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Abstract

Advanced visual surveillance systems not only need
to track moving objects but also interpret their patterns
of behaviour. This means that solving the information
wntegration problem becomes very important. We use
conceptual knowledge of both the scene and the visual
task to provide constraints. We also control the sys-
tem using dynamic attention and selective processing.
Bayesian belief network (BBN) techniques support this
as well as allowing us to model dynamic dependen-
cies between parameters involved tn visual interpreta-
tion. We illustrate these arguments using experimen-
tal results from a traffic surveilance application. In
particular, we show that using expectations of object
trajectory, size and speed for the particular scene can
improve robustness and sensitivity in dynamic track-
g and segmentation. We also show that behavioural
evaluation under attentional control can be achieved
using a combination of a static BBN tasknet and dy-
namic network (DBN). The causal structure of these
networks provides a framework for the design and in-
tegration of advanced vision systems.

1 Introduction

Visual surveillance primarily involves the interpre-
tation of image sequences. Advanced visual surveil-
lance goes further and automates the detection of pre-
defined alarm events in a given context. However, it
is the intelligent, dynamic scene and event discrimi-
nation which lies at the heart of advanced vision sys-
tems. Developing a systematic methodology for the
design, implementation and integration of such sys-
tems is currently a very important research problem
[3, b, 14, 30, 40]. These methods must take into ac-
count the fact that vision is a computationally difficult
problem as information available in the image does not
provide a one-to-one mapping to physical objects in
space. In fact, visual evidence extracted by machine-
based processing is almost always subject to uncer-
tainty and incompleteness due to noise, occlusion, and
the general ill-posed nature of the inverse-perspective
projection used to infer the scene from the image data.
One way of overcoming some of these problems is to
build in more knowledge of the scene and tasks so the
primary intention of our method is to allow the repre-
sentation of conceptual knowledge in a readily acces-
sible form at all levels of visual processing. For exam-
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ple, in object detection and tracking in the image, we
have demonstrated that it is beneficial to bring scene-
based knowledge of expected object trajectories, size
and speed into the interpretation process [17, 18, 19].
We have also shown that both scene and task-based
knowledge allows for selective processing under atten-
tional control for behavioural evaluation [20, 21, 22].
However, it remains to achieve all this in a tightly
coupled scheme that allows for greater computational
efficiency in performing multiple visual tasks.

In addition to this general requirement for integra-
tion of information in advanced visual surveillance,
we have adopted more specific requirements. A fixed,
precalibrated camera model and precomputed ground-
plane geometry is used to simplify the interpretation
of the scene data in the on-line system. We also
adopt a knowledge-based approach in which domain
specific models of the dynamic objects, events and be-
haviour are used to meet the requirement for sensitive
and accurate performance. The requirements for the
camera model are to support accurate mappings from
2D to 3D and vice-versa, while those for the ground-
plane representation are inherited from the kind of
behavioural analysis we need to support. We require
both metrical and topological information to be re-
covered from our ground-plane representation as well
as needing access to semantic and structural proper-
ties that determine the behaviour of the dynamic ob-
jects. The representation and reasoning for the dy-
namic objects needs 3D position, orientation and oc-
cupancy in tracking as well as recognition of object
type. The requirements for the event and behaviour
analysis on the other hand are less easily defined as
they depend on the range of tasks to be supported.
We adopt the assumption that a flexible set of be-
havioural evaluations and status reports may be re-
quested which require compositional analysis in terms
of the events observed. This decomposition, in which
perceptual processing first recovers trajectory-based
descriptions of the dynamic objects and 1s followed by
conceptual processing, leads to a combinatorial explo-
sion if purely data-driven control is used. Therefore,
we return to the general requirement for attentional,
purposive (or task-based) integration and control in
advanced surveillance systems.

Computer vision, under the influence of Marr [27],
has developed sophisticated algorithmic procedures



for individual visual competences. For a single visual
task such as dynamic object recognition, it is possible
to integrate such systems [29]. However, it is a clumsy
approach to building advanced vision systems that are
required to perform multiple tasks. In recent years,
Ullman [41] has argued for the importance of integra-
tion of multiple visual routines. Our approach owes
much to Ballard who proposed an animate vision ap-
proach [5] for two reasons: first, vision is better under-
stood in the context of the visual behaviours engaging
the system without requiring detailed internal repre-
sentations of the scene; and second, it is important to
have a system framework that integrates visual pro-
cessing within the task context. These arguments are
supported by Bajcsy and Allen’s experiments in active
vision [4] and the further demonstration by Aloimonos
et al. |3] that some of the intrinsically ill-conditioned
processes required for the reconstruction of physical
features become stable when active vision is used. In
our work, we have adapted active vision techniques to
surveillance tasks where identifying “what” “where”
and “when” is just as essential for effective and effi-
cient performance [19, 22].

In visual surveillance we often need knowledge-
based techniques which are less generic but allow us
to obtain robust and accurate results for a particular
domain. The ACRONYM system of Brooks [7] used
symbolic reasoning to analyse static scenes in a cycle
of prediction, description, and interpretation. Such
explicit reasoning about constraints in not able to de-
liver the fast performance required for dynamic visual
surveillance. Recent work has improved the compu-
tational tractability by applying BBNs and decision
theories [6, 25]. However, these studies do not address
the specific computational difficulties involved in the
interpretation of image sequences. Recent work us-
ing model-based approaches in image sequence anal-
ysis [24, 45] does effectively address the issue of dy-
namic interpretation. However, they do not com-
pute behavioural descriptions or use task-dependent
processing. We could use an approach based on
database query techniques to deliver task-dependent
behavioural descriptions. For example [10] proposed
a scheme for incorporating explicit spatio-temporal
knowledge into a Query-Based Vision System for un-
derstanding biological image sequences. However, this
kind of system performs off-line processing and uses
a fixed set of parameters for the objects of inter-
est. Here, however, we want to interpret the spatio-
temporal interactions between observed objects on-
line while using the scene as its own best memory.
To build such vision systems we need to address the
question of how knowledge can be mapped onto com-
putation to dynamically deliver consistent interpreta-
tions. This involves a more fundamental analysis of
the spatio-temporal regularities in the image data so
that we can exploit them as constraints in the pro-
cessing scheme. We recently developed a Bayesian
network approach [19] as it can support this kind of ef-
fective knowledge representation. It also provides the
means for solving the information integration problem
which is central to building robust systems capable of
working on real image sequence data.

Pioneering work by Nagel [30] and Neumann [31]
has emphasised the need to deliver conceptual or sym-
bolic descriptions of behaviour from image sequences.
More immediate background here, however, is the in-
vestigation of methods for real-time knowledge-based
vision in the ESPRIT project VIEWS. System level in-
tegration of perceptual processing with conceptual un-
derstanding of traffic scenes allowed the development
of three working demonstrators: airport stand area
surveillance; multi-band tracker for airport ground
traffic; and incident detection for road traffic scenes
[12]. The conceptual processing in these systems was
designed to handle missing information in the percep-
tual output as well as coping with behavioural vari-
ability for objects in the scenes. However, problems
remain as only highly constrained feedback of informa-
tion from the conceptual processing to the perceptual
level was implemented in the VIEWS demonstrators.
This was mainly concentrated on occlusion handling
where i1t was vital for the system to consistently relabel
emerging vehicles [37].

In what follows, we briefly review the system com-
ponents and go on to present the basics of Bayesian
nets and associated belief revision. Then we discuss
our experimental results from focussed segmentation
and tracking of moving objects and from selective
task-based attentional control in behavioural evalua-
tion. We conclude with a summary and suggestions
for future work.

2 System Components

In the VIEWS project, the components required for
an effective visual surveillance system have been iden-
tified. To simplify the run-time system we assume
a precalibrated camera model, precomputed ground-
plane map, as well as a set of object, event and be-
haviour models. We can then characterise the percep-
tual processing in such a system as providing track de-
scriptions for the moving objects in the scene together
with suggested object type using 2D image motion and
3D model-based vision techniques which are based on
the camera, ground-plane, and object models. The
conceptual processing can be characterised as taking
these descriptions and then converting them into a
consistent behavioural description using Al techniques
based on the event and behaviour models as well as
the camera and ground-plane models which define our
field of view. In the following, we briefly examine five
essential aspects of data representation and compu-
tation in our visual surveillance systems. These are:
1) camera models and their calibration where we em-
phasise design choices for off-line fixed camera surveil-
lance; 2) ground-plane representation where we dis-
cuss requirements for supporting behavioural analy-
sis using a cellular decomposition of space; 3) object
recognition where we discuss the advantages of volu-
metric model representations for our application; 4)
tracking dynamic objects where we discuss the need
to fully integrate the motion analysis in model-based
tracking schemes; and 5) behavioural representation
and analysis where we again emphasise the need for
appropriate techniques for on-line analysis and intro-
duce cellular decomposition of time.



2.1 Camera Models and Calibration

The design choices for building systems are funda-
mentally guided by the requirements of the tasks we
have to accomplish. In visual surveillance, two infor-
mation transformations are essential: 1) infer 3D mea-
surements from 2D image features through inverse-
perspective projection and 2) predict the existence of
2D features for 3D object hypotheses. Such transfor-
mations are determined by calibrated camera param-
eters. However, decisions about the type of camera
calibration must take into account the fact that we use
a wide-angle lens to capture the activity over a wide-
area scene. Camera calibration techniques have been
established across a range of requirements for accuracy
and efficiency [38, 42]. However, surveillance based on
a wide-angle, static camera means that overcoming
non-linear distortion is significant whilst dynamic cal-
ibration is less important. Since these operations are
computed off-line, and it i1s only the resulting geom-
etry that is used on-line, the modelling can be quite
elaborate to allow accurate mappings from 2D to 3D
and vice versa.

2.2 Ground-plane Representation

The representation of the ground-plane knowledge
in our system needs to be very closely bound to the be-
havioural analysis we need to support for our surveil-
lance system. Although there are a wide range of spa-
tial representation and reasoning methods reported in
the literature that have been developed to support a
variety of different purposes, we need a representation
that is closely tailored to our requirements. In surveil-
lance, we require both metrical information such as
angles and distances between spatial primitives and
topological information such as neighbours and enclo-
sure relationships. The behavioural analysis can be fa-
cilitated by regarding the problem as interpreting the
motion patterns over time within a framework pro-
vided by a static environment. It also helps to have
semantic as well as structural properties made explicit
in our representation as these shape the behaviour of
our purposively moving objects. For example, in the
road traffic domain, we need to consider not only the
lane boundaries and direction of traffic flow but also
the “give-way” regions.

The spatial representation and reasoning in our
surveillance system, then, must support: 1) the de-
scription of the static environment in the field of view,
2) the spatial occupancy of a moving object relative
to this environment including its instantaneous posi-
tion, extent and the region it occupies, 3) the spatial
organisation of these objects at a given moment with
respect to the environment and each other, and 4) an
understanding of what the different regions in the en-
vironment “mean” in terms of physical and semantic
constraints. The semantic constraints, such as pos-
sible paths through the environment, are represented
as they are effective in the interpretation of observed
behaviour in line with our purposive design strategy.
We also need to consider that interpretations can op-
erate either in the image-plane or on the ground-plane
projection which provides an overhead view (figure 1).
Both types of reasoning are essentially 2D and involve

both metrical and topological relationships. However,
reasoning on the ground-plane will require run-time
3D model-based reasoning together with the camera
model to get the necessary ground-plane projections
of object position, orientation and extent. We can
then integrate knowledge of the ground-plane in the
motion tracking using a precomputed projection into
the 1mage-plane to provide prior expectations of ob-
ject trajectory, speed and size.

Figure 1: The image plane, 3D space with dynamic
objects, and the ground-plane representation of a traffic
roundabout.

Representations of space used in intermediate vi-
sual processing are concerned with supporting the im-
mediate requirements of the task and include geomet-
ric and topological approaches. In surveillance we are
concerned with perception of the moving object in the
ground-plane context and need a wide-ranging model
of space. An important development has been Fleck’s
cellular topology [15, 16] which can support the rep-
resentation of digitised spaces for edge detection and
stereo matching as well as applications in qualitative
physics and spatial descriptions in natural language.
This representation has been extended and tailored to
the needs of surveillance by Howarth and Buxton [21].
The cellular decomposition underlying this approach
supports both the metrical and topological properties
we require in the ground-plane framework for inter-
preting the behaviour of moving objects. The cells
can be made to conform to the ground-plane layout
and grouped into a hierarchy of regions supporting
the meaningful representation of spatial context for
the on-line processing of behavioural descriptions (fig-
ure 2). The decomposition is obtained by using a map
editor to intersect (1) the road surface into (2) the
entry and exit roads, (3) the turn-right zone, (4) the
roundabout, (5) the lanes of the entry road, (6) the



give-way zone, (7)the turning-zone, (8) the give-way-
to zone, and (9) the leaf regions. The regular cells
subdivide these regions to give a metrical position and
support the intersection and extrusion processes used
for ground-plane predictions. Spatially invariant be-
havioural information such as static give-way regions
can then be used in the contextual indexing when we
need to describe what the objects are doing in the
scene. This extended cellular representation has been
used to support full event and behaviour evaluation in
both passive and attentionally controlled surveillance
systems [21, 22].

]\ |
C

Figure 2: Hierarchical decomposition into regions and cells
representing a part of the roundabout ground-plane.

2.3 Object Recognition

The overall purpose of a visual surveillance system,
as we have emphasised, is to provide meaningful de-
scriptions of purposively moving objects. This means
coherent, effective and sufficient interpretations of dy-
namic behavioral patterns of 3D objects in a known
scene. Therefore, the most relevant information re-
quired from a 3D object recognition and tracking sys-
tem 1s the 3D dynamic positions, orientations and oc-
cupancies, 1.e. volumes, of all the moving objects and
objects that can move. Detailed information about
the surface shape of individual objects is not of great
concern or relevance here. This has important implica-
tions in determining the type of object representation
and corresponding image descriptions.

Object recognition is one of the key visual tasks
in the interpretation of dynamic activities captured in
image sequences. One of the most widely used volu-
metric model representations is the generalised cylin-
der [7]. The advantages of volumetric object mod-
els are that their global properties (volumes, positions
and orientations) are directly represented and easy to

obtain and only a small set of values are needed to
parameterise them. In contrast, surface-based repre-
sentations are based on piece-wise reconstruction of
object surfaces, planar or curved. The surface re-
construction approach concentrates on recovering de-
tailed information about the local geometric shape of
an object. This is important in recognising objects
that are primarily distinguished by their differences in
shape and essential for object manipulations such as
those required in robotics. However, this approach is
computationally expensive and it is difficult to access
global properties of objects since they are not repre-
sented and need to be inferred from the local shape in-
formation. A volumetric representation scheme, then,
seems to be most appropriate for behavioral evalu-
ation in surveillance because conceptual descriptions
will need to be recovered on-line from the global prop-
erties of the objects over time.

In principle, the choice of model representation will
determine the type of symbolic image description, i.e.
specific extracted image features, so that they can be
used to match effectively with projected geometric fea-
tures on object models. The essential nature of the
matching process 1s that the mapping between posi-
tions of the image features and the position and ori-
entation of the models is given by a set of non-linear
functions. Although there are many model-matching
techniques, it appears to us that the techniques de-
veloped so far have not adequately resolved the issue
of consistent object matching in cluttered and fast
changing scenes, especially the problem of invoking
the right model. We propose to avoid this problem by
starting the evolution of a dynamic interpretation us-
ing the kind of simple generic volume model described
above with the parameters for spatial extent, position
on the ground-plane and motion refined over time by
the visual evidence.

2.4 Tracking Dynamic Objects

Model-based object recognition techniques have
been adopted as one of the key components in surveil-
lance systems [24, 45]. However, it is recognised that
the temporal correlations between objects over time
have not been fully incorporated into the recognition
process. In other words, although model-based object
tracking is generally required in the understanding of
a dynamic scene with moving objects, most of the pro-
posed schemes only address the problems of matching
static 2D 1mage descriptions to 3D object models over
time. For example, Worrall et al. [45] used direct
matching of image descriptions to projected descrip-
tions of object shape, position and orientation in every
frame. Others [24, 28] have advanced the approach by
applying an independent closed form motion model
for each object and match the detected static image
descriptions with the motion model in each frame in
order to optimise the predicted motion parameters.

However, the essence of surveillance is being able
to detect and interpret change in the scene. Tracking
schemes that ignore the available information about
temporal changes in the image are likely to compli-
cate the interpretation tasks in the later stages of the
processing. Measuring image motion not only leads



to a more compact representation of an image se-
quence over time, it also distinguishes noise and pos-
sible objects of interest in the scene. In general, it
is well understood that the dense image motion (op-
tic flow field) contains valuable information not only
about 3D shapes of the scene but also motions in
the scene. For surveillance in particular, image mo-
tion alone can be sufficient for providing information
for statistical interpretations such as measuring traffic
density on roads or passenger population on train plat-
forms. It also provides one of the most obvious boot-
strapping cues for initialising object model matching
when needed.

The measurement of image motion is the primary
cue for detecting movement in the early stages of the
interpretation process and has to be computed for ef-
fective interpretation of dynamic scenes. There have
been many approaches to interpreting image motion,
for example [9, 26], but there has been little attempt
to map dynamic image descriptions such as the optic
flow field to any global 3D descriptions of objects in
a model-based object recognition scheme. Only the
highly computationally expensive option of detailed
reconstruction of 3D surface and edges and subsequent
detailed geometrical matching has been explored [29].

Most model-based object tracking techniques have
adopted a simplified motion model based on the Ex-
tended Kalman Filter (EKF) in updating an object’s
3D motion parameters. However, the difficulties in
getting a good 1nitial estimation of motion, which is
essential to allow meaningful predictions, have again
been mostly overlooked. A new probabilistic relax-
ation framework that reflects some of the Bayesian
belief revision principles has been proposed by Kittler
[23] and illustrated for matching relational structures.
This works by mapping evidence to expectations be-
tween different representation domains such that the
most likely interpretations are obtained. This rein-
forces our idea that in order to overcome the limita-
tion of the closed form EKF approach in motion es-
timation, a distributed belief revision approach that
incorporates probability evaluations with non-linear
constraint satisfaction networks is required. It would
be more appropriate for this matching problem since
much weaker constraints between the evidence and ex-
pectation are imposed.

2.5 Behavioural Representation

To compute behavioural descriptions, a simple no-
tion of time and events is required in an on-line vi-
sion system. Some researchers, for example Brooks
[8], have even suggested that we can dispense with
all internal representations and allow the world to be
its only model using reactive control for intelligent
activity. However, we propose to go only part way
towards this approach with a limited situated analy-
sis in which we represent the properties that are rele-
vant for our visual tasks. These properties will enable
us to identify when a change occurs in a meaningful
context. For example in surveillance, this context is
the representation of our ground-plane (scene) knowl-
edge and other current purposively moving objects.
Nagel [30] reviewed the few projects which have tack-

led the problem of delivering conceptual descriptions
in road traffic domains. These include NAOS [31] and
CITYTOUR [33] which allow question-answering as
an off-line query process. Nagel also considers the
problem of on-line generation of such descriptions. His
approach goes some way towards the goal of specify-
ing conceptual descriptions in terms of motion verbs
that could be effectively computed. However, we think
a more situated approach has advantages as it uses
a perceiver-centred or “deictic” frame of reference.
For example, spatial deixis uses words like “here”
and “there” and temporal deixis uses “yesterday” and
“now”. Deictic reference depends on knowledge of the
context but can decompose and simplify the reasoning
that needs to be done compared to the global “state-
based” approach of traditional Al It seems deeply em-
Fec]lded in our communication and spatial reasoning
33].

We require a more local frame in surveillance than
that required to support full cognitive planning or co-
ordinating actions as we are only observing the activ-
ity of moving objects. Formal logic approaches using
well-defined languages with clear meaning for time,
events, and causality, for example [2, 35], are useful
for validating and prototyping new approaches to be-
havioural analysis but do not seem suitable for on-
line vision systems. To effectively mix both qualita-
tive and quantitative descriptions of space and time
for a wide set of visual tasks, we used Fleck’s cel-
lular models [15, 16] which discretise real time and
space. In cellwise-time, as developed by Fleck, each
cell is a state and we can classify change as either:
“state-changes”, which involve sharp change; “activ-
ities” | where continuous change occurs; or “accom-
plishments”, which are composites of activity and
state-change. “Episodes” are seen as composed of a
starting state-change, an activity, and an end state-
change in this framework. This kind of representation
can be called “analogical” and has been further devel-
oped for the representation of events and behaviour
under task-based control for surveillance [21, 22].

3 Bayesian Techniques

To implement our active behavioural analysis, we
use the Bayesian belief revision approach which is con-
ceptually attractive and computationally feasible for
vision [25, 34]. In an on-line system simple correla-
tions in the spatio-temporal data can be exploited to
efficiently infer quite complex behaviour. Modelling
and updating the dependent relationships and their
probability distributions in belief nets is relatively easy
both off-line or on-line. We have demonstrated this for
both motion segmentation and tracking [19] and in the
evaluation of visual behaviour [22]. Conceptually, we
are addressing the issue of modelling an information
retrieval process that purposively collects evidence in
the 1mage to support interpretations of dynamic be-
haviours in the scene. Ambiguity in the interpreta-
tion of individual levels of computation means that
context-dependent information integration is required
to obtain more coherent interpretations of the visual
evidence. Recent developments in probabilistic relax-
ation, belief and decision theory have provided us with



a sound computational base [32] which we can extend
for the problem at hand.

Bayesian belief networks are Directed Acyclic
Graphs (DAGs) in which each node represents an un-
certain quantity using variables. The arcs connecting
the nodes signify the direct causal influences between
the linked variables with the strengths of these influ-
ences quantified by associated conditional probabili-
ties. We use only singly connected trees for modelling
as these are fast to update. A selection of these multi-
valued variables will be the direct causes (parents) at
a particular node. The strengths of these direct in-
fluences are quantified by assigning a link matrix for
every combination of values of the parent set. The con-
junction of all the local link matrices of variables in
the network specifies a complete and consistent global
model which is given by the overall joint distribution
function over the variable values. The behaviour of a
visual process 1s partially defined by its processing pa-
rameters which are updated in the network so dynamic
evaluation will be consistent with the visual task.

In a belief network, we can quantify the degree of
coherence between the expectations and the evidence
by a measure of local belief and define belief commit-
ments as the tentative acceptance of a subset of hy-
potheses that together constitute a most satisfactory
explanation of the evidence at hand. Bayesian belief
revision updates belief commitments by distributed lo-
cal message passing operations. Instead of associating
a belief measure with each individual hypothesis, be-
lief revision identifies a composite set of hypotheses
that best explains the evidence. We call such a set
the Most-Probable-Explanation (MPE). The concep-
tual basis of the propagation mechanism that updates
the network 1s quite simple. For each hypothetical
value of a single variable, there exists a best extension
of the complementary variables. The problem of find-
ing the best extension can be decomposed into find-
ing the best complementary extension to each of the
neighbouring variables according to their conditional
dependencies. This information can then be used to
decide the best value at the node. The decomposition
allows the processing to be applied recursively until
it reaches the network boundary where evidence vari-
ables have predetermined values.

4 Experimental Results

4.1 Motion Segmentation and Tracking
In VIEWS, one of the key objectives is to segment
detected optic flow field into dynamic regions corre-
sponding to possible moving objects and to track these
regions effectively and consistently over time. Wenz
[43] applied a scheme based on estimated frame dis-
placements of the extremal loci of a bandpass filter.
Similar displacement vectors are grouped into differ-
ent moving regions (bounding boxes) in each frame
and the similarity is defined by four parameters 1)
neighbourhood range, 2) neighbourhood displacement
magnitude ratio, 3) neighbourhood orientation differ-
ence and 4) neighbourhood vector numbers. In this
direct approach, these similarity parameters are set as
independent constants across the entire image for com-
putational simplicity. However, it is unable to deliver

consistent interpretations in images of crowded scenes
such as the traffic roundabout shown in the top pic-
ture of figure 3. The example frames in figures 6, 7
and 8 illustrate some typical defects in the sensitiv-
ity and consistency of the direct approach. We used
scene-oriented contextual knowledge in the control of
parameter values to overcome these problems.
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Figure 3: Top: a traffic roundabout scenario and its traffic
flow. Bottom: correlated spatio-temporal constraints on
the movements of individual objects are imposed implicitly
by this scene layout.

VIEWS uses a fixed camera for collecting visual
input in each scenario. Under such static camera
configurations, the three dimensional scene layout im-
poses indirect, but nevertheless invariant, constraints
on both possible loci of appearances, sizes, speeds of
bounding boxes and the overall traffic flow. The bot-
tom picture of figure 3 illustrates the recorded mo-



tion patterns of vehicles on the roundabout over 450
frames. The a priori constraints on object size, speed
and relationships between the parameters in the in-
terpretation can be analysed and used to initialise the
probabilities in a Bayesian network. The following cor-
related measures (with respect to image coordinates)
are constrained probabilistically in the parameter net:
1) between object orientation and optic flow vector ori-
entation; 2) between object size and flow vector neigh-
bouring speed ratio; 3) between neighbouring orienta-
tion difference, object dx, object dy and object bound-
ing box width or height. Such probabilistic constraints
on the bounding boxes set up a compound network of
coherent hypotheses (figure 4) that is modelled by a
Bayesian belief network with dynamic belief revision
propagation.

Object
Square
Size

Object
Orientatio

Object
Width

Figure 4: A belief network that captures the dependent re-
lationships between the scene layout and relevant measures
in motion segmentation and tracking.

The belief network in figure 4 has a tree structure,
a special type of “singly connected” network, in or-
der to guarantee the propagation of message passing
in belief revision is tractable [32]. The image is di-
vided into grids and the root node of the tree IGP
(Image Grid Position) represents the probabilistic ex-
pectation of occurrence for objects in each image grid
position. Nodes OSS and OOR represent respectively
the probabilistic expectations in the square size and
orientation of bounding boxes in image grids. The six
leaf nodes at the bottom level of the tree represent,
respectively, the expectations in flow vector orienta-
tion (FVO), neighbouring vector speed ratio (NSR),
orientation difference (NOD), x component in object
bounding box’s displacement (ODX), y component in
bounding box displacement (ODY), and the width of
a bounding box (OWD).

It is important to point out that first, leaf nodes are
the evidence nodes and it is desirable to relate them
to qualitative measures by representing relative mea-
sures between flow vectors. This is designed to over-
come the instability of individual vectors in optic flow
fields. Second, great effort was made to reduce the
number of causal connections and the number of hy-
pothetical variables to the minimum at the expense of
approximations in the representation of certain vari-
able nodes. This is because the computational load

increases by an order of 2" — 1 where n is the number
of variable nodes in a network [11]. Third, in order to
have efficient computation, it 1s useful to approximate
any continuous variable with a set of few discrete val-
ues. Fourth, the conditional probability distribution
matrices between any two nodes are usually subject to
probabilistic estimation based on extensive test exam-
ples. Statistical studies in the past [11] suggest that if
a well controlled number of variables are built into a
Bayesian network, the estimated distribution matrices
capture the general characteristics of the problem. Ac-
curate estimation of these parameters remains one of
the important factors for the computational success of
a belief network. Recent studies by Spiegelhalter [36]
have shown techniques for updating and learning the
distribution matrices dynamically in order to provide
more accuracy in their estimation.

The current design of the belief network has been
tested extensively on image sequences from the traf-
fic roundabout scenario. The sensitivity of the tech-
niques is measured by their “false alarm rate”, which
was taken over an image sequence of 400 frames us-
ing a strict criterion of matched “true” (identified by
human visual analysis on a frame by frame basis) and
the automatically computed bounding boxes. The top
graph in figure 5 shows the false alarm rate on both
techniques over time. It gives a good indication that
the belief revision approach increases true identifica-
tions significantly without introducing excessive false
alarms. Throughout the whole sequence, the maxi-
mum false alarm rate from the belief revision approach
is about 16 %, which is below the minimum rate from
the direct approach. The maximum false alarm rate
of the direct approach for this case, on the other hand,
reaches 60 % and its average rate is nearly 50 %.

To obtain the consistency measures, we compiled
the histories of tracked objects from both techniques
and compared them with the “ground truth” from a
170 frame image sequence. In the bottom graph of
figure b, the flattest line shows the ground truth of
the number of objects against their durations in the
scene. For example, 1 object stayed for the entire 170
frames, 13 objects lasted for 14 frames, etc. The direct
approach fragmented objects with long durations and
tracked them as a large number of objects with very
short histories. No object is tracked for more than 50
frames, which is the basis of the poor consistency of
the direct approach. In contrast, the belief revision
approach provides us with more accurate measures of
both the number of objects and their durations.

To estimate the computational cost, we measure the
time consumption (in seconds) of both schemes over
the 400 frame sequence. The frame by frame computa-
tional overhead throughout the whole sequence is be-
low 13 %, and it is worth pointing out that providing
more accurate segmentation and tracking of objects
instead of missing identifications will always require
“extra” computation.

The quantitative measures presented here illustrate
that: with very limited cost in computational time,
significant gains are obtained in effectiveness and con-
sistency by using the belief revision technique. A more
visual comparison between the two approaches can be
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Figure 5: Top: the false alarm rate. Bottom: the “ground
truth” and detected number of objects and their duration
in the scene.

seen in figures 6, 7 and 8.

Three successive frames from our test sequence are
shown with the results from the direct approach at the
top and from the belief revision approach on the bot-
tom. It is worth noticing that: first, the belief revision
approach is very robust against incomplete evidence
(see the tracked cyclist behind a sign post to the left
hand side of frames 145 and 150). Second, it is capa-
ble of segmenting very close moving objects (see the
cyclist and the two cars close to its right). Third, in
these examples, it consistently 1dentifies all the mov-
ing objects. Note that these are quite cluttered traffic
scenes and 1t is typical of these techniques to show
more sensitive and robust performance on “difficult”
scenes. For simple cases, direct methods can work well
but have clear limitations for the full set of cases met
in real world video sequences.

4.2 Behavioural Evaluation

Bayesian techniques can also be used to overcome
the problem of uncertainty and incompleteness in the
evaluation of behaviour by bringing both task-based
and scene-based knowledge into the interpretation
process. This behavioural interpretation requires both
modelling what one is looking for (top-down expec-
tations) and interpreting evidence of what could be
appearing (bottom-up inference). The prior proba-

M

Figure 6: Frame 140. Top: direct approach fragments ob-

Ject bounding bozes (compare with next two frames). Bot-
tom: belief revision approach captures most moving objects
consistently in successive frames.

bilities can be used to initialise the network and then
the evidence is dynamically interpreted under the cur-
rent expectations using both top-down (A messages)
and bottom-up(m messages) updating of values in the
network. We have effectively used such Bayesian net-
works together with a deictic representation both to
create a dynamic structure to reflect the spatial or-
ganisation of the data and to measure task relatedness
[22]. We integrate the behavioral evaluation and inter-
pretation by giving a combined attentional focus for
the road traffic examplar where the behaviours of in-
terest were “overtaking”, “following”, “queueing” and
“unknown”. For example, a simple proximity cue in-
vokes the behavioral analysis of overtaking. A task-
based Bayesian network (adapted from [34]) is used in
modelling spatial and temporal relationships in order
to direct the evidence collection in the image sequence.



Figure 7: Results on frame 145. Top: by the direct ap-
proach. Bottom: by the belief revision approach.

We use a separation of preattentive (peripheral)
and attentional processing in our behavioural evalu-
ation system. The simple peripheral operators such
as velocity and proximity on the ground-plane act
as cues for the more complex attentional operations
such as path-prediction and computing deictic spa-
tial relationships which are used in the full evalua-
tion. An attentional mechanism guides the applica-
tion of appropriate complex evaluation in a particular
dynamic context and makes the reasoning relevant to
the current task. This attentional mechanism uses an
agent-based formalism implemented by Bayesian net-
work updating. The objects in our scenes have an
“intrinsic front” which defines each object’s frame of
reference in the deictic representation. We have devel-
oped “typical-object-models” for the interpretation of
behaviour using time-ordered combinations of deictic
relationships between objects of interest in particular
ground-plane contexts. The deictic relationships may

) g i
Figure 8: Results on frame 150. Top: by the direct ap-
proach. Bottom: by the belief revision approach.

be simply (“behind” “previous”), (“beside” “now”),
and (“infront” “next”). The simple peripheral opera-
tors are applied to all our segmented, tracked objects
and the typical-object-model determines the specific
attentional operations to be performed. It also de-
termines which values should be saved and the set
of operations to be performed on the next clock tick.
The results are fed back to the appropriate agent to
give task-related features for future selection. The ap-
proach here is related to [1] but extended to deal with
several local deictic viewpoints. In this way an agent
need not describe every object in the domain but only
those relevant to its particular task.

To combine the information that develops over time
we use a dynamic form of Bayesian network (DBN)
which captures the changing relationships between
scene objects. The DBN 1s composed of temporally
separated subgraphs that are interconnected using
reconfigurable links. The node-building and node-



linking updates the structure for the current time so
that a new tree is obtained which inherits values for
beliefs at nodes referenced in the “official-observer”
view. These markers, maintained centrally by the
official-observer, solve the problem of consistently as-
sociating entities which are maintained only locally by
the distributed agents. A matrix of conditional prob-
abilities captures the interest of the proximity rela-
tionships according to whether the objects are: “not-
near”, “nearby”, “close”, “very-close” or “touching”.
If, at the current time point, A and B remain near
each other, we form the temporal links and extract a
new tree structure rather than a multiply connected
network. In the example here, each tree only holds val-
ues from the current and immediately previous time
points and a tree is formed for each relationship so it
is trivial to prove that no loops are introduced, which
is important for bounding the computation. Once all
propagations are complete, the most interesting rela-
tionship can be selected.

The structural changes in the DBN reflect the sim-
ple, monitored relationships between all objects of in-
terest. For those objects involved in the most in-
teresting relationships, this DBN is augmented by a
“tasknet”, which is a structurally fixed Bayesian net-
work that builds a coherent interpretation of the tem-
porally evolving behaviour. The input nodes here rep-
resent key features relevant to the task it has been
constructed to identify and the output root node rep-
resents the overall belief in the behavioural task based
on evidence collected so far. Allocating an attentional
process explicitly in this way ensures that a tasknet
is running on the selected objects and can terminate
when an uninteresting situation is recognised.

The attentional system has three properties:
“focus-of-attention” which ensures only the target
hypothesis and associated functions are updated,;
“terminate-attention” which can stop all activities as-
sociated with a target hypothesis that has been con-
firmed or denied to an acceptable degree of confidence;
and “selective-attention” which allows dynamic selec-
tion of the most interesting hypothesis to watch. We
can only attend a limited number of objects so a mea-
sure of “utility” is computed from the cost of perform-
ing the processing and its “interestingness”. This de-
termines which objects will be “watched”. The overall
effect of the attention and control here is the forma-
tion of behavioural descriptions that evolve over time
to capture what is happening in the scene rather than
being dependent on observing the whole episode be-
fore anything can be said to have happened.

5 Conclusion and Future Work

To summarise the arguments in the earlier sections,
we are suggesting that advanced visual surveillance
can benefit from taking a purposive approach to sys-
tem design. This means using representations that are
closely tailored to the surveillance tasks. We also sug-
gest using a purposive approach in the system frame-
work so that task-dependent processing under an ac-
tive focus of attention can selectively gather evidence
under the current set of expectations. In the design
of a surveillance system, we point out that off-line
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processing, such as camera calibration or setting up
of the ground-plane representation, can afford elab-
orate models to provide the required accuracy and
functionality. However, we argue that there is the
need to find the simplest possible models of object
structure and behaviour in the on-line processing to
ensure both fast interpretation times and robustness
with generality. For visual surveillance, we argue that
the basis for the initial detection of moving objects
and cues for object position and velocity should be
simple visual motion measures. We also argue that
the high-level interpretation, in general, requires be-
havioural models that are decomposable into simple
primitives that can be detected in real-time and that
the evolving behavioural descriptions should be com-
puted under context-based expectations. The inter-
mediate processing, however, poses more problems as
existing model-based tracking techniques are designed
for a small set of detailed models with limited dy-
namic updating. For more demanding surveillance
tasks where dynamic scene and event discrimination is
the key, we propose the formulation of a new scheme
within the Bayesian belief network framework as we
have argued that this will provide the kind of “weak”
combination of constraints appropriate for incremen-
tal shape and motion recovery in the face of uncertain
and incomplete visual evidence. The experiments de-
scribed above illustrate the feasibility and computa-
tional tractability of this approach.

In section 2, we analysed the components required
in our advanced surveillance systems. We briefly re-
viewed progress so far and recommended the partic-
ular models and associated processing schemes that
show the most promise. For example, we suggested
a full radial alignment model for a fixed wide-angle
surveillance camera in off-line calibration. However, if
we require on-line dynamic surveillance, we would sug-
gest simplifying the model and extending the Bayesian
networks to provide a coherent model right down to
the level of camera control. In the spatial and be-
havioural representations, we proposed cellular mod-
els as they support both qualitative and quantitative
aspects of the processing as required. These models
provide fast contextual indexing of computational con-
straints in the behavioural analysis. They have been
integrated into the Bayesian belief networks to pro-
vide a framework in which interpretation evolves dy-
namically with a task-dependent focus of attention.
In the image and object representations, we suggested
using simple, reliable measures of visual motion to-
gether with volumetric models that give immediate
access to the global properties of position, orienta-
tion and ground-plane motion which are required for
the behavioural analysis of the moving objects. These
competances, then, were all derived from a purposive
strategy in visual system design.

In section 3, we outlined Bayesian network tech-
niques. These provide a means of performing both
bottom-up, data driven processing and top-down, ex-
pectation driven processing in the on-line computa-
tions. Bayesian nets allow the computation of the
Most-Probable-Explanation of visual evidence under
the expectations at all levels of abstraction in a vi-



sion system. The nodes in the parameter network are
abstract entities that can be associated, for example,
with simple low-level interpretations of the position
and speed of bounding-boxes corresponding to pos-
sible moving objects in the image-plane. They can
equally well be associated with high-level interpreta-
tions of the kind of behaviour in which a particular
object is engaged. The network updating techniques
implement a fast non-recurrent solution using the cur-
rent values of the nodes. The updating rules were de-
rived from Bayesian theory which makes them very
well suited to the analysis of essential visual changes
in surveillance where there is always a great deal of
uncertainty and incompleteness in the data. It is also
important to note that the Bayesian networks allow for
task-based control which is required to make the pro-
cessing performed by the system selective and avoid
the combinatorial explosion entailed in passive anal-
ysis. It is still important, however, to keep the net-
works as simple as possible and model only the essen-
tial dynamic dependencies; those that allow a rapid
evaluation of the evolving spatio-temporal patterns of
behaviour.

In section 4, another aspect of the Bayesian net-
works becomes apparent, the ability to encode knowl-
edge by modelling dynamic dependencies amongst the
visual parameters through examples and prior proba-
bilities of classes of interpretation. This is possible by
analysis of the problem where there are obvious scene-
based constraints such as traffic flow direction in cer-
tain lanes of a roundabout. It is also possible to learn
these constraints and dependencies using appropriate
techniques [36, 44]. This can be a time consuming
process but is typically computed off-line with only
limited adaptive refinement on-line. The requirement
to turn conceptual scene-based or task-based knowl-
edge into a readily accessible form for real-time pro-
cessing has been recognised in the past. Many hybrid
schemes using both knowledge-based and numerical
techniques have been proposed but would not easily
support real-time systems. On the other hand, how-
ever, the kind of constraints that can be imposed using
numerical techniques are rather inflexible for advanced
visual surveillance where we have a lot of domain spe-
cific knowledge. We would also argue that neural net-
work approaches would be very difficult to develop for
this class of applications. Nor do we think 1t possible
to “evolve” solutions to such complex problems using
genetic algorithms. It thus seems to us that the most
promising unified framework is provided by Bayesian
belief revision networks as we have sucessfully demon-
strated for a set of typical advanced surveillance tasks.
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