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Bone defects caused by injury, disease, or congenital deformity remain a major health
concern, and efficiently regenerating bone is a prominent clinical demand worldwide.
However, bone regeneration is an intricate process that requires concerted participation
of both cells and bioactive factors. Mimicking physiological bone healing procedures, the
sustained release of bioactive molecules plays a vital role in creating an optimal osteogenic
microenvironment and achieving promising bone repair outcomes. The utilization of
biomaterial scaffolds can positively affect the osteogenesis process by integrating cells
with bioactive factors in a proper way. A high water content, tunable physio-mechanical
properties, and diverse synthetic strategies make hydrogels ideal cell carriers and
controlled drug release reservoirs. Herein, we reviewed the current advancements in
hydrogel-based drug sustained release systems that have delivered osteogenesis-
inducing peptides, nucleic acids, and other bioactive molecules in bone tissue
engineering (BTE).

Keywords: hydrogel, sustained drug release, bone tissue engineering, growth factors, mesenchymal stem cells
INTRODUCTION

Bone defects may be caused by various events, including trauma, inflammation, neoplasm resection,
congenital deformity, and degeneration (Crane et al., 1995; Spicer et al., 2012). Despite numerous
solutions being applied to tackle this issue, clinical demands remain unmet.

To date, autologous bone grafts are still the gold standard and most considered therapeutic
strategy for critical-sized bone defects among all restoration methods due to their remarkable
osteoconductive and osteoinductive properties. However, de novo problems might arise, such as a
limited amount of donor tissue, an excessive harvest procedure, and the possibility of postoperative
infection of the donor site (Langer and Vacanti, 1993; Betz, 2002; Ahlfeld et al., 2019). Allografts or
xenografts usually serve as secondary alternatives, as slower incorporation, immune rejection, and
pathogen transmission might occur (Crane et al., 1995; Haugen et al., 2019). Utilizing biocompatible
scaffold materials, such as mesenchymal stem cells (MSCs) and/or bioactive factors (Meijer et al.,
2007), bone tissue engineering can offer more possibilities. Achieving sufficient and qualified bone
formation via artificial composites is the grand aim of bone tissue engineering.

Compared with bone harvest operations, MSCs are relatively easy to obtain. These cells exhibit
self-renewal, multipotentiality (Prockop, 1997), and immunomodulatory properties (Keating, 2008),
in.org May 2020 | Volume 11 | Article 6221
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which are imperative for bone regeneration. In addition, bioactive
factors, for example, cytokines and growth factors (GFs), play a
crucial role in new bone formation. Bone morphogenetic proteins
(BMPs) are a group of GFs that have been substantially
investigated. Recombinant human BMP-2 and BMP-7 is
commercially available for limited clinical usage (Nauth et al.,
2011). However, naked GFs are vulnerable in vivo, and to achieve
optimal osteogenic effects, a supraphysiological dose of GFs is
required. Paradoxically, diffusion or uncontrolled release of GFs
may lead to ectopic bone formation and other complications,
including carcinogenicity (Carragee et al., 2011; de Melo Pereira
and Habibovic, 2018). Hence, attaining sustained release of
bioactive factors is an essential objective for scaffold design to
promote the therapeutic efficacy of bone tissue engineering. The
scaffold materials not only create a congenial microenvironment
to promote MSC biological behaviors but also help to maintain
bioactive molecules in situ. To date, the controlled release of
bioactive factors in bone tissue engineering has been realized by a
wide range of biomaterials of different natures and configurations,
which provide diverse release profiles in different treatment
scenarios (Lee and Shin, 2007).

Hydrogels are a category of highly hydrated 3-dimensional
(3D) crosslinked homopolymer, copolymer, or macromer
networks that can be cast into different shapes and sizes
(Slaughter et al., 2009; Seliktar, 2012). The application of
hydrogels in tissue engineering, bone tissue engineering in
particular, has been garnering increasing attention. Laden with
osteogenic-inducing drugs and sustained release profiles,
hydrogels have been suggested to be promising bone tissue
engineering biomaterials. In this review, we discuss the
progress and limitations of current bone tissue engineering, the
advantages of hydrogel-based bone regeneration biomaterials
and recent advancements in hydrogel-based drug sustained
release systems for bone tissue engineering.
THE PRESENT CHALLENGES OF BONE
TISSUE ENGINEERING

To date, substantial progress has been made in bone regenerative
medicine. A variety of biomimetic polymers and inorganic
materials with bone-like microarchitecture have been designed
with advanced manufacturing methods (Wei et al., 2011; Kim
et al., 2017b; Yin et al., 2019), including 3D printing, aiming to
achieve superb osteogenic properties as well as accuracy and
spatial fitness of critical-sized defects. Light-cured, thermal-
setting, pH- or enzyme-sensitive, and other smart biomaterials
enable bone tissue engineering to serve in many on-demand
circumstances. Varieties of seed cells from different origins
including umbilical cord MSCs (UCMSCs), induced
pluripotent stem cell-derived MSCs (iPSC-MSCs), and
embryonic stem cell-derived MSCs (ESC-MSCs) are
successfully applied (Xie et al., 2016; Chen et al., 2018).
Multifarious drugs or bioactive factors are delivered in situ
with different strategies and tailored release profiles, offering
osteogenic-friendly environments for relevant cells. Noteworthy,
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it was reported that MSC-derived exosomes combining scaffolds
achieved preferable osteogenesis outcomes (Li et al., 2018),
indicating the promising prospect of exosomes-based cell-free
bone regeneration.

MSCs from different sources, such as bone marrow and dental
tissue, are available for bone tissue engineering. The stem cell
niche, 3D microenvironments containing specific biophysical
and biochemical signals, maintains the stemness of stem cells
in vivo (Scadden, 2006; Jones and Wagers, 2008). However,
maintaining the viability and stemness of MSCs as well as
controlling stem cell fate is a fairly critical issue in regenerative
medicine. Substrate-derived stimuli are able to prolong the
stemness of stem cells and guide stem cell fate into specific
lineages (Fisher et al., 2010; Marklein and Burdick, 2010; Lee
et al., 2015). Moreover, as the proliferation and differentiation of
MSCs may drive into specific lineages depending on different
microenvironmental cues, biochemical stimuli, including
cytokines and GFs, are used in a spatiotemporal sequence
during the complex and continuous reparative procedure
(Samorezov and Alsberg, 2015; Farokhi et al., 2016). Successful
bone regeneration requires the proper combination of stimuli
that can trigger MSC differentiation and matrix deposition. As
the scaffold material itself is capable of combining substrate-
derived and biochemical stimuli, biomimetic and bioinspired
synthetic materials with sustained drug release systems should be
designed to facilitate bone tissue regeneration. Due to the
constraints of current knowledge in this field, the research is
far from sufficient.

Natural bone fracture healing requires the coordinated
participation of osteogenesis and angiogenesis (Collin-Osdoby,
1994; Marsell and Einhorn, 2011). Bioactive factors and signal
pathway crosstalk, which mediates the interplay between
epithelial cells and osteoprogenitors, has been well summarized
(Ramasamy et al., 2016). Likewise, vascularization in bone
substitutes is vital for successful bone tissue engineering.
Insufficient blood supply may result in undernutrition,
hypoxia, and inadequate cell recruitment, leading to the failure
of bone tissue engineering. Varieties of assessments and solutions
have been summarized (Rouwkema et al., 2008; Das and
Botchwey, 2011), yet there is no convincing evidence that the
strategies are ample to sustain large tissue constructs,
encouraging the proposal of more promising methods.
THE PREPONDERANCE OF HYDROGELS
IN BONE TISSUE ENGINEERING

Ideal bone tissue engineering scaffolds should meet the following
criteria: (1) biocompatible, nontoxic and nonimmunogenic; (2)
porous-structured; (3) proper mechanical properties, load-
bearing ability, and sufficient dimensional stability; and (4)
fully degradable, with a degradation rate that matches
neotissue formation (Lee and Shin, 2007; Slaughter et al., 2009;
Haugen et al., 2019). Numerous inorganic scaffolds, such as
metals and bioceramics, have been applied in bone regeneration,
yet their lack of cell affinity, unbalanced mechanical properties,
May 2020 | Volume 11 | Article 622
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and rather poor degradation cannot be ignored (Pearlin
et al., 2018).

According to types of raw materials, hydrogels can be briefly
categorized into natural and synthetic. It is usually considered
that natural hydrogels are more biocompatible and bioactive,
while synthetic ones possess more tunable mechanical and
degradation properties. 3D-structured, highly water-containing,
and biocompatible hydrogels act as excellent extracellular matrix
(ECM) analogs. The porous structure of the hydrogel enables
substance exchange and cell entrance at the initial stage as well as
vascular ingrowth in the follow-up stage. It has been substantially
shown that cells are easily suspended within hydrogels, and the
viability of the encapsulated cells is highly preserved (Gao et al.,
2020; Paez et al., 2020).

MSCs are highly sensitive to physical parameters (Higuchi
et al., 2013), including viscoelasticity Engler et al. (2006) and
topography (Fiedler et al., 2013), in the surrounding milieus. The
stiffness (elastic modulus) of the matrix is believed to contribute
greatly to determining stem cell fate. As Engler et al. (2006)
demonstrated, 2D-cultured MSCs exhibited osteogenic
characteristics when the microenvironmental stiffness was
relatively rigid, at 20–40 kPa. However, osteogenesis occurred
at 11–30 kPa when MSCs were cultivated 3-dimensionally
(Huebsch et al., 2010). Due to flexible synthetic strategies and
the range of constituents, hydrogels possess tunable physio-
mechanical properties, which could match the desirable ranges
of material elasticity, porosity, and degradation rate required for
bone tissue engineering (Slaughter et al., 2009). Meanwhile,
photodegradable (Lunzer et al., 2018), thermal-sensitive, or
pH-sensitive (GhavamiNejad et al., 2016) linkages as well as
other advantageous materials could be subtly introduced into
hydrogels, which may fabricate a versatile and intelligent
composite system to fulfill the growing clinical demands.

On the other hand, bioactive molecules play an important
role in bone regenerative medicine. During bone formation,
numerous cytokines and GFs are orchestrated in a
spatiotemporal manner (Farokhi et al., 2016), which would
provide a suitable microenvironment for MSC proliferation
and differentiation, as well as recruit progenitors from
surrounding tissue and peripheral blood for further
restoration. Apart from competent cell carriers, hydrogels can
also be employed as promising local drug reservoirs. Multiple
schemes have been applied to reach desirable and smart drug
delivery kinetics (Lee and Shin, 2007; Slaughter et al., 2009).
Non-covalent immobilization strategies are the most commonly
used in hydrogel-based drug depots, the drug release rate was
mainly determined by parameters such as crosslink density,
carrier affinity for drugs, and the matrix degradation profile
(Dimatteo et al., 2018). Bioactive factors also could be linked
covalently to polymers by which a longer drug retention time
would be achieved, and covalent linkages could be broken as
reactions of specific external cues, leading an on-demand drug
controlled release. Moreover, other sustained release systems like
microspheres could be introduced to hydrogel matrix, enabling
multiple drug molecules sustained release in sequential or
spatiotemporal manners (Chen et al., 2010).
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HYDROGEL-BASED DRUG SUSTAINED
RELEASE SYSTEMS FOR BONE TISSUE
ENGINEERING

Extensive drug and sustained release strategies have been
designed for bone tissue engineering. Herein, we introduce
studies on hydrogel-based controlled release systems according
to the category of bioactive molecule loaded within.

Peptides
The majority of cytokines, GFs, and hormones that stimulate
bone formation are peptides. These biomolecules are produced
through the autocrine, paracrine, and endocrine systems, acting
concertedly to regulate the complex cascade of bone-related gene
expression (Lee and Shin, 2007; Farokhi et al., 2016). Hence, a
well-orchestrated sustained release system of these peptides has
been pursued in order to present a more biomimetic approach.

BMP
With the promoted understanding of the underlying mechanism
of osteogenesis (Chen et al., 2012), BMP, as a prominent member
of the TGF-b superfamily, has always been a favored candidate
for bone tissue engineering applications.

Since some hydrogels are believed to possess inferior
osteoconductive properties, Olthof et al. (2018) modified an
oligo[poly(ethylene glycol) (PEG) fumarate] (OPF) hydrogel
with bisphosphate. BMP-2 was encapsulated in poly(lactic-co-
glycolic acid) (PLGA) microspheres. The additional BMP-2 and
drug-laden PLGA microspheres were entrapped in the hydrogel
matrix. The researchers believed that the anionic groups would
produce a strong interaction between the matrix and inorganic
phase of the bone as well as enhance BMP-2-induced bone
formation. The hydrogel matrix could be functionalized by
peptides, which might be beneficial to reduce the dose of
encapsulated BMP. In addition, nanofibrous mesh-hydrogel
hybrid composites have been applied to reach a proper
spatiotemporal release profile (Kolambkar et al., 2011).
Shekaran et al. (2014) modified a matrix metalloproteinase
(MMP)-degradable peptide crosslinked PEG with an a2b1
integrin-specific peptide (GFOGER). The interaction between
integrin and collagen I has been proposed to be vital in
osteogenic differentiation and mineralization. It was suggested
that the modified matrix is able to support cell adhesion and
proliferation and upregulate osteogenic gene expression. Laden
with the low dose of BMP-2, robust bone healing was achieved.
Along with BMP-2, BMP-7 is considered to be a promising GF in
bone formation. An injectable chitosan/b-glycerophosphate (CS/
b-GP) hydrogel laden with BMP-7 and antibiotic exhibited
preferable reparative effects towards infection-induced bone
loss (Zang et al., 2019). Growth differentiation factor-5 (GDF-5),
also known as BMP-14, regulates the development of numerous
tissue and cell types, including limbs and teeth. Bae et al. (2014)
mixed different concentrations of GDF-5 with a light-cured
hydrogel matrix. The results showed that GDF-5 improved the
osteogenic ability in a dose-dependent manner, as the strongest
May 2020 | Volume 11 | Article 622
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augmentation was achieved by the hydrogel loaded with the
highest concentration.

Apart from adsorption or physical entrapment, electrostatic,
hydrophobic, or other interactions have been introduced into the
systems to prolong the release of BMPs. Heparin was reported to
be a strong binder to BMPs, yet the side effects were not
negligible. Heparin mimics, which are usually negatively
charged, are supposed to be capable of controlling BMP
release. Chondroitin sulfate (Anjum et al., 2016), 2-N,6-O-
sulfated chitosan (26SCS)-based nanoparticles (Cao et al.,
2014), alginate sulfate (Park et al., 2018) were synthesized by
researchers, and satisfactory results were achieved both in vitro
and in vivo. When higher concentrations of heparin mimics were
introduced, the release rate of BMP became slower. Seo et al.
(2015, 2017) harnessed the ionic and hydrophobic interactions
provided by polyphosphazene nanoparticles. They found that
release rate of BMPs were controlled by the types and amounts of
pendants. Thus, the optimal release profile and osteogenesis
outcomes rely on a reasonable proportion of BMP-
tethering molecules.

Genetic engineering is another option to obtain long-lasting
BMP release. As Lin et al. (2019) described in a manuscript, the
BMP gene was transduced into human bone marrow-derived
stem cells (BMMSCs), obtaining a continuous (up to 56 days)
and economical BMP supply. Using visible light-based
projection stereolithography (VL-PSL) technology to
encapsulate the transduced cells, the researchers were able to
fabricate more structurally and geometrically compatible
constructs for individualized bone defects, which would be
conducive to achieving tissue fusion and bone tissue
engineering long-term success.

Vascular Epithelial Growth Factor (VEGF)
Vascularization plays a crucial role in both bone development
and bone regeneration (Collin-Osdoby, 1994; Olsen et al., 2000).
Blood vessels do not solely work as substance exchange
pathways; they are also regarded as highly active paracrine
organs targeting various progenitors during bone formation
and reconstruction (Collin-Osdoby, 1994). VEGF, a key
angiogenic growth factor (Carmeliet and Jain, 2011), has been
widely used in bone tissue engineering.

The cooperation between VEGF receptors and integrin
adhesion receptors has been elucidated in angiogenic
regulation. Garcia et al. (2016) engineered a protease-
degradable, GFOGER-modified PEG hydrogel as a VEGF
depot. They found that covalently linked VEGF remained
highly bioactive during a prolonged release period. Whereas it
was shown tha t a GFOGER hydroge l augmented
neovascularization regardless of exogenous VEGF, micro
computed tomography (micro-CT) showed delivering
exogenous VEGF failed to enhance critical-sized bone repair.
Heterogenous material composites are manufactured by which
we can juggle both timed drug release and osteoconduction.
Composed of a 3D multichannel calcium phosphate cement
(CPC) and alginate/gellan gum (AlgGG) hydrogel, the CPC/
AlgGG biphasic scaffold tethers VEGF via the interaction with
heparin (Ahlfeld et al., 2019). Despite some remarkable
Frontiers in Pharmacology | www.frontiersin.org 4
properties observed in vitro, significant enhancement by VEGF
on new bone formation has not been detected. Amirian et al.
(2015) coated VEGF and BMP-2 separately onto gelatin-pectin-
biphasic calcium phosphate composites. The results revealed that
composites coated with VEGF mainly aided in woven bone
formation, and the percent of new bone formation was not
greater than those coated with BMP-2.

Since exclusive delivery of VEGF performed barely
satisfactorily in GF-induced osteogenesis, dual or multidrug
delivery is warranted. When accompanied by BMP-2, VEGF
exhibited a significant improvement in bone formation
compared with hydrogels encapsulating BMP-2 alone. VEGF
combined with BMP-2 has been used routinely as a GF formula
in bone tissue engineering. Similar loading strategies were
applied by Barati et al. (2016) and Kader et al. (2019) for
spatiotemporal release of BMP-2 and VEGF. MSCs and BMP-
tethered nanoparticles were embedded in the outer space, while
endothelial colony-forming cells (ECFCs) and VEGF-tethered
nanoparticles were dispersed inside the microchannel-patterned
hydrogel, as illustrated in Figure 1. Degradation and GF release
could be tuned by altering stoichiometric ratio chain-extended
molecules and proteolysis. According to the data, the release of
VEGF and BMP-2 could last over 10 days and 21 days,
respectively. It was observed that the patterned hydrogel dual
delivery system performed significantly better than that of single
delivery systems, which was attributed to paracrine crosstalk.
During bone repair, VEGF expression peaks appear in the early
period, while BMP peaks later. Thus, consisting of a PLGA
microsphere-incorporating poly(propylene fumarate) (PPF) rod
surrounded by a rapidly degrading gelatin hydrogel, the
composite was designed as a GF delivery vehicle (Kempen
et al., 2009). VEGF was encapsulated in the hydrogel, whereas
BMP-2 was immobilized by microspheres inside the rod in order
to achieve an ideal GF sequential release pattern. VEGF exhibited
a large initial burst release within the first 3 days, and BMP-2
showed sustained release over 8 weeks. Likewise, although VEGF
did not induce neo-bone formation, it significantly enhanced
BMP-induced osteogenesis. Organic-inorganic modular scaffolds
are able to optimally orchestrate dual GF release and serve as an
“anatomy-structure-function” trinity system in regenerating
weight-bearing bones (Bao et al., 2017). Mesoporous bioactive
glass (MBG) with hollowed channels and hierarchical porous
structures was introduced in a controlled release system as a
scaffold (Tang et al., 2020). VEGF was carried by hydrogel inside
the channel, and BMP-2 was adsorbed by the MBG scaffolds.
26SCS acted as an analog of ECM, which exhibits super-affinity
to GFs. In vitro experiments showed that 26SCS promoted the
bioactivity of BMP-2 and VEGF. It could be assumed that the
VEGF hydrogel column in the hollowed channels might induce
chemotaxis of vascular endothelial cells, thus regulating cell
migration and vascular infiltration. Moreover, increased type H
vessels and neotissue ingrowth were observed.

Fibroblast Growth Factor (FGF)
FGF signaling is a dominant regulator during bone development
and fracture repair (Bourque et al., 1993; Kronenberg, 2003).
However, contradictory results have implied that FGF signaling
May 2020 | Volume 11 | Article 622
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may exert dual-directional effects on osteogenic procedures,
probably in a dose-dependent manner (Kato et al., 1998;
Quarto and Longaker, 2006). Thus, sustained release should be
achieved when FGF is delivered in bone tissue engineering.

Two Japanese groups encapsulated FGF in gelatin hydrogels
for controlled release (Kodama et al., 2009; Furuya et al., 2014). A
longer FGF release period may improve cell proliferation, the
expression levels of osteogenic markers and BMP-2 as well as
bone mineral density (BMD) at defect sites. However, these
enhancements vanished, and side effects occurred when a high
dose of FGF was delivered (Kodama et al., 2009). In order to
achieve bone-like biomechanical properties and slower release of
FGF, a stiffer hydrogel matrix, poly(2-hydroxyethyl
methacrylate) copolymerized with 2-vinyl pyrrolidone, was
engineered (Mabilleau et al., 2008). The data suggested that in
the first 4 days, the FGF release rate was approximately 1% per
day, which was relevant to hydrogel swelling. Unfortunately, no
significant difference between the FGF and control groups was
noted in bone mass, but the poorly mineralized woven bone area
was significantly larger in the FGF group.

It is a preferable strategy for other GFs to accompany FGF in
order to obtain a promising outcome. Chen et al. (2016) chose
gelatin microspheres as BMP-2 and basic FGF (bFGF) carriers,
which were further embedded in a commercialized injectable
thermal-sensitive hydrogel. The hydrogel was injected into a
porous cell-loading scaffold before use. Micro-CT revealed that
the dual-loaded composites achieved the best reparative results.
As expected, composites loading bFGF alone regenerated less
bone and neobone at the margin of the defect areas, while the
dual-loaded composites showed much more central area bone
formation. FGF9 has been indicated to be a stabilizing factor for
neovessels, thus, Yuan et al. (2016) introduced FGF9 as an
assistant for VEGF, exerting synergetic effects on angiogenesis
in bone tissue engineering. A specific peptide segment was fused
Frontiers in Pharmacology | www.frontiersin.org 5
to VEGF and FGF9 to obtain a covalent connection with the
fibrin hydrogel. BMP-2 was transfected into BMSCs, endowing a
greater osteogenic ability and resistance of the osteogenic
differentiation inhibition induced by fusion with FGF9. Less
bone was formed in the FGF9 groups compared to the groups
treated with only VEGF, whereas VEGF/FGF9-loaded
composites performed the best among the groups.

Other Peptides
Other peptides that regulate the bone regeneration cascade,
including osteoprotegerin (OPG) (Jayash et al., 2017), stromal
cell-derived factor-1a (SDF-1a) (Ratanavaraporn et al., 2011;
Cipitria et al., 2017; Mi et al., 2017), platelet-derived growth
factor (PDGF) (Wang et al., 2020), and parathyroid hormone
(PTH) (Erten Taysi et al., 2019), etc., might also be worthy of an
attempt. The selected studies of hydrogel-based peptide
sustained release systems for bone regeneration and their
findings are concluded in Table 1.

Nucleic Acids
Since GFs and cytokines are required for weeks during new bone
formation, gene therapy might be a feasible alternative.
Delivering DNA or RNA locally to increase or knockdown
target gene expression, gene therapy is capable of manipulating
the microenvironment and determining cell fate in bone
regenerative medicine.

Fang et al. (1996) utilized collagen sponges as BMP-4 and PTH
plasmid DNA carriers to regenerate nonunion rat femur defects
early in 1996. Bonadio et al. (1999) confirmed that non-viral DNA
delivery possesses numerous advantages compared with the protein
strategy. Hydrophilic nucleic acids and hydrogels could provide
stable and sequestered environments for gene delivery. Komatsu
et al. (2016) demonstrated that gelatin hydrogels could transduce
BMP-2 plasmidDNA efficiently, facilitating local bone regeneration.
A

B

FIGURE 1 | Schematic illustration of (A) nanogel (NG) assembly and peptide grafting. (B) Achievement of BMP-2 and VEGF spatiotemporal release profiles via a
patterned hydrogel-based sustained release system. Reprinted from a previous article by Barati et al. (2016) with permission.
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TABLE 1 | Summary of selected studies of hydrogel-based peptide sustained release systems.

Peptide Carrier material Release pattern Findings (ex/in vivo) Reference

BMP-2 PLGA microspheres + bisphosphate
modified oligo OPF hydrogel

Burst and sustained Osteoconductivity and osteoinductivity were
significantly improved

(Olthof et al.,
2018)

BMP-2 Nanofibrous mesh + peptide
modified alginate hydrogel

Spatiotemporal controlled release Micro-CT showed more bone regeneration, superior
mechanical properties of neobone were achieved

(Kolambkar
et al., 2011)

BMP-2 GFOGER-modified MMP-degradable
PEG-maleimide hydrogel

More than 20% BMP-2 remained
after 14 days

GFOGER-modified hydrogel exhibited intrinsic
osteogenic activities, micro-CT demonstrated;
improved bone repair

(Shekaran et al.,
2014)

BMP-2 VL-PSL-manufactured live-cell
hydrogel scaffold

Sustained expression for 56 days Micro-CT and histological evidence indicated mature
and robust bone formation

(Lin et al., 2019)

BMP-7 CS/b-GP hydrogel Release 46% in first 12 h, 84% by
the end of 336 h

Radiographical and histological observation
suggested better periodontal regeneration

(Zang et al.,
2019)

GDF-5 Photo-cured hyaluronic acid (HA)
hydrogel

Release profiles varies with the
initial drug concentration, sustained
release period over 25 days

Hydrogel with the highest drug concentration
displayed promoted osteogenic potential both in vitro
and in vivo

(Bae et al., 2014)

BMP-2 + VEGF Acrylate-functionalized lactide-chain-
extended star polyethylene glycol
(SPELA) hydrogel + gelatin
methacryloyl (GelMA) hydrogel + PEG
nanogel

Release of VEGF and BMP-2
lasted over 10 days and 21 days,
respectively (tunable release
kinetics)

Patterned constructs significantly increase osteogenic
and vasculogenic differentiation of precursors, bFGF
expression was upregulated

(Barati et al.,
2016)

VEGF + BMP-2 PLGA microsphere + PPF rod +
gelatin hydrogel

A large initial burst was shown in
vivo, which changed significantly
from ex vivo release profiles

Micro-CT and histological section demonstrated co-
delivery significantly enhanced osteogenesis and
angiogenesis ectopically, but it did not reach
significant results orthotopically

(Kempen et al.,
2009)

VEGF + BMP-2 Hydroxyapatite (HA)/
polycaprolactone (PCL) scaffold +
PLGA-PEG-PLGA hydrogel

Burst release in first 3 days,
sustained release for 3 weeks

Micro-CT showed newly-formed callus in co-delivery
group almost covered defect areas, histological
analysis showed no significant difference between
co-delivery group and autologous group

(Bao et al.,
2017)

BMP-2 + VEGF MBG-based matrix + GelMA/26SCS
hydrogel

The release rates of BMP-2 and
VEGF were 24.01% and 34.47%
respectively within 24 h, 67.90%
and 82.73% respectively in 14
days

In vitro osteogenic and angiogenic has been
markedly improved. Ectopic bone formation in
hindlimb ischemia model suggested type H vessels
and neobone formation significantly increased

(Tang et al.,
2020)

BMP-2 + bFGF Gelatin microspheres + n-HA/PU40
scaffold + F-127 hydrogel

Pronounced burst release
occurred in first 24 h, linear release
in following 29 days

Micro-CT analysis indicated dual-delivery reached
significantly higher bone volume (BV). Quantitative
histological analysis showed remarkable tissue
response

(Chen et al.,
2016)

VEGF + FGF9 Nanocalcium sulfate + fibrin hydrogel Addition of the peptide sequence
decreased GFs release in an
enzyme concentration-dependent
manner

Radiographical and quantitative analysis of micro-CT
showed the highest BV in dual-delivery hybrid
composite. Quantification of blood vessels in
explanted tissue suggested more neovessels were
obtained

(Yuan et al.,
2016)

Osteoprotegerin
(OPG)

CS hydrogel Lasts 28 days, release profile could
be adjusted by CS molecular
weight

An almost-complete recovery was observed,
osteocalcin and osteopontin were upregulated

(Jayash et al.,
2017)

SDF-1a CS/carboxymethyl CS nanoparticles
+ CS/b-GP hydrogel

20% initial burst release, a
cumulative release of 40% over 28
days

Micro-CT showed most new bone formation within
the defect area

(Mi et al., 2017)

SDF-1a + BMP-
2

Gelatin hydrogel Large initial burst release of SDF-
1a in first 3 days, which may due
to BMP-2 combination

Better new bone formation was observed in the dual-
delivery group. SDF-1a enhanced BMP-2 osteogenic
effects

(Ratanavaraporn
et al., 2011)

SDF-1a RGD-modified alginate hydrogel Sustained release over 42 days Improvements induced by SDF-1a or hydrogel
stiffness levelled within 8 weeks. Higher number of
cells were recruited by SDF-1a, but the difference
was not significant in vivo

(Cipitria et al.,
2017)

PDGF-BB
+BMP-9

Sericin hydrogel (genetically
incorporated)

Almost 48% released within 17
days, intermittent rapid and slow
release phases

Biocompatible compared with other materials and
stimulated cell proliferation. Osteogenic markers were
significantly upregulated, and greater bone formation
when accompanied by BMP-9.

(Wang et al.,
2020)

PTH CS microsphere suspended in
poloxamer hydrogel

43% of PTH released in first week,
sustained release lasted over 27
days

New bone formation was found to be significantly
higher compared to other groups after 10 days, but
on day 21 a significant difference exists only when
compared with the no treatment group

(Erten Taysi
et al., 2019)
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CS or polyethyleneimine (PEI) is usually introduced as the carrier
due to the electrostatic interaction between the negatively charged
nucleic acids and the polycations. It was reported that branched
PEI-HA-DNA complexes were entrapped in bilayered OPF
hydrogels to restore osteochondral defects (Needham et al., 2014).
Moreover, BMP-2 plasmid DNA conjugated with CS nanoparticles
exhibited significant augmentation in hydrogel-mediated rat
calvaria bone regeneration (Li et al., 2017). Due to the low
stability of liposomes and electrostatic disturbance of other
charged compounds, calcium phosphate (CaP) can also be used
for DNA incorporation and transfection in bone tissue engineering
(Krebs et al., 2010).

MicroRNAs (miRNAs) and small interfering RNAs (siRNAs)
are groups of short single-stranded RNA fragments that
downregulate target gene expression post-translationally.
Various miRNAs associated with bone formation have been
reported (Fang et al., 2015), shedding new light on future bone
tissue engineering. Nguyen et al. (2014) synthesized an 8-arm
PEG in situ-forming hydrogel loaded with siRNA/PEI
nanocomplexes. siRNA remained bioactive during the
prolonged release period. The in vitro results showed that
siNoggin and siNoggin/miRNA-20a sustained release
promoted hMSC osteogenic differentiation in 3D hydrogel
cultivation. As mentioned previously, a stiffer substrate may
lead to MSC osteogenic differentiation. Carthew et al. (2020)
incorporated PEG/gelatin norbornene hydrogels with
mechanosensitive miRNAs. MSCs encapsulated in hydrogels
were transfected in situ, which predominantly enhanced
osteogenic gene expression and mineralization. Researchers
presumed that the higher transfection efficacy might be
ascribed to longer cell exposure times to the transfection agent.

Ions or Small Molecules
To date, a number of metal ions and artificially synthesized
compounds have been found to be beneficial in bone regeneration.
Achieving a sustained release pattern and longer duration of drug
function may lead to promising therapeutic outcomes.

Metal Ions
Since magnesium ions (Mg2+) play an important role in bone
metabolism and mineralization, a variety of strategies for the
Frontiers in Pharmacology | www.frontiersin.org 7
sustained delivery of Mg2+ have been applied to hydrogel-based
scaffolds. Lin et al. (2018b) coated MgO nanoparticles with
PLGA and an alginate hydrogel, constructing a monodisperse
core-shell delivery system. The release profile of Mg2+ revealed a
significant suppression of the initial burst, and its release rate was
stable and programmed. Enhancement of progenitor cell viability
and proliferation, upregulation of osteogenic gene expression
levels, and increased bone regeneration volume in vivo were
attr ibuted to the stable and precise Mg2+ supply .
Bisphosphonates (BPs) possess two adjacent phosphonic
groups, which are propitiously bind to divalent metal ions.
Zhang and colleagues (Zhang et al., 2017) developed acrylated-
BP-Mg nanoparticles to deliver Mg2+ as well as strengthen the
acellular hydrogel composite, which serves as a matrix for in situ
bone formation, via multivalent crosslinked domains. They also
utilized Mg2+ to fulfill on-demand intelligent drug release in
bone tissue engineering (Zhang et al., 2018). Intriguingly, Mg2+

played multiple roles in this research. First, BP-Mg nanoparticles
enabled hydrogel formation and stabilized the prodrug. Second,
Mg2+ promoted osteogenic differentiation, resulting in increased
alkaline phosphatase (ALP) expression. However, and more
importantly, Mg2+ is also a critical cofactor of ALP. ALP
enzymatic hydrolysis was promoted; thus, more bioactive drug
molecules were generated, which introduced positive feedback
(Figure 2). According to the results, this strategy significantly
enhanced bone regeneration.

Other metal ions, such as strontium ions (Sr2+) and cobalt
ions (Co2+), may act synergistically in bone reconstruction. A Sr2+-
crosslinked RGD-alginate hydrogel combined with Sr-doped
hydroxyapatite microspheres was engineered, showing a sustained
release of Sr2+ from two sources (Lourenco et al., 2019). The
researchers elaborated that this Sr-hybrid system facilitated MSC
osteogenic differentiation, inhibited the functions of osteoclasts and
modulated the inflammatory response. As a pro-vasculogenic
factor, Co2+ was incorporated into the alginate hydrogel shell,
while BMP-2 was laden into the collagen core (Perez et al., 2015).
Co2+ released relatively rapidly, as expected. VEGF secretion and
qPCR revealed that Co2+ not only stimulated angiogenesis but also
elevated osteogenic gene expression. These results indicated an
appealing prospect for applying metal ions bone tissue
engineering in the future.
TABLE 1 | Continued

Peptide Carrier material Release pattern Findings (ex/in vivo) Reference

Abaloparatide
(analog of PTH)

Photo-crosslinked methacrylated
gelatin hydrogel

25% released within 24 h,
remaining was released steadily
over next 10 days

Drug-loaded hydrogel showed significantly higher
rate of bone regeneration

(Ning et al.,
2019)

Oxytocin PLGA microsphere + poloxamer
hydrogel + b‐tricalcium phosphate (b-
TCP) and hydroxyapatite

42% released in first week,
complete release within 32 days

4 weeks after operation, the lowest residual graft and
highest BMD and BV was obtained among all groups

(Akay et al.,
2020)

Calcium
accumulating
peptide
(artificially
synthesized)

Gelatin-derived hydrogel Sustained release over 7 days,
collagenase accelerated release

Bone formation markers expression levels were
enhanced. Micro-CT and histology showed the
regenerative effect was superior to that of BMP-2
hydrogels

(Jo et al., 2018)
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Small Molecules
A range of pharmaceutical molecules were designed or
discovered to be effective in bone regeneration. Highlighted as
chelating agents, BPs are utilized as antiresorptive drugs
frequently in clinics. BPs mainly target osteoclasts, impeding
the differentiation and maturation of osteoclast progenitors.
Increasing evidence has shown that BPs directly or indirectly
take part in other bone-forming mechanisms and are capable of
targeting various cells (Corrado et al., 2017). Since bone healing
and regeneration is known to consist of three consecutive phases
of inflammation, repair, and remodeling, a proper scale of
immune response is indispensable (Claes et al., 2012).
However, excess or aberrant immune activation may
jeopardize bone repair procedures (Claes et al., 2012; Gibon
et al., 2017). Therefore, immunomodulatory drugs, such as
nonsteroidal anti-inflammatory drugs (NSAIDs), have been
applied in bone tissue engineering. Evidence has shown that
aspirin elevates MSC osteogenic potency by inhibiting the tumor
Frontiers in Pharmacology | www.frontiersin.org 8
necrosis factor-a (TNF-a) and interferon-g (IFN-g) pathways
(Liu et al., 2011). Statins are inhibitors of a key enzyme of
cholesterol synthesis and are widely used to lower serum lipids.
Researchers have reported that osteogenesis was enhanced
concomitant with promoted BMP-2 expression in bone cells
when treating cells and rodents with statins (Mundy et al., 1999).
Localized and sustained delivery of these drugs via hydrogels has
pointed to a new direction in bone tissue engineering. Many
relevant studies are listed and outlined in Table 2.
CONCLUSION AND FUTURE
PERSPECTIVES

In this review, we summarized a series of investigations focused
on hydrogel-based drug sustained release systems in bone tissue
engineering. The hydrogels possess a porous microarchitecture,
tunable biophysical parameters, and an adjustable degradation
A

B

FIGURE 2 | Schematic illustration of (A) positive feedback mediated by a cofactor-assisted smart hydrogel drug release system and (B) in situ application to
promote bone regeneration. Reprinted from a previous article by Zhang et al. (2018) with permission.
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rate, which makes them qualified bone tissue engineering
scaffolds. Due to their high water content, chemical inertness
and relatively sequestered and stable internal environment, they
are also excellent in preserving the viabilities of the laden cells
and bioactive factors. With the combination of biophysical and
biochemical cues, researchers are able to facilely establish an
osteo-friendly microenvironment, which would be beneficial for
osteoprogenitors to obtain better bone regeneration. Thus,
hydrogel-based biomaterials are strong candidates for current
or future bone tissue engineering.

Evidence has shown that hydrogel-based drug sustained release
systems are highly biocompatible and versatile drug deliverers,
obtaining satisfactory osteogenesis results both in vitro and in vivo.
The drug release profile varies according to the loading strategy,
degradation ability of the matrix and drug concentration. Among
these studies, physical entrapment and diffusion are the most
applied drug loading and release strategies, respectively. In
particular, the dispersion of drugs, ions and small molecules
largely depends on hydrogel pore size and crosslinking density.
Although it is quite simple and easy to operate, there are difficulties
in initial burst release management. Swelling or degradation of
hydrogel matrices contributes to polymer mesh size enlargement,
resulting in drug release acceleration, especially for
macromolecular drugs. Stronger interactions between matrices
Frontiers in Pharmacology | www.frontiersin.org 9
and drugs, such as electrostatic interactions and covalent bonds,
and other drug reservoirs could be introduced into hydrogels,
providing more efficacious drug protection and immobilization.
However, negative results have been reported from sustained
release systems that did not facilitate bone formation mainly
because the carrier exhibited an extremely strong affinity towards
the growth factor, resulting in a low level of drug concentration in
the surrounding tissue (Hettiaratchi et al., 2017). Thus, optimal
drug concentrations should also be determined to achieve a more
reasonable and effective release profile.

As mentioned above, cells from different origins are involved
in the bone formation process. A vast number of GFs and
cytokines collaboratively trigger the repair cascade. Extensive
studies have already been conducted on multiple bioactive
factors controlled release. Spatiotemporal sequence release of
bioactive factors might be a better mimic of complex
regeneration procedures as well as exert extraordinary
synergistic effects on bone regeneration. Various of multiple
GFs delivery strategies was coherently summarized (Chen et al.,
2010). Nevertheless, controlling dose ratio of drugs to maximize
the synergistic effects and manipulating multiple bioactive factors
release kinetics to mimic physiological release profile in different
phases of bone regeneration are obstacles in nowadays bone tissue
regeneration which needs further investigation.
TABLE 2 | Summary of selected studies on hydrogel-based small bioactive compound sustained release systems.

Drug Carrier material Release pattern Findings (ex/in vivo) Reference

Alendronate Fibrin hydrogel Steady release rate, cumulative release
of approximately 45% over 10 days

Hydrogel containing 10-6 M showed the best
augmentation in cell proliferation, osteogenic
differentiation, and bone regeneration.

(Kim et al., 2017a)

Dexamethasone
(Dex)

DNA- 2D silicate
nanodisks (nSi) hybrid
hydrogel

Release rate decreased with higher nSi
concentration. Half-time of release was
measured from 2.5 to 5.5 days

Drug bioactivity was preserved by the hydrogel. nSi
may contribute to in vivo osteogenesis whereas Dex
showed limited effects.

(Basu et al., 2018)

Aspirin Thermo-sensitive alginate/
b-TCP hydrogel composite

20% drug released in the first day,
40% in 3 days, slowdown in day 5.

Percent of mineralized tissue was significantly higher
compared to control group.

(Fang et al., 2018)

Aspirin Tetra-PEG hydrogel Released approximately 40% in first 2
days, cumulative release of 80% in 14
days

Low cytotoxicity, significantly improved expression of
osteogenic markers and calvarial defect regeneration.
Relatively low local inflammation status might be
attributed to being laden with aspirin.

(Zhang et al., 2019)

Diclofenac CS-coated alginate
hydrogel

Released 50% and 90% in 2.5 h and 8
h, respectively

Osteoblasts grew and mineralized significantly
regardless of drug exhaustion. Osteogenic genes
increased over time, while osteogenic suppressing gene
expression decreased.

(Lin et al., 2018a)

Tacrolimus Type I collagen hydrogel 21 days release profile remained similar
for different concentrations. Steady
release rate.

More newly-formed bone and blood vessels were
observed

(Nabavi et al., 2020)

Simvastatin Maltodextrin micelle-CHO/
hydrogel composite

Slow release profile, exhibiting a slight
difference according to different
degrees of oxidation

Good biocompatibility, stimulated ALP activity and
mineralization

(Yan et al., 2018)

Simvastatin L-lactic acid oligomer (LAo)
modified gelatin micelle/
gelatin hydrogel composite

Drug released faster as hydrogel
crosslinking degree decreased. Release
rate showed a good correlation with
hydrogel degradation rate.

Hydrogel loaded with 10 mg of drug formed the largest
area of bone

(Tanigo et al., 2010)

Rosuvastatin chitosan/chondroitin
sulfate nanoparticles+
Pluronic F127/hyaluronic
acid hydrogel composite

Release rate significantly slower than
control groups. 60% released from
composite in 48 h

Low cytotoxicity, more calcium deposits were observed (Rezazadeh et al.,
2019)
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