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Abstract*

Genetic Algorithms have been recently investigated
as an efficient approach to test generation for syn-
chronous sequential circuits. In this paper we propose
a set of techniques which significantly improves the
performance of the GA-based ATPG algorithm pro-
posed in [PRSR94]: in particular, the new techniques
enhance the capability of the algorithm in terms of test
length minimization and fault excitation. We report
some experimental results gathered with a prototypical
tool and show that a well-tuned GA-based ATPG is
generally superior to both symbolic and topological
ones in terms of achieved Fault Coverage and required
CPU time.

1. Introduction

Different approaches have been proposed to solve
the problem of Automatic Test Pattern Generation for
Synchronous Sequential circuits.

The topological approach [NiPa91] is based on ex-
tending to sequential circuits the branch and bound
techniques developed for combinational circuits by
adopting the Huffman’s Iterative Array Model. The
method’s effectiveness heavily relies on the heuristics
adopted to guide the search; the approach uses a com-
plete, but often fails when applied to large circuits,
where the search space is excessively large to explore.

The symbolic approach [CHSo93] exploits tech-
niques for Boolean function representation and ma-
nipulation which were initially developed for formal
verification; this approach is based on a complete algo-
rithm, too, and is very effective when small- and me-
dium-sized circuits are considered. Unfortunately, it is
completely unapplicable when circuits with more than
some tens of Flip-Flops are dealt with. This greatly
limits its usefulness in real practice.

Finally, the simulation-based approach [ACAg88]
consists in generating random sequences, simulating
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them, and then modifying their characteristics in order
to increase the obtained fault coverage. In the last few
years, several methods [SSAb92] [RPGN94] [PRSR94]
have been proposed, which combine this approach with
the use of Genetic Algorithms (GAs) [Gold89]. Results
demonstrated that the approach is very flexible and
provides good results for large circuits, where other
methods fail.

However, the analysis we performed on the behavior
of GATTO (the tool described in [PRSR94]) shows that
the algorithm has some weakness points:

• the cross-over operator is not as effective as in
other problems GAs have been applied to;

• the method can hardly determine the length of
the sequences; this results in an increase of the
time required by the ATPG process, and of the
number of generated vectors;

• the phase devoted to find sequences which excite
faults is purely random; this obviously decreases
the method effectiveness in terms of achieved
fault coverage and required CPU time.

In this paper we introduce some new techniques to
overcome the above problems. We devised a more ef-
fective cross-over operator, and added new techniques
which provide the method with the capability of auto-
matically determining the minimal length of the test
sequences. Finally, we re-arranged the whole algorithm
in order to increase the effectiveness of the fault exci-
tation phase, which is no longer purely random, but
exploits information from the already generated se-
quences. To experimentally prove the effectiveness of
the proposed techniques we implemented an improved
version of GATTO, named GATTO+. The results show
substantial improvements in GATTO+: from one side,
they are now comparable to the competing algorithms
on the small- and medium-size circuits; from the other
side, results are further enhanced on the largest ones.

The paper is organized as follow: in Section 2 we
briefly summarize the GATTO algorithm; Section 3
describes the improvements introduced in GATTO+.
Section 4 presents the experimental results we gathered
and provides some comparisons with other ATPG algo-
rithms. Section 5 draws some conclusions.
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2. The GATTO algorithm

The GATTO algorithm, presented in [PRSR94], is
organized in three phases:

• the first phase aims at selecting one fault
(denoted as target fault); this phase consists of
randomly generating sequences and fault simu-
lating them w.r.t. the untested faults. As soon as
one sequence is able to excite at least one fault,
the fault is chosen as target fault;

• the second phase aims at generating a test se-
quence for the target fault; it is implemented as a
Genetic Algorithm: each individual is a test se-
quence to be applied starting from the reset state;
cross-over and mutation operators are defined to
modify the population and generate new indi-
viduals; a fitness function evaluates how close
each individual is to the final goal (i.e., detecting
the target fault); this function is a weighted sum
of the numbers of gates and Flip-Flops having a
different value in the good and faulty circuit.
After a maximum number of unsuccessful gen-
erations the target fault is aborted and the second
phase is exited;

• the third phase is a fault simulation experiment
which determines whether the test sequence pos-
sibly generated in phase 2 detects other faults
(fault dropping).

The three phases are repeated till either all the faults
have been tested or aborted, or a maximum number of
iterations has been reached.

3. Improvements

Based on the results reported in [PRSR94], we real-
ized that several points in the GATTO algorithm were
still worth of improvements. We will describe them in
details in the following subsections, together with the
improved solutions we devised for each of them.

3.1. Cross-Over Operator

The cross-over operator adopted in GATTO belongs
to the category denoted as two-cuts cross-over. The
operator works in a horizontal manner: the new se-
quence is composed of some vectors coming from ei-
ther parents (Fig. 1), according to the position of two
randomly generated cut points. Unfortunately, there is
no guarantee that the vectors coming from the second
parent produce in the new sequence the same behavior
they produce in the parent sequence, as the state from
which they are applied is different. As a consequence,
we observed in GATTO that the off-spring of two good

individuals was often a bad individual; in general, the
cross-over operator was not as effective for the ATPG
problem as it usually is for other problems GAs have
been applied to.

The cross-over operator defined for GATTO+ works
in a vertical manner; the off-spring does not inherit
whole vectors from parents: rather, the values for each
input are taken either from one parent or from the
other, depending on a random choice (Fig. 2), as the
operator belongs to the category known as uniform
cross-over. The length of the new sequence is that of
the longest between the two parent sequences: inputs
taken from the shortest parent are completed with ran-
dom values (dark in Fig. 2).
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 Fig. 1: Cross-over operator in GATTO.

3.2. Test Length

In GATTO it is up to the user to decide the initial
test length, which is then automatically increased dur-
ing the ATPG process. For some circuits, this results in
a test length higher than the minimum one, while for
other circuits the process spends many iterations for
reaching the length required to test some faults.
Moreover, the computational complexity of the whole
process mainly depends on the cost of fault simulation;
therefore, any unnecessary increase in the length of the
sequences results in a corresponding waste in the re-
quired CPU time.

To face this problem we improved the GATTO algo-
rithm in two ways: we first modified the evaluation
function on which the fitness function is based, and
then introduced new mutation operators.

3.2.1. New Evaluation Function

The evaluation function adopted in GATTO is based
on the following expression
h(v j

k,f i )= c 1*b 1(v
j

k,f i )+  c2*b 2(v
j

k,f i ) (1)



which provides a measure of how close the k-th in-
put vector vj

k of a sequence sj  is to detect the fault f i .
In (1), c1 and c2 are constants, while b1 and b2 are
functions, whose value is proportional to the number of
gates and Flip-Flops (respectively) having a different
value in the good and faulty circuit for fault f i . Once
the value of h(v j

k,f i ) is known for every vector in the
sequence, the evaluation function H for the sequence sj

is computed as
H(s j ,f i )=max k(h(v j

k,f i ))   ∀ v j
k   ∈ s j  (2)

In order to bias the evolution towards the shortest
sequences, a modified version H* (s j ,f i )  of the
evaluation function H has been introduced in GATTO+;
the value of h(v j

k,f i )  for the k-th vector of the j -th
sequence is weighted with a coefficient whose value
decreases with k ; the new evaluation function corre-
sponds to the maximum value of the weighted function:

H* (s j ,f i )=
maxk(HANDICAPk·h(v j

k,f i ))  ∀ vj
k  ∈ s j   (3)

where the value of the parameter HANDICAP ranges
between 0 and 1; thanks to this coefficient, shorter
sequences are preferred and the final test length is
reduced.
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 Fig. 2: Cross-over operator in GATTO+.

3.2.2. New Mutation Operators

In GATTO, any change in the length of the se-
quences during phase 2 stems from the cross-over op-
erator: in fact, the length of any new sequence can
randomly vary up to the sum of the lengths of the two
parent sequences. The new cross-over operator pre-
sented in the previous Section behaves in a completely
different way, and generates sequences as long as the
longest parent. This means that the length of the se-
quences in a population can never be higher than that

of the longest one in the previous generation. Unfortu-
nately, there is thus no way to increase the sequence
length.

To overcome this problem, and to force the algo-
rithm to better explore all the search space, we intro-
duce two new mutation operators (MO+ and MO-),
which are activated on an existing sequence with a
given activation probability:

• MO+ introduces a randomly generated vector in
a random position within the existing sequence;
thanks to this operator, longer sequences are
generated and evaluated;

• MO- removes a randomly selected vector from
the existing sequence: if the vector is not essen-
tial, the evaluation function of the sequence in-
creases.

3.3. Fault Excitation

Fault excitation is one of the most critical problems
when devising a GA-based ATPG. In fact, no way has
been found, up to now, to evaluate how close a se-
quence is to excite a fault. Without such an evaluation
function, a GA is not able to perform any search, and
degenerates into a purely random method. All the GA-
based ATPGs proposed in the literature resort to a
purely random search for exciting faults.

In GATTO, the task of exciting faults is accom-
plished in phase 1 resorting to a completely random
approach; in fact, the GA is only exploited for observ-
ing faults, i.e., in phase 2. Obviously, this results in
some difficulty when trying to test hard-to-excite faults.
To overcome this problem, we modified the algorithm
in order to re-use as much as possible the work done in
phase 2.

Once the GATTO’s algorithm entered in phase 2,
only the target fault is considered; if a test sequence is
then generated, this is fault simulated w.r.t. all the
untested faults (phase 3). However, it is likely that
sequences generated in phase 2 to test one fault be also
able to excite other faults, although they do not detect
them. Therefore, in GATTO+, at the end of each phase
2 all the sequences belonging to the last population are
stored, and then used in the following phase 1 instead
of the randomly generated ones (as in GATTO).

If one of these sequences is able to excite at least
one fault, this is selected as target fault, and a new
phase 2 is activated. Otherwise, random sequences are
generated trying to excite faults, like in GATTO. The
pseudo-code of phase 1 is reported in Fig. 3.



4. Experimental Results

We implemented a prototypical version of GATTO+
containing all the techniques described above: the new
cross-over operator substitutes the old one, and the
operators MO+ and MO-, as well as the parameter
HANDICAP, have been introduced. The values of all
the parameters have been experimentally determined
through a preliminary set of runs: the operators MO+
and MO- are activated with probability 0.05 and 0.1,
the parameter HANDICAP holds the value 0.98, and
C1 and C2 have been assigned the values 1 and 10,
respectively. Tab. 1 reports the results in terms of Fault
Coverage (FC), CPU time and test length for the whole
set of ISCAS’89 circuits. Experiments have been per-
formed on a workstation DEC Alpha 3000/500.

phase 1()
{ A = {sequences belonging to the last 

 population of the last phase 2};
iteration_counter = 0;
while (iteration_counter< MAX_ITER )
{fault simulate all the sequences in A 

w.r.t. the untested faults;
if some fault f k is detected

drop f k;
if some fault f k is excited
{  select f k as target fault;
   return ( f k );
}
A={randomly generated sequences};
iteration_counter ++;

}
return ( NO_FAULT );

}

Fig. 3: Pseudo-code of phase 1.

4.1. GATTO+ vs. GATTO

To demonstrate the effectiveness of the described
techniques we report in Tab. 2 a comparison with the
results of GATTO published in [PRSR94], where only
the largest ISCAS’89 circuits were considered.
GATTO+ is able to increase the fault coverage in 11
cases out of 12, and in 6 cases the increase is greater
than 4%. On the other side, the CPU time is decreased
in 9 cases out of 12. For all the circuits, we were able
either to increase the Fault Coverage by more than 4%,
or to decrease the CPU time. GATTO+ achieves this
result mainly thanks to the more effective technique
adopted for phase 1, whose cost is now greatly de-
creased. Concerning the test length, the number of test
vectors generated by GATTO+ is sometimes higher
than those of GATTO, due to the new sequences added
to detect other faults.

Circuit # F aults FC CPU time # Vectors
T otal Detected % [s ]

S208 215 150 69,77 22 215
S298 308 273 88,64 23 240
S344 324 319 98,46 1 103
S349 332 325 97,89 1 104
S382 399 378 94,74 735 1850
S386 384 314 81,77 27 371
S400 424 396 93,40 212 1431
S420 430 204 47,44 55 197
S444 474 438 92,41 219 1733
S510 564 564 100,00 58 968
S526 555 462 83,24 214 2946
S526n 553 465 84,09 612 3042
S641 465 406 87,31 22 266
S713 581 480 82,62 26 281
S820 850 800 94,12 1287 1630
S832 869 586 67,43 80 401
S838 857 303 35,36 121 202
S953 1079 1069 99,07 28 852
S1196 1242 1236 99,52 118 1091
S1238 1355 1280 94,46 213 1905
S1423 1515 1465 96,70 362 2855
S1488 1486 1438 96,77 104 891
S1494 1506 1446 96,02 72 886
S5378 4603 3560 77,34 420 832
S9234 6927 405 5,85 19 8
S13207 9815 2007 20,45 280 272
S15850 11719 652 5,56 109 101
S35932 39094 35090 89,76 2958 1015
S38417 31180 5595 17,94 5724 593
S38584 36306 18030 49,66 6923 3249

Tab. 1: GATTO+ performance on ISCAS’89 circuits.

4.2. GATTO+ vs. other algorithms

W report in the following the data published for two
other ATPG algorithms and concerning the ISCAS’89
benchmark circuits. In Tab. 3 we consider HITEC, a
topological algorithm described in [NiPa91], and the
GA-based ATPG proposed in [RPGN94]. The two
algorithms were selected, as they are representative of
the two categories we denoted above as topological and
simulation-based ATPG algorithms; we did not con-
sider any ATPG belonging to the category of symbolic
ones, as they are not able to deal with large circuits,
which are normally the most critical problem in the
real world.

Two difficulties must be faced when performing
such a comparison: the first one concerns the hardware
platform, which is different for the three ATPGs
(results for HITEC were gathered on a SPARCstation
1, those in [RPGN94] on a SPARCstation II, and those
for GATTO+ on a DECstation 3000/500). The second
difficulty comes from the fact that GATTO+ assumes
that all the Flip-Flops in the circuits are resettable, and
generates sequences starting from the all-0s state, while
the two other algorithms do not make this assumption,
and generate sequences starting from the all-Xs state.



Circuit Fault Coverage CPU time # Vectors
% [s]

GATTO GATTO+ GATTO GATTO+ GATTO GATTO+
s1196 98,71 99,52 339 118 5202 1091
s1238 94,02 94,46 349 213 4672 1905
s1423 83,5 96,70 557 362 3394 2855
s1488 90,44 96,77 77 104 631 891
s1494 84,79 96,02 122 72 912 886
s5378 71,19 77,34 556 420 1132 832
s9234 5,85 5,85 72 19 220 8
s13207 20,12 20,45 299 280 166 272
s15850 5,5 5,56 111 109 18 101
s35932 84,27 89,76 1474 2958 563 1015
s38417 16,58 17,94 6004 5724 583 593
s38584 39,29 49,66 11957 6923 2478 3249

Tab. 2: comparison between GATTO and GATTO+.

Taking into account the two points above, the results
in Tab. 3 show that:

• GATTO+ is able to reach higher Fault Coverage
figures in all cases but 4 when HITEC is consid-
ered; the figures of GATTO+ are always better
when the tool of [RPGN94] is analyzed;

• the CPU times required by GATTO+ are lower
than the ones required by HITEC for all the cir-
cuits but S1196 and S1238; on the other side,
GATTO+ is always faster than the method in
[RPGN94]. For most circuits, we believe that the
speed-up ratios are greater than any reasonable
factor due to the different hardware platforms.

5. Conclusions

We described some advanced techniques to improve
the effectiveness of a GA-based ATPG like GATTO
[PRSR94]. They fully exploit the powerfulness of Evo-
lutionary Computation by removing some weakness
points concerning the cross-over operator, the ability to
determine the optimal sequence length, and the fault
excitation phase.

Experimental results demonstrate that the new tech-
niques are able to significantly improve the perform-
ance of GATTO in terms of Fault Coverage and CPU
times. We also compared them with the results of a
state-of-the-art topological algorithm and with the ones
of another GA-based ATPG algorithm.

As a main contribution, this paper experimentally
demonstrates that a carefully tuned GA-based ATPG
algorithm is able to provide better results than any
other approach: in fact, symbolic techniques, although
faster on the small circuits, do not work with the large
ones, while topological techniques, although able to
identify untestable faults, are generally slower.

Circuit FC (%) CPU Time [s]
HITEC [RPGN94] GATTO+ HITEC [RPGN94] GATTO+

S208 63,70 69,77 29 22
S298 85,94 88,64 363 23
S344 95,9 96,20 98,46 4785 351 1
S349 95,7 95,71 97,89 3135 350 1
S382 86,97 94,74 535 735
S386 81,7 76,82 81,77 82 207 27
S400 85,68 93,40 567 212
S420 41,6 47,44 2716 55
S444 85,44 92,41 630 219
S510 0 100,00 6 58
S526 74,95 83,24 858 214
S526n 84,09 612
S641 86,5 86,51 87,31 777 494 22
S713 81,9 81,93 82,62 124 565 26
S820 95,4 60,71 94,12 1430 804 1287
S832 93,6 61,95 67,43 2270 738 80
S838 35,36 121
S953 8,2 99,07 937 28
S1196 99,7 99,19 99,52 53 696 118
S1238 94,6 94,02 94,46 201 960 213
S1423 80,66 96,70 10188 362
S1488 97 93,67 96,77 13348 1512 104
S1494 96,4 94,02 96,02 6981 1392 72
S5378 68,98 77,34 21888 420
S9234 0,2 5,85 125 19
S13207 20,45 280
S15850 0,7 5,56 1704 109
S35932 88,8 89,55 89,76 59063 378720 2958
S38417 17,94 5724
S38585 49,66 6923

Tab. 3: results of HITEC, [RPGN94], and GATTO+.
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