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Abstract 

 

 Compressing the ECG signal is considered a feasible solution for supporting a system to manipulate the 

package size, a major factor leading to congestion in an ECG wireless network. Hence, this paper proposes a 

compression algorithm, called the advanced two-state algorithm, which achieves three necessary 

characteristics: a) flexibility towards all ECG signal conditions, b) the ability to adapt to each requirement of 

the package size and c) be simple enough. In this algorithm, the ECG pattern is divided into two categories: 

“complex” durations such as QRS complexes, are labeled as low-state durations, and “plain” durations such 

P or T waves, are labeled as high-state durations. Each duration type can be compressed at different 

compression ratios, and Piecewise Cubic Spline can be used for reconstructing the signal. For evaluation, the 

algorithm was applied to 48 records of the MIT-BIH arrhythmia database (clear PQRST complexes) and 9 

records of the CU ventricular tachyarrhythmia database (unclear PQRST complexes). Parameters including 

Compression Ratio (CR), Percentage Root mean square Difference (PRD), Percentage Root mean square 

Difference, Normalized (PRDN), root mean square (RMS), Signal-to-noise Ratio (SNR) and a new proposed 

index called Peak Maximum Absolute Error (PMAE) were used to comprehensively evaluate the 

performance of the algorithm. Eventually, the results obtained were positive with low PRD, PRDN and 

PMAE at different compression ratios compared to many other loss-type compressing methods, proving the 

high efficiency of the proposed algorithm. All in all, with its extremely low-cost computation, versatility and 

good-quality reconstruction, this algorithm could be applied to a number of wireless applications to control 

package size and overcome congested situations. 

 

Keywords: ECG compression, Telemedicine, ECG pattern classification, adaptive package size 
 



 

Am. J. Biomed. Sci. 2016, 8(1), 1-23; doi: 10.5099/aj160100001    © 2016 by NWPII. All rights reserved                                   2 

 

 

1. Introduction 

 

 ECG telemedicine is being developed rapidly 

and is widely used for a variety of medical 

purposes, such as improving access to medical 

services, monitoring patients with chronic and 

cardiovascular diseases or in ambulatory 

applications [1,2]. Nevertheless, to guarantee the 

quality of the transmitted ECG signal, a medical 

network often faces congestion problems that 

lead to high Bit Error Rate (BER) and high 

package loss rate, where the size of the 

transmitted data is a major contributing factor [3-

5]. In low bit rate wireless environments, such as 

GPRS or HSCSD, different package lengths 

could cause significant changes in transport delay 

and jitter, possibly leading to package errors [3]. 

A larger package size will also increase the 

number of retransmissions that, as a consequence, 

will increase the package loss rate due to a higher 

possibility of packages being discarded [4]. 

However, continuously reducing the package size 

does not always produce better performance, 

since transmission intervals reduce 

proportionally, and the channels will be 

extremely busy at a certain level [5]. Therefore, 

optimizing package size for ECG devices could 

be an effective solution to maintain performance 

and utilize channels in a medical wireless 

network. The sampling rate for digitalizing ECG 

is always selected to be at least 250 

samples/second for portable applications, and up 

to 1000 samples/second for fully functional 

monitoring systems in hospitals. Hence, it is 

difficult to ensure that quality is maintained and 

there is sufficient channel bandwidth to transmit 

all the raw data with such large package sizes 

from different systems. In such a scenario, 

compressing the ECG signal would be beneficial 

for transmitting smaller packages without 

proportionally reducing the interval of 

transmission. In order to adapt to various 

applications and clinical situations, the 

compression algorithm must have three 

characteristics: 

1) It must be flexible for applying to the 

different shapes of ECG signals without 

depending on detecting any physiological 

features, such as P and T wave, QRS 

complex or R peak. 

2) Immediately satisfy every adjustment of the 

package size to guarantee low delay in critical 

situations. 

3) Have a low computational cost at both 

compression and decompression stages to 

allow the system to undertake further 

processing. 

A detailed classification of previous works 

can be found in the Introduction part of Ref. [6]. 

There are more than 50 compression methods that 

could be divided into two major sections: 1-D 

methods and 2-D methods. In 1-D methods, there 

are also four sub-groups including direct-time 
domain compression methods (DTD), model 
based compression methods (MB), transform 
domain compression methods (TD) and hybrid 
compression methods (H). Except for DTD 

methods[7-10], which can achieve all three 

characteristics mentioned above, the other groups 

have their own disadvantages preventing their 

widespread use in different applications. MB 

methods need to detect QRS complexes or R 

peaks to capture different shapes of beats for 

storage in their codebooks [11-14], or for 

learning mechanism and compression in case of 

using Vector Quantization technique (VQ) [15-

18].TD methods [6], [19-39] which use different 

transformations such as Wavelet transform, 

discrete cosine transform, etc., hardly satisfy the 

change of compressed data size without affecting 

the quality of reconstruction, since they depend 

on the size of processing block. Besides that, 

although the reconstruction were extremely good 

at very high compression ratio due to various 

modifications in transformation techniques or 

error minimization mechanisms, the considerable 

computational cost causes TD methods to be 

hardly applied in a network with multiple ECG 

devices. Likewise, H[40-42] and 2-D 

methods[43-48] are even more computationally 

complex and are difficult for implementing in 

wireless applications as a step. DTD methods, 

such as turning point (TP) [7], amplitude zone 

time epoch coding (AZTEC) [8], the coordinate 

reduction time encoding (CORTES) [9]and scan 

along polygonal approximation (SAPA) [10], are 

the most flexible ones compared to others, since 
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they are simple enough and independent of ECG 

features (these algorithms actually only detect 

slopes in general, not P and T waves or QRS 

complex). Nevertheless, almost all of them 

except SAPA cannot re-produce a reliable ECG 

signal. A comprehensive review about these 

algorithms was done in Ref. [49]. Therefore, this 

paper aims to add a novel, extremely simple, 

versatile and enough reliable compression 

algorithm to the DTD group, called the advanced 
two-state algorithm, using two different 

compression ratios to compress two types of 

durations in the ECG signal: complex durations 
and plain durations, and apply Piecewise Cubic 

Spline, a basic interpolation algorithm, for 

decompressing the signal.  Details of the 

proposed method are given in section 2. In 

section 3, we survey the performance of the 

algorithm with two types of ECG signals: signals 

with clear PQRST complexes (BIH-MIT 

arrhythmia database [50]) and signals with 

unclear PQRST complexes (CU ventricular 

tachyarrhythmia [51]). We discuss our results in 

section 4 and, our conclusions are provided in the 

last section. 

 

2. Two-state compressing algorithm 

 

2.1 Principle and overview of the two-state 

compressing algorithm 

Many compressing methods share the same 

idea of separating QRS complexes containing 

high frequency components, from P and T waves, 

which only consist of low frequency components. 

However, almost algorithms used in those 

methods tend to detect exactly R peaks or QRS 

complexes that can reduce their versatility and 

flexibility in case of irregular ECG signals as 

well as increase the cost of computation. To 

overcome this problem, the proposed algorithm 

tends to distinguish between complex durations 

in general, in which QRS complexes are 

particular examples, and plain durations in 

general, which include P and T waves, by a 

simpler method of using two thresholds in the 

first derivative of the signal (Figure 1). The first 

derivative of the ECG signal is calculated as 

below: 

                                                              
 

Where, n is the number of ECG samples,    
and     are the i

th
 ECG’s sample and the ith first 

derivative sample. As clearly seen,     is in fact 

the difference between    and its previous 

sample,thus it can help distinguish the pattern as 

a low- or high-frequency duration. Considering a 

short period of record number 103 of MIT-BIH 

arrhythmia (Figure 1), which has clear PQRST 

shapes, the P and T waves exhibit a moderately 

flat pattern in the first derivative, expressing their 

slow changing curves, which could be classified 

easily by a threshold Thr1. If a sample is equal to 

or larger than Thr1, it would indicate a possible 

upcoming complex duration like QRS complexes. 

To capture sufficient complex durations in the 

first derivative, a smaller threshold Thr2 is used. 

By continuously finding samples smaller than 

Thr2, the end of QRS will be defined, and the 

threshold is switched back to Thr1.As a result, 

plain durations and complex durations could be 

eventually separated by this extremely low-cost 

computational mechanism. After classification, 

both complex durations and plain durations are 

compressed simply by a downsampling process, 

which decreases the sampling frequency of the 

signal by just removing the samples: 

         with                         (2) 

 

Wherein, h,     is the i
th

 sample of the 

compressed signal, m is the number of samples 

after compressing, k is the downsample factor 
(DF) and in this case, it is also the compression 
ratio (CR) of that duration. Henceforth, we will 

use the term CR instead of DF throughout the 

manuscript to be more precise in terms of the 

compressing data. The classification mechanism 

and the downsampling process above form the 

principle of the proposed two-state algorithm: 

the ECG pattern will be divided into two types: 

(i) plain durations like P and T waves (low 

frequency components), which could be 

downsampled at a higher CR (hCR) and are 

labelled as high-state, and (ii) complex durations 
like QRS (high frequency components), which 
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could be downsampled at a lower CR (lCR) and 

are labelled as low-state. As a result, a more 

optimized overall compression ratio (oCR) could 

be achieved for the signal. In this algorithm, the 

values of hCR and lCR have to satisfy:             with n being an interger and 

n ≥1, which will be further explained in the next 
section. 

To keep consistency while presenting the 

method and evaluating the results, the terms 

“plain” and “complex” in this section, which 
were first propounded by Kim. et.al. [34] will be 

used along with hCR, lCR,oCR, Thr1 and Thr2 

terminologies in this paper. 

 

 

Figure 1. Record 103 of MIT-BIH arrhythmia database (above), its first derivative (below).Tthe complex durations 

and plain durations are distinguished by two thresholds in the first derivative signal 

 

 

An overview of the proposed two-state 
algorithm is presented in Figure 2. There are four 

major compressing steps and three major 

decompressing steps. For the compressing steps, 

a block with the length of L = hCR samples is 

continuously scanned throughout the first 

derivative of the signal (Figure 1). The block is 

first classified as a low-state or high-state block 

(procedure 1), then compressed  with hCR or lCR 

based on its state, but storing the backward 
differences instead of the ECG samples 

(procedure 2). Next, some special samples, called 

state-changed-markers, are added to mark a 

change of state if available(procedure 3). This 

finally, represents the backward differences to 

improve the overall CR (procedure 4). At the end 

of the process, this block will be compressed to 

only one sample in case of high-state or n = 

hCR/lCR samples in case of low-state before 

moving to the next block. This kind of sample-

unit process can help the system to control the 

size of the package easily and continuously in 

extremely short time.  

For the decompression process, the recipient 

compressed signals will be reclassified based on 

the marking samples (procedure 5), followed by 

inversing the difference to get complete ECG 

samples (procedure 6) and reconstructed using 

Cubic Spline (procedure 7).   
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Figure 2. The overview of the advanced two-state algorithm. 

 

 

2.2 Classification of ECG patterns (state-

classifying). 

As mentioned above, a block of L = 

hCR  samples (the first derivative samples) will 

be compared to two thresholds Thr1 and 

Thr2before being labelled as a low-state or a 

high-state block. There are two main steps 

involved in this process, which is presented 

below (Figure 3):  

 

2.2.1 Process A (high-state classification) 

 First, a block of L consecutive    samples are 

compared to Thr1. If all these samples satisfy the 

condition:      Thr1, with i = 0,1,...,L–1, then 

this block is classified as a high-state block since 

it only contains plain data. In contrast, if at least 

one component exceeds Thr1, this will be 

labelled as the first low-state block, marking an 

end of a plain duration and the program will 

switch to process B. 

 

2.2.2 Process B (low-state classification) 

 Here, all the subsequent    samples will be 

compared to the smaller value Thr2. If a block 

has at least one sample bigger than Thr2, it is still 

considered to be in low-state duration. In 

contrast, if all samples within a block are smaller 

than Thr2, then the previous block will be the 

final low-state block and the program is switched 

back to process A. Moreover, since lCR will be 

applied for these blocks, lCR must be a divisor of 

hCR to match the size of the block. 

To guarantee a full capture, the low-state 
duration is extended by one block on each side. 

The structure of each block and the 

corresponding conditions are also presented in 

Figure 4. 
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Figure 3. Flowchart of the ECG pattern classification (state classification) procedure presening two processes: Process 

A for high-state classification (left branch) and Process B for low-state classification (right branch). 

 

 

Figure 4. The structure of classified blocks within each type of duration. Noting that the low-state durations are 

expanded to each side by 1 block which is originally a high-state block. 

 

 

We also tested with all 48 records of MIT-

BIH arrhythmia database to find suitable Thr1 

and Thr2, and we found that Thr1 = 10 and Thr2 

= 0.3×Thr1 would be the best conditions to 

capture enough complex durations. Examples of 

classifying ECG patterns with L = hCR =8in 

records 102, 107, 119 and 123 are shown in 

Figure 5. 
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Figure 5. Examples of classifying ECG patterns(hCR = 8, Thr1 = 10) in recordings 102, 107, 119 and 123 with grey 

durations representing the low-state durations. 
 

2.3 State-based backward difference 

compression 

After classification, the corresponding block 

will be compressed depending on its state. If it is 

a high-state block, only the first sample is stored 

while the remaining samples within that block 

will be removed (downsample factor = hCR). 

Conversely, in case of a low-state block,this 

block will be downsampled with a lower 

downsample factor = lCR, or in other words, 

there will be
      samples within a low-state block, 

which will be saved into the compressed 

package.In addition, each compressed ECG 

samples except the first one will be immediately 

replaced by the difference between itself and its 

previous sample, called the backward 
difference:                , with       and      is 

the (i+1)
th

 samples of the compressed package 

and its backwards difference. A full overview of 

this procedure is shown in Figure 6.  

 

2.4  State-changed-markers 

This procedure is an important part because 

it helps the receiver re-classify the pattern of the 

received package before reconstructing the signal. 

Some special samples, called state-changed-
markers, will be added into the intersections 

between low-state durations and high-state 
durations. Importantly, this procedure is only 

enabled when a switch from Process A to Process 

B (Procedure 1) or vice versa occurs, and the 

marking samples have to be unique in order to be 

recognized clearly. It is worth noting that these 

marking samples must have the same 

presentation as the ECG sample, and it is in 2-

byte form in case of BIH-MIT arrhythmia 

database and CU ventricular tachyarrhythmia 

database.  

Specifically, if a high-to-low transition 

occurs, then an all-bit-1 sample, which has a 

decimal value of -32768 (signed form) in terms 

of 2-byte presentations, is added between the 

final high-state sample and the first low-state 
sample in the compressed package (Figure 6). In 

contrast, if a low-to-high happens, two marking 

samples will be inserted between the final low-
state sample and the first high-state sample, 

including an all-bit-1 sample and an all-bit-0 
sample (decimal value of 0) (Figure 6) to mark 

the end of a low-state duration.    
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Figure 6. The compressed package structure. In a high-state block, only the first sample is reserved while in a low-

state block, there will be n = hCR/lCR =L/L’ samples are kept. Additionally, only the first sample is the ECG sample 
while the next samples are the backward differences:               , with       and      is the (i+1)

th
 samples of the 

compressed package and its backwards difference.  
 

 

2.5  Backward difference representation 
This procedure will represent the compressed 

package, which possibly contains samples with 2-

byte format, and convert samples into 1-byte 

format, if possible, to enhance the overall 

compression ratio (Figure 7). The backward 

differencesamples are considered subject to 

satisfying the condition:             . 

Samples that meet the demand could be shortened 

into 1-byte format without problems, while those 

that do not meet the criteria will be represented in 

2-byte format, in which the first byte is -128 (if         ) or 127 (if        ), and the second 

byte stores the difference:              (if         ) or            (if        ). In 

case of state-changed-markers, all-bit-1 sample 

will be reserved (2 bytes, each byte = -128), 

while all-bit-0 sample will be shortened into 1 

byte (1 byte = 0). 

 

Figure 7. The structure of backward difference representation. 
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2.6  State re-classification 
After receiving a package, the receiver first 

checks the package to re-detect complex 
durations and plain durations based on state-
changed-markers. The beginning of complex 
duration will be recognized by detecting two 

consecutive bytes of -128, while the end will be 

marked by two bytes of -128 and one byte of 0. 

Due to the fact that state changes alternatively, 

successfully re-classifying complex durations 
also lead to successfully re-detecting plain 
durations. The state-changed-markers are also 

simultaneously removed in this procedure. 

 

2.7  Inverse difference 
Before interpolating the compressed signal, 

the package needs to be reversed to ECG samples 

instead of samples of differences. Hence, each 

difference sample will be re-converted into 2-

byte form and the corresponding ECG sample 

will be calculated based on the previous ECG 

sample and the difference, starting from the first 

ECG sample.  

 

2.8  Cubic Spline Interpolation 
Finally, the signal will be reconstructed 

using Cubic Spline noting that different durations 

will have different distances between samples. 

 
3. Experiments and results 

 
3.1 Indexes for evaluating compression 

algorithm 

The performance of the proposed algorithm 

was evaluated by some common indexes 

presented below, which were also used by many 

other studies: 
1) The compression ratio (CR): 

                                                                   
        is the original size and       is the size of 

the compressed signal. The CR calculated here is 

the overall CR (oCR) after applying hCR and 

lCR to compress the whole signal. 

2) Percentage RMS difference (PRD): 
 

                                               
 

This is also most commonly used to evaluate the 

performance of an ECG compression method. 

3) Percentage RMS difference, normalized 
(PRDN): 
                                                 

   is the average of the original data. 

4) Root mean square error (RMS):          
                                                          

 
5) Signal-to-noise ratio (SNR):                                                        
 
6) Peak Maximum Absolute Error(PMAE): 
Of note, we also proposed a new index to support 

the evaluation of the attenuation level of P, R and 

T peaks known as the Peak Maximum Absolute 
Error (PMAE) presented below: 

                                              
 

With:                                                         is the P, R or T peak of the original data,        is the P, R or T peak of the reconstructed 

data,    and    are the starting index and the final 

index of the corresponding duration containing 

this peak (P wave, QRS or T wave), respectively.       is the maximum difference of this wave 

from index    to index    of the original data. 

This index aims to compare each peak’s 
attenuation level tothe maximum difference of 

the wave holding that peak. Therefore, a high 

PMAE, about 10% and above, could lead to clear 

visibility of attenuation in shape and affect the 

outcome of the medical diagnosis.   
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3.2  Experiments with MIT-BIH arrhythmia 

database 
The first lead of all 48 MIT-BIH arrhythmia 

records with values ranging from 0 to 2048 were 

compressed and decompressed by the two-state 
algorithm, in which 4 different ratios of hCR / 

lCR from 2 to 5 were tested. These included 

(hCR-lCR) 2-2, 4-2, 6-2, 8-2, 10-2, 6-3, 9-3, 12-3, 

15-3, 8-4, 12-4, 16-4, 20-4, 10-5, 15-5, 20-5 and 

25-5, and two thresholds Thr1 = 10and Thr2 = 

0.3 x Thr1 = 3. To evaluate the whole signal 

reconstruction, CR (overall compression ratio - 

oCR), PRD, PRDN, RMS and SNR were 

calculated for the full period of 30 minutes for 

each record. Moreover, to assess the influence of 

the selection of two compression ratios (hCR and 

lCR) in re-building the signal, 10 consecutive P 

waves, T waves and QRS of each recording were 

surveyed through PRD, and 10 consecutive P, R 

and T peaks were assessed for their attenuation 

through PMAE. The overall performance of the 

algorithm in compressing and reconstructing all 

48 arrythmia records is presented in Figure 8. 

In terms of overall CR (oCR), although an 

increase in both hCR and lCR led to an increase 

in oCR, when hCR was large enough (lCR ≥ 15), 
the oCR showed no further signifcant 

improvements, such as in cases of hCR-lCR 

(oCR)16-4 (14.125) versus 20-4 (14.046), or 15-5 

(15.556) versus 20-5 (15.932) versus 25-5 

(15.559). Generally, the increase in the ratio 

hCR/lCR from 2 to 5 caused an increase on 

average by 0.6% in PRD, 1.5% in PRDN, 0.45 bit 

in RMS and a decrease on average by 2.75dB in 

SNR in all cases of lCR. Table 1 shows the 

detailed results of five indexes of each recording 

with two cases of hCR-lCR = 25-5.  

 

Figure 8. The overall performance of the proposed algorithm through five evaluation indexes of all 48 records of MIT-

BIH arrhythmia database 
 

 

Refering to PRD boxplots of a total of 480 P 

waves, QRS complexes and T waves of all 48 

records (Figure 9), it seemed that reconstructions 

of QRS results were very stable among cases 

with the same lCR, but there were a big 

difference in both the median value and the data 
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range between lCR = 2, 3, 4 and 5. Except for 

some outliers, the PRD results of QRS were all 

smaller than 0.5% if lCR< 4 was selected and 

below 1% with lCR = 4.  

With the highest lCR of 5, only 75% of all 

QRScomplexes were re-built with PRD below 

1%, and this result will heavily affect medical 

diagnosis. In contrast, the PRD results of P 

waves and T waves expanded proportionally 

mostly to the rise in hCR, but not in lCR, and the 

level of the data’s expansion was much lower in 
all cases with PRD being smaller than 0.75%, 

except for a very small number of outliers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. PRD of a total of 480 P waves, T waves and QRS complexes of all 48 records of MIT-BIH arrhythmia 

database 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  PMAE of a total of 480 P, R and T peaks of all 48 records of all 48 records of MIT- BIH arrhythmia 

database 

 

 



 

Am. J. Biomed. Sci. 2016, 8(1), 1-23; doi: 10.5099/aj160100001    © 2016 by NWPII. All rights reserved                                   12 

 

In terms of attenuation of the peaks (Figure 

10), the PMAE of R peaks were almost under 

10% (a value that could lead to medical 

misintepretation) except for a very small number 

of outliers with lCR ≤ 4. In contrast, higher 
PMAE results of both the median value and the 

range were found in T peaks and especially in P 

peaks when compared to R peaks within the same 

cases. Nevertheless, with lCR ≤ 4 and hCR ≤ 10, 
all peaks could obtain less than 10% PMAE as 

shown in Figure 10.  

Figure 11, 12, 13 and 14 respectively 

exhibit the reconstruction of record 113 (with 

worst PRD), record 117, record 119 and record 

112 (with best PRD) after compression by the 

proposed algorithm with four hCR- lCR of 10-2, 

15-3, 20-4 and 25-5. The differences became 

visually clear when lCR> 3 in record 113 

however, no significant differences were seen 

between all 4 cases for other 3 records. 

 

 

Table 1. Overall CR, PRD, PRDN, RMS, SNR of 48 records of MIT-BIH arrhythmia after decompressing with 

hCR/lCR = 25-5 

 

Rec.  CR PRD PRDN RMS SNR  Rec.  CR PRD PRDN RMS SNR 

100  17.538 0.418 21.023 4.154 13.545  201  19.456 0.239 12.126 2.409 18.325 

101  18.600 0.410 15.273 4.083 16.321  202  17.018 0.270 8.927 2.719 20.985 

102  15.881 0.491 25.145 4.903 11.989  203  11.444 0.440 8.743 4.435 21.166 

103  17.353 0.423 12.859 4.236 17.815  205  15.872 0.340 16.810 3.384 15.488 

104  14.667 0.642 25.078 6.428 12.013  207  17.503 0.337 9.366 3.395 20.568 

105  14.225 0.410 9.916 4.113 20.072  208  12.299 0.447 9.126 4.506 20.793 

106  15.063 0.469 12.549 4.725 18.027  209  12.136 0.486 17.869 4.903 14.957 

107  10.393 0.543 6.215 5.458 24.130  210  15.220 0.271 10.226 2.733 19.805 

108  16.339 0.427 13.875 4.274 17.155  212  11.277 0.585 17.414 5.901 15.181 

109  13.945 0.305 5.990 3.058 24.450  213  10.402 0.435 6.361 4.370 23.929 

111  15.813 0.304 11.667 3.070 18.660  214  13.650 0.344 7.214 3.472 22.835 

112  15.859 0.301 7.235 1.655 22.811  215  10.355 0.378 13.205 3.812 17.584 

113  17.297 0.718 17.148 7.241 15.315  217  11.624 0.481 7.699 4.854 22.270 

114  18.825 0.340 19.563 3.431 14.170  219  16.678 0.456 7.807 4.406 22.149 

115  17.925 0.519 13.607 5.060 17.324  220  17.502 0.628 18.682 6.090 14.571 

116  13.231 0.671 9.183 6.245 20.740  221  15.326 0.301 9.838 3.029 20.141 

117  21.069 0.331 12.679 3.102 17.938  222  15.969 0.394 20.925 3.977 13.586 

118  12.408 0.593 12.680 5.555 17.937  223  15.062 0.353 8.238 3.431 21.682 

119  15.946 0.551 9.427 5.167 20.512  228  16.001 0.354 10.093 3.577 19.919 

121  20.662 0.416 12.703 3.919 17.921  230  16.060 0.370 10.284 3.732 19.756 

122  14.504 0.375 9.408 3.523 20.529  231  19.985 0.438 15.888 4.422 15.978 

123  20.465 0.443 14.045 4.176 17.049  232  18.739 0.306 18.256 3.087 14.771 

124  19.561 0.281 5.599 2.647 25.037  233  12.244 0.373 6.771 3.767 23.386 

200  12.586 0.398 10.387 4.041 19.669  234  14.836 0.313 9.138 3.157 20.782 
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Figure 11. Reconstruction of record 113 (worst PRD) at different compression ratios. (a) Original data, (b) 

hCR/lCR = 10-2, CR = 10.72, PRD = 0.179%, (c) hCR/lCR = 15-3, CR = 13.73, PRD = 0.264% (d) hCR/lCR 

= 20-4, CR = 15.86, PRD = 0.453% (e) hCr/lCR = 25-5, CR = 17.29, PRD = 0.718%. 
 

Figure 12. Reconstruction of record 117 at different compression ratios. (a) Original data, (b) hCR/lCR = 10-2, 

CR = 11.86, PRD = 0.213%, (c) hCR/lCR = 15-3, CR = 15.78, PRD = 0.225% (d) hCR/lCR = 20-4, CR = 18.82, 

PRD = 0.254% (e) hCr/lCR = 25-5, CR = 21.06, PRD = 0.331%. 

 

 

3.3 Experiments with CU ventricular 

tachyarrhythmia database 

A period of 1-minute of each record in 9 

ventricular tachyarrhythmia records (CU04, 

CU06, CU07, CU10, CU12, CU16, CU20, CU22, 

CU24), which do not have clear PQRST shapes 

and have values ranging from 0 to 4095, was 

extracted, compressed and decompressed by our 

algorithm with the same parameters used in MIT-

BIH arrythmia database.  For evaluation, the 

overall CR, PRD, PRDN, RMS and SNR were 

chosen. 

It can be seen that there were minor variances 

(small standard deviations) in all five indexes 

with all values of lCR ranging from 2 to 5 in 9 

records. Moreover, all recordings experienced the 

same tendency of continous increase in PRD (an 

average of ~0.12%) , PRDN (~ 2%) and RMS (~ 

6 bits), and a decrease of SNR (~ 6dB) when 

increasing lCR by 1, except for CU04 and CU20 
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whose indexes were relatively consistent when 

changing lCR. 

There were also examples of the 

reconstruction of CU04 (best PRD) (Figure 15) 

and CU12 (worst PRD) (Figure 16) with hCR-

lCR = 10-2, 15-3, 20-4 and 25-5. It is difficult to 

visually recognize the real differences in the 

reconstruction in all five cases, including record 

CU12 although its PRD was 3.914% at the 

highest compression ratios (when hCR-lCR = 25-

5). 

 

 

 
Figure 13. Reconstruction of record 119 at different compression ratios. (a) Original data, (b) hCR/lCR = 10-2, 

CR = 10.08, PRD = 0.226%, (c) hCR/lCR = 15-3, CR = 12.81, PRD = 0.282% (d) hCR/lCR = 20-4, CR = 14.56, 

PRD = 0.390% (e) hCr/lCR = 25-5, CR = 15.94, PRD = 0.551%. 

 

 

 

 
Figure 14. Reconstruction of record 201 (best PRD) at different compression ratios. (a) Original data, (b) 

hCR/lCR = 10-2, CR = 11.33, PRD = 0.129%, (c) hCR/lCR = 15-3, CR = 14.75, PRD = 0.152% (d) hCR/lCR = 

20-4, CR = 17.37, PRD = 0.188% (e) hCr/lCR = 25-5, CR = 19.45, PRD = 0.239% 
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Figure 15. Reconstruction of record CU04 (best PRD) at different compression ratios. (a) Original data, (b) hCR-lCR 

= 10-2, CR = 3.99, PRD = 0.022%, (c) hCR-lCR = 15-3, CR = 5.98, PRD = 0.034%, (d) hCR-lCR = 20-4, CR = 7.91, 

PRD = 0.048%, (e) hCR-lCR = 25-5. 

 

 

 

Figure 16. Reconstruction of record CU12 (worst PRD) at different compression ratios. (a) Original data, (b) hCR-lCR 

= 10-2, CR = 3.37, PRD = 0.938%, (c) hCR-lCR = 15-3, CR = 4.783, PRD = 1.542%, (d) hCR-lCR = 20-4, CR = 6.09, 

PRD = 2.803%, (e) hCR-lCR = 25-5, CR = 7.24, PRD = 3.914%. 
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Table 2. Overall CR, PRD, PRDN, RMS and SNR of 10 reconstructed records (CU ventricular tachyarrhythmia 

database). Results of cases having the same lCR were grouped in one group expressed by mean value and standard 

deviation. 

Rec.  lCR  CR   PRD     PRDN          RMS          SNR 

    M SD  M SD  M SD  M SD  M SD 

CU04  2
a
  3.953 0.065  0.023 0.002  0.441 0.046  0.949 0.100  47.16 0.936 

  3
b
  5.948 0.057  0.031 0.005  0.595 0.009  1.282 0.193  44.58 1.277 

  4
c
  7.900 0.036  0.046 0.004  0.875 0.074  1.885 0.160  41.18 0.720 

  5
d
  9.625 0.012  0.067 0.001  1.280 0.016  2.759 0.036  37.85 0.112 

CU06  2  3.916 0.010  0.065 0.001  0.949 0.001  2.693 0.001  40.46 0.004 

 3  5.492 0.012  0.153 0.001  2.213 0.001  6.281 0.001  33.10 0.001 

 4  6.769 0.008  0.295 0.001  4.279 0.001  12.15 0.001  27.37 0.001 

 5  7.888 0.009  0.426 0.001  6.183 0.001  17.55 0.001  24.17 0.001 

CU07  2  3.862 0.071  0.068 0.001  1.147 0.014  1.407 0.018  38.81 0.110 

 3  5.481 0.071  0.156 0.001  2.620 0.022  3.125 0.026  31.63 0.071 

 4  6.931 0.024  0.367 0.001  6.157 0.005  7.554 0.006  24.21 0.007 

 5  8.279 0.004  0.792 0.003  13.29 0.043  16.30 0.052  17.53 0.028 

CU10  2  3.736 0.001  0.112 0.001  1.002 0.003  2.640 0.010  39.98 0.029 

 3  5.084 0.001  0.481 0.001  3.963 0.001  10.44 0.001  28.04 0.001 

 4  6.258 0.001  0.978 0.001  8.049 0.001  21.23 0.001  21.89 0.001 

 5  7.358 0.001  1.581 0.001  13.01 0.001  34.33 0.001  17.71 0.001 

CU12  2  3.372 0.003  0.938 0.001  4.221 0.001  20.69 0.001  27.49 0.001 

 3  4.785 0.003  1.542 0.001  6.937 0.001  34.01 0.001  23.18 0.001 

 4  6.092 0.002  2.803 0.001  12.61 0.001  61.82 0.001  17.99 0.001 

 5  7.239 0.001  3.914 0.001  16.80 0.001  82.37 0.001  15.50 0.001 

CU16  2  2.797 0.001  0.356 0.001  1.266 0.001  7.592 0.001  37.95 0.001 

 3  3.737 0.001  1.073 0.001  3.817 0.001  22.90 0.001  28.36 0.001 

 4  4.711 0.001  1.862 0.001  6.625 0.001  39.74 0.001  23.58 0.001 

 5  5.708 0.001  2.895 0.001  10.12 0.001  61.66 0.001  19.74 0.001 

CU20  2  4.193 0.052  0079 0.004  0.399 0.022  1.634 0.009  48.00 0.474 

 3  5.876 0.034  0.129 0.006  0.655 0.031  2.687 0.129  43.88 0.415 

 4  7.535 0.049  0.222 0.007  1.125 0.036  4.612 0.147  38.98 0.275 

 5  9.011 0.081  0.292 0.007  1.478 0.033  6.057 0.138  36.61 0.196 

CU22  2  3.778 0.009  0.964 0.001  6.893 0.001  20.30 0.002  23.23 0.001 

 3  5.163 0.007  1.658 0.001  11.79 0.001  34.90 0.002  18.52 0.001 

 4  6.316 0.007  1.787 0.010  12.54 0.003  37.72 0.010  18.03 0.002 

 5  7.363 0.009  2.418 0.001  16.97 0.001  51.02 0.008  15.41 0.001 

CU24  2  3.933 0.101  0.606 0.001  5.033 0.001  12.69 0.001  25.95 0.001 

 3  5.398 0.118  1.162 0.001  9.665 0.001  24.33 0.001  20.30 0.001 

 4  6.749 0.135  1.636 0.010  13.59 0.001  34.26 0.001  17.34 0.001 

 5  8.081 0.152  1.923 0.001  15.98 0.001  40.29 0.001  15.93 0.001 
a
: Group of cases having lCR = 2: 2/2, 4/2, 6/2, 8/2, 10/2. 

b
: Group of cases having lCR = 3: 6/3, 9/3, 12/3, 15/3. 

c
: Group of cases having lCR = 4: 8/4, 12/4, 16/4, 20/4. 

d
: Group of cases having lCR = 5: 10/5, 15/5, 20/5, 25/5. 
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4. Discussion 

 

4.1 The influence of choosing compression 

ratios on the algorithm’s performance 

As seen in Figure 8, the overall performance 

of the algorithm applied in MIT-BIH arrhythmia 

database showed its dependence on the selection 

of hCR and lCR. Although lCR had a greater 

impact on the overall results than hCR, their roles 

were determined more clearlywhen looking at the 

reconstruction of each feature including P wave, 

QRS complex, T wave and their peaks. While P 

and T waves were mostly affected by hCR, the 

peak of lCR completely influenced the 

reconstruction of QRS complexes. However, 

despite the fact that the R peaks were maintained 

very well at lCR = 4 with PAME < 10%, the 

shapes of QRS complexes were only 

reconstructed well with lCR < 4 with PRD < 

0.75%. Therefore, based on the results, it seems 

that lCR = 3 should be the highest possible CR 

applied for complex durations to avoid any 

significant errors. Regarding hCR, although the 

shape of P and T waves were well preserved even 

at the highest hCR of 25 with PRD < 0.75% 

except for very few cases, the PMAE of P and T 

peaks started to exceed 10% at hCR> 10. 

However, it is important to note that because the 

60Hz noises are still present in all records, many 

P and T peaks are not quite correctly detected and 

this could have affected the PMAE results. Hence, 

hCR could be expanded to 15 with most of the P 

peaks were attenuated by less than 12.5% of the 

waves maximum. Therefore, lCR = 3 and hCR = 

15 corresponding with PMAE < 10%, PRD < 

0.75% should be the limitations for the 

reconstruction of 11-bit ECG signals (value 

ranging from 0 to 2047). This is for critical 

applications that are needed to preserve the ECG 

signals well for diagnosis and critical treatment. 

 In CU ventricular tachyarrhythmia database, 

which offered more difficult curves with unclear 

PQRST, the role of lCR was shown to be 

dominant over hCR since all indexes were 

determined solely by lCR. Meanwhile, the 

change of hCR only created a very small variance. 

In addition, an increase by 1 unit in lCR also 

heavily affected the performance of the algorithm. 

It seemed that lCR = 3 should be a safe choice for 

such difficult conditions such as CU ventricular 

tachyarrhythmia. 

 

4.2  The versatility of the algorithm  
The proposed algorithm was proven to be 

applicable for different kinds of ECG without 

depending on detecting or extracting any features 

of ECG. The results obtained from the 

assessment of MIT-BIH arrhythmia and CU 

ventricular tachyarrhythmia databases were also 

very positive with an acceptable level of error at 

moderate compression ratios. Moreover, the 

algorithm also offers an extremely low-cost 

computational compressing and decompressing 

method. Specifically, with N being the size of 

original data and M being the size of compressed 

data, there are only N equations that need to be 

calculated in the compressing method for finding 

the first derivative of the signal, with only one 

operation (-) in each equation, and M equations in 

minimum to compress and store data. In the 

decompressing method, the time of calculation is 

nearly equal to the time of calculating the inverse 

difference (~2M equations) and executing Cubic 

Spline Interpolation (O(M) equations in 

minimum if using LU decomposition to solve), 

since the first procedure of re-classifying state 

consumes a very short time. This will provide 

redundant time for the system to implement other 

digital processing if needed. Besides that, the 

compressed package can stop at any size (number 

of bytes) due to its block-unit processing 

mechanism without affecting the reconstruction 

at the receiver. Therefore, the algorithm is very 

suitable for use in many wireless applications as a 

step, such as an optimization solution to handle 

congested network as seen in ECG data.  

 

4.3  Performance comparison 

The proposed two-state algorithm was 

compared to other loss-type methods, which were 

also applied in MIT-BIH arrhythmia database in 

cases of CR < 25 (table 3). Together, the results 

prove the great performance of our proposed 

algorithm with CR < 25 compared to many other 

methods, even including some TD methods 

which exhibited very promising results. However, 

as be seen in comparison with the Miaou et. al. 

algorithm[32]  at CR > 18 which has far excellent 
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performance, the proposed algorithm cannot 

ensure the quality of reconstruction at high CR  

as perfectly as some TD methods or H methods 

containing error minimization mechanism 

embedded in. In exchange, those methods are 

much more complex compared to the proposed 

algorithm and cannot adapt various sizes of the 

compressed packages like the proposed algorithm 

does. 

 

Table 3. Performance comparison of different loss-type ECG compression schemes in record 100, 117 and 119. In 

each record, the similarity of CR produced by different methods was grouped in 1 group and the order ranges from 

highest PRD (at the top of each group) to lowest PRD (at the bottom of the corresponding group). The proposed 

method was abbreviated as Proposed (hCR-lCR) and was highlighted in bold. 

Record Method CR PRD Record Method CR PRD 

100 
Husoy et. 

al.[27] 23.5:1 12 101 
Proposed 

(28-7) 
23.7:1 16.19* 

100 Lee et. al.[47] 24:1 8.10 101 
Miaou et.al. 

(ԑ = 5%) [32] 
25.4:1 8.97* 

100 
Chou et. al. 

app.2 [46] 
24:1 4.06 101 

Miaou et.al.  

(ԑ = 10%) [32] 
24.8:1 8.89* 

100 
Filho et. al. 

app.3 [48] 
24:1 3.95 101 

Proposed  

(32-4) 
17.6:1 8.21* 

100 
SangJoon Lee 

et. al. [29] 
23:1 1.94 101 

Miaou et.al.   

(ԑ = 5%) 
19.3:1 5.98* 

100 
Proposed  

(30-10) 
24.5:1 1.29 101 

Miaou et.al.  

(ԑ = 10%) 
18.8:1 5.9* 

100 
Istepanian et. al. 

[30] 
18.3:1 0.60 101 

Miaou et.al.   

(ԑ = 5%) 
9.73:1 2.98* 

100 
Proposed  

(18-6) 
18.8:1 0.57 101 

Miaou et.al.   

(ԑ = 10%) 
9.33:1 2.98* 

100 Kim et. al. [34]
a 

15:1 0.46 101 
Proposed  

(8-2) 
10.1:1 2.89* 

100 
Proposed  

(10-5)
a
 

14.4:1 0.37 103 Kim. et. al.
a
 15:1 0.82 

100 
Filhoet. al. 

app.3 
10:1 2.12 103 

Proposed  

(16-4)
a
 

15.3:1 0.22 

100 
SangJoon Lee 

et. al. 
9.6:1 0.44 104 Kim. et. al.

a
 15:1 0.88 

100 
Proposed  

(8-2) 
9.9:1 0.14 104 

Proposed  

(20-5)
a
 

14.7:1 0.69 

100 Istepanian et. al.  8.1:1 0.58 107 Kim. et. al.
a
 15:1 1.42 

100 
Proposed  

(6-2) 
8.6:1 0.13 107 

Proposed  

(24-8)
a
 

15:1 0.94 

117 
Proposed  

(25-5)
b
 

21.8:1 3.21* 109 
Proposed  

(18-6)
b
 

16.9:1 5.11* 

117 
Hsieh-Wei 

Lee[37]
b 22.2:1 2.6* 109 Hsieh-Wei Lee

b
 17.4:1 4.53* 

117 Gurkan[38] 17.9:1 2.46* 109 
Proposed  

(4-2)
b
 

10.4:1 2.83* 

117 
Proposed  

(12-3) 
18.7:1 2.39* 109 Hsieh-Wei Lee

b
 10.7:1 2.76* 
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Record Method CR PRD Record Method CR PRD 

117 
Proposed  

(12-3)
b
 

15.2:1 2.04* 109 
Proposed  

(4-2)
b
 

6.4:1 1.95* 

117 Hsieh-Wei Lee
b
 14.2:1 1.86* 109 Hsieh-Wei Lee

b
 6.5:1 1.67* 

117 
Chou et. al. 

app.2 

13:1 1.18 
111 

Miaou et.al. 

(ԑ = 5%) 
21.6:1 8.96* 

117 
Eddie B.L et. al. 

app.3 

13:1 1.07 
111 

Proposed 

(18-6) 
20.5:1 8.9* 

117 
SangJoon Lee 

et. al.
 

12.6:1 0.43 
111 

Miaou et.al. 

(ԑ = 10%) 
20.6:1 8.73* 

117 
Proposed 

(9-3)
 

12.9:1 0.21 
111 

Miaou et.al. 

(ԑ = 5%) 
14.1:1 5.99* 

117 Lu. et. al. [33]
 

10:1 2.96 111 
Miaou et.al. 

(ԑ = 10%) 
13.4:1 5.9* 

117 Wel. el. al. [43] 10:1 1.18 111 
Proposed 

(15-3)
 13.6:1 5.86* 

117 
Bilgin et. al. 

[44] 
10:1 1.03 118 Gurkan 6.0:1 0.98* 

117 
Chou et. al. 

app.2 
10:1 0.98 118 

Proposed  

(12-3) 
6.0:1 0.96* 

117 
Filhoet. al. 

app.3 
10:1 0.86 119 Bilgin et. al. 21.6:1 3.76 

117 
SangJoon Lee 

et. al. 
10.4:1 0.42 119 Tai et. al. [45] 20:1 2.17 

117 
Proposed  

(6-3) 
9.9:1 0.14 119 

Chou et. al. 

app.2 
20.9:1 1.81 

117 Hilton [39] 8:1 2.6* 119 
Filho et. al. 

app.3 
20.9:1 1.92 

117 Lu. et. al. 8:1 1.18* 119 
SangJoon Lee 

et. al. 
19.3:1 2.05 

117 Ku. et.al.[35] 8:1 1.06* 119 
Proposed  

(21-7) 
19.8:1 0.89 

117 
Proposed  

(4-2) 
7.9:1 1.02* 119 

Chou et. al. 

app.2 
10:1 1.03 

117 
Hwang et.al. 

[31] 
8:1 0.93* 119 

Filhoet. al. 

app.3 
10:1 0.93 

117 Lu et.al. 8:1 1.18 119 
SangJoon Lee 

et. al. 
10.3:1 0.59 

117 Bilgin et. al. 8:1 0.86 119 
Proposed  

(10-2) 
10:1 0.23 

117 
Filhoet. al. 

app.3 
8:1 0.75 119 

Filhoet. al. 

app.3 
8:1 0.77 

117 
SangJoon Lee 

et. al. 
7:1 0.34 119 

SangJoon Lee 

et. al. 
8.5:1 0.44 

117 
Proposed  

(4-2) 
7.8:1 0.09 119 

Proposed  

(6-2) 
8.3:1 0.15 

a
: Test in a period of 5 minutes of the corresponding record 

b
: Test in a period of 10 minutes of the corresponding record 

*: PRD of reconstructed samples with values ranging from -1024 to 1023 
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5. Conclusions 

 

Compressing ECG data is an effective 

solution to reduce the size transmitted of 

packages, which help avoid the congestions as 

well as decrease BER and the package loss rate. 

In this study, an extremely low-cost 

computational, general-purposed ECG 

compression algorithm, called the advanced two-
state algorithm, was proposed, which could: (i) 

adapt various ECG conditions including both 

regular and irregular ECG, (ii) satisfy every size 

of the compressed package without affecting the 

quality of reconstruction, and (iii) is quite simple 

to implement in any kinds of network. This 

algorithm aims to separate the ECG signal into 

two parts: plain durations (P and T wave), 

labelled as high-state durations and compressed 

at higher CR (hCR), and complex durations 

(QRS complex), labelled as low-state durations 
compressed at lower CR (lCR).In the experiments 

with all 48 records of MIT-BIH arrhythmia 

database and 9 records of CU ventricular 

tachyarrhythmia database, the performance result 

of the proposed algorithm were very promising at 

moderate CR. Almost the signals was reserved 

well at CR < 15. In the comparison with other 

loss-type methods even including some advanced 

methods like SPIHT or JPEG2000, the proposed 

method showed a superior result with lower PRD 

at the same CR despite of its simplicity in both 

compressing and decompressing process. 

Nevertheless, the proposed method cannot reach 

a higher CR without significantly damaging the 

signal like many other methods containing error 

minimization mechanism. In exchange, it can 

achieve many necessary requirements for a 

medical wireless network and, due to its 

dependence in physiological feature, the 

proposed algorithm can be used for other signals 

asides from ECG. 
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