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Advanced spectroscopy-based 
phenotyping offers a potential 
solution to the ash dieback 
epidemic
Caterina Villari1,2, Arnaud Dowkiw3, Rasmus Enderle4,5, Marjan Ghasemkhani6, 
Thomas Kirisits7, Erik D. Kjær  8, Diana Marčiulynienė  9, Lea V. McKinney8, 
Berthold Metzler4, Facundo Muñoz  3, Lene R. Nielsen  8, Alfas Pliūra9, Lars-Göran Stener10, 
Vytautas Suchockas9, Luis Rodriguez-Saona11, Pierluigi Bonello1 & Michelle Cleary6

Natural and urban forests worldwide are increasingly threatened by global change resulting from 
human-mediated factors, including invasions by lethal exotic pathogens. Ash dieback (ADB), incited 
by the alien invasive fungus Hymenoscyphus fraxineus, has caused large-scale population decline of 
European ash (Fraxinus excelsior) across Europe, and is threatening to functionally extirpate this tree 
species. Genetically controlled host resistance is a key element to ensure European ash survival and 
to restore this keystone species where it has been decimated. We know that a low proportion of the 
natural population of European ash expresses heritable, quantitative resistance that is stable across 
environments. To exploit this resource for breeding and restoration efforts, tools that allow for effective 
and efficient, rapid identification and deployment of superior genotypes are now sorely needed. Here 
we show that Fourier-transform infrared (FT-IR) spectroscopy of phenolic extracts from uninfected 
bark tissue, coupled with a model based on soft independent modelling of class analogy (SIMCA), can 
robustly discriminate between ADB-resistant and susceptible European ash. The model was validated 
with populations of European ash grown across six European countries. Our work demonstrates that 
this approach can efficiently advance the effort to save such fundamental forest resource in Europe and 
elsewhere.

Invasive, alien tree pathogens threaten biodiversity, ecosystem services, and commercial forestry on a global 
scale1–3. Such bioinvasions are increasing at an unprecedented rate, in part because of higher global connectivity4, 
which facilitates unintended long-distance movement of pathogens into regions outside their historical distribu-
tion range5, and because of climate change, which causes host maladaptation6 and emergence of new pathogens 
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through alteration of host-microbe interactions7. �ese disturbances have the potential to cause massive and 
irreversible damage8 by eliminating keystone tree species in many areas of the world, and permanently altering 
trophic structures, nutrient dynamics1 and primary productivity2 of forest communities. Such wide ranging eco-
logical impacts can compromise the maintenance of ecosystem services upon which humans rely, including those 
associated with reduced incidence of human morbidities9.

Genetically controlled resistance is crucial to successfully manage natural and urban forests for resilience 
against alien invasive pathogens10. Molecular markers are invaluable to enhance screening for resistance, and 
can be applied to practical breeding programs with high precision and reductions in cost and time. However, 
marker-assisted selection has not been used for genetic improvement of forest trees to the same extent as agri-
cultural crops11. Indeed, e�cient marker development requires accurate �eld testing, which in trees can be very 
slow due to the long time lag intrinsic in symptom development12. �is lack of e�cient tools for rapid resistance 
phenotyping signi�cantly hinders our ability to screen natural populations for conventional breeding of trees. 
Our ability to readily and reliably detect superior genotypes could enhance the success of current restoration 
e�orts, or protect trees from logging or other activities associated with forest and urban landscape management, 
in support of in situ conservation.

We hypothesized that disease-resistant genotypes can be identi�ed through chemometrics using vibrational 
spectroscopy, which is based on the absorption of infrared radiation resulting from fundamental molecular 
(bond) vibrations. �is technique can rapidly �ngerprint a wide range of biological samples using multivariate 
statistical classi�cation models that identify and delineate target classes13–15. Considering that plant resistance 
against pests and pathogens essentially relies on host chemistry16, vibrational spectroscopy-based techniques 
hold vast potential in distinguishing between plant chemical phenotypes (chemotypes) that are genetically and 
epigenetically driven, and vary in disease susceptibility. Among these techniques, Fourier-transform infrared 
(FT-IR) spectroscopy has so far shown promising results in applications involving forest trees13, including delin-
eating resistance to invasive pathogens such as Ophiostoma novo-ulmi, causal agent of Dutch elm disease17,18, and 
Phytophthora ramorum, causal agent of sudden oak death19. In the latter case, the technique was able to success-
fully model tree resistance prior to infection.

At present, there is rising concern that European ash (Fraxinus excelsior), an important keystone species in 
natural plant communities protected under EU legislation20, may be functionally extirpated from European for-
ests by the alien invasive fungus, Hymenoscyphus fraxineus, causal agent of ash dieback (ADB)21,22. A low pro-
portion of the natural population of European ash expresses heritable, quantitative resistance that is stable across 
environments23–25, and genomic solutions to uncover mechanisms associated with disease resistance have been 
explored as a means to accelerate breeding of trees with resistance against ADB26,27. In a recent paper, Sollars et 
al.28 found an association between disease susceptibility and the levels of two putative iridoid glycosides in the 
leaves of F. excelsior, which suggests that chemotypes associated with this pathosystem can be targeted and tested 
using FT-IR spectroscopy and chemometric models. Consequently, our goal was to determine the feasibility and 
e�cacy of FT-IR to phenotype European ash for resistance to ADB.

Results and Discussion
We analysed the Fourier transform mid-infrared spectral region14,29 of phenolic extracts16 of uninfected tis-
sue samples from 76 di�erent genotypes collected across six European countries (Austria, Denmark, France, 
Germany, Lithuania and Sweden) (Fig. 1) that were previously phenotyped as having either low, intermediate 
or high susceptibility to H. fraxineus24,25,30–36 (Table 1). We targeted phenolics due to the established role of this 
class of secondary metabolites in general plant defense16,37, and the successful prior phenotyping e�orts using this 
technique in other pathosystems19. Samples comprised both leaves and twig bark, which included a thin outer 
bark (<1 mm thick), cortex, secondary phloem, and cambial tissues. To test the robustness and reliability of our 
approach, we ensured broad heterogeneity of the samples within each tissue type by sampling trees at di�erent 
developmental stages and environmental conditions across locations. Up to three ramets per genotype were sam-
pled, for a total of 134 trees across the six countries (Table 1). To be practically useful, chemotypes should be asso-
ciated with constitutive composition and levels of specialized phytochemicals. �erefore, it was critical to ensure 
that H. fraxineus was not present in plant tissues. Despite observations at the time of sample collection of some 
ripe apothecia on pseudosclerotial leaf rachises in the litter of moist microsites at the Austrian location, all sam-
ples from all locations were con�rmed free of the pathogen via PCR38. All trees may have harboured infections in 
other parts of the tree, prior to our observations in this study, and thus we cannot exclude possible systemic e�ects 
of these other infections on the chemotypes. However, previous work in the coast live oak – sudden oak death 
pathosystem has shown that healthy tissues sampled away from active cankers were chemically indistinguishable 
from healthy tissues taken from asymptomatic and presumably uninfected trees39.

We processed FT-IR chemical �ngerprints using a so� independent modelling of class analogy (SIMCA) 
chemometric approach to discriminate between di�erent resistance phenotypes13. In order to resolve overlapping 
peaks, minimize background and improve the model predictions, spectral data were pre-processed via the stand-
ard normal variate function40, and smoothed and transformed into their second derivative using a Savitzky-Golay 
polynomial �lter41. We initially analysed both leaf and twig bark tissues, for a total of 131 and 112 samples, 
respectively. Preliminary observations of the SIMCA 3D class projection plots of resistant and susceptible sam-
ples showed that geographic location of the trees strongly a�ected the chemistry of the leaves (Fig. 2). �is dif-
ference may be attributable to a higher sensitivity of foliage to solar irradiation42, temperature43 and nutrient or 
water availability44 associated with the di�erent latitudes, geographic locations, and microclimates. However, 
this e�ect was not evident in twig bark tissues (Fig. 2), therefore, we built the chemometric model using only 
the FT-IR spectra of the twig bark samples. We do not exclude the possibility that resistance is expressed at the 
leaf level31; rather, we suggest that environmental variation masked any possible chemical signature in the leaf 
tissues. Indeed, in previous studies28, leaf constitutive iridoid glycosides could discriminate among European 
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Figure 1. Map of the sampling sites. Uninfected bark and leaf samples were collected from a total of 76 Fraxinus 
excelsior genotypes of known susceptibility to Hymenoscyphus fraxineus in six European countries: Austria, 
Denmark, France, Germany, Lithuania, and Sweden. Sampling sites (red mapping pins) are overlaid on the 
natural distribution map of F. excelsior (sky-blue) (EUFORGEN 2009, www.euforgen.org.).

Country* Location

Trial Details
Date of 
sample 
collection in 
2015

Number of genotypes sampled 
per susceptibility class (for 
clonal trials, the number of 
ramets per genotype is given 
in parentheses)

Type of genetic 
trial Coordinates

Elevation 
(m asl)

Year 
established

Spacing 
of trees 
(m) Sus. Int. Res.

Austria31,36** Feldkirchen an der 
Donau

Clonal seed 
orchard

48°20′11.4″ N 
14°02′53.2″ E 264 1993 7.5 × 8.6 9 June 7 (2) 7 (2)

Denmark32 Tuse næs Clonal seed 
orchard

55°45′ 58.0″ N 
11°42′ 47.4″ E 22 1998 3.0 × 6.0 2, 4 June 3 (3) 2 (3) 3 (3)

France24 Devecey Provenance and 
progeny trial

47°19′31.5″ N 
06°01′54.1″ E 250 1995 4.0 × 4.0 18 June 7 3 7

Germany35 Weisweil Provenance trial 48°11′29.7″ N 
07°42′02.5″ E 173 2005 2.0 × 2.0 19 May 5 5

Lithuania34 Sasnava Clonal collection 54°37′32.1″ N 
23°33′55.5″ E 100 2012 6.0 × 5.4 2 June 2 (3), 2 (2) 2 (2) 3 (3), 1 (2), 

1 (1)

Sweden30 Snogeholm Clonal seed 
orchard

55°32′33.8″ N 
13°42′22.7′′ E 50 1992 3.5 × 3.5 28 May 3 (1), 1 (2) 5 (2) 5 (2), 2 (2)

Total number of genotypes 30 12 34

Total number of trees 50 23 61

Table 1. Detailed information on the Fraxinus excelsior genotypes analysed in the study. *For all countries 
except Lithuania, genotypes in each trial originated in the same country where the trial is located. Genotypes in 
the Lithuanian trial originated in the Czech Republic, Germany, Ireland and Lithuania. **Literature reference 
number. Sus., susceptible; Int., intermediate; Res., resistant.

http://www.euforgen.org
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ash resistance phenotypes. Secoiridoids have also been shown to be upregulated in the leaves of F. excelsior in 
response to treatment with a H. fraxineus toxin45.

To optimize the model, clustering patterns of the resistance phenotypes were sought in the SIMCA 3D class 
projection plot (Fig. 2), while spectral regions with the highest discriminating power were identi�ed using 
SIMCA discriminating power plots and Coomans plots46. We used Coomans plots and 3D class projection plots 
also to identify outliers, which were removed from the model. A�er trimming the data in this way, the complete 
data set comprised a minimum of two and up to seven genotypes per susceptibility class per country, and up to 
three ramets per clone, for a total of 71 samples (42 resistant, 7 intermediate, and 22 susceptible). Of these, 75% 
of samples within each geographic location and susceptibility class were selected for the training data set to build 
our calibration model, while the remaining 25% were used as the testing data set for model validation13. Samples 
were randomly assigned to the groups; in doing so, 10 clones were represented by ramets in both the training and 
testing data sets, while eight clones were unique to the testing population. �erefore, the testing dataset veri�ed 
the ability of the model to classify the resistance phenotype for both clones that were independent of the training 
population and those that were biological replicates of clones included in the training population. Incremental 
analysis of di�erent models showed that inclusion of intermediate phenotypes in the calibration compromised 
the formulation and strength of the chemometric classi�cation. �is was to be expected, as SIMCA models work 
best when built on well-de�ned groups13,19. We hence decided to exclude intermediates from the training set and 
move all of them to the testing set.

The SIMCA calibration model that best discriminated between resistant and susceptible ash trees was 
a 3-factor model (Fig. 3a) obtained by including spectral regions from ~748 to 798 cm−1 and from ~879 to 
947 cm−1 wavenumber (Fig. 3b), which primarily correspond to the C−H wagging of substituted benzenes of 
aromatic compounds47. �e highest discriminating power peak (discriminating power of 47.7) corresponded 
to ~895 cm−1 wavenumber, which may also correspond to the wagging of the hydrogen on the C-1 position of 
the cellulose glucose ring48. However, since the extraction protocol we adopted is highly speci�c for phenolic 
compounds49, the presence of polysaccharides in the analysed extracts is very unlikely, and the ~895 cm−1 wave-
number almost certainly corresponds to the C−H wagging of the aromatic hydrocarbon groups of phenols47. �e 
second highest discriminating power peak (discriminating power of 25.4) corresponded to ~770 cm−1 wavenum-
ber. Interclass distance between the groups was 2.2074, indicating good separation between the phenotypes, and 
100% of extracts from both resistant and susceptible ash trees were correctly classi�ed, showing high speci�city 
of the model. �e low number of factors included in the model (i.e., three) argues against model over�tting50, 

Figure 2. SIMCA 3D class projections. SIMCA 3D class projection plots for spectral data of Fraxinus excelsior 
leaf and twig bark tissue phenolic extracts analysed as a function of the resistance phenotype, but visualized 
according to either the sample geographic location or its resistance phenotype. Spectral data were pre-processed 
using the standard normal variate function and then smoothed and transformed into their second derivative. 
Two technical replicates were analysed separately. Clouds of black points indicate the 95% con�dence interval 
for each class (i.e., resistance phenotypes) in each principal component direction (i.e., PC1, PC2 and PC3) 
projected into the three-factor principal component hyper-plane.
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Figure 3. SIMCA Coomans plots and discriminating power plot. Panel a, SIMCA Coomans plot showing the 
relative, dimension-free distance between the samples of the training data set used to build the 3-factor (@3) 
calibration model designed to discriminate between ash dieback resistant (red diamonds) and susceptible 
(blue diamonds) Fraxinus excelsior trees. X-axis represents the distance from the resistant class, while y-axis 
represents the distance from the susceptible class. Two technical replicates were analysed separately, for a total 
of 92 spectra, corresponding to 48 biological replicates. Dashed lines indicate critical sample residual thresholds. 
Panel b, SIMCA discriminating power plot of the 3-factor calibration model. �e discriminating power (black 
line) is overlaid on the second derivative, smoothed and standard normal variate transformed spectra. �e 
SIMCA calibration model that best discriminated between resistant (red lines) and susceptible (blue lines) ash 
trees included spectral regions from ~748 to 798 cm−1 and from ~879 to 947 cm−1 wavenumber (highlighted in 
yellow). �e black arrows point to regions of the spectra where the discrimination between the two resistance 
phenotypes is evident by visual inspection. Panel c, SIMCA Coomans plot showing the relative, dimension-
free distance between the samples of the testing data set used to validate the 3-factor (@3) model. In addition 
to resistant (red diamonds) and susceptible (blue diamonds) trees, the testing data set included accessions of 
intermediate phenotype (green diamonds), based on �eld observations. Two technical replicates were analysed 
separately, for a total of 44 spectra, corresponding to 23 biological replicates randomly selected from each of the 
six European countries. Dashed lines indicate critical sample residual thresholds.
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with factors 1–3 explaining 97.87%, 1.21% and 0.53%, respectively, of the variability in the susceptible class, and 
97.10%, 1.42%, and 1.00%, respectively, of the variability in the resistant class.

Validation of the chemical marker-based statistical model is a crucial step to ensure accurate predictions and 
con�rm the applicability of the model at a larger scale13. We validated our SIMCA model with the testing data 
set, and 100% of the ten resistant and six susceptible ash ramets randomly selected from each of the six European 
countries (including nine representing biological replicates of the clones included in the training data popula-
tion) were correctly identi�ed as belonging solely to their phenotype group (Fig. 3c). Four of the intermediate 
samples, corresponding to four di�erent genotypes, were identi�ed as potentially belonging to both classes, which 
correctly re�ects their intermediate phenotype. However, the remaining three samples, corresponding to two 
di�erent genotypes, were identi�ed as belonging solely to the resistant group (Fig. 3c). One of the intermediate 
genotypes had di�erent ramets that were classi�ed in either groups (resistant and intermediate). Such overestima-
tion of the resistant samples demonstrates that while the model may not be perfect with intermediates, it clearly 
separated the most susceptible samples from the rest. Furthermore, the overall accuracy of the model was 87%, 
which is rather impressive, given the vast heterogeneity of host genotype, developmental stage, and environmen-
tal conditions represented by the tested ash populations.

Our results show that European ash possesses readily exploitable levels of resistance that can be detected using 
FT-IR spectroscopy. �is work represents a major advancement in the application of marker-assisted technology 
for tree breeding and o�ers a strong proof of concept of a novel solution in the �ght against ADB. Compared to 
labor-intensive and time-consuming traditional tree phenotyping techniques based on arti�cial inoculations or 
natural infection assays, or even nascent nucleic acid-based phenotyping51, FT-IR spectroscopy can signi�cantly 
accelerate the process of selecting resistant phenotypes and limit the need for growing out large segregating prog-
enies as in conventional breeding programs. �is technique can be applicable at a landscape level for screening 
large naïve populations for disease resistance, at dramatically reduced costs than traditional selection. With this 
rapid phenotyping approach, breeding for resistance, ex situ and in situ conservation, restoration, and long-term 
sustainable management of this threatened tree species becomes a feasible and realistic strategy to mitigate the 
ADB epidemic. �is method can also pave the way for rapid progress in managing the global forest health crises 
resulting from many other chronic and emerging forest diseases where there is evidence of some level of resist-
ance in the naïve host populations.

Methods
Plant material. Uninfected bark (including a thin outer bark (<1 mm thick), cortex, secondary phloem, 
and cambial tissues) and leaf samples were collected from a total of 76 F. excelsior genotypes with known suscep-
tibility to H. fraxineus in six European countries: Austria, Denmark, France, Germany, Lithuania, and Sweden. 
Source material originated from genetic trials established as either clonal seed orchards30–32,36 or for testing ash 
provenance35 or progeny24,25,33,34 (Table 1). Sample collection was performed between 19 May and 18 June 2015. 
At each site, a minimum of three and up to seven genotypes were selected from the extreme ends of the spectrum 
of host susceptibility19 (low vs high), while a minimum of two and up to �ve genotypes of intermediate resistance 
were selected when available (i.e., from Denmark, France, Lithuania, and Sweden). All selections were based on 
a relative measurement and ranking of disease severity at the crown level (i.e. dieback intensity) as determined in 
previous assessments24,30–32,34–36. In the case of clonal trials, up to three ramets per clone were sampled, for a total 
of 134 trees (Table 1). High heterogeneity of tree developmental stage and environmental conditions was pur-
posely included in order to test the robustness and broad applicability of the model. �e current year’s shoots were 
harvested from each individual tree. Due to the occurrence of a late frost event in Lithuania, epicormic shoots 
instead of crown shoots were harvested from both resistant and susceptible genotypes. Similarly, epicormic shoots 
were the only ones present and suitable for harvesting from some of the susceptible genotypes across the di�erent 
countries, which provided a further source of variation.

Leaves collected in the �eld were labelled according to country, trial, family, ramet (if pertinent) and sus-
ceptibility status, placed in a plastic bag and immediately stored on dry ice. Bark was either dissected from the 
internodes of the twig supporting the leaf rachis with a sterile razor blade or scalpel, and similarly labelled and 
stored on dry ice, or whole twigs were immediately frozen on dry ice in the �eld and tissues were dissected later 
in the lab. All samples were then transported or shipped frozen to the Swedish University of Agricultural Sciences 
in Alnarp, Sweden and stored at −20 °C until further processing.

Sample processing and phenolic extraction and purification. To avoid any potential degradation or 
oxidation of the tissues, samples were constantly kept frozen at −20 °C or in liquid nitrogen during all processing 
steps preceding phenolic extraction. Bark and leaf tissues were �nely ground in liquid nitrogen and 200 ± 1 mg 
aliquots of either tissue type were placed in individual 2 ml microcentrifuge tubes.

Phenolic compounds were extracted and puri�ed following the protocol described by Wrolstad et al.49, with 
modi�cations. Ground tissue was submerged in 700 µl of 70% HPLC-grade acetone (Sigma-Aldrich Sweden AB, 
Stockholm, Sweden) in Milli-Q (Merck Chemicals and Life Science AB, Solna, Sweden) puri�ed water (v/v). 
Samples were vortexed at maximum speed for 10 sec and then subjected to sonication for 30 min at room tem-
perature, followed by centrifugation at 1,600 rcf for 8 min. �e supernatant was transferred to a new 2 ml tube 
and twice the volume of HPLC-grade chloroform (Sigma-Aldrich Sweden AB) was added. Vials were inverted by 
hand two times and then vortexed at maximum speed for 15 sec prior to centrifugation at 10,000 rcf for 2 minutes 
at 10 °C. Working on ice, the aqueous phase, containing the phenolic compounds, was collected and transferred 
to a new 2 ml screw-cap tube with O-ring seal. Samples were then lyophilized and shipped at room temperature 
to the Department of Plant Pathology, �e Ohio State University. Working on ice, lyophilized crude extracts 
were resuspended in 1 ml of Milli-Q (Millipore, Bedford, Massachusetts, USA) puri�ed water and sonicated for 
30 min in water and ice to allow complete solution of the pellet prior to the phenolic solid-phase puri�cation step. 
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Phenolic compounds were puri�ed on an Xpertek SPE Snap Cap 300 mg C18 silica cartridge (Cobert Associates, 
Inc., Saint Louis, Missouri, USA). Cartridges were conditioned with HPLC-grade methanol (Fisher Scienti�c, 
Pittsburgh, Pennsylvania, USA) and equilibrated with Milli-Q water. A�er forcing extracts through the cartridge, 
cartridges were washed twice with Milli-Q water and then the adsorbed compounds were eluted in HPLC-grade 
methanol. Before use, extracts were evaporated to dryness in a Vacufuge vacuum concentrator (Eppendorf, 
Westbury, New York, USA) and re-dissolved in HPLC-grade methanol to a �nal concentration of 10 times the 
original one. Puri�ed and concentrated phenolic extracts were stored at −20 °C until further analysis.

Molecular detection of Hymenoscyphus fraxineus in leaves and bark. �e absence of H. fraxineus 
from all analysed leaves and twig bark tissues at the time of sampling was veri�ed by PCR using species-speci�c 
ITS primers38. DNA was extracted in 2 ml screw cap tubes containing 30 mg of homogenized tissue using the 
E.Z.N.A. SP Plant DNA Kit (Omega Bio-tek, Doraville, Georgia, USA), according to manufacturer’s instructions. 
Ampli�cations were performed in 10 µl reaction volumes containing 0.05 µl of Taq Polymerase (5 u/µl); 1.0 µl of 
10x Bu�er; 1.0 µl of dNTPs (2 mM); 0.15 µl of MgCl2 (25 mM); 0.2 µl of each primer Chafra F/Chafra R, 5.0 µl of 
sample DNA (0.5 ng/µl) and 2.4 µl of milli-Q water. Each PCR run included a no-template negative control of 
water, and DNA of H. fraxineus isolate nf4 collected in Sweden as positive control. �e PCR cycling conditions 
included an initial denaturation step at 95 °C for 5 min followed by 35 ampli�cation cycles of denaturation at 
95 °C for 30 s, annealing at 56 °C for 30 s, and extension at 72 °C for 1 min. �e reaction was terminated by an 
extension step at 72 °C for 7 min. PCR products were visualized by gel electrophoresis on a 1.5% agarose gel in TE 
bu�er (Sigma-Aldrich Sweden AB) stained with GelRed™. �e GeneRuler mix (Fermentas, Burlington, Ontario, 
Canada) was used as size standard.

FT-IR analysis. FT-IR spectroscopy of the phenolic extracts was carried out on an Excalibur 3500GX FT-IR 
spectrometer (Digilab, Randolph, Massachusetts, USA), equipped with a potassium bromide beamsplitter and 
a MIRacle triple-bounce zinc selenide crystal (Pike Technologies, Madison, Wisconsin, USA) attenuated total 
re�ectance (ATR) accessory. Either 6 µl or 5 µl of concentrated extracts were placed on the ATR crystal and vac-
uum dried for approximately 1 min or 40 sec for leaves and twig bark samples, respectively. Spectra were collected 
in the mid-infrared region, over a wavenumber range of 4000 to 700 cm−1. Resolution was set at 4 cm−1 and an 
interferogram of 64 scans was co-added for each sample. Two technical replicates were collected for each sample, 
and spectra were displayed in terms of absorbance using Win-IR Pro So�ware (Agilent Technologies, Santa Clara, 
California, USA)19. Total number of spectral data collected, net of any tissue processing losses, was 262 for leaf 
samples and 224 for twig bark tissues, corresponding to 131 and 112 samples, respectively.

We carried out SIMCA multivariate analysis of the spectral data using the chemometric modelling so�ware 
Pirouette (v. 4.5, Infometrix Inc., Bothell, Washington, USA). SIMCA classi�cation technique develops 3D princi-
pal components models for each training group (in this case resistant, intermediate and susceptible ash trees) and 
identi�es the most important variables for the discrimination of groups, while preserving relevant information 
and reducing noise52. Spectral data were pre-processed via the standard normal variate function to remove multi-
plicative scatter and particle size interference40, and then smoothed and transformed into their second derivative 
using a 35-points Savitzky-Golay polynomial �lter to increase the signal-to-noise ratio, minimize background 
and reduce overlapping bands41. Technical replicates were analysed separately19.

Preliminary analyses with the spectra of resistant and susceptible leaf samples clearly showed that cluster-
ing patterns of the SIMCA 3D class projection plot were mainly driven by the geographic location of the trees, 
while no pattern was associated with di�erent resistance phenotypes (Fig. 2). Chemical composition of leaves is 
strongly a�ected by environmental factors such as nutrient and water availability44, low temperatures43 or solar 
irradiation42, and this high variability might have masked any potential chemical signal associated with resistance. 
We hence concluded that leaves were not ideal and were therefore excluded from further analysis. On the other 
hand, preliminary analyses with the spectra of resistant and susceptible twig bark samples showed that clustering 
patterns of the SIMCA 3D class projection plot were mainly driven by the resistance level of phenotypes, while 
geographic location did not show any strong patterns (Fig. 2).

Optimization of the SIMCA model was obtained by initially including the whole collected wavenumber range 
(4000 to 700 cm−1) of all 224 spectral data for twig bark tissues, and then progressively re�ning the model both 
by reducing the spectral range to those regions with the highest discriminating power (Fig. 3c), and by remov-
ing outliers. Each incrementally re�ned model was evaluated by observing clustering patterns of the resistance 
phenotypes in the 3D class projection and Coomans plots, and by evaluating the discriminating power plot46. 
Outliers were visually identi�ed on the Coomans plot and 3D class projection plot. Based on their chemical 
signature, all nine Swedish and all six Lithuanian genotypes originally classi�ed as intermediate and susceptible, 
based on �eld observations of the extent of dieback, were classi�ed by the model as resistant and intermediate, 
respectively. �is discrepancy in the classi�cation, together with a general trend of overestimating resistance, may 
be attributable to some random variation among ramets, or most likely the use of slightly di�erent parameters in 
the evaluation of susceptible phenotypes in Sweden30 and Lithuania25. �e inclusion of uncertain phenotypes in 
both the training and testing sets would have compromised the strength of the chemometric model and its valida-
tion; thus intermediate and susceptible Swedish and Lithuanian genotypes were excluded from further analyses. 
Incremental re�nement of the training models showed that, while overall clustering of the groups was not chang-
ing, the inclusion of intermediates signi�cantly reduced the discriminating power. �is is an expected outcome, 
as SIMCA models are known to work best when built on well-de�ned groups13,19 (in this case, the extreme ends 
of the spectrum of host susceptibility). �erefore, we decided to exclude intermediates from the training set and 
move them to the testing set instead. We opted for this approach, as we wanted to verify if the model was still able 
to correctly classify all intermediate samples included in the analyses. �e total number of samples included in 
the training model, net of any trimming, was 48 (32 resistant and 16 susceptible) and 92 spectral data, while the 
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testing data set comprised 10 resistant, seven intermediate and six susceptible samples, for a total of 23 samples 
and 44 spectral data. Model accuracy was calculated as the percentage of correctly identi�ed samples relative to 
the total number of samples included in the testing data set.

Data Availability
�e datasets generated and analysed during the current study are available from the corresponding authors upon 
reasonable request.
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