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Advancements in Noncontact, Multiparameter Physiological
Measurements Using a Webcam

Ming-Zher Poh*, Daniel J. McDuff, and Rosalind W. Picard

Abstract—We present a simple, low-cost method for measuring
multiple physiological parameters using a basic webcam. By ap-
plying independent component analysis on the color channels in
video recordings, we extracted the blood volume pulse from the fa-
cial regions. Heart rate (HR), respiratory rate, and HR variability
(HRY, an index for cardiac autonomic activity) were subsequently
quantified and compared to corresponding measurements using
Food and Drug Administration-approved sensors. High degrees
of agreement were achieved between the measurements across all
physiological parameters. This technology has significant potential
for advancing personal health care and telemedicine.

Index Terms—Autonomic nervous system, blood volume pulse
(BVP), heart rate variability (HRV), independent component anal-
ysis (ICA), noncontact, photoplethysmography (PPG), remote
sensing, respiration.

1. INTRODUCTION

HE OPTION of monitoring a patient’s physiological sig-
T nals via a remote, noncontact means has promise for im-
proving access to and enhancing the delivery of primary health-
care. Currently, proposed solutions for noncontact measurement
of vital signs, such as heart rate (HR) and respiratory rate (RR),
include laser Doppler [1], microwave Doppler radar [2], and
thermal imaging [3], [4]. Noncontact assessment of HR variabil-
ity (HRV), an index of cardiac autonomic activity [5], presents
a greater challenge and few attempts have been made [6]—[8].
Despite these impressive advancements, a common drawback of
the aforementioned proposals is that the systems are expensive
and require specialist hardware.

Photoplethysmography (PPG) is a low-cost and noninvasive
means of sensing the cardiovascular blood volume pulse (BVP)
through variations in transmitted or reflected light [9]. Although
PPG is typically implemented using dedicated light sources
(e.g., red and/or infrared wavelengths), Verkruysse et al. showed
that pulse measurements from the human face are attainable
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with normal ambient light as the illumination source [10]. How-
ever, the study lacked rigorous physiological and mathematical
models amenable to computation; it relied instead on manual
segmentation and heuristic interpretation of raw images with
minimal validation of performance characteristics.

Recently, we developed a robust method for automated com-
putation of HR from digital color video recordings of the human
face [11]. In this letter, we extend this methodology to quantify
multiple physiological parameters. Specifically, we extract the
BVP for computation of HR, RR, as well as HRV. To the best
of our knowledge, this is the first demonstration of a simple,
low-cost method for noncontact HRV measurements.

II. THEORY

Independent component analysis (ICA) is a relatively new
technique for uncovering independent signals from a set of ob-
servations that are composed of linear mixtures of the underly-
ing sources [12]. The underlying source signal of interest in this
study is the BVP that propagates throughout the body. During
the cardiac cycle, volumetric changes in the facial blood vessels
modify the path length of the incident ambient light such that the
subsequent changes in amount of reflected light indicate the tim-
ing of cardiovascular events. By recording a video of the facial
region with a webcam, the red, green, and blue (RGB) color sen-
sors pick up a mixture of the reflected plethysmographic signal
along with other sources of fluctuations in light due to artifacts.
Given that hemoglobin absorptivity differs across the visible
and near-infrared spectral range [13], each color sensor records
a mixture of the original source signals with slightly different
weights. These observed signals from the RGB color sensors are
denoted by ;1 (t), y2(t), and ys3(¢), respectively, which are the
amplitudes of the recorded signals at time point 7. We assume
three underlying source signals, represented by x; (t), xo(t),
and x3(t). The ICA model assumes that the observed signals
are linear mixtures of the sources, i.e.,

y(t) = Ax(t) (1)

where the column vectors y(t) = [y1 (t), y2 (), y3 ()], x(t) =
[21(t), 22 (t), 23(t)]7, and the square 3 x 3 matrix A contains
the mixture coefficients a; ;. The aim of ICA is to find a demixing
matrix W that is an approximation of the inverse of the original
mixing matrix A whose output

x(t) = Wy(t) 2

is an estimate of the vector x(¢) containing the underlying source
signals. To uncover the independent sources, W must maximize
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the non-Gaussianity of each source. In practice, iterative meth-
ods are used to maximize or minimize a given cost function that
measures non-Gaussianity.

III. METHODS
A. Experimental Procedure

This study was approved by the Institutional Review Board,
Massachusetts Institute of Technology. Our sample featured 12
participants of both genders (four females), different ages (18—
31 years) and skin color. All the participants provided their in-
formed consent. The experiments were conducted indoors and
with a varying amount of ambient sunlight entering through
windows as the only source of illumination. Participants were
seated at a table in front of a laptop at a distance of approximately
0.5 m from the built-in webcam (iSight camera). During the ex-
periment, participants were asked to keep still, breathe sponta-
neously, and face the webcam while their video was recorded for
one minute. All videos were recorded in color (24-bit RGB with
three channels x 8 bits/channel) at 15 frames per second (fps)
with pixel resolution of 640 x 480 and saved in AVI format on
the laptop. We also recorded their BVP and spontaneous breath-
ing using an FDA-approved finger BVP sensor and chest belt
respiration sensor (Flexcomp Infiniti by Thought Technologies
Ltd.), respectively at a sampling rate of 256 Hz.

B. Recovery of BVP from Webcam Recordings

All the video and physiological recordings were analyzed of-
fline using custom software written in MATLAB. Fig. 1 provides
an overview of the stages involved in our approach to recover the
BVP from the webcam videos. We utilized the Open Computer
Vision library [14] to automatically identify the coordinates of
the face location in the first frame of the video recording using
a boosted cascade classifier [15]. The algorithm returned the x-
and y-coordinates along with the height and width that define
a box around the face. We selected the center 60% width and
full height of the box as the region of interest (ROI) for our
subsequent calculations.

The ROI was then separated into the three RGB channels
[see Fig. 1(b)] and spatially averaged over all pixels in the ROI
to yield a red, blue, and green measurement point for each
frame and form the raw signals [see Fig. 1(c)] v (¢), y2(t), and
y3(t), respectively. Each trace was 1 min long. The raw traces
were detrended using a procedure based on a smoothness priors
approach [16] with the smoothing parameter A = 10 (cutoff
frequency of 0.89 Hz) and normalized as follows:

yi(t) — pi

O

yi(t) = 3)

for each 7 = 1,2, 3 where p; and o; are the mean and standard
deviation of y; (t), respectively. The normalized raw traces are
then decomposed into three independent source signals using
ICA [see Fig. 1(d)] based on the joint approximate diagonal-
ization of eigenmatrices (JADE) algorithm [17]. ICA is able
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Fig. 1. Recovery of the BVP waveform. (a) Face within the first video frame
is automatically detected to locate the ROI. (b) ROI is decomposed into red,
green, and blue channels for each frame and spatially averaged to form (c) the
raw signals. After the raw signals are detrended and normalized, ICA is applied
to separate three independent sources. In this example, the BVP is visible in the
second source signal.

to perform motion-artifact removal by separating the fluctua-
tions caused predominantly by the BVP from the observed raw
signals [11]. However, the order in which ICA returns the in-
dependent components is random. Thus, the component whose
power spectrum contained the highest peak was then selected
for further analysis.

C. Quantification of Physiological Parameters

The separated source signal was smoothed using a five-point
moving average filter and bandpass filtered (128-point Ham-
ming window, 0.7-4 Hz). To refine the BVP peak fiducial point,
the signal was interpolated with a cubic spline function at a
sampling frequency of 256 Hz. We developed a custom algo-
rithm to detect the BVP peaks in the interpolated signal and
applied it to obtain the interbeat intervals (IBIs). To avoid inclu-
sion of artifacts, such as ectopic beats or motion, the IBIs were
filtered using the noncausal of variable threshold (NC-VT) al-
gorithm [18] with a tolerance of 30%. HR was calculated from
the mean of the IBI time series as 60/IBL.

Analysis of HRV was performed by power spectral den-
sity (PSD) estimation using the Lomb periodogram. The low-
frequency (LF) and high frequency (HF) powers were measured
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as the area under the PSD curve corresponding to 0.04-0.15 and
0.15-0.4 Hz, respectively, and quantified in normalized units
(n.u.) to minimize the effect on the values of the changes in
total power. The LF component is modulated by baroreflex ac-
tivity and includes both sympathetic and parasympathetic influ-
ences [19]. The HF component reflects parasympathetic influ-
ence on the heart through efferent vagal activity and is connected
to respiratory sinus arrhythmia (RSA), a cardiorespiratory phe-
nomenon characterized by IBI fluctuations that are in phase
with inhalation and exhalation. We also calculated the LF/HF
ratio, considered to mirror sympatho/vagal balance or to reflect
sympathetic modulations.

Since the HF component is connected with breathing, the
RR can be estimated from the HRV power spectrum. When the
frequency of respiration changes, the center frequency of the
HF peak shifts in accordance with RR [20]. Thus, we calculated
RR from the center frequency of the HF peak frrpcak in the
HRV PSD derived from the webcam recordings as 60/ furpeak-
The respiratory rate measured using the chest belt sensor was
determined by the frequency corresponding to the dominant
peak fresppeak in the PSD of the recorded respiratory waveform
llSng 60/fresppeak-

IV. RESULTS

Using the techniques detailed in Section III, we extracted
the BVP waveforms from the webcam recordings via ICA. A
typical example of the recovered BVP recordings is shown in
Fig. 2(a) along with the BVP recorded with the Flexcomp sen-
sor. It is evident that the two signals are in close agreement
and their respective IBI signals are comparable [see Fig. 2(b)].
Since the IBI series is irregularly time-sampled, we utilized the
Lomb periodogram to obtain the PSD to avoid resampling and
inferring probable replacement values for excluded samples.
The resulting spectra are presented in Fig 2(c). Both spectra are
comparable and exhibit a dominant HF component. A second
example of HRV assessment is shown in Fig. 2(d)—(f). Once
again, the BVP and IBI signals are similar and the HRV power
spectra both exhibit a dominant LF component.

We were able to determine RR from the HRV power spec-
trum by locating the center frequency of the HF peak. Fig. 3(a)
presents an IBI time series and its corresponding PSD [see
Fig. 3(b)]. The center frequency of the HF peak was 0.23 Hz
(14 breaths/min) and corresponds to the fundamental breathing
rate computed from the PSD [see Fig. 3(d)] of the measured
respiratory signal using a chest belt sensor [see Fig. 3(c)].

The level of agreement between the physiological measure-
ments by our proposed method and reference sensors was ac-
cessed using Pearson’s correlation coefficients (n = 12). Corre-
lation scatter plots for each measured parameter are shown in
Fig. 4. The webcam-derived physiological measurements were
strongly correlated across all parameters with » = 1.0 for HR,
r = 0.92 for HF and LF, r = 0.88 for LF/HF, and r = 0.94 for
RR (p < 0.001 for all). The root-mean-squared error of the HR,
HE, LF, LF/HF, and RR was 1.24 beats/min, 12.3 and 12.3 n.u.,
1.1, and 1.28, respectively.
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Fig.2. HRV assessment using a webcam (thin gray lines) in comparison with a

finger BVP sensor (thick black lines). (a) BVP waveform (selected source signal
was smoothed using a five-point moving average filter and bandpass filtered,
0.7-4 Hz). (b) IBIs formed by extracting the peaks from the BVP waveforms.
(c) Normalized Lomb periodogram of the detrended IBIs exhibiting a dominant
HF component. (d)—(f) Examples of a recording exhibiting a dominant LF
component.
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Fig.3. Comparison of RR assessment between a webcam (thin gray lines) and

a chest belt respiration sensor (thick black lines). (a) IBI series from webcam
and its (b) normalized Lomb periodogram showing HF power (0.15-0.4 Hz)
centered at 0.23 Hz. (c) Respiration waveform measured by the chest belt sensor
and its (d) normalized Lomb periodogram showing the fundamental respiration
frequency of 0.23 Hz.
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Scatter plots comparing measurements of (a) HR, (b) HF, (c) LF, (d) LF/HF, and (e) RR between a webcam and reference sensors (finger BVP for HR

and HRV measures, chest belt respiration sensor for RR). p < 0.001 for all correlations.

TABLE I
SUMMARY OF OVERALL RESULTS

Heart Respiratory Heart Rate Variability
Statistic Rate Rate
LF HF

(bpm) (breaths/min) (n.u) (n.u) LF/HF
Mean error 0.95 0.12 7.53 7.53 0.57
SD of error 0.83 1.33 1017 10.17 0.98
RMSE 1.24 1.28 12.3 12.3 1.1
Correlation 1.00 0.94 0.92 0.92 0.88
coefficient

All analyses performed on one-minute recordings from 12 participants.

V. DISCUSSION

On the basis of the results from the present study (see
Table I), we have demonstrated the feasibility of using a simple
webcam to measure multiple physiological parameters. This in-
cludes vital signs, such as HR and RR, as well as correlates of
cardiac autonomic function through HRV. Our data demonstrate
that there is a strong correlation between these parameters de-
rived from webcam recordings and standard reference sensors.
Regarding the choice of measurement epoch, a recording of
1-2 min is needed to assess the spectral components of HRV [5]
and an averaging period of 60 beats improves the confidence
in the single timing measurement from the BVP waveform [9].
The face detection algorithm is subject to head rotation lim-
its. About three axes of pitch, rotation, and yaw, the limits were
32.6° £4.84°,33.4° 4+ 2.34°, and 18.6° = 3.75° from the frontal
position.

The results must be considered in light of several limitations
of the present study. First, the webcam video sampling rate fluc-
tuated around 15 fps due to the use of a standard PC for image
acquisition, causing misalignment of the BVP peaks compared
to the reference signal. The performance could be boosted, if
each video frame was time stamped and the signals were resam-
pled. Second, the video sampling rate is much lower than the
recommended rates (>250 Hz) for HRV analysis. By interpolat-
ing at 256 Hz to refine the peaks in the BVP and improve timing
estimations, we achieved the high correlations in Table I. We
acknowledge that PPG beat-to-beat variability can be affected
by changes in the pulse transit time, which is related to arterial
compliance and blood pressure, but it has been shown to be a
good surrogate of HRV at rest [21]. Another limitation of this
system is that only three source signals can be recovered. How-
ever, our results suggest that this is sufficient to obtain accurate

measurements of the BVP. Our findings should motivate exten-
sive validation and continued systematic exploration of these
variables.
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