vector.
However, the classification of hyperspectral images is a chal-
lenging task due to a number of reasons such as the presence of
redundant features, or the imbalance between the limited number
of available training samples, as well as the high dimensionality
of the data. The aforementioned issues (among others) make the
commonly used classification methods designed for the analysis
of gray scale, color, or multispectral images inappropriate for
hyperspectral images. To this end, several spectral classifiers have
been specifically developed for hyperspectral images or carried
out on such data. Among those approaches, support vector
machines, random forests, neural networks, deep approaches,
and logistic regression-based techniques have gained a great
interest in the hyperspectral community. This paper reviews
most existing spectral classification approaches in the literature.
Then, it critically compares the most powerful hyperspectral
classification approaches from different points of view, including
their classification accuracy, and computational complexity. The
paper also provides several hints for readers about the logical
choice of an appropriate classifier based on the application at
hand.

Index Terms—Hyperspectral Image Classification, Support
Vector Machines, Random Forests, Neural Networks, Extreme
Learning Machine, Deep Learning, Multinomial Logistic Regres-
sion.

I. INTRODUCTION

Imaging spectroscopy (also known as hyperspectral imag-

ing) is an important technique in remote sensing. Hyper-

spectral imaging sensors often capture data from the visible

through the near infrared wavelength ranges, thus providing

hundreds of narrow spectral channels from the same area on

the surface of the Earth.
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These instruments collect data consisting of a set of pixels

represented as vectors, in which each element is a mea-

surement corresponding to a specific wavelength. The size

of each vector is equal to the number of spectral channels

or bands. Hyperspectral images usually consist of several

hundred spectral data channels for the same area on the

surface of the Earth, while in multispectral data the number

of spectral channels are usually up to tens of bands [1].

The detailed spectral information collected by hyperspectral

sensors increases the capability of discriminating between

different land-cover classes with increased accuracy. A number

of operational hyperspectral imaging systems are currently

available, providing a large volume of image data that can

be used for a wide variety of applications such as ecological

science, geological science, hydrological science, precision

agriculture and military applications.

Due to the detailed spectral information available from the

hundreds of (narrow) bands collected by hyperspectral sensors,

accurate discrimination of different materials is possible. This

fact makes hyperspectral data a valuable source of information

to be fed to advanced classifiers. The output of the classifica-

tion step is known as classification map.

Fig. 1 categorizes different groups of classifiers with respect

to different criteria, followed by a brief description. Since

classification is a wide field of research and it is not feasible

to investigate all those approaches in a single paper, we

tried to narrow down our description by excluding the green

parts in Fig. 1, which have been extensively covered in other

contributions. We reiterate that our main goal in this paper

is to provide a comparative assessment and best practice

recommendations for the remaining contributions in Fig. 1.

With respect to the availability of training samples, classifi-

cation approaches can be split into two categories, supervised

and unsupervised classifiers. Supervised approaches classify

input data using a set of representative samples for each

class, known as training samples. Training samples are usually

collected either by manually labeling a small number of pixels

in an image or based on some field measurements [2]. In

contrast, unsupervised classification (also known as clustering)

does not consider training samples. This type of approaches

classify the data only based on an arbitrary number of initial

“cluster centers” that may be either user-specified or may be

quite arbitrarily selected. During the processing, each pixel is

associated with one of the cluster centers based on a similarity

criterion [1, 3]. Therefore, pixels that belong to different

clusters are more dissimilar to each other compared to pixels

within the same clusters [4, 5].
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There is a vast amount of literature on unsupervised clas-

sification approaches. Among those methods, Kmeans [6],

ISODATA [7] and Fuzzy Cmeans [8] rank amongst the most

popular unsupervised approaches. This set of approaches is

known for being very sensitive to its initial cluster config-

uration and may be trapped into sub-optimal solutions [9].

To address this issue, researchers have tried to improve the

resilience of the Kmeans (and its family) by optimizing it

with bio-inspired optimization techniques [3]. Since super-

vised approaches consider class specific information, which

is provided by training samples, they lead to more precise

classification maps than unsupervised approaches. In addition

to unsupervised and supervised approaches, semi-supervised

techniques have been introduced [10, 11]. In this type of

methods, the training is based on both labeled training samples

as well as unlabeled samples. In the literature, it has been

shown that the classification accuracy obtained with semi-

supervised approaches can outperform that obtained by su-

pervised classification.

In this paper, our focus is on supervised classification

approaches. The remainder of this section is organized as

follows: First, we present the concept of supervised classifi-

cation by setting some notations. Then, we discuss parametric

versus nonparametric classification and address some specific

challenges for classification of hyperspectral data. Next, we

provide a detailed literature review followed by a brief com-

ment on strategies for classification accuracy assessment. The

section concludes with a summary of the main contributions of

the paper as a prelude to the description of relevant techniques

in subsequent sections.

A. Supervised Classification of Hyperspectral Data

A hyperspectral data set can be seen as a stack of many

pixel vectors, here denoted by x = (x1, ..., xd)
T , where d

represents the number of bands or the length of the pixel

vector. A common task when interpreting remote sensing

images is to differentiate between several land cover classes. A

classification algorithm is used to separate between different

types of patterns [5]. In remote sensing, classification is

usually carried out in a feature space [12]. In general, the

initial set of features for classification contains the spectral

information, i.e., the wavelength information for the pixels [1].

In this space, each feature is presented as one dimension and

pixel vectors can be represented as points in this d-dimensional

space. A classification approach tries to assign unknown pixels

to one of y classes Ω = {y1, y2, ..., yK}, where K represents

the number of classes, based on a set of representative samples

for each class referred to as training samples. The individual

classes are discriminated based either on the similarity to a

certain class or by decision boundaries, which are constructed

in the feature space [5].

B. Parametric versus Nonparametric Classification

From another perspective, classification approaches can be

split into parametric and non-parametric. For example, the

widely used supervised maximum likelihood classifier (MLC)

is often applied in the parametric context. In that manner, the

MLC is based on the assumption that the probability density

function for each class is governed by the Gaussian distribution

[13]. In contrast, nonparametric methods are not constrained

by any assumptions on the distribution of the input data. Hence

techniques such as SVMs, neural networks, decision trees,

and ensemble approaches (including random forests) can be

applied even if the class conditional densities are not known or

cannot be estimated reliably [1]. Therefore, for hyperspectral

data with a limited number of available training samples, such

techniques may lead to more accurate classification results.

C. Challenges for the Classification of Hyperspectral Data

In this section, we discuss on some specific characteristics

of hyperspectral data, which make the classification step

challenging.

1) Curse of Dimensionality: In [14–16], researchers have

reported some distinguishing geometrical, statistical, and

asymptotical properties of high-dimensional data through

some experimental examples such as: (1) as dimensionality

increases, the volume of a hypercube concentrates in corners,

or (2) as dimensionality increases, the volume of a hyper-

sphere concentrates in an outside shell. With respect to these

examples, the following conclusions have been drawn:

• A high-dimensional space is almost empty, which implies

that multivariate data in IR is usually in a lower dimen-

sional structure. In other words, high-dimensional data

can be projected into a lower subspace without sacrificing

considerable information in terms of class separability

[1].

• Gaussian distributed data have a tendency to concentrate

in the tails while, uniformly distributed data have a

tendency to be concentrated in the corners, which makes

the density estimation of high-dimensional data for both

distributions more difficult.

• Fukunaga [13] showed that there is a relation between the

required number of training samples and the number of

dimensions for different types of classifiers. The required

number of training samples is linearly related to the

dimensionality for linear classifiers and to the square of

the dimensionality for quadratic classifiers (e.g., Gaussian

MLC [13]).

• In [17], Landgrebe showed that too many spectral bands

might be undesirable in terms of expected classification

accuracy. When dimensionality (the number of bands)

increases, with a constant number of training samples,

a higher dimensional set of statistics must be estimated.

In other words, although higher spectral dimensions in-

crease the separability of the classes, the accuracy of the

statistical estimation decreases. This leads to a decrease in

classification accuracies beyond a number of bands. For

the purpose of classification, these problems are related

to the curse of dimensionality.

It is expected that, as dimensionality increases, more in-

formation is demanded in order to detect more classes with

higher accuracy. At the same time, the aforementioned char-

acteristics demonstrate that conventional techniques developed
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Criteria Types Brief Description 

Whether training 

samples are used or not? 

Supervised classifiers Supervised approaches classify input data using a set of representative 

samples for each class, known as training samples.  

Unsupervised classifiers Unsupervised approaches, also known as clustering, do not consider 

the labels of training samples to classify the input data. 

Semi-supervised 

classifiers 

The training step in semi-supervised approaches is based on both 

labeled training samples and unlabeled samples. 

Whether any assumption 

on the distribution of the 

input data is considered 

or not? 

Parametric classifiers Parametric classifiers are based on the assumption that the probability 

density function for each class is known. 

Non-parametric classifiers Non-parametric classifiers are not constrained by any assumptions on 

the distribution of input data. 

Either a single classifier 

or an ensemble classifier 

is taken into account? 

Single classifier classifiers In this type of approaches, a single classifier is taken into account to 

allocate a class label for a given pixel. 

Ensemble (multi) classifier In this type of approaches, a set of classifiers (multiple classifiers) is 

taken into account to allocate a class label for a given pixel. 

Whether the technique 

uses hard partitioning, in 

which each data point 

belongs to exactly one 

cluster or not? 

Hard classifiers Hard classification techniques do not consider the continuous changes 

of different land cover classes from one to another. 

Soft (fuzzy) classifiers Fuzzy classifiers model the gradual boundary changes by providing 

measurements of the degree of similarity of all classes. 

If spatial information is 

taken into account?  

Spectral classifiers This type of approaches consider the hyperspectral image as a list of 

spectral measurements with no spatial organization. 

Spatial classifiers This type of approaches classify the input data using spatially adjacent 

pixels, based on either a crisp or adaptive neighborhood system. 

Spectral-spatial classifiers Sequence of spectral and spatial information is taken into account for 

the classification of hyperspectral data. 

Whether the classifier 

learns a model of the 

joint probability of the 

input and the labeled 

pixels?  

Generative classifiers This type of approaches learns a model of the joint probability of the 

input and the labeled pixels, and makes the prediction using Bayes 

rules.  

Discriminative classifiers This type of approaches learns conditional probability distribution, or 

learns a direct map from inputs to class labels. 

Whether the classifier 

predicts a probability 

distribution over a set of 

classes, given a sample 

input? 

Probabilistic classifiers This type of approaches is able to predict, given a sample input, a 

probability distribution over a set of classes. 

Non- probabilistic 

classifiers 

This type of approaches simply assign the sample to the most likely 

class that the sample should belong to. 

Which type of pixel 

information is used? 

Sub-pixel classifiers In this type of approaches, the spectral value of each pixel is assumed 

to be a linear or non-linear combination of endmembers (pure 

materials). 

Per-pixel Input pixel vectors are fed to classifiers as inputs. 

Object- based and Object-

oriented classifiers 

In this type of approaches, a segmentation technique allocates a label 

for each pixel in the image in such a way that pixels with the same 

label share certain visual characteristics. In this case, objects are 

known as underlying units after applying segmentation. Classification 

is conducted based on the objects instead of a single pixel. 

Per-field classifiers This type of classifiers is obtained using a combination of RS and GIS 

techniques. In this context, raster and vector data are integrated in a 

classification. The vector data are often used to subdivide an image 

into parcels, and classification is based on the parcels. 

 

Fig. 1. A terminology of classification approaches based on different criteria. In order to narrow down the research line of the paper, we intentionally avoid
elaborate on the green parts.
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for multispectral data may not be suitable for the classification

of hyperspectral data.

The aforementioned issues related to the high-dimensional

nature of the data have a dramatic influence on supervised

classification techniques[18]. These techniques demand a large

number of training samples (which is almost impossible to

obtain in practice) in order to make a precise estimation. This

problem is even more severe when dimensionality increases.

Therefore, classification approaches developed on hyperspec-

tral data need to be capable of handling high dimensional data

when only a limited number of training samples is available.

2) Uncertainties: Uncertainties generated at different

stages of data acquisition and classification procedure can dra-

matically influence the classification accuaries and the quality

of the final classification map [19–22]. There are many reasons

for such uncertainties, including atmospheric conditions at data

acquisition time, data limitation in terms of radiometric and

spatial resolutions, mosaicing several images and many others.

Image registration and geometric rectification cause position

uncertainty. Furthermore, algorithmic errors at the time of

calibrating either atmospheric or topographic effects may lead

to radiometric uncertainties [23].

3) Influence of Spatial Resolution: Classification accuracies

can be highly influenced by the spatial resolution of the

hyperspectral data. A higher spatial resolution can significantly

reduce the mixed-pixel problem and detect more details of the

scene. In [24], it was mentioned that classification accuracies

are the result of a tradeoff between two aspects. The first aspect

refers to the influence of boundary pixels on classification

results. In this case, as spatial resolution becomes finer, the

number of pixels falling on the boundary of different objects

will decrease. The second aspect refers to the increased

spectral variance of different land-covers associated with finer

spatial resolution.

When we deal with low or medium spatial resolution optical

data, the existence of many mixed pixels between different

land-cover classes is the main source of uncertainties, which

influence on classification results dramatically.

Fine spatial resolution can provide detailed information

about shape and structure of different land-covers. Such infor-

mation can also be fed to the classification system to further

increase classification accuracy values and improve the quality

of classification maps. The consideration of spatial information

into the classification system is a vibrant research topic in

the hyperspectral community, and it has been investigated in

many works like [1, 25–29]. As mentioned, the consideration

of spatial information in the classification system is out of

the scope of this work, which focuses on supervised spectral

classifiers. However, the use of high resolution hyperspectral

images introduces some new problems, especially those caused

by the presence of shadows, which leads to high spectral

variations within the same land-cover class. These disadvan-

tages may decline classification accuracy if classifiers cannot

effectively handle such effects [30].

D. Literature Review

In this subsection, we briefly outline some of the most

popular supervised classification methods for hyperspectral

imagery. Some of these methods will be further detailed in

subsequent sections of the paper.

1) Probabilistic approaches: A common subclass of clas-

sifiers is based on probabilistic approaches. This group of

classifiers use statistical terminologies to find the best class for

a given pixel. In contrast with those algorithms, which simply

allocate a label with respect to a ”best” class, probabilistic

algorithms output a probability of the pixel being a member

of each of the possible classes [5, 13, 31]. The best class is

normally then selected as the one with the highest probability.

For instance, the multinomial logistic regression (MLR)

classifier [32], which is able to model the posterior class

distributions in a Bayesian framework, supplies (in addition

to the boundaries between the classes) a degree of plausibility

for such classes [33]. Sparse MLR (SMLR), by adopting a

Laplacian prior to enforce sparsity, leads to good machine

generalization capabilities in hyperspectral classification [34,

35], though with some computational limitations. The logistic

regression via splitting and augmented Lagrangian (LORSAL)

algorithm opened the door to processing of hyperspectral

images with median or big volume and a very large number

of classes, using a high number of training samples [36, 37].

More recently, a subspace-based version of this classifier,

called MLRsub [38], has also been proposed. The idea of

applying subspace projection methods relies on the basic

assumption that the samples within each class can approxi-

mately lie in a lower dimensional subspace. The exploration

of MLR, SMLR, LORSAL and MLRsub for hyperspectral

model present two important advantages. On the one hand,

with the advantages of good algorithm generalization and fast

computation, MLR has beenh1 widely aq used to model the

spectral information of hyperspectral data [39–48]. On the

other hand, as the structure of MLR classifiers is very open

and flexible, composite kernel learning [49, 50] and multiple

feature learning [51, 52] become active topics under the MLR

model and lead to very competitive results for hyperspectral

image classification problems.

2) Neural networks: The use of neural networks in complex

classification scenarios is a consequence of their successful

application in the field of pattern recognition [53]. Particu-

larly in the 1990s, neural network approaches attracted many

researchers in the area of classification of hyperspectral images

[54, 55]. The advantage of such approaches over probabilis-

tic methods are mainly resulting from the fact that neural

networks do no need prior knowledge about the statistical

distribution of the classes. The attractiveness of such increased

due to the availability of feasible training techniques for non-

linearly separable data [56], although their use has been tradi-

tionally affected by their algorithmic and training complexity

[57] as well as by the number of parameters that need to be

tuned.

Several neural network-based classification approaches have

been proposed in the literature considering both supervised

and unsupervised, non-parametric approaches [58–62], be-

ing feedforward neural network (FN)-based classifiers the

most commonly adopted ones. FNs have been well studied

and widely used since the introduction of the well-known

backpropagation algorithm (BP) [63], a first order gradient
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method for parameter optimization, which presents two main

problems: slow convergence and the possibility of falling in

local minima, especially when the parameters of the network

are not properly fine-tuned. With the aim of alleviating the

disadvantages of the original BP algorithm, several second

order optimization-based strategies, which are faster and need

less input parameters, have been proposed in the literature

[64, 65]. Recently, the extreme learning machine (ELM)

learning algorithm has been proposed to train single hidden

layer feedforward neural networks (SLFN) [66, 67]. Then,

the concept has been extended to multi-hidden-layer networks

[68], radial basis function networks (RBF) [69], and kernel

learning [70]. The main characteristic of the ELM is that the

hidden layer (feature mapping) is randomly fixed and need not

to be iteratively tuned. ELM based networks are remarkably

efficient in terms of accuracy and computational complexity

and has been successfully applied as nonlinear classifier for

hyperspectral data providing comparable results with the state-

of-the-art methodologies [71–74].

3) Kernel methods including support vector machines

(SVMs): SVMs are another example of a supervised clas-

sification approach, which has been widely used for the

classification of hyperspectral data due to their capability to

handle high dimensional data with a limited number of training

samples [1, 75, 76]. SVMs were originally introduced to

classify linear classification problems. In order to generalize

the SVM for non-linear classification problems, the so-called

kernel trick was introduced [77]. The sensitivity to the choice

of the kernel and regularization parameters are the most

important disadvantages of a kernel SVM. For the former,

the Gaussian radial basis function (RBF) is widely used in

remote sensing [77]. The latter is classically addressed using

cross-validation techniques using training data [78]. Gomez

et. al proposed an approach by combining both labeled and

unlabeled pixels using clustering and mean map kernel to

increase the classification accuracy and reliability of SVM

[79]. In [80], a local k-nearest neighbor adaption was taken

into account to formulate localized variants of SVMs. Tuia

and Camps-Vallas proposed a regularization approach to tackle

the issue of kernel predetermination. The method was based

on the identification of kernel structures through analysis of

unlabeled pixels [81]. In [82], a so-called bootstrapped SVM

was proposed as a modification of the SVM. The training

strategy of the approach is as follows: an incorrectly classified

training sample in a given learning step is removed from the

training pool, re-assigned a correct label, and re-introduced

into the training set in the subsequent training cycles.

In addition to the SVM, a composite kernel framework for

the classification of hyperspectral images has been recently

investigated. In [83], a linearly weighted composite kernel

framework with SVMs has been used for the classification

of hyperspectral data. However, classification using composite

kernels and SVMs demands convex combination of kernels

and a time-consuming optimization process. To overcome

these limitations, a generalized composite kernel framework

for spectral-spatial classification has been developed in [83].

The MLR [84–86] has been also investigated as an alternative

to the SVM classifier for the construction of composite kernels,

and a set of generalized composite kernels, which can be

linearly combined without any constraint of convexity, were

proposed.

4) Decision trees: Decision trees represent another subclass

of nonparametric approaches, which can be used for both

classification and regression. Safavian and Landgrebe [87]

provided a good description of such classifiers. During the

construction of a decision tree, the training set is progressively

split into an increasing number of smaller, more homogeneous

groups. This unique hierarchical concept is different from

other classification approaches, which generally use the entire

feature space at once and make a single membership decision

per class [88]. The relative structural simplicity of decision

trees as well as the relatively short training time required (com-

pared to methods that can be computationally demanding) are

the main advantages of such classifiers [1, 89, 90]. Moreover,

decision tree classifiers make it possible to directly interpret

class membership decisions with respect to the impact of

individual features [5]. Although a standard decision tree may

be deteriorated under some circumstances, its general concept

is of interest and the classifier performance can be further

improved in terms of classification accuracies by classifier

ensembles or multiple classifier systems [91, 92].

5) Ensemble methods (multiple classifiers): Traditionally,

a single classifier was taken into account to allocate a class

label for a given pixel. However, in most cases, the use of an

ensemble of classifiers (multiple classifiers) can be considered

in order to increase the classification accuracies [1]. In order to

develop an efficient multiple classifier, one needs to determine

an effective combination of classifiers that is able to benefit

each other while avoiding the weaknesses of them [91]. Two

highly used multiple classifiers are boosting and bagging [91,

93, 94], which were elaborated in detail in [1].

6) Random forests: Random forests (RFs) were first in-

troduced in [95], and they represent a popular ensemble

method for classification and regression. This classifier has

been widely used in conjunction with hyperspectral data since

it does not assume any underlying probability distribution

for input data. Moreover, it can provide a good classification

result in terms of accuracies in an ill-posed situation when

there is no balance between dimensionality and number of

available training samples. In [96], Rotation Forest is proposed

based on the idea of RFs to encourage simultaneously both

member diversities and individual accuracy within a classifier

ensemble. For a detailed description of this approach please

see [1, 92, 95, 97, 98].

7) Sparse representation classifiers (SRCs): Another im-

portant development has been the use of SRCs with dictionary-

based generative models [99, 100]. In this case, an input

signal is represented by a sparse linear combination of samples

(atoms) from a dictionary [99], where the training data is

generally used as the dictionary. The main advantage of SRCs

is that it avoids the heavy training procedure which a super-

vised classifier generally conducts, and the classification is

performed directly on the dictionary. Given the availability of

sufficient training data some researchers have also developed

discriminative as well as compact class dictionaries to improve

classification performance [101].
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8) Deep learning: Deep learning is a kind of neural net-

work with multi-layers, typically deeper than three layers,

which tries to hierarchically learn the features of input data.

Deep learning is a fast-growing topic, which has shown

usefulness in many research areas, including computer vision

and natural language processing [102]. In the context of remote

sensing, some deep models have been proposed for hyperspec-

tral data feature extraction and classification [103]. Stacked

auto-encoder (SAE) and auto-encoder with sparse constrain

were proposed for hyperspectral data classification [104, 105].

Later, another deep model, deep belief network (DBN), was

proposed for the classification of hyperspectral data [106].

Very recently, an unsupervised convolutional neural network

(CNN) was proposed for remote sensing image analysis, which

uses greedy layer-wise unsupervised learning to formulate a

deep CNN model [107].

E. Classification Accuracy Assessment

Accuracy assessment is a crucial step to evaluate the effi-

ciency and capability of different classifiers. There are many

sources of errors such as: errors caused by the classification

algorithm, position errors caused by the registration step,

mixed pixels and unacceptable quality of training and test

samples. In general, it is assumed that the difference between

the classified image and reference data is because of the

errors caused by the classification algorithm itself [23]. A

considerable number of works and reviews on classification

accuracy assessment have been conducted in the area of remote

sensing [1, 108–113].

F. Contributions of the Paper

The main aim of this paper is to critically compare rep-

resentative spectral-based classifiers (such as those outlined

in subsection I-D) from different perspectives. Without any

doubt, classification plays an important role for the analysis

of hyperspectral data. There are many papers dealing with

advanced classifiers but, to the best of our knowledge, there

is no contribution in the literature that critically reviews

and compares advanced classifiers with each other, providing

recommendations on best practice when selecting a specific

classifier for a given application domain.

To make our research line more specific, in this paper

we only consider spectral and per-pixel based classifiers.

In other words, spatial classifiers, fuzzy approaches, sub-

pixel classifiers, object-based approaches, and per-field RS-

GIS approaches are considered to be out of the scope of the

paper.

Compared to previous review papers such as [114] pub-

lished in 2009, which provides a general review on the

advances in techniques for hyperspectral image processing till

that date, this paper is specifically on spectral classifiers, which

includes the most recent and advance spectral classification

approaches in the hyperspectral community (with many new

developments since the previous publication of that paper).

In addition, we believe that a few specific classifiers have

gained great interest in the hyperspectral community due to

their capability to handle high dimensional data with a limited

Fig. 2. The number of citations associated to each classifier.

number of training samples. Among those approaches, neural

networks, random forests, MLR, SVM, deep convolutional

neural network-based classifiers are the most widely used

ones at present. As a result, we first elaborate on these

approaches and then, we further compare them based on

different scenarios, such as the capability of the methods

in terms of having different number of training samples,

spatial resolution, stability, complexity and automation of

the considered classifiers. The aforementioned approaches are

applied to three widely used hyperspectral images (e.g., Indian

Pines, Pavia University, and Houston) and the obtained results

are critically compared with each other. In order to make the

equations easier to follow, Table I details all the notations,

which have been used in this paper.

Fig. 2 shows the classification approaches investigated in

this paper along with their publication year and the number

of obtained citations so far. However, it should be noted that

in each paper, authors cited different papers as the original

one. Here, we use the most cited paper of the corresponding

classifier used in the remote sensing community. Here, we used

[58] for neural network, [92] for RF, [84] for MLR, [115] for

SVM, [116] for ELM, and [117] for KELM. Since CNN has

very recently been published, it was not shown in Fig. 2.

II. NEURAL NETWORKS

Artificial neural networks (ANNs) have been traditionally

used in multi-hyperspectral data classification. Particularly,

FNs have been extensively applied due to their ability to

approximate complex nonlinear mappings directly from the

input samples using one single hidden layer [118]. Tra-

ditional learning techniques are based on the original BP

algorithm [63]. The most popular group is gradient descent-

based learning methods, which are generally slow and may

easily converge to a local minima. These techniques adjust

the weights in the steepest descent direction (negative of the

gradient), which is the direction in which the performance

function decreases most rapidly, but this does not necessarily

produce the fastest convergence [64]. In this sense, several

conjugate gradient algorithms have been proposed to perform
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TABLE I
THE LIST OF NOTATIONS AND ACRONYMS.

Notations Definition Notations Definition Notations Definition Notations Definition

x Pixel vector d Number of bands b Bias λ Regularization parameter
Φ Transformation C Regularization parameter υ Stack variable k Kernel
||.|| Euclidean norm w Normal vector L Number of hidden nodes K Number of classes
y Classification label w Input Weight n Number of training samples p(yi|xi) Probability of pixel i
α Lagrange multiplier β Output weight v Visible units h Hidden units

a search along conjugate directions, which generally result

in faster convergence. These algorithms usually require high

storage capacity and are widely used in networks with large

number of weights. Last, Newton’s based learning algorithms

generally provide better and fast optimization than conjugate

gradient methods. Based in the Hessian matrix (second deriva-

tives) of the performance index at the current values of the

weight and biases, their convergence is faster although their

complexity usually introduce an extra computational burden

for the calculation of the Hessian matrix.

Recently, the ELM algorithm has been proposed to train

single hidden layer feedforward neural networks [66, 67],

which has emerged as an efficient algorithm that provides

accurate results in much less time. Traditional gradient-based

learning algorithms assume that all the parameters (weight

and bias) of the feedforward networks need to be tuned,

establishing a dependency between different layers of param-

eters and fostering very slow convergence. In [119, 120], it

was first shown that a SLFN (with N hidden nodes) with

randomly chosen input weights and hidden layer biases can

exactly learn N distinct observations, which means that it

may not be necessary to adjust the input weights and first

hidden layer biases in applications. In [66], it was proved

that the input weights and hidden layer biases of a SLFN can

be randomly assigned if the activation function of the hidden

layer is infinitely differentiable, which allow to determinate the

rest of parameters (weights between hidden and output layers)

analytically, being the SLFN a linear system. This fact leads

to a significative decrease of the computational complexity of

the algorithm, making it much faster than its predecessors, and

turning ELM in the main alternative specially in the analysis

of large amount of data.

Let (xiti) be n distinct samples where xi =
[xi1, xi2, ..., xid]

T ∈ IRd and ti = [ti1, ti2, ..., tiK ]T ∈ IRK ,

where d is the spectral dimensionality of the data and K the

number of spectral classes. A SLFN with L hidden nodes and

activation function f(x) can be expressed as:

L∑

i=1

βifi(xj) =

L∑

i=1

βif(wi · xj + bi) = oj , j = 1, ..., n, (1)

where wi = [wi1, wi2, ..., wid]
T is the weight vector con-

necting the ith hidden node and the input nodes, βi =
[βi1, βi2, ..., βiK ]T is the weight vector connecting the ith

hidden node and the output nodes, bi is the bias of the ith

hidden node and f(wi ·xj+bi) is the output of the ith hidden

node regarding the input sample xi. The above equation can

be rewritten compactly as

H · β = Y, (2)

H =




f(w1 · x1 + b1) . . . f(wL · x1 + bL)

... . . .
...

f(w1 · xn + b1) . . . f(wL · xn + bL)



L×L

, (3)

β =




βT
1

...

βT
L



L×K

,Y =




yT
1

...

yT
L



n×K

(4)

where H is the output matrix of the hidden layer and β is the

output weight matrix. The objective is to find specific ŵi, b̂i, β̂
(i = 1, ..., L) so that:

||H(ŵi, b̂i)β̂ −Y||2 =

minwi,bi,β ||H(w1, . . . ,wL, b1, . . . , bL)β −Y||2. (5)

As mentioned before, traditionally, the minimum of ||Hβ−
Y||2 is calculated using gradient-based learning algorithms.

The main issues related with these traditional methods are:

1) First and foremost, all gradient-based learning algo-

rithms are very time-consuming in most applications.

This became an important problem when classifying

hyperspectral data.

2) The size of the learning rate parameter strongly affects

the performance of the network. Too small values gener-

ate very slow convergence process while too large scores

in η make the learning algorithm became unstable and

to diverge.

3) The error surface generally presents local minima.

Gradient-based learning algorithms can get stuck at a

local minima. This can be an important issue if this local

minima is far above a global minima.

4) FNs can be overtrained using BP-based algorithms, thus

obtaining worse generalization performance. The effects

of overtraining can be alleviated using regularization or

early stopping criteria [121].

It has been proved in [66] that the input weights wi and

the hidden layer biases bi do not need to be tuned so that the

output matrix of the hidden layer H can remain unchanged

after a random initialization. Fixing the input weights wi and

the hidden layer biases bi means that training an SLFN is

equivalent to find a least-squares solution β̂ of the linear

system Hβ = Y. Different from the traditional gradient-based
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learning algorithms, ELM aims to reach not only the smallest

training error but also the smallest norm of output weights.

Minimize: ||Hβ −Y||2 and ||β||2. (6)

Let h(x) = [f(w1 ·x+b1), ..., f(wL ·x+bL)], if we express

equation (9) from the optimization theory point of view

minβ
1
2 ||β||

2
2 + C 1

2

∑n

i=1 ξ
2
i , (7)

s.t. h(xi)β = yT
i − ξ2i , i = 1, ..., n, (8)

where ξ2i is the training error of training sample xi and C

is a regularization parameter. The output of ELM can be

analytically expressed as

h(x)β = h(x)HT (
I

C
+HHT )−1Y. (9)

This expression can be generalized to kernel version of

ELM using the kernel trick [71]. The inner product operation

considered in h(x)HT and HHT can be replaced by a kernel

function: h(xi) · h(xj) = k(xi,xj). Both the regularized and

kernel extensions of the traditional ELM algorithm require the

setting of the needed parameters (C and all kernel-dependent

parameters). When compared with traditional learning algo-

rithms, ELM has the following advantages:

1) There is no need to iteratively tuning the input weights

wi and the hidden layer biases bi using slow gradient-

based learning algorithms.

2) Derived from the fact that ELM tries to reach both the

smallest training error and the smallest norm of output

weights, this algorithm exhibits better generalization per-

formance in most cases when compared with traditional

approaches.

3) The learning speed of ELM is much faster than in the

traditional gradient-based learning algorithms. Depend-

ing on the application, ELM can be tens to hundreds of

times faster [66].

4) The use of ELM avoids inherent problems to gradient-

descent methods such as getting stucked in a local

minima or overfitting the model [66].

III. SUPPORT VECTOR MACHINES

Support vector machines (SVMs) [115] have been often

used for the classification of hyperspectral data due to their

capability to handle high dimensional data with a limited

number of training samples. The goal is to define an opti-

mal linear separating hyperplane (the class boundary) within

a multidimensional feature space that differentiates training

samples of two classes. The best hyperplane is the one that

leaves the maximum margin from both classes. The hyperplane

is obtained using an optimization problem that is solved via

structural risk minimization. In this way, in contrast with

statistical approaches, SVMs minimize classification error on

unseen data without any prior assumptions made on the

probability distribution of the data [122].

The SVM tries to maximize the margins between the hy-

perplane and the closest training samples [75]. In other words,

in order to train the classifier only samples that are close to

the class boundary are needed to locate the hyperplane vector.

This is why the closest training samples to the hyperplane are

called support vector. More importantly, since only the closest

training samples are influential on placing the hyperplane in

the feature space, SVM can classify the input data efficiently

even if only a limited number of training samples is available

[2, 115, 123, 124]. In addition, SVMs can efficiently handle the

classification of noisy patterns and multimodal feature spaces.

With regards to a binary classification problem in a d-

dimensional feature space IRd, xi ∈ IRd, i =1, . . . , n is a

set of n training samples with their corresponding class labels

yi ∈ {1,+1}. The optimal separating hyperplane f(x) is

determined by a normal vector w ∈ IRd and the bias b, where

|b|/||w|| is the distance between the hyperplane and the origin,

with ||w|| as the Euclidean norm from w:

f(x) = wx+ b. (10)

The support vectors lie on two canonical hyperplanes wx +

b = ±1 that are parallel to the optimal separating hyperplane.

The margin maximization leads to the following optimization

problem:

min
w2

2
+ C

n∑

i

υi, (11)

where the slack variables υi and the regularization parameter

C are considered to deal with misclassified samples in a non

separable cases, i.e., cases that are not linearly separable. The

regularization parameter is a constant used as a penalty for

samples that lie on the wrong side of the hyperplane. It is able

to efficiently control the shape of the solution of the decision

boundary. Thus, it affects the generalization capability of the

SVM (e.g., a large value of C may cause the approach to

overfit the training data) [97].

The SVM described above is a linear classifier, while deci-

sion boundaries are often nonlinear for classification problems.

To tackle this issue, kernel methods are required to extend

the linear SVM approach to nonlinear cases. In such cases,

a nonlinear mapping is used to project the data into a high-

dimensional feature space. After the transformation, the input

pattern x can be described by Φ(x).

(Φ(xi),Φ(xj)) = k(xi,xj). (12)

The transformation into the higher-dimensional space can

be computationally intensive. The computational cost can be

decreased using a positive definite kernel k, which fulfills the

so-called Mercer’s conditions [77, 97]. When the Mercer’s

conditions are met, the final hyperplane can be defined by

f(x) = (

n∑

i=1

αiyik(xi,xj) + b), (13)

where αi denotes the Lagrange multipliers. For a detailed

derivation of (13) we refer readers to [125]. In the new feature

space, an explicit knowledge of Φ is not needed. The only

required knowledge lies on the kernel function k. Therefore,

one needs to estimate the parameters of the kernel function

as well as the regularization parameter. To solve this issue, an

automatic model selection based on a cross-validation have
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been introduced [126]. In [127], a genetic algorithm-based

approach was used to regulate hyperplane parameters of an

SVM while it finds efficient features to be fed to the classifier.

In terms of kernels, the Gaussian radial basis function (RBF)

kernel may be the most widely used one in remote sensing

[77, 97]. This kernel can handle more complex, nonlinear class

distributions in comparison with a simple linear kernel, which

is just a special case of the Gaussian RBF kernel [1, 128].

SVMs were originally developed for binary classification

problems. In general, one needs to deal with multiple classes

in remote sensing [1]. To address this, several multiclass

strategies have been introduced in the literature. Among

those approaches, two main strategies are best-known, which

are based on the separation of the multiclass problem into

several binary classification problems [129]. These are the

one-against-one strategy and the one-against-rest strategy [97].

Some important points are listed bellow:

1) The capability of the SVM in handling a limited number

of training samples, self-adaptability, a swift training

stage and easiness of the use are considered as the

main advantages of this classifier. In addition, SVMs

are resilient to getting trapped in local minima since

the convexity of the cost function enables the classi-

fier to consistently identify the optimal solution [122].

More precisely, SVM deals with quadratic problems

and as a result, it guarantees to the global minimum.

Furthermore, the result of the SVM is stable for the

same set of training samples and there is no need to

repeat the classification step as this is a case for many

approaches such as neural networks. Last but not least,

SVMs are non-parametric, and do not assume a known

statistical distribution of the data to be classified. This is

considered as an important advantage due to the fact that

the data acquired from remotely sensed imagery usually

have unknown distributions [122].

2) One drawback of the SVM lies on the setting of the

key parameters. For example, choosing a small value

for the kernel width parameter may cause overfitting

while a large value may cause oversmoothing, which

is a common drawback of all kernel-based approaches.

Moreover, the choice of the regularization parameter

C, which controls the trade-off between maximizing

the margin and minimizing the training error, is highly

important.

For further reading, a detailed introduction of SVM is given

by Burges [125], Cristianini and Shawe-Taylor [130], and

Scholkopf and Smola [77].

IV. MULTINOMIAL LOGISTIC REGRESSION (MLR)

The MLR models the posterior densities p(yi|xi,ω) as

follows [32]

p(yi = k|xi,ω) =
exp(ω(k)TΦ(xi))∑K

k=1 exp(ω
(k)TΦ(xi))

, (14)

where ω = [ω(1)T , ...,ω(K−1)T ]T are the logistic regressors.

Again, yi is the class label of pixel xi ∈ R
d and d is the

number of bands, K is the number of classes. Since the density

in (14) does not depend on translations of the regressors ω(k),

we take ω
(K) = 0. The term Φ(x) = [φ1(x), ..., φl(x)]

T

is the fixed functions of the input, often termed features.

The open structure of Φ(x) leads to the flexible selection of

the input features, i.e, it can be linear, kernel and nonlinear

functions. In order to control the algorithm complexity and

its generalization capacity, the regressor ω is modeled as a

random vector with Laplacian density [131]:

p(ω) ∝ exp(−λ‖ω‖1), (15)

where λ is the regularization parameter controlling the degree

of sparsity of ω.

In the present problem, under a supervised scenario, learn-

ing the class density amounts to estimating the logistic re-

gressors ω, which can be done by computing the maximum a

posterior (MAP) estimate of ω:

ω̂ = argmax
ω

ℓ(ω) + log p(ω), (16)

where ℓ(ω) is the log-likelihood function over the labeled

training samples. For supervised learning, it is given by

ℓ(ω) ≡
n∑

i=1

log p(yi = k|xi,ω), (17)

where n is the number of training samples. Problem (16),

although convex, it is difficult to compute because the term of

ℓ(ω) is non-quadratic and the term log p(ω) is non-smooth.

Following [32], ℓ(ω) can be estimated by a quadratic function.

However, the problem is still difficult as log p(ω) is non-

smooth. This optimization problem (16) can be solved by

the SMLR in [131] and by the fast SMLR (FSMLR) in [35].

However, most hyperspectral data sets are beyond the reach

of these algorithms, as their processing becomes unbearable

when the dimensionality of the input features increases. This

is even more critical in the frameworks of composite kernel

learning and multiple feature learning. In order to address this

issue, the LORSAL algorithm is proposed in [36, 37] to deal

with high-dimensional features and leads to good success in

hyperspectral classification. For more information about the

LORSAL algorithm, please see [33, 37].

The advantages of MLR are finally listed as follows:

1) MLR classifiers are able to learn directly the posterior

class distributions and deal with the high dimensionality

of hyperspectral data in a very effective way. The class

posterior probability plays a crucial role in the complete

posterior probability under the Bayesian framework to

include the spectral and spatial information.

2) The sparsity inducing prior on the regressors leads to

sparse estimates, which allows us to control the algo-

rithm complexity and their generalization capacity.

3) The open structure of the MLR results in a good

flexibility for the input functions, which can be linear,

kernel-based and nonlinear.

V. RANDOM FORESTS (RFS)

RFs were proposed in [95] as an ensemble method for

classification and regression. Ensemble classifiers get their

name from the fact that several classifiers, i.e., an ensemble
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of classifiers, are trained and their individual results are then

combined through a voting process [132, 133]. In other words,

the classification label is allocated to the input vector (x)

through yBrf = majority vote {yb(x)}
B

1 , where yb(x) is the

class prediction of the bth tree and B shows the total number

of trees. RFs can be considered as a particular case of decision

trees. However, since RFs are composed of many classifiers, it

infers special characteristics that make it completely different

from a traditional classification trees and, therefore, it should

be understood as a new concept of classifiers [134].

The training algorithm for RFs applies the general technique

of bootstrap aggregating, or bagging, to tree learners [94].

Bootstrap aggregating is a technique used for training data

creation by resampling the original data set in a random

fashion with replacement (i.e., there is no deletion of the data

selected from the input sample for generating the next subset)

[134]. The bootstrapping procedure leads to more efficient

model performance since it decreases the variance of the

model without increasing the bias. In other words, while the

predictions of a single tree are highly sensitive to noise in its

training set, the average of many trees is not that sensitive as

far as the trees are not correlated [135]. By training many

trees on a single training set, strongly correlated trees (or

even the same tree many times, if the training algorithm is

deterministic) are produced. Bootstrap sampling decorrelates

the trees by showing them different training sets. RF uses

trees as base classifiers, {h(x, θk), k = 1, . . . , }, where x

and θk are the set of input vectors and the independent and

identically distributed random vectors [95, 136]. Since some

data may be used more than once for the training of the

classifier while some others may not be used, greater classifier

stability is achieved. This makes the classifier more robust

when a slight variations in input data occurs and consequently,

higher classification accuracy can be obtained [134, 136].

As mentioned in several studies such as [90, 91, 134, 137],

methods based on bagging such as RFs, in contrast with

other methods based on boosting, are not sensitive to noise

or overtraining.

In RFs, there are only two parameters in order to generate

the prediction model: the number of trees and the number of

prediction variable. The number of trees is a free parameter,

which can be chosen with respect to the size and nature

of the training set. One possible way to choose the optimal

number of trees is based on cross-validation or by observing

the out-of-bag error [95, 133, 138]. For a detailed information

regarding RFs and their different implementations please see

[1, 132, 133]. The number of prediction variable is referred to

the only adjustable parameter to which the forest is sensitive.

As mentioned in [1], the “optimal” range of this parameter

can be quite wide. However, the value is usually set approx-

imately to the square root of the number of input features

[132, 133, 139, 140].

Using RFs, the out-of-bag error, the variable importance,

and proximity analysis, can be driven. In order to find detailed

information about the RF and its derived parameters, please

see [1, 88, 95, 132, 133, 133, 138]. Below, some important

points of RFs are listed:

1) RFs are quite flexible and they can handle different

scenarios such as large number of attributes, very limited

number of training samples, and small or large data sets.

In addition, they are easy and quick to evaluate.

2) RFs do not assume any underlying probability distribu-

tion for input data and can provide a good classification

result in terms of accuracies, and can handle many

variables and a lot of missing data. Another advantage

of RF classifier is that it is insensitive to noise in the

training labels. In addition, RF provides an unbiased

estimate of the test set error as trees are added to the

ensemble and finally it does not overfit.

3) The generated forest can be saved and used for other

data sets.

4) In general, for sparse feature vectors, which is the case

in most high dimensional data, a random selection of

features may not be efficient all the time since uninfor-

mative or correlated features might be selected which

downgrades the performance of the classifier.

5) Although RFs have widely been used for classification

purposes, a gap still remains between the theoretical

understanding of RFs and their corresponding practical

use. A variety of RF algorithms have introduced showing

promising practical success. However, these algorithms

are difficult to analyze, and the basic mathematical

properties of even the original variant are still not well

understood [141].

VI. DEEP LEARNING-BASED APPROACHES

There are some motivations to extract the invariant fea-

tures from hyperspectral data. First, undesired scattering from

neighboring objects may deform the characteristics of the ob-

ject of interest. Furthermore, different atmospheric scattering

conditions and intra-class variability make it extremely diffi-

cult to extract the features effectively. Moreover, hyperspectral

data quickly increased in volume, velocity and variety, so it is

difficult to analyze in the complicated real situation. On the

other hand, it is believed that deep models can progressively

lead to more invariant and abstract features at higher layers

[102]. Therefore, deep models have the potential to be a

promising tool. Deep learning involved a number of models

including stacked auto-encoders (SAE) [142], deep belief

networks (DBN) [143], and deep convolutional neural network

(CNN) [144].

A. Stacked Auto-Encoder (SAE)

Auto-encoder (AE) is the basic part of SAE [142]. As shown

in Fig. 3, an AE contains one visible layer of d inputs, one

hidden layer of L units, and one reconstruction layer of d units.

During training procedure, x ∈ IRd is mapped to z ∈ IRL in

the hidden layer, and it is called “encoder”. Then, z is mapped

to r ∈ IRd by a “decoder”, which is called “reconstruction”.

These two steps can be formulated as:

z = f(wzx+ bz),

r = f(wrx+ br),

where wz and wr denote the input-to-hidden and the hidden-

to-output weights, respectively. bz and br denote the bias
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“y” from input “x” “z”Fig. 3. Single hidden layer auto-encoder. The model learns a hidden feature
“z” from input “x” by reconstructing it on “r”.
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Fig. 4. A typical instance of a SAE connected with a subsequent logistic
regression classifier.

of hidden and output units, and f(.) denotes the activation

function.

Stacking the input and hidden layers of auto-encoders

together layer by layer constructs an SAE. Fig. 4 shows

a typical instance of a SAE connected with a subsequent

logistic regression classifier. The SAE can be used as a spectral

classifier.

B. Deep Belief Networks (DBN)

Restricted Boltzmann machine (RBM) is a layer-wise train-

ing model in the construction of a DBN [143]. As shown

in Fig. 5, it is a two-layer network with “visible” units

v = {0, 1}
d

and “hidden” units h = {0, 1}
L

. A joint

configuration of the units has an energy given by:

E(v, h; θ) = −

d∑

i=1

bivi −

L∑

j=1

ajhj −

d∑

i=1

L∑

j=1

wijvihj (18)

= −bTv − aTh − vTwh

where θ = {bi, aj , wij}, in which wij is the weight between

visible unit i and hidden unit j; bi and aj are bias terms of

visible and hidden unit, respectively. The learning of wij is

done by a method called constructive divergence [143].

Due to the complexity of input hyperspectral data, RBM is

not the best way to capture the features. After the training of

RBM, the learnt features can be used as the input data for the

following RBM. This kind of layer-by-layer learning system

constructs a DBN. As shown in Fig. 6, a DBN is employed

for feature learning and add a logistic regression layer above

the DBN to constitute a DBN-logistic regression (DBN-LR)

framework.
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Fig. 5. Graphical illustration of a restricted Boltzmann machine. The top
layer represents the hidden units and the bottom layer represents the visible
units

𝐸(𝐯, 𝐡; θ) = − ∑ 𝑏𝑖𝑣𝑖 − ∑ 𝑎𝑗ℎ𝑗 − ∑ ∑ 𝑤𝑖𝑗𝑣𝑖ℎ𝑗           𝐹
𝑗=1

𝐷
𝑖=1

𝐿
𝑗=1

𝑑
𝑖=1= −𝐛𝐓𝐯 − 𝐚𝐓𝐡 − 𝐯𝐓𝐰𝐡                                    (3)θ = {𝑏𝑖 , 𝑎𝑗 , 𝑤𝑖𝑗}  𝑤𝑖𝑗 𝑖 𝑗 𝑏𝑖 𝑎𝑗 𝑤𝑖𝑗  

𝐱𝑗𝑙 = 𝑓 (∑ 𝐱𝑖𝑙−1 ∗𝑀
𝑖=1 𝐤𝑖𝑗𝑙 + 𝐛𝑗𝑙)             (4)

𝐱𝑖𝑙−1 i (𝑙 − 1) 𝐱𝑗𝑙 𝑗 (𝑖)𝑀 𝐤𝑖𝑗𝑙 𝐛𝑗𝑙𝑓(. ) ∗

Pixel vectorHyperspectral data

RBM1 RBM2
Logistic 

regression

Output: 

Class labels

Input

RBM3

Deep belief network

Fig. 6. A spectral classifier based on DBN. The classification scheme shown
here has four layers: one input layer, 2 RBMs, and a logistic regression layer.

C. Deep Convolutional Neural Network (CNN)

CNN is a special type of deep learning model which is

inspired by neuroscience. A complete CNN stage contains a

convolution layer with nonlinear operation and a pooling layer.

A convolutional layer is as follows 1:

xl
j = f

(
M∑

i=1

xl−1
i ∗ kl

ij + blj

)
,

where xl−1
i is the i-th feature map of (l-1)-th layer, xl

j is the

j-th feature map of current (i)-th layer, and M is the number

of input feature maps. kl
ij and blj are the trainable parameters

in the convolutional layer. f(.) is a nonlinear function and ∗
is the convolution operation.

Pooling operation offers invariance by reducing the reso-

lution of the feature maps. The neuron in the pooling layer

combines a small N × 1 patch of the convolution layer and

the most common pooling operation is max pooling.

A convolution layer, nonlinear function and pooling layer

are three fundamental parts of CNNs [146]. By stacking

several convolution layers with nonlinear operation and several

pooling layers, a deep CNN can be formulated. Deep CNN can

hierarchically extract the features of inputs, which tend to be

invariant and robust [102].

The architecture of a deep CNN for spectral classification

is shown in Fig. 7. The input of the system is a pixel vector

of hyperspectral data and the output is the label of the pixel to

be classified. It consists of two convolutional and two pooling

layers as well as a logistic regression layer. After convolution

and pooling, the pixel vector can be converted into a feature

vector, which captures the spectral information.

1It should be noted that we here explain 1D CNN as this paper deals with
spectral classifiers. In order to find detailed information about 2D and 3D
CNN for the classification of hyperspectral data, please see [145]
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Fig. 7. Spectral classifier based on deep CNN.

D. Discussion about deep learning approaches

The following aspects are worth being mentioned about

deep learning-based approaches:

1) Recently, some deep models have been employed into

hyperspectral data feature extraction and classification.

Deep learning opens a new window for future research,

showcasing the deep learning-based methods’ huge po-

tential [147].

2) The architecture design is the crucial part of a successful

deep learning model. How to design a proper deep net is

still an open area in machine learning community, while

we may use grid search to find a proper deep model.

3) Deep learning methods may lead to a serious problem

called overfitting, which means that the results can be

very good on the training data but poor on the test data.

To deal with the issue, it is necessary to use powerful

regularization methods.

4) Deep leaning methods can be combined with other

methods such as sparse coding and ensemble learning,

which is another research area in hyperspectral data

classification.

VII. EXPERIMENTAL RESULTS

This section describes our experimental results. First, we de-

scribe the different hyperspectral data sets used in experiments.

Then, we describe the setup for the different algorithms to be

compared. We next present the obtained results and provide

a detailed discussion about the use of the different classifiers

tested in different applications.2

A. Data Description

1) Pavia University: This hyperspectral data set has been

repeatedly used. This data set was captured on the city of

Pavia, Italy by the ROSIS-03 (Reflective Optics Spectro-

graphic Imaging System) airborne instrument. The flight over

the city of Pavia, Italy, was operated by the Deutschen Zen-

trum für Luft- und Raumfahrt (DLR, the German Aerospace

Agency) within the context of the HySens project, managed

and sponsored by the European Union. The ROSIS-03 sensor

has 115 data channels with a spectral coverage ranging from

0.43 to 0.86 µm. Twelve channels have been removed due

to noise. The remaining 103 spectral channels are processed.

2The sets of training and test samples used in this paper are available on
request by sending an email to the authors.

Asphalt

Meadows

Gravel

Trees

Metal sheets 

Bare soil

Bitumen

Bricks

Shadows  

(a) (b) (c)

Fig. 8. ROSIS-03 Pavia University hyperspectral data. (a) Three band false
color composite, (b) Reference data and (c) Color code.

TABLE II
PAVIA UNIVERSITY: NUMBER OF TRAINING AND TEST SAMPLES.

Class Number of Samples

No Name Total

1 Asphalt 6304
2 Meadow 18146
3 Gravel 1815
4 Tree 2912
5 Metal Sheet 1113
6 Bare Soil 4572
7 Bitumen 981
8 Brick 3364
9 Shadow 795

Total 40,002

The data have been corrected atmospherically, but not ge-

ometrically. The spatial resolution is 1.3 m per pixel. The

data set covers the Engineering School at the University of

Pavia and consists of different classes including: trees, asphalt,

bitumen, gravel, metal sheet, shadow, bricks, meadow and soil.

This data set comprises 640 × 340 pixels. Fig. 8 presents a

false color image of ROSIS-03 Pavia University data and its

corresponding reference samples. These samples are usually

obtained by manual labeling of a small number of pixels in

an image or based on some field measurements. Thus, the

collection of these samples is expensive and time demanding

[2]. As a result, the number of available training samples is

usually limited, which is a challenging issue in supervised

classification.
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Fig. 9. ROSIS-03 Pavia University hyperspectral data. (a) Three band false
color composite, (b) Reference data and (c) Color code.

TABLE III
INDIAN PINES: NUMBER OF TRAINING AND TEST SAMPLES.

Class Number of Samples

No Name Total

1 Corn-notill 1434
2 Corn-mintill 834
3 Corn 238
4 Grass-pasture 497
5 Grass-trees 747
6 Hay-windrowed 489
7 Soybean-notill 968
8 Soybean-mintill 2468
9 Soybean-clean 614
10 Wheat 212
11 Woods 1294
12 Bldg-grass-tree-drives 380
13 Stone-Steel-Towers 95
14 Alfalfa 54
15 Grass-pasture-mowed 26
16 Oats 20

Total 10,366

2) Indian Pines: This data set was acquired by the Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over

the agricultural Indian Pines test site in northwestern Indiana.

The spatial dimensions of this data set are 145 × 145 pixels.

The spatial resolution of this data set is 20m per pixel. This

data set originally includes 220 spectral channels but 20

water absorption bands (104-108, 150-163, 220) have been

removed, and the rest (200 bands) were taken into account

for the experiments. The reference data contains 16 classes of

interest, which represent mostly different types of crops and

are detailed in Table III. Fig. 9 shows a three-band false color

image and its corresponding reference samples.

3) Houston Data: This data set was captured by the

Compact Airborne Spectrographic Imager (CASI) over the

University of Houston campus and the neighboring urban area

in June, 2012. The size of the data is 349 × 1905 with

the spatial resolution of 2.5m. This data set is composed of

144 spectral bands ranging 0.38-1.05m. This data consists of

15 classes including: Grass Healthy, Grass Stressed, Grass

Synthetic, Tree, Soil, Water, Residential, Commercial, Road,

Highway, Railway, Parking Lot 1, Parking Lot 2, Tennis Court

and Running Track. The “Parking Lot 1” includes parking

garages at the ground level and also in elevated areas, while

“Parking Lot 2” corresponded to parked vehicles. Table IV

demonstrates different classes with the corresponding number

of training and test samples. Fig. 10 shows a three-band false

color image and its corresponding already-separated training

TABLE IV
HOUSTON: NUMBER OF TRAINING AND TEST SAMPLES.

Class Number of Samples

No Name Training Test

1 Grass Healthy 198 1053
2 Grass Stressed 190 1064
3 Grass Synthetic 192 505
4 Tree 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot 1 192 1041
13 Parking Lot 2 184 285
14 Tennis Court 181 247
15 Running Track 187 473

Total 2,832 12,197

Thematic classes:

Healty grass Stressed grass Synthetic grass Tree Soil

Water Residential Commercial Road Highway

Railway Parking lot 1 Parking lot 2 Tennis court Running track

Fig. 10. Houston - From top to bottom: A color composite representation of
the hyperspectral data using bands 70, 50, and 20, as R, G, and B, respectively;
Training samples; Test samples; and legend of different classes.

and test samples.

B. Algorithm Setup

In this paper two different scenarios are defined in order to

evaluate different approaches. For the first scenario, training

samples have been chosen with different percentages from the

available reference data. For this scenario, only Indian Pines

and Pavia University are taken into consideration. In this paper,

1, 5, 10, 15, 20, and 25 percents of the whole samples have

been randomly selected as training, except for classes alfalfa,

grass-pasture-mowed and oats. These classes contain only a

small number of samples in the reference data. Therefore, only

15 samples for each of these classes were chosen at random

as training samples and the rest as the test samples. For Pavia

University, 1, 5, 10, 15, and 20 percents of the whole samples

have been randomly selected as training and the rest as test

samples. The experiments have been repeated 10 times, and

the mean and the standard deviation of the obtained overall

accuracy (OA) have been reported in the paper.
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For the second scenario, the Houston data is taken into

account. The training and test samples of this data have been

separated (Table IV). Results have been evaluated using OA,

AA, K, and class specific accuracies.

The following classifiers have been investigated and com-

pared in two different scenarios, discussed above:

• SVM (Support Vector Machine),

• RF (Random Forest),

• BP (Back Propagation Neural Network, also known as

Multilayer Perceptron),

• ELM (Extreme Learning Machine),

• KELM (Kernel Extreme Learning Machine),

• 1D CNN (1-dimensional Convolutional Neural Network),

• MLR (Multinomial Logistic Regression).

For the MLR classifier, which is executed by LORSAL

algorithm [36, 37], we use a Gaussian Radial Basis Function

(RBF) kernel given by K(x, z) = exp(−‖x − z‖2/2σ2),
which is widely used in hyperspectral image classification

problems [148]. For the parameters involved in the algorithm,

we use the default settings provided in the online demo3,

where it illustrates that the MLR classifier is insensitive to

the parameter settings, which also can be observed in the

following experiments.

In terms of the SVM, the RBF kernel is taken into account.

The optimal hyperplane parameters C (parameter that controls

the amount of penalty during the SVM optimization) and γ
(spread of the RBF kernel) have been traced in the range of

C = 10−2, 10−1, ..., 104 and γ = 10−3, 10−2, ..., 104 using

five-fold cross validation.

In terms of the RF, the number of trees is set to 300.

The number of the prediction variable is set approximately

to the square root of the number of input bands. The same

parameters have been used for all experiments stating that the

RF is insensitive to the parameter initialization.

Regarding the BP-based neural network classifier (also

known as Multilayer Perceptron, MLP), the network has only

one hidden layer and the number of hidden nodes has been

empirically set within the range
(n+K)×2

3 ±10. The number of

input nodes equals the number of spectral bands of the image

while the number of output nodes equals the number of spec-

tral clasess. Hidden nodes have sigmoid activation functions

while output nodes implement softmax activation function. The

implemented learning algorithm is scaled conjugate gradient

backpropagation [64]. During the experiments, we empirically

adjust the early stopping parameters to achieve reasonable

performance goals.

In the case of ELM, the network has also one single

hidden layer. The number of nodes L and the regulariza-

tion parameter C [149] have been traced in the ranges of

L = 400, 600, 800, ..., 2000 and C = 10−3, 10−2, ..., 104

using five-fold cross validation.

For the KELM, the RBF kernel is considered. Again, the

regularization parameter C and the kernel parameter γ have

been searched in the ranges C = 10−3, 10−1, ..., 104 and γ =
2−3, 2−2, ..., 24 also using five-cross validation.

3http://www.lx.it.pt/∼jun/demo LORSAL AL.rar.
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Fig. 11. The Architectures of 1D CNN on Three Data Sets.

For 1D CNN, the important parameters are the kernel

size, number of layers, number of feature maps, number of

neurons in hidden layer, and learning rate. Figure 11 shows the

architectures of the deep 1D CNN used for the experimental

part. As an example, for the Indian Pines data set there are 13

layers, denoted as I1, C2, S3, C4, S5, C6, S7, C8, S9, C10,

S11, F12, and O13 in sequence. I1 is the input layer. C refers

to the convolution layers and S refers to pooling layers. F12 a

fully-connected layer, and O13 is the output layer of the whole

neural network. The input data are normalized into [-1 1]. The

learning rate is set to 0.005, and the training epoch is 700 for

Indian Pines data set. For Pavia University data set, we set

the learning to 0.01, and the number of epochs to 300. For

the Houston data set, the learning is 0.01 with 500 epochs.

Fig. 12 shows the overall accuracy of different approaches

(i.e., the average value over 10 runs) on different percentages

of training samples on Indian Pines and Pavia University. In

order to evaluate the stability of different classifiers on the

change of training samples, the standard deviation value over

10 runs for each percentage is estimated and shown in Fig. 13.

For the Houston hyperspectral data, since the training and

test sets have been already separated, we performed the

classifiers on the standard set of training/test samples. The

classification accuracies (i.e., overall accuracy (OA), average

accuracy (AA), kappa coefficient (Kappa), and class specific

accuracies) are reported in Table V. The classification maps

of this data set are shown in Fig. 14.

C. Results and Discussion

The main observations obtained from our experimental

results are listed systematically as follows:

• SVM vs. RF: Although both classifiers have the same

number of hyperparameters to tune (i.e., RBF SVM has

γ and C, and RFs have the number of trees and the depth

of the tree), RFs’ parameters are easier to set. In practice,

the more trees we have the higher classification accuracy

of RFs can be obtained. RFs are trained faster than

kernel SVM. A suggested number of trees can be varied

from 100 to 500 for the classification of hyperspectral

data. However, with respect to our experiments, the SVM

established higher classification accuracies than RFs.

• SVM vs. BP: the SVM classifier presents the series of

advantages over the BP classifier. The SVM exhibits less
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computational complexity even when the kernel trick is

used and, usually, provides better results when a small

number of training is available. However, if BP config-

uration is properly tuned, both classifiers can provide

comparable classification accuracies. Last but not least,

the BP is much more complex from a computational point

of view. Actually, in this work we use the scaled conju-

gate gradient backpropagation algorithm which presents

a practical complexity of O((n((dLK)+L+K))2) (the

square of the number of weights of the network), where n
the number of training patterns, d the number of spectral

bands, L the number of hidden nodes and K the number

of classes) [64].

• SVM vs. ELM: From an optimization point of view,

ELM presents the same optimization cost function as

least square SVM (LS-SVM) [150] but much less com-

putational complexity. In general terms, ELM training is

tens or hundreds of times faster than traditional SVM.

Regarding the classification accuracy, it can be seen that

ELM achieves comparable results.

• SVM vs. KELM: still in the case of kernel version of

ELM, the computational complexity of SVM is much

bigger than KELM. It can be seen that KELM slightly

outperforms SVM in terms of classification accuracy.

Experimental validation shows that the kernel used in

KELM and SVM is more efficient than the activation

function used in ELM.

• BP vs. ELM vs. KELM: at the light of the results, it

can be seen how the three versions of the single layer

feedforward neural network provides competitive results

in terms of accuracy. However, it should be noticed that

both ELM and KELM are in the order of hundreds or

even thousands of times faster than BP. Actually, ELM

and KELM have a practical complexity of O(L3+L2n+
(K+d)Ln) and O(2n3+(K+d)n2) respectively [151].

• SVM vs. 1D CNN: The main advantage of 2D and

3D CNNs is that they use local connections to handle

spatial dependencies. In this work, however, 1D CNN is

taken into account to have a fair comparison with other

spectral approaches. In general, SVM can obtain higher

classification accuracies in a faster way than 1D CNN,

so the use of SVMs over 1D CNN is recommended. In

terms of CPU processing time, deep learning methods are

time-consuming in the training step. Compared to SVM,

the training time of 1D deep CNN is about 2 or 3 times

longer than RBF-SVM. On the other hand, the advantage

of deep CNN is that it is extremely fast on the testing

stage.

• Last but not least, some advantages of MLR (executed via

LORSAL) in comparison with other methods are listed

as follows.

– It converges very fast and is relatively insensitive

to parameter settings. In our experiments, we use

the same settings for all data sets and received

very competitive results in comparison with those

obtained from other methods.

– It has very low computational cost, with a practical

Fig. 12. Scenario 1 - Overall Accuracy: The overall accuracy of different
approaches (i.e., the average value over 10 runs) on different percentages of
training samples on Indian Pines and Pavia University obtained by different
classification approaches.

complexity of O(d2(K − 1)).

For illustrative purposes, Fig. 12 provides a comparison of

the different classifiers tested in this work with the Indian

Pines and Pavia University scenes (in terms of overall ac-

curacy). As shown by Fig. 12, different classifiers provide

different performances for the two considered images, indi-

cating that there is no classifier consistently providing the

best classification results for different scenes. The stability

of the different classifiers with the two considered scenes is

illustrated in Fig. 13, which demonstrate how much a classifier

is stable with respect to some changes on the available training

sets. Furthermore, Table V gives detailed information about

classification accuracies obtained by different approaches in

a different application domain, represented by the Houston

data set. In this case, the optimized classifiers also perform

similarly in terms of classification accuracy, so ultimately the

choice of a given classifier is more driven by the simplicity of

tuning the parameters and configurations rather than the ob-

tained classification results. This is an important observation,

as it is felt that the hyperspectral community has reached a

point in which many classifiers are able to provide very high

classification accuracies. However, the competitive differences

between existing classifiers is more related to their simplicity

and tuning configurations. In this regard, our assessment of

the characteristics of different algorithms and their tuning is

believed to provide helpful insights regarding the choice of a

given classifier in a certain application domain
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Fig. 13. Scenario 1 - Stability: The standard deviation value over 10 runs on
different percentages of training samples on Indian Pines and Pavia University
obtained by different classification approaches.

With the aforementioned observations in mind, we can

interpret the results provided in Table VI in more details. In

this table, One bullet refers to the worst performance while

four bullets refer to the best performance. It can be observed

that the KELM can provide high classification accuracies in

a short period of time, while the obtained results are also

stable with respect to some changes of the input training

samples. SVM and MLR also show a fair balance between

the accuracy, automation (i.e., can be obtained with respect to

the number of parameters needs to be adjusted), speed (i.e., it

was evaluated based on the demanded CPU processing time of

different classifiers), and stability, which can be advantageous

for applications where a trade-off between these elements

are needed. In contrast, 1D CNN does not show enough

advantages neither in terms of classification accuracy and

stability nor speed and automation.

VIII. CONCLUSIONS

In this paper, we have provided a review and critical

comparison of different supervised hyperspectral classification

approaches from different points of view, with particular

emphasis on the configuration, speed and automation capac-

ity of algorithms. The compared techniques include popular

approaches such as support vector machines, random forests,

TABLE V
SCENARIO2: CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT

CLASSIFICATION APPROACHES ON THE HOUSTON HYPERSPECTRAL DATA.

Class SVM RF BP ELM KELM 1D CNN MLR

1 82.24 82.62 81.86 97.25 95.37 82.91 82.62
2 82.99 83.46 85.63 98.39 98.75 83.65 83.55
3 99.80 97.62 99.90 100.00 100.00 99.8 99.80
4 92.33 92.14 90.11 96.09 99.49 90.06 92.23
5 98.30 96.78 98.08 96.80 97.84 97.82 98.39
6 99.30 99.30 86.43 99.03 100.00 99.3 95.10
7 79.10 74.72 79.64 53.26 73.63 85.63 78.73
8 50.62 32.95 51.80 66.04 76.18 41.41 53.46
9 79.13 68.65 77.26 76.81 73.88 79.41 79.79
10 57.92 43.15 57.46 71.39 76.08 53.38 58.10
11 81.31 70.49 85.76 82.25 67.28 70.49 82.44
12 76.08 55.04 81.76 72.21 59.74 72.72 76.36
13 69.82 60.00 74.42 42.65 41.74 63.86 68.42
14 100.00 99.19 99.31 89.81 90.41 99.6 98.78
15 96.83 97.46 98.08 94.15 94.34 98.52 97.88

OA 80.18 72.99 80.98 79.55 80.64 78.21 80.60
AA 83.05 76.9 83.17 82.4 82.98 81.23 83.04

Kappa 0.7866 0.7097 0.7934 0.7783 0.7901 0.7846 0.7908

TABLE VI
PERFORMANCE EVALUATION OF DIFFERENT SPECTRAL CLASSIFIERS IN

TERMS OF CLASSIFICATION ACCURACIES, SIMPLICITY AND SPEED,
BEING CLOSER TO AUTOMATIC, AND STABILITY. ONE BULLET INFERS

THE WORST PERFORMANCE WHILE FOUR BULLETS INFER THE BEST

PERFORMANCE.

Techniques Accuracy Automation Simplicity and Speed Stability

RF • • • •• • • •• ••
SVM • • •• • • • • • • • • •
BP • • •• •• •• ••

ELM •• •• • • • • • •
KELM • • •• •• • • • • • •

1D CNN •• • • ••
MLR • • •• • • •• • • •• ••

neural networks, deep approaches, logistic regression-based

techniques and sparse representation-based classifiers, which

have been widely used in the hyperspectral analysis commu-

nity but never investigated systematically using a quantitative

and comparative approach. The critical comparison conducted

in this work leads to interesting hints about the logical choice

of an appropriate classifier based on the application at hand.

The main conclusion that can be obtained from the present

study is that there is no classifier that consistently provides the

best performance among the considered metrics (particularly,

from the viewpoint of classification accuracy), but rather

different solutions that depend on the complexity of the anal-

ysis scenario (i.e., availability of training samples, processing

requirements, tuning parameters, speed of the algorithm, etc.)

and on the considered application domain. Combined, the

insights provided in this paper may facilitate the selection

of a specific classifier by an end-user depending on his/her

expentations and/or exploitation goals.
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provided by Prof. P. Gamba from the University of Pavia, Italy

and Prof. D. Landgrebe from Purdue University, respectively.
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Instituto Superior Técnico, TULisbon, Tech. Rep., 2009.

[37] J. Li, J. Bioucas-Dias, and A. Plaza, “Hyperspectral

image segmentation using a new Bayesian approach

with active learning,” IEEE Trans. Geosci. and Remote

Sens., vol. 49, no. 19, pp. 3947–3960, 2011.

[38] ——, “Spectral-spatial hyperspectral image segmen-

tation using subspace multinomial logistic regression

and markov random fields,” IEEE Trans. Geosci. and

Remote Sens., vol. 50, no. 3, pp. 809–823, 2012.

[39] P. Zhong and R. Wang, “Learning conditional random

fields for classification of hyperspectral images,” IEEE

Transactions on Image Processing, vol. 19, no. 7, pp.

1890–1907, July 2010.

[40] Y. Qian, M. Ye, and J. Zhou, “Hyperspectral image

classification based on structured sparse logistic regres-

sion and three-dimensional wavelet texture features,”

IEEE Transactions on Geoscience and Remote Sensing,

vol. 51, no. 4, pp. 2276–2291, April 2013.

[41] P. Zhong and R. Wang, “Jointly learning the hybrid crf

and mlr model for simultaneous denoising and classifi-

cation of hyperspectral imagery,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 25, no. 7,

pp. 1319–1334, July 2014.

[42] M. Khodadadzadeh, J. Li, A. Plaza, and J. M. Bioucas-

Dias, “A subspace-based multinomial logistic regres-

sion for hyperspectral image classification,” IEEE Geo-

science and Remote Sensing Letters, vol. 11, no. 12, pp.

2105–2109, Dec 2014.

[43] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Spectral-spatial

classification of hyperspectral data using loopy belief

propagation and active learning,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 51, no. 2, pp.

844–856, Feb 2013.

[44] M. Khodadadzadeh, J. Li, A. Plaza, H. Ghassemian,

J. M. Bioucas-Dias, and X. Li, “Spectral-spatial classifi-

cation of hyperspectral data using local and global prob-

abilities for mixed pixel characterization,” IEEE Trans-

actions on Geoscience and Remote Sensing, vol. 52,

no. 10, pp. 6298–6314, Oct 2014.

[45] L. Sun, Z. Wu, J. Liu, L. Xiao, and Z. Wei, “Supervised

spectral-spatial hyperspectral image classification with

weighted markov random fields,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 53, no. 3, pp.

1490–1503, March 2015.

[46] S. Sun, P. Zhong, H. Xiao, and R. Wang, “An mrf

model-based active learning framework for the spectral-



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 19

spatial classification of hyperspectral imagery,” IEEE

Journal of Selected Topics in Signal Processing, vol. 9,

no. 6, pp. 1074–1088, Sept 2015.

[47] J. Li, M. Khodadadzadeh, A. Plaza, X. Jia, and J. M.

Bioucas-Dias, “A discontinuity preserving relaxation

scheme for spectral-spatial hyperspectral image classi-

fication,” IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, vol. 9, no. 2,

pp. 625–639, Feb 2016.

[48] J. Zhao, Y. Zhong, H. Shu, and L. Zhang, “High-

resolution image classification integrating spectral-

spatial-location cues by conditional random fields,”

IEEE Transactions on Image Processing, vol. 25,

no. 9, pp. 4033–4045, sep 2016. [Online]. Available:

http://dx.doi.org/10.1109/TIP.2016.2577886

[49] J. Li, P. Marpu, A. Plaza, J. Bioucas-Dias, and J. A.

Benediktsson, “Generalized composite kernel frame-

work for hyperspectral image classification,” IEEE

Trans. Geosci. and Remote Sens., 2013, in press.

[50] Y. Zhang and S. Prasad, “Locality preserving composite

kernel feature extraction for multi-source geospatial

image analysis,” IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, vol. 8,

no. 3, pp. 1385–1392, March 2015.

[51] J. Li, X. Huang, P. Gamba, J. M. Bioucas-Dias,

L. Zhang, J. A. Benediktsson, and A. Plaza, “Multiple

feature learning for hyperspectral image classification,”

IEEE Transactions on Geoscience and Remote Sensing,

vol. 53, no. 3, pp. 1592–1606, March 2015.

[52] C. Zhao, X. Gao, Y. Wang, and J. Li, “Efficient

multiple-feature learning-based hyperspectral image

classification with limited training samples,” IEEE

Transactions on Geoscience and Remote Sensing,

vol. 54, no. 7, pp. 4052–4062, July 2016.

[53] C. Bishop, Pattern Recognition and Machine Learning.

New York, NY, USA: Springer-Verlag, 2006.

[54] J. A. Benediktsson, P. H. Swain, and O. K. Ersoy,

“Conjugate gradient neural networks in classification of

very high dimensional remote sensing data,” Int. Jour.

Remote Sens., vol. 14, no. 15, pp. 2883–2903, 1993.

[55] H. Yang, F. V. D. Meer, W. Bakker, and Z. J. Tan,

“A back—propagation neural network for mineralogical

mapping from AVIRIS data,” Int. Jour. Remote Sens.,

vol. 20, no. 1, pp. 97–110, 1999.

[56] J. A. Benediktsson, “Statistical methods and neural net-

work approaches for classification of data from multiple

sources,” Ph.D. dissertation, PhD thesis, Purdue Univ.,

School of Elect. Eng. West Lafayette, IN, 1990.

[57] J. A. Richards, “Analysis of remotely sensed data: The

formative decades and the future,” IEEE Trans. Geos.

Remote Sens., vol. 43, no. 3, pp. 422–432, 2005.

[58] J. A. Benediktsson, P. H. Swain, and O. K. Ersoy,

“Neural network approaches versus statistical methods

in classification of multisource remote sensing data,”

IEEE Transactions on Geoscience and Remote Sensing,

vol. 28, no. 4, pp. 540–552, 1990.
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