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Abstract. The latest generation cars are often equipped with advanced driver

assistance systems usually known as ADAS (Advanced Driver Assistance Sys-

tems). These systems are able to assist the car driver leveraging several lev-

els of automation. It is therefore essential to adapt the ADAS technology to

the car driver’s identity in order to personalize the provided assistance ser-

vices. For these reasons, such car driver profiling algorithms have been de-

veloped by scientific community. The algorithm herein proposed is able to

recognize the driver’s identity with an accuracy close to 99% thanks to ad’hoc

specific analysis of the driver’s PhotoPlethysmoGraphic (PPG) signal. In order

to rightly identify the driver profile, the proposed approach uses a 1D Dilated

Temporal Convolutional Neural Network architecture to learn the features

of the collected driver’s PPG signal. The proposed deep architecture is able

to correlate the specific PPG features with subject identity enabling the car

ADAS services associated to the recognized identity. Extensive validation and

testing of the developed pipeline confirmed its reliability and effectiveness.

Keywords: ADAS ·Deep learning · Automotive.

1 Introduction

The automotive industry is continually evolving to improve reliability and safety of

the latest technology inside the cars. To meet this high demand for efficient and safe

automotive systems, the technology is becoming increasingly sophisticated and the

products currently on the market include intelligent solutions in the ADAS field [6,

19]. The ADAS systems, an acronym of Advanced Driver Assistance Systems, are be-

coming a very useful resource for the design of latest generation cars in order to

increase the overall safety driving as well as to address classical automotive issues

related to a drop of driver attention [18, 4]. Anyway, it is clear that the driving as-

sistance systems must be customized to the driver and his driving dynamics. In

particular. For this reason, it is necessary to profiling the driver or the recognition

Ruggero
Casella di testo
© 2021 Springer. Personal use of this material is permitted. Permission from Springer must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.




2 F. Rundo et al.

of his identity both before and during driving in order to enable the most appro-

priate ADAS assistance services. The present contribution is composed as follows.

In the next section an examination of the prior art in relation to the driver profil-

ing methods is presented. In the "Methods and Materials" section the proposed

methodology will be illustrated in detail. Therefore in the "Results" section some

performance indices of the proposed method will be shown which will be com-

mented and discussed in the last section "Discussion and Conclusion".

2 Related Works

In [8], the authors analyzed several Android smartphone embedded sensors and

classification pipelines in order to characterize the car driver behavior. The authors

proposed a driver profiling approach by means of such Machine Learning based al-

gorithms. More in detail, in the aforementioned survey [8] the authors have inves-

tigated several promising solutions based on the usage of Support Vector Machines

(SVM), Random Forest (RF), Bayesian Network (BN) and Artificial Neural Networks

(ANN). The final results confirmed that accelerometer and gyroscope represent the

the most appropriate sensors to monitor the driving behaviour (also showing that

the use of all sensor axes accomplish the task better than using a single one). In

terms of machine learning architectures, they proved that the RF the best perform-

ing pipeline, followed by ANN even if the performance of both is satisfactory and

equivalent, varying from 0.980 to 0.999 mean AUC values [8]. In [7] the authors pro-

posed an interesting approach for profiling the car driver behaviour including iden-

tity recognition. In particular, trough a simulator they were able to analyse the key-

pressed dynamics of the analyzed subject. Through the analysis of the so collected

key-pressed patterns, the authors were able to discriminate the identity of a specific

driver with acceptable accuracy. In [11] a system named Driver Adaptive Vehicle In-

teraction System was implemented and analyzed. The main modules of the afore-

mentioned method are the follows: the the Profile Management Module , the Driver

Management Module and the Interaction Management Module. In particular, the

first module is able to handle the car driver identity and correlated driver’s driving

characteristics. Through this collected data for each subject, the authors were able

to provide a custom user-adaptive interaction system suitable to profile the driv-

ing dynamic. In [13] the authors performed a proper investigation about a model of

human driving behaviour, and its correlated main issues. They described an inter-

esting discussion about the principal human factors that might have an impact on

driving: age, gender, personality, anger, mental stress, distraction, and so on. The

authors have implemented and analyzed different pipelines with very interesting

results. More details in [13]. In [5] the authors designed a pipeline named "Sense

Fleet" based on the output analysis of such specific smartphone’s sensors in order

to identify and profile the subject who is driving. The method performs well but it

suffers from the limitations of similar methods that use devices external to the car,

therefore problems of invasiveness and compatibility with the automotive systems

of the car. In [15] the author proposed an interesting car driver identity recogni-

tion based on the usage of combined approach which includes machine learning
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and dynamic time warping methodology. Through the analysis of such physiolog-

ical signals of the car driver (collected from specific bio-sensor embedded on the

car systems) the author was able to recognize the driver identity with high accu-

racy. The pipeline herein proposed is an improvement of the one described in [15].

Specifically, the authors propose an approach for the car driver identity recogni-

tion based on the analysis of the "physiological imprinting" of the subject [16]. The

following section introduce and describe with more detail the proposed pipeline.

3 Methods and materials

In this section the overall proposed pipeline for the car driver identity recogntion

will be described. The whole implemented pipeline is based on the use of an inno-

vative analysis of the "physiological impriting" of the driver that the authors charac-

terize through the photoplethysmographic signal (PPG) of the subject [16, 22]. The

PPG signal represents a non-invasive physiological track of the subject’s cardiovas-

cular system correlated to the heart pulse-rate dynamic. This physiological signal,

can be used to monitoring the heart pulse and respiratory rate of a subject [17].

Furthermore, the PPG signal may be also used to obtain a non-invasive measure

the blood volume dynamic for several cardiovascular assessments [17, 3]. A brief

description of the PPG signal features is reported. A classical PPG waveform col-

lected from a bio-sensor placed in contact with the skin of the examined subject

contains a pulsatile (’AC’) physiological waveform which is related to the cardiac-

synchronous changes in the blood volume superposed with a slowly varying (’DC’)

component that contains the lower frequency information correlated to respira-

tion, thermo-regulation [16]. The arteries and arterioles in the subcutaneous tissue

of the analyzed subject’s skin are stretched by the pressure of the blood pumped by

the heart into the periphery, with a specific pressure, in each cardiac cycle (systolic

phase). This dynamic tends to be reduced in the diastolic phase of cardiac activity

[17, 3]. Through ad-hoc designed bio-sensor it will be possible to capture the men-

tioned blood dynamics regulated by cardiac activity in order to reconstruct a signal

that is strongly correlated with the aforementioned cardiac phases and therefore

with the changes in blood flow. More in detail a small secondary peak, observed by

a pressure pulse from the venous plexus, can be detected through a sensing device

made-up by a light-emitter and photo-detector placed over the skin. The blood dy-

namic changes, will be detected by illuminating the skin and then by measuring the

amount of light either transmitted or back-scattered to the coupled photo-detector.

This is exactly the operating principle with which the PPG signal is constructed

from a bio-sensor consisting of a light emitter and a photo-detector that captures

the transmitted or back-scattered light. More detail in [16, 22, 17, 3]. Therefore, the

PPG signal can effectively be considered as a subject’s "physiological imprint" or

"cardiac imprint". The PPG waveform can be used as a fingerprint or bio-marker of

a car driver; this implies that the features extracted from PPG signal can be properly

used to recognize the subject from which the PPG is sampled [15]. In the Figure 1

the implemented PPG bio-sensor is reported.
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Fig. 1. The implemented PPG signal sensing probe.

The sensing device reported in Fig.1 and used by the authors for implement-

ing the PPG sampling in the pipeline herein described, consists of two main com-

ponents: a Silicon PhotoMultipliers (SiPMs) detector and two source LED emit-

ters. The SiPM photo-detector used in our system is produced by STMicroelectron-

ics (Catania, Italy) [25, 12]. The SiPM device has a total area of 4.0× 4.5 mm 2 and

4871 square microcells with 60µm of pitch. It has a geometrical fill factor of 67.4%

wrapped in a surface mount housing (SMD) of 5.1×5.1 mm 2 total area [25, 12, 24].

A Pixelteq dichroic bandpass filter (Bryan Dairy Rd, Largo, FL, USA) centered at

542 nm (Full Width at Half Maximum (FWHM) of 70 nm and optical transmission

higher than 90% in the pass band range) was glued on the SMD package by using

352TM adhesive (Loctite R©, Milan, Italy). With the described setup, considering the

driving range 0−3V , the device has a maximum Photon Detection Efficiency (PDE)

of about 29.4% at 565 nm and of about 27.4% at 540 nm (central wavelength in the

filter pass band). Moreover, a dichroic filter has been included in order to reduce the

absorption of environmental light of more than 60% in the linear operation range.

The emitter that has been used as optical light source is composed of two LT M673

LEDs (OSRAM, Milan, Italy). In particular, both LEDs are based on InGaN technol-

ogy (in SMD package) emitting at 873 nm, they also have an area of 2.3× 1.5mm 2

viewing angle of 120 and typical power emission of a few mW in the standard op-

eration range. More details in [15-17]. In Fig. 1 the implemented sensing device is

shown in which the part containing the SiPM photo-detector (Detector in Fig. 1) is

highlighted, whose characteristic curves are shown. In addition, the part showing

the LEDs (Source in Fig. 1) which in this case emit, as indicated, at a wavelength

of 873 nm, is highlighted. Introduced the bio-sensor to reconstruct the PPG sig-

nal, we now describe the implemented pipeline for the recognition of the driver’s

identity based on the processing of the physiological signals of the subject. An over-

all outline of the implemented car driver identity recognition pipeline is shown in

Figure 2. Each block of designed pipeline will be described in the following subsec-

tions.
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Fig. 2. Car driver identity recognition pipeline.

3.1 The PPG Pre-Processing Block

This block takes care of acquiring, filtering, stabilizing and pre-processing the PPG

signal sampled from the driver. In order to be able to sample the so called physiolog-

ical imprint of whom is driving the vehicle, the PPG sensing device will be embedde

into different part of the car dashboard , specifically, in the car steering in the start

button or in the gear shift. Each time the driver places the hand on the start button

or on the steering or over the gear lever, the PPG signal will be sampled from the

palm of the hand by means of the bio-sensing probes embedded in these parts of

the car. In this way the PPG driver’s signal will be persistently collected. The sens-

ing devices so designed produce a raw PPG signal from the hand of the car driver. A

microcontroller device detects the first raw PPG signal sampled by one of the bio-

sensors placed in the various points of the car mentioned above and therefore se-

lects the latter for the subsequent processing steps to recognize the driver’s identity.

To increase the robustness of the PPG sampling pipeline we have distributed sev-

eral PPG sensors in the car’s steering equidistant from each other as well as in the

start button or in the gear shift. In the case where the driver will not put any hands

on a PPG sensor placed in the car, the last identification setup will be considered. If

no identity has been acquired when the vehicle is turned on, the system will asked

to the driver to place the hand in one of the PPG sensors embedded in the steering

wheel in order to proceed with identification. However, a recovery system based

on innovative motion magnification algorithms (preliminary introduced in [23]]) is

ongoing to be implemented for covering the issue related to the case in which the

PPG signal is no longer available. More detail in the conclusion section of this paper.

About the sampled raw PPG signal, as introduced, it is originally an optical signal

which require to be converted before to be used in our pipeline. For this purpose,

we used a 24-bits Analog to Digital Converters embedded in a board we designed

for collecting and pre-processing the raw PPG signal. The Fig. 3, shows an instance

of the designed motherboard which is integrated into the vehicle contro unit. More
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detail on the hardware setup implemented can be found in [25, 12, 24]. The PPG

sensing devices located on the car’s steering wheel/gear shift or start button have

been plugged-in to the USB connectors of the developed motherboard. The so sam-

pled raw PPG signal was managed by such algorithms running as firmware in a 32-

bits Micontrollers (STA1295 Accordo5 MCU) and SPCx Chorus MCU series [2, 1].

The so gathered raw PPG signal will be afterwards post-processed by the Hyper-

Filtering block as described in the next section. The described hardware setup is

reported in Figure 3.

Fig. 3. The designed PPG signal pre’processing motherboard

3.2 The PPG Hyper-Filtring Block

To properly work with the PPG signal a frequency filter is needed since the raw for-

mat embeds several components useless for our goal. This particular detail have

been carried out by the authors in [19][3, 25, 12, 24]. Furthermore, taking into ac-

count of a real driving scenario which includes motion artifacts, noises, car engine

vibrations and so on, ad-hoc filtering or stabilization task is needed.Expressly, a

classical approach for PPG filtering and stabilization is based on the usage of a set

of FIR (Finitte Impulse Response) block designed to work band-pass filter in the

range 0.5 - 10 Hz. A classical FIR filter used for both low frequencies (low pass) and

high frequencies (high pass) carry out a classic processing formalized by the follow-

ing classic discrete-time equation:

yP P G [n ] =

N0∑

i=0

δi · x [n − i ], (1)

where N0 represents the order of the used filter, while the δi define the filter

coefficients and n the number of samples of the source raw PPG signal x [k ]. Evi-

dently, the signal yP P G [n ] shows the filtered PPG waveforms. In the following table

1 the FIR setup usually applied for PPG filtering is reported [16].

In this contribution, the authors intend to propose a different solution in rela-

tion to the filtering of the raw PPG signal. This idea will be better described in the



Abbreviated paper title 7

Table 1. Low-pass and high-pass filter design for the photoplethysmgraphic (PPG) raw sig-

nal.

Type
Frequency

pass (Hz)

Frequency

stop (Hz)

Passband

Attenuation (dB)

Stoband

Attenuation (dB)

Low-pass 3.8 7.21 0.001 100

High-pass 1 0.3 0.01 40

following paragraphs. In the pipeline described herein, we replace the above in-

troduce classifica FIR filters setup with an-other set of properly configured hyper-

filtering layers. The idea that we in-tend to propose in this work is inspired from the

well known hyper-spectral method applied to 2D imaging [19]. Hyperspectral imag-

ing, like other spectral imaging, collects visual information from across the whole

electromagnetic spectrum. The goal of hyperspectral imaging methodology is to re-

trieve the so-called “frequency spectrum of each pixel” in order to address the clas-

sical image processing issues such as objects recognition, materials identification,

and so on [19]. With aim to emulate the same approach, the authors investigated

the effectiveness of applying the same approach to the study and analysis of 1D PPG

signals. Specifically, the authors investigated whether, by collecting the information

deriving from a "hyper-filtering" processing of the original 1D signal (PPG, in this

case), we could obtain useful information to characterize the “frequency spectrum

of each signal sample”, that is, the information useful to address the problem for

which the signal is analyzed in our case, the detection of the driver identity. For

this reason, instead of applying a single filter set (low pass and high pass) we an-

alyzed the source PPG signal over a range of frequencies that would allow us to

better characterize the value of the single signal-sample. Considering that the use-

ful frequency range, which allows to obtain an information component of the PPG

signal, is included in the 0.5 - 10 Hz range, we have investigated the scenario of

properly splitting this frequency range in sub-bands to be applied to simulate the

phenomenon of hyper-filtering. Considering that, in the case of the PPG signal, it is

necessary to apply both a low-pass and a high-pass filtering (therefore, a band-pass

filter is required), we opted for two layers of hyper-filtering i.e. one that varied the

frequencies in the low-pass band maintaining instead the cut-off frequency of the

high-pass filter (hyper low-pass filtering layer) and, vice versa, one that varied the

cut-off frequencies of the high-pass filter while maintaining constant the frequency

of the low pass filter (hyper high-pass filtering layer). Furthermore, considering the

need to have filters that do not create distortions in the PPG bandwidth, we decided

to adopt the Butterworth filters in both layers of hyper-filtering [19]. As is known,

Butterworth filters are the simplest electronic filters usable for signal processing ap-

plications [3, 25, 12, 24]. The first and most important part of the proposed method

was related to the selection of the sub-bands intervals of the range 0.5 - 10 Hz and

the relative cut-off frequencies. To address this issue, we have used a classical "trial

and error" approach that would first search for the best number of sub-intervals in

the 0.5 – 10 Hz frequency range. Specifically, after a series of heuristic tests , we se-

lected a value equal to 11 sub-bands as the best trade-off between computational
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load and discriminative ability. Pratically, in our experiments, we found that when

using a smaller number of frequency sub-bands (< 11), the detection performance

driver identity decreased a lot. Meanwhile, increasing the number of sub-bands (>

11), the performances remained almost stable, although the computational load

of the whole algorithm obviously increased. Therefore, in order to find a correct

trade-off between performance and computational load, we established that 11

sub-bands were enough to properly discriminate the driver identity. Therefore, for

each hyper-filtering layer, we proceeded to split the range of applicable frequency

in 11 specific sub-bands. Once the number of sub-bands was set, we put together

a reinforcement learning algorithm structured as follows:

– We defined an action at as the sub-band frequency value between 0.5 Hz and

cut-off frequency according to the type of filtering (low-pass or high-pass);

– We defined an Agent select the action at ;

– We defined a next state St+1 as a set of pre-processed signals obtained collect-

ing the value of each input PPG samples (in a windows of 5 sec sampling at 1

KHz as sampling frequency) of the filtered PPG raw signal at specific sub-band

frequency of the action at ;

– We define an environment Reward as R (.|st , at ), that is, a measure of drowsiness

of the car driver. We defined as R (.|st , at ) the distance of the output of ad-hoc

machine learning system (regression layer plus SoftMax classification) with re-

spect to the actual driver identity;

We are interested to determine the optimal policy Po that minimizes the cumu-

lative discount reward:

Po = a r g ma xPo
E [
∑

t≥0

γt R (.|st , at )|Po ], (2)

where γ is a proper discounted coefficient in (0, 1). In order to evaluate the the

goodness of a state st and the goodness of a state-action couple (st , at ), we defined

the value function and the Q-value function, respectively, as follows:

V P0 (st ) = E [
∑

t≥0

γt R (.|st )|Po ] (3)

Q P0 (st , at ) = E [
∑

t≥0

γt R (.|st , at )|Po ]. (4)

By solving the above models through classical Q-learning algorithms [19], we

found the following set of sub-band frequency for each hyper-filtering layer. Once

we have identified the optimal frequency setup using the described RL algorithm

, the latter system will be disconnected from the main pipeline as it is no longer

needed for the operation of the proposed approach concerning the discrimination

of the driver identity. Therefore, the RL algorithm is needed simply as "one-shot"

optimization algorithm to be used only in the initial setup of the filtering frequency

framework, and thus it will no longer needed for achieving the target of the pro-

posed solution. Once the frequency sets of the two hyper-filtering filter sub-systems
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have been identified, the sampled raw PPG signal will be processed accordingly.

Formally, if we set with x (k ) the sampled raw PPG signal, for each frequency setup,

we obtain the following hyper-filtered time series:

ϕi
HLP
(k ) = FB u t t e r w o r t h ( f

i
L

, fH , x (k ))i = 1, 2, . . . 11; k = 1, 2, . . . .n , (5)

ϕi
HH P
(k ) = FB u t t e r w o r t h ( fL , f i

H
, x (k )) i = 1, 2, . . . 11 ; k = 1, 2, . . . n , (6)

where ϕi
HH P
(k ) and ϕi

HLP
(k ) represent the set of hyper-filtered time series com-

ing from hyper-filtering high-pass and low-pass processing, respectively. The func-

tion FB u t t e r w o r t h represents the filter processing performed by the so configured

Butterworth filter, while fL , fH represent the fixed cut-off frequencies and f i
H ,

f i
L

the

variable frequency (fc-pass-x) as per Tables 2 and 3. Now, for each sample of the sin-

gle so hyper-filtered PPG signals, a dataset of further signals will be created, each

having a temporal dynamics represented by the intensity value of the single sample

of the so filtered PPG signal.

Table 2. Hyper Low-Pass Filtering Setup (in Hz)

F Fc-pass-1 Fc-pass-2 Fc-pass-3 Fc-pass-4 Fc-pass-5 Fc-pass-6 Fc-pass-7 Fc-pass-8 Fc-pass-9 Fc-pass-10 Fc-pass-11

HP 0.5 / / / / / / / / / /

LP 1.00 1.34 2.09 2.231 3.09 3.44 4.2 4.23 5.2 5.52 6.87

Table 3. Hyper High-Pass Filtering Setup (in Hz)

F Fc-pass-1 Fc-pass-2 Fc-pass-3 Fc-pass-4 Fc-pass-5 Fc-pass-6 Fc-pass-7 Fc-pass-8 Fc-pass-9 Fc-pass-10 Fc-pass-11

HP 0.5 1.5 2.2 2.75 3.12 3.65 4.1 4.48 5.23 5.3 6.11

LP 7 / / / / / / / / / /

Formally, if we indicate with W i
P P G
(tk ) the single segmented waveform of each

hyper-filtered PPG time series, we proceed computing for each sample s (t k ) of the

waveform W i
P P G
(tk ) a signal-pattern depending on how that sample s (t k ) varies

in intensity in the various hyper-filtered PPG signals ϕi
HH P
(k ) and ϕi

HLP
(k ) for i =

1, 2, ..., 11. In this way, we will obtain a fairly large dataset of signals whose length

will thus be equal exactly to the number of filtering frequencies, that is, 11 in this

application setup. The following equations show how we obtain the signal-patterns

ζk
H P
(s (tk )) and ζk

LP
(s (tk )) for each sample of the acquired PPG waveforms:

ζk
H P
(s (tk )) = [ϕ

1
HH P
(tk ),ϕ

2
HH P
(tk ), . . .ϕ11

HH P
(tk )] k = 1, 2, . . . .n , (7)
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ζk
LP
(s (tk )) = [ϕ

1
HLP
(tk ),ϕ

2
HLP
(tk ), . . .ϕ11

HLP
(tk )] k = 1, 2, . . . .n . (8)

The following Fig. 4 show some instances of the hyper-filtering PPG time se-

riesϕi
HH P
(k ) andϕi

HLP
(k ), as well as related generated signal patterns ζk

H P
(s (tk )) and

ζk
LP
(s (tk )). As for the classic hyper-spectral method, by means of the hyper-filtering

approach herein described we are able to highlight multiple features of the PPG

source signal as the frequency setup varies so as to significantly increase the dis-

criminating features relating to the source sampled PPG signal of each subject. The

dynamic of the signal-patterns ζk
H P
(s (tk )) and ζk

LP
(s (tk )) shows how the single sam-

ple of the acquired PPG time series varies according to the applied frequency filter

setup. We collected several signal-patterns as we performed the analysis of each

sample of the hyper-filtered PPG time series in a proper timing window after the

car-driver put the hand over the steering wheel or in other part in which we have

embedded the PPG sensor probe. The generated signal-patterns will be fed as input

of the designed deep classifier block, as described in the following sub-section.

Fig. 4. In the left column some instances of the hyper-filtered high-pass PPG time series

ϕi
HH P
(k ) ; In the right column an instance of the corresponding generated signal-patterns:

ζk
H P
(s (tk )); (c), (d) ζk

LP
(s (tk )).
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3.3 The 1D Temporal Dilated Deep Classifier

Ad-hoc 1D Temporal Dilated Convolutional Neural Network (1D-CNN), has been

designed for classifying the collected hyper-filtered PPG signal patterns [21]. The

following Figure 5 report the overall scheme of the proposed 1D deep classifier.

Fig. 5. The 1D Deep Classifier based pipeline for a robust car driver physiological identifica-

tion

Our proposed network takes as input the signal-patterns s (tk ) generated from

each PPG hyper-filtered signals. The main novelty of the proposed architecture is

the introduction of dilated causal convolution layers. The term "causal" denotes

that the activation at time t depend on the activation computed at time t − 1. The

proposed 1D-CNN includes such multiple residual blocks. Specifically, the proposed

deep network consists of a sequence of 16 residual blocks stacked together. Each

block consists of a dilated convolution layer, batch normalization, ReLU and a spa-

tial dropout. A dilated layer includes a 3 × 3 convolution operation. The dilation

factor is set to 2 increasing for each block up to the eighth block. After no dilation it

is applied. A downstream softmax layer completes the proposed pipeline. The out-

put of the designed 1D-CNN predicts the driver identity from source hyper-filtered

PPG generated signal-patterns. Specifically, the output of the 1D-CNN, thus, is able

to predict the specific driver profile or identity which turns out to be the most likely

profile among those on which it has been earlier trained by means of a system

calibration phase. Consequently, the profiles of users who are allowed to obtain

specific services enabled by the car control unit. In fact, a preliminary calibration-

training phase of the algorithm allows this to be trained on specific profiles related

to very exact identities of drivers. For each of the recruited drivers for the train-

ing phase, the PPG signal is acquired through the described pipeline and then the

hyper-filtering block is applied in order to obtain the features to train the deep

classifier so that it associates the retrieved features with the driver identity from

which the PPG signal is sampled. So, as soon as a subject start to drive the car and

the related PPG signal is sampled by the bio-sensors placed in the car’s passenger

compartment, according to the so sampled PPG signal and its related patterns ob-

tained from the Hyper-filtering system, the classifier will be able to output a con-
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fidence level for each profile previously learned in the training-calibration phase.

The above-mentioned confidence level, in our case, represents the percentage of

belonging of the patterns to the previously learned driver profiles. If a new driver

is driving whose identity does not match to any learned profiles in the calibration

phase, a low probability (under 50%) will output by the classifier for each confi-

dence level. The results, detailed in the next section, confirms that the implemented

Deep Learning framework is able to identify the right car driver profile with high

accuracy. The implementd 1D Deep CNN backbone is ongoing to be ported over

the STA1295 Accordo5 embedded MCU platform with Linux YOCTO as Opertaing

System [2, 1]. Fig.6 shows a loss dynamic of the 1D-CNN properly trained.

Fig. 6. The loss dynamic of the 1D-CNN.

4 Results

In order to validate the proposed pipeline, the authors asked for support from a

team of physiologists they are with were collected several PPG measurements of

different subjects. In order to have a complete mapping of the PPG signal dynamic

of each recruited subject, the physiologists stimulated several physiological states

(inattentive, enthusiastic, stressed, and so on) monitoring the subject through the
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ElectroEncephaloGraphic (EEG). Experiments were performed on 75 mixed healthy

subjects: 35 men and 40 women aged between 20 and 79 years; none of the partici-

pants were using drugs suitable of changing cortical excitability. Volunteers autho-

rised informed consent to the procedures approved by the Ethical Committee Cata-

nia 1 (authorization n.113 / 2018 / PO) in according to the Declaration of Helsinki.

Participation criteria encompassed the possession of a valid driving licence for mo-

tor vehicles. Our team have collected 10 minutes of PPG signal with the bio-sensing

device described in previous sections and based on coupled LED-SiPM technology

with sampling frequency of 1 kHz. A car has been equipped with six LED-SiPM cou-

pled sensing device placed equidistant from each other in order to cover the most

common driving styles of a subject. The implemented pipeline was hosted by the

following setup: MATLAB full toolboxes vers. 2019b running in a server having an

Intel 16-Cores and NVIDIA GeForce RTX 2080 GPU. We have configured a scenario

of 4 known car driver profiles to be identified by proposed pipeline. The scenario

included two young and two aged people from opposite sex. The subjects were cho-

sen from the dataset described above and there was not any relationship between

them. All other subjects are recognised as unknown profiles. To be able to test the

designed pipeline, the acquired PPG data for the selected known profiles have been

divided as follow: 70% has been used for training and validation while the remain-

ing 30% for testing. In order to verify both in the training phase and in the testing

phase if the algorithm was able to recognise the identity of the drivers, the authors

have constructed artificial PPGs composed of subset of waveforms coming from

various recruited subjects (both from the selected four known subjects as well as

the remaining unknown subjects). The overall accuracy (both training and test) of

the described method stands at around 98.75%, thus, confirming the robustness

of the pipeline proposed in this contribution. The previous pipeline [15] tested in

this recruited dataset with four different identity to be recognized showed a perfor-

mance of 97.12% significantly lower than the method proposed here. Although it is

a matter of a few percentage points of difference between the two pipelines, in the

case of automotive applications, the accuracy must be as high as possible.

5 Discussion and Conclusion

The aforementioned experimental results confirm the ability of the proposed pipeline

to recognise the car driver identity by analysing some physiological features of re-

lated PPG signal. The suggested approach has introduced the concept of “cardiac

imprinting or "physiological imprinting” as a valuable replacement of the classic

fingerprint to outline and correctly identify a subject. Specifically, through the de-

signed contribution the embedded ADAS system will be able to consistently mon-

itor the driver’s identity, steadily knowing whom is driving. Moreover, by recogni-

tion of the driver identity, the mentioned approach will be able to offer congruous

information to the car control unit for enabling the services and ad-hoc configura-

tions for the recognized identity, providing a tailor-made ADAS systems. The perfor-

mance accuracy confirmed the effectiveness of the proposed approach. As future

works of the presented work, the authors are researching the integration of vision
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algorithms able to analyze also the anxiety and stress level of the driver, in order to

improve the driving safety and assistance systems. In conclusion, preparatory and

encouraging results are being found by examining the driver’s identity recognition

within the fusion of data coming from both (PPG) physiological signals. A promis-

ing results were obtained by integrating some statistical analyzes (Markov models)

of the integrated driver’s PPG signal with some visual features extracted from the

viewer’s face acquired from a camera located on the dashboard [21, 20, 9]. Future

scientific contributions will show these results which also integrate the use of Deep

Long Short Term Memory and further Reinforment Learning model for the charac-

terization of discriminating features [14, 10].
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