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Abstract 

Background: Systematic errors can be introduced from DNA amplification during 

massively parallel sequencing (MPS) library preparation and sequencing array formation. 

Polymerase chain reaction (PCR)-free genomic library preparation methods were 

previously shown to improve whole genome sequencing (WGS) quality on the Illumina 

platform, especially in calling insertions and deletions (InDels). We hypothesized that 

substantial InDel errors continue to be introduced by the remaining PCR step of DNA 

cluster generation. In addition to library preparation and sequencing, data analysis 

methods are also important for the accuracy of the output data.In recent years, several 

machine learning variant calling pipelines have emerged, which can correct the 

systematic errors from MPS and improve the data performance of variant calling. 

Results: Here, PCR-free libraries were sequenced on the PCR-free DNBSEQTM arrays 

from MGI Tech Co., Ltd. (referred to as MGI) to accomplish the first true PCR-free WGS 

which the whole process is truly not only PCR-free during library preparation but also 

PCR-free during sequencing. We demonstrated that PCR-based WGS libraries have 

significantly (about 5 times) more InDel errors than PCR-free libraries.Furthermore, 

PCR-free WGS libraries sequenced on the PCR-free DNBSEQTM platform have up to 55% 

less InDel errors compared to the NovaSeq platform, confirming that DNA clusters 

contain PCR-generated errors.In addition, low coverage bias and less than 1% read 

duplication rate was reproducibly obtained in DNBSEQTM  PCR-free using either 

ultrasonic or enzymatic DNA fragmentation MGI kits combined with MGISEQ-2000. 

Meanwhile, variant calling performance (single-nucleotide polymorphisms (SNPs) F-

score>99.94%, InDels F-score>99.6%) exceeded widely accepted standards using 

machine learning (ML) methods (DeepVariant or DNAscope). 
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Conclusions：Enabled by the new PCR-free library preparation kits,  ultra high-

thoughput PCR-free sequencers and ML-based variant calling, true PCR-free 

DNBSEQTM WGS provides a powerful solution for improving WGS accuracy while 

reducing cost and analysis time, thus facilitating future precision medicine, cohort 

studies, and large population genome projects. 

 

Keywords 

WGS, PCR-free, DNBSEQTM, InDel errors,  Machine learning-based variant calling 

 

Background  

Massively parallel sequencing (MPS, also known as next-generation sequencing (NGS)) 

technology has revolutionized basic biology and precision medicine during the past 

decade. There is an increasing clinical demand for whole genome sequencing (WGS) to 

be used as a single test, especially in conditions when partially sequencing the genome 

via targeted panels such as whole-exome sequencing (WES) or target region 

sequencing could potentially fail to detect all pathogenic variants in a large fraction of 

Mendelian disorder cases [1,2,3]. A variety of studies have already demonstrated the 

feasibility of WGS for investigating rare diseases [4], cancers [5], and infectious diseases 

[6]. More importantly,WGS currently costs no more than one thousand dollars[7], has 

faster turnaround time, and accomplishes greater depth, making it more economical to 

conduct large-scale projects.  
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The standard WGS workflow includes MPS library preparation, clonal DNA array (e.g., 

PCR clusters) generation, on-chip sequencing, read filtering, mapping, and variant 

calling (also known as secondary analysis). Many efforts have been undertaken to 

further reduce the cost and turnaround time while improving WGS data performance. For 

example, an optimized WGS library protocol that eliminates the need for PCR—PCR-

free WGS—has been developed to eliminate the amplification bias (including coverage 

bias, GC bias [8,9,10,11,12]) ,copy errors (mainly refers to InDels errors [13] ) and 

duplication reads [14] during library preparation process. Another benefit of excluding 

the PCR step from WGS library preparation is significantly shorter turnaround time and 

lower cost.  

 

In addition to the new library construction chemistry, different innovative bioinformatics 

tools have been applied to expedite data analysis without sacrificing accuracy. The steps 

of a standard analysis workflow are typically as follows: 1) trim and filter read data; 2) 

align raw data to a reference genome, 3) call germline or somatic variants, and 4) 

conduct tertiary analysis and generate reports. The pipeline for germline short variant 

discovery developed at the Broad Institute with the Genome Analysis Toolkit (GATK) [15] 

is currently the industry standard for variant calling on WGS. However, the traditional 

GATK pipeline takes approximately two days for whole genome data processing on a 

standard 24-thread machine [16]. To achieve better detection accuracy and account for 

systematic errors in the WGS workflow, researchers have explored machine learning 

and deep learning-based algorithms and developed several new analysis pipelines such 

as GATK CNNScoreVariants from the Broad Institute [17], Deepvariant from the Google 

Brain team [18], DNAscope from Sentieon [19], and Clairvoyante from R. Luo et al. [20].  
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In this report, we present an entirely PCR-free MPS workflow by constructing PCR-free 

WGS libraries and sequencing them on MGI’s PCR-free DNBSEQ™ arrays. Both PCR-

free WGS sets (mechanical fragmentation with MGIEasy PCR-Free DNA Library Prep 

Set or enzymatic fragmentation with MGIEasy FS PCR-Free DNA Library Prep Set) 

demonstrated highly reproducible data quality with as little as 200 ng or 50 ng genomic 

DNA as input. More importantly, a significant improvement was achieved in InDel calling 

with GATK from an average F-score of 95.43% in three PCR libraries to 99.05% in three 

PCR-free WGS libraries. By incorporating machine learning-based algorithms, the F-

score of 15x PCR-free libraries analyzed with DNAscope or DeepVariant can outperform 

that of 30x PCR-prepared libraries analyzed with GATK in some scenarios. As 

hypothesized, complete PCR-free WGS significantly decreased false positive (FP)  and 

false negative (FN) InDel calls, leading to better InDel calling accuracy (99.3-99.6% F-

score) and up to 55% less InDel errors than WGS of Illumina’s PCR-free libraries 

sequenced on a Novaseq array of PCR-generated DNA clusters (F-score 98.0-99.3%), 

even with less genomic DNA input. Additionally, a very low duplication rate of less than 1% 

was achieved in the DNBSEQTM PCR-free WGS, resulting in more informative reads and 

further reducing sequencing cost. In summary, the advanced PCR-free WGS reported 

herein could lead to wider adoption of WGS in genomic research and gradually be 

incorporated into clinical practice for the urgent diagnosis of rare disease and for 

improved disease prevention.  

 

Results 

An entirely PCR-free MPS workflow  
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PCR is frequently used to increase template quantity during MPS library construction. 

PCR is also an essential step of “bridge amplification” to generate identical copies on a 

flow cell surface [21]. Here, we describe an MPS workflow called DNBSEQTM PCR-free, 

which completely eliminates PCR amplification during both library and array preparation 

(Fig. 1a). DNBSEQTM PCR-free starts with DNA fragmentation, which is followed by size 

selection using solid-phase reversible immobilization (SPRI) beads. A single-tube 

protocol is used to conduct multiple sequential enzymatic reactions and attach a 

barcoded adapter to the DNA of interest. After removing excess adapters, ssCir DNA are 

formed, and these serve as template in rolling circle replication (RCR) for DNB 

preparation. DNBs are then loaded onto patterned flow slides and sequenced [22]. In 

contrast to bridge amplification, RCR is a linear amplification from the original ssCir 

template, and therefore clonal errors cannot be generated [23,24], unlike bridge PCR- or 

emulsion PCR-based preparation of sequencing arrays. PCR-free DNBSEQTM 

completely avoids PCR errors in template amplification and library cloning and faithfully 

preserves the original landscape of the genome with rare index mis-assignment [25].  

 

Two sets (MGIEasy PCR-Free DNA Library Pre Set and MGIEasy FS PCR-Free DNA 

Library Pre Set) from MGI are used to prepare the DNBSEQTM PCR-free libraries. The 

PCR-Free set is used with ultrasonic fragmented samples, whereas the FS PCR-Free 

set includes sequential enzymatic fragmentation reactions, end repair/dA-tailing, and 

adapter addition in a single tube. We compared the performance of both sets with nine 

libraries constructed from 1 μg NA12878 reference genomic DNA and sequenced with 

paired-end 150-bp read length. Fig.1b summarizes the QC statistics, including GC 

content, duplication rate, median insert size, and regions with > 10x coverage. Both sets 
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showed highly reproducible performance; the PCR-Free set showed slightly less 

variation compared with the FS PCR-Free set. We also tested different input quantities 

(1 μg, 500 ng, and 200 ng for both sets and 50 ng only for the FS PCR-Free Set) and 

observed comparable performance (Supplementary Fig. 1S).  

 

Minimal GC bias for genomes with different GC content 

The relationship between GC content and read coverage across a genome, known as 

GC bias, can be greatly affected by MPS library preparation, cluster/array amplification, 

and sequencing. To evaluate the performance of the DNBSEQTM PCR-free MPS 

workflow with regard to GC bias, DNA samples from bacterial strains with GC contents 

of 38% and 62% were processed with the PCR-Free and FS PCR-Free sets mentioned 

above. Libraries were prepared according to kit instructions and sequenced on 

MGISEQ-2000 with paired-end sequencing (2x150 bp). Fig.2 shows the number of reads 

covering different regions normalized by the mean read coverage and plotted against the 

genomic GC content of the corresponding region. Normalized coverage lower or higher 

than 1 indicates certain GC bias. The high-GC and low-GC genomes demonstrated fairly 

even coverage of reads across the genome with either ultrasonic shearing or enzymatic 

shearing. Overall, the DNBSEQTM PCR-free MPS workflow demonstrated minimal GC 

bias in genomes with significantly varied GC content. 

 

Low duplicate rate and high variant calling F-score for GIAB with DNBSEQTM PCR-

free  
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We compared the sequencing accuracy of MPS libraries prepared with or without PCR 

using DNBSEQTM sequencing technology [26]. After ultrasonic fragmentation, NA12878 

DNA was processed according to the instructions of the MGIEasy PCR-Free DNA 

Library Prep Set to construct three PCR-free WGS libraries. Three PCR-based WGS 

libraries were also prepared from the same DNA sample. Each library was sequenced 

individually on one lane of MGISEQ-2000 with paired-end sequencing (2x150 bp) (see 

Methods). The total raw data of each lane was greater than 120G with GC content 

ranging from 41.46% to 41.78% (Table 1). 

 

The raw reads were down-sampled from the original full lane (approximately 46x) to 

create additional 30x and 15x depth datasets. After raw read filtering, clean reads were 

aligned to the human reference genome with decoy sequence hs37d5. The mapping 

quality matrix is summarized in Table 1. We compared all 3 dataset depths from the 6 

libraries (18 datasets in total). In 30x depth data, WGS PCR and PCR-free libraries had 

a similarly high mapping rate of 99.8% and overall coverage greater than 99.1%. PCR-

free libraries showed slightly lower duplication and mismatch rates of approximately 1% 

and 0.7%, respectively on average, whereas these values were 1.5% and 0.9% in PCR 

libraries. Other depth datasets showed similar patterns. Theoretically, because of the 

true PCR-free workflow, the duplicate rate should be zero, but it is possible that the 

same DNB is read twice or more due to optical overflow (optical duplicates) or that the 

same regions from different genome copies produced in the DNA fragmentation step 

(natural duplicates) are sequenced and incorrectly marked as duplicates by QC tools 

[27,28]. 
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We next used the three variant callers GATK, DeepVariant, and DNAscope (see 

Methods) to assess the accuracy of PCR and PCR-free methods (Table 2, 

Supplementary Table 1S, and Fig. 3). The GATK HaplotypeCaller has become the 

industry standard small variant caller due to its high accuracy, and it has achieved top 

performance in a variety of public and third-party benchmarks [16,29,30,31]. 

DeepVariant and DNAscope are two newly developed variant callers based on machine 

learning methods [18,19,32,33]. It should be noted that both machine learning variant 

callers used in this study were optimized for the DNBSEQTM platform through the use of 

in-house training data.  

 

The variant calling matrix is highly reproducible in all three replicates for both PCR and 

PCR-free libraries (Supplementary Table 1S). Table 2 summarizes the average number 

of three replicates for different depths. At 30x depth, GATK called and marked as 

“Passed Filter” (named true positive, or TP for short) an average total of 3,651,696 TP 

variants for PCR libraries and 3,674,252 TP variants for PCR-free libraries, whereas 

DeepVariant and DNAscope showed higher sensitivity as they both detected additional 

TP variants for both PCR and PCR-free libraries. With all three callers, PCR-free 

libraries demonstrated a slight reduction in both the numbers of FP SNPs (from 2,806 to 

2,586 in GATK, from 2,913 to 2,111 in DeepVariant, and from 1,565 to 1,254 in 

DNAscope) and the numbers of FN SNPs (from 16,671 to 10,926 in GATK, from 4,266 

to 3,109 in DeepVariant, and from 4,355 to 3,202 in DNAscope) and a dramatic 

reduction in FP InDels (from 20,699 to 2,766 in GATK, from 8,008 to 2,124 in 

DeepVariant, and from 8,632 to 1,620 in DNAscope) and FN InDels (from 23,154 to 

6,345 in GATK, from 13,082 to 3,690 in DeepVariant, and from 14,301 to 3,299 in 

DNAscope). This reduction in FPs and FNs leads to a slightly increased SNP F-score 
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(harmonic mean of recall and precision) and a significantly increased InDel F-score for 

PCR-free libraries, suggesting more precise variant calling for all depths (Fig. 3a). As the 

highest accuracy combination, PCR-free data with DNAscope had the lowest FP SNPs, 

FP InDels, and FN InDels. As an additional evaluation, in selected “difficult” genome 

regions such as repeat regions and extreme GC regions, PCR-free libraries generally 

showed better InDel F-scores than PCR libraries and produce more faithful genome 

sequences for applications (Supplementary Fig. 2S). 

To increase confidence in the performance of the PCR-free WGS workflow across a 

variety of sequencing depths, we generated additional 10x and 20x data points to 

conduct a 10x-46x low-depth test. As demonstrated in Fig. 3B, the reduction in coverage 

(i.e., 10x, 15x, and 20x) clearly affected the quality of variant calling from all methods. 

Nevertheless, the PCR-free method coupled with machine learning-based callers 

produced more accurate calling than pipelines involving PCR library construction or the 

GATK caller. Importantly, the SNP F-scores of DNAscope and DeepVariant for 15x 

PCR-free libraries were comparable to GATK for 30x PCR libraries (99.45%, 99.48%, 

and 99.70%, respectively), whereas the InDel F-scores of DNAscope and DeepVariant 

for 15x PCR-free libraries were significantly higher than that of GATK for 30x PCR 

libraries (97.90%, 98.23%, and 95.43%, respectively), indicating the potential to 

decrease sequencing cost while maintaining variant detection accuracy. Of note, 

DeepVariant showed the highest accuracy among all callers with 15x PCR-free libraries. 

 

Reproducibility of PCR-free libraries 

We also conducted consistency analysis to determine the level of randomness 

introduced in library construction and sequencing and whether variant callers can help 
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correct this randomness. The variant consistency of three replicates from PCR-free 

libraries was better than that observed with PCR libraries, especially for InDel 

consistency, and this trend is similar for all three variant callers (Fig. 4). This result is 

expected because the PCR step inevitably introduces random errors during amplification. 

The InDel consistency (represented by the portion of variants shared by all replicates) of 

PCR-free libraries was 84.2% with GATK, 86.5% with DeepVariant, and 89.1% with 

DNAscope (average 86.6%), which is approximately 20% greater than the InDel 

consistency seen with PCR libraries (63.2% with GATK, 66.9% with DeepVariant, and 

68.9% with DNAscope (average 66.3%). We also observed that more than 99% of SNPs 

and approximately 98% of InDels in each library overlapped with at least one of the other 

two libraries. The consistency of SNPs among all three replicates was similarly high from 

both PCR and PCR-free libraries (three callers average 94.6% vs. 95.2%). 

 

In contrast, we investigated the consensus calling on the same library among three 

callers. On average, the three pipelines for SNPs and InDels are 92.3% and 67.0% for 

PCR libraries and 92.6% and 82.7% for PCR-free libraries, indicating that PCR-free 

libraries generated more “clear” variant candidates that are less challenging for variant 

callers (Supplementary Fig. 3S). 

Evaluation of PCR-free WGS performance on different sequencing platforms 

In addition to the library construction kit, the sequencing platform introduces additional 

bias or systematic variation that causes different performance. Here we compared two 

PCR-free libraries prepared using the MGIEasy PCR-Free DNA Library Pre Set and the 

MGIEasy FS PCR-Free DNA Library Pre Set and sequenced on MGISEQ-2000 with 

three datasets downloaded from the Illumina Basespace website to represent the 
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performance of TruSeq PCR-free libraries sequenced on HiSeq4000, HiSeqXTen, or 

Novaseq platforms. The following three additional datasets were included in the 

comparison to provide further information: 1) library prepared with MGIEasy PCR-Free 

DNA Library Pre Set and sequenced on DNBSEQ-T7 [34]; 2) library prepared with 

MGIEasy PCR-Free DNA Library Pre Set with Illumina’s adapter and sequenced on 

Novaseq by a third-party sequencing service provider; 3) library prepared with research 

modifications of the MGIEasy kit and sequenced on MGISEQ-2000. It should be noted 

that libraries prepared with the MGIEasy kit used 1 μg or 250 ng DNA input, far less than 

the input for datasets downloaded from Illumina Basespace. All FASTQ files were 

processed in the same pipeline for read trimming/filtering, mapping, and variant calling 

using DNAscope (see Methods) to minimize bias or variation introduced at the 

secondary analysis stage.  

 

From mapping the QC matrix, all three datasets generated from MGISEQ-2000 showed 

a significantly lower duplicate rate of approximately 1% or less, whereas all Illumina 

platform datasets, including the hybrid sample with MGI library prep, showed at least a 

10% duplicate rate (Table 3). The “T7” dataset had a 3.60% duplication rate with 250 ng 

genomic DNA as input, which is still lower than Illumina’s duplicate rate. Thus, there was 

a more cost-effective generation of unique reads by DNBSEQTM. With DNAscope’s 

DNBSEQTM and Illumina models applied separately, the SNP calling accuracy 

(represented by F-score) of all samples reached a similarly high level, except for 

Hiseq4000 (Table 3). For InDels, the two pure MGI pipeline (library prep + sequencing) -

generated datasets and the “research library dataset” with 1µg as input all outperformed 

the three Illumina datasets with 2µg as input, showing less errors (FP and FN). This 

result is most likely due to the complete elimination of PCR during both library 
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construction and sequencing procedures and confirms our hypothesis that PCR-

generated DNA clusters frequently introduce clonal errors, especially InDels. Comparing 

the top performer from both sides—the “research library dataset” and the “TruSeq and 

Novaseq dataset”—the “research library dataset” had similar SNP calling but 

significantly lower false InDel calling with only 1,304 FPs, which is an ~55% reduction 

from 2,879 FPs with the “TruSeq and Novaseq dataset”; 2,201 FNs in the “research 

library dataset” also represents an ~48% reduction. The inclusion of data from the new 

DNBSEQ-T7 sequencer demostrates its accuracy and performance relative to other 

sequencing platforms. Although scale and cost has been prioritized in designing this 

ultra-high throughput sequencer, its sequencing accuracy has also been preserved, 

reaching the level of the “TruSeq and Novaseq dataset”. 

These data collectively highlighted that the DNBSEQTM PCR-free WGS workflow 

provides clear benefits in sequencing efficiency and data quality based on parameters 

such as low duplication rate and high InDel calling accuracy.  

 

Discussion 

The wide adoption of WGS can be credited to the dramatically decreasing cost of 

sequencing and to the potential downsides of WES, such as missing variants in the non-

exome regions and inability to detect copy number variation. The development of 

machine-learning based secondary analysis tools also promotes the usage of WGS by 

shortening the analysis time from days to hours while attaining a higher variant calling 

accuracy. 

 

Advantages of PCR-free DNBSEQTM  
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In this study, we combined PCR-free-prepared WGS libraries with DNBSEQTM, thus 

excluding PCR from the entire sequencing process. This approach leads to a very low 

GC bias and overall coverage bias. We showed that PCR-free libraries had more 

accurate small variant (especially InDel) calls at 30x and other sequencing depths. This 

result confirmed a previous report that a PCR-free library had high-quality InDel calls 

[13]. This advantage expands when machine learning variant callers, such as 

DeepVariant and DNAscope, are applied instead of GATK. The fact that the InDel F-

score of PCR-free libraries called by both machine learning callers at 15x depth is 

significantly better than that of PCR-prepared libraries called by GATK at 30x suggests 

that low-depth sequencing data could be used to conduct variant calling without 

compromising accuracy. Furthermore, true PCR-free WGS, enabled for the first time by 

high-quality PCR-free libraries and the PCR-free DNBSEQTM platform, is expected to 

improve the detection of low-frequency somatic mutations. 

 

The duplicate rate represents the proportion of duplicate reads from all the sequenced 

data. To ensure accuracy, the duplicated reads need to be removed for subsequent 

bioinformatics analysis. Therefore, for the same amount of raw data, a lower duplicate 

rate yields more usable clean data. The average duplicate rate of our PCR-free data on 

MGISEQ-2000 is approximately 1%, which is much lower than the duplicate rate for the 

PCR-free libraries (10.43%-13.62%) from the Illumina platforms. Thus, for 30x WGS, 90-

100G raw bases is normally sufficient on MGISEQ-2000; however, approximately 20% 

more raw base (110-120G) is recommended on Illumina platforms. The superiority of the 

MGISEQ-2000 duplicate rate is due to the true PCR-free process, which employs no 

PCR in either library construction or sequencing workflow. 
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Rapid WGS for infant genetic disorder diagnostics 

Genetic disorders are among the top causes of morbidity and mortality in infants; the 

newly developed rapid whole-genome sequencing (rWGS) shows the power to diagnose 

genetic disorders quickly, thus enabling healthcare providers to generate or change their 

management plan accordingly and thus improve outcomes for acutely ill infants [35]. To 

facilitate this clinical utility, it is essential that the whole process, from sample collection 

to diagnostic report review and signing, can be completed within 2 days. As a result, 

there is urgent demand to decrease the turn-around time of library construction, 

sequencing, and secondary analysis to 24 hours, thus providing more time for candidate 

variant clinical annotation and board review. 

Compared to traditional PCR-inclusive library construction methods, the PCR-free 

method skips amplification and therefore significantly reduces the turn-around time. 

Moreover, the enzymatic shearing method makes this method more amenable to 

automation and further decreases hands-on time in library construction. The new 

DNBSEQ-T7 sequencer, with super high-throughput of up to 6T per run, can finish within 

24 h, which greatly decreases the sequencing time compared with MGISEQ-2000 and 

provides the possibility to realize rWGS. For secondary analysis, the most time-

consuming steps are read alignment and variant calling. The traditional BWA GATK 

pipeline takes more computational time than is optimal, but some alternative pipelines 

have been proposed and developed to meet the accelerated speed requirements, 

including CPU-based tools, such as Strelka2 [36], DNAseq [37], and SpeedSeq [38]; 

FPGA&CPU-based instruments, such as DRAGEN [39] and MegaBOLT [40]; and the 

GPU/TPU implemented Deepvariant [18]. All these advanced bioinformatics tools are 

compatible with data generated from MGI’s library construction kit and MGI sequencing 

platforms. 
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Structural Variation (SV) and Copy Number Variation (CNV) 

SV and CNV are two critical clinical parameters for which researchers choose WGS 

instead of WES. Although not designed as the primary goal for this benchmark study, 

the data generated allow us to investigate whether our PCR-free method improves SV 

and CNV detection accuracy. SV was called by DNAscope in default parameters, and 

CNV was called by the GATK 4.1.2 pipeline. Supplementary Fig.4S demonstrates that 

the PCR-free method likely helps improve both the sensitivity and specificity of SV 

calling compared to PCR-based library construction methods, because more SV events 

were called in the PCR-free group and they reached higher consistency among three 

replicate samples. A key point in detecting SV events is correctly detecting breakpoints, 

which relies on sufficient coverage across targets and less errors that generate false 

positives. Obviously, PCR-free libraries will benefit this detection.  

Germline CNV for all six testing samples were called by GATK 4.1.2, and approximately 

2,500 CNV events (mainly deletions) were identified from each sample. When 

conducting 3-way comparison to analyze the reproducibility among replicates, the PCR-

free group showed a slightly higher number of common CNV events, but the overall 

difference compared to the PCR group was negligible (Supplementary Fig. 5S). 

 

Clinical utility of higher WGS accuracy 

Clinical WGS has begun to show its potential in rare disease diagnostic capacity, 

because WGS can quickly cover the whole genome and identify clinically meaningful 

variants, especially in UTRs or promoter regions that panel sequencing or WES would 

fail to detect. The increased variant detection accuracy using PCR-free library 
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construction and machine learning-based variant calling pipelines clearly increased 

WGS variant calling accuracy and will therefore surely add value to diagnostic 

applications. In other words, for regions that PCR-based WGS fails to generate sufficient 

read coverage or consistently generates wrong variant calling, PCR-free WGS will be 

able to provide correct SNP/InDel information. From the six DNBSEQTM datasets and 

three Illumina datasets evaluated in this study, we found two example genes for which 

all three PCR-free libraries showed accurate variant calling in the gene-coding or UTR 

regions but for which all three PCR-based libraries generated FNs. These two genes 

were ATK1 and GNAS (Supplementary Fig. 6S, Supplementary Fig. 7S). Similarly, we 

also showed one example gene, MAF (Supplementary Fig. 8S), for which the 

DNBSEQTM PCR-free method really excelled; all three Illumina datasets and both MGI 

PCR datasets failed to detect a C to CT insertion in this gene. These three genes code 

clinically meaningful proteins in which failed variant detection could lead to mis-diagnosis. 

For example, ATK1 (ATK serine / threonine kinase 1) is associated with multiple clinical 

phenotypes, including breast cancer (MIM #114480), colorectal cancer (MIM #114500), 

Cowden syndrome 6 (MIM #615109), and ovarian cancer (MIM #167000). The T to TC 

insertion at locus Chr14:105262025 and the CG to GC SNP at Chr14:105262041 may 

cause malfunction and introduce a disease phenotype, and only PCR-free libraries were 

able to identify these critical variants. 

 

Future improvements  

As a benchmark project, this study shows the current performance of tools and pipelines 

used in library preparation, sequencing, and data analysis. MGI’s PCR-free WGS sets 

provide solutions for both ultrasonic and enzymatic genomic DNA fragmentation and 

demonstrate good reproducibility from a broad range of DNA input (200 ng - 1 µg for 
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MGIEasy PCR-Free DNA Library Prep Set and 50 ng - 1 µg for MGIEasy FS PCR-Free 

DNA Library Prep Set). Modified protocols based on these sets can yield even better 

InDel accuracy, which indicates that room exists to upgrade the PCR-free WGS sets. As 

expected, emerging technologies will continually push the upper limit of sequencing 

accuracy. For example, the performance of new DNBSEQ-T7 sequencer [34] was briefly 

displayed in this study. Among other sequencers in development, this machine can 

decrease sequencing cost per genome or provide deeper coverage and further shorten 

the sequencing time as needed. The poor capacity for structural variation detection due 

to the nature of short-read sequencing can be greatly compensated by applying long 

fragment read (LFR) barcoding technologies [41,42,43]. For some clinical samples such 

as cfDNA, it is impractical to obtain 200 ng for library preparation. With the developed 

method based on MGI PCR-Free sets and a pooling sequencing strategy, we 

successfully generated good data from 10 ng cfDNA in multiple studies (data not shown). 

On the analysis side, the current GATK best practice pipeline was developed and tuned 

based on Illumina data and does not officially support DNBSEQTM-generated data as of 

December 2018 according to the GATK team’s response in forum [44]. Certain error 

correction steps in the pipeline, such as BQSR and VQST, were not developed for 

DNBSEQTM data and thus may generate non-optimized results compared to Illumina 

sequencer-generated data. This view is supported by two recently published benchmark 

studies [45,46]; DNBSEQTM data analyzed by Strelka2 and DeepVariant showed 

comparable accuracy with Illumina data, but DNBSEQTM data analyzed by GATK 

returned a worse accuracy. 

 

Both DeepVariant and DNAscope rely on proper model training, which requires sufficient 

sample numbers prepared using the same library construction method and sequencing 
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platform as the testing samples. In this study, we do not believe this requirement was 

fully met, especially for DNAscope. For example, only 30x and higher depth datasets 

were included into the training set, but testing on 15x depth data was conducted. The 

negative effect of DNAscope lacking a proper 15x depth training dataset is shown when 

comparing its 10x and 15x accuracy to that of DeepVariant, for which the training 

dataset included 15x depth data. Another point worth noticing is that using a single 

model for all library kits/assays and sequencers could sacrifice accuracy for individual 

cases. It is best for users to train individual models for each individual case (i.e., the 

combination of sample prep kit, library construction kit, and sequencing platform) to 

achieve optimal variant calling accuracy. With all the above-mentioned improvements for 

future WGS cohort studies, the unprecedented data generation speed and quality will 

help to answer difficult genetic questions and move the genomics field into a new era of 

broad clinical use. 

 

Conclusions 

In this study, we present an advanced WGS solution using an entirely PCR-free MPS 

workflow—DNBSEQTM PCR-free WGS, which the whole process is not only PCR-free 

during library preparation but also PCR-free during sequencing. Data from repeatability 

tests show that the DNBSEQTM PCR-free WGS has low coverage bias, good 

repeatability and consistency, and the minimum starting amount of genomic DNA can be 

low as 50ng. Analysis results of DNBSEQTM PCR-free comparing with DNBSEQTM PCR 

and illumina’s PCR-free demonstrate that DNBSEQTM PCR-free have the minimum 

systematic errors,which provides clear benefits in sequencing efficiency and data quality 

based on parameters such as low duplication rate and high InDel calling accuracy. The 
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MGI’s PCR-free toolkit (including ultrasonic or enzymatic DNA fragmentation MGI library 

preparation kits and DNBSEQTM  series sequencer) combinded with ML-based variant 

calling pipelines (DeepVariant or DNAscope) can achieve even better data quality in 

terms of SNP and InDel F-scores,moreover,this combination also provide a possibility for 

clinical diagnostics using cost-efficient middle-pass WGS (i.e.,15X,10X WGS) . We 

believe that DNBSEQTM PCR-free WGS is a powerful solution for genome 

research ,cohort studies and precision medicine.Further optimizations  in quality, speed 

and cost throughout the entire MPS from library construction to data analysis will help 

the universal application of DNBSEQTM PCR-free WGS.  

 

Methods 

DNA preparation 

Genomic DNA from NA12878 cells (RRID:CVCL_7526) was purchased from the Coriell 

Institute. Genomic DNA was quantified using a Qubit™ 3 Fluorometer (Life Technologies, 

Carlsbad, CA, USA). The size and quality of genomic DNA were confirmed by running 

0.8% agarose gels.  

 

PCR-free library preparation 

Ultrasonically fragmented PCR-free libraries and enzymatically fragmented PCR-free 

libraries were constructed using the MGIEasy PCR-Free DNA Library Prep Set (MGI, cat. 

no. 1000013453) and the MGIEasy FS PCR-Free DNA Library Prep Set (MGI, cat. No. 

1000013455), respectively.  
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For ultrasonically fragmented PCR-free libraries, genomic DNA was fragmented to 100-

600 bp with peak size of 350-400 bp using an LE220 Ultrasonicator (Covaris, Woburn, 

MA, USA). For FS PCR-free libraries, genomic DNA was fragmented to 100-1000 bp 

with peak size of 350-475 bp using an enzymatic shearing method. Subsequently, 

fragmented DNA with a size range of 200-450 bp was selected using MGIEasy DNA 

Clean Beads (MGI, cat. no. 1000005279) and attached with DNBSEQTM adapters 

according to kit instructions. We also followed the protocols from the kit to prepare 

single-stranded DNA (ssDNA) circles and quantified these on a Qubit™ 3 Fluorometer.  

The library preparation procedure for research libraries was similar to that used with the 

MGIEasy PCR-Free DNA Library Prep Set, except for the size selection and single 

strand degeneration methods.  

 

PCR library preparation 

PCR libraries were prepared using the same procedure of DNA fragmentation, end 

repair, and adapter ligation with the MGIEasy PCR-Free DNA Library Prep Set (Cat. no. 

1000013453) as described above. After adapter ligation, the reaction product was 

purified with MGIEasy DNA Clean Beads (MGI, cat. no. 1000005279), and the ligation 

products were subjected to PCR amplification following instructions from the KAPA HiFi 

HotStart ReadyMix (KAPA BIOSYSTEMS, KK2602). A total of 6 cycles (95°C 3 min; 6 

cycles of 98°C 20 s, 60°C 15 s, and 72°C 60 s; 72°C 10 min; 4°C forever) were 

performed in a volume of 100 µl. After bead purification using MGIEasy DNA Clean 

Beads and quantification using a Qubit™ 3 Fluorometer, 1 pmol PCR product was used 

for single strand molecule circularization according to the ssCir formation protocol from 

the MGIEasy kit.  
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Sequencing 

Whole genome sequencing was performed on the DNBSEQTM platforms MGISEQ-2000 

using paired-end 150-bp (PE150) reads and on DNBSEQ-T7 using PE150 reads. Before 

sequencing, 75 fmol ssDNA from PCR-free libraries or 40 fmol single-strand circle DNA 

from PCR libraries were used to prepare DNA nanoballs (DNBs) according to the kit 

instructions from the MGISEQ-2000RS High-throughput Sequencing Set (FCL PE150) 

(MGI, cat. no. 1000012555). Seventy-five fmol ssDNA from PCR-free libraries was used 

to prepare DNBs according to kit instructions from the DNBSEQ-T7RS High-throughput 

Sequencing Set (PE150) (MGI, cat. no. 1000016106). Subsequently, DNBs were loaded 

onto the sequencing slide, and PE150 sequencing was conducted on DNBSEQTM 

platforms using MGISEQ-2000RS or DNBSEQ-T7RS High-throughput Sequencing Sets. 

 

GC bias analysis 

To explore GC bias, we sequenced two bacteria samples (Table 2S) on MGISEQ-2000 

using PE150 reads. Filtered reads were aligned to reference genomes by Burrows-

Wheeler aligner (BWA) [47]. To investigate the relationship between GC bias and read 

coverage, we scanned the genome with a sliding window of default size (100 bases). GC 

content and average read coverage were calculated within each window. Read coverage 

was normalized to the mean value such that the results would not scale with the total 

amount of data. In addition, we eliminated the data points whose coverage was more 

than twice the mean coverage because they likely represented repeats. Finally, we fit 

the remaining data points by a straight line and defined the slope as the degree of GC 

bias in the real data. 
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Read filtering and mapping 

As the first step, raw reads sequenced from PCR or PCR-free libraries were debarcoded 

by Seqtk [48] with default parameters. Split reads were then pre-processed by 

SOAPnuke to generate filtered reads [49]. During this filtering process, reads containing 

more than 10% of ‘N’ or 50% of the base quality score lower than 12 were removed. 

Adapters were trimmed off, and then alignment of all reads against the human reference 

genome with decoy sequencing hs37d5 (or reference genome sequences of two 

bacteria for GC bias analysis) was performed using BWA with default parameters. The 

output SAM file was converted to a BAM file and sorted by Samtools [50]. Lastly, 

duplicates were marked by Picard [51] to prepare both BAM files for variant calling by 

GATK, DeepVariant, and DNAscope. 

 

Running GATK 

SNP and InDel calling was performed according to GATK (version 3.3) best practice [52]. 

Reads surrounding InDels were re-aligned, and base quality scores were recalibrated. 

HaplotypeCaller was used to call variants in gVCF mode on each chromosome. 

Genotyping on the gVCF files was performed using GenotypeGVCFs with parameters as 

follows: -stand_call_conf 30 and -stand_emit_conf 10. SNPs and InDels were separated 

using SelectVariants tool. Variant quality score recalibration (VQSR) was performed to 

filter low-quality variants. SNP annotation --ts_filter_level was used for calculation and 

filtered at a 99.9% level, whereas for InDels, --ts_filter_level was used for calculation and 

filtered at a 99.9% level of the true sensitivity.  

 

Running DeepVariant 
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Taking advantage of the state-of-the-art deep-learning technique for image classification, 

DeepVariant (V0.7.0 in this study) can achieve a higher accuracy for bioinformatics 

analysis. The genome in a bottle (GIAB) truth set and corresponding fastq reads were 

utilized as a training dataset to train a convolutional neural network (CNN) model. As an 

alternative to GATK HaplotypeCaller, DeepVariant accepts aligned reads (e.g., BAM 

files) as input. In DeepVariant, candidate variants are carefully filtered along the genome 

and classified into three genotype states, homozygous reference (hom-ref), 

heterozygous (het), or homozygous alternate (hom-alt) according to the previously 

trained CNN model. 

To achieve best calling performance, we fine-tuned the CNN model in DeepVariant 

using a set of PCR-free data, including 30x and 15x DNBSEQTM PCR-free sequencing 

data of HG001 and HG005 samples. The fine-tuned model is accessible at [53]. 

 

Running DNAscope 

Sentieon DNAscope (versions 201808.01 and 201808.05 were used in this study) 

uniquely combines the well-established methods from haplotype-based variant callers 

with machine learning to achieve improved accuracy. As a successor to GATK 

HaplotypeCaller, DNAscope uses an identical logical architecture of active region 

detection, local haplotype assembly, and read-likelihood calculation (Pair-HMM) to 

produce variant candidates. DNAscope produces additional informative variant 

annotations used by the machine learning model. Annotated variant candidates are then 

passed to a machine learning model for variant genotyping, resulting in improvements in 

both variant calling and genotyping accuracy. 
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For this study, DNBSEQTM model for DNAscope was constructed using publicly available 

data from the HG001 and HG005 GIAB samples downloaded from the NIST GIAB FTP 

site along with proprietary 30x HG001 samples. The Illumina model for DNAscope was 

also trained using a subset of the GIAB HG001 and HG005 data. None of the tested 

samples were used during model training. Training was performed across all 

chromosomes with the exception of chromosome 20.  

 

Variant accuracy evaluation 

All VCF files generated from this benchmark study were collected for accuracy 

evaluation. First, they were separated into SNP and InDel subgroups, and each 

subgroup was then compared against the NIST truth set using Vcfeval from RTGtools 

[54] to calculate an F-score as a representation of accuracy. 

 

List of abbreviations 

BWA: Burrows-Wheeler aligner; CNN model: convolutional neural network model; CNV: 

Copy Number Variation; DNBs: DNA nanoballs; FP: false positive; FN: false negative; 

GATK: Genome Analysis Toolkit; GIAB: genome in a bottle; hom-ref: homozygous 

reference; het: heterozygous;hom-alt: homozygous alternate; InDels: insertions and 

deletions;  LFR: long fragment read; MPS: massively parallel sequencing;  ML: machine 

learning; NGS: next-generation sequencing; PCR: Polymerase chain reaction; Pair-HMM: 

read-likelihood calculation; rWGS: rapid whole-genome sequencing; SNPs: single-

nucleotide polymorphisms; ssDNA:single-stranded DNA; SPRI: solid-phase reversible 

immobilization; SV: Structural Variation; VQSR: Variant quality score recalibration; WGS: 

whole genome sequencing; WES: whole-exome sequencing 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 1, 2020. ; https://doi.org/10.1101/2019.12.20.885517doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.885517


 

26 

 

 

Declarations 

Ethics approval and consent to participate 

The Institutional Review Board on Bioethics and Bio-safety of BGI (BGI-IRB), 

NO.FT18152 has approved this study. 

 

Availability of data and materials 

The data reported in this study are available in the CNGB Nucleotide Sequence Archive 

(https://db.cngb.org/cnsa; accession number CNP0000602, CNP0000466). 

 All other data used here are included within the published article and additional files. 

 

Competing interests 

Some employees of MGI Tech Co., Ltd., BGI-Shenzhen and Complete Genomics Inc. 

have stock holdings in BGI. 

The authors have no other competing interests. 

 

Funding 

This work was supported by the Shenzhen Municipal Government of China Peacock  

Plan (No. KQTD2015033017150531), the National Key R&D Program of China 

(2018YFC0910201), and the Key R&D Program of Guangdong Province 

(2019B020226001).The funders provided the financial support to the research,but had 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 1, 2020. ; https://doi.org/10.1101/2019.12.20.885517doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.885517


 

27 

 

no role in the design of the study and collection, analysis, and interpretation of data and 

in writing the manuscript. 

 

Authors' contributions 

Conception and design of study: XZ, YJ,RD; 

Acquisition of data: HS, PL, YX, QL, XW,LW, TB, AA,YL, MG, JL, NB, ZM, HR; 

Analysis and/or interpretation of data: HS, ZL, SS, XL, Yinlong X, WT, Zhe L,XZ, YJ,RD;  

Drafting the manuscript: HS, PL, ZL, SS, YX, JZ, LW, Zhe L, XZ, YJ,RD; 

Revising the manuscript: XL, Yinlong X, SD, XZ,YJ,RD; 

Supervision and resource support: FC, HJ, CX, SD, AC, WZ, FM, XX; 

Fund acquisition: FC, RD; 

Approval of the version of the manuscript to be published: All the authors listed  in the 

title page. 

 

Acknowledgements 

We would like to acknowledge the ongoing contributions and support of all MGI Tech 

Co., Ltd., BGI-Shenzhen and Complete Genomics Inc. employees, and we also 

acknowledge Frank Hu from Sentieon for commenting on the manuscript. 

 

References  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 1, 2020. ; https://doi.org/10.1101/2019.12.20.885517doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.885517


 

28 

 

1. Meienberg, J. et al. New insights into the performance of human whole-exome 

capture platforms. Nucleic Acids Res. 43, e76 (2015). 

2. Belkadi, A. et al. Whole-genome sequencing is more powerful than whole-exome 

sequencing for detecting exome variants. Proceedings of the National Academy of 

Sciences. 112, 5473-5478 (2015). 

3. Meienberg, J. et al. Clinical sequencing: is WGS the better WES? Hum Genet. 135, 

359–362 (2016). 

4. Carss, K. J. et al. Comprehensive Rare Variant Analysis via Whole-Genome 

Sequencing to Determine the Molecular Pathology of Inherited Retinal DiseaseAn 

integrated map of structural variation. Am J Hum Genet. 100, 75-90 (2017). 

5. Fujimoto, A. et al. Whole-genome mutational landscape and characterization of 

noncoding and structural mutations in liver cancer. Nat Genet. 48, 500-509 (2016). 

6. Satta, G. et al. Mycobacterium tuberculosis and whole-genome sequencing: 

how close are we to unleashing its full potential? Clin Microbiol Infect. 24, 604-609 

(2018). 

7. Wetterstrand, K. A. DNA Sequencing Costs: Data from the NHGRI Genome 

Sequencing Program (GSP). https://www.genome.gov/about-genomics/fact-

sheets/DNA-Sequencing-Costs-Data (2019).  

8. Kebschull, J. M. & Zador, A. M. Sources of PCR-induced distortions in high- 

throughput sequencing data sets. Nucleic Acids Res. 43, e143 (2015). 

9. Aird, D. et al. Analyzing and minimizing PCR amplification bias in Illumina 

sequencing libraries. Genome Biol. 12, R18 (2011). 

10. Chen, Y. C. et al. Effects of GC Bias in Next-Generation-Sequencing Data on De 

Novo Genome Assembly. PLoS One. 8, e62856 (2013). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 1, 2020. ; https://doi.org/10.1101/2019.12.20.885517doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Belkadi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25827230
https://www.ncbi.nlm.nih.gov/pubmed/?term=Fujimoto%20A%5BAuthor%5D&cauthor=true&cauthor_uid=27064257
https://www.ncbi.nlm.nih.gov/pubmed/27064257
https://www.ncbi.nlm.nih.gov/pubmed/?term=Satta%20G%5BAuthor%5D&cauthor=true&cauthor_uid=29108952
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mycobacterium+tuberculosis+and+whole-genome+sequencing%3A+how+close+are+we+to+unleashing+its+full+potential%3F
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kebschull%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=26187991
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zador%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=26187991
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sources+of+PCR-induced+distortions+in+high-throughput+sequencing+data+sets
https://www.ncbi.nlm.nih.gov/pubmed/?term=Aird%20D%5BAuthor%5D&cauthor=true&cauthor_uid=21338519
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chen%20YC%5BAuthor%5D&cauthor=true&cauthor_uid=23638157
https://www.ncbi.nlm.nih.gov/pubmed/?term=Effects+of+GC+Bias+in+Next-Generation-Sequencing+Data+on+De+Novo+Genome+Assembly
https://doi.org/10.1101/2019.12.20.885517


 

29 

 

11. Ross, M. G. et al. Characterizing and measuring bias in sequence data. Genome 

Biology. 14, R51 (2013). 

12. Kozarewa, I. et al. Amplification-free Illumina sequencing preparation facilitates 

improved mapping and assembly of (G+C)-biased genomes. Nat Methods. 6, 291-

295 (2009). 

13. Fang, H. et al. Reducing INDEL calling errors in whole genome and exome 

sequencing data. Genome Med. 6, 89 (2014). 

14. Jones, M. B. et al. Library preparation methodology can influence genomic and 

functional predictions in human microbiome research. Proceedings of the National 

Academy of Sciences. 112, 14024-14029 (2015). 

15. McKenna, A. et al. The Genome Analysis Toolkit A MapReduce framework for 

analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303 

(2010).  

16. Heldenbrand, J. R. et al. Performance benchmarking of GATK3.8 and GATK4. 

BioRxiv. 348565 (2018). 

17. Friedman, S. Deep learning in GATK4. Blogs from Broad institute.  https://sites.googl

e.com/a/broadinstitute.org/legacy-gatk-forum-discussions/announcements/10996-D

eep-learning-in-GATK4 (2017). 

18. Poplin, R. et al. A universal SNP and small-InDel variant caller using deep neural 

networks. Nat Biotechnol. 36, 983-987 (2018). 

19. DNAscope Machine Learning Model. Sentieon. https://github.com/Sentieon/sentieon

-dnascope-ml (2019).  

20. Luo, R. et al. A multi-task convolutional deep neural network for variant calling in 

single molecule sequencing. Nat Commun. 10, 998 (2019). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 1, 2020. ; https://doi.org/10.1101/2019.12.20.885517doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ross%20MG%5BAuthor%5D&cauthor=true&cauthor_uid=23718773
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kozarewa%20I%5BAuthor%5D&cauthor=true&cauthor_uid=19287394
https://www.ncbi.nlm.nih.gov/pubmed/?term=Amplification-free+Illumina+sequencing+preparation+facilitates+improved+mapping+and+assembly+of+(G%2BC)-biased+genomes
https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-014-0089-z
https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-014-0089-z
https://www.ncbi.nlm.nih.gov/pubmed/?term=McKenna%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20644199
https://www.ncbi.nlm.nih.gov/pubmed/?term=Poplin%20R%5BAuthor%5D&cauthor=true&cauthor_uid=30247488
https://github.com/Sentieon/sentieon-dnascope-ml
https://github.com/Sentieon/sentieon-dnascope-ml
https://www.ncbi.nlm.nih.gov/pubmed/?term=Luo%20R%5BAuthor%5D&cauthor=true&cauthor_uid=30824707
https://www.ncbi.nlm.nih.gov/pubmed/?term=A+multi-task+convolutional+deep+neural+network+for+variant+calling+in+single+molecule+sequencing
https://doi.org/10.1101/2019.12.20.885517


 

30 

 

21. Drmanac, R. et al. Human genome sequencing using unchained base reads on self-

assembling DNA nanoarrays. Science. 327, 78-81 (2010). 

22. Blanco, L. et al. Highly efficient DNA synthesis by the phage phi 29 DNA 

polymerase. Symmetrical mode of DNA replication. J Biol Chem. 264, 8935-8940 

(1989).  

23. Ali, M. M. et al. Rolling circle amplification: a versatile tool for chemical biology, 

materials science and medicine. Chem Soc Rev. 43, 3324-3341 (2014). 

24. Li, Q. et al. Reliable multiplex sequencing with rare index mis-assignment on DNB-

based NGS platform. BMC genomics. 20, 215 (2019). 

25. Introduction To MGI Sequencing Technology.  MGI website. 

https://en.mgitech.cn/products/ (2020).  

26. Zhou, X. & Rokas, A. Prevention, diagnosis and treatment of high-throughput 

sequencing data pathologies. Mol Ecol. 23, 1679-1700 (2014). 

27. Bansal, V. A computational method for estimating the PCR duplication rate in DNA 

and RNA-seq experiments. BMC Bioinformatics. 18 (3), 113-123 (2017). 

28. Cornish, A. & Guda, C. A Comparison of Variant Calling Pipelines Using Genome in 

a Bottle as a Reference. Biomed Res Int.  456, 79 (2015).  

29. Hwang, S. et al. Systematic comparison of variant calling pipelines using gold 

standard personal exome variants. Sci Rep.  5, 17875 (2015). 

30. Zook, J. M. et al. Extensive sequencing of seven human genomes to characterize 

benchmark reference materials. Sci. Data. 3, 160025 (2016). 

31. Supernat, A. et al. Comparison of three variant callers for human whole genome 

sequencing. Sci Rep.  8, 17851 (2018). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 1, 2020. ; https://doi.org/10.1101/2019.12.20.885517doi: bioRxiv preprint 

https://ccc.glgoo.top/scholar/scholar_url?url=https%3A%2F%2Fscience.sciencemag.xilesou.top%2Fcontent%2F327%2F5961%2F78.short&hl=zh-CN&sa=T&ct=res&cd=0&d=15208978118149038985&ei=gZM3XuKoC930ygTvgL6gCQ&scisig=AAGBfm31l2R1EdDzM7i0ppo6HIeoD-Vr2A&nossl=1&ws=1129x516&at=Human%20genome%20sequencing%20using%20unchained%20base%20reads%20on%20self-assembling%20DNA%20nanoarrays
https://ccc.glgoo.top/scholar/scholar_url?url=https%3A%2F%2Fscience.sciencemag.xilesou.top%2Fcontent%2F327%2F5961%2F78.short&hl=zh-CN&sa=T&ct=res&cd=0&d=15208978118149038985&ei=gZM3XuKoC930ygTvgL6gCQ&scisig=AAGBfm31l2R1EdDzM7i0ppo6HIeoD-Vr2A&nossl=1&ws=1129x516&at=Human%20genome%20sequencing%20using%20unchained%20base%20reads%20on%20self-assembling%20DNA%20nanoarrays
https://www.ncbi.nlm.nih.gov/pubmed/?term=Blanco%20L%5BAuthor%5D&cauthor=true&cauthor_uid=2498321
https://www.ncbi.nlm.nih.gov/pubmed/?term=L.+Blanco+et+al.%2C+J.+Biol.+Chem.+264%2C+8935+(1989)
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ali%20MM%5BAuthor%5D&cauthor=true&cauthor_uid=24643375
https://en.mgitech.cn/products/
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zhou%20X%5BAuthor%5D&cauthor=true&cauthor_uid=24471475
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rokas%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24471475
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bansal%20V%5BAuthor%5D&cauthor=true&cauthor_uid=28361665
https://www.ncbi.nlm.nih.gov/pubmed/?term=A+computational+method+for+estimating+the+PCR+duplication+rate+in+DNA+and+RNA-seq+experiments
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cornish%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26539496
https://www.ncbi.nlm.nih.gov/pubmed/?term=Guda%20C%5BAuthor%5D&cauthor=true&cauthor_uid=26539496
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hwang%20S%5BAuthor%5D&cauthor=true&cauthor_uid=26639839
https://www.ncbi.nlm.nih.gov/pubmed/?term=Systematic+comparison+of+variant+calling+pipelines+using+gold+standard+personal+exome+variants
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zook%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=27271295
https://www.ncbi.nlm.nih.gov/pubmed/?term=Supernat%20A%5BAuthor%5D&cauthor=true&cauthor_uid=30552369
https://www.ncbi.nlm.nih.gov/pubmed/30552369
https://doi.org/10.1101/2019.12.20.885517


 

31 

 

32. Precision FDA Truth Challenge. PrecisionFDA Challenges. 

https://precision.fda.gov/challenges/truth/results (2019).  

33. High-speed, high flexibility and ultra-high throughput，Turbocharge your sequencing.

 Introduction To  DNBSEQ-T7 in MGI website. https://en.mgitech.cn/product/detail/D

NBSEQ-T7.html (2020).  

34. Willig, L. K. et al. Whole-genome sequencing for identification of Mendelian 

disorders in critically ill infants: a retrospective analysis of diagnostic and clinical 

findings. Lancet Respir Med. 5, 377–387 (2015). 

35. Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. 

Nat Methods. 15, 591-594 (2018). 

36. Kendig, K. I. et al. Sentieon DNASeq Variant Calling Workflow Demonstrates Strong 

Computational Performance and Accuracy. Front Genet. 10, 736 (2019). 

37. Chiang, C. et al. SpeedSeq: ultra-fast personal genome analysis and interpretation. 

Nat Methods. 12, 966-968 (2015). 

38. Goyal, A. et al. Ultra-Fast Next Generation Human Genome Sequencing Data 

Processing Using DRAGENTM Bio-IT Processor for Precision Medicine. Open 

Journal of Genetics. 7, 9-19 (2017). 

39. Introduction To  MegaBOLT. MGI website. https://en.mgitech.cn/products/software_i

nfo/2/ (2020). 

40. Peters, B. A. et al. Accurate whole-genome sequencing and haplotyping from 10 to 

20 human cells. Nature. 487, 190-195 (2012). 

41. Zheng, G. X. et al. Haplotyping germline and cancer genomes with high-throughput 

linked-read sequencing. Nature Biotech. 34, 303–311 (2016). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 1, 2020. ; https://doi.org/10.1101/2019.12.20.885517doi: bioRxiv preprint 

https://precision.fda.gov/challenges/truth/results
https://en.mgitech.cn/product/detail/DNBSEQ-T7.html
https://en.mgitech.cn/product/detail/DNBSEQ-T7.html
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20S%5BAuthor%5D&cauthor=true&cauthor_uid=30013048
https://www.ncbi.nlm.nih.gov/pubmed/?term=Strelka2%3A+fast+and+accurate+calling+of+germline+and+somatic+variants
https://www_ncbi.gg363.site/pubmed/?term=Kendig%20KI%5BAuthor%5D&cauthor=true&cauthor_uid=31481971
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chiang%20C%5BAuthor%5D&cauthor=true&cauthor_uid=26258291
http://www.scirp.org/journal/articles.aspx?searchCode=Amit++Goyal&searchField=authors&page=1
https://www.ncbi.nlm.nih.gov/pubmed/?term=Peters%20BA%5BAuthor%5D&cauthor=true&cauthor_uid=22785314
https://doi.org/10.1101/2019.12.20.885517


 

32 

 

42. Wang, O. et al. Efficient and unique cobarcoding of second-generation sequencing 

reads from long DNA molecules enabling cost-effective and accurate sequencing, 

haplotyping, and de novo assembly. Genome Res. 29, 798-808 (2019). 

43. Does sequencing platform have effect on the variant detection? GATK discussion fr

om Broad Institute. https://gatkforums.broadinstitute.org/gatk/discussion/23202/does

-sequencing-platform-have-effect-on-the-variant-detection (2019). 

44.  Chin, J., Carroll, A. & Zarate, S. Training and Applying Genomic Deep Learning 

Models. Dnanexus | Blog. https://blog.dnanexus.com/2018-05-31-training-and-

applying-genomic-deep-learning-models/ (2018).  

45. Chen, J. et al. Systematic comparison of germline variant calling pipelines cross mul

tiple next-generation sequencers. Sci Rep. 9, 9345 (2019).  

46. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-

MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).  

47. Introduction to Seqtk. GitHub. https://github.com/lh3/seqtk (2019).  

48. Chen, Y. et al. SOAPnuke: A MapReduce acceleration-supported software for 

integrated quality control and preprocessing of high-throughput sequencing data. 

GigaScience. 7, 1–6 (2018). 

49. Li, H. et al. The sequence alignment/map format and samtools. Bioinformatics. 25, 

2078-2079 (2009). 

50. Introduction to Picard from broad institute. GitHub. https://github.com/broadinstitute/

picard (2019).  

51. McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for 

analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 

(2010). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 1, 2020. ; https://doi.org/10.1101/2019.12.20.885517doi: bioRxiv preprint 

https://gatkforums.broadinstitute.org/gatk/discussion/23202/does-sequencing-platform-have-effect-on-the-variant-detection
https://gatkforums.broadinstitute.org/gatk/discussion/23202/does-sequencing-platform-have-effect-on-the-variant-detection
https://blog.dnanexus.com/2018-05-31-training-and-applying-genomic-deep-learning-models/
https://blog.dnanexus.com/2018-05-31-training-and-applying-genomic-deep-learning-models/
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chen%20J%5BAuthor%5D&cauthor=true&cauthor_uid=31249349
broad%20institute
https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard
https://doi.org/10.1101/2019.12.20.885517


 

33 

 

52. MGI DeepVariant model from MGI Tech bioinformatics R&D. GitHub. 

https://github.com/MGI-tech-bioinformatics/MGI_DeepVariant_model (2019).  

53. Introduction to RTG Tools from Real Time Genomics. GitHub. 

https://github.com/RealTimeGenomics/rtg-tools (2019).  

54. Adessi, C. et al. Solid phase DNA amplification characterisation of primer 

attachment and amplification mechanisms. Nucleic Acids Res. 28, E87 (2000). 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 1, 2020. ; https://doi.org/10.1101/2019.12.20.885517doi: bioRxiv preprint 

https://github.com/MGI-tech-bioinformatics/MGI_DeepVariant_model
https://github.com/RealTimeGenomics/rtg-tools
https://www.ncbi.nlm.nih.gov/pubmed/?term=Adessi%20C%5BAuthor%5D&cauthor=true&cauthor_uid=11024189
https://www.ncbi.nlm.nih.gov/pubmed/?term=Solid+phase+DNA+amplification+characterisation+of+primer+attachment+and+amplification+mechanisms
https://doi.org/10.1101/2019.12.20.885517


 

34 

 

 

Method PCR-1 PCR-2 PCR-3 PCR-free-1 PCR-free-2 PCR-free-3 

Depth 15x 30x FL 15x 30x FL 15x 30x FL 15x 30x FL 15x 30x FL 15x 30x FL 

Clean reads (x106) 296.64 633.73 940.37 296.80 633.76 954.92 296.45 632.78 949.34 295.93 631.36 926.38 296.03 632.98 944.92 296.13 631.49 964.32 

Clean bases (Gb) 44.49 95.05 141.05 44.52 95.06 143.23 44.46 94.91 142.40 44.39 94.70 138.95 44.40 94.94 141.73 44.42 94.72 144.64 

Insert size peak (bp) 383 383 383 374 374 374 375 375 375 374 374 375 375 375 375 375 375 375 

GC content (%) 41.64 41.64 41.64 41.78 41.78 41.78 41.49 41.49 41.49 41.53 41.53 41.53 41.48 41.48 41.48 41.46 41.47 41.46 

Mapping rate (%) 99.91 99.82 99.82 99.91 99.84 99.84 99.89 99.82 99.82 99.89 99.83 99.83 99.72 99.65 99.65 99.93 99.86 99.86 

Unique rate (%) 99.42 95.41 94.78 99.48 95.53 94.92 99.35 95.23 94.51 99.69 95.76 95.38 99.71 95.82 95.44 99.77 95.95 95.61 

Duplicate rate (%) 0.58 1.56 2.24 0.52 1.44 2.10 0.65 1.72 2.49 0.31 1.07 1.50 0.29 1.03 1.45 0.23 0.91 1.31 

Mismatch rate (%) 0.89 0.87 0.86 0.91 0.89 0.88 0.95 0.93 0.92 0.74 0.74 0.73 0.74 0.74 0.73 0.71 0.70 0.70 

Average seq depth (X) 15.37 30.83 45.46 15.39 30.89 46.27 15.34 30.71 45.74 15.37 30.81 45.04 15.35 30.86 45.91 15.4 30.91 47.04 

Coverage (%) 99.07 99.13 99.16 99.07 99.13 99.16 99.08 99.14 99.17 99.1 99.16 99.18 99.1 99.16 99.18 99.1 99.16 99.18 

Coverage at least 4X (%) 98.65 98.96 99.03 98.64 98.97 99.03 98.65 98.97 99.04 98.76 99.01 99.06 98.75 99.01 99.06 98.74 99.00 99.06 

Coverage at least 10X (%) 89.78 98.58 98.83 89.61 98.58 98.84 89.55 98.58 98.84 90.5 98.70 98.89 90.44 98.69 98.89 90.49 98.69 98.90 

 

Table 1. Mapping performance of three replicates for PCR and PCR-free libraries. QC matrix from 3 PCR and 3 PCR-free libraries was collected. Each sample was down-sampled to 

15x and 30x in addition to full lane (FL, approximately 46x coverage). 
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Pipeline Variant type 
Method PCR PCR-free 

Depth 15x 30x FL 15x 30x FL 

GATK 

SNPs 

True positive 3,106,478 3,193,586 3,198,933 3,126,614 3,199,331 3,202,461 

False positive 9,615 2,806 2,479 8,544 2,586 2,347 

False negative 103,778 16,671 11,324 83,643 10,926 7,796 

Precision 99.69% 99.91% 99.92% 99.73% 99.92% 99.93% 

Sensitivity 96.77% 99.48% 99.65% 97.39% 99.66% 99.76% 

F-score 98.21% 99.70% 99.79% 98.55% 99.79% 99.84% 

        

InDels 

True positive 397,779 458,110 466,343 429,105 474,921 477,918 

False positive 34,787 20,699 17,891 19,730 2,766 1,686 

False negative 83,485 23,154 14,922 52,160 6,345 3,349 

Precision 91.96% 95.67% 96.30% 95.60% 99.42% 99.65% 

Sensitivity 82.65% 95.19% 96.90% 89.16% 98.68% 99.31% 

F-score 87.05% 95.43% 96.60% 92.27% 99.05% 99.48% 

DeepVariant 

SNPs 

True positive 3,174,776 3,205,991 3,207,021 3,184,757 3,207,148 3,207,769 

False positive 12,952 2,913 1,871 7,837 2,111 1,691 

False negative 35,481 4,266 3,236 25,499 3,109 2,488 

Precision 99.59% 99.91% 99.94% 99.75% 99.93% 99.95% 

Sensitivity 98.90% 99.87% 99.90% 99.21% 99.90% 99.92% 

F-score 99.24% 99.89% 99.92% 99.48% 99.92% 99.93% 

        

InDels 

True positive 436,804 468,237 474,129 470,682 477,616 478,556 

False positive 22,906 8,008 4,389 6,310 2,124 1,615 

False negative 44,546 13,082 7,185 10,695 3,690 2,745 

Precision 95.02% 98.32% 99.08% 98.67% 99.56% 99.66% 

Sensitivity 90.74% 97.28% 98.51% 97.78% 99.23% 99.43% 

F-score 92.83% 97.80% 98.80% 98.23% 99.39% 99.55% 

DNAscope 

SNPs 

True positive 3,171,728 3,205,902 3,207,318 3,180,864 3,207,055 3,207,911 

False positive 8,351 1,565 1,021 6,034 1,254 901 

False negative 38,529 4,355 2,939 29,393 3,202 2,346 

Precision 99.74% 99.95% 99.97% 99.81% 99.96% 99.97% 

Sensitivity 98.80% 99.86% 99.91% 99.08% 99.90% 99.93% 

F-score 99.27% 99.91% 99.94% 99.45% 99.93% 99.95% 

        

InDels 

True positive 443,656 466,964 471,037 466,852 477,969 479,103 

False positive 21,653 8,632 5,773 5,617 1,620 1,202 

False negative 37,609 14,301 10,229 14,413 3,299 2,164 

Precision 95.35% 98.19% 98.79% 98.81% 99.66% 99.75% 

Sensitivity 92.18% 97.03% 97.88% 97.00% 99.31% 99.55% 

F-score 93.74% 97.60% 98.33% 97.90% 99.49% 99.65% 

 

Table 2. Average variant calling performance of three replicates for PCR and PCR-free libraries using three variant callers.  Variant calls from each 

library and with each variant caller were evaluated by Vcfeval in RTGtools against the NIST truth set at high-confidence regions. Average values from the same 

library construction method were generated and are shown here. “FL”represents full lane sequencing data, approximately 46x coverage.
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Library Kit 
MGIEasy PCR-Free 
DNA Library Prep 

Set 

MGIEasy FS PCR-
Free DNA Library 

Prep Set 

MGIEasy PCR-Free 
DNA Library Prep 

Set 

MGIEasy PCR-Free 
DNA Library Prep 

Set 

PCR-Free 
research lib 

TruSeq DNA PCR-Free Library Prep Kits 

DNA input 250 ng 1 μg 1 μg 1 μg 1 μg 2 μg 2 μg 2 μg 

Sequencing platform DNBSEQ-T7 MGISEQ-2000 MGISEQ-2000 Novaseq MGISEQ-2000 Hiseq4000  xTen Novaseq 

Average seq depth (X) 30.46 30.68 30.91 30.75 30.6 30.02 31.5 30.43 

Mapping rate (%) 99.99 99.89 99.86 99.82 99.83 99.03 99.85 99.94 

Duplicate rate (%) 3.6 0.6 0.91 18.19 0.76 13.62 12.31 10.43 

Coverage at least 10X (%) 98.64 98.73 98.69 98.83 98.82 98.8 98.91 98.87 

SNPs 

True positive 3,206,204 3,207,301 3,207,056 3,207,540 3,207,839 3,206,782 3,207,834 3,208,037 

False positive 1,545 1,209 1,255 1,331 1,048 2,704 1,280 1,262 

False negative 4,053 2,956 3,201 2,717 2,418 3,475 2,423 2,220 

Precision 99.95% 99.96% 99.96% 99.96% 99.97% 99.92% 99.96% 99.96% 

Sensitivity 99.87% 99.91% 99.90% 99.92% 99.92% 99.89% 99.92% 99.93% 

F-score 99.91% 99.94% 99.93% 99.94% 99.95% 99.90% 99.94% 99.95% 

InDels 

          

True positive 476,673 478,047 478,004 477,283 479,066 469,353 477,420 477,017 

False positive 2,266 1,882 1,595 2,479 1,304 7,642 2,598 2,879 

False negative 4,592 3,218 3,265 3,984 2,201 11,913 3,846 4,250 

Precision 99.53% 99.61% 99.67% 99.48% 99.73% 98.40% 99.46% 99.40% 

Sensitivity 99.05% 99.33% 99.32% 99.17% 99.54% 97.52% 99.20% 99.12% 

F-score 99.29% 99.47% 99.49% 99.33% 99.64% 97.96% 99.33% 99.26% 

 

Table 3. Mapping and Variant calling performance of PCR-free libraries sequenced on different sequencing platforms. DNBSEQ-T7 and MGISEQ-2000 data were generated according to PCR-free kit instructions 

or with research modifications (PCR-Free research lib).Illumina Hiseq4000, HiSeq xTen, and Novaseq data were downloaded from the Illumina Basespace website. To compare the sequence platform only, one PCR-free 

library was generated by MGIEasy FS PCR-Free DNA Library Prep Set using Illumina’s adapter and sequenced on Novaseq by a third-party sequencing service provider. Variants from each library were called using the 

DNAscope pipeline, and accuracy was evaluated by the vcfeval tool in RTGtools against the NIST truth set at high confidence regions. 
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Figure 1. DNBSEQTM WGS PCR vs. PCR-free workflows and general performance of PCR-free libraries. (a) MPS library construction workflows of WGS PCR and PCR-free libraries. Rolling circle amplification (RCA) 

is used to increase signal intensity during array formation, which is followed by sequencing DNBs with DNBSEQTM technology. Individual copies from the same DNB are replicated independently using the same ssCir 

template. Therefore, amplification errors cannot accumulate. Black, genomic DNA; gray rectangle, adapter; green, barcode; red, amplification errors. (b) Two sets of 9 replicates from 1 μg NA12878 DNA were processed 

with MGIEasy PCR-Free DNA Library Prep Set (blue) or MGIEasy FS PCR-Free DNA Library Prep Set (orange). The GC content, Duplication rate, Median Insert size, and regions with >10x Coverage were calculated and 

plotted. The error bars represent the standard deviations across the replicates.  
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Figure 2. Coverage of the microbial genomes, Olsenella profusa (62% GC, left) and Bacillus megaterium (38% GC, right) with (A) MGIEasy PCR-Free DNA Library Pre Set and (B) MGIEasy FS PCR-Free DNA 

Library Pre Set. Read coverage across the range of the GC content, calculated in 100-bp windows (pink bars) and normalized coverage (colored dots). Three replicates (red, blue, and green dots) were included in the 

normalized coverage vs. GC content analysis.  
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Figure 3. Variant calling performance in PCR vs. PCR-free libraries. (A) F-Scores of 30x sequencing PCR and PCR-free libraries were compared for accuracy performance using different variant callers. (B) Down-

sampled datasets representing different sequencing depths were processed to examine the tolerance to shallow data from different variant callers. PCR-free libraries (dark color) and machine learning variant callers (blue 

and red) showed good accuracy at >15X that was superior to the PCR+GATK combination at 30X depth.
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Figure 4. Variant consistency of 3 replicates of PCR and PCR-free libraries. Consistency analysis was conducted on the 3 libraries generated by the 

same library kit and variant calling pipelines. Venn diagrams were generated to show the common shared variants and the unique variants.  
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