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Abstract: The SARS-CoV-2 coronavirus, also known as the disease-causing agent for COVID-19, is a
virulent pathogen that may infect people and certain animals. The global spread of COVID-19 and its
emerging variation necessitates the development of rapid, reliable, simple, and low-cost diagnostic
tools. Many methodologies and devices have been developed for the highly sensitive, selective,
cost-effective, and rapid diagnosis of COVID-19. This review organizes the diagnosis platforms into
four groups: imaging, molecular-based detection, serological testing, and biosensors. Each platform’s
principle, advancement, utilization, and challenges for monitoring SARS-CoV-2 are discussed in
detail. In addition, an overview of the impact of variants on detection, commercially available kits,
and readout signal analysis has been presented. This review will expand our understanding of
developing advanced diagnostic approaches to evolve into susceptible, precise, and reproducible
technologies to combat any future outbreak.

Keywords: SARS-CoV-2; coronavirus; variants; immunoassays; diagnosis

1. Introduction

The human coronaviruses causing fatal respiratory diseases were first observed in
1960 as the common flu [1]. The two pathogens SARS and MERS from the past were
found lethal after attacking the respiratory tracts of the patients leading to nosocomial
outbreaks [2,3]. Phylogenetic analysis reveals that bats are the natural reservoirs of SARS
and MERS with the intermediate host Asian Palm civet and dromedary camels [4,5]. Severe
acute respiratory syndrome corona virus 2 (SARS-CoV-2) emerged from the animal market
in Wuhan, China. A sizeable (100–160 nm) group of spherically sensitive, non-segmented
SARS-CoV-2 can infect both animal and human viruses [6–9]. The virus bypassed from the
lineage B of coronaviruses due to the proteases breakdown at the receptor binding site of
host cells, facilitating the transmission from animal to human [10,11]. SARS-CoV-2 belongs
to the family Coronaviridae, subfamily Orthocoronavirinae, and order Nidovirales, which
is further subdivided into four genera alpha (α), beta (β), delta (δ) and gamma (γ) CoVs,
respectively. The lineage B of β-CoVs has three more lineages: A, C, and D [12,13]. The
family contains the 10 deadliest human-borne viruses. For example, the death rates for
SARS-CoV and MERS-CoV are 10% and 36%, respectively. The α- and β-coronaviruses
have their origin in mammals including camels, pigs, bats, and rodents, while the other
two δ and γ-coronaviruses infect birds and mammal whales. Generally, these viruses
infect the respiratory and digestive tracts of their hosts [14]. SARS-CoV-2 contains a single
strand RNA of ≈30 kb which has a cap-like structure at 5′ and a poly-(A) tail at the 3′

end. In the Figure 1 the structural elements of the SARS-CoV-2 are shown. The genomic
RNA is surrounded by the basic structural protein, giving it a crown-like appearance. The
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nucleocapsid protein (N-protein) enveloped the viral genome in a helical pattern, while the
membrane protein (M-protein) incorporated with the inner nucleoproteins to form a basic
structure [13,15–18].
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Figure 1:  

 

 

 

 

 

 

Figure 1. SARS-CoV-2 structure diagram. The majority of building proteins include spike (S),
membrane (M), envelope (E), and nucleocapsid (N). The viral envelope and a lipid bilayer derived
from the host cell membrane contain the proteins S, M, and E. The N protein binds to the viral RNA
at the virion’s core.

The order of the SARS-CoV-2 genome is 5′-cap structure replicase (open reading frame
1/ab)–structural proteins linked with a spike–envelope–membrane-nucleocapsid (N)—3′

poly (A) tail is similar to the other β-CoVs. Furthermore, the variants of SARS-CoV-2 have
been observed in several countries and reported by the WHO. The variants are named
after the first reported date or the changes in the sequence of the amino acids. The WHO
reports categorized the variants as “variants of interest” (VOI) and the “variants of concern”
(VOC), along with the recommended actions that need to be taken by the state after its
identification. The VOI is said to be the SARS-CoV-2 isolates with different genomic and
phenotypic changes compared to the reference genome, while VOCs are the VOIs that
have a demonstrable increase in transmissibility and virulence without effective control by
current public health measures [19]. The transmissibility of the pathogen is its strength to
invade a population and the measurement of the required strength to eliminate the spread of
the pathogen. The transmission potential of the pathogen is defined by its reproduction rate
(R0) [20]. The reproduction rate of the SARS-CoV-2 is up to 3.6 comparatively higher than
that of SARS-CoV (R0 = ~3.0) and MERS-CoV (R0 = ~1.5) [21]. The presence of more cross-
protective epitopes of S-protein than N-protein in SARS-CoV-2 makes it more contagious
than SARS-CoV and MERS-CoV [22]. The viral genome after entry into the host cell served
as a template to translate polyprotein ORF1/ab to build 16-nonstructural proteins and
proteolytically cleaved to perform their putative functions [18]. These putative functions
are to serve as replication and transcription complexes (RTCs) for the further generation
of viral copies or as templates as a negative-sense RNA intermediate to produce positive-
sense strand and sub-genomic RNAs by RTCs [23,24]. The incubation period of the original
strain of SARS-CoV-2 is from 2 to 5.6 days to the maximum of day 12, or maybe patients
do not experience any symptoms. Comparatively, the variants of SARS-CoV-2 showed
up the symptoms faster [25]. The SARS-CoV-2 due to its high transmissibility, shorter
incubation period, and highly potent variants has led to the ongoing pandemic becoming
a global challenge. In addition, the mutations that have a phenotypic expression of high
transmissibility and virulence must impact the diagnosis. The increasing number of COVID-
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19 patients is causing loss of lives and economic costs. The simple and fast monitoring
of viral particles in the bio-fluids can help to diagnose the healthy/unhealthy conditions
of a person and ensure early therapeutics. In this review, different techniques including
molecular-based detection, serological testing, bio-imaging, and biosensors used for the
diagnosis of COVID-19 in biological samples were discussed. In the beginning, the factors,
such as the person’s travel history, auxiliary examinations, or imaging, including CT scan
or chest X-rays, were to be considered for the diagnosis. Subsequently, DNA sequencing
and reverse transcription-polymerase chain reaction (RT-PCR) were used for the diagnosis
of COVID-19 [26]. DNA sequencing is also significant for the monitoring of SARS-CoV-2
variants [27]. During the current pandemic, the unprecedented situation comprised of many
challenges such as detection at the individual level at mass level screening. The basic testing
procedures that are being followed are molecular assay and immunoassays. These testing
techniques are modified to meet current needs. Many test formats have been established,
such as lateral flow immunoassay [28], ELISA [29], dipstick [30], and cartridge-based
platforms [31] to enhance the testing specificity and sensitivity. The detection of SARS-CoV-
2 has been through many interlink-modified methods. The challenges these approaches
faced in the analysis of different variants are also described. The future directions for
the possible solutions to the challenges in these techniques for commercially advanced
applications of current methods are included. This review will be of great interest to the
researchers working in the same domain, and it will serve as an informative tutorial tool
for researchers from other fields and beginners. This study will explore the possibility of
easy surveillance with in vitro diagnostic devices for the detection of COVID-19 to prevent
its fast spreading.

2. Detection Techniques of SARS-CoV-2

Moreover, detection strategies have been proposed based on different degrees of
specifications. Each procedure followed the single or multiple targets related to the novel
virus. Table 1 presents the conventional detection methods based on commercialized and
non-commercialized techniques with advanced modifications.

Table 1. Diagnostic Methods of SARS-CoV-2.
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Time (min.) Target Analyte Validated Samples

NAT reagent kit
(Open source)

60–120
<13 [32]

40–50 [33]
83 [34]

8 h (188 samples)
[35]

N-gene,E-gene, S-gene,
ORF1ab,

RdRp gene,
ORF1a,

Nasopharyngeal swab,
Unknown,

Oropharyngeal swab
Nasal swab

Bronchoalveolar lavage

Cartridge based
• qRT-PCRRT-LAMP

36 [36], 45 [37],
30 [38]

Orf1ab, N-gene,
RdRp

Nasopharyngeal,
Oropharyngeal,

Nasal swabs
Dipstick

• CRISPR-Cas-12 <40 [39] Orf1ab, N-gene Nasopharyngeal
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Table 1. Cont.
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Cartridge-based
processing 15 [40] IgG, Total Antibody, IgM Serum, Plasma

Chemiluminescence
15 [41]

29, 80, 120,
48 [42]

IgG, IgM, Total Antibody,
Nucleocapsid protein,

Unknown

Serum, Unknown
samples

Rapid diagnostic
• Lateral Flow
• ELISA

• Colorimetric

15–20
60–90 [43]

10 [44]

IgG,N-protein, Total antibody
Unknown

Serum
Plasma

Unknown
saliva

Reagent Kit
• LFIA
• ELISA

20 [45]
<90 [46]

IgG, Total antibody,
IgA,N-protein, Unknown

Serum
Nasopharyngeal

Unknown

A
nt

ig
en

Cartridge-based process
• Chemiluminescent
immunoassay (CLIA)

15 [47]
N-protein, S-protein (RBD)

N-protein

Nasopharyngeal swab
Saliva

Nasal swab
Unknown

Oropharyngeal swab

Rapid diagnostic
• Strips
• Cassettes

15 [48]
20–30
[49,50]

N-protein
S-protein (unknown type)

S-protein RBD
S-protein S1
S-protein S2

Nasopharyngeal swabs
Nasal swab

Saliva
Unknown

Oropharyngeal swab
Sputum

Reagent kit 15 [51]
N-protein

S-protein S1
S-protein (unknown type)

Nasopharyngeal swab
Unknown

Serum
Nasal swab

Oropharyngeal swab

2.1. High Throughput Sequencing

Next-generation sequencing (NGS)-based strategies are used to trace the evolutionary
history and to investigate the chain of transmission of disease during the outbreak. The
complete genomic sequence of SARS-CoV-2 was released in January 2020 [52]. The sequence
has over 82% similarity to those in SARS-CoV and bat SARS (SL-CoV) [53]. Nasopharyngeal
swabs from the respiratory tract were used to analyze the viral load [54]. The NGS proved
significant for the diagnosis of severe infections or the patient that carries pathogens of
unknown origin [55]. Recently, variants of SARS-CoV-2 have also been traced by SNP
genotyping [56]. This ultrasensitive high-throughput sequencing method is expensive,
time-consuming, and dependent on stringent laboratory equipment, limiting its use in the
clinical diagnosis of COVID-19. Therefore, a cost-effective and fast testing procedure is
needed to develop for further investigations.

2.2. Imaging

Initially, imaging techniques were used to diagnose and observe the severity of COVID-
19 infection. The Computed Tomography (CT) scan images of 63 patients were taken from a
hospital possessing some variant results of affected lungs images. The symptoms observed
included affected lobes, patchy consolidation and fibrous stripes, and some complex
irregular solid nodules while enlarged, which varied differently in different patients. This
imaging was a supportive method for the diagnosis before the submission of the genomic
sequence of the virus [57]. However, this high-resolution CT scan is an indicative but
non-confirmative method due to the lack of difference between viral and non-viral infection
of respiratory tracts, which limits its diagnostic applications [58,59]. So, there is a need to
diagnose the disease at the molecular level with more specification and authenticity at the
individual level before further treatments.

Advanced imaging optical coherence tomography (OCT) has been applied for the
diagnosis of acute respiratory failure. This real-time 3D imaging technique is used to have a
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visual demonstration of alveolar compartments and air pathways. The potential application
of OCT for COVID-19 patients can be devised to observe the lungs of the patients [60].
Alternatively, the application of photoacoustic imaging has potential for the analysis of the
inflammatory markers in the lungs for the clinical diagnostics [61].

2.3. Microarrays

Nucleotide-assisted microarray-based detection strategies have been adopted for the
detection of newly invaded coronavirus into the SARS family in the past years. The 60 mer
oligonucleotides were designed for the detection of coronavirus from the SARS family.
Thirty designed oligonucleotides of 60 mer (TOR2) were able to detect the whole genome
of the submitted new coronavirus strain [62]. In another study, a microarray was designed
for the detection of a mutated spike gene (27 single nucleotide polymorphism), which
was correlated to the pathogenicity and epidemiology of the disease by SARS-CoV. The
designed SNP DNA microarray served as the detection tool with ≈100% accuracy. A
non-fluorescent-based low-density oligonucleotide assay was utilized for the point-of-care
testing of SARS-CoV-2. This approach has a comparable sensitivity with RT-PCR with the
limit of detection of 15.7 copies per reaction for the other HCoVs [63]. Similarly, a more
sensitive platform was used for the diagnosis of respiratory infection and MERS that may
also be useful for the detection of SARS-CoV-2 [64].

2.4. Molecular Assay-Based Diagnosis

Nucleotide-based detection methods are considered as most reliable for individual-
level testing. The developing kits have been designed in many ways of targeted sites, sets
of primers, the principle of the test, and final signal readout in a way to be more specific.

2.4.1. PCR-Based Methods

The polymerase chain reaction (PCR) methods applied for nucleic acid amplification
testing include a list of delicate steps such as sample collection and its transport, viral
extraction, amplification, and signal readouts. The primary step of sample collection
is performed by the swabs, or forks containing CDC recommended materials nylon or
polyester fibers on a plastic stick over wooden shafts or, even better, the calcium alginate
sticks to avoid contaminations. At the beginning of the pandemic, a short supply of
swabs created a bottleneck. To overcome this challenge, 3D-printed nasopharyngeal swabs
were designed [65]. A clinically validated medium, phosphate buffer, was used as stable
transportation of the viral medium. This can keep samples stable for up to 18 h for qPCR
testing without compromising the detection of N, S, and Orf1ab targets [66].

After pre-analytical steps, analytical accuracy depends on the nucleic acid extraction
before amplification and final signal readouts. False-negative testing also increases if
the contaminated or low viral load is further processed. Conventionally, organic phenol-
chloroform extracts nucleic acid by simple degradation of protein and non-nucleic acid
parts by the action of SDS and proteolytic enzyme K [67]. In contrast, a more efficient acid-
pH method is utilized for the nucleic acid extraction of SARS-CoV-2 [68]. In this method,
the sample is directly incubated with proteinase K and heated at 98 ◦C for 5 min [69]. Subse-
quently, the PEARL (precipitation enhanced analyte retrieval) is performed to break down
the non-nucleic acid components by a lysis solution which yields a precipitate of alcohol-
based nucleic acid [70]. Due to the use of various sample reagents and centrifugation
steps that elute bonded nucleic acid to the column supports, silica-functionalized magnetic
microbeads were applied on a testing LionX system platform to devoid the elution step.

The extracted genome is then added to the target gene primer, probe, and a master
mixture. Amidst other amplification, the qRT-PCR is the most reliable clinical testing for
detecting infectious pathogens alternative to Northern blotting-based assays [68]. The
previously reported coronaviruses were detected by the same method [70–73]. In the
prevailing period, RT-PCR is a gold standard for several facts such as the specificity of the
particular target strain of the SARS-CoV-2 without cross-reactivity with preceding human
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CoVs. The key to the specificity is primer-probe binding to the target gene; a comparative
evaluation of the sensitivity of different primer-probes sets was checked according to the
target gene (N, N2, and N3). RNA isolation were performed by using Vero cell culture,
QIAamp Viral RNA Mini Kit (#1020953, Qiagen, Hilden, Germany) and RT-ddPCR was
performed using primers and probe published by the Chines CDC. The target genes Orf1ab
(Beijing, China), NIID_2019-nCoV_N (Tokyo, Japan), and 2019-nCoV-N2 (US-CDC) were
found more sensitive to apply for the clinical analysis; later, excluding the target N3 did
not affect the sensitivity of the assay [74,75]. The multiple target detection makes it more
accurate and high throughput to apply on multiple parallel assays (384-wells plate).

Being most frequently available, it is a highly significant and sensitive, direct, and rapid
procedure in routine practice [76]. The amplification of cDNA through PCR proceeding
to quantification and detection was performed on conventionally accepted agarose gel
or DNA sequencing procedures [77,78]. Despite some clinical limitations such as time
consumption and dependency on the instrument or trained workers, in the past studies,
a single-tube RT PCR method was applied for the identification of respiratory pathogens
such as HCoV-OC43 and HCoV-229E targeting the gene Orf1b [79–81]. In addition, RT-
qPCR has other disadvantages of potential biological safety risks, nuclear extraction, and
sophisticated laboratory equipment such as biosafety cabinets, which are often available in
a few central laboratories, and sample transportation and processing to the laboratories [80].

According to FIND diagnostics, a total of 435 SARS-CoV-2 RT-PCR-based kits have
been designed, and among these, 235 kits have been approved by the Food and Drug
Administration (FDA) for the commercial applications. Most of these have multiplex
targets to attain more sensitive results. More targets serve as the templates to transcribe into
complementary DNA, which further act as templates for the extension. During extension,
the Taq polymerase released the reporter dye from the 3′quenching dye after cleaving
annealed probes, which increases the fluorescence relevant to the amplified part. The
companies and researchers are modifying the techniques by improving various steps
of the molecular assay. Unique molecular testing is introduced in less than 13 min ID
Now TM by Abbott, based on the rapid isothermal amplification of the target pathogen to
generate a short segment of the target pathogen, which is later recognized by its fluorescent
probes. Moreover, various modifications such as the automated extraction of nucleic
acids, amplification procedures, and better signal readouts can improve the test run time,
minimize the cost, process a large sample, reusability, and multiplex detection.

Isothermal Amplification

Isothermal amplification is an excellent alternative to PCR amplification to avoid
highly expensive thermal cyclers, and it is a rapid and efficient amplification process
to amplify nucleic acid sequences at a constant temperature. Amplicons produced by
this procedure are far better at producing nucleic acid base nanomaterials to utilize in
biomedicines, biosensing, and bio imaging. For biosensing DNA, RNA, cells, peptides,
some molecular, and sub-molecular species are the selected targets. According to reaction
kinetics, here, we discuss the following three categories.

RT-Loop-Mediated Isothermal Amplification (LAMP)

LAMP assays have been used in many studies for the detection of SARS-CoV and also
for other human coronaviruses, particularly HCoV-NL63 [82,83]. Quantitative RT-LAMP
tests were designed for the early analysis of SARS-CoV [84]. For instance, a rapid, reliable,
reusable, and robust point-of-care RT-LAMP was introduced for the detection of SARS-
CoV-2, which is 12 times more sensitive and 10 times less expensive than the conventional
RT-PCR [84]. The RT-LAMP assay has several advantages over RT-PCR, including direct
detection without the laborious step of RNA extraction [84,85], lack of cross-reactivity with
other respiratory pathogens [86], and colorimetric and fluorescent-based signal detection
within 20–30 min at a temperature of 63–65 ◦C [87,88]. The improved and more specific
method was used for the detection of MERS-CoV in past studies to overcome the problem
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of turbidity due to the production of pyrophosphates (white precipitates) during the
polymerization reaction. The fluorescent dyes intercalate in double-stranded amplicons,
which cause non-specificity to produce a signal from primer dimerization or non-primer
involvement [89]. Therefore, a temperature-specific DNA amplification LAMP method and
quenching probes were introduced to track the true signal in the reaction for the specific
diagnosis of MERS-CoV [90]. A similar method has been utilized for the detection of SARS-
CoV-2 [38,91]. Yet, this method required a fluorophore and a quencher for labeling, because
the toehold is located at the end position of the hairpin stem. So, it may cause an improper
quenching due to high background signals. In addition, these molecular techniques have
limitations for full-length genome analysis [87,88]. In recent advancements, LAMP has
been improved by introducing artificial intelligence-based results interpretation. A smart
palm top diagnostic device was designed to produce automatic image and algorithmic data
processing through artificial intelligence. Such devices have improved the run time of tests
and pH-dependent colorimetric detection. The specificity, sensitivity, and reliability of the
test procedure were performed on 200 suspected patients and were provided by NHS to
validate against the target RdRp [92].

One-Pot Enzyme-Free Isothermal Amplification

A one-pot enzyme-free isothermal amplification method was developed for the ultra-
fast (<20 min) analysis of clinical samples. Non-enzymatic isothermal strand displacement
(NISDA) assay (Figure 2a) involved a two-step displacement and amplification process. In
this method, a DNA duplex is used as an initiator, which converts the viral RNA into short
DNA by using intercalating nucleic acid (INA) technology. The next amplification step
followed the initiation of a series of reactions to unwind DNA beacon structures (Probe M1
and M2), imposing the striking increase in fluorescence of M1. Here, in contrast to TMSD
assays, the toehold of M1 present at the c domain of the loop region facilitates the proper
quenching. NISDA enabled SARS-CoV-2 with a limit of detection of 10 copies/µL [93].
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Figure 2. (a) NISDA assay (non-enzymatic RT-LAMP); components of reaction mixture include
DNA duplex and two DNA probes (M1 and M2). Template displacement is triggered by toehold
upon detecting the target, followed by a cascade of sequential amplification of the signal. Quenched
6-FAM fluorophore (bhq-1) restores fluorescence upon detecting target (viral RNA/DNA) after 30
min at 42 ◦C. Letters labels represent domains, while prime labeled domains donated complementary
sequences Readapted with permission [93]. Copyright © 2021, The Authors. (b) Colorimetric sensor
based on iLACO system. I: LAMP in Master Mix II: Combining different dyes. Reproduced with
permission [94]. © 2021 The Authors. Published by Elsevier Ltd.
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RNA Auto Cycling

The auto cycling process can effectively detect the RNA directly from the raw cell
lysate without the RNA extraction step. The detection of SARS-CoV-2 from pharyngeal
swabs without the RNA purification step is widely applied [91]. The visual amplification
(Figure 2b) and detection of SARS-CoV-2 using a combination of dyes instead of a commer-
cially available single dye indicator to enhance the signal readouts with a broad spectrum
of dyes improves the rapidness of the assay for the multiple target detection [94].

2.5. CRISPR Based Detection

A nucleic acid-based detection by clustered regularly interspaced short palindromic
repeat (CRISPR (Cas-9, Cas-12a, Cas-12b, and Cas-13)) is a gene-editing technique that aids
researchers to add, delete, or modify the genome at a required specific domain on the gene
map [95–98]. A previous study implanted to delete the RNA-based viruses by using Cas-13
from mammals [99]. The same procedure was used for the detection of the dengue, Zika
virus ssRNA genome. The SHERLOCK protocol is a specific and highly sensitive enzymatic
reporter unlocking for a portable and multiple nucleic acid base detection from clinical
samples. The whole essay includes a series of reactions of pre-amplification of DNA or
RNA and subsequent enzymes followed by Cas-12 or Cas-13 mediated detection through
colorimetric and fluorescent signals. The observed run time of the assay is less than 15 min,
and total signal readouts are provided in less than 60 min [100]. Moreover, Cas12a, Cas12b,
and Cas 13a nucleases cleavage activity are to develop point-of-care testing of SARS-CoV-2
in different studies’ workflows schemes after modifying according to required setups.
A more sensitive RT-PCR assay detection was performed (10 copies/reaction in 40 min)
by RPA-mediated DNA amplification and signal amplification by CRISPR-Cas-12a [39].
Another CREST, Cas-13-based detection was performed on low-cost thermocyclers and
accessible enzymes such as Taq polymerase based on fluorescence signal amplification to
detect ten copies/µL [100]. All-in-one CRISPR-Cas 12a (AIOD-CRISPR) assay was modified
without pre-amplification steps of RNA directly; all incubated components in a single
reaction with 4.6 copies of SARS-CoV-2 within 40 min [98]. Regardless of the advantages,
the procedure has some limitations, such as expertise dependent on the preparation of
reaction components and reaction steps such as protein purification and RNA extraction.
Moreover, multistep amplification and digital quantification may affect precise testing.
Another rapid (≈30 min), inexpensive, and easy to handle diagnostic technique introduced
the CRISPR-Cas-12 platform as DETECTR (DNA endonuclease-targeted CRISPR Trans
reporter for the detection of viral infections) [97,101]. DETECTR is based on the lateral flow
assay alternative to PCR testing, with 95% positive predictive agreement and 100% negative
predictive agreement for the viral detection in <40 min [39]. It is a rapid and multiplex
sequence-specific viral RNA detection using RT-LAMP coupling with T7 transcription
and Csm-based (Figure 3) detection of SARS-CoV-2 in less than 30 min with an attomolar
sensitivity and high specificity. The assay can be applied for the detection of variants and
other pathogens as well. The reaction modification is possible to a “one-pot diagnostic” by
redesigning primers at 55 ◦C to enhance the efficiency of T7-Csm at 65 ◦C [102]. In a recent
study, CRISPR-Cas13 has designed a comprehensive investigation of notable viral RNAs
and a broad spectrum observation for antiviral targets of 16 families of human–animal
infectious viruses by applying in silico analysis in a ViPR database [96]. Pre-amplification
of RNA limits its high-throughput application. Amplification-free CRISPR-Cas-13a is
based on mobile phone microscopy that directly detects viral RNA from the nasal swabs.
Moreover, the combination of crRNA may increase the sensitivity to the attomolar range
(≈30 copies/µL). Multiple target recognition by crRNA avoids the detection conflicts
raised after the variants interference [103]. Another detection strategy is CRISPR-Cas-13d
PAC-MAN (prophylactic antiviral CRISPR in a human cell) RdRp and N-antigen of the
SARS-CoV-2 and also worked on Influenza A.
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Figure 3. (a) A schematic representation of CRISPR Csm complex type III (Thermus thermophilus)
consisting of a CRISPR-RNA (red) and a set of 5 stoichiometrically unequal proteins [Cas 101 (pink),
Csm41 (blue), Csm36 (gray), Csm24 (green), Csm51 (white)]. Enzymatic cascade (Cas10-polymerase,
Cas DNAase and Csm3 RNAase) activates due to the binding of CRISPR-RNA. Csm3 subunits cleave
target RNA and the inactivation of Cas10. The complex RNase-dead is generated due to mutant
TtCsmCsm-D34A. (b) SARS-CoV-2 genome and N1 region of CRISPR RNA (crRNAN1). (c) Fluorometric
detection, a transcribed SARS-CoV-2, and N-gene of SARS-CoV-1. A non-sequence-specific ancillary
nuclease, cyclic tetra-adenylate (cA4), activates the TtCsm6.RNA tether furnish link between a
fluorophore (
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Csm41 (blue), Csm36 (gray), Csm24 (green), Csm51 (white)]. Enzymatic cascade (Cas10-polymer-
ase, Cas DNAase and Csm3 RNAase) activates due to the binding of CRISPR-RNA. Csm3 subunits 
cleave target RNA and the inactivation of Cas10. The complex RNase-dead is generated due to mu-
tant TtCsmCsm-D34A. (b) SARS-CoV-2 genome and N1 region of CRISPR RNA (crRNAN1). (c) Fluoro-
metric detection, a transcribed SARS-CoV-2, and N-gene of SARS-CoV-1. A non-sequence-specific 
ancillary nuclease, cyclic tetra-adenylate (cA4), activates the TtCsm6.RNA tether furnish link be-
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the wild in the left graph. (d) Colorimetric detection of SARS-CoV-2 by mutant N1 complex by a dye
phenol red (a pH-sensitive dye) incubated at 60 ◦C for 30 min. (e) Visible fluorometric detection by
the mutant N1 complex using calcein, incubated for 60 min at 60 ◦C [102].

2.6. Limitations of Molecular Diagnosis

It is hard to validate all molecular diagnostic techniques in a specific way. There are
several pre-analytical and analytical factors responsible for false-negative testing such
as low viral loads, viral shedding time, the sample collection site (nasal swabs, upper
respiratory tracts, or lower respiratory tract), and the time of sample collection day after on-
set of symptoms (0–7, 8–14 or≥15 days) [104]. For example, samples from lower respiratory
tracts and the sputum have the highest positivity rates of 93% and 72%, respectively, while
samples taken from nasal swabs, upper pharyngeal, feces, and blood have corresponding
low positive rates of 63%, 32%, 29%, and 1%. A systematic study reported up to 54% of
initial false-negative RT-PCR testing rates [105]. In another study conducted in New York,
the clinical performance of SARS-CoV-2 was evaluated by retesting the negatively tested
patients on the same day. An increase in positive rate from the negative rate was observed
due to inadequate sample, incorrect sample collection, and stochastic bias from the low
viral load [106]. The detection sensitivity of RT PCR assay is varied from different target
regions because highly conserved region targets and multiple targets could be applied
to reduce invalid false-negative results. Mutations in a primer region also affect primer-
probe binding [107]. A one-step quantitative assay has 10 times greater sensitivity for
the N-gene over open reading frame 1 ab. At the same time, CDC proposed that the set
of primer probes for the N-gene (N1, N2, and N3) and E-gene have better sensitivity for
N1, N2, and the E-gene over N3 and RdRp. The impartial application of metagenomic
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assay and unauthentic information on possible coinfections would urge the researchers to
develop improved treatment. Moreover, CRISPR-based strategies continue to grow, but
their extensive clinical application for the rapid detection of pathogens can be restricted in
limited resources settings. While the sensitive PCR tools are not available or lack suitable
sample collections, a significant viral load for a small genetic expression of the virus
hampers their applications. Moreover, the turnaround time of sequencing is far greater
than the widely accepted techniques. Metagenomics, RT-PCR and CRISPR hold great
promise as a distinct diagnosis, especially in patients carrying novel respiratory pathogens.
All these three methods involve a 1 h RNA extraction step. The remaining RT-PCR and
CRISPR workflows are also designed to prepare the library, while the mNGS flow has
several parts with different periods of time: 3 h for library preparation, 18 h for mNGS
sequence and 3 h for data analysis. Therefore, the turnaround time (TAT) for RT-PCR,
CRISPR and mNGS is about 3, 2, and 24 h, respectively. Moreover, RNA extraction is
a must by depending upon biohazard safety labs to handle sensitive testings. Despite
efficient diagnostics, 1-step detection devices or biosensors for point-of-care testing is the
need of the hour [55,108]. Recently, portable CRISPR-based COVID testing miSHERLOCK
was introduced by combining two unrelated CRISPR nucleases (Cas 13 and Csm 9) in
a tandem assay on a portable microfluidic chip [109]. A minimum dependency on the
instrument, alternative to PCR testing, and portable chip with sensitivity (100 copies/µL)
within 20 min can be advancement toward molecular-based testing.

2.7. Signal Readout Methods

Signal readouts are the quantification steps of the reaction yield for an efficient diagno-
sis. These methods include optical, electronic, colorimetric, and electrochemical, following
their different strategies. The means used to read signals varied according to the design.
The possible means of optical signaling are naked-eye, color change, fluorescence emission,
and optical reflections, which are usually carried on the platforms such as microfluidic
devices, microplate readers, spectrophotometers, cartridges, strips, and cupids. Florescence
and colorimetric-based optical signaling are the most applied strategies during the devel-
opment of SARS-CoV-2 detecting kits. The conjugated fluorescent dyes nonspecifically
bind to the double-stranded amplicons and non-specifically to the single-stranded target
probe to quantify the amplification product visually. These signal readers are integrated
electronically with smart gadgets or plate readers to measure fluorescence. The improve-
ment in signal detection methods improves the sensitivity of the procedure [110]. The
conventional signal readout method is highly delicate to interpret the final results. Con-
ventionally, detected SARS-CoV gives one copy per reaction, while SARS-CoV-2 detected
by fluorescent signal readout gives 100 copies/mL. A portable detection platform was
developed by incorporating PCR with a smartphone [111]. Further CRISPR methods also
used the modified DNA fragments with fluorescent probe quencher combos.

2.8. Serological Testing

Antibodies are the proteins that are produced in the body within 1–3 weeks of the
infection. Combat to the disease depends upon the antigenicity (the ability of an antigen
to induce an immune response) of the invaded pathogen and the host’s immunogenicity
(responses from the host to produce antibodies). The challenges such as unavailability of
RT-PCR, denaturation of viral RNA during sample collection and extraction steps, shortage
of primers, and mutations in viral genomes urge us to use an alternative, cheaper testing
method. Serological testing procedures are helpful to trace the contact and the extent of
body response toward infection as well as conduct an epidemiological survey and identify
past and post-infection responses of the body. An accessible sampling collection and
transportation of blood samples taken from finger sticks or veins compared to the PCR
testing sample collection of mucus from the nasopharyngeal tracts is more sensitive to carry
in ultra-care test performing procedures. Both testing procedures have their sampling,
testing formats, and targets within the limitations to use. A comparative study reveals



Biosensors 2022, 12, 410 11 of 33

RT-PCR 36.6% results, and 17.3% serological assay tested positive while 6.8% showed
positive serological testing and negative RT-PCR results [112]. So, it is not a confirmed shot
to hit. Nevertheless, uncertainty regarding serological assays is much higher than in other
methods. Serological testing includes antigen-based and antibody-based detection.

2.8.1. Antigen-Based Detection

The SARS-CoV-2 contains the spike protein (S-protein), nucleoprotein (N-protein), en-
velope protein (E-protein), and membrane protein (M-protein) [17]. The S-protein exhibits
a heavily intact glycosylated bond [113] and is a maximum mutation region, which may
affect the effectiveness of the immunoassays. The N-protein is abundant to contribute to
the identification of virus particles and RNA packages [114]. The antibodies IgA, IgG, and
IgM against the N-antigen have an optimal expression in corona patient serum to run Im-
munoblast assays. Previously, N-antigen is taken as an impeccable detection marker for the
prognosis of SARS-CoV and MERS [115], while these have a more genomic expression of
N-antigen than SARS-CoV-2. The SARS-CoV-2 protein detection by the mass spectrometer
method identifies samples collected from the gargles of the patients containing the viral
load of 105 to 106 genome equivalents/µL, which is much smaller than the RT-PCR viral
load requirement, suggesting its significance as an efficient diagnostic tool [116]. Compar-
ing and selecting the more sensitive and specific recombinant antigens is essential before
designing the serological assays. The S-antigen is involved in viral neutralization due to
the domain (S1, RBD, and S2); as a result, it generates protective neutralizing antibodies,
which can be commonly immobilized to develop assays [117]. The S-antigen-based as-
says’ sensitivity and specificity are higher than those of the N-antigen and have a lower
cross-reactivity [118]. In a study, a quantum dot-based lateral flow immunoassay was
found to be more sensitive for the detection of N-antigen than a particular conventional
ELISA with a relevant recorded LOD of 100 ng/mL and 10 ng/mL [119]. Furthermore, an
immunochromatographic fluorescence assay was designed to detect N-antigen from the
patients’ nasopharyngeal swabs and urine samples in 10 min. The urine samples of corona
patients were detected with 73.6% (14/19) N-antigen; overall, a 100% positive results accu-
racy was shown even after the negative nucleic acid test results of the same samples [120],
while the urine sample of SARS recorded 8% [121]. The possibility of low viral protein
expression in body fluids of SARS-CoV-2 patients verifies the data on a more significant
number of samples [122]. It is more convenient to test the N-antigen of SARS-CoV-2 than
other antigens because it is abundantly expressed in serum, although both antigens have
greater immunogenicity to the viral proteins.

2.8.2. Antibody-Based Detection

A lateral flow immunoassay was designed to target the serum antibodies of (IgG/IgM)
receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. This sensor enabled
the simultaneous screening of IgM and IgG from the serum of the patient with a precision
of 90.63% and sensitivity of 88.66%. Samples from a fingerstick, plasma of venous blood,
and serum gave consistently positive results in less than 30 min [120]. An IgM ELISA
against N-protein was designed for the carrier’s humoral response to the infection from the
onset of the symptoms until the patient recovered. The recorded positive detection rate
between the sets of 0–7 days, 8–14 days, and 14–21 days from 208 plasma samples was
188/208 (90.4%) for IgM and 194/208 (93.3%) for IgA against the target. Comparatively, the
IgG detection rate was 162/208 (77.9%) within seven days. Gradually, the rates stopped
increasing within 14 days for both (markers of acute infection), while IgG kept increasing
after 21 days. Considerably, the detection of IgM and IgA identifies the current infection
and IgA for the post-infection response to the body. IgM’s positive rate reached 93.1%
(54/58) within the 5th day after the onset of the symptoms. Therefore, it is considered a
competent testing method compared to the qPCR testing with an increased positive rate of
qPCR [104,121]. Similarly, the response found for SARS-CoV in 2003 for IgM developed in
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3–6 days, and IgG was detectable after eight days of onset of symptoms [123,124]. However,
IgM gives the first line of defense against infection than IgG [125].

2.9. Challenges in Immunoassay-Based Diagnostics

Immunoassay is an efficient detection method yet has some uncertainties. Serological
testing helps us to interpret the disease severity, ascertain the immunization level, identify
updates against the past infection, and measure the vaccine efficacy. Each person before
and after the onset of symptoms until the recovery has their immunity responses. A cascade
of antibodies generation according to specific antigens is produced at the different periods
within 0–7, 7–14, and 14–21 days after infection. The seroconversion-based detection
depends upon the antigenicity of antigens. A similar trend of antibody generation was
observed in the past infections such as SARS-CoV and MERS. Due to specific antibodies,
IgM against RBD is much stronger compared to the IgM-N-protein depending upon the
antigenicity. Because it usually takes up to 1–2 weeks for the human B-cells to produce and
secrete antibodies in the blood serum after a viral infection and during the early stages of the
COVID-19 pandemic, an optimal level of antibodies was not known [126]. The antigenicity
of both antigens is highly noticeable, as SARS-CoV patients had higher anti-N than anti-S
opposite to SARS-CoV-2, which has higher anti-S [nAbs of RBD] because of the highly
conserved spike region. IgG rates against both antigens are higher than the IgM, while
total seropositivity (IgG/IgM) against anti-S is higher than anti-N. In conclusion, S-antigen
has higher antigenicity than N-antigen; while entering into the host cell, the viral (S1, RBD,
and S2) domains become fused with the ACE 2, resulting in a quicker immunological
response to develop protective neutralizing antibodies. The developed assays-based kits
in Table 1 summarize the developed techniques for the detection of antigen, antibody,
and combined antibody testing [127]. It would be critical to consider serological testing
for the current infection as authentic as other methods. The availability of the targeted
antigen, adequate antibody generation, and time and site to collect samples may cause the
false diagnosis. Despite diagnostics apprehensions, immunoassay has remained the most
reliable diagnostic after PCR testing.

3. Biosensors

The biosensors are analytical devices that consist of (i) a bioreceptor to recognize the
analyte (biomolecules such as RNA, DNA, enzymes, cells, and aptamers), (ii) a transducer
to turn the biorecognition into detectable signal readout, and (iii) a display to read the
detected signal [128]. Biosensors exhibit a signal detection system with a minimum manual
operation to reduce errors. To control the spread of the pandemic from asymptomatic and
mildly symptomatic patients without leaving their places, a device for sample-to-result
detection of SARS-CoV-2 is essential. In 2017, the WHO designed an affordable, sensitive,
specific, user-friendly, rapid, robust and equipment-free deliverable device (REASSURED)
for nucleic acid-based detection of HIV [129]. Similar efforts have been made for the
development of devices according to targets such as immunosensors for antigen (N, S,
and E-proteins) and antibody (IgG, IgM, IgA); modification of the critical step of RNA
extraction to detect nucleic acid by using electrochemical biosensors, magnetic particles,
and lab-on-chip microfluidics was adopted. Reusable, recyclable materials for the sus-
tainability of the clinical diagnosis of masses are the requirement. This section discussed
promising techniques for the development of biosensors for the detection of SARS-CoV-2
in clinical samples. Compared to conventional detection methods, biosensors are promis-
ing, innovative, reliable, rapid, sensitive, accurate, multiplex detection, and user and
eco-friendly devices that are beneficial for the crowd testing. Table 2 summarizes the
developed biosensors for the detection of SARS-CoV-2.
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Table 2. Developed biosensors for the detection of SARS-CoV-2.

Target Biosensors Principle
LOD/Detection Time/

Cutoff Value/
Sensitivity, Specificity

Drawbacks/
Targets References

G
en

om
e

B
as

ed
D

et
ec

ti
on

Label-free
electrochemical

biosensor

DNA hybridization of
electrodeposited AuNPs

immobilized with
single-stranded nucleotide

- RNA extraction
Sensitive sample handling [130]

Plasmonic biosensors
(optical-LSPR)

Dual-functional
plasmonic biosensor

combining the
plasmonic photothermal

(PPT) effect and
localized surface

plasmon resonance
(LSPR) sensing

transduction

0.22 pmol/L, 3 min From multigene mixture [131]

Naked-eye
colorimetric

Thiol-modified
antisense oligonucleotide is

used to cap
AuNPs,

which change color
upon finding the

target N-gene

0.18 ng/µL,
10 min N-gene [132]

V
ir

al
Pa

rt
ic

le
B

as
ed

D
et

ec
ti

on

Cell-based biosensor

Membrane-engineered
mammalian cell

containing antibody
to bind with

S-antigen

1 fg/mL,
3 min

Not applicable
for the detection

of variants.
[133]

Nanoplasmonic sensors Optical measurement of
the SARS-CoV-2 particle

370 vp/mL,
15 min Restricted for the S-antigen [134]

Field effect-
based transistor

Graphene-coated sheets
with SARS-CoV-2 antibody

2.42 × 102

copies/mL (in
clinical samples)

s-antigen [135]

G-druplex-
based biosensors Whole genome [136]

Molecularly
imprinted polymers

Monoclonal-type, synthetic
antibodies of SARS-CoV-2 - Only applied to the S-antigen [137]

eCovSens

Potentiostat-based sensor
fluorine doped tin oxide +
AuNPs immobilized with

monoclonal antibody

90 fmol/L,
10–30 s S-antigen [138]

Electrochemical
Biosensor

Functionalized TiO2
nanotube-

based electrochemical

0.7 nmol/L,
30 s S-glycoprotein [139]

Lateral flow
immunoassay

ACE2 enzyme
binding captured

antibody
1.86 × 105 copies/mL Spike antigen [140]

A
nt

ib
od

y
B

as
ed

D
et

ec
ti

on

Lateral flow
immunoassay

Lanthanide-doped Nanoparticles 0.06666,
10 min Anti-SARS-CoV-2-IgG [141]

Immunochromatographic 15 min,
85.2% and 100% IgG-IgM combined [142]

Immobilization on AuNPs 15 min, 88.66% and 90.63% IgG-IgM combined [40]

Plasmon-enhanced
biosensor

Grating Coupled
Fluorescent

Plasmonic (GC-FP)
based on ELISA

from dried
blood spot samples

30 min 100% and 100% Multiplexed (IgG, IgM, IgA) [143]

Opto-microfluidic

A microfluidic
device fabricated

by the electrodeposition
of Au-nanospikes

linked with the
optic probe
to detect the

target by using
localized surface

plasmon resonance

0.5 pmol/L, 30 min Antibodies against the spike protein [144]
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3.1. Biosensor for Genome Based Detection

A chip-based model was designed for the detection of extracted viral genome in less
than 20 min. The followed principle of RT-LAMP was incorporated within the chip [145].
A nylon mesh medium was designed to use the rolling circular amplification technique to
form DNA hydrogels. The nylon mesh surface overlapped onto a glass surface containing
microholes, which were later blocked by hydrogels to control the flow in the attached tube.
A maximum number of the target can be attached by rotating a magnetic bar due to the less
effective area between the target and nylon mesh. The nylon mesh surface overlapped onto
a glass surface containing microholes, which were later blocked by hydrogels to control the
flow in the attached tube. A maximum number of the target can be attached by rotating
the magnetic bar due to the less effective area between the target and nylon mesh. The
nylon mesh area has been blocked by the DNA hydrogel infusion into micro-holes. The
microfluidic system enabled the detection of SARS-CoV-2 up to the lowest concentration
of 3 aM in 15 min and 30 aM in 5 min [146]. Likewise, a microfluidic system based on the
CRISPR technique was developed for monitoring the viral genome from clinical samples
taken from nasopharyngeal swabs. An ITP-based chip was obtained by applying an electric
field gradient onto a microfluidic chip through an ion focusing technique, which is a
different approach than typical CRISPR-Cas-12. The same ITP provided an automated
platform for the purification of the target RNA with loop-mediated isothermal amplification
and ITP-modified CRISPR enzymatic reaction for the detection of SARS-CoV-2 RNA within
35 min. The assay run by the reagents is less than 0.2 µL, which is 100 times less than the
existing CRISPR method [147]. A plasmonic biosensor functioned to perform the reliable,
rapid, and sensitive detection of SARS-CoV-2 followed by two simultaneous principles
of plasmonic photothermal (PPT) and localized surface plasmon resonance (LSPR) on a
AuNIs chip. Complementary sequences of DNA receptors are immobilized on AuNIs
surfaces and were hybridized to specific gene RdRp-COVID, ORF1-COVID, and E-genes
from SARS-CoV-2 [131]. The AuNI chip generates thermoplasmonic heat when illuminated.
Exciting LSPR and PPT at two different angles of incidence enhance the temperature to
discriminate the hybridization kinetics. The in situ hybridization kinetics are enhanced
because of plasmonic photothermal heat to differentiate the sequences of RdRp of SARS-
CoV and SARS-CoV-2. Therefore, it provided a more specific detection platform due to its
unique feature to discriminate the coronaviruses.

3.2. Biosensors for Surface Protein of SARS-CoV-2
3.2.1. Lateral Flow Immunoassays

The lateral flow immunoassays (LFIAs) are easy-to-use, inexpensive, sensitive, and
reproducible for the detection of SARS-CoV-2, and they have been also used for the detec-
tion of RNA [74,148]; still, to enhance the sensitivity, nanomaterials such as quantum dots
and magnetic nanoparticles have been applied as immunolabels [149]. The nanomaterials
with longer lifetimes periods of florescence have less background noise, and time-resolved
analysis increases the sensitivity of the assay [150]. For the commercial application of LFAs,
a low limit of detection of assays was achieved by using lanthanide-doped nanoparticles
with a near-infrared (NIR) wavelength emission range (Figure 4) [124]. This platform
showed high sensitivity without any interference.
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3.2.2. Lateral Flow Assays

Lateral flow assay (cassettes or strips) is the most prominent rapid diagnostic tool in
POCT such as pregnancy strips [151]. These have been applied in several other fields for
diagnostic purposes. Lateral flow assays (LFAs) are formatted on a viral RNA, antigen,
or antibody basis for the detection of SARS-CoV-2. Generally, the test strip is based
on a sample pad, conjugating pad and absorbent pad containing the Test line (T-line)
and Control line (C-line) on a nitrocellulose base. Recently, LFAs were upgraded by
applying RT-LAMP [152,153], CRISPR/Cas-9 [154], and RT-PCR based for the viral RNA
detection [155,156]. Similar efforts are made for the detection of IgG, IgM-based LFAs [157,
158] and antigen-based testing [159]. Furthermore, aptamer-based LFAs are being taken on
account due to high sensitivity, long shelf life and cost effectiveness [160–162]. Based on
the available genomic data, the LFAs can be used to design the newly mutant strains of
SARS-CoV-2. LFAs are applied for the diagnosis of current infection. Beyond the rapidness
and cost effectiveness, it has the limitation of identifying only the past infection.

3.2.3. Microfluidic-Based Immunosensor

The magneto immunosensor was developed for the detection of the N-protein from the
whole serum of 50 pg/mL and a diluted sample of 10 pg/mL. The sensitivity increased up
to 230 pg/mL for concentrated and 100 pg/mL for diluted samples after integration of the
microfluidic chip with a smartphone. The sensing platform was developed by incorporating
dually labeled magnetic beads for immunogenic enrichment and the amplification of signals
on a microfluidic chip [163]. Such hand-handled devices support less dependency on heavy
instrumentation and enable the rapid monitoring of SARS-CoV-2 in bio-fluids.

3.2.4. FET-Based Biosensor

An electrical biosensor detects the analytes and small molecules after a change in
surface potential due to the binding of the target to the detecting species. The target was
immobilized onto the surface of conducting channels made up of semiconducting materials
such as graphene, molybdenum disulfide, zinc oxide, and gallium nitride. The FET device
utilizes the surface potential gradient to generate a readable small amount of signal after
detection [164,165]. Previously, FET devices have been used for the quantitative real-time
detection of the Ebola virus. Recently, a FET-based sensor was designed for the detection
of S-protein of SARS-CoV-2. The platform achieved the LOD of 1 fg/mL. The sensitivity
of signal production is mainly because of the used conducting material. Among other
2D materials, graphene is considered reliable to sense a small change. It possesses high
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conductivity due to different electronic spectrums, low-dimensional flexibility, and electron
charge mobility. Therefore, graphene-based FET is the best to choose for immunological
detection [166,167].

3.3. Biosensors for the Detection of Antibodies

Microfluidic chip-based devices enabled us to perform the serological testing of
COVID-19 from the blood plasma (1 µL diluted in 1 mL buffer solution) of the patient by
the limit of detection of 0.08 ng/mL (0.5 pM), which is in the range within the clinical con-
centrations of antibody (IgG) against S-protein. Gold nanospikes were fabricated through
electrical deposition using the localized surface plasmon resonance (LSPR) technique. A
shift in the wavelength peak of gold nanospikes was measured as a change in the refractive
index after antigen–antibody binding. Yet, this method needs to be optimized for multiplex
testing and validated for other targets in the blood before commercial application [144]. A
simple multiple target on-site detection of SARS-CoV-2 on a microfluidic system was pro-
posed recently. The detection of antibodies IgG and IgM was achieved in less than 15 min
from the blood, plasma, serum, and alveolar fluid samples [168]. However, the monitoring
of other respiratory pathogens is required to evaluate the specificity of the system. More
innovation is brought to immunoassay techniques during this pandemic. The simultaneous
detection of IgG/IgM and antigen detailed the current and past infections and confirmed
the accurate diagnosis of the patients. Furthermore, the application of smartphones has
facilitated the resulting interpretations [169]. Nano immunoassay was developed by de-
signing 1024 sample units in a PDMS chip by following the pattern of a 1024-cell serum
analyzer, and it was even close to the MITOMI device with a slight change in enlarging the
size of the chambers to carry the presented samples [170]. A high-throughput microfluidic
device was designed for the detection of anti-SARS-CoV-2 antibody IgG. Samples were
loaded by a contact-printing microarray robot onto the epoxy-coated glass slide overlapped
with a PDMS device [171]. This approach has the potential for the detection of the virus
during a pandemic situation to test immunity development at the different stages of disease
for thousands of patients simultaneously.

3.4. Miscellaneous Biosensor Technologies
3.4.1. Multiplexed Paper-Based Colorimetric Sensor

Paper-based devices (PADs) are inexpensive, equipment-free, independent of trained
staff portable, and user-friendly in point-of-care testing [172,173]. A colorimetric paper-
based sensor was designed for the detection of MERS-CoV using AgNPs of pyrrolidinyl
peptide nucleic acid (acpcPNA). Upon the interaction of acpcPNA and complementary
DNA, the AgNPs dispersed due to electrostatic repulsion, which causes a visible color
change on the paper strip [174]. An LOD of 1.53 nmol/L was observed, and the procedure
can be easily applied for the detection of the viral genome of SARS-CoV-2. Conventional
labeled (AuNPs) LFAs have low sensitivity and multi-user steps, which may cause an
imprecision of application. Further modified enzyme-based signal amplification also in-
creases the complexity of the assay. An ultrasensitive and financially viable LFA biosensing
new automated immunoreaction and amplification scheme was designed. AuNPs were
incorporated with antibodies into a polymer network peroxidase, and significantly pro-
grammed amplification on a hydrophilic polymer was used to detect target [175]. The
commercialization of these devices is underway [176]. A low-cost technique of paper-based
lateral flow immunoassays to detect infectious diseases is applied in several developing
countries [177].

3.4.2. Nanotechnology-Based Sensors

Nanoengineering plays a promising contribution in various disciplines, including
agriculture, environmental sensing, and clinical diagnosis and treatment [178,179]. Viral
surveillance is complicated, especially in crowded airports, hospitals, shopping malls, insti-
tutes, subways, and clubs. To screen positive carriers from a single drop of serum, plasma,
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or blood on the spot would be helpful to overcome the massive chaos after any future
outbreak. Sensitive COVID-19 testing strips for bedside monitoring can be innovative. In
addition, a satisfactory entrance of masses to the prominent places required installed rapid
sensors for on-field detection. The successful extraction of the viral RNA was performed
by using nanomaterials such as nanofibers, nanoparticles, and composite membranes [180].
A lateral flow immunoassay coupled with the colloidal gold particles on a nitrocellulose-
coated surface (Colloidal gold immunochromatographic assay (GCIA)) was compared with
the conventional immunoassay for the IgM and IgG. The sensitivity of combined ELISA
IgG and IgM was 87.3% higher than the GCIA assay for combined IgG and IgM (82.4%), but
the 100% specificity for the assays was the same. Such assays would easily be applicable
for the detection of multiple targets [181]. Furthermore, promising nanomaterials, such as
polysulfone ultrafiltration membranes containing silver nanoparticles, reported removing
bacteriophages [182]. Nanomaterials to remove the viral genome can also be subjected
as a nanomedicine in severe patients. The composites of polyacrylonitrile (PAN) with
electrospun nanofibers membranes (ENMSs), nanofibers of ammonium tetrathiomolybdate
(ATM), and tetraethoxysilane (TEOS) provide a rough surface to detect and remove bacteria
and viruses from the samples within the efficacy up to >90% [183]. The nanoparticles
were imbibed onto membranes to remove and screen the viruses from the samples for the
naked-eye detection of N-antigen through a color change in 10 min [132]. A rapid and direct
capturing of viral particles was achieved by using polymer tentacles-based functionalized
magnetic latex. The magnetic particles coated with the captured antibody easily captured
the virus directly from the surfaces and environment. Subsequently, RNA was extracted
from the attached virus. This method can be applied generally for the detection of other
pathogens as well. Nanoparticles-based lateral flow biosensors (LFB) are affordable to de-
tect several analytes and biomolecules. Portable tools are utilized by coupling several other
biosensing techniques such as RT-LAMP [152,184], and also, lateral flow immunoassays
(LFIAs)-based biosensors are applied for the detection of SARS-CoV-2 [185,186].

3.4.3. Aptamer-Based Detection

Aptamers have advantages over antibodies due to their high stability with a wide
range of temperature and their method of synthesis (SELEX) and cost-effectiveness [187].
N-antigens of SARS-CoV were detected in blood serum using specifically designed ap-
tamers 1 and aptamer 2, which bind on the specific C-terminal to detect the target gene
by a low dissociation constant of 0.81 nmol/L and 3.35 nmol/L. Moreover, possessing a
greater binding affinity than antibodies, this technique can be applied for the detection
of SARS-CoV-2 [188]. The packing RNA nanoparticles (pRNA) were functionalized with
aptamers, ribozymes, small interfering RNA, and microRNAs for the monitoring of viral
particles [189]. Viral and genetic diseases in humans, animals, and plants can be diagnosed
using similar techniques.

3.4.4. Artificial Intelligence-Based Sensors

Artificial intelligence (AI) is among the most advanced applied techniques for detec-
tion, surveillance, and tracing the evolutionary history of COVID-19. In recent studies, it
has been used to trace its evolutionary linkage with other viral families such as Coronaviri-
dae, Flaviviridae, Retroviridae, Flaviviridae, and Orhomyoxyviridae due to high peaks
sharing S, L, and T amino acids. Moreover, the AI-based technologies can help to trace
mutations and predict future evolution [190,191].

3.4.5. Electrochemical Biosensors

A biosensor was designed to detect MERS-CoV for simultaneous coronavirus detection
and relied on the indirect competitive immunoassay. The gold nanoparticles containing free
virus and MERS-CoV protein at a fixed concentration of added antibody was immobilized
on a carbon electrode array. The sensor response was detected by monitoring the change
in the peak current upon adding different concentrations of the MERS-CoV antigen [192].
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Likewise, an impedimetric sensor was developed for the multiplex and label-free sens-
ing of the influenza virus. A decrease in redox flux and an increase in impedance were
observed after binding between antigen and antibody [193]. For the current needs, the
development of electrochemical-based biosensors is a prototype, but for an ideal approach,
their application might be restricted to a few samples under the lab compulsion. The sensi-
tive temperature ranges, short shelf life, and low viral loads are challenges in developing
such biosensors.

3.4.6. Surface Plasmon Resonance-Based Biosensor

Surface plasmon resonance (SPR) is one of the excellent technologies to design sensors
for a wide range of biomarkers. These devices can phenotypically map the binding events
in a highly prudent and temperature-controlled automated system. The SPR-based devices
can be developed to have multi-channels for simultaneous multiplex detection (Figure 5).
The application of SPR-based surfaces for the evaluation of multiple samples can overcome
the bio waste materials including multiple testing strips and kits used during analysis
at home and in crowded places. SPR has been frequently applied for the detection of
various respiratory pathogens. The ferromagnetic pattern on a substrate was achieved
for the monitoring of the H1N1 influenza virus in a total run time of 1.5 h [194]. This run
time was relatively higher than the assays designed for the detection of other viruses. An
inhibition assay was designed on a semi fluidic sensor chip with immobilized HA protein
for the quantification of two proteins H1N1 and H3N2 of AIV in 10 min [195]. A microarray
pattern was obtained on the SPR biochip for the identification of the origin of assembly in
a specific RNA fragment to evaluate the role of viral proteins [196]. Similarly, genetically
fused gold binding polypeptides were combined with coronaviral surface antigen and
immobilized on the surface of a chip for selective detection of the target [197].

 

Figure 5: 

 

 

 

 

Figure 5. Antisense oligonucleotide for the direct detection of the viral genome from the gold
nanoparticles, ASO labeled with Raman active compound for the high specificity. Reproduced with
permission [198]. Copyright © 2012 American Chemical Society.

3.4.7. Localized Surface Plasmon Resonance

Localized surface plasmon resonance (LSPR) is created in nanospheres particles by
an externally applied electromagnetic field. The plasmonic wavelength is dependent on
shapes, scattering to absorption ratio, and extinction site. LSPR has been used to detect the
surface antigens of several enveloped viruses such as hepatitis B virus, avian H5N1, Ebola,
dengue, and currently for SARS-CoV-2 with the different strategies of antibodies–antigens
immobilization to capture targets. Thiol-modified antisense oligonucleotides (ASOs) are
used for the naked-eye detection of SARS-CoV-2. Furthermore, the close proximity between
fluorophores and nanostructures enhanced the resonance effects [76,132,199,200]. The FRET
can be observed if an optical absorption spectrum and electric field of sensing material
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overlap. The metal’s electric field has a larger absorption spectrum for the LSPR plasmon
for a highly efficient FRET. Therefore, a fluorescence immunoassay-based nano biosensor
was designed for the detection of the influenza virus [201]. This approach can be also
applied to the detection of SARS-CoV-2.

Surface-Enhanced Fluorescence (SEF) biosensors have been successfully used to
detect HIV serotypes on polystyrene substrates. Immobilized antibodies were captured
from a complete blood sample using the nanoplasmic property of AuNPs, with a limit
of detection of 39 copies/mL for serotype D. [202]. A variety of fabrication strategies can
be subjected to immobilize the antibodies, such as metallic nanoparticles (Ag@SiO2 NPs,
multi plasmonic gold) conjugated with the linkers to detect several other viruses on the
same lateral flow platform. The applicability of this not only improves the total assay run
time but also increases detection limits, requires fewer sensitive steps, and enables direct
detection of the target from the sample with more specificity. Nanospheres coated with
the antibody of the Ebola virus immobilized on the test line in a lateral flow immunoassay
demonstrated the excellent application of SEF-based devices [203,204].

Surface-Enhanced Raman Spectroscopy (SERS) A series of studies are conducted to
detect enveloped viruses, adenovirus, rhinovirus, human immunodeficiency [205], respi-
ratory syncytial virus [206], and rotavirus [207] using the SERS technique. Multilayered
arrays of nanorods of Ag-Au served as the SERS substrate for detecting influenza virus
strains H1N1, H2N2, and H3N2 at 106 pfu/mL concentration [208]. The plaque-forming
unit (pfu/mL) measures the infectivity of the viral suspension [209]. The rapid detection
by coining lateral flow assay strips and photonic-based technology are implemented before
for influenza and respiratory viruses. Lateral flow strips were also integrated with SERS
to detect nucleoprotein of influenza virus A by conjugating nanoprobes (multibranched
AuNPs) with the Raman reporter [210–212].

3.4.8. Biosensors Designed for Alternative Target of SARS-CoV-2

Mpro protease is critical in the viral replication of SARS-CoV-2 and is an alternative
target to quantify the infection rate and progression of infection [213]. The challenges
include estimation of the incubation period, progression period, low expression of viral
load, and presenting as asymptomatic, but the carriers can be addressed by targeting viral
replication proteins. The expression of these replicating proteins can quantify directly in the
serum or blood of the patients. Until recently, fundamental experimental approaches have
mostly been used on RNA, surface antigens, antibodies, and viral particles. The tests are
intended to target anti-SARS-CoV-2 drugs. Mpro, RdRp, and PLpro are proteins involved
in viral genome transcription and replication that also serve as detection targets. Any
structural protein, including E, N, S, and M proteins, can be translated using negative chain
RNA as a template [214]. Several biosensors and tests have been designed using replication
proteins other than structural proteins. The RNA extraction-free detection assay was found
to be significantly less expensive and simple to apply for the detection of SARS-CoV-2 [215].
When compared to proteins involved in viral entrance, infusion, and replication, conserved
proteins are more suited for detection. Rather, these are ideal for developing effective
medications such as Mpro and PLpro. The quantification of infected cells through plaque
assays is applied to measure the infection entity of the viruses [216], but it is limited to
high-throughput application. An assay was designed in which viral protease expression is
utilized to quantify infected cells. The cleaved oligopeptide linkers activated cell-based
optical biosensors. Furthermore, the recombinant viral proteases measures the capacity
to detect SARS-CoV-2 protease expression during actual virus replication in infected cells.
The reported cell line based on luciferase biosensors quantified the viral infection within
24 h [217].

4. An Overview of the Commercially Available Kits

The data from the FIND pipeline were analyzed to overview the molecular assay kits,
immunoassay kits, and kits based on other detection strategies.
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These data describe globally accepted commercial kits with a precise result interpretation—the
assays that are still in development. Based on rapid and manual/automated diagnosis, the
FDA-approved technologies are summarized in Figure 6. Molecular assay and immunolog-
ical assay-based home testing, pool testing, and sample collection kits have seen massive
production globally. Moreover, currently, as of September 2021, the FDA approved the
total collection of 235 molecular, 88 antibodies, and 34 antigen tests among 400 total tests,
including 63 home collection kits, 32 pooling testing kits, 55 point-of-care, 19 multi-analyte,
and 13 at-home on a shelf collected samples [218].

1 
 

 

(A) (B) (C) 

 Figure 6. FDA-approved commercial kits: (A) The number of testing kits (molecular and Immunoas-
say based) produced by the Global manufacturers (B) Status of molecular-assay based kits, (C) Status
of serological assay based.

The high cost of NAAT testing limits its commercial application in low-resource
localities [219]. At the same time, supplementary testing is inexpensive and fast [220].
The LFIA using latex microspheres is fast, user-friendly, and highly cost-effective; it is
only $0.15 per test [221]. However, the production cost of the techniques varies according
to available medical resources. The minimum commercial cost of the available kits is
recorded at $29.63, and the highest is $150 and $140 for antibody testing [222]. In Figure 6A,
according to the FIND database, 1570 total testing kits have been designed, out of which
639 are molecular assays-based and 925 are immunoassay-based testing. The production
cost of the techniques varies, but manufacturers are providing the low commercial prices
of testing kits from all over the world.

5. Impacts of Mutants on Diagnosis

The intervention of the mutants was observed when in many countries, the constant
false-negative results were obtained for the hospitalized patients. It draws attention to
the detailed analysis of the sequencing data. Mutations with biological impacts detected
in SARS-CoV-2 cause the immune escape to the possibility of reinfection within a short
span. Table 3 presents the detected VOCs and VOIs and their potential clinical changes in
antigenicity, virulence, and transmissibility. Mutations are the changes that occurred in the
peptide sequence—addition, deletion, or a nucleotide substitution—and these may cause
harmful, advantageous, or no effects on the remaining sequence. For SARS-CoV-2, it is
seen that the mutations in the peptide sequence of S-protein with 1273 amino acids have
a key role to induce viral entry and viral binding at the receptor-binding site of the host
cell. It also increases transmissibility, but on the other hand, the antigenicity, virulence, and
vaccine escape of the variants may become more affected if the mutations occurred on the
N-gene or at the viral genome to induce phenotypic changes.
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Table 3. Variants of SARS-CoV-2 and the significant mutations at the Spike protein.

Variants
(Notations, Lineages)

Identification Date and Countries
and Total No. of Countries

Sequences
(GISAID)

Notable Mutations Occur at S-Protein
Notable Mutations (S-Protein)

Effect on
Antigenicity

(Alpha)
B.1.1.7(VOC-

-202012/01,
20/501Y.V1)

UK, 20 November 2020 168 1,133,025 23 8

N501Y, [223]
D614G

[224], P681H
[225]

N501Y effects
on RBD [226]

No effect
on the
serum

neutralization [227]

(Beta)
B.1.351, 501Y.V2;

20C/501Y.V2

South Africa,
20 December 110 10,095,100 21 9

K417N, E484K,
N501Y, D614G,

A701V

K417T possibility
escaping some

monoclonal
antibodies
[228,229]

(Delta)
B.1.617.2 India 141 10,095,100 12 S:P681R S:L452R, Yes, Increased [230,231]

(Eta)
B.1.525 Nigeria 80 9719 10

aa:S:E484K
aa:S:Q677H
aa:S:F888L

Yes, reduce
serum neutralization

against IgG
[232].

(Gamma)
P.1, 501Y.V3,

Brazil and
Japan,

20 December
74 68,754 17 10

aa:S:E484K
aa:S:N501Y
aa:S:K417T
aa:S:D614G,
aa:S:H655Y

aa:S:E484K
escape mutation affects

the nAbs
[233].

A.23.1
E484K

Ugenda
Brazil UK 48 1126 16 4

aa:S:F157L
aa:S:V367F
aa:S:Q613H
aa:S:P681R

Yes [234]

The occurrence of escape mutation indicates the effects on immunogenicity and the
recurrence of the infection. Furthermore, experiments and data can interpret the actual
effects. Table 3 contains the automated naming of genomes that were added by using
online software for the naming and information of active lineages of SARS-CoV-2 variants
along with their mutations [235–238]. The false testing results of SARS-CoV-2 could be
challenging, especially for those who rely on only single target detection, but for multiple
target detection, it may be less risky. The variants have an impact on antigen and molecular-
based analysis due to the specific mutation regions on the S-antigen. For PCR testing
methods, a set of primers may not bind to the target binding site due to the change in
the peptide sequence. Simultaneously, the false antigen testing is due to the absence of
specific epitopes for the detection antibody. In many regions, false antigen testing has
been used as a proxy to track B.1.1.7 variants, but it has low reliability compared with
sequencing-based analysis.

The number of mutations in the spike regions of the virus is found to be more than in
the non-spike regions. It increases the transmissibility and virulence of the pathogen. The
variants B.1.1.7 [239,240], B.1.351 [228,237,241], B.1.617.2 [230], B.1.525 [242,243], P.1 [244],
and A.23.1 [245] have significant mutations at the different sites.

6. Summary and Future Directions

The detection of SARS-CoV-2 is being challenged by some unmet problems, which
need to be resolved by some innovative solutions. The SARS-CoV-2 RNA detection has
been significantly modified for the sensitive step of RNA extraction. The dependency on
centrifugal steps, organic solvents and temperature ranges (mostly extractions are per-
formed at room temperature) increases the sensitivity to handle samples taken for the
detection [246,247]. Moreover, a longer time is needed for nucleic acid isolation, which is
unfavorable for rapid diagnosis. Several methods such as BSA-based protocol [248], heat
shock-based [249] and acid pH method [250,251] are taken to conduct the RNA isolations
of SARS-CoV-2. The low viral loads hinder the accurate screening of the viral genome
that cause false-negative testing [252–255]. Stable viral lysis buffer at different temperature
ranges [256], acid pH ranges [257], and RNA extraction free detection [248,251,257–259] are
the promising strategies for viral RNA storage and stability. Furthermore, the RNA stabi-
lization method for a long duration at room temperature can meet the limitations. Visual
plasmonic sensors can be applied and integrated with several other strategies for naked
eye detection [260]. Biosensors-based devices to detect SARS-CoV-2 and other viruses are
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the cornerstone of the multiplex testing system. Biosensors based on nanotechnology, mi-
crofluidic chips, lateral-flow assays, paper-based devices, and others have been developed
for sensitive, selective, simple, and fast detection in homes and crowded places. The best
potential methods for providing the direct early indication of SARS-CoV-2 infection are
SARS-CoV-2 NP and virus particle detection. The application of viral replicating protein
as a detection target is a next step toward the diagnosis of new variants also. The testing
schemes based on the single target detection may not work in the future. Automated SPR-
based biosensors could be reliable, sustainable, and precise monitoring devices without
extensive dependency on trained staff and lab safety. Serological tests are significant for the
monitoring of past infection, vaccine efficacy, immunity development concerning disease
severity, and viral antigenicity. Even after vaccination, serological testing can interpret the
antibody level to boost immunity.

The majority of the technologies are used to target S-proteins, antibodies, and N- and
S-antigens. However, solutions such as the on-site diagnosis of asymptomatic COVID-19
patients with minimal time lag would be exceptional. This challenge might be solved
by combining single-step nucleic acid amplification with a noise-resistant PCR process
integrated on a chip to save time, eliminate labor reliance, and provide low-cost detection.
There is also the monitoring of antigen-related problems found in infected individuals, such
as a mutation in the target antigen area [255] with N-antigen transcriptional expression
being higher in cells infected with coronaviruses other than SARS-CoV-2 [122]. Point-of-
care testing equipment for multiplex detection or tests that detect trace levels of antibodies
might do this. Furthermore, the ID NOW COVID-19 technique can detect viral genomes
in minutes, which is a cutting-edge application. However, the bio waste generated by the
usage of swabs and sample collecting tubes remains a challenge. For multiplex detection
employing sensing platforms, a fixed, cleanable, and reusable cartridge on the device
without disposable testing strips and a fixed signal reader from a single swab rub or direct
sample drop is required. Machine learning algorithms might eventually replace PCR testing.
Similarly, a machine learning-based relative synonymous codon use frequency (RSCU
system) can quickly decode viral sequences from unknown strains. Because of technology
support systems for survival in this biosphere, biodiversity, climate, and immunity are
being compromised. Before transforming our global home into a technosphere, engineers
and ecologists should work together to eliminate bio waste hazards [261]. Individually,
COVID-19 posed two key challenges: isolation and immunity. Vaccination is presently
the only effective therapeutic option. Furthermore, confinement in our homes or hospitals
generates stress and anxiety in many people, similar to what astronauts endure during long-
term space missions [262]. After adjustments to the health monitoring technologies used
for astronauts, such as 3D printing instruments and stress management countermeasures,
the terrestrial lifestyle might benefit to counteract any future epidemic.
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