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ABSTRACT The unique radiative, photometric and colorimetric characteristic of a light-emitting diode is
derived from its spectral power distribution. Modeling such characteristics with respect to the forward cur-
rent, temperature or operating time has been subject of various studies. Deriving a simple analytical model,
however, is not trivial due to the unique emission pattern varying with different types and technologies of
light emitting diodes. For this purpose, curve fitting multiple superimposed Gaussian probability density
functions to the spectral power distribution is a common approach. Despite very a high R2 goodness of fit
results, significant deviations within the photometric and colorimetric parameters, such as luminous flux
or chromaticity coordinates, are observed. In addition, most studies were conducted on a small sample
set of very few different spectral power distributions. This work provides a comprehensive comparison
and evaluation of 19 different (superimposed) probability density function based models provided by the
literature tested on a total of 15 different spectral power distributions of monochromatic blue, green and
red light-emitting diode as well as phosphor-converted spectra of lime, purple and different correlated color
temperature types white samples. All models were evaluated by means of their coefficient of determination,
radiant flux, chromaticity coordinate deviation and Bayesian Information Criterion. This study shows that a
superimposed (split) Pearson VII model is able to outperform the commonly used Gaussian model approach
by far. In addition, an application example in regard of forward current dependence is given to prove the
proposed approach.

INDEX TERMS light-emitting diode, LED, spectral power distribution, spectral modeling, spectral
decomposition

I. INTRODUCTION
The emission pattern of a light-emitting diode (LED) can
be described by its spectral power distribution (SPD) S(λ).
Typical performance metrics such as the radiant and lumi-
nous flux Φe,Φv , CIE color coordinates, Correlated Color
Temperature (CCT) or the Color Rendering Index (CRI) are
derived from the SPD [1]. The shape of S(λ) is formed by
two main factors: First, the material parameters of the LED
such as semiconductor material, number of quantum wells
or the type of phosphor in case of a phosphor-converted
(pc-)LED. Secondly, operating conditions impact the SPD
by means of Drive Current IF , Junction Temperature Tj ,
Ambient Temperature TA, Humidity rHA and operating time
t. In order to investigate the influence of a specific material or
operating parameter the SPDs behavior is modeled by means

of this parameter. A popular modeling approach is deconvo-
luting the SPD in separate SPDs S(λ) =

∑
Sn(λ), such as

SChip(λ)+SPhosphor(λ) for pc-LEDs. Using a superposition
of probability density functions (pdf) Sn(λ) = fpdf (x = λ)
is a commonly used approach. Each separated SPD can then
be further analyzed for example regarding its chromaticity
shift and direction to identify underlying degradation mecha-
nisms [2] .Real world SPD, however, exhibit pdf shapes with
a certain skew. This either produces inaccuracies for a low
number Sn(λ) or resulting in an impractical high number of
pdfs to ensure a certain accuracy.

The aim of this work is on finding a proper set of model
functions for modeling the SPD of various monochromatic
and pc-LEDs. Therefor, a review on existing modeling ap-
proaches is given. Afterwards a set of suitable model func-
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tions is evaluated on seven monochromatic and six pc-LEDs.
Subsequently the results are discussed and the optimized
model function is implemented for an application example
on simulating a monochromatic LEDs current dependency.

II. RELATED WORK
A. MONOCHROMATIC LED SPECTRA
The theoretical emission spectrum I(E) of a monochromatic
LED [3] is described by the product of the density of states
ρ(E) and carrier distribution allowed in the energy band
described by the Boltzmann distribution fB(E) given in (1)
with the Energy E, the Bandgap Energy Eg , Temperature T
and Botzmann constant kB .

I(E) ∝ ρ(E) · fB(E) =
√
E − Eg · e

−E
kBT (1)

Modeling the SPD by (1) requires in depth knowledge about
the LEDs material parameters. Even then, due to variations in
the manufacturing process and material composition as well
as the physical construction of the LED package, it is difficult
to give a sufficient estimate of the SPD. Reifegerste et al.
[4] in 2008 proposed the idea of modeling a monochromatic
LEDs spectral shape at different IF and Tj by curve fitting
different analytical functions to the SPD. For this purpose a
set of ten functions were investigated on a single LED type.
The functions are listed in table 2. It was concluded that a
Logistic Power Peak model performed best on the studied
LED sample. Contrary in [5] best results were yielded for
an Asymmetric Double Sigmoidal (Asym2Sig) models on a
blue, green and red LED sample. Keppens et al. [6] evaluated
a Sum of Gaussian model on each two red, green and blue
LED samples reporting a high coefficient of determination
R2 > 0.97 for five out of six LED samples. This study was
extended with amber and red samples by Raypah et al. [7]
reporting R2 > 0.95. By approximating (1) with an infinite
series expansion of Power Law model functions for both
sides of the peak wavelength λp Mozyrska and Fryc [8] took
a different approach. A R2 ≈ 0.98 could be realized on a
deep blue 380 nm sample with a R2 ≈ 0.99 on a Gaussian
model for as comparison. Current LEDs often utilize a multi
quantum well (MQW) structure impacting the SPDs slope.
For this purpose Vaskuri et al. [9], [10] reported suitable
results for red and blue samples utilizing an Asym2Sig model.
Since the scope of their work was on modeling junction
temperatures no goodness of fit metrics were provided for
a comparison to the studies above.

B. PHOSPHOR-CONVERTED LED SPECTRA
Analogous to monochromatic LEDs over the past decade
advances in modeling pc-LEDs were reported. The following
studies present exclusively white pc-LEDs since modeling
color pc-LEDs (purple, amber, green/lime) have not been the
scope of any study yet. A number of results on Sum of n
Gaussian models with n = 2..8 superimposed pdfs have
been reported. Guo et al. [11] separated the SPD in two
narrow band (blue, red) and one wide band region (green).

Subsequently, each region was modeled with two (narrow
band) respectively four (wide band) totaling n = 8 weighted
Gaussian model functions but no R2 was reported. Similarly
a combination of n = 7 unweighted Gaussian model was
chosen by aR2-maximizing algorithm by Song and Han [12].
On an n = 2 unweighted Gaussian model Chen et al. [13]
achieved a R2 > 0.99 on four different samples. Additional,
[14]–[17] focus on predicting certain performance parame-
ters of white pc-LEDs by incorporating Gaussian models in
their prediction algorithms denoting R2 > 0.98 for the input
fitting functions. Fan et al. yielded in their model SPD a
minimal higher coefficient of determination for the Asym2Sig
model compared to the Gaussian model of both R2 ≈ 0.99.

C. PHOTOMETRIC AND COLORIMETRIC ACCURACY
VS. COEFFICIENT OF DETERMINATION
The majority of the above mentioned studies present the
coefficient of determination as a proper evaluation metric.
From a mathematical or statistical point of view a R2 > 0.95
may indicate a high correlation and thus a good result.
Nonetheless some studies yield at best moderate results in the
radiometric or colorimetric domain [5]–[7], [11], [15], [17],
[18]. Therefor, a combination of statistical, colorimetric and
radiometric parameters should be taken into account when
selecting a proper model function.

III. EXPERIMENT
The following section emphasizes on describing the exper-
imental details in regard of LED samples used, the investi-
gated model functions and the implementation.

A. SAMPLES
A total of 15 different monochromatic (blue, green, red)
and pc-LEDs (lime, purple, white) were selected to cover
a diverse spectral range of SPDs within the visible light
spectrum. Table 1 highlights the most important radiometric
and colorimetric parameters. It should be noted, that the peak
wavelengths for plateaus in the SPD were estimated to point
out a distinct underlying function. The normalized SPDs are
shown in Fig. 1.

B. IMPLEMENTATION
The experimental code is implemented in Python program-
ming language with the LMFIT package [19] for model
fitting and evaluation. For this purpose the built-in set of
model functions was extended by custom models according
to the literature. Table 2 gives an overview of the evaluated
models f(λ, p) with their set independent variables p =
{p1, ...pn} as well as the literature reference for the model
implementation. It should be noted, that two varying Pearson
type VII models were found in the literature. Therefor, both
implementation by Reifegerste et al. [4] and LMFIT built-in
[19] are denoted Pearson VIIa and Pearson VIIb respectively.
The common model parameter boundaries were arbitrarily
set to the following intervals: Amplitude A ∈ [0.001, 100],
Peak Wavelength λp ∈ [400, 800], (left/right side) Standard
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TABLE 1. Overview of LED sample key parameters: Radiant Flux Φe, Peak
Wavelength(s) λpn, CIE 1976 USC u′, v′.

Sample Φe (mW) λpn (nm) u’ (a.u.) v’ (a.u.)
Blue 1 306.4 450.6 0.203 0.079
Blue 2 290.5 445.9 0.215 0.061
Blue 3 550.2 444.6 0.218 0.058
Green 184.7 518.9 0.054 0.571
Red 1 177.3 632.4 0.533 0.520
Red 2 336.5 633.4 0.537 0.519
Red 3 367.8 660.0 0.587 0.512
Lime 245.5 447.8; 541.1 0.187 0.558

Purple 363.3 447.6; 646.2 0.463 0.503
White 1 470.3 443.5; 515.7; 550.5; 650.9 0.220 0.482
White 2 214.6 443.3; 597.5 0.229 0.507

White 2700K 333.6 449.0; 461.7; 626.4 0.267 0.533
White 3000K 320.4 450.0; 461.6; 623.1 0.253 0.533
White 4000K 379.9 443.0; 547.0; 616.8 0.225 0.511
White 6500K 374.3 442.3; 536.1; 614.3 0.197 0.482
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FIGURE 1. Peak wavelength intensity normalized test spectra of 13 sample
LEDs: (top) monochromatic spectra of three blue, three red and one green
LED; (bottom) phosphor-converted spectra of four white, one lime and one
purple LED.

Deviation σ, σ1, σ2 ∈ [1, 300]. Additional model specific
parameter intervals can be found in table 2. All code is avail-
able at our repository: https://github.com/SBenkner/Spectral-
Fitting.

TABLE 2. Evaluated model functions for the experiment with their fitting
parameters and the models literature reference.

Model Independent Variables Source
Gaussian A, λp, σ [4]–[8], [11]–

[21]
Split Gaussian A, λp, σ1, σ2 [4], [5]
Exponential Gaussian A, λp, σ

γ ∈ [−100, 100]
[19]

Skewed Gaussian A, λp, σ
γ ∈ [−100, 100]

[19]

Lorentzian 1. Ord. A, λp, σ [15], [16], [19]
Split Lorentzian 1. Ord. A, λp, σ1, σ2 [19]
Lorentzian 2. Ord. A, λp, σ [4]
Asym. 2 Sigmoidal A, λp, σ

S1, S2 ∈ [10−15, 100]
[4], [5], [9],

[10], [16], [21]
Logistic Power Peak A, λp, σ

S ∈ [10−15, 100]
[4], [5]

Asym. Power Peak A, λp, σ
S ∈ [10−15, 100]

[4]

Pearson VIIa A, λp, σ
S ∈ [10−15, 100]

[4]

Pearson VIIb A, λp, σ
m ∈ [10−15, 100]

[19]

Split Pearson VII A, λp, σ1, σ2
S1, S2 ∈ [10−15, 100]

[4]

Voigt A, λp, σ
γ = σ

[19]

Pseudo Voigt A, λp, σ
α ∈ [10−15, 100]

[19]

Skewed Voigt A, λp, σ
γ = σ
S ∈ [10−15, 100]

[19]

Moffat A, λp, σ
β ∈ 10−15, 100]

[19]

Student T A, λp, σ [19]
Lognormal A, λp, σ [19]

Independent Variables: Amplitude A; Peak Wavelength λp; (left/right side)
Standard Deviation σ, σ1, σ2; (left/right side) Skew/Kurtosis S, S1, S2;
weighting or scaling parameter α, β, γ,m.

Preliminary, two assumptions are made to find the most
suitable fit function: The radiation pattern of a monochro-
matic LED follows only one type of model function. This
function type can be superimposed nChip ≥ 1 times to
represent e.g. n different QW in a MQW structure. Secondly,
pc-LEDs incorporate at least two superimposed functions
n = nChip + nPhosphor ≥ 2 where nChip ≥ 1 and
nPhosphor ≥ 1. Since it can be assumed that limn→∞R2 →
1 the number of model functions is limited to n = 3 for
monochromatic LEDs and n = 6 for pc-LEDs to maintain
a realistic and practical approach. Thus, with the given con-
straints the total number of possible model combinations can
be calculated with N(n) = M ·

∑n
i i to Nmono([1, 3]) = 57

and Npc([2, 6]) = 95 with M = 19 different model func-
tions. The maximum number of fit iterations before the fit is
aborted is set to 100.000. Each fit is evaluated regarding its
statistical, radiometric and colorimetric properties. In order
to provide a comparability to the literature the coefficient of
determination R2 (2) has been selected from the statistical
domain. Additionally, the fitted models Bayesian Information
Criterion (BIC) was determined according to (3) with the
number of data points m, the number of parameters k and
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the models maximum likelihood function L̂ [22]. From the
radiometric domain the relative difference in radiant flux ∆Φ
(4) was evaluated since even changes in brightness of about
7.4% are noticeable according to Hu and Davis [23]. To
accompany a steadiness in the colorimetric perception the
chromaticity difference ∆u′v′ (5) [1] was chosen from the
colorimetric domain since the CIE 1976 u′v′ color space is
recommended by the CIE for its uniformity [24].

R2 =

∑
(yi,fit − ȳtrue)2∑

(yi,true − ȳtrue)2
, ȳtrue =

∑m
i yi,true

N
(2)

BIC = k ln(m)− 2 ln(L̂) (3)

∆Φ = 100 ·
(

Φfit

Φtrue
− 1

)
(4)

∆u′v′ =
√

(ufit − utrue)2 − (vfit − vtrue)2 (5)

In order to delimit the set of possible models boundaries
have to be set for each evaluation metrics (2)-(5) to rule
out irrelevant models. Since, the coefficient of determination
shows the correlation between the original and its fitted SPD
aR2 ≥ 0 has to be expected. ValuesR2 < 0 would indicate a
negative correlation yielding an inverse shaped SPD fit of the
original SPD. A difference in radiant flux of ∆Φ < −100%
would represent a physically impossible negative SPD. Due
to the high sensitivity of the human eye regarding a change
of brightness the range of allowed difference in radiant flux
was arbitrarily set to ∆Φ ± 25%. Considering the CIE 1976
UCS color space boundaries chromaticity difference values
above ∆u′v′ ≈ 75 × 10−3 would exceed the spectral
locus. As described in [24] thresholds for ∆u′v′ are mainly
defined near the Planckian Locus of the CIE 1976 UCS color
space diagram it is difficult to chose a specific threshold
especially for monochromatic spectra. Thus, in this work
the CS4 threshold declared in IES/ANSI TM-35 [25] of
∆u′v′ = 4× 10−3 is used.

IV. RESULTS AND DISCUSSION
Following, the different fit models results are presented and
discussed with respect to their accuracy according to (2)-
(5). First the results of the monochromatic set of SPDs
are evaluated. Subsequently, the set of pc-LED spectra is
analyzed.

In case of the monochromatic SPD samples 399 theoret-
ical models in total were evaluated. Considering the above
defined constraints a total of 174 models remained as valid
for further inspection. Table 3 shows the number of valid
functions for each sample and number of superimposed func-
tions. As previous stated, the accuracy, and thus the number
of valid models, increases with n. It can also be concluded
that even with n = 1 at least one model function can be found
meeting the boundary conditions. Superimposing at least two
functions yields a ∆u′v′ < 2× 10−3 for all valid models.

Next, the top ten models with the lowest ∆u′v′ of each
sample SPD were compared. According to majority of the
literature a composition of Gaussian models was expected to
yield the best results. However, on the given monochromatic

TABLE 3. Total number of valid models for each sample and number of
functions n.

Sample n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
Blue 1 1 2 9 - - -
Blue 2 5 6 12 - - -
Blue 3 5 6 12 - - -
Green 5 9 11 - - -
Red 1 1 3 10 - - -
Red 2 1 5 9 - - -
Red 3 2 3 8 - - -
Lime - 5 11 12 13 12

Purple - 0 0 5 8 7
White 1 - 0 7 6 10 11
White 2 - 9 14 13 11 14

White 2700K - 10 14 14 15 14
White 3000K - 6 14 14 14 12
White 4000K - 3 12 10 10 11
White 6500K - 5 10 12 13 15

sample SPDs the Gaussian model was vastly underrepre-
sented. A (split) Pearson VII distribution and Skewed Voigt
model provided the lowest ∆u′v′ and ∆Φ. The information
gain from the coefficient of determination was rather small
since all selected models showed a R2 ≥ 0.98. Taking ∆Φ
and BIC into account (split) Pearson7 performed best overall
on all monochromatic samples. It should be noted, that in
most cases the LMFIT implemented Pearson VIIb model
[19] performed best, yet all three Pearson VII models yielded
superior results. A comparison of the Pearson VII and the
Gaussian models for different n is given in table 4 and 5
for ∆u′v′ and ∆Φ respectively. In case of the red samples
with a n = 1 Gaussian model the fit process exceeded the
maximum fit iterations probably due to the chosen parameter
boundaries in combination with the SPDs high right side
skew an steep decrease. Therefore, no values can be reported.
With only one Pearson VII type function 5 of 7 samples could
meet the CS4 condition while the remaining two samples
slightly failed it by ∆u′v′ < 0.51 × 10−3. Whereas for the
Gaussian models exceeded ∆u′v′ < 10 × 10−3. Even with
n = 3 only 3 of 7 samples matched the CS4 condition for
the Gaussian model. An observable increase in ∆u′v′ and
∆Φ for n = 2 on sample Red 3 can be traced to a problems
fitting two functions on the given type of SPD decreasing
the fit quality compared to n = 1 due to Gaussian models
missing kurtosis parameters.

TABLE 4. Chromaticity difference results of Pearson Type VII distribution (P7)
compared to Gaussian distribution (G) with n = 1..3 model functions on the
monochromatic LED set.

LED
∆u′v′ (×10−3)

n=1 n=2 n=3
P7 G P7 G P7 G

Blue 1 4.04 16.78 1.00 8.88 1.21 5.06
Blue 2 0.73 12.08 2.38 5.99 0.51 4.75
Blue 3 1.44 11.54 2.00 5.79 0.32 4.62
Green 1.17 10.02 0.41 1.56 0.05 0.19
Red 1 2.55 - 2.20 7.32 0.07 2.51
Red 2 0.37 - 2.54 6.87 0.28 2.49
Red 3 4.51 - 10.15 16.93 0.37 3.53

A similar procedure was performed for evaluating the pc-

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3197280

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Benkner et al.: Advancements In Modeling And Deconvolution Of Ligth-Emitting Diode Spectral Power Distribution

TABLE 5. Difference in radiant flux results of Pearson Type VII distribution
(P7) compared to Gaussian distribution (G) with n = 1..3 model functions on
the monochromatic LED set.

LED
∆Φ (%)

n=1 n=2 n=3
P7 G P7 G P7 G

Blue 1 2.6 -8.1 -0.1 -1.4 0.0 -0.9
Blue 2 1.5 -7.5 0.4 -1.0 0.0 -1.0
Blue 3 1.2 -6.9 -0.3 -0.8 0.0 -0.9
Green 0.1 -3.8 0.1 -0.7 0.1 -0.2
Red 1 1.0 - 0.6 -2.0 0.1 -0.4
Red 2 1.3 - 0.7 -1.8 0.1 -0.4
Red 3 0.6 - 0.9 -7.8 -0.1 -0.4

LED spectra. Out of the 760 evaluated models 406 models
met the boundary conditions. Due to the varying shape of the
phosphor-related spectral emissions a broader set of possi-
ble functions could be identified: Gaussian, Split Gaussian,
Skewed Gaussian, Asym2Sig, Pearson VIIa/b, Split Pearson
VII, Skewed Voigt and Moffat. The total number of valid
functions for the pc-LED SPDs with respect to the number
of superimposed functions is shown in fig. 3. Apart from
the Purple and White 1 sample it was possible to find at
least one model that met the CS4 condition at n = 2 on
every sample. Since White 1 was explicitly chosen because
of its three phosphor peaks it was expected to fail. The
purple sample on the other hand could not be fitted properly
with low n two separated peaks as further described at the
end of this passage. In accordance to the monochromatic
results described above the (Split) Pearson VII on average
on all samples again yielded promising results as shown in
tables 6 and 7. Especially at lower model numbers n ≤ 3
(Split) Pearson VII outperforms a Gaussian model approach
by a factor of at least more than two. Yet, with only two
superimposed functions 5 of 8 samples can be sufficiently
modeled with a (Split) Pearson VII model compared to only
1 of 8 models meeting the CS4 condition with a Gaussian
model. At higher model number of n ≥ 4 both model types
perform with a high accuracy. Further two special cases are
observable: Firstly, the Purple and White 4000K samples
show an increase in ∆u′v′ at n = 6 and n = 5 respectively
for the Gaussian model that can be traced back to fitting
problems analogous to the Red 3 sample. Secondly, both
model types produce a high chromaticity difference for the
Purple sample at n = 2, 3. This situation occurs mostly
due to the fact, that the fitting algorithm has to find a trade-
off between magnitude and width of the resulting function
alongside with a desired shape. For the given model types
either the magnitude requirement is met by overfilling the
valley between since the functions width exceeds the peak
width. Alternatively, one or both peaks are underfilled since
the shape/width requirements are satisfied with the drawback
in magnitude.

The observed improvements of a Pearson VII compared
to Gaussian type model can be concluded due to two rea-
sons: (Split) Pearson VII provides additional shape/skew
adjustment capabilities given by its exponents m,S, S1 and

TABLE 6. Chromaticity difference results of Pearson Type VII distribution (P7)
compared to Gaussian distribution (G) with n = 2..6 model functions on the
pc-LED set. The following abbreviations are used for the sample: W1=White 1,
W2=White 2, WxxK=White xx00K.

LED
∆u′v′ (×10−3)

n=2 n=3 n=4 n=5 n=6
P7 G P7 G P7 G P7 G P7 G

Lime 1.01 6.43 0.03 6.01 0.03 2.79 0.23 0.02 0.03 0.01
Purple 12.5 29.93 6.83 29.27 0.12 2.37 0.05 1.17 0.17 21.37

W1 6.07 25.61 1.18 0.84 0.17 0.61 0.20 0.61 0.13 0.6
W2 0.94 29.04 0.04 1.67 0.18 1.67 0.03 0.03 0.28 0.03

W27K 2.64 2.44 2.9 0.12 0.14 0.10 0.01 0.10 0.00 0.14
W30K 2.92 11.15 2.8 2.42 0.07 0.14 0.12 0.22 0.00 0.21
W40K 5.41 16.45 0.04 1.42 0.04 0.13 0.03 16.45 0.00 0.3
W65K 1.09 21.81 0.34 0.45 0.08 0.06 0.01 0.43 0.03 0.01

TABLE 7. Difference in radiant flux results of Pearson Type VII distribution
(P7) compared to Gaussian distribution (G) with n = 2..6 model functions on
the pc-LED set. The following abbreviations are used for the sample:
W1=White 1, W2=White 2, WxxK=White xx00K.

LED
∆Φ (%)

n=2 n=3 n=4 n=5 n=6
P7 G P7 G P7 G P7 G P7 G

Lime -0.4 -2.5 0.0 -2.3 0.0 0.3 0.1 -0.3 0.1 -0.1
Purple -1.3 -3.1 1.2 -2.8 0.0 -0.3 0.1 0.0 0.0 -0.1

W1 0.7 1.3 0.5 -2.8 0.3 -0.2 0.2 -0.2 0.0 0.3
W2 0.9 -0.2 0.1 0.3 0.2 0.3 0.1 0.0 0.3 0.0

W27K -0.4 0.5 0.4 -0.6 0.2 0.1 0.0 0.1 0.0 0.1
W30K 0.5 -0.2 0.8 0.5 0.1 -0.5 0.0 0.1 0.0 0.1
W40K 1.5 1.4 0.1 1.6 0.1 -0.2 0.1 1.4 0.0 0.1
W65K 1.0 2.0 0.4 -0.1 0.2 -0.1 0.1 0.3 0.1 -0.2

S2. This allows a tighter fit to the semiconductor emission
spectrum. Secondly, a Gaussian distribution is a special
case of the Pearson VII distribution for large exponents
m,S, S1, S2 → ∞, thus, it approximates a Gaussian dis-
tribution at large numerical exponent values and covers the
case of Gaussian like SPDs. Furthermore, result deviations
between both Pearson VIIa [4] and Pearson VIIb [19] were
observed, although both should theoretically yield the same
results. The reason can be found in the different types of for-
mulas Reifegerste et al. and Newville et al. provided. While
Pearson VIIb appears to be the general form of Pearsons
Type VII distribution, yet, no information or background on
Pearson VIIa could be found. Both model functions Pearson
VIIa and Pearson VIIb are shown in (6) and (7) respectively
with the Beta-Function β(a, b) set to a = m− b, b = 0.5 and
C = [(λ− λp) /σ]

2.

fPVIIa(λ;A, λp, σ, S) = A ·
[
1 + C ·

(
2

1
S − 1

)]−S
(6)

fPVIIb(λ;A, λp, σ,m) = A · [σβ(a, b)]
−1 · [1 + C]

−m (7)
(8)

It should be highlighted, that Reifegerste denotes the pa-
rameter S in Pearson VIIa and Split Pearson VII a "skew"-
parameter while the general form of a Pearson Type VII
distribution is a symetrical function only providing only a
"shape"-parameter m. Moreover, this might give an expla-
nation to some rare cases of Split Pearson VII performing
slightly worse than Pearson VIIb since an accuracy improve-
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FIGURE 2. Spectral power distribution of a blue monochromatic LED sample
for different forward currents IF : (round markers) Measured SPD and (solid
line) fitted SPD with n = 2 superimposed Split Pearson VII model functions.

ment should be observable due to its left and right side ad-
justment parameters σ1, σ2, S1, S2 adding more fit flexibility
compared to a non-split Pearson VIIb model.

V. APPLICATION EXAMPLE
This section presents an use case of the above proposed Pear-
son VII model for monochromatic LED spectra. Therefore,
a spectral measurement of a blue LED (type: Blue 1) at
different forward currents of IF = [10, 25, 50, 100]mA in an
temperature controlled setup was conducted at Tj ≈ 25 °C.
This example was specifically chosen due to the unsymmet-
rical shape of the SPD with a "bump" at around λ ≈ 465 nm
to add additional complexity. The measured SPD for each
forward current was subsequently fitted with a n = 2
function Split Pearson VII model. With a ∆u′v′ ≤ 0.001,
|∆Φ| < 0.2% and R2 ≥ 0.999 the applied model yields
a very high accuracy for all forward currents. The original
SPD and the fitted SPD are shown in figure 2.

Further it should be noted, that the following analysis is
intended to show the possibilities and limitations of this ap-
proach rather than building a correct physical model. This ex-
ample evaluates the linear high correlation |r(IF , p(IF ))| →
1 indicates a positive or negative linear proportionality be-
tween IF and p. The dependency of each parameter and their
linear correlation coefficients are shown in tab. 8 with f1

and f2 representing the left and right superimposed functions
respectively. The following expectations based on can be
evaluated:

TABLE 8. Forward current dependency of Split Pearson VII model parameters
p(IF ) with two superimposed model functions f1 and f2 by means of their
correlation r(IF , p).

Parameter p r(IF , p) (a.u.)
Function f1 Function f2

Amplitude (A) 0.999 0.999
Peak wavelength (λp) -0.986 -0.989

Left side standard deviation (σ1) 0.997 0.630
Right side standard deviation (σ2) 0.988 0.992

Left side skew factor (S1) 0.990 0.611
Right side skew factor (S2) -0.107 0.984

1) IF ∝ A, σ1, σ2: As more photons are emitted with in-
creasing forward current and thus increasing the SPDs

amplitude and thus its standard deviation σ that can be
related to the Full Width Half Maximum (FWHM) of
the SPD by FWHM(σ) = kσ where k = 2

√
2 ln 2

in case of a Gaussian distribution function [3]. Both
functions yield a high correlations for A, σ1 and σ2

except σ1 of f2. The reason here can be found in the
minimal variation of the left split of f2 since f2 mainly
contributes to shape of the SPDs right side bump.

2) IF ∝ λ−1
p : With increasing IF the SPD shifts to

lower peak wavelengths λp due to piezoelectric field
screening [26], [27]. This effect can also be confirmed
by both functions parameters λp.

3) IF ∝ S1, S2: Analyzing the shape of the four example
spectra three areas are of interest: The SPDs slope left
to λ < λp (a), the right sides slope from the SPDs peak
to its bump λp ≥ λbump (b) and lastly the right side
bumps prominence (c). Regarding the parameter S1

table 8 shows a high correlation for f1 and a mediocre
correlation for f2 since f1 mainly affects above de-
scribed area (a). Similar, f2 controls the areas and (c)
by the parameter S2. The low correlation of functions
f1 parameter S2 occurs since the fit algorithm tries
to model the right split of f1 to fit around the bump
modeled by f2. This point clearly shows potential for
optimization. One solution can be implementing so
called expression models for each parameter to follow
a certain physical function.

VI. CONCLUSION AND FUTURE WORK
In this work the least squares fitting performance of different
probability density model functions on monochromatic and
phosphor-converted LED spectra was evaluated. A total of
19 different model functions was examined with n = 1..3
and n = 2..6 superimposed functions of the same type on
seven monochromatic and eight pc-LED spectra respectively.
A literature research demonstrated that the coefficient of de-
termination as a goodness of fit metric has a low information
value since an R2 ≥ 0.95 for the majority of cases was
reported. A combination of the change in chromaticity ∆u′v′

and radiant flux ∆Φ as well as the Bayesian Information Cri-
terion proved to be more meaningful in mathematical terms
and also in accordance with the human light perception. As a
key result it was concluded that a (Split) Pearson VII model
function yields highly accurate results on the evaluated SPD
sample set contrary to the commonly used Gaussian model
function. A promising usability of a (Split) Pearson VII
distribution to model the current dependency of a blue LED
was furthermore presented. Thus, this works recommends
the (Split) Pearson VII model function for the purpose of
spectral modeling and decomposition. However, in this work
a globally set of fit parameter constraints was applied to all
functions. Fitting results may be further improved by deter-
mining model specific constraints and starting parameters. As
discussed before the origin of difference of the three Pearson
Type VII model functions VIIa, VIIb, Split VII has to be
examined in depth.
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