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Abstract: Hypertension is a chronic condition that is one of the prominent reasons behind cardio-
vascular disease, brain stroke, and organ failure. Left unnoticed and untreated, the deterioration in
a health condition could even result in mortality. If it can be detected early, with proper treatment,
undesirable outcomes can be avoided. Until now, the gold standard is the invasive way of measuring
blood pressure (BP) using a catheter. Additionally, the cuff-based and noninvasive methods are
too cumbersome or inconvenient for frequent measurement of BP. With the advancement of sensor
technology, signal processing techniques, and machine learning algorithms, researchers are trying to
find the perfect relationships between biomedical signals and changes in BP. This paper is a literature
review of the studies conducted on the cuffless noninvasive measurement of BP using biomedical
signals. Relevant articles were selected using specific criteria, then traditional techniques for BP
measurement were discussed along with a motivation for cuffless measurement use of biomedical
signals and machine learning algorithms. The review focused on the progression of different nonin-
vasive cuffless techniques rather than comparing performance among different studies. The literature
survey concluded that the use of deep learning proved to be the most accurate among all the cuffless
measurement techniques. On the other side, this accuracy has several disadvantages, such as lack of
interpretability, computationally extensive, standard validation protocol, and lack of collaboration
with health professionals. Additionally, the continuing work by researchers is progressing with a
potential solution for these challenges. Finally, future research directions have been provided to
encounter the challenges.

Keywords: cuffless blood pressure; hypertension; photoplethysmography; electrocardiogram; machine
learning; deep learning

1. Introduction

More than a billion people suffer from hypertension in the whole world [1]. Hyperten-
sion increases the risk for life, endangering cardiovascular issues and severe diseases such
as stroke, renal and kidney failure, etc. If unnoticed and not managed, hypertension can
lead to serious health complications and may eventually deteriorate to the patient’s death.
If monitored, hypertension and hypotension can be managed using lifestyle modification,
change in food habits and medication suggested by a physician [2,3]. The problem is, unlike
many major diseases in humans, abnormally high or low blood pressure may go unnoticed
due to a lack of monitoring and lack of significant symptoms. The best way to detect this
issue is to regularly monitor using a reliable method and keep track of the changes [4,5]. In
every clinical guideline, hypertension and hypotension management constitute significant
sections; for example, systolic blood pressure over 130–140 mmHg is categorized as stage
1 hypertension [6]. Diastolic blood pressure (DBP) below 60 mmHg and systolic blood
pressure below 90 mmHg is called hypotension, which means below normal blood pressure
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(BP). Hypotension inflicts oxygen deprivation on different parts of the human body; tissue
death happens because of that. Hypotension symptoms include but are not limited to
dizziness, general pain, sluggishness, etc., which may end in severe consequences such as
cardiac arrest; on the other hand, hypertension symptoms span from fatigue and shortness
of breath to heart attack, stroke, and organ failure [7,8]. Prehypertension starts with SBP
between 121–139 mmHg and DBP between 81–89 mmHg [9]. Although this is not staged
one hypertension, prehypertension is within a range with the potential risk of going over
to stage 1. SBP between 140–159 mmHg is hypertension 1, 160–179 mmHg is hypertension
II, and over 180 mmHg is called hypertensive crisis [10–14]. During hypertension, the
stress over the heart increases; although medical treatment may not be mandatory at this
stage, frequent monitoring is necessary for a sudden spike during the daytime. During
hypertension II, without monitoring and timely treatment, the higher pressure may result
in organ failure and irreversible damage to different body parts. The hypertensive crisis
may result in numbness of body parts, vision problems, breathing difficulty, etc. Eventually,
a heart attack or stroke may occur if left untreated.

The research revolving around monitoring BP mainly follows two approaches; one is
to try to make the existing cuff-based measurement system more user-friendly or adjustable
to day-to-day life; another is to use biomedical signals which are easily accessible to find
a technique that will measure BP within reasonable accuracy. Since the first approach’s
accuracy level is already reasonable, making it smaller, more efficient, and robust are
the main objectives of newer devices. In the second approach, reliability or accuracy is
the biggest concern and versatility in terms of age and other factors. So, that approach
emphasizes those since acquiring the needed biomedical signals already helps to keep those
designs smaller while removing the necessity of external stimulations such as pressure
on the artery. The advancement of sensor technology, signal processing techniques, PCB
design, and artificial intelligence heavily influences the second approach. Stephen Hales
did his horse’s first blood pressure measurement using an invasive method [15,16]. Later,
the process was improved by physicians for human use while keeping the technique
invasive [17]. The first catheter was implanted in 1949 into the artery of humans; this
technique allows us to measure the BP recording without further discomfort [18]. Later
this catheter technique was further improved by another scientist so that a wide variety
of blood pressure could be observed [19–21]. In terms of accuracy or access to the wide
variation of change in BP, the invasive technique is superior to all other techniques, but
unless the patient requires urgent attention or in case of a routine checkup, this method
is not feasible due to risk for infection, insertion discomfort, specialist to perform the
procedure, blood loss and structural damage, etc. [22–24]. Because of those reasons, the
research for noninvasive techniques progressed further in the initial period based on the
cuff-based method, widely used at home and health centers [25–29]. Although the cuff-
based method became less cumbersome due to the invention of a user-friendly device, the
discomfort or the necessity of the cuff is not removed. That introduced the possibility of
using other means to measure blood pressure while keeping the accuracy and reliability
the same as before with conventional methods. Currently, a massive amount of medical
data is available for data analysis; at the same time, the advancement of sensor technology
allows us to acquire vital signs with precision and ease. Additionally, physiological data
such as electrocardiography (ECG) and photoplethysmography (PPG) can be used for
biomedical signal analysis [30]. All this can be brought together to invent new techniques
or methods to measure blood pressure in a noninvasive and cuff way with the application
of artificial intelligence [31–35]. Although theoretically, it is possible on paper since the data
acquisition, design, signal processing, machine learning, etc., all are readily available to
implement. However, till now, none of the techniques have become a reality with a reliable,
accurate, and robust device which can replace the conventional technique.
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1.1. Current Literature Survey

Several review papers have been available related to cuffless blood pressure measure-
ment. Some of them focus on features from the PPG signal [36,37]; on the other hand, some
encapsulate human physical activities to correlate them with BP variation [38,39]. A review
on cuffless blood pressure monitoring has been done in this article [40], focusing on the
necessity of measuring BP more frequently and continuously. The review also discussed
the new sensors and algorithms incorporating machine learning. Another survey was done
to incorporate the progress of narrow to deep learning methods for BP measurement while
comparing the performance of PPG and ECG [41]. They have also compared different
feature extraction techniques using PPG signal and included heart rate estimation along
with BP. Shenda Hong et al. [42] discussed the opportunities and challenges of deep learn-
ing while using ECG signals for diagnosis purposes; during their discussion, they also
discussed the possibility of using ECG signals to detect blood pressure measurement in a
short subsection. One of the better literature surveys was done by Ramakrishna Mukka-
mala et al. [43], which encompasses cuffless blood pressure as a whole, including but not
limited to historical methods, current cuff-based methods, and the research involving PPG,
ECG signals. They have divided the study into calibrated and non-calibrated methods
where features from PPG and ECG were put together into the calibrated method and use
of oscillometric, volume control, and ultrasound into the uncalibrated method. Although
other than PPG and ECG signals, there are other biomedical and physiological signals
available in which researchers tried to get any relationship with the change of BP, one such
literature review [44], which looked at all kinds of physiological signals, was done by Man-
isha Sharma et al. Ramakrishna Mukkamala et al. have done a review [45] emphasizing the
cuffless wearable device and smart devices to measure blood pressure in the current market;
they have also discussed a large number of publications or research happening where the
conclusions are unreliable due to inadequate methodologies. In this review article [46], the
future use of artificial intelligence in managing hypertension has been discussed; they have
tried to examine the explainability of artificial intelligence (AI) to help health professionals
understand the black-box nature of models. Kazuomi Kairo introduced the discussion [47]
about using a miniature wearable monitoring device for remote measurement of BP; his
primary focus was out-of-office BP measurement expecting dramatically change in the
quality of hypertension management. Niklas Pilz et al. published a review [48] article
discussing pulse wave velocity-related techniques for BP measurement and techniques
involving deep learning to shortlist the advantages and limitations of different methods.
Apart from these reviews above, some other literature surveys have been done [10,49–51]
focused on ambulatory blood pressure monitoring, diagnosing hypertension, noninvasive
techniques of BP measurement, contactless BP monitoring, etc.

1.2. Survey Goal

All the literature above focused on one or more aspects of BP measurement, from
traditional invasive methods to current research involving noninvasive-cuffless techniques.
The existing surveys still have some limitations, such as: using a limited number of
studies or techniques and failing to cover both ECG and PPG signals to extract features
for BP measurement. However, with the ever-evolving nature of technology with signal
processing techniques and artificial intelligence, there are scopes to contribute with a
holistic literature review on BP measurement, adding significant scientific value. We have
presented the literature survey in the following manner: first, a framework for the search
and selectin process has been provided; second, conventional BP measurement techniques
are summarized; the third, motivation behind the cuffless BP measurement techniques
was discussed; fourth, we have also brought forth the technologies which are helping
to get us from traditional method to cuffless BP measurement, fifth, the features which
have been used for techniques involving artificial intelligence were discussed, sixth, all the
machine learning and deep learning techniques which have been used for BP measurement
in recent years are summarized, seventh, the available datasets were summarized, and
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finally the challenges and future way forwards were proposed so that AI can have more
significant impact finding techniques for reliable and robust BP measurement. The two
main questions we have tried to solve in this literature survey are: (1) How are the standard
features from biomedical signals used in current studies to find noninvasive and cuffless
BP measurements? (2) How have artificial intelligence techniques (machine learning and
deep learning) been proposed in recent research works for the same purpose, and which
research directions need attention? To answer these research questions and understand the
premise, we have covered traditional BP measurement techniques, cuff-based techniques,
and the eventual use of AI for cuffless BP measurement.

2. Framework for the Search and Selection Process

To incorporate a thorough review, the search procedure was implemented using
machine learning and deep learning with features from biomedical signals to generate a
model for measuring cuffless noninvasive BP. For this purpose, google scholar and PubMed
were used with a timeline from 2010 to 2022. The following general search term was
used from both database: (“ECG” or “electrocardiogram,” “ECG” or “EKG” or “PPG” or
“photoplethysmography” or “biomedical signal,” “vital signs” or “physiological signals”
or) and (“cuffless blood pressure” or “noninvasive blood pressure” or “hypertension” or
“blood pressure” or “arterial pressure” or “hypotension” or “BP”) or (“machine learning”
or “deep learning” or “artificial intelligence” or “neural network” or “convolutional neural
network” or “ANN” or “CNN” or “long short term memory” or “LSTM” or “RNN”
or “recurrent neural network”) or (“pulse transit time” or “pulse wave velocity”). It is
essential to point out that using those keywords, many articles were found that were not
related to this literature survey, and those were sorted out at the initial stage. Figure 1
depicts the selection process, divided into four stages (identification, screening, eligibility,
and included). Overall, 745 articles were retrieved from the search using google scholar
and PubMed. After removing the duplicate ones, the number of articles remaining was
643. Those articles were screened for title and abstract, and 529 were removed for not
being relevant to this study or out of scope. The remaining 114 full-text articles were
checked thoroughly, and 49 more were removed due to different reasons such as missing
evaluation or comparison, insufficient dataset or sample number, lack of rationale behind
decisions, insufficient explanation of experiment or method, etc. Finally, 65 articles were
found relevant to this literature review and fulfilled the criteria in the eligibility section
of the framework.
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Figure 1. Flow diagram of the article selection process for literature review.

3. Traditional Techniques for BP Measurement

Among all the techniques, invasive and noninvasive arterial catheterization is the gold
standard for accuracy. A thin and hollow tube is placed or inserted into the patient’s artery
to perform this measurement technique. In the blood vessel, a manometer has been placed
and used to measure the waveform of blood pressure change [52]. Blood pressure change
can be tracked from the waveform and other cardiac activity [53]. This technique has been
prevalent to frequently measure an ill patient’s BP reading (mainly in the incentive care
unit). In case of hypotension, the patient can be given intravenous fluids to increase blood
pressure immediately.

On the other hand, actions can be taken to lower blood pressure in the case of hyper-
tension immediately. In both cases, frequent measurements are necessary to take urgent
measures to avoid a more deteriorating conscience. The downside of these techniques
is pain during the placement of the needle stick and catheter during insertion, potential
infection in the place of catheters inserted, blood clots or bleeding during that time, etc.
In Figure 2, traditional methods of noninvasive BP measurement techniques are shown.
Among the noninvasive techniques for BP measurement, manual auscultation is an indirect
technique where BP estimation is the most accurate [54]. This technique was initially
invented in 1896 but later improved by Nikolai Korotkoff by placing a stethoscope over
the brachial artery [55,56]. The blood flow sound disappears and reappears as the cuff is
inflated and deflated. Using a sphygmomanometer, the measurement of SBP and DBP
is done. The process requires an experienced clinician for reliable and consistent mea-
surement [38]. Additionally, due to the toxicity of mercury in sphygmomanometers in
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many counties, the use of this tool is restricted. Additionally, due to the inflation of cuffs,
considerable pressure is being put on the patient, which is not convenient for frequent
measurement [57]. Among other BP measurement techniques, the oscillometric method
is most common among manufacturers due to the emergence of digital electronics [58]. It
measures mean arterial pressure and prepares estimates of SBP and DBP. The process starts
with a cuff placed over the brachial artery in the upper arm; when the pressure increases
through the cuff, the blood flow stops, and when the pressure releases, the pressure goes
below MAP the pulsation decreases. From the oscillometric waveform in the time domain,
the SBP and DBP were measured from MAP [38]. The downside of the oscillometric method
is the uncertainty from the estimation of SBP and DBP, which does not reflect the standard
expected from the Association for the Advancement of Medical Instrumentation (AAMI).
There have been many variants of this technique using different signal analysis techniques,
but still, the recommendation of AAMI is not met with consistency [59–63].
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Figure 2. Traditional methods of BP measurement techniques. (a) arterial catheterization method,
(b) vascular unloading technique, (c) arterial tonometry method, (d) auscultation method, (e) oscillo-
metric method [19,43] CC by 4.0.

Using the modified Peaz principle, the vascular unloading technique is based on [64].
To maintain a constant blood volume, the pressure inside the artery is linearized by the
outside pressure from the cuff placed on the finger [65]. The cuff consists of an infrared
light source and photodiode to measure the blood volume in the arteries; the cuff’s pressure
varies to maintain a constant blood volume. This intraarterial pressure is equal to finger
cuff pressure determined by a manometer. Although continuous BP waveform can be
generated with no chance of infection using this method, wearing a cuff for a long time is
not convenient. Additionally, cuff size changes with finger size, and there is the possibility
that finger pressure can be different compared to the considerable artery pressure making
the measurement less reliable. Using arterial tonometry, a fair amount of pressure is
applied on the finger over the radial artery to deform the shape of the finger [66]. The area
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where the measurement takes place should have a bone underneath the artery [67,68]; the
pressure in the artery is proportional to the vertical displacement or bend in the finger [69].
The displacement is proportional to the arterial blood pressure waveform [70,71]. The
shortcomings of this technique are a requirement of a specific type of place for measurement,
and the position of that place must be very steady, making it unsuitable for more prolonged
or frequent measurements. Additionally, placement accuracy is critical, etc.

4. Motivation for Cuffless Measurements of BP

This section discusses the motivation behind the cuffless blood pressure measurement.
The discussion starts with the existing problem with traditional measurement techniques.
After that, the current development of BP measurement devices will be summarized, and
the rationale for research with the cuffless method must be examined. Additionally, the
biomedical signals which are easily accessible and can be used for BP measurement in a
cuffless manner will be discussed.

4.1. Limitations with Traditional Noninvasive Methods for BP Measurement

Although the measurement from the invasive method is direct from the blood flow in
the artery, all the noninvasive measurement techniques are indirect. Thus accuracy and
consistency are difficult to match. As per research, manual auscultation estimates the SBP
lower than the invasive method and the DBP higher than the invasive method [72,73].
Many other techniques, such as oscillometric, auscultatory, and volume clamp devices,
are calibrated using the invasive method. However, even with the calibration due to the
chosen artery for measurement, the result still can be inaccurate [74–76]. Among all the
conventional noninvasive methods, oscillometric devices dominate the clinical practice
and the central portion of the database with BP measurement [77]. There are several
limitations with the noninvasive methods based on the cuff. First, when it comes to the
manual auscultation method, the cuff-based method requires trained professionals to
perform the BP measurement accurately and reliably. Second, the cuff-based device is
not readily available to everyone needing frequent measurements. Especially for the area
where resources are limited, having an individual device for measurement is scarce, which
is the main reason behind the awareness about own BP reading [78]. Third, during the
measurement, the inflation and deflation of the cuff make inconvenience for the patient.
Additionally, the patient must be still and relaxed during measurement, which is also tricky
for frequent measurements [79,80]. Especially during nighttime, it is very cumbersome to
have the cuff works frequently and hinders ambulatory measurement [81–84]. To solve
these problems, the cuff must be removed from the setup while maintaining accuracy and
reliability. The added functionalities needed are the ability to have frequent measurements
with immediate results, a less cumbersome setup for measurement, the ability to provide
user-friendly measurement techniques, and the inexpensive.

4.2. Necessity for Validation Protocol for Existing and Future BP Measurement Device

Among all the necessary clinical tests, measuring BP is one of the important ones, so
both overestimation and underestimation severely impact the treatment process for the
patient [85]. Usually, the most common error happens with overestimating BP measure-
ment, which can cause issues such as wrong or untimely medications, unnecessary use
of resources, and visits to physicians, etc. [86–88]. For example, hypertension prevalence
impacts around thirty percent with a consistent inaccuracy of 2.7/5 mmHg [89]. Along with
World Health Organization, several international organizations showed concern about vali-
dating the existing BP measurement device [90–93]. The main proposal was to strengthen
the requirements for validation protocol and make it difficult for unvalidated products to
be used or authorized to be sold. This proposal includes the device and new technology to
measure BP, such as noninvasive cuffless methods. The World Health Organization (WHO)
has presented the required specifications for automated noninvasive BP measurement
devices with cuffs only; it encapsulates the ambulatory nature of measurement at home
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or outside and even in clinical setup [94]. The suggestions provided for BP measurement
devices are, first, there has to be a solid regulatory board or office to ensure that only
validated devices are available in the market [95]. Second, there must be a process for
validating the device without bias. Third, manufacturers should disclose in detail the
validation process they have performed before making the product available [95]. Fourth,
the government should take necessary actions to make the validated product available
to low resources areas and populations [54,96]. Fifth, to provide necessary training to
professionals to differentiate between validated and not validated devices. Although the
concerns from the WHO’s point of view are towards the cuff-based method, they have
also targeted the research using the cuff-less method. Since some available devices work
based on the cuffless method, those products should also be considered under the same
validation protocol. Since all noninvasive methods are indirect estimations, validation
should be critical while preparing or proposing any technique.

4.3. Improvement in Technology Helping Research with Cuffless BP Measurement

In this subsection, the emergence of the latest technologies enables the research of
using biomedical signals to bring forth possible techniques to measure BP. Figure 3 depicts
the technological advances responsible for the research progress in cuffless BP measurement
techniques. The significant advancements are smaller sensors to acquire biomedical signals,
improved signal processing techniques, highly efficient and robust calculation power,
etc. [97]. First, the biomedical signals that are now being used in research will be discussed,
then the adaptation of these sensors in convenient devices will be discussed. The ECG
measures the heart’s electrical activity, which can be acquired by using electrodes placed in
specific areas of the human body near the heart. A typical ECG wave consists of P, Q, R,
S, and T peaks. The rhythmic activity acquired by ECG provides vast information about
the structure and functions of the heart [98,99]. Different parts of the ECG wave can be
correlated with the change of BP change after doing signal analysis techniques over the
ECG wave [99,100]. Studies have shown the relation between changes in SBP and DBP
with interval changes such as PR and ST segment [101,102].
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PPG signal provides the amount of oxygen saturation in blood using the calculation
from transmitted and receiving light emitted from led in a specific area on the body such as
the finger or ear [103,104]. Since blood pressure in arteries or blood vessels impacts the oxy-
gen saturation or peak information or interval information from consecutive PPG waves,
this signal has been extensively used in various research to find BP measurements [37,105].
When the blood is ejected from the heart, the body goes through changes such as dis-
placement, acceleration, and these measurements can be recorded as ballistocardiogram
(BCG) [106–108]. Figure 4 shows standard biomedical signals related to BP measurement
techniques. Among other biomedical signals using ultrasound measuring absolute blood
volume, blood volume oscillations measured by electrical bioimpedance and seismocar-
diography (SCG) measuring the lower frequency vibrations from the heart are also used
in many research studies to make a relation with the change in blood pressure [108–110].
Due to the advancement in smartphones concerning a higher capacity for calculation
and image processing ability—the smartphone can be used to create a PPG wave, and
various information can be generated from that wave as a result [111,112]. Additionally,
recent high-end smartphones have additional sensors to acquire different biomedical sig-
nals, such as SCG, PPG, ECG, and BCG, etc., to provide health alerts based on threshold
strategies [113,114]. Like smartphones, smartwatches and fitness trackers are equipped
with advanced sensor technologies and analysis capabilities to provide alerts for different
health conditions [115–118]. To summarize, the recent technological advancement helped
researchers have easy access to biomedical signals and high calculation capabilities in terms
of speed and complexity.
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4.4. Existing Wearable Device for Hypertension Management

The necessity of measuring blood pressure more frequently comes from excessive BP
levels in the morning has been proven to be related to the risk of stroke, brain hemorrhage,
and other organ damage [120–126]. Additionally, the nighttime elevation of blood pressure
level is consistent with different cardiovascular issues [127–130]. So, the traditional habit
of measuring blood pressure once in a while must be changed. Especially for people with



Bioengineering 2023, 10, 27 10 of 28

a heart condition and stressful daily life, frequent measurement is a must to detect any
deteriorating scenario beforehand. Compared to traditional BP measurement devices are
cumbersome, the latest wearable devices can provide better adaptability for the patient.
However, nearly all of the devices currently available in the market which are wearable and
capable of measuring BP (as claimed by the manufacturer) are unvalidated and unreliable
in terms of accuracy [95,131]. These facts did not stop the manufacturer from bringing
devices with the ability to calculate BP from biomedical signals to some extent. In this
subsection, only the devices currently existing will be discussed. Two devices from Omron
healthcare have been submitted for validation criteria to AAMI; they fulfill the validation
criteria while the patient stays sitting [132–135]. Another device from Omron was submitted
for validation which works with higher accuracy while the patient remains in a specific
orientation [133]. Both submissions were based on the device following an oscillometric
measurement technique on the wrist. Other than those, some more devices tried to validate
but did not match the threshold set by AAMI [135,136]. Two devices were submitted for
validation to IEEE standards but did not pass the AAMI standards [137,138]. Additionally,
till now, although there has been a significant number of studies done using PPG to
measure BP, none of those made any substantial contribution towards consistent and
reliable measurements of arterial BP [139]. Some devices combined PPG and ECG to make
the measurement more robust, but even those did not pass validation with standardization
organizations [140,141]. Some other approaches used other biomedical signals, such as
bioimpedance with ECG but failed to uphold the criteria of standardization organization
as a generalized rule [142,143]. Although wearable BP technology can potentially improve
symptom detection for cardiovascular diseases, more research must be done before those
can be used in real scenarios.

4.5. Rationale behind the Necessity to Continue Research on Cuffless BP Measurement

Research on cuffless blood pressure and measurement has recently increased rapidly [144].
At the same time, different devices claimed to be able to measure blood pressure using dif-
ferent types of biomedical signals are becoming available [144–146]. So, with the emergence
of a high number of research and devices in the market, validating the techniques and
devices is becoming increasingly important [74,147,148]. There are several standardization
protocols for BP measurement, such as AAMI British Hypertension Society Protocol (BHS),
and none were intended for cuffless blood pressure measurement [95,138,140,149]. So, until
there is a universally acceptable validation protocol specifically for cuffless BP measure-
ment methods and devices, it is not easy to accept the result or evaluation of techniques
from any research, irrespective of how accurate or reliable the method claims to be.

Another problem is using a different number of samples and different kinds of datasets
for training or testing the models. The validation protocol needs to provide specific infor-
mation about evaluating the method, which can be compared or replicated easily [150,151].
Another challenge for the cuffless BP measurement techniques, which are calibration-free,
is the significant variation that occurs in BP during the whole day due to lifestyle or
daily work habits. Finally, most recent studies work with a trained model that compares
different features with the change in BP. However, the actual relationship between the
features and BP change is still unclear, especially for the techniques or devices that are
not calibrated [152–159].

5. Features from Biomedical Signals for BP Measurement

During the last decades, numerous research has been done to find a new method for
cuffless BP measurement, the rationale behind the choice of topic was the irritation and
inconvenience caused by cuff based method. Additionally, the existing cuff-based method
is unsuitable to have frequent measurements of BP. Among all the biomedical signals the
scientist chose to work with, the most research involved photoplethysmography (PPG)
signal [160]. In this section, the popular features from the biomedical signals that were used
for cuffless BP measurement techniques will be discussed. The objective of the following
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discussion is not to summarize the research or articles producing a result but rather to
summarize whether the results are consistent enough to be accepted.

5.1. Pulse Transit Time and Pulse Arrival Time

Pulse transit time is defined by the time it takes for a pulse pressure wave to travel
from one point of the artery to another, as shown in Figure 5 [36]. To measure the PTT, the
most common method is to place two PPG sensors in two places close to the artery: ear,
finger, toes, etc. [161–163]. Research has shown that there has been a reciprocal relationship
between blood pressure and pulse transit time [164,165]. On the other hand, a researcher
has also proved that only PTT is not sufficient to measure accurate BP levels [164,166].
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Along with PPG, the ECG wave has also been used to measure PTT. In this case,
measuring PTT means ECG is considered the proximal waveform, and another PPG sensor
is used for the distal waveform to calculate PTT. Values of PTT from a specific patient and
his/her BP can be related using a model based on empirical data. However, the problem
is that the data needs to be calibrated frequently due to vascular aging. The correlation
between PTT and BP levels is good but not strong enough to have a conclusive result;
mostly, the correlation value remains between 0.7–0.8 [168–171]. Till now, there has been no
proof of any PTT-based method which can be used as a general formula or method for BP
measurement, the most common flaw is that once the model is evaluated using a dataset
other than the one used for producing the technique, the evaluation fails to uphold any
standard protocol (AAMI or BHS) [172,173].

Similar to PTT, there is another parameter that is popular among researchers is pulse
arrival time. It is the time difference between heart activation and pulse wave at a distal
point such as a finger. PAT can also be defined as pre-ejection delay plus the PTT [36].
Usually, the peak of the ECG wave is used as the proximal point, and another PPG sensor
is a distal point to measure PAT [174–176]. Similar to PTT, the PAT is also influenced by
different physical attributes of the patient and shows similar limitations using it in the
model for BP measurement [172,173]. Studies proved PAT to be better-suitable than PTT
but require calibration for individual use.

5.2. Pulse Wave Velocity

Pulse wave velocity (PWV) is the pulse wave’s velocity that travels from a proximal
point to a distal point through a length L [29,177]. The relation between PTT and PWV is
reciprocal. Because the elasticity of the artery changes from person to person, even with
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the age of the same person, the length of L will also change from person to person. Despite
these issues, researchers tried to find the relationship between PWV and BP levels (SBP
and DBP) [178,179].

PWV =
L

PTT
=

√
artery wall thickness × Elasticity of artery wall

blood density × distance

The relationship can be illustrated using the Moens-Kortweg equation, as shown
above [180]. The existing proposed techniques require extensive calibration, even for a
single person. Since the model scientist produced can not be generalized, and the calibration
requirement frequently uses a cuff-based method, no clinically usable device or end product
is available based on PWV [181,182].

5.3. Pulse Wave Analysis

Pulse wave analysis means using the pulse wave through signal processing techniques
and extracting necessary features for further use in building a model for BP measurement.
A typical step for pulse wave analysis to get a BP measurement model is shown in Figure 6.
The process requires one or more sensors to measure PPG waves, signal processing tools
for removing noise and artifacts, feature extraction and selection, etc. Many attempts have
been made to build a model for BP measurement using pulse wave analysis [159,183–185].
Examples of features in a typical PPG wave are shown in Figure 7.
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Four main types of features are popular among researchers to extract from pulse
waves for cuffless BP measurement: time domain-based, frequency domain-based, time-
frequency domain based, and statistically based, as shown in Figure 8. Some researchers
opted for single-domain features, while others opted for a combination of several domain
features. A typical pulse wave analysis diagram is shown in Figure 6. Processing raw
signal for noise or artifact are not in the scope of this literature review; rather, the focus
will be the typical features used by the researchers from pulse wave analysis to create
a model for BP measurement. As shown in Figure 7, a common strategy is to get the
derivatives of the PPG signal to get different peak values and intervals. Additionally, using
the Fourier transform, the primary information can be achieved at significant frequencies.
Other than the physical features such as age, height, weight, BMI, heart rate, etc., another
aspect researchers follow for features are statistical features [187–189]. The time domain,
frequency domain, statistical domain, and physical features used in the literature survey
have been summarized in Figure 8 [190–195].
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6. Machine Learning and Deep Learning in Cuffless Noninvasive Blood
Pressure Measurement

This section will discuss machine learning and deep learning in the studies and
research to measure cuffless noninvasive blood pressure. The focus of the discussion
will not be on how individual techniques proposed by the researcher performed but on
how and which algorithms were implemented and their respective shortcomings. The
rationale behind the choice of focus is, comparing or summarizing performance will not
add any value since there is no general protocol available for validation of the technique
for cuffless noninvasive BP measurement. So, the literature survey will be more effective
and informative if it involves how the algorithms were used.

6.1. Conventional Machine Learning Algorithms

Conventional machine learning algorithms involve manual extraction and feature
selection. Starting with the raw signal, preprocessing the signal, extraction of features, and
selection of features, the finalized features are used to train the machine learning algorithms
to create a model. The most popular machine learning algorithm used widely is the
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regression algorithm [189,196–203]. The regression algorithm can be in several forms: linear
regression, least square regression, lasso or ridge regression, etc. To summarize how the
regression algorithms were implemented, most studies used a PPG signal or a combination
of PPG and ECG signals to extract the required features from those signals. After getting
features, the usual process was to take the most valuable and relevant features and use
only those to train the regression model. Later the regression models were evaluated using
the same dataset. Nearly all the studies followed this same basic format; the changes from
one study to another were mostly in the choice of signal, several features to be extracted,
the algorithm used to optimize features, and the sample number for training and testing.
The typical limitations found were the inability to reproduce performance with a separate
database other than the one used for training a small number of samples to train with.
The way forward for regression-based analysis is to use a large dataset, and more research
needs to be done before claiming to achieve any significant and usable outcome. Similar
to regression algorithms, the research used a support vector machine (SVM), AdaBoost,
random forest, and K-nearest neighbor, etc., to find a model to measure BP [185,204–211].
Additionally, the limitations were almost the same for these conventional machine learning
algorithms. Although some studies claimed that one of the conventional machine learning
algorithms performed better than others, their performance was not up to the mark or
consistent regarding following standards such as AAMI or BHS. Based on the literature
survey, it is impossible to agree with any claim about the superiority of any conventional
machine learning algorithm over others.

Although numerous publications have used conventional or shallow machine learning
architecture to find models to measure BP, none of these came into reality or were of clinical
use. If researchers want to pursue this path for a solution, they need to make sure to do the
following to make their solution sustainable and reliable:

a. The model must reproduce the claimed result using other datasets or real-time data.
b. The rationale behind the performance should accompany the use of algorithms.
c. The number of features and optimization algorithms needs to be explainable.
d. AAMI and BHS standards need to be passed for both SBP and DBP.
e. Since all the features are from biomedical signals due to physiological activities,

calibration is mandatory. The purpose, frequency, and procedure of calibration need
to be addressed.

f. The database (either online or real patient data) needs to be well distributed regarding
demographic data.

g. There has to be a generalized validation protocol in place so that the performance of
all the techniques can be compared without any bias.

6.2. Deep Learning Algorithms

With the advancement of deep learning networks through artificial neural networks
(ANN), convolutional neural networks (CNN), recurrent neural networks (RNN), Long and
short-term memory (LSTM), etc., they are using different biomedical signals such as ECG
and PPG into learning network to achieve a model for BP measurement becoming very
popular among scientists. The main reasons are: compared to shallow machine learning
algorithms, deep learning algorithms can extract features on their own and can do a better
job in most cases by finding features that might have been missed in the case of shallow ML,
also although it is computationally extensive the performance achieved from deep learning
networks were much better than conventional ML algorithms. For the past few years,
scientists have tried every possible deep-learning algorithm for BP waveform prediction,
where the model automatically learns critical features. The ECG signal can be acquired
using an electrode over a specific part of the upper torso; the PPG signal can be acquired
from either ear or fingertip. The gold standard arterial blood pressure can be chosen from
the cuff-based method or a radial artery catheter. Figure 9 depicts an example of a deep
learning algorithm from start to finish.
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Although preprocessing is a common step for any machine learning algorithm, there
is always room for improvement during preprocessing steps, which can make an evident
difference in the outcome of the model’s performance. An example of a flow diagram of a
deep learning network is shown in Figure 9. Since the deep learning algorithm takes care of
the feature extraction and assigning appropriate weight for the impact of each feature, the
preprocessing step needs to ensure the raw data is free from noise, segmented for training;
inputs are normalized, etc. Due to the temporal similarities between PPG and ABP, most
studies have used PPG as an input signal for their respective deep-learning algorithms.
With the invention of new deep learning algorithms, researchers have tried almost all
the available methods, such as wavelet neural network, long short-term memory, ANN,
U-Net, MultiResUnet, V-Net, GAN, etc., for BP measurement model [24,32,35,212,213],
even some studies involved using a hybrid model where multiple algorithms were used
together for better performance [10,35,214–224]. A study was conducted to measure blood
pressure by combining information from waveform (ECG and PPG), patient physical
information, and features such as PTT and passing then as input of a neural network [225].
They have found that using features combined with deep learning algorithms worked
better than using neural networks alone. Since all these studies were data-driven and the
deep learning model follows a black box-themed approach, the only way the advantage
or disadvantages can be discussed is based on input data processing and output data
performance. The most common disadvantage of using deep learning networks was
extensive computational complexity, lack of rationale behind how and why the architecture
worked, a small number of subjects, use of the same dataset for training and testing, etc. On
the plus side, nearly all those algorithms performed better than the conventional shallow
machine learning algorithms. Compared to the scenario where shallow machine learning
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algorithms failed to pass the AAMI and BHS threshold, there are cases in recent years
where the use of deep learning algorithms resulted in a ‘pass’ in AAMI or grade “A” or “B”
in BHS standards [24,33,34,213,226].

In this section, the summarization or discussion of the individual study was intention-
ally avoided due to the following facts:

a. Although deep learning models provided better accuracy compared to shallow
machine learning algorithms, the number of studies that matched the AAMI and
BHS standards is deficient.

b. Since the approaches are mainly data-driven, the performance using the author’s
choice of the dataset for their model should match using another random dataset.
Nearly all the studies used the same dataset for test and validation.

c. Since deep learning algorithms require large samples to be adequately trained, there
is a high chance that all the experiments using microscopic subjects may result in
overfitting the technique.

d. There is no general validation approach available to compare performance among
different studies.

e. No clinically acceptable method was produced or implemented to have a gold
standard using deep learning techniques.

Although deep learning network does not require the manual intervention of feature
extraction or feature optimization, these models are heavily computationally extensive. On
the other hand, due to the lack of a global standard dataset, experiment protocol, or valida-
tion protocol, this research area is now limited to plugging biomedical signals, especially
PPG and ECG, into different types of deep learning algorithms and their hybrid versions.

7. Dataset Used for BP Measurement Model

Among all the databases used in studies to make machine learning models for cuffless
noninvasive BP measurement using biomedical signals, the most common ones are the
University of Queensland’s vital signs dataset [227] and MIMIC [228]. Since deep learning
requires a much larger dataset, most of the dataset is used for shallow machine learning
algorithms, and nearly all private datasets can not be used for deep learning algorithms
due to being too small. The following table contains the most popular database, the number
of data, the signal from the database, and a short description. Since there is no general
guideline or protocol available to create a database for the BP measurement model, the
database has some disadvantages coming along with it. Table 1 shows different datasets
being used in BP measurement models.

Table 1. Datasets used in different BP measurement models.

Dataset Data Signal Description Reference Research

MIMIC II [229] 26,870 PPG

It contains different physiological signals, including
blood pressure, PPG, and ECG. There is confusion

about whether the data were synchronized, so
using MIMIC II for any data such as PAT is

not recommended.

[230]

MIMIC III [228] 40,000 ECG, PPG

It is a collection of physiological data from a
different hospital; most research with clinical data

for the BP measurement model has
used this dataset.

[231]

University of
Queensland’s vital signs

dataset [227]
23,617 PPG

This dataset includes blood pressure measurement
along with PPG signal. The case number is limited

compared to MIMIC II and III.
[218]

SHAREE (Smart Health
for Assessing the Risk of

Events via ECG) [232]

24 h electrocardio-
graphic (ECG)

Holter recordings of
139 hypertensive

patients

ECG

Anti-hypertensive treatment was given to
139 patients, and after one month, the ECG Holter
was used to record data. Each recording was of 24
h, containing three ECG leads sampling at 128 Hz.

[233]
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8. Challenges and Future Recommendations

The continuing research to get cuffless and noninvasive BP measurement model are
facing challenges such as data collection, the accuracy of control data, standardization of
public dataset, need for validation protocol, patient-specific issues, calibration, the efficiency
of the algorithm, integration with the traditional method, issues with the specific dataset,
deployment issues, and collaborations, etc. Along with discussing the challenges, there will
be recommendations and ways forwards for the researcher to pursue their investigation.

8.1. Data Collection and Accuracy of Control Data

Until now, there is no standardized protocol for data collection to use the studies
to make a BP measurement model. Different experiments have used different protocols
while collecting data; on top of that, the dataset extensively used in research also employed
different protocols. Additionally, if the objective is to prepare a model to be used by general
populations of all ages, the training data needs to be collected, keeping that in mind. Most
of the online dataset was collected during the patient’s intensive care unit stay, which
can be impacted by many variations such as drug, type of disease, etc. Additionally, data
acquisition should be made in a stationary position since any movement may add noise and
unnecessarily change the rhythm. The protocol should be implemented so that, initially,
the learning should start using static data, and gradually the learning should adapt to more
dynamic situations.

8.2. Validation Protocol

There have been a significant number of studies done on this topic. However, due to a
lack of similarity between the dataset, chosen data sample, or data acquisition protocol,
it is tough to compare one technique. Some of the techniques are mathematical equation
based, and some are machine learning algorithm based; the result from both may claim
higher accuracy, but there is no way to compare which algorithm performed better. While
working with machine learning algorithms, popular datasets contain ABP waveform to
consider as the gold standard. When the dataset is privately owned or created from real-life
patients, the number of subjects usually remains very small, and at the same time, getting
ABP is difficult. To solve this problem, there must be a documented protocol for acquiring
data from the patient, selecting the patient, preprocessing the data, and testing the data
after preparing the model. Till now, there has been no such protocol available. Additionally,
even in the successful experiments where a specific algorithm performed well, none of
these have gone through a clinical trial. So the research speed needs to be matched with
making the innovation available to be used clinically.

8.3. Calibration

One of the most difficult challenges for the current research work in this area is to
produce a standard calibration approach that will not only provide a person-specific reliable
BP model but also get updated to continue providing results with similar accuracy in the
future. Researchers have tried to use a large dataset with sufficient variation and a wide
range of data to train the model. However, no attempt replaced the necessity to calibrate
using a standard method from time to time. There have been several attempts to calibrate
the model, or in other words, fine-tun the parameters; such an attempt was with PTT
calibration using data every 24 h using photoplethysmography intensity ratio [234], some
other calibration attempts involved sphygmomanometer data [235,236]. However, none of
the calibration methods is practical to implement or remove the need to use standard gold
measurement systematically. The problems are twofold. First, a calibration need is due to a
person’s physiological change. Without calibration, different health parameters’ impact on
blood pressure change will go unnoticed. Second, a model prepared for a specific group of
patients’ data can not be used as a general protocol unless it contains a calibration segment
that adjusts the model parameter for another group of persons. So, preparing a model is
only a part of the solution; when it comes to making the model usable clinically for the
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mass population, there has to be a standardized solution, including calibration steps that
will not require the patient to use the cuff-based method frequently.

8.4. The Model or Technique Needs to Be Interpretable

Artificial intelligence in machine learning and deep learning dominates the current
research endeavors regarding noninvasive cuffless BP measurement. With the advance
of deep learning algorithms, more and more studies are getting published with more
advanced deep learning models and better accuracy. However, there is a considerable
gap to fill when explaining the necessary knowledge to elaborate on the model and its
relation to the result. Without a proper explanation of the black box’ nature of the deep
learning model to the audience, such as clinicians, physicians, health care workers, etc.,
there will always be an issue of trust. The researchers need to understand the necessity
of creating a model that can be explained with a rationale to the people who will use the
model confidently. Interpretability is a significant part of diagnosis and decision-making
in the medical arena. Healthcare professionals must explain or at least understand how
and why the model produces any specific result. Since feature selection approaches can be
easily explained and related to medical professionals’ biological knowledge, researchers
need to look for either keeping the deep learning model simple or using a hybrid model.

8.5. Model Deployment

The objective is to let the patient measure frequent blood pressure. However, the day is
convenient, so using the small and portable device is mandatory to ensure the measurement
setup is not cumbersome and hinders daily activities. Now, the majority of the research
available only concerns themselves with only preparing a model and the performance
of the model. However, very few tried or designed a small system that can replicate the
model in real scenarios or work for actual people. The main challenges of deploying the
model into real-world applications are. First, the signal acquisition in research mostly
happens in the patient’s controlled environment and posture, which will not be the case
in real life; second, the small and portable devices need the necessary calculation power
to deliver accuracy and calibration capacity frequently. All the devices that can use the
biomedical signal to measure BP are not certified or acceptable in clinical environments, so
once researchers advance to deploying the models into the device, the challenges will come
in a different form. Researchers may consider the challenges of possible deployment ahead
of designing the model.

8.6. Necessity of Collaboration with a Health Professional

The research field needs collaboration between machine learning, signal processing
expert, and health care professionals. To tackle the three main fronts of the solutions:
acquiring proper signals, preparing a model, and deploying the model into the device,
the collaboration can make a better plan. Right now, the majority of the studies are
done involving machine learning experts only. The problem arises when the model’s
interpretability and deployment come into question. The signals can be mixed with different
kinds of noise, artifacts, and motion in an accurate word scenario compared to a lab scenario.
Additionally, when it comes to deployment, the end device needs to be adaptable to the
model and the calculation capacity needed by the model. Additionally, irrespective of
the performance of the device or model, the professional medical needs to be confident
about the result since they make the decision that can either improve or deteriorate patients’
health condition.

9. Conclusions

This work reviewed current development in cuffless and noninvasive blood pressure
measurement techniques using biomedical signals. More specifically, the features from
signals, machine learning, and deep learning were the main focus of this literature review.
Although a significant amount of research happened with advanced signal processing
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and machine learning techniques, there are still scopes of improvement in consistency,
calibration, interpretability, collaboration with medical professionals, deployment into a
user-friendly device, etc. Since there is no device available now certified by an accepted
regulatory body to be used clinically, the individual performance of the research was not
the main focus of the survey. Instead, the focus was on the reasons behind the shortcomings
and challenges. Unless the performance of the models developed by researchers using
either an online dataset or a private dataset created manually can be replicated in an
actual application and on a new patient, the goal of the research is to let people measure
BP more frequently without cuff can not be materialized. Several recommendations and
future research directions have been provided, such as: building an acceptable universal
dataset for training models, making calibration without using cuff based method, creating
a real-life scenario to account for all kinds of noise while acquiring signals, planning
deployment feasibility in the research plan, making the models interpretable to physicians
to gain confidence, etc. Unless these research paths are ventured extensively, the cuffless
noninvasive BP measurement model using biomedical signal analysis should not be used
in a clinical setup.
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