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Abstract: The development of armour systems with higher ballistic resistance and light weight has

gained considerable attention as an increasing number of countries are recognising the need to build

up advanced self-defence system to deter potential military conflicts and threats. Graphene is a two

dimensional one-atom thick nanomaterial which possesses excellent tensile strength (130 GPa) and

specific penetration energy (10 times higher than steel). It is also lightweight, tough and stiff and is

expected to replace the current aramid fibre-based polymer composites. Currently, insights derived

from the study of the nacre (natural armour system) are finding applications on the development of

artificial nacre structures using graphene-based materials that can achieve high toughness and energy

dissipation. The aim of this review is to discuss the potential of graphene-based nanomaterials with

regard to the penetration energy, toughness and ballistic limit for personal body armour applications.

This review addresses the cutting-edge research in the ballistic performance of graphene-based

materials through theoretical, experimentation as well as simulations. The influence of fabrication

techniques and interfacial interactions of graphene-based bioinspired polymer composites for ballistic

application are also discussed. This review also covers the artificial nacre which is shown to exhibit

superior mechanical and toughness behaviours.

Keywords: body armour; graphene; artificial nacre; specific penetration energy; toughness;

tensile strength

1. Introduction

Ballistic impact produces shock waves which may induce severe trauma injuries to
the soldiers. Aramid fibre-based soft and hard armours can absorb the impact energy of a
projectile efficiently [1]. The current and future demand is creating a strong protection sys-
tem against improvised explosive devices, multiple bullet strike and lethal ammunition [2].
In this point of view most of the bullet proof researchers, are aiming to manufacture a
body armour which is stronger, flexible and light in weight. In 2013 the ballistic protection
market in the globe reached $7.91 b and the expected growth rate is 42% during 2020.Global
market of personal body armour alone may reach $3.1 b by 2027 [3]. High performance
aramid fibres which are stronger, flexible and light in weight have been reinforced with
polymers for body armour applications [3]. Currently, plant fibres and cellulose reinforce-
ment plays an important role in developing sustainable and light weight composites [4–6].
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These plant fibres were hybridized with aramid fibres to produce sustainable composites
for body amour [7]. High performance epoxy matrices have been used as a matrix in the
Kevlar-based polymer composites. In order to fabricate 100% biodegradable composites
researchers are focusing on bio polymers which are biodegradable [8–10]. Further en-
hancing the energy absorption and to achieving higher energy dissipation, nano fillers
are incorporated in the polymer matrix such as graphene-based fillers, carbon nanotube
(CNT) etc. These nanomaterials had higher strength, stiffness, light weight, higher energy
absorption and resistance to fracture makes them a most promising and potential materials
for ballistic applications [11–17]. Graphene is one of the strongest nanomaterials [18].
Graphene-based materials are widely used in many applications such as automotive, air-
craft, ballistic protection and electrochemical sensors/biosensors [19,20]. The strength and
modulus of monolayer graphene is 125 GPa and 1 TPa respectively. It is a 2D isotropic one
atom thick sheet with a thickness of approximately 0.335 nm [21].

Wetzel et al. found that graphene could improve the ballistic resistance of the body
armour with light weight (100 times lighter than the current fibre reinforced polymer
composite ballistic barriers) [22]. Moreover, the tensile wave speed of graphene is around
21.3 km/s which is higher than the wave speed of diamond (17.5 km/s). These lead to
higher penetration resistance and faster spreading rate of impact energy [23]. The failure
strain of graphene (0.25–0.30) is much higher than the conventional fibril armours (0.04).
These superior properties of graphene and graphene-based nanocomposites significantly
enhance the ballistic resistance and energy absorption compared to the aramid fibre-based
composites. Currently, researchers have taken inspiration from the nacre (natural armour
system) to fabricate the artificial nacre structure using graphene-based materials to obtain
greater toughness and energy dissipation.

This review will focus on the cutting-edge research on the ballistic performance
of graphene-based materials through theoretical, experimentation as well as numerical
simulations. In addition, the effect of fabrication techniques and interfacial interactions
of graphene-based nacre-inspired polymer composites for ballistic application have been
discussed in detail.

2. Dynamic Mechanical Behaviours of Multilayer Graphene Sheets

Currently, graphene-based materials are replacing the existing aramid fibre-based
body armour. Multilayer graphene (MLG) is an exceptional anisotropic material due
to its layered arrangement composed of two-dimensional carbon lattices. Lee et al. [24]
tested the MLG with microscopic projectile at extreme dynamic condition over a thickness
range of 10–100 nm and found a higher strain rate of 107/s. It has been observed that
MLG possesses higher specific penetration energy (10 times higher than Steel at 600 m/s).
This is mainly attributed to formation of cone waves and rapid propagation in the radial
direction in the graphene layers. The penetration process is illustrated in Figure 1. During
penetration process a micro bullet with mass (m) and impact speed (Vi) impacts the strike
face area (As) of multilayer graphene (MLG). An elastic wave propagates radially at CII

followed by a conic deformation with radial speed Vc (Stage ii). Three to six cracks
are initiated at the centre of As and propagates in radially outward direction resulting
in the formation of the same number of petals (Stage iii). Moreover, the transferred
momentum to MLG induces creasing and folding of each triangular-shaped petal while
the elastic extension of the membrane is rapidly relaxed along the radial direction (Stage
iv). Moreover, MLG dissipates the kinetic energy away from the impact zone. It has been
suggested that the crack propagation in the polymeric composites can be prevented by
incorporating multilayer graphene. Moreover, bio-inspired fabrication techniques enhance
the toughness [25].
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Figure 1. Penetration process (i) initial stage; (ii) cone formation stage; (iii) fracture stage; and (iv) post

penetration stage, MLG: Multilayer graphene, Vi (impact speed), Vc (radial speed) Vr (residual speed)

Reprinted with permission from AAAS [24]. Copyright 2014 AAAS.

Kichul et al. have simulated the ballistic testing using silica and nickel projectiles over
the graphene at supersonic initial velocity [26]. They have analysed the effect of supersonic
impact on the graphene using RFF (reactive force field) method which describes the entire
system. During penetration they have found the formation of pentagon/heptagon pairs at
the crack edges. The calculated specific penetration energy was good in agreement with
the experimental results reported by Lee at al. [24]. Zhaoxu et al. predicted the critical
graphene membrane size with respect to the projectile size using analytical relationship
verified by simulation data. Moreover, they have investigated the particular projectile size
effect because of the reflection of the cone wave. The critical size relationship provides
guidelines for the future microscale ballistic testing using 2D nanomaterials [27].

Zhaoxu et al. simulated the impact testing over a graphene plate using molecular dy-
namic simulation. It has been found that cylindrical projectiles penetrate the graphene plate
at a lower velocity compared to spherical projectiles. Spalling like failure was observed in
which the bottom section undergoes a wave superposition induced failure. Moreover, they
have proposed a relationship to analyse the resisting pressure of graphitic plate during
ballistic impact [28].

3. Predicted Strain Energy Density and Ballistic Limit Velocity of Graphene with
Other Armour Materials

Wetzel et al. theoretically predicted the ballistic properties of graphene. Table 1
compares the predicted strain energy density and V50/V50 Kevlar ratio of widely used
armour materials with graphene. The results have proven that the strain energy density
of graphene is much higher than other materials. Additionally, when compared to Kevlar
fibre, which is widely used as a ballistic material, graphene possesses an extraordinary
strain energy density. Ballistic limit or limit velocity is the minimum velocity required to
penetrate into the material. V50 represent the ballistic limit of individual material where
as V50 Kevlar is the limit velocity of Kevlar. The V50/V50 Kevlar ratio of Kevlar is 1 and
now it can be compared with other armour materials. CNT yarns had more acceptable
ballistic limit than Kevlar, but the ballistic limit of graphene is much higher than CNT yarn
as well as Kevlar. From these results it is evident that the graphene can potentially replace
the existing body armour materials.
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Table 1. Comparison of ballistic limit velocity ratio and strain energy density. Reprinted with

permission from [22]. Copyright 2015 Elsevier.

Material Strain Energy Density (J/g) V50/V50 Kevlar

Kevlar129 38.7 1.00
Dyneema SK-76 48.1 1.13

Carbon fibre 26.8 0.99
CNT yarn 121 1.97

Aluminium alloy5083 9.5 0.76
Titanium alloyTi-6-4 29.4 1.10

Graphene 8350 11.6

V50—ballistic limit.

4. Nacre (Natural Armour System)-Like Graphene Structures

An interesting behaviour of graphene is that it is a planar 2D isotropic material with
a capability to assemble in a perfect manner (multi-layer parallel arrangement). This
extraordinary behaviour has encouraged engineers to fabricate the composite structures
like nacre. Nacre is natural armour system used by the seashell to protect themselves from
the external environment and it gives a physical protection [29]. Natural nacre contains
a layer-by-layer structure of soft organic polymers and aragonite plates which makes it
tougher and stronger. This layer-by-layer structure is more advantageous than others.
The intercalation of polymeric matrix in the multilayer graphene significantly improves
the mechanical behaviour [30,31]. Additionally, the unique brick-and-mortar structure of
graphene within the multilayer graphene structure enhances the toughness and energy
dissipation because of its self-healing van Der Waals interface [32].

4.1. Molecular Dynamic Simulation of Multi-Layer Graphene Based Polymer Composites

Wenjie et al. took inspiration from the natural nacre structure and they have proposed
a molecular scale design with multilayer graphene/PMMA (poly methyl methacrylate)
composites. They have performed a coarse-grained molecular dynamic to evaluate the
interfacial failure mechanisms through pull-out simulations. From the simulation results
they have concluded that the toughness and energy dissipation is significantly affected
by the pull out at the graphene/PMMA interface and the yielding at the graphene layers.
Beyond the critical point the yielding mode of failure turned into pull out failure. This
modelling technique provides a platform to design the graphene-based polymer composites
with optimum mechanical properties and toughness [33].

Liu et al. carried out a coarse grained molecular dynamic simulation to study the
mechanical and energy absorption of multilayer graphene/polyethylene composites under
spall loading condition. The energy absorption capability of the model increases with an
increase of overlapping distance of graphene layers. Polymer matrix act as a protective
shield to graphene during impact. From Figure 2a, it is clear that during impact the sample
was bent, and the top polymer layer has been detached from the adjacent graphene layer.
Rapid movement of polymeric chain leads to the formation of voids in the composites.
Eventually, the bottom most graphene layer was detached from composite. Figure 2b
shows the impact simulation without polymer, whereas the projectile penetrated into the
top layer and breaks the sample into two parts. Hence the polyethylene polymer acts as
a buffer. It decreases the contact force and protects the graphene layers. The obtained
results showed that polymer matrix act as a cushion upon impact, which substantially
decreases the maximum contact forces and thus inhibits the breakage of covalent bonds in
the graphene flakes. Moreover, maximum contact force during the impact depends on the
external surface area of impactors rather than the density of impactor [34].
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Figure 2. Snap shots during impact simulation (a) with polyethylene, (b) without polyethylene [34].

4.2. Nacre-Like Multi-Layer Graphene Based Polymeric Composites

Masta et al. [35] studied the mechanical and ballistic performance of multilayer
graphene (~35 vol.%)/polyvinyl alcohol (PVA) films. The 10 µm thick films were fab-
ricated by using liquid exfoliation of graphene and filtration. The MLG/PVA composites
exhibited high strength at lower strain rates compared to PVA. Nevertheless, the ductility
was lower than PVA. Membrane stretching analysis was used to predict the ballistic limit
of graphene/PVA composites comprising aligned large flakes. They have concluded that,
these composites if manufacturable, will have higher ballistic limit (three times) com-
pared to the best high-performance commercial composites with only 10 vol.% graphene
reinforcement in PVA.

4.3. Nacre-Like Graphene Oxide Paper

Dikin et al. fabricated a graphene oxide paper using flow directed assembly of
graphene oxide nano sheets. Interlocking feature of graphene oxide nano sheets provides
an excellent macroscopic stiffness and flexibility. The strength and modulus of the graphene
oxide paper is 133 MPa and 38 GPa respectively [36].

4.4. Nacre-Like Multi-Layer Graphene Oxide Based Polymeric Composites

Putz et al. fabricated a layer by layer homogeneous and highly ordered graphene
oxide/polyvinyl alcohol composites with 50% graphene oxide content through vacuum
assisted self-assembly technique. Compared to pure polymer nacre like nano composites
film exhibited higher modulus [37]. Tan et al. fabricated the artificial nacre-like graphene
oxide films through gel film transformation method. Different polymers (polyvinyl alcohol,
polyethylene oxide and polyethylenimine) were blended into the aqueous graphene oxide
solution. The interaction between the graphene oxide sheets can be modulated while
blending the polymer. Electrostatic repulsive force of graphene sheets can be avoided
through the attractive force in between the polymer and graphene sheets, and it promotes
the gelation of graphene oxide. The resultant hydrogel (graphene oxide) after cast drying
contains only 1–20 wt.% of polymer which makes the structure similar to nacre (layer
by layer arrangement). The resulted tensile strength and the failure strain were 200 MPa
and 3.0% respectively. It has been concluded that gel film transformation technique is
a potential method to produce nacre like graphene oxide films in large scale with high
strength and toughness [38].
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4.5. Artificial Nacre with Alumina/Graphene Oxide/Poly (Vinyl Alcohol)

Naturally available nacre had an extraordinary strength and toughness due to its
hierarchical arrangement of micro and nanostructures. This structure inspired the re-
searchers to make high performance artificial composites using the same nacre design
model. Figure 3a,b compares the arrangement of natural and the artificial-nacre structures.
The bottom protein structure and the top micro platelets can be replaced with different
polymeric matrices and metallic microplatelets respectively. The middle chitin nanofibres
can be replaced with different multifunctional nanofillers.

Figure 3. Layering sequence of (a) natural nacre vs (b) artificial nacre.

Wang et al. developed artificial nacre through layer by layer technique. In this
artificial nacre Al2O3 act as a brick and GO/PVA act as a mortar. The authors reported that
even though artificial nacre composite structure possesses excellent strength, it exhibited
moderate toughness. When the polymers are confined in between the graphene oxide nano
platelets the structure will have superior properties, but it will lose its flexibility and ductile
nature. Moreover, alumina microplatelets enhance the strength of the structure and it
holds the ability of polymer matrix to deform and promotes the crack deflection. Artificial
nacre structure showed an extraordinary strength and toughness (143 ± 13 MPa and
9.2 ± 2.7 MJ/m3), compared to natural nacre structures (80−135 MPa and 1.8 MJ/m3) [39].

4.6. Artificial Nacre with MoS2/rGO/TPU

Bertolazzi et al. developed an artificial nacre using MoS2/rGO/TPU. The breaking
tensile strength and modulus of MoS2 is extremely higher (23 GPa and 270 GPa) for one
monolayer and it has 2D nano sheet structure. This artificial nacre has been made through
vacuum-assisted filtration self-assembly method. From the results it is understood that
the tensile strength is 1.7 times greater than the natural nacre whereas the toughness is
3.8 times higher than the real nacre [40].

4.7. Artificial Nacre with rGO-DWCNTs-PVA Nanocomposites

Gong et al. [41] developed an artificial nacre using 2D rGO (reduced graphene oxide)
nanosheets and 1D double-walled carbon nanotubes (DWNTs) with polyvinyl alcohol
(PVA). It exhibits excellent fatigue resistance and can energy absorption characteristics.
This research has opened new avenues for creating nacre inspired structures with different
nano fillers even with 1D building blocks (cellulose nano fibre) and double walled carbon
nanotube or 2-dimensional building blocks like montmorillonite (MMT). Additionally, it
has been proven that combining two nanomaterials like graphene and CNT enhances the
mechanical and energy absorption of polymeric composites [42].

4.8. Graphene-Based Bio-Inspired Polymer Nano Composites—Fabrication Techniques

Nacre exhibits excellent mechanical toughness due to the hierarchical micro/nano
structure and better interfacial interactions [43,44]. This nacre provides a golden template
to fabricate bio inspired artificial nacre like composite structure [45]. Several preparation
methodologies were utilized by the researchers to fabricate the artificial nacre or bio in-
spired polymer nano composites such as layer-by-layer [46], evaporation [47], filtration [48],
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freeze casting [49], hydrogel casting and electrophoretic deposition [50]. These methods
ensure a homogeneous dispersion, perfect alignment and great interfacial interactions
in the bio inspired polymer nano composites [51]. These advanced techniques will be
discussed in detail in the following sections.

4.8.1. Layer-by-Layer Fabrication Technique

Decher et al. proposed the layer-by-layer fabrication technique for multilayer films
based on electrostatic attraction mechanism. This could be achieved by alternative de-
position of polyelectrolytes with opposite charges [51,52].The process of this fabrication
technique is described as follows: (i) Initial cleaning and surface treatment of substrate;
(ii) Deposition and absorption of first layer film on the substrate; (iii) Cleaning of substrate
with first layer and washing thoroughly before the second layer absorption which protects
the structure from pollution and maintains the stability; (iv) Submerging the substrate into
the second solution to form the second layer over the first layer based on the driving force;
(v) Cleaning the substrate with the first and second layers and washing again; (vi) Repeat
the process ii, iii, iv, and v. Xiong et al. fabricated a high performance bio-inspired nano
composites with layer by layer technique (Figure 4) using GO-cellulose nanocrystals and
reported the strength and modulus are 655 MPa and 169 GPa respectively [53]. Presence of
high concentration of surface anionic functional groups improves the effective “gluing”
of CNCs to primed GO sheets via noncovalent, strong ionic interactions, and hydrogen
bonding. Overall, this approach has some advantages and limitation. The main advantage
of this layer-by-layer fabrication technique is precise control of hierarchical structure which
provides superior mechanical and energy absorption properties. On the other hand, it is a
time-consuming fabrication process.

Figure 4. Preparation of the laminated cellulose nanocrystals/graphene oxide nanomembranes.

Reproduced with permission from [53]. Copyright 2015 John Wiley and Sons.

4.8.2. Evaporation

Compared to layer-by-layer fabrication technique, evaporation-based fabrication
technique is a very simple procedure to produce bio-inspired nanocomposites. The nano
sheets in the solution could form a perfectly aligned low energy structure after evaporation
of solvent. Cui et al. fabricated the bio inspired graphene oxide/dopolyamine (DA)
nanocomposites through evaporation technique as shown in Figure 5 [54]. Tensile strength
and toughness of graphene oxide/polyamine nanocomposites were investigated. From the
results it was observed that the toughness and tensile strength of the nanocomposites are 2
and 1.5 times greater than the natural nacre. This is attributed to the strong covalent bond
between the graphene oxide and polyamine. Moreover, presence of oxygen functionalities
in graphene oxide enhanced the dispersion in different matrices. Though the higher
temperature could accelerate the evaporation, it is not conducive to the formation of an
orderly structure. Similar to the layer-by-layer technique, this evaporation approach is
also a time-consuming process. Accelerating the evaporation process could reduce the
mechanical strength and energy absorption of the bio-inspired nanocomposites.
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Figure 5. Fabrication of artificial nacre using graphene oxide /dopolyamine (DA). Reproduced with

permission from [54]. Further permissions related to the material excerpted should be directed to the

ACS. Copyright 2014 ACS.

4.8.3. Filtration

Filtration is also a simple and efficient method to fabricate bio-inspired nanocom-
posites [55,56]. The nano sheets were initially immersed in the solvent. This mixture
was poured over the filter assisted with vacuum. An ordered bio-inspired structure was
formulated with the flow of solvent. Wan et al. [25] fabricated the reduced graphene
oxide-polyacrylic acid nano composites through vacuum assisted filtration technique and
achieved greater tensile strength and toughness. Further they have evaluated the effect
of relative humidity on the tensile and toughness behaviour of nano composites. This
vacuum filtration technique was utilized by many researchers to fabricate high perfor-
mance bio-inspired nano structures [43]. The drawbacks of using this filtration technique
are size and filtration speed. Due to the size restriction, it is not possible to scale up the
bio-inspired nanocomposites. Additionally, the filtration process takes more time. Hence,
similar to other layer-by-layer and evaporation techniques, it is also a time-consuming
fabrication technique.

4.8.4. Freeze Casting

Generally, sea water contains impurities, dust particles, micro-organisms etc. However,
in ice the impurities were expelled into the interstices of the ice [57,58]. Based on this
phenomenon, a novel freeze casting technique has been developed in 2006. This moulding
technique is used to make complex bulk structures. Freeze casting is mainly used for
fabricating porous ceramic materials [59]. It is a novel in expensive and eco-friendly
fabrication technique to make bulk bio inspired nano composites. The artificial nacre like
structure made up of freeze casting has shown higher toughness, high tensile strength
and fracture toughness compared to natural nacre. Recently researchers have developed
a bidirectional freezing technique to scale up the structure [60]. Even though this freeze
casted structure exhibited superior mechanical properties and toughness, precise nacre like
structure could not be replicated by using freeze casting technique.

4.8.5. Hydrogel Casting

Hydrogel casting is a techno economical approach to produce bio-inspired compos-
ites. This technique is widely used to fabricate graphene-based bio-inspired polymer
nanocomposites [61,62]. Due to the hydrophobic and hydrophilic groups on the sur-
face of the graphene oxide nano sheets, it can swell in water and easily assemble into
three-dimensional network structures. It is essential to introduce crosslinking agent while
preparing graphene oxide hydrogel in order to fabricate the bio-inspired nanocomposite
structure through hydrogel casting. Further, graphene oxide-based hydrogels show an ex-
cellent reversibility and lower critical gelation concentration [61]. The interaction between
the graphene oxide nano sheets have made gelation of graphene oxide which includes
electrostatic interaction, hydrogen bonding, coordination and π-π stacking [61,62]. It is an
efficient and simple method to produce large scale hierarchical bio-inspired nano structure
through different interfacial interactions [61,63]. Zhang et al. have developed graphene
oxide/poly (acrylic acid-co-(4-acrylamidophenyl) boronic acid) (PAPBx) nanocompos-
ites. The critical gelation concentration of PAPBx is less than 1 wt.% which facilitates the
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graphene oxide to form hydrogel. Formation of homogeneous bio inspired nano composite
has shown improvement in mechanical properties. The GO and rGO composite films made
by gel-film transformation technique illustrated in Figure 6 were named g-GO and g-rGO
films, respectively. Compared to pure graphene oxide film, PAPBx based nanocomposites
exhibited higher mechanical properties. However, the major drawback of this approach is
precise control of bio-inspired laminated structure, which is a challenging task.

Figure 6. Preparation of graphene oxide film. Reproduced with permission from [64]. Copyright

2014 John Wiley and Sons.

4.8.6. Electrophoretic Deposition

This technique has attracted the researchers because of its enormous advantages
than other approaches. The cost of fabrication of artificial nacre through this approach is
cheaper. Further it is the fastest fabrication technique among the artificial nacre fabrication
techniques. Precise control of the hierarchical structure could be achieved using this
approach. However, currently, researchers are using this technique for preparing thin
bio-inspired polymer nano composites with a well laminated hierarchical structure [65].
The electrophoretic deposition process involves two process steps. Initially, the electrodes
attract the oppositely charged particles inside an electric field. Then the particles are
deposited on the surface of the electrodes and form a thin film. The drawback of this
electrophoretic deposition approach is fabrication of thick artificial nacre structure is not
possible because of its limitation in the setup [51]. The Table 2 compares the merits and
limitations of nacre inspired manufacturing technologies.

Table 2. Merits and limitations of nacre inspired manufacturing technologies.

Sl.No Fabrication Technique Merits Limitations

1. Layer by layer Layered structure can be controlled precisely Time consuming process.

2. Evaporation The evaporation procedure is quiet easy. Precise control of the structure is difficult

3. Filtration Simple operating procedure.
Scaling up is a tedious and time

consuming process

4. Freeze casting Suitable to fabricate bulk materials Consumes more energy

5. Hydrogel casting Economical technique.
Controlling the layered structure

is difficult.

6. Electrophoretic deposition Precise control of the structure Fabrication of thick film is very difficult.

5. 3D Graphene Materials

Graphene aerogel is one of the emerging 3D graphene material which is used to
fabricate polymer composites. Wang et al. [66] developed this graphene aerogel-based
epoxy composites. Initially, conventional modified hummer’s method was employed
to produce dispersed graphene oxide using natural graphite flakes. Then the dispersed
graphene oxide was diluted (by using DI water) and sonicated for 30 min. Graphene
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hydrogel (GH) has been fabricated using hydroiodic acid as a reducing agent through
chemical reduction and self-assembly of graphene oxide sheets.

The dispersed graphene oxide and hydroiodic acid were mixed in a magnetic stirrer
for several minutes. The final mixture was then kept in an autoclave for 24 h at 120◦.
The mixture (GH) was cooled at room temperature and cleaned using distilled water to
remove the impurities completely. The obtained GH was kept at −30◦ (for 12 h) and
freeze-dried at −80◦ (for 48 h) in a freeze drier to produce graphene aerogel. Eventually
the graphene aerogel/epoxy matrix composites were prepared through vacuum assisted
infiltration method. They have concluded that graphene aerogel drastically improves
the mechanical strength, energy dissipation and fracture toughness of epoxy composites.
Moreover, graphene aerogel enhances the crack propagation resistance of the GA/epoxy
composites [66].

6. Effect of Interfacial Interactions

The material response to mechanical loads and the energy absorption characteristics
of the bio-inspired nanocomposites not only rely on the inherent characteristics of the
constituents but also depends on the sequence of assembling building blocks and the
interfacial adhesion [67]. Even though the nano fillers exhibit superior properties when
added to the composites, aggregation of nano particles at higher weight % as well as
poor wetting with resin in the polymer matrix could result in lower performance of the
composite structure under various loading scenarios and elevated temperature conditions.
Numerous methodologies were introduced to solve these limitations, to strengthen and
enhance the interfacial bonding between the constituents of the bio-based nanocomposites.
This could be achieved by various mechanisms as follows: (a) covalent bonding and
(b) non-covalent bonding (hydrogen bonding, ionic bonding, and p–p interactions). Even
though the non-covalent bonding had higher mechanical and energy absorption behaviour
they cannot withstand harsh situations or sudden mechanical loading. Covalent bonding
has shown strong interaction in between the constituents of the polymer composites. It
can be employed to fabricate high performance polymer composites [68]. This strong
interaction can effectively transfer the load and maintain the integrity of the structure.
Due to this, weak interactions which induce crack deflection and plastic deformation
could be destroyed. This strategy is very useful while fabricating tough and stiff polymer-
based nanocomposites.

6.1. Non-Covalent Bonding

The interfacial interaction is inevitable for achieving superior properties of the bio
inspired polymer composites. Non-covalent bonding between the building blocks of artifi-
cial nacre can enhance the mechanical properties and energy absorption while the covalent
bonds could improve the strength, toughness, strain resistance and fatigue strength of
the structure. In the following section, different types of non-covalent bonding will be
discussed in detail.

6.1.1. Hydrogen Bonding

Hydrogen bonding is quite common at the intermolecular or intra-molecular level [69].
Even though hydrogen bonding is weaker in nature; it significantly affects the molecular
physical structure of the material. Hydrogen bonding is ubiquitous in artificial nacre
structure due to the presence of large amount of the oxygen functional groups on the
surface of the graphene oxide. Dikin et al. fabricated graphene oxide film by filtration
technique. Hydrogen bonding between the graphene oxide and H2O was found to enhance
the mechanical properties for the GO film [36]. Incorporation of 4.51 wt.% PAA with rGO
resulted in nanocomposite film with the strength and toughness, twice and thrice greater
than the pure GO film [25].
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6.1.2. Ionic Bonding

Addition of a small quantity of the metal ion into the biomaterial enhances the me-
chanical properties by forming ionic bonds with protein structure of the biomaterial.
Abundantly available oxygen functional groups in the graphene oxide (GO) nanosheets
are favourable to improve the coordination with metal ions. Park et al. prepared the
GO-based films with Mg2+ and Ca2+ at less than 1 wt.%. They found that the metal ion
greatly enhances the mechanical performance of GO film by forming ionic bond with
the GO nano sheets in the proximityAdditionally, they found that the GO-Mg2+ possess
higher mechanical performance than GO-Ca2+ because of lower ionic radius of Mg2+ than
Ca2+ [70].

6.1.3. π-π Interaction

Strong π–π interaction in the graphene nano sheets improves the stability of the
structure. Zhang et al. found that addition of less than 1 wt.% PAPBx with GO nano
sheets produces hydrogel which enhances the π-π interaction with GO nano sheets as
confirmed from the spectra pattern in the adsorption and fluorescence spectra analysis [71].
The tensile strength and toughness of GO-PAPBx structure was 382 MPa and 7.5 MJ/m3

respectively [64].

6.2. Covalent Bonding

Even though the non-covalent bonding could improve the mechanical properties
drastically, it is inactive in salt solutions [45]. Covalent bonding exhibited greater robustness
in the artificial nacre structure. Covalent bonding in the artificial nacre structure can result
in a 3D network using the linear molecule in the polymer as well as with the branched
networks in the polymer which will be discussed in detail in the sections below:

6.2.1. Covalent Bonding through the Linear Molecule in the Polymer

Linear molecule in the polymer can form a strong covalent bonding network with
the GO nano sheets leading to a nanocomposite film with superior mechanical properties.
Among the various linear molecules, borate and GA were commonly employed to improve
the mechanical properties of GO films. Both the tensile strength and storage modulus
increased by 25% and 266% with the addition of 0.94 wt.% of borate in the GO film [72].
Gao et al. fabricated GO-GA based artificial nacre structure and they found that addition of
GA led to nanomaterial with superior tensile strength and young’s modulus than the GO
film. However, toughness for the GO-GA nanocomposite declined due to the shorter GA
chains [73]. In their work, Cheng et al. [74] showed that the toughness can be improved by
employing long chain polymer namely 10, 12-pentacosadiyn-1-ol (PCDO) with GO.

6.2.2. Branched Polymer

Multiple functional groups in the branched polymer compared to linear molecule
helps in increased crosslinking between the polymer and GO such that significant rise in
the mechanical properties can be achieved. The commonly available branched polymer to
prepare artificial nacre is hyper branched polyglycerol (HPG). GO-HPG nanocomposite
had the tensile strength of 642 MPa which is higher than pure GO film (555 MPa) [75].
It must be noted that the studies on GO based branched polymers is limited due to the
difficulty in synthesizing the branched polymer with GO.

6.2.3. 3D Network

Thermosetting polymers like epoxy have reactive functional groups that can be grafted
on the surface of the building blocks of an artificial nacre and crosslinked with adja-
cent blocks to form a 3D network structure. Ming et al. fabricated the graphene foam
(GF)/epoxy nano composites [76]. GF obtained from GO films was blended in the epoxy fol-
lowed by fabrication using hot press moulding to form the GF/epoxy composites. Both the
tensile strength and the modulus was found to be enhanced by 23% and 136% respectively.
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Thus, it is clear that mechanical properties of the bio inspired nano composite struc-
tures can be augmented with the use of polymers which can form the covalent bonding
mechanisms as discussed above. However, precise control of the interfacial interaction to
achieve optimum performance under various mechanical loads is still a challenging task.

6.3. Conventional and Bioinspired Nano Composite Structure

Figure 7 compares the conventional polymeric composites and the bioinspired com-
posites structures. The main advantage of bio inspired structure is the uniform dispersion
of the nano filler in the polymer matrix throughout the structure and higher rate of the
interfacial interaction which imparts superior mechanical properties and better energy
absorption behaviour to the polymer. Ni et al. [77] developed a bioinspired structure which
possess higher strength and toughness of 538.8 MPa and 16.1 MJ/m3 respectively. This
could be achieved via cross linking of graphene nano sheets through π-π interactions by
using a pyrene group conjugate molecule on both ends.

Figure 7. Conventional and bio-inspired nano composite structure.

Shahzadi et al. [78] have fabricated nacre inspired nanocomposite material containing
carboxymethyl cellulose (CMC) with GO and a combination of the reduced graphene ox-
ide/alumina (rGO/Al). They reported improvement in strength due to the strong covalent
bonding between rGO and alumina. Irrespective of the results, the synthesis process is
relatively tedious and time consuming. They have concluded that strong covalent bonding
drastically enhances the strength and toughness of the graphene based nano structures.

Uniform dispersion of nano filler into the matrix were achieved using techniques such
as surface grafting and coupling reaction, polymer wrapping and surfactant adsorption [44].
Surface grafting is an effective way to modify the surface of the nano filler. Some functional
groups were introduced on the surface of the nano fillers which strengthen the chemical
covalent bonding with the polymer matrix. Researchers grafted the epoxy matrix with nano
fillers after diazotization and were able to achieve uniform dispersion of nano fillers in the
polymer [79]. Polymer wrapping approach functionalizes the nano fillers through van Der
Waals and π–π stacking that could improve the interfacial interaction of the nano filler with
the polymer. Surfactant adsorption is another technique that can be used to functionalize
the surface of the nano fillers for better dispersion and wetting of the nano filler with the
polymer matrix [80]. One such commonly used surfactant is polyoxyethylene [81].

Table 3 shows the energy absorption, ballistic limit, tensile strength and toughness
of graphene-based bio-inspired composites. These properties are essential for an efficient
armour. During ballistic impact the FRP composite is subjected to different failure modes
such as shear plugging, matrix cracking, delamination and tensile failure on the read side
of the ballistic panel. Energy absorption can be investigated through drop weight impact
test or gas gun experimental set up. From the observation it was found that multilayer
graphene/polypeptide composites exhibited excellent energy absorption. Nonetheless,
energy absorption of graphene based polymeric composites with different manufacturing
techniques has to be explored. Similarly, ballistic limit of graphene based polymeric
composites with different manufacturing techniques has to be explored. On the other
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hand, excellent toughness is essential for an efficient armour system. From the analysis it
was noticed that GO/polyurethane composites exhibited excellent toughness compared to
other graphene based polymeric composites.

Table 3. Properties of graphene and nacre-inspired graphene-based composites for armour applications.

Material
Fabrication Techniques

Energy
Absorption

Ballistic
Limit

Stress
(Tensile Strength)

Toughness Ref.
Type of Graphene Polymer

Multilayer
graphene

- Overlapping 3 MJ - 50 MPa 7 × 103 MJ/m3 [32]

Multilayer
graphene

Poly vinyl alcohol liquid exfoliation - 15 m/s 50 MPa - [35]

Graphene
oxide paper

-
Flow-directed assembly
of individual graphene

oxide sheets
- - 130 MPa - [36]

Graphene oxide
Poly Vinyl alcohol or

hydrophobic
poly(methyl methacrylate)

Filtration - - 102.9 MPa - [37]

Graphene oxide Water soluble
Gel film

Transformation (GFT)
- - 200 MPa

8.98 ± 0.73 MJ/m3

(varies with
different materials)

[38]

Graphene oxide Poly vinyl alcohol Layer by Layer - - 143 ± 13 MPa 9.2 ± 2.7 MJ/m3 [39]

Graphene oxide Poly vinyl alcohol Evaporation - - 240.4 ± 30.8 MPa 2.0 ± 0.5 MJ/m3 [43]

Graphene oxide
Al2O3 platelets

and chitosan
Hydrogen bonding - -

152 MPa
(varies on linkages)

75 MJ/m3

(varies on linkages)
[45]

Graphene Poly vinyl alcohol Layer-by-Layer - - 219 ± 19 MPa - [47]

Bioinspired
Graphene

Bio polymer

Hydrogel Casting - -
382 MPa

(varies while increase
in bio polymers)

7.5 MJ/m3

[51]Layer-by-Layer - -
300 MPa

(varies while increase
in bio polymers)

75 MJ/m3

(varies with
GO sheets)

Filtration - -
133 MPa

(varies while increase
in bio polymers)

-

Evaporation - - - -

Graphene oxide

Fibre-based
biopolymers and

polymer
nano composites.

Drop-casting or
vacuum-

assisted filtration
- -

400 MPa
(varies by linkages)

3.9 ± 0.5 MJ/m3

(varies on polymers)
[53]

Graphene oxide Poly vinyl alcohol Layer by Layer
91.2 ± 1.6 MPa

(varies by linkages)

1.4 ± 0.1 MJ/m3

(varies on different
sheet linkages)

[55]

Multilayered
Graphene

Polypeptide Filtration 6000 J -
351 MPa

(maximum)
- [56]

Graphene oxide Poly acrylic acid
Vacuum-assisted

filtration
- -

179.03 ± 4.55 MPa
(Depends on

humidity varies)

6.04 ± 0.49 MJ/m3

(Depends on
humidity varies)

[25]

Graphene oxide
Bio inspired

nano composite
Evaporation - -

374.1 ± 22.8 MPa
(2.6 times increased

than original)

9.2 ± 0.8 MJ/m3

(3.3 times increased
than original)

[43]

Graphene oxide Poly crystalline rings Hydrogel casting - - 1.91 ± 0.08 MPa - [62]

Chemically
modified graphene

Hydrophilic polymer Hydrogel casting - - - - [63]

Graphene oxide
poly (acrylic

acid-co-acrylamido
phenylboronic acid)

Gel Film Transforma-
tion technique

- - 382 ± 12 MPa 7.50 ± 0.4 MJ/m3 [64]

3D Graphene hydroxyapatite Hydrothermal method - - 2.8 MPa·m0.5 [82]

Thermally reduced
grapheme oxide

Natural polymer Compression moulding - - 3.5 GPa - [83]

Graphene oxide Polyurethane In-situ polymerization
40.2 ± 1.8 MPa

(varies with linkages)
192.9 ± 4.7 MJ/m3

(varies with linkages)
[84]
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7. Conclusions and Future Recommendations

Due to increase in demand for flexible, light weight and robust body armour it is essen-
tial to find an alternative for the current aramid fibre-based protection system. Graphene
is one of the strongest enormous energy absorbers, lightweight, tough and stiffest mate-
rial which can replace the current aramid fibre-based material. Further the extraordinary
self-aligning behaviour of graphene encouraged the material scientist to fabricate the com-
posite structures like nacre. This behaviour could overcome the drawbacks of conventional
fabrication technique. The most common problem while fabricating the nanocomposites is
the non-uniform dispersion of nano particles in the matrix. Uniform dispersion could be
achieved through surface grafting and coupling reaction, polymer wrapping and surfactant
adsorption. Nacre inspired graphene-based system required carefully arranged hierarchical
multi-layered structures to achieve excellent stiffness, strength, toughness, energy absorp-
tion, impact resistance and light weight, which has to be considered while designing high
performance armour system [85]. Overall, this graphene-based materials act as a potential
future body armours with highest energy absorption. Micro level experimentation and
simulations proved that graphene is suitable for ballistic application. However, as per NIJ
standards large scale ballistic panels should be tested for commercialization of graphene
based soft, stiff and hard body armours. The armour panels should not fail until six shots
without penetration as per NIJ standards. The ballistic performance of graphene-based
materials can be improved with shear thickening fluids or modified shear thickening fluids.
Blunt trauma testing of graphene-based materials has been explored to simulate the human
body being penetrated by the projectile. On the other hand, non-biodegradable polymers
can be replaced with bio-based polymers to enhance the biodegradability of the resulting
armour panels.
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