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Preamble

This second book devoted on advances and applications of Dezert-Smarandache Theory
(DSmT) for information fusion collects recent papers from different researchers working in

engineering and mathematics. Part 1 of this book presents the current state-of-the-art on theo-
retical investigations while, Part 2 presents several applications of this new theory. Some ideas
in this book are still under current development or improvements, but we think it is important
to propose them in order to share ideas and motivate new debates with people interested in
new reasoning methods and information fusion. So, we hope that this second volume on DSmT
will continue to stir up some interests to researchers and engineers working in data fusion and
in artificial intelligence.

This second volume brings several theoretical advances and applications which some of them
have not been published until now, or only partially published and presented since summer 2004
in some past international conferences, journals or in some workshops and seminars. Through
this volume, the readers will discover a new family of Proportional Conflict Redistribution
(PCR) rules for efficient combination of uncertain, imprecise and highly conflicting sources of
information; new investigations on continuous belief functions; investigations on new fusion
rules based on T-norms/T-conorms or N-norms/N-conorms (hence using fuzzy/neutrosophy
logic in information fusion); an extension of DSmT for dealing with qualitative information ex-
pressed directly with linguistic labels; some proposals for new belief conditioning rules (BCR),
and more. Also, applications of DSmT are showing up to multitarget tracking in clutter based
on generalized data association, or target type tracking, to robot’s map reconstruction, sonar
imagery and radar target classification.

We want to thank all people who have invited us, or our colleagues, to give lectures on DSmT
in workshops and seminars during the last two years at NIA/NASA Hampton, VA, USA (Nov.
2004), Czech Society for Cybernetics and Informatics, Praha (Dec. 2004), University Kolkata,
India (Dec. 2004), NATO Advanced Study Institute, Albena, Bulgaria (May 2005), NATO Ad-
vanced Research Workshop, Tallinn, Estonia (June 2005), Marcus Evans Workshop, Barcelona,
Spain (Nov. 2005), ENSIETA, Brest, France (Dec. 2005), Information Days on Advanced Com-
puting, Velingrad, Bulgaria (May 2006), University Sekolah Tinggi Informatika & Komputer
Indonesia, Malang, Indonesia, (May 2006), University Kristen Satya Wacana, Salatiga, Indone-
sia (May 2006) and at the Round panel Discussion on Prevision Methods, 38ièmes Journées de
Statistique, EDF Recherche et Développement (ICAME/SOAD), Clamart, France (Mai 2006).

We want to thank Dr. Frédéric Dambreville, Dr. Milan Daniel, Mr. Pascal Djiknavorian,
Prof. Dominic Grenier, Prof. Xinhan Huang, Dr. Pavlina Konstantinova, Mr. Xinde Li, Dr.
Arnaud Martin, Dr. Christophe Osswald, Dr. Andrew Schumann, Prof. Tzvetan Semerdjiev,
Dr. Albena Tchamova and Prof. Min Wang for their contributions to this second volume, and

iii



for their interests and support of these new ideas. We are grateful to our colleagues for encourag-
ing us to edit this second book and for sharing with us many ideas and questions on DSmT since
the publication of the first volume in June 2004. We specially thank Albena Tchamova for her
devotion in helping us in the preparation of this book and Arnaud Martin and Christophe Osswald
for kindly providing us an interesting image for the front cover of the volume. We also thank
all colleagues and reviewers of our papers who have manifested their interests in our works and
have brought either positive or negative comments and, in all cases, interesting, passionate and
exciting discussions. Without feedbacks from them, new ideas would have probably emerged
more slowly. So, more than ever, we encourage you, if you are interested in Information Fusion
and by DSmT to share your comments, criticisms, notes and articles with us for maybe a next
volume . . .

We are very grateful to Doctor Éloi Bossé and Professor Bassel Solaiman for accepting to
peer-review this second volume and writing a preface for it. We want also to thank Professor
Pierre Valin for his deep review of this book and all his valuable comments which were very
helpful for improvement of this volume.

Jean Dezert is grateful to Department of Information Modelling and Processing (DTIM) at
the Office National d’Études et de Recherches Aérospatiales (ONERA), Châtillon, France for
encouraging him to carry on this research and for its financial support. Florentin Smarandache
is grateful to The University of New Mexico that many times partially sponsored him to attend
international conferences, workshops and seminars on Information Fusion and to the University
Sekolah Tinggi Informatika & Komputer Indonesia - Malang, and the University Kristen Satya
Wacana - Salatiga, both from Indonesia, that invited him to present the DSmT in May 2006.

We want to thank everyone.

The Editors



Prefaces

Data and information fusion clearly is a key enabler in the provision of decision quality
information to the decision maker. The essence of decision-making in civilian, military

and public security operations is people making timely decisions in the face of uncertainty, and
acting on them. This process has been immeasurably complicated by the overwhelming and in-
creasing volume of raw data and information available in the current age. Knowledge, belief and
uncertainty are three key notions of the data/information fusion process. Belief and knowledge
representation is a crucial step needed to transform data into knowledge that I believe is the
ultimate goal of information fusion. The data/information coming from the different sources
must be converted into a certain language or with other means (e.g. visualization) so as they
can be processed and used by the human to build his mental model in order to decide and act.
To this end, formalization is necessary to be able to deal with knowledge or uncertainty: a for-
mal framework in which knowledge, information and uncertainty can be represented, combined
and managed. An ideal framework would be one mixing quantified evaluations of uncertainty
and high reasoning capabilities.

It is a great pleasure to welcome this second volume on ‘Advances and Applications of DSmT
for Information Fusion’. As already mentioned in Volume 1, The Dezert-Smarandache Theory
(DSmT) is considered as an extension of the Dempster-Shafer (DS) as well as the Bayesian
theories to formalize the fusion process for efficient combination of uncertain, imprecise and
highly conflicting sources of information. This second volume brings in depth presentation of
several theoretical advances and applications of that theory. In particular, the combination
rules have been treated in a way that we can consider to be almost exhaustive. The book
also presents very interesting applications of DSmT to multitarget tracking and classification,
robotics and sonar imagery. The quantitative approaches have been addressed quite extensively
in this volume and we must congratulate the authors to have brought contributions addressing
the qualitative information sources. Even though the book did not provide that ideal framework
mixing quantified evaluations of uncertainty and high reasoning capabilities, the contributions
are significant and will certainly motivate researchers and engineers working in data/informa-
tion fusion to be more innovative and creative.

I specifically thank Florentin Smarandache and Jean Dezert for having taken the responsi-
bility to edit that book and the authors for their original contribution in bringing more light
on this promising approach.

Éloi Bossé, Ph.D.
Head of Decision Support Systems
Defence Research and Development Canada
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With the continuous technologies development, we assist to an explosion of information
sources. It is not one or two sensors, which are available but sometimes more than a

hundred. The sensors multiplicity makes the decision-making process more complex. Thus, it
is very difficult to find the “credible” information in such information mass.

In 2004, F. Smarandache and J. Dezert have published volume 1 of “Advances and Appli-
cations of DSmT for information Fusion”. The so active DSmT community pursues its own
development and few years after, it is so great to produce the second volume with two comple-
mentary and interesting issues that readers will certainly have pleasure to read.

In the first part, the authors present the current state of the art related to the Dezert-
Smarandache Theory (DSmT) for information fusion. In this “theoretical” part, we discover a
set of new topics and new extensions. This certainly gives several good tools for engineering
applications.

The second part is perhaps the most exciting from a practical point of view. First, four
concrete applications show that DSmT in association with proportional conflict redistribution
rules are very efficient. In real application, the real time response is necessary, a solution of this
problem is presented in the chapter untitled “Reducing DSmT hybrid rule complexity through
optimization of the calculation algorithm” optimization and complexity reducing.

In the first application, the uncertainty plays a major role. The classification of underwater
sediment using a sonar image and human experts decision or in the case of a target recogni-
tion using virtual experts, is detailed. The main problem is to make a decision when two or
more experts give contradictory information? In this case the association of the DSmT with
combination rules is clearly shown to be efficient.

The second and third applications illustrate the problem of targets tracking or recognition in
real situations. These two applications pursue a previous work and the efficiency of the DSmT
in association with PCR in a complex system is detailed.

Robot exploration in an unknown environment is a difficult task. This application uses
several sensors (16 simulated sonar detectors, location of robot, velocity...) and a redistribution
of the conflict mass to build the grid map. Several methods are tested in order to show the
advantages of the association between DSmT and PRC5.

The problem of optimizing and algorithmic complexity reducing is very useful when a real
time decision is concerned. This illustrates the constant growing of the DSmT community. I
would like to thank the authors for their original contributions and to encourage the develop-
ment of this fascinating approach.

Bassel Solaiman, Prof., Ph.D.
ENST Bretagne
Brest - France
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Chapter 1

Proportional Conflict Redistribution
Rules for Information Fusion

Florentin Smarandache Jean Dezert
Department of Mathematics, ONERA,
University of New Mexico, 29 Av. de la Division Leclerc,

Gallup, NM 87301, 92320 Châtillon,
U.S.A. France.

Abstract: In this chapter we propose five versions of a Proportional Conflict Re-
distribution rule (PCR) for information fusion together with several examples. From
PCR1 to PCR2, PCR3, PCR4, PCR5 one increases the complexity of the rules and
also the exactitude of the redistribution of conflicting masses. PCR1 restricted from
the hyper-power set to the power set and without degenerate cases gives the same re-
sult as the Weighted Average Operator (WAO) proposed recently by Jøsang, Daniel
and Vannoorenberghe but does not satisfy the neutrality property of vacuous belief
assignment (VBA). That’s why improved PCR rules are proposed in this chapter.
PCR4 is an improvement of minC and Dempster’s rules. The PCR rules redistribute
the conflicting mass, after the conjunctive rule has been applied, proportionally with
some functions depending on the masses assigned to their corresponding columns
in the mass matrix. There are infinitely many ways these functions (weighting fac-
tors) can be chosen depending on the complexity one wants to deal with in specific
applications and fusion systems. Any fusion combination rule is at some degree
ad-hoc.

1.1 Introduction

This chapter presents a new set of alternative combination rules based on different proportional
conflict redistributions (PCR) which can be applied in the framework of the two principal
theories dealing the combination of belief functions. We remind briefly the basic ideas of these
two theories:

• The first and the oldest one is the Dempster-Shafer Theory (DST) developed by Shafer in
1976 in [17]. In DST framework, Glenn Shafer starts with a so-called frame of discernment
Θ = {θ1, . . . , θn} consisting in a finite set of exclusive and exhaustive hypotheses. This

3
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is Shafer’s model. Then, a basic belief assignment (bba) m(.) is defined as the mapping
m : 2Θ → [0, 1] with:

m(∅) = 0 and
∑

X∈2Θ

m(X) = 1 (1.1)

The combination of belief assignments provided by several sources of evidence is done
with Dempster’s rule of combination.

• The second and the most recent theory is the Dezert-Smarandache Theory (DSmT) de-
veloped by the authors since 2001 [18]. In the DSmT framework, one starts with a frame
Θ = {θ1, . . . , θn} consisting only in a finite set of exhaustive1 hypotheses. This is the
so-called free DSm model. The exclusivity assumption between elements (i.e. requirement
for a refinement) of Θ is not necessary within DSmT. However, in DSmT any integrity
constraints between elements of Θ can also be introduced, if necessary, depending on the
fusion problem under consideration. A free DSm model including some integrity con-
straints is called a hybrid DSm model. DSmT can deal also with Shafer’s model as well
which appears actually only as a specific hybrid DSm model. The DSmT framework is
much larger that the DST one since it offers the possibility to deal with any model and
any intrinsic nature of elements of Θ including continuous/vague concepts having subjec-
tive/relative interpretation which cannot be refined precisely into finer exclusive subsets.
In DSmT, a generalized basic belief assignment (gbba) m(.) is defined as the mapping
m : DΘ → [0, 1] with

m(∅) = 0 and
∑

X∈DΘ

m(X) = 1 (1.2)

DΘ represents the hyper-power set of Θ (i.e. Dedekind’s lattice). Since the power set
2Θ is closed under ∪ operator, while the hyper-power set DΘ is closed under both ∪ and
∩ operators, | DΘ |>| 2Θ |. A detailed presentation of DSmT with many examples and
comparisons between rules of combination can be found in [18].

Among all possible bba’s or gbba’s, the belief vacuous belief assignment (VBA), denoted
mv(.) and defined by mv(Θ) = 1 which characterizes a full ignorant source, plays a particular
and important role for the construction of a satisfying combination rule. Indeed, the major
properties that a good rule of combination must satisfy, upon to authors’ opinion, are :

1. the coherence of the combination result in all possible cases (i.e. for any number of sources,
any values of bba’s or gbba’s and for any types of frames and models which can change
or stay invariant over time).

2. the commutativity of the rule of combination

3. the neutral impact of the VBA into the fusion.

The requirement for conditions 1 and 2 is legitimate since we are obviously looking for best
performances (we don’t want a rule yielding to counter-intuitive or wrong solutions) and we
don’t want that the result depends on the arbitrary order the sources are combined. The neutral
impact of VBA to be satisfied by a fusion rule (condition 3), denoted by the generic ⊕ operator
is very important too. This condition states that the combination of a full ignorant source

1The exhaustivity assumption is not restrictive since one always can close any non-exhaustive set by intro-
ducing a closure element, say θ0, representing all missing unknown hypotheses.
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with a set of s ≥ 1 non-totally ignorant sources doesn’t change the result of the combination of
the s sources because the full ignorant source doesn’t bring any new specific evidence on any
problems under consideration. This condition is thus perfectly reasonable and legitimate. The
condition 3 is mathematically represented as follows: for all possible s ≥ 1 non-totally ignorant
sources and for any X ∈ 2Θ (or for any X ∈ DΘ when working in the DSmT framework), the
fusion operator ⊕ must satisfy

[m1 ⊕ . . .⊕ms ⊕mv](X) = [m1 ⊕ . . . ⊕ms](X) (1.3)

The associativity property, while very attractive and generally useful for sequential imple-
mentation is not actually a crucial property that a combination rule must satisfy if one looks
for the best coherence of the result. The search for an optimal solution requires to process all
bba’s or gbba’s altogether. Naturally, if several different rules of combination satisfy conditions
1-3 and provide similar performances, the simplest rule endowing associativity will be preferen-
tially chosen (from engineering point of view). Up to now and unfortunately, no combination
rule available in literature satisfy incontrovertibly the three first primordial conditions. Only
three fusion rules based on the conjunctive operator are known associative: Dempster’s rule in
DST, Smets’ rule (conjunctive consensus based on the open-world assumption), and the DSm
classic rule on free DSm model. The disjunctive rule is associative and satisfy properties 1 and 2
only. All alternative rules developed in literature until now don’t endow properties 1-3 and the
associativity property. Although, some rules such as Yager’s, Dubois & Prade’s, DSm hybrid,
WAO, minC, PCR rules, which are not associative become quasi-associative if one stores the
result of the conjunctive rule at each time when a new bba arises in the combination process
(see section 1.14 for details).

This chapter extends a previous paper on Proportional Conflict Redistribution Rule no 1
(PCR1) detailed in [20, 21] in order to overcome its inherent limitation (i.e. the neutral impact
of VBA - condition 3 - is not fulfilled by PCR1). In the DSm hybrid rule of combination [18],
the transfer of partial conflicts (taking into account all integrity constraints of the model) is
done directly onto the most specific sets including the partial conflicts but without proportional
redistribution. In this chapter, we propose to improve this rule by introducing a more effective
proportional conflict redistribution to get a more efficient and precise rule of combination PCR5.

The main steps in applying all the PCR rules of combination (i.e. fusion) are as follows:

• Step 1: use the conjunctive rule,

• Step 2: compute the conflicting masses (partial and/or total),

• Step 3: redistribute the conflicting masses to non-empty sets.

The way the redistribution is done makes the distinction between all existing rules available
in literature in the DST and DSmT frameworks (to the knowledge of the authors) and the
PCR rules, and also the distinction among the different PCR versions themselves. One also
studies the impact of the vacuous belief assignment (VBA) on PCR rules and one makes a short
discussion on the degree of the fusion rules’ ad-hoc-ity.

Before presenting the PCR rules, and after a brief reminder on the notion of total and
partial conflicts, we browse the main rules of combination proposed in the literature in the
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frameworks of DST and DSmT in the next section. More rules of combination are presented
in Chapter 8. Then we present the general Weighted Operator (WO), the Weighted Average
Operator (WAO) and the minC operator. MinC is historically the first sophisticated rule using
the idea of proportional conflict redistribution. The last part of this chapter is devoted to the
development of a new family of PCR rules. Several examples and comparisons with other rules
are also provided.

1.2 The principal rules of combination

In the sequel, we assume non degenerate void2 problems and thus we always consider the frame
Θ as a truly non empty finite set (i.e. Θ 6= {∅}), unless specified expressly.

1.2.1 Notion of total and partial conflicting masses

The total conflicting mass drawn from two sources, denoted k12, is defined as follows:

k12 =
∑

X1,X2∈GΘ

X1∩X2=∅

m1(X1)m2(X2) (1.4)

The total conflicting mass is nothing but the sum of partial conflicting masses, i.e.

k12 =
∑

X1,X2∈GΘ

X1∩X2=∅

m(X1 ∩X2) (1.5)

Here, m(X1∩X2), where X1∩X2 = ∅, represents a partial conflict, i.e. the conflict between
the sets X1 and X2. Formulas (1.4) and (1.5) can be directly generalized for s ≥ 2 sources as
follows:

k12...s =
∑

X1,...,Xs∈GΘ

X1∩...∩Xs=∅

s∏

i=1

mi(Xi) (1.6)

k12...s =
∑

X1,...,Xs∈GΘ

X1∩...∩Xs=∅

m(X1 ∩X2 ∩ . . . ∩Xs) (1.7)

1.2.2 The conjunctive rule

1.2.2.1 Definition

For n ≥ 2, let’s Θ = {θ1, θ2, . . . , θn} be the frame of the fusion problem under consideration. In
the case when these n elementary hypotheses θ1, θ2, . . . , θn are known to be truly exhaustive and
exclusive (i.e. Shafer’s model holds), one can use the DST [17] framework with Dempster’s rule,

2The degenerate void problem considers Θ = {∅} which is actually a meaningless fusion problem in static
fusion applications since the frame contains no hypothesis on which we can work with. In dynamic fusion
application, a non degenerate void problem can sometimes turn into a degenerate void problem at a given time
depending of the evolution of integrity constraints and thus the dynamic fusion problem can vanish with time.
To overcome such possibility (if required by the fusion system designer), it is more cautious to always introduce
at least one closure - possibly unknown - element θ0 6= ∅ in Θ.
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Yager’s rule [29, 30], the TBM [25, 26] approach, Dubois-Prade approach [6–8] or the DSmT
framework as well using the general DSm hybrid rule of combination [18] adapted to deal with
any DSm model (including Shafer’s model). When the hypotheses (or some of them) are not
exclusive and have potentially vague boundaries, the DSmT [18] is adopted. If hypotheses are
known to be non-exhaustive, one can either use Smets’ open-world approach [25, 26] or apply
the hedging closure procedure [28] and work back with DST or DSmT.

The conjunctive rule (known also as conjunctive consensus) for s ≥ 2 sources can be applied
both in DST and in DSmT frameworks. In the DST framework, it is defined ∀X ∈ 2Θ by

m∩(X) =
∑

X1,...,Xs∈2Θ

X1∩...∩Xs=X

s∏

i=1

mi(Xi) (1.8)

m∩(.) is not a proper belief assignment satisfying Shafer’s definition (1.1), since in most of cases
the sources do not totally agree (there exists partial and/or total conflicts between sources of
evidence), so that m∩(∅) > 0. In Smets’ open-world approach and TBM, one allows m∩(∅) ≥ 0
and the empty set is then interpreted not uniquely as the classical empty set (i.e. the set having
no element) but also as the set containing all missing hypotheses of the original frame Θ to
which all the conflicting mass is committed.

In the DSmT framework, the formula is similar, but instead of the power set 2Θ, one uses
the hyper-power set DΘ and the generalized basic belief assignments, i.e. ∀X ∈ DΘ

m∩(X) =
∑

X1,...,Xs∈DΘ

X1∩...∩Xs=X

s∏

i=1

mi(Xi) (1.9)

m∩(.) remains, in the DSmT framework based on the free DSm model, a proper generalized
belief assignment as defined in (1.2). Formula (1.9) allowing the use of intersection of sets (for
the non-exclusive hypotheses) is called the DSm classic rule.

1.2.2.2 Example

Let’s consider Θ = {θ1, θ2} and two sources with belief assignments

m1(θ1) = 0.1 m1(θ2) = 0.2 m1(θ1 ∪ θ2) = 0.7

m2(θ1) = 0.4 m2(θ2) = 0.3 m2(θ1 ∪ θ2) = 0.3

In the DST framework based on Shafer’s model, one gets

m∩(∅) = 0.11 m∩(θ1) = 0.35

m∩(θ2) = 0.33 m∩(θ1 ∪ θ2) = 0.21

In the DSmT framework based on the free DSm model, one gets

m∩(∅) = 0 m∩(θ1 ∩ θ2) = 0.11

m∩(θ1) = 0.35 m∩(θ2) = 0.33 m∩(θ1 ∪ θ2) = 0.21
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We can easily verify that the condition 3 (neutral impact of VBA) is satisfied with the con-
junctive operator in both cases and that the commutativity and associativity are also preserved.
The main drawback of this operator is that it doesn’t generate a proper belief assignment in
both DST and DSmT frameworks when integrity constraints are introduced in the model as in
dynamic fusion problems where the frame and/or the model itself can change with time.

1.2.3 The disjunctive rule

The disjunctive rule of combination [6, 7, 24] is a commutative and associative rule proposed
by Dubois & Prade in 1986 and denoted here by the index ∪. m∪(.) is defined ∀X ∈ 2Θ by
m∪(∅) = 0 and ∀(X 6= ∅) ∈ 2Θ by

m∪(X) =
∑

X1,X2∈2Θ

X1∪X2=X

m1(X1)m2(X2)

The core of the belief function (i.e. the set of focal elements having a positive mass) given
by m∪ equals the union of the cores of m1 and m2. This rule reflects the disjunctive consensus
and is usually preferred when one knows that one of the sources (some of the sources in the
case of s sources) could be mistaken but without knowing which one. The disjunctive rule can
also be defined similarly in DSmT framework by replacing 2Θ by DΘ in the previous definition.

1.2.4 Dempster’s rule of combination

Dempster’s rule of combination is the most widely used rule of combination so far in many ex-
pert systems based on belief functions since historically it was proposed in the seminal book of
Shafer in [17]. This rule, although presenting interesting advantages (mainly the commutativity,
associativity and the neutral impact of VBA) fails however to provide coherent results due to
the normalization procedure it involves. Some proponents of Dempster’s rule claim that this
rule provides correct and coherent result, but actually under strictly satisfied probabilistic con-
ditions, which are rarely satisfied in common real applications. Discussions on the justification
of Dempster’s rule and its well-known limitations can be found by example in [18, 27, 31–33].
Let’s a frame of discernment Θ based on Shafer’s model and two independent and equally reli-
able belief assignments m1(.) and m2(.). Dempster’s rule of combination of m1(.) and m2(.) is
obtained as follows: mDS(∅) = 0 and ∀(X 6= ∅) ∈ 2Θ by

mDS(X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1−
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)
=

1

1− k12
·

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2) (1.10)

where the degree of conflict k12 is defined by k12 ,
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2).

mDS(.) is a proper basic belief assignment if and only if the denominator in equation (1.10) is
non-zero, i.e. the degree of conflict k12 is less than one.
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1.2.5 Smets’ rule of combination

Smets’ rule of combination [25, 26] is nothing but the non-normalized version of the conjunctive
consensus (equivalent to the non-normalized version of Dempster’s rule). It is commutative
and associative and allows positive mass on the null/empty set ∅ (i.e. open-world assumption).
Smets’ rule of combination of two independent (equally reliable) sources of evidence (denoted
here by index S) is given by:

mS(∅) ≡ k12 =
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

and ∀(X 6= ∅) ∈ 2Θ, by

mS(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1.2.6 Yager’s rule of combination

Yager’s rule of combination [28–30] admits that in case of conflict the result is not reliable, so
that k12 plays the role of an absolute discounting term added to the weight of ignorance. This
commutative but not associative rule, denoted here by index Y is given3 by mY (∅) = 0 and
∀X ∈ 2Θ,X 6= ∅,X 6= Θ by

mY (X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

and when X = Θ by

mY (Θ) = m1(Θ)m2(Θ) +
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

1.2.7 Dubois & Prade’s rule of combination

Dubois & Prade’s rule of combination [7] admits that the two sources are reliable when they
are not in conflict, but one of them is right when a conflict occurs. Then if one observes a value
in set X1 while the other observes this value in a set X2, the truth lies in X1 ∩ X2 as long
X1∩X2 6= ∅. If X1 ∩X2 = ∅, then the truth lies in X1∪X2 [7]. According to this principle, the
commutative (but not associative) Dubois & Prade hybrid rule of combination, denoted here
by index DP , which is a reasonable trade-off between precision and reliability, is defined by
mDP (∅) = 0 and ∀X ∈ 2Θ,X 6= ∅ by

mDP (X) =
∑

X1,X2∈2Θ

X1∩X2=X
X1∩X2 6=∅

m1(X1)m2(X2) +
∑

X1,X2∈2Θ

X1∪X2=X
X1∩X2=∅

m1(X1)m2(X2) (1.11)

3Θ represents here the full ignorance θ1 ∪ θ2 ∪ . . . ∪ θn on the frame of discernment according the notation
used in [17].



10 PCR RULES FOR INFORMATION FUSION

1.2.8 The hybrid DSm rule

The hybrid DSm rule of combination is the first general rule of combination developed in the
DSmT framework [18] which can work on any DSm models (including Shafer’s model) and for
any level of conflicting information. The hybrid DSm rule can deal with the potential dynamicity
of the frame and its model as well. The DSmT deals properly with the granularity of information
and intrinsic vague/fuzzy nature of elements of the frame Θ to manipulate. The basic idea of
DSmT is to define belief assignments on hyper-power set DΘ (i.e. free Dedekind’s lattice) and to
integrate all integrity constraints (exclusivity and/or non-existential constraints) of the model,
say M(Θ), fitting with the problem into the rule of combination. Mathematically, the hybrid
DSm rule of combination of s ≥ 2 independent sources of evidence is defined as follows (see
chap. 4 in [18]) for all X ∈ DΘ,

mM(Θ)(X) , φ(X)
[
S1(X) + S2(X) + S3(X)

]
(1.12)

where all sets involved in formulas are in canonical form4, and where φ(X) is the characteristic
non-emptiness function of a set X, i.e. φ(X) = 1 if X /∈ ∅ and φ(X) = 0 otherwise, where
∅ , {∅M, ∅}. ∅M is the set of all elements of DΘ which have been forced to be empty through
the constraints of the model M and ∅ is the classical/universal empty set. S1(X), S2(X) and
S3(X) are defined by

S1(X) ,
∑

X1,X2,...,Xs∈DΘ

X1∩X2∩...∩Xs=X

s∏

i=1

mi(Xi) (1.13)

S2(X) ,
∑

X1,X2,...,Xs∈∅

[U=X]∨[(U∈∅)∧(X=It)]

s∏

i=1

mi(Xi) (1.14)

S3(A) ,
∑

X1,X2,...,Xs∈DΘ

X1∪X2∪...∪Xs=A
X1∩X2∩...∩Xs∈∅

s∏

i=1

mi(Xi) (1.15)

with U , u(X1) ∪ u(X2) ∪ . . . ∪ u(Xs) where u(X) is the union of all θi that compose X and
It , θ1 ∪ θ2 ∪ . . . ∪ θn is the total ignorance. S1(A) corresponds to the classic DSm rule for
k independent sources based on the free DSm model Mf (Θ); S2(A) represents the mass of all
relatively and absolutely empty sets which is transferred to the total or relative ignorances asso-
ciated with non existential constraints (if any, like in some dynamic problems); S3(A) transfers
the sum of relatively empty sets directly onto the (canonical) disjunctive form of non-empty
sets5. The hybrid DSm rule generalizes the classic DSm rule of combination and is not equiva-
lent to Dempster’s rule. It works for any DSm models (the free DSm model, Shafer’s model or
any other hybrid models) when manipulating precise generalized (or eventually classical) basic

4The canonical form of a set is its easiest (or standard) form. We herein use the disjunctive normal form
(which is a disjunction of conjunctions). In Boolean logic (and equivalently in the classical set theory) every
statement of sentential calculus can be reduced to its disjunctive normal form. Of course the canonical form
depends on the model.

5We have voluntarily removed the canonicity function c(.) in expression of S3(.) with respect to some formulas
in earlier publications because such notation appears actually totally useless since all sets involved in formulas
must be expressed in canonical form.



1.3. THE GENERAL WEIGHTED OPERATOR (WO) 11

belief functions. Extension of this hybrid DSm rule for the fusion of imprecise belief can be
found in [18].

In the case of a dynamic fusion problem, when all elements become empty because one gets
new evidence on integrity constraints (which corresponds to a specific hybrid model M), then
the conflicting mass is transferred to the total ignorance, which also turns to be empty, therefore
the empty set gets now mass equals one which shows that the problem has no solution at all
(actually the problem is a degenerate void problem since all elements became empty at a given
time). If we prefer to adopt an optimistic vision, we can consider that one (or more missing hy-
potheses), say θ0, has entered in the frame but we did pay attention to it in the dynamicity and
thus, one must expressly consider m(θ0) = 1 instead of m(∅) = 1. For example, Let’s consider
the frame Θ = {A,B} with the 2 following bba’s m1(A) = 0.5, m1(B) = 0.3, m1(A ∪ B) = 0.2
and m2(A) = 0.4, m2(B) = 0.5, m2(A ∪B) = 0.1, but one finds out with new evidence that A

and B are truly empty, then A∪B ≡ Θ
M≡ ∅. Then m(∅) = 1 which means that this is a totally

impossible problem because this degenerate problem turns out to be void. The only escape is to
include a third or more missing hypotheses C, D, etc into the frame to warranty its true closure.

The hybrid DSm rule of combination is not equivalent to Dempster’s rule even working
on Shafer’s model. DSmT is an extension of DST in the way that the hyper-power set is
an extension of the power set; hyper-power set includes, besides, unions, also intersections of
elements; and when all intersections are empty, the hyper-power set coincides with the power
set. Consequently, the DSm hybrid models include Shafer’s model. An extension of this rule
for the combination of imprecise generalized (or eventually classical) basic belief functions is
possible and is presented in [18]. The hybrid DSm rule can be seen as an improved version
of Dubois & Prade’s rule which mix the conjunctive and disjunctive consensus applied in the
DSmT framework to take into account the possibility for any dynamical integrity constraint in
the model.

1.3 The general weighted operator (WO)

In the framework of Dempster-Shafer Theory (DST), a unified formula has been proposed
recently by Lefèvre, Colot and Vanoorenberghe in [12] to embed all the existing (and potentially
forthcoming) combination rules involving conjunctive consensus in the same general mechanism
of construction. It turns out that such unification formula had been already proposed by
Inagaki [10] in 1991 as reported in [16]. This formulation is known as the Weighted Operator
(WO) in literature [11]. The WO for 2 sources is based on two steps.

• Step 1: Computation of the total conflicting mass based on the conjunctive consensus

k12 ,
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2) (1.16)

• Step 2: This second step consists in the reallocation (convex combination) of the con-
flicting masses on (X 6= ∅) ⊆ Θ with some given coefficients wm(X) ∈ [0, 1] such that∑

X⊆Θwm(X) = 1 according to

m(∅) = wm(∅) · k12
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and ∀(X 6= ∅) ∈ 2Θ

m(X) = [
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)] + wm(X)k12 (1.17)

The WO can be easily generalized for the combination of s ≥ 2 independent and equally
reliable sources of information as well by substituting k12 in step 1 by

k12...s ,
∑

X1,...,Xs∈2Θ

X1∩...∩Xs=∅

s∏

i=1

mi(Xi)

and for step 2 by deriving for all (X 6= ∅) ∈ 2Θ the mass m(X) by

m(X) = [
∑

X1,...,Xs∈2Θ

X1∩...∩Xs=X

s∏

i=1

mi(Xi)] + wm(X)k12...s

The particular choice of coefficients wm(.) provides a particular rule of combination (Demp-
ster’s, Yager’s, Smets’, Dubois & Prade’s rules, by example, are particular cases of WO [12]).
Actually this nice and important general formulation shows there exists an infinite number of
possible rules of combination. Some rules are more justified or criticized with respect to the
other ones mainly on their ability to, or not to, preserve the commutativity, associativity of the
combination, to maintain the neutral impact of VBA and to provide what we feel coherent/ac-
ceptable solutions in high conflicting situations. It can be easily shown in [12] that such general
procedure provides all existing rules involving conjunctive consensus developed in the literature
based on Shafer’s model.

1.4 The weighted average operator (WAO)

1.4.1 Definition

This operator has been recently proposed (only in the framework of Dempster-Shafer theory)
by Jøsang, Daniel and Vannoorenberghe in [11] only for static fusion case. It is a new particular
case of WO where the weighting coefficients wm(A) are chosen as follows: wm(∅) = 0 and
∀X ∈ 2Θ \ {∅},

wm(X) =
1

s

s∑

i=1

mi(X) (1.18)

where s is the number of independent sources to combine.

From the general expression of WO and this particular choice of weighting coefficients
wm(X), one gets, for the combination of s ≥ 2 independent sources and ∀(X 6= ∅) ∈ 2Θ

mWAO(X) = [
∑

X1,...,Xs∈2Θ

X1∩...∩Xs=X

s∏

i=1

mi(Xi)] + [
1

s

s∑

i=1

mi(X)] · [
∑

X1,...,Xs∈2Θ

X1∩...∩Xs=∅

s∏

i=1

mi(Xi)] (1.19)
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1.4.2 Example for WAO

Let’s consider Shafer’s model (exhaustivity and exclusivity of hypotheses) on Θ = {A,B} and
the two following bba’s

m1(A) = 0.3 m1(B) = 0.4 m1(A ∪B) = 0.3

m2(A) = 0.5 m2(B) = 0.1 m2(A ∪B) = 0.4

The conjunctive consensus yields6

m12(A) = 0.42 m12(B) = 0.23 m12(A ∪B) = 0.12

with the conflicting mass k12 = 0.23. The weighting average coefficients are given by

wm(A) = 0.40 wm(B) = 0.25 wm(A ∪B) = 0.35

The result of the WAO is therefore given by

mWAO|12(A) = m12(A) + wm(A) · k12 = 0.42 + 0.40 · 0.23 = 0.5120

mWAO|12(B) = m12(B) + wm(B) · k12 = 0.23 + 0.25 · 0.23 = 0.2875

mWAO|12(A ∪B) = m12(A ∪B) + wm(A ∪B) · k12 = 0.12 + 0.35 · 0.23 = 0.2005

1.4.3 Limitations of WAO

From the previous simple example, one can easily verify that the WAO doesn’t preserve the
neutral impact of VBA (condition expressed in (1.3)). Indeed, if one combines the two first
sources with a third (but totally ignorant) source represented by the vacuous belief assignment
(i.e. m3(.) = mv(.)), m3(A∪B) = 1 altogether, one gets same values from conjunctive consensus
and conflicting mass, i.e. k123 = 0.23 and

m123(A) = 0.42 m123(B) = 0.23 m123(A ∪B) = 0.12

but the weighting average coefficients are now given by

wm(A) = 0.8/3 wm(B) = 0.5/3 wm(A ∪B) = 1.7/3

so that

mWAO|123(A) = 0.42 + (0.8/3) · 0.23 ≈ 0.481333

mWAO|123(B) = 0.23 + (0.5/3) · 0.23 ≈ 0.268333

mWAO|123(A ∪B) = 0.12 + (1.7/3) · 0.23 ≈ 0.250334

Consequently, WAO doesn’t preserve the neutral impact of VBA since one has found at least
one example in which condition (1.3) is not satisfied because

mWAO|123(A) 6= mWAO|12(A)

6We use m12 instead of m∩ to indicate explicitly that only 2 sources enter in the conjunctive operator. The
notation mWAO|12 denotes the result of the WAO combination for sources 1 and 2. When s ≥ 2 sources are
combined, we use similarly the notations m12...s and mWAO|12...s.
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mWAO|123(B) 6= mWAO|12(B)

mWAO|123(A ∪B) 6= mWAO|12(A ∪B)

Another limitation of WAO concerns its impossibility to deal with dynamical evolution of
the frame (i.e. when some evidence arises after a while on the true vacuity of elements of power
set). As example, let’s consider three different suspects A, B and C in a criminal investigation
(i.e. Θ = {A,B,C}) and the two following simple Bayesian witnesses reports

m1(A) = 0.3 m1(B) = 0.4 m1(C) = 0.3

m2(A) = 0.5 m2(B) = 0.1 m2(C) = 0.4

The conjunctive consensus is

m12(A) = 0.15 m12(B) = 0.04 m12(C) = 0.12

with the conflicting mass k12 = 0.69. Now let’s assume that a little bit later, one learns that
B = ∅ because the second suspect brings a perfect alibi, then the initial consensus on B (i.e.
m12(B) = 0.04) must enter now in the new conflicting mass k′12 = 0.69 + 0.04 = 0.73 since
B = ∅. k′12 is then re-distributed to A and C according to the WAO formula:

mWAO|12(B) = 0

mWAO|12(A) = 0.15 + (1/2)(0.3 + 0.5)(0.73) = 0.4420

mWAO|12(C) = 0.12 + (1/2)(0.3 + 0.4)(0.73) = 0.3755

From this WAO result, one sees clearly that the sum of the combined belief assignments
mWAO|12(.) is 0.8175 < 1. Therefore, the WAO proposed in [12] doesn’t manage properly
the combination with VBA neither the possible dynamicity of the fusion problematic. This lim-
itation is not very surprising since the WAO was proposed actually only for the static fusion7

based on Shafer’s model. The improvement of WAO for dynamic fusion is an open problem,
but Milan Daniel in a private communication to the authors, proposed to use the following
normalized coefficients for WAO in dynamic fusion:

wm(X) =
1

s

∑
X

∑s
i=1mi(X)∑

X 6=∅
∑s

i=1mi(X)

s∑

i=1

mi(X) (1.20)

1.5 Daniel’s minC rule of combination

1.5.1 Principle of the minC rule

MinC fusion rule is a recent interesting rule based on proportional redistribution of partial
conflicts. Actually it was the first rule, to the knowledge of authors, that uses the idea for so-
phisticated proportional conflict redistribution. This rule was developed in the DST framework
only. MinC rule is commutative and preserves the neutral impact of VBA but, as the majority
of rules, MinC is not fully associative. MinC has been developed and proposed by Milan Daniel

7Note that the static fusion aspect was not explicitly stated and emphasized in [12] but only implicitly
assumed.
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in [1–4]. A detailed presentation of MinC can also be found in [18] (Chap. 10).

The basic idea of minC is to identify all different types of partial conflicts and then transfer
them with some proportional redistribution. Two versions of proportional redistributions have
been proposed by Milan Daniel:

• The minC (version a) ): the mass coming from a partial conflict (called contradiction by
M. Daniel) involving several sets X1,X2,. . . ,Xk is proportionalized among all unions

⋃j
i=1,

of j ≤ k sets Xi of {X1, . . . ,Xk} (after a proper reallocation of all equivalent propositions
containing partial conflit onto elements of power set).

• The minC (version b) ): the mass coming from a partial conflict involving several sets
X1,X2,. . . ,Xk is proportionalized among all non empty subsets of X1∪, . . . ∪Xk.

The preservation of the neutral impact of the VBA by minC rule can been drawn from the
following demonstration: Let’s consider two basic belief assignments m1(.) and m2(.). The first
stage of minC consists in deriving the conjunctive consensus m12(.) from m1(.) and m2(.) and
then transfer the mass of conflicting propositions to its components and unions of its compo-
nents proportionally to their masses m12(.). Since the vacuous belief assignment mv(.) is the
neutral element of the conjunctive operator, one always has m12v(.) = m12(.) and thus the result
of the minC at the first stage and after the first stage not affected by the introduction of the
vacuous belief assignment in the fusion process. That’s why minC preserves the neutral impact
of VBA.

Unfortunately no analytic expression for the minC rules (version a) and b)) has been pro-
vided so far by the author. As simply stated, minC transfers m(A ∩ B) when A ∩ B = ∅ with
specific proportionalization factors to A, B, and A ∪ B; More generally, minC transfers the
conflicting mass m(X), when X = ∅, to all subsets of u(X) (the disjunctive form of X), which
is not the most exact issue. As it will be shown in the sequel of this chapter, the PCR5 rule
allows a more judicious proportional conflict redistribution. For a better understanding of the
minC rule, here is a simple illustrative example drawn from [18] (p. 237).

1.5.2 Example for minC

Let’s consider Shafer’s model with Θ = {θ1, θ2, θ3} and the two following bba’s to combine (here
we denotes θ1 ∪ θ2 ∪ θ3 by Θ for notation convenience).

m1(θ1) = 0.3 m2(θ1) = 0.1

m1(θ2) = 0.2 m2(θ2) = 0.1

m1(θ3) = 0.1 m2(θ3) = 0.2

m1(θ1 ∪ θ2) = 0.1 m2(θ1 ∪ θ2) = 0.0

m1(θ1 ∪ θ3) = 0.1 m2(θ1 ∪ θ3) = 0.1

m1(θ2 ∪ θ3) = 0.0 m2(θ2 ∪ θ3) = 0.2

m1(Θ) = 0.2 m2(Θ) = 0.3

The results of the three steps of the minC rules are given in Table 1.1. For notation convenience,
the square symbol � represents (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3).
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m12 m⋆
12 m

a)
minC

m
b)
minC

θ1 0.19 0.20 0.2983 0.2999
θ2 0.15 0.17 0.2318 0.2402
θ3 0.14 0.16 0.2311 0.2327

θ1 ∪ θ2 0.03 0.03 0.0362 0.0383
θ1 ∪ θ3 0.06 0.06 0.0762 0.0792
θ2 ∪ θ3 0.04 0.04 0.0534 0.0515

θ1 ∪ θ2 ∪ θ3 0.06 0.06 0.0830 0.0692

θ1 ∩ θ2 0.05 0.05
θ1 ∩ θ3 0.07 0.07
θ2 ∩ θ3 0.05 0.05

θ1 ∩ (θ2 ∪ θ3) 0.06 0.06
θ2 ∩ (θ1 ∪ θ3) 0.03 0.03
θ3 ∩ (θ1 ∪ θ2) 0.02 0.02
θ1 ∪ (θ2 ∩ θ3) 0.01
θ2 ∪ (θ1 ∩ θ3) 0.02
θ3 ∪ (θ1 ∩ θ2) 0.02
θ1 ∩ θ2 ∩ θ3 0

� 0

Table 1.1: minC result (versions a) and b))

• Step 1 of minC : the conjunctive consensus

The first column of Table 1.1 lists all the elements involved in the combination. The second
column gives the result of the first step of the minC rule which consists in applying the
conjunctive consensus operator m12(.) defined on the hyper-power set DΘ of the free-DSm
model.

• Step 2 of minC : the reallocation

The second step of minC consists in the reallocation of the masses of all partial conflicts
which are equivalent to some non empty elements of the power set. This is what we call
the equivalence-based reallocation principle (EBR principle). The third column m⋆

12 of
Table 1.1 gives the basic belief assignment after reallocation of partial conflicts based on
EBR principle before proportional conflict redistribution (i.e. the third and final step of
minC).

Let’s explain a bit what EBR is from this simple example. Because we are working with
Shafer’s model all elements θ1, θ2 and θ3 of Θ are exclusive and therefore θ1 ∩ θ2 = ∅,
θ1 ∩ θ3 = ∅, θ3 ∩ θ3 = ∅ and θ1 ∩ θ2 ∩ θ3 = ∅. Consequently, the propositions θ1 ∪ (θ2 ∩ θ3),
θ2 ∪ (θ1 ∩ θ3), and θ3 ∪ (θ1 ∩ θ2) corresponding to the 14th, 15th and 16th rows of the
Table 1.1 are respectively equivalent to θ1, θ2 and θ3 so that their committed masses
can be directly reallocated (added) onto m12(θ1), m12(θ2) and m12(θ3). No other mass
containing partial conflict can be directly reallocated onto the first seven elements of the
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table based on the EBR principle in this example. Thus finally, one gets m⋆
12(.) = m12(.)

for all non-equivalent elements and for elements θ1, θ2 and θ3 for which a reallocation has
been done

m⋆
12(θ1) = m12(θ1) +m12(θ1 ∪ (θ2 ∩ θ3)) = 0.19 + 0.01 = 0.20

m⋆
12(θ2) = m12(θ2) +m12(θ2 ∪ (θ1 ∩ θ3)) = 0.15 + 0.02 = 0.17

m⋆
12(θ3) = m12(θ3) +m12(θ3 ∪ (θ1 ∩ θ2)) = 0.14 + 0.02 = 0.16

• Step 3 of minC : proportional conflict redistribution

The fourth and fifth columns of the Table 1.1 (m
a)
minC and m

b)
minC) provide the minC

results with the two versions of minC proposed by Milan Daniel and explained below.
The column 4 of the Table 1.1 corresponds to the version a) of minC while the column 5
corresponds to the version b). Let’s explain now in details how the values of columns 4
and 5 have be obtained.

Version a) of minC: The result for the minC (version a) corresponding to the fourth
column of the Table 1.1 is obtained from m⋆

12(.) by the proportional redistribution of
the partial conflict onto the elements entering in the partial conflict and their union. By
example, the mass m⋆

12(θ1∩ (θ2∪ θ3)) = 0.06 will be proportionalized from the mass of θ1,
θ2 ∪ θ3 and θ1 ∪ θ2 ∪ θ3 only. The parts of the mass of θ1 ∩ (θ2 ∪ θ3) added to θ1, θ2 ∪ θ3
and θ1 ∪ θ2 ∪ θ3 will be given by

k(θ1) = m⋆
12(θ1 ∩ (θ2 ∪ θ3)) · m

⋆
12(θ1)

K
= 0.06 · 0.20

0.30
= 0.040

k(θ2 ∪ θ3) = m⋆
12(θ1 ∩ (θ2 ∪ θ3)) · m

⋆
12(θ2 ∪ θ3)

K
= 0.06 · 0.04

0.30
= 0.008

k(θ1 ∪ θ2 ∪ θ3) = m⋆
12(θ1 ∩ (θ2 ∪ θ3)) · m

⋆
12(Θ)

K
= 0.06 · 0.06

0.30
= 0.012

where the normalization constant is K = m⋆
12(θ1) + m⋆

12(θ2 ∪ θ3) + m⋆
12(θ1 ∪ θ2 ∪ θ3) =

0.20 + 0.04 + 0.06 = 0.30.

The proportional redistribution is done similarly for all other partial conflicting masses.
We summarize in Tables 1.2-1.4 all the proportions (rounded at the fifth decimal) of
conflicting masses to transfer onto elements of the power set. The sum of each column of
the Tables 1.2-1.4 is transferred onto the mass of the element of power set it corresponds

to get the final result of minC (version a)). By example, m
a)
minC

(θ1) is obtained by

m
a)
minC

(θ1) = m⋆
12(θ1) + (0.025 + 0.03333 + 0.04) = 0.20 + 0.09833 = 0.29833

which corresponds to the first value (rounded at the 4th decimal) of the 4th column of
Table 1.1. All other values of the minC (version a)) result of Table 1.1 can be easily
verified similarly.

Version b) of minC: In this second version of minC, the proportional redistribution of any
partial conflict X remaining after step 2 uses all subsets of u(X) (i.e. the disjunctive form
of X). As example, let’s consider the partial conflict X = θ1 ∩ (θ2 ∪ θ3) in the Table 1.1
having the belief mass m⋆

12(θ1 ∩ (θ2 ∪ θ3)) = 0.06. Since u(X) = θ1 ∪ θ2 ∪ θ3, all elements
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θ1 θ2 θ3
θ1 ∩ θ2 0.025 0.02125
θ1 ∩ θ3 0.03333 0.02667
θ2 ∩ θ3 0.02297 0.02162

θ1 ∩ (θ2 ∪ θ3) 0.04
θ2 ∩ (θ1 ∪ θ3) 0.01758
θ3 ∩ (θ1 ∪ θ2) 0.0128

Table 1.2: Version a) of minC Proportional conflict redistribution factors

θ1 ∪ θ2 θ1 ∪ θ3
θ1 ∩ θ2 0.00375
θ1 ∩ θ3 0.01
θ2 ∩ θ3

θ1 ∩ (θ2 ∪ θ3)
θ2 ∩ (θ1 ∪ θ3) 0.00621
θ3 ∩ (θ1 ∪ θ2) 0.0024

Table 1.3: Version a) of minC Proportional conflict redistribution factors (continued)

θ2 ∪ θ3 θ1 ∪ θ2 ∪ θ3
θ1 ∩ θ2
θ1 ∩ θ3
θ2 ∩ θ3 0.00541

θ1 ∩ (θ2 ∪ θ3) 0.008 0.012
θ2 ∩ (θ1 ∪ θ3) 0.00621
θ3 ∩ (θ1 ∪ θ2) 0.0048

Table 1.4: Version a) of minC Proportional conflict redistribution factors (continued)

of the power set 2Θ will enter in the proportional redistribution and we will get for this X

k(θ1) = m⋆
12(θ1 ∩ (θ2 ∪ θ3)) · m

⋆
12(θ1)

K
≈ 0.01666

k(θ2) = m⋆
12(θ1 ∩ (θ2 ∪ θ3)) · m

⋆
12(θ2)

K
≈ 0.01417

k(θ3) = m⋆
12(θ1 ∩ (θ2 ∪ θ3)) · m

⋆
12(θ3)

K
≈ 0.01333

k(θ1 ∪ θ2) = m⋆
12(θ1 ∩ (θ2 ∪ θ3)) · m

⋆
12(θ1 ∪ θ2)

K
= 0.06 · 0.03

0.72
= 0.0025

k(θ1 ∪ θ3) = m⋆
12(θ1 ∩ (θ2 ∪ θ3)) · m

⋆
12(θ1 ∪ θ3)

K
= 0.06 · 0.06

0.72
= 0.005

k(θ2 ∪ θ3) = m⋆
12(θ1 ∩ (θ2 ∪ θ3)) · m

⋆
12(θ2 ∪ θ3)

K
= 0.06 · 0.04

0.72
≈ 0.00333

k(Θ) = m⋆
12(θ1 ∩ (θ2 ∪ θ3)) · m

⋆
12(Θ)

K
= 0.005
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where the normalization constant K = 0.72 corresponds here to K =
∑

Y ∈2Θ m⋆
12(Y ).

If one considers now X = θ1 ∩ θ2 with its belief mass m⋆
12(θ1 ∩ θ2) = 0.05, then only θ1,

θ2 and θ1 ∪ θ2 enter in the proportional redistribution (version b) because u(X) = θ1 ∪ θ2
doesn’t not carry element θ3. One then gets for this element X the new set of proportional
redistribution factors:

k(θ1) = m⋆
12(θ1 ∩ θ2) · m

⋆
12(θ1)

K
= 0.05 · 0.20

0.40
= 0.025

k(θ2) = m⋆
12(θ1 ∩ θ2) · m

⋆
12(θ2)

K
= 0.05 · 0.17

0.40
= 0.02125

k(θ1 ∪ θ2) = m⋆
12(θ1 ∩ θ2) · m

⋆
12(θ1 ∪ θ2)

K
= 0.05 · 0.03

0.40
= 0.00375

where the normalization constant K = 0.40 corresponds now to the sum K = m⋆
12(θ1) +

m⋆
12(θ2) +m⋆

12(θ1 ∪ θ2).

The proportional redistribution is done similarly for all other partial conflicting masses.
We summarize in the Tables 1.5-1.7 all the proportions (rounded at the fifth decimal) of
conflicting masses to transfer onto elements of the power set based on this second version
of proportional redistribution of minC.

The sum of each column of the Tables 1.5-1.7 is transferred onto the mass of the element
of power set it corresponds to get the final result of minC (version b)). By example,

m
b)
minC

(θ1) will be obtained by

m
b)
minC

(θ1) = m⋆
12(θ1) + (0.02500 + 0.03333 + 0.01666 + 0.00834 + 0.00555)

= 0.20 + 0.08888 = 0.28888

which corresponds to the first value (rounded at the 4th decimal) of the 5th column of
Table 1.1. All other values of the minC (version b)) result of Table 1.1 can be easily
verified similarly.

θ1 θ2 θ3
θ1 ∩ θ2 0.02500 0.02125
θ1 ∩ θ3 0.03333 0.02667
θ2 ∩ θ3 0.02298 0.02162

θ1 ∩ (θ2 ∪ θ3) 0.01666 0.01417 0.01333
θ2 ∩ (θ1 ∪ θ3) 0.00834 0.00708 0.00667
θ3 ∩ (θ1 ∪ θ2) 0.00555 0.00472 0.00444

Table 1.5: Version b) of minC Proportional conflict redistribution factors
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θ1 ∪ θ2 θ1 ∪ θ3
θ1 ∩ θ2 0.00375
θ1 ∩ θ3 0.01000
θ2 ∩ θ3

θ1 ∩ (θ2 ∪ θ3) 0.00250 0.00500
θ2 ∩ (θ1 ∪ θ3) 0.00125 0.00250
θ3 ∩ (θ1 ∪ θ2) 0.00084 0.00167

Table 1.6: Version b) of minC Proportional conflict redistribution factors (continued)

θ2 ∪ θ3 θ1 ∪ θ2 ∪ θ3
θ1 ∩ θ2
θ1 ∩ θ3
θ2 ∩ θ3 0.00540

θ1 ∩ (θ2 ∪ θ3) 0.00333 0.00500
θ2 ∩ (θ1 ∪ θ3) 0.00166 0.00250
θ3 ∩ (θ1 ∪ θ2) 0.00111 0.00167

Table 1.7: Version b) of minC Proportional conflict redistribution factors (continued)

1.6 Principle of the PCR rules

Let’s Θ = {θ1, θ2, . . . , θn} be the frame of the fusion problem under consideration and two belief
assignments m1,m2 : GΘ → [0, 1] such that

∑
X∈GΘ mi(X) = 1, i = 1, 2. The general principle

of the Proportional Conflict Redistribution Rules (PCR for short) is:

• apply the conjunctive rule (1.8) or (1.9) depending on theory, i.e. GΘ can be either 2Θ or
DΘ,

• calculate the total or partial conflicting masses,

• then redistribute the conflicting mass (total or partial) proportionally on non-empty sets
involved in the model according to all integrity constraints.

The way the conflicting mass is redistributed yields to five versions of PCR, denoted PCR1,
PCR2, . . . , PCR5 as it will be shown in the sequel. The PCR combination rules work for any
degree of conflict k12 ∈ [0, 1] or k12...s ∈ [0, 1], for any DSm models (Shafer’s model, free DSm
model or any hybrid DSm model). PCR rules work both in DST and DSmT frameworks and
for static or dynamical fusion problematic. The sophistication/complexity (but correctness) of
proportional conflict redistribution increases from the first PCR1 rule up to the last rule PCR5.
The development of different PCR rules presented here comes from the fact that the first initial
PCR rule developed (PCR1) does not preserve the neutral impact of VBA. All other improved
rules PCR2-PCR5 preserve the commutativity, the neutral impact of VBA and propose, upon
to our opinion, a more and more exact solution for the conflict management to satisfy as best
as possible the condition 1 (in section 1) that any satisfactory combination rule must tend to.
The general proof for the neutrality of VBA within PCR2, PCR3, PCR4 and PCR5 rules is



1.7. THE PCR1 RULE 21

given in section 1.11.1 and some numerical examples are given in the section related with the
presentation of each rule.

1.7 The PCR1 rule

1.7.1 The PCR1 formula

PCR1 is the simplest and the easiest version of proportional conflict redistribution for com-
bination. PCR1 is described in details in [20]. The basic idea for PCR1 is only to compute
the total conflicting mass k12 (not worrying about the partial conflicting masses). The total
conflicting mass is then distributed to all non-empty sets proportionally with respect to their
corresponding non-empty column sum of the associated mass matrix. The PCR1 is defined
∀(X 6= ∅) ∈ GΘ by:

• For the combination of s = 2 sources

mPCR1(X) = [
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2)] +
c12(X)

d12
· k12 (1.21)

where c12(X) is the non-zero sum of the column of X in the mass matrix M =

[
m1

m2

]

(where mi for i = 1, 2 is the row vector of belief assignments committed by the source i to
elements of GΘ), i.e. c12(X) = m1(X) +m2(X) 6= 0, k12 is the total conflicting mass, and
d12 is the sum of all non-zero column sums of all non-empty sets (in many cases d12 = 2,
but in some degenerate cases it can be less) (see [20]).

• For the combination of s ≥ 2 sources

mPCR1(X) = [
∑

X1,X2,...,Xs∈GΘ

X1∩X2∩...∩Xs=X

s∏

i=1

mi(Xi)] +
c12...s(X)

d12...s
· k12...s (1.22)

where c12...s(X) is the non-zero sum of the column of X in the mass matrix, i.e. c12...s(X) =
m1(X) +m2(X) + . . . +ms(X) 6= 0, k12...s is the total conflicting mass, and d12...s is the
sum of all non-zero column sums of all non-empty sets (in many cases d12...s = s, but in
some degenerate cases it can be less).

PCR1 is an alternative combination rule to WAO (Weighted Average Operator) proposed by
Jøsang, Daniel and Vannoorenberghe in [11]. Both are particular cases of WO (The Weighted
Operator) because the conflicting mass is redistributed with respect to some weighting factors.
In the PCR1, the proportionalization is done for each non-empty set with respect to the non-
zero sum of its corresponding mass matrix - instead of its mass column average as in WAO.
But, PCR1 extends WAO, since PCR1 works also for the degenerate cases when all column
sums of all non-empty sets are zero because in such cases, the conflicting mass is transferred
to the non-empty disjunctive form of all non-empty sets together; when this disjunctive form
happens to be empty, then either the problem degenerates truly to a void problem and thus
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all conflicting mass is transferred onto the empty set, or we can assume (if one has enough
reason to justify such assumption) that the frame of discernment might contain new unknown
hypotheses all summarized by θ0 and under this assumption all conflicting mass is transferred
onto the unknown possible θ0.

A nice feature of PCR1 rule, is that it works in all cases (degenerate and non degenerate).
PCR1 corresponds to a specific choice of proportionality coefficients in the infinite continuum
family8 of possible rules of combination involving conjunctive consensus operator. The PCR1
on the power set and for non-degenerate cases gives the same results as WAO (as Philippe
Smets pointed out); yet, for the storage requirement in a dynamic fusion when the associativity
is requested, one needs to store for PCR1 only the last sum of masses, besides the previous con-
junctive rule’s result, while in WAO one needs also to store the number of the steps (see [20] for
details) – and both rules become quasi-associative. In addition to WAO, we propose a general
formula for PCR1 (WAO for non-degenerate cases).

Unfortunately, a severe limitation of PCR1 (as for WAO) is the non-preservation of the
neutral impact of the VBA as shown in [20]. In other words, for s ≥ 1, one gets form1(.) 6= mv(.),
. . . , ms(.) 6= mv(.):

mPCR1(.) = [m1 ⊕ . . . ms ⊕mv](.) 6= [m1 ⊕ . . . ms](.)

For the cases of the combination of only one non-vacuous belief assignment m1(.) with the vacu-
ous belief assignment mv(.) where m1(.) has mass assigned to an empty element, say m1(∅) > 0
as in Smets’ TBM, or as in DSmT dynamic fusion where one finds out that a previous non-empty
element A, whose mass m1(A) > 0, becomes empty after a certain time, then this mass of an
empty set has to be transferred to other elements using PCR1, but for such case [m1 ⊕mv](.)
is different from m1(.). This severe drawback of WAO and PCR1 forces us to develop the
next PCR rules satisfying the neutrality property of VBA with better redistributions of the
conflicting information.

1.7.2 Example for PCR1 (degenerate case)

For non degenerate cases with Shafer’s model, PCR1 and WAO provide the same results. So it is
interesting to focus the reader’s attention on the difference between PCR1 and WAO in a simple
degenerate case corresponding to a dynamic fusion problem. Let’s take the following example
showing the restriction of applicability of static-WAO9. As example, let’s consider three different
suspects A, B and C in a criminal investigation (i.e. Θ = {A,B,C}) and the two following
simple Bayesian witnesses reports

m1(A) = 0.3 m1(B) = 0.4 m1(C) = 0.3

m2(A) = 0.5 m2(B) = 0.1 m2(C) = 0.4

The conjunctive consensus is

m12(A) = 0.15 m12(B) = 0.04 m12(C) = 0.12

8pointed out independently by Inagaki in 1991 and Lefèvre, Colot and Vannoorenberghe in 2002.
9static-WAO stands for the WAO rule proposed in [11, 12] based on Shafer’s model for the implicit static

fusion case (i.e. Θ remains invariant with time), while dynamic-WAO corresponds to Daniel’s improved version
of WAO using (1.20).
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with the conflicting mass k12 = 0.69. Now let’s assume that a little bit later, one learns that
B = ∅ because the second suspect brings a strong alibi, then the initial consensus on B (i.e.
m12(B) = 0.04) must enter now in the new conflicting mass k′12 = 0.69 + 0.04 = 0.73 since
B = ∅. Applying the PCR1 formula, one gets now:

mPCR1|12(B) = 0

mPCR1|12(A) = 0.15 +
0.8

0.8 + 0.7
· 0.73 = 0.5393

mPCR1|12(C) = 0.12 +
0.7

0.8 + 0.7
· 0.73 = 0.4607

Let’s remind (see section 4.3) that in this case, the static-WAO provides

mWAO|12(B) = 0 mWAO|12(A) = 0.4420 mWAO|12(C) = 0.3755

We can verify easily that mPCR1|12(A) +mPCR1|12(B) +mPCR1|12(C) = 1 while mWAO|12(A) +
mWAO|12(B) + mWAO|12(C) = 0.8175 < 1. This example shows clearly the difference between
PCR1 and static-WAO originally proposed in [11, 12] and the ability of PCR1 to deal with
degenerate/dynamic cases contrariwise to original WAO. The improved dynamic-WAO version
suggested by Daniel coincides with PCR1.

1.8 The PCR2 rule

1.8.1 The PCR2 formula

In PCR2, the total conflicting mass k12 is distributed only to the non-empty sets involved in the
conflict (not to all non-empty sets) and taken the canonical form of the conflict proportionally
with respect to their corresponding non-empty column sum. The redistribution is then more
exact (accurate) than in PCR1 and WAO. A nice feature of PCR2 is the preservation of the
neutral impact of the VBA and of course its ability to deal with all cases/models.

A non-empty set X1 ∈ GΘ is considered involved in the conflict if there exists another
set X2 ∈ GΘ which is neither included in X1 nor includes X1 such that X1 ∩ X2 = ∅ and
m12(X1 ∩X2) > 0. This definition can be generalized for s ≥ 2 sources.

• The PCR2 formula for two sources (s = 2) is ∀(X 6= ∅) ∈ GΘ,

mPCR2(X) = [
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2)] + C(X)
c12(X)

e12
· k12 (1.23)

where

C(X) =

{
1, if X involved in the conflict,

0, otherwise;

and where c12(X) is the non-zero sum of the column of X in the mass matrix, i.e.
c12(X) = m1(X) + m2(X) 6= 0, k12 is the total conflicting mass, and e12 is the sum
of all non-zero column sums of all non-empty sets only involved in the conflict (resulting
from the conjunctive normal form of their intersection after using the conjunctive rule).
In many cases e12 = 2, but in some degenerate cases it can be less.
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• For the the combination of s ≥ 2 sources, the previous PCR2 formula can be easily
generalized as follows ∀(X 6= ∅) ∈ GΘ:

mPCR2(X) = [
∑

X1,X2,...,Xs∈GΘ

X1∩X2∩...∩Xs=X

s∏

i=1

mi(Xi)] + C(X)
c12...s(X)

e12...s
· k12...s (1.24)

where

C(X) =

{
1, if X involved in the conflict,

0, otherwise;

and c12...s(X) is the non-zero sum of the column of X in the mass matrix, i.e. c12...s(X) =
m1(X) + m2(X) + . . . +ms(X) 6= 0, k12...s is the total conflicting mass, and e12...s is the
sum of all non-zero column sums of all non-empty sets involved in the conflict (in many
cases e12...s = s, but in some degenerate cases it can be less).

In the degenerate case when all column sums of all non-empty sets involved in the conflict
are zero, then the conflicting mass is transferred to the non-empty disjunctive form of all sets
together which were involved in the conflict together. But if this disjunctive form happens
to be empty, then the problem reduces to a degenerate void problem and thus all conflicting
mass is transferred to the empty set or we can assume (if one has enough reason to justify
such assumption) that the frame of discernment might contain new unknown hypotheses all
summarized by θ0 and under this assumption all conflicting mass is transferred onto the unknown
possible θ0.

1.8.2 Example for PCR2 versus PCR1

Let’s have the frame of discernment Θ = {A,B}, Shafer’s model (i.e. all intersections empty),
and the following two bba’s:

m1(A) = 0.7 m1(B) = 0.1 m1(A ∪B) = 0.2

m2(A) = 0.5 m2(B) = 0.4 m2(A ∪B) = 0.1

The sums of columns of the mass matrix are

c12(A) = 1.2 c12(B) = 0.5 c12(A ∪B) = 0.3

Then the conjunctive consensus yields

m12(A) = 0.52 m12(B) = 0.13 m12(A ∪B) = 0.02

with the total conflict k12 = m12(A ∩B) = 0.33.

• Applying the PCR1 rule yields (d12 = 1.2 + 0.5 + 0.3 = 2):

mPCR1|12(A) = m12(A) +
c12(A)

d12
· k12 = 0.52 +

1.2

2
· 0.33 = 0.7180

mPCR1|12(B) = m12(B) +
c12(B)

d12
· k12 = 0.13 +

0.5

2
· 0.33 = 0.2125

mPCR1|12(A ∪B) = m12(A ∪B) +
c12(A ∪B)

d12
· k12 = 0.02 +

0.3

2
· 0.33 = 0.0695
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• While applying the PCR2 rule yields (e12 = 1.2 + 0.5 = 1.7):

mPCR2(A) = m12(A) +
c12(A)

e12
· k12 = 0.52 +

1.2

1.7
· 0.33 = 0.752941

mPCR2(B) = m12(B) +
c12(B)

e12
· k12 = 0.12 +

0.5

1.7
· 0.33 = 0.227059

mPCR2(A ∪B) = m12(A ∪B) = 0.02

1.8.3 Example of neutral impact of VBA for PCR2

Let’s keep the previous example and introduce now a third but totally ignorant source mv(.)
and examine the result of the combination of the 3 sources with PCR2. So, let’s start with

m1(A) = 0.7 m1(B) = 0.1 m1(A ∪B) = 0.2

m2(A) = 0.5 m2(B) = 0.4 m2(A ∪B) = 0.1

mv(A) = 0.0 mv(B) = 0.0 mv(A ∪B) = 1.0

The sums of columns of the mass matrix are

c12v(A) = 1.2 c12v(B) = 0.5 c12v(A ∪B) = 1.3

Then the conjunctive consensus yields

m12v(A) = 0.52 m12v(B) = 0.13 m12v(A ∪B) = 0.02

with the total conflict k12v = m12v(A ∩ B) = 0.33. We get naturally m12v(.) = m12(.) because
the vacuous belief assignment mv(.) has no impact in the conjunctive consensus.

Applying the PCR2 rule yields:

mPCR2|12v(A) = m12v(A) +
c12v(A)

e12v
· k12v = 0.52 +

1.2

1.2 + 0.5
· 0.33 = 0.752941

mPCR2|12v(B) = m12v(B) +
c12v(B)

e12v
· k12v = 0.52 +

0.5

1.2 + 0.5
· 0.33 = 0.227059

mPCR2|12v(A ∪B) = m12v(A ∪B) = 0.02

In this example one sees that the neutrality property of VBA is effectively well satisfied since

mPCR2|12v(.) = mPCR2|12(.)

A general proof for neutrality of VBA within PCR2 is given in section 1.11.1.

1.9 The PCR3 rule

1.9.1 Principle of PCR3

In PCR3, one transfers partial conflicting masses, instead of the total conflicting mass, to non-
empty sets involved in partial conflict (taken the canonical form of each partial conflict). If
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an intersection is empty, say A ∩ B = ∅, then the mass m(A ∩ B) of the partial conflict is
transferred to the non-empty sets A and B proportionally with respect to the non-zero sum
of masses assigned to A and respectively to B by the bba’s m1(.) and m2(.). The PCR3 rule
works if at least one set between A and B is non-empty and its column sum is non-zero.

When both sets A and B are empty, or both corresponding column sums of the mass matrix
are zero, or only one set is non-empty and its column sum is zero, then the mass m(A ∩ B) is
transferred to the non-empty disjunctive form u(A) ∪ u(B) defined in (1.25); if this disjunctive
form is empty then m(A ∩ B) is transferred to the non-empty total ignorance; but if even the
total ignorance is empty then either the problem degenerates truly to a void problem and thus
all conflicting mass is transferred onto the empty set, or we can assume (if one has enough
reason to justify such assumption) that the frame of discernment might contain new unknown
hypotheses all summarized by θ0 and under this assumption all conflicting mass is transferred
onto the unknown possible θ0.

If another intersection, say A∩C ∩D = ∅, then again the mass m(A∩C ∩D) > 0 is trans-
ferred to the non-empty sets A, C, and D proportionally with respect to the non-zero sum of
masses assigned to A, C, and respectively D by the sources; if all three sets A, C, D are empty
or the sets which are non-empty have their corresponding column sums equal to zero, then the
mass m(A ∩ C ∩ D) is transferred to the non-empty disjunctive form u(A) ∪ u(C) ∪ u(D); if
this disjunctive form is empty then the mass m(A ∩ C ∩ D) is transferred to the non-empty
total ignorance; but if even the total ignorance is empty (a completely degenerate void case) all
conflicting mass is transferred onto the empty set (which means that the problem is truly void),
or (if we prefer to adopt an optimistic point of view) all conflicting mass is transferred onto
a new unknown extra and closure element θ0 representing all missing hypotheses of the frame Θ.

The disjunctive form is defined10 as [18]:





u(X) = X ifX is a singleton

u(X ∪ Y ) = u(X) ∪ u(Y )

u(X ∩ Y ) = u(X) ∪ u(Y )

(1.25)

1.9.2 The PCR3 formula

• For the combination of two bba’s, the PCR3 formula is given by: ∀(X 6= ∅) ∈ GΘ,

10These relationships can be generalized for any number of sets.
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mPCR3(X) = [
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2)]

+ [c12(X) ·
∑

Y ∈GΘ

Y ∩X=∅

m1(Y )m2(X) +m1(X)m2(Y )

c12(X) + c12(Y )
]

+ [
∑

X1,X2∈(GΘ\{X})∩∅

X1∩X2=∅
u(X1)∪u(X2)=X

[m1(X1)m2(X2) +m1(X2)m2(X1)]]

+ [φΘ(X)
∑

X1,X2∈(GΘ\{X})∩∅

X1∩X2=∅
u(X1)=u(X2)=∅

[m1(X1)m2(X2) +m1(X2)m2(X1)]] (1.26)

where all sets are in canonical form, c12(Xi) (Xi ∈ GΘ) is the non-zero sum of the mass
matrix column corresponding to the set Xi, i.e. c12(Xi) = m1(Xi) + m2(Xi) 6= 0, and
where φΘ(.) is the characteristic function of the total ignorance (assuming | Θ |= n)
defined by {

φΘ(X) = 1 ifX = θ1 ∪ θ2 ∪ . . . ∪ θn (total ignorance)

φΘ(X) = 0 otherwise
(1.27)

• For the fusion of s ≥ 2 bba’s, one extends the above procedure to formulas (1.25) and
(1.26) to more general ones. One then gets the following PCR3 general formula. Let
GΘ = {X1, . . . ,Xn} 6= ∅ (GΘ being either the power-set or hyper-power set depending on
the model we want to deal with), n ≥ 2, ∀X 6= ∅, X ∈ GΘ, one has:

mPCR3(X) = m12...s(X)

+ c12...s(X) ·
s−1∑

k=1

SPCR3
1 (X, k) +

s∑

k=1

SPCR3
2 (X, k)

+ φΘ(X)
s∑

k=1

SPCR3
3 (X, k) (1.28)

For convenience, the following notation is used

m12...s(X) =
∑

X1,...,Xs∈GΘ

X1∩...∩Xs=X

s∏

k=1

mk(Xk)

m12...s(
k⋂

j=1

Xij ) = m12...s(Xi1 ∩ . . . ∩Xik)

SPCR3
1 (X, k) ,

∑

Xi1
,...,Xik

∈GΘ\{X}
{i1,...,ik}∈Pk({1,2,...,n})

X∩Xi1
∩...∩Xik

=∅

Ri1,...,ikk (X)
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with

Ri1,...,ikk (X) ,
m12...s(X ∩Xi1 ∩ . . . ∩Xik)

c12...s(X) +
∑k

j=1 c12...s(Xij )

and

SPCR3
2 (X, k) ,

∑

Xi1
,...,Xik

∈(GΘ\{X})∩∅

{i1,...,ik}∈Pk({1,2,...,n})
Xi1

∩...∩Xik
=∅

u(Xi1
)∪...∪u(Xik

)=X

m12...s(
k⋂

j=1

Xij )

SPCR3
3 (X, k) ,

∑

Xi1
,...,Xik

∈(GΘ\{X})∩∅

{i1,...,ik}∈Pk({1,2,...,n})
Xi1

∩...∩Xik
=∅

u(Xi1
)=...=u(Xik

)=∅

m12...s(
k⋂

j=1

Xij )

where ∅ is the set of elements (if any) which have been forced to be empty by the integrity
constraints of the model of the problem (in case of dynamic fusion) and (Pk({1, 2, . . . , n})
is the set of all subsets ok k elements from {1, 2, . . . , n} (permutations of n elements taken
by k), the order of elements doesn’t count.

The sum
∑s

k=1 S
PCR3
2 (X, k) in (1.28) is for cases when Xi1 ,. . . , Xik become empty in

dynamic fusion; their intersection mass is transferred to their disjunctive form: u(Xi1) ∪
. . . ∪ u(Xik) 6= ∅.

The sum
∑s

k=1 S
PCR3
3 (X, k) in (1.28) is for degenerate cases, i.e. when Xi1 ,. . . , Xik

and their disjunctive form become empty in dynamic fusion; their intersection mass is
transferred to the total ignorance.

PCR3 preserves the neutral impact of the VBA and works for any cases/models.

1.9.3 Example for PCR3

Let’s have the frame of discernment Θ = {A,B,C}, Shafer’s model (i.e. all intersections empty),
and the 2 following Bayesian bba’s

m1(A) = 0.6 m1(B) = 0.3 m1(C) = 0.1

m2(A) = 0.4 m2(B) = 0.4 m2(C) = 0.2

The sums of columns of the mass matrix are

c12(A) = 1.0 c12(B) = 0.7 c12(C) = 0.3

Then the conjunctive consensus yields

m12(A) = 0.24 m12(B) = 0.12 m12(C) = 0.02
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with the total conflict k12 = m12(A∩B)+m12(A∩C)+m12(B∩C) = 0.36+0.16+0.10 = 0.62,
which is a sum of factors.

Applying the PCR3 rule yields for this very simple (Bayesian) case:

mPCR3|12(A) = m12(A) + c12(A) · m1(B)m2(A) +m1(A)m2(B)

c12(A) + c12(B)

+ c12(A) · m1(C)m2(A) +m1(A)m2(C)

c12(A) + c12(C)

= 0.24 + 1 · 0.3 · 0.4 + 0.6 · 0.4
1 + 0.7

+ 1 · 0.1 · 0.4 + 0.6 · 0.2
1 + 0.3

= 0.574842

mPCR3|12(B) = m12(B) + c12(B) · m1(A)m2(B) +m1(B)m2(A)

c12(B) + c12(A)

+ c12(B) · m1(C)m2(B) +m1(B)m2(C)

c12(B) + c12(C)

= 0.12 + 0.7 · 0.6 · 0.4 + 0.3 · 0.4
0.7 + 1

+ 0.7 · 0.1 · 0.4 + 0.3 · 0.2
0.7 + 0.3

= 0.338235

mPCR3|12(C) = m12(C) + c12(C) · m1(C)m2(A) +m1(A)m2(C)

c12(C) + c12(A)

+ c12(C) · m1(C)m2(B) +m1(B)m2(C)

c12(C) + c12(B)

= 0.02 + 0.3 · 0.1 · 0.4 + 0.6 · 0.2
0.3 + 1

+ 0.3 · 0.1 · 0.4 + 0.2 · 0.3
0.3 + 0.7

= 0.086923

Note that in this simple case, the two last sums involved in formula (1.26) are equal to
zero because here there doesn’t exist positive mass products m1(X1)m2(X2) to compute for
any X ∈ 2Θ, X1,X2 ∈ 2Θ \ {X} such that X1 ∩X2 = ∅ and u(X1) ∪ u(X2) = X, neither for
X1 ∩X2 = ∅ and u(X1) = u(X2) = ∅.

In this example, PCR3 provides a result different from PCR1 and PCR2 (PCR2 provides
same result as PCR1) since

mPCR1(A) = 0.24 +
1

1 + 0.7 + 0.3
· 0.62 = 0.550

mPCR1(B) = 0.12 +
0.7

1 + 0.7 + 0.3
· 0.62 = 0.337

mPCR1(C) = 0.02 +
0.3

1 + 0.7 + 0.3
· 0.62 = 0.113

1.9.4 Example of neutral impact of VBA for PCR3

Let’s keep the previous example and introduce now a third but totally ignorant source mv(.)
and examine the result of the combination of the 3 sources with PCR3. Θ denotes here for
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notation convenience A ∪B ∪ C. So, Let’s start with

m1(A) = 0.6 m1(B) = 0.3 m1(C) = 0.1

m2(A) = 0.4 m2(B) = 0.4 m2(C) = 0.2

mv(A) = 0.0 mv(B) = 0.0 mv(C) = 0.0 mv(Θ) = 1

The sums of columns of the mass matrix are

c12v(A) = 1, c12v(B) = 0.7, c12v(C) = 0.3, c12v(Θ) = 1

The conjunctive consensus yields

m12v(A) = 0.24 m12v(B) = 0.12 m12v(C) = 0.02

with the total conflict k12v = m12v(A∩B)+m12v(A∩C)+m12v(B∩C) = 0.36+0.16+0.10 = 0.62,
which is a sum of factors. We get naturally m12v(.) = m12(.) because the vacuous belief assign-
ment mv(.) has no impact on the conjunctive consensus.

Applying the PCR3 rule yields for this case

mPCR3|12v(A) =m12v(A)

+ c12v(A) · [m1(B)m2(A)mv(Θ)

c12v(A) + c12v(B)
+
m1(A)m2(B)mv(Θ)

c12v(A) + c12v(B)
]

+ c12v(A) · [m1(C)m2(A)mv(Θ)

c12v(A) + c12v(C)
+
m1(A)m2(C)mv(Θ)

c12v(A) + c12v(C)
]

=0.24 + 1 · 0.3 · 0.4 · 1 + 0.6 · 0.4 · 1
1 + 0.7

+ 1 · 0.1 · 0.4 · 1 + 0.6 · 0.2 · 1
1 + 0.3

=0.574842 = mPCR3|12(A)

Similarly, one obtains

mPCR3|12v(B) =0.12 + 0.7 · 0.6 · 0.4 · 1 + 0.3 · 0.4 · 1
0.7 + 1

+ 0.7 · 0.1 · 0.4 · 1 + 0.3 · 0.2 · 1
0.7 + 0.3

=0.338235 = mPCR3|12(B)

mPCR3|12v(C) =0.02 + 0.3 · 0.1 · 0.4 · 1 + 0.6 · 0.2 · 1
0.3 + 1

+ 0.3 · 0.1 · 0.4 · 1 + 0.2 · 0.3 · 1
0.3 + 0.7

=0.086923 = mPCR3|12(C)

In this example one sees that the neutrality property of VBA is effectively well satisfied by
PCR3 rule since

mPCR3|12v(.) = mPCR3|12(.)

A general proof for neutrality of VBA within PCR3 is given in section 1.11.1.
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1.10 The PCR4 rule

1.10.1 Principle of PCR4

PCR4 redistributes the partial conflicting mass to the elements involved in the partial conflict,
considering the canonical form of the partial conflict. PCR4 is an improvement of previous PCR
rules but also of Milan Daniel’s minC operator [18]. Daniel uses the proportionalization with
respect to the results of the conjunctive rule, but not with respect to the masses assigned to each
set by the sources of information as done in PCR1-3 and also as in the most effective PCR5 rule
explained in the next section. Actually, PCR4 also uses the proportionalization with respect
to the results of the conjunctive rule, but with PCR4 the conflicting mass m12(A ∩ B) when
A ∩ B = ∅ is distributed to A and B only because only A and B were involved in the conflict
(A ∪ B was not involved in the conflict since m12(A ∩ B) = m1(A)m2(B) + m2(A)m1(B)),
while minC redistributes m12(A ∩B) to A, B, and A ∪B in both of its versions a) and b) (see
section 5 and [18] for details). Also, for the mixed elements such as C ∩ (A ∪B) = ∅, the mass
m(C ∩ (A∪B)) is redistributed to C, A∪B, A∪B ∪C in minC version a), and worse in minC
version b) to A, B, C, A∪B, A∪C, B∪C and A∪B∪C (see example in section 5). PCR4 rule
improves this and redistributes the mass m(C ∩ (A∪B)) to C and A∪B only, since only them
were involved in the conflict: i.e. m12(C ∩ (A ∪ B)) = m1(C)m2(A ∪ B) + m2(C)m1(A ∪ B),
clearly the other elements A, B, A∪B∪C that get some mass in minC were not involved in the
conflict C ∩ (A ∪ B). If at least one conjunctive rule result is null, then the partial conflicting
mass which involved this set is redistributed proportionally to the column sums corresponding
to each set. Thus PCR4 does a more exact redistribution than both minC versions (versions
a) and b)) explained in section 5. The PCR4 rule partially extends Dempster’s rule in the
sense that instead of redistributing the total conflicting mass as within Dempster’s rule, PCR4
redistributes partial conflicting masses, hence PCR4 does a better refined redistribution than
Dempster’s rule; PCR4 and Dempster’s rule coincide for Θ = {A,B}, in Shafer’s model, with
s ≥ 2 sources, and such that m12...s(A) > 0, m12...s(B) > 0, and m12...s(A ∪ B) = 0. Thus
according to authors opinion, PCR4 rule redistributes better than Dempster’s rule since in
PCR one goes on partial conflicting, while Dempster’s rule redistributes the conflicting mass to
all non-empty sets whose conjunctive mass is nonzero, even those not involved in the conflict.

1.10.2 The PCR4 formula

The PCR4 formula for s = 2 sources: ∀X ∈ GΘ \ {∅}

mPCR4(X) = m12(X) · [1 +
∑

Y ∈GΘ

Y ∩X=∅

m12(X ∩ Y )

m12(X) +m12(Y )
] (1.29)

with m12(X) and m12(Y ) nonzero. m12(.) corresponds to the conjunctive consensus, i.e.

m12(X) ,
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2) .

If at least one of m12(X) or m12(Y ) is zero, the fraction is discarded and the mass m12(X ∩ Y )
is transferred to X and Y proportionally with respect to their non-zero column sum of masses;
if both their column sums of masses are zero, then one transfers to the partial ignorance X ∪Y ;
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if even this partial ignorance is empty then one transfers to the total ignorance.

Let G = {X1, . . . ,Xn} 6= ∅ (GΘ being either the power-set or hyper-power set depending on
the model we want to deal with), n ≥ 2, ∀X 6= ∅, X ∈ GΘ, the general PCR4 formula for s ≥ 2
sources is given by ∀X ∈ GΘ \ {∅}

mPCR4(X) = m12...s(X) · [1 +

s−1∑

k=1

SPCR4(X, k)] (1.30)

with

SPCR4(X, k) ,
∑

Xi1
,...,Xik

∈GΘ\{X}
{i1,...,ik}∈Pk({1,2,...,n})

X∩Xi1
∩...∩Xik

=∅

m12...s(X ∩Xi1 ∩ . . . ∩Xik)

m12...s(X) +
∑k

j=1m12...s(Xij )
(1.31)

with all m12...s(X), m12...s(X1), . . . , m12...s(Xn) nonzero and where the first term of the right
side of (1.30) corresponds to the conjunctive consensus between s sources (i.e. m12...s(.)). If at
least one of m12...s(X), m12...s(X1), . . . , m12...s(Xn) is zero, the fraction is discarded and the
mass m12...s(X∩X1∩X2∩ . . .∩Xk) is transferred to X, X1, . . . , Xk proportionally with respect
to their corresponding column sums in the mass matrix.

1.10.3 Example for PCR4 versus minC

Let’s consider Θ = {A,B}, Shafer’s model and the the two following bba’s:

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) +m1(B)m2(A) = 0.24

Applying PCR4 rule, one has the following proportional redistribution11 to satisfy

x

0.44
=

y

0.27
=

0.24

0.44 + 0.27
≈ 0.3380

from which, one deduces x = 0.1487 and y = 0.0913 and thus

mPCR4(A) = 0.44 + 0.1487 = 0.5887

mPCR4(B) = 0.27 + 0.0913 = 0.3613

mPCR4(A ∪B) = 0.05

11x is the part of conflict redistributed to A, y is the part of conflict redistributed to B.
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while applying minC (version a) and b)) are equivalent in this 2D case), one uses the following
proportional redistribution12

x

0.44
=

y

0.27
=

z

0.05
=

0.24

0.44 + 0.27 + 0.05
≈ 0.31578

Whence x = 0.44 · (0.24/0.76) ≈ 0.138947, y = 0.27 · (0.24/0.76) ≈ 0.085263, z = 0.05 ·
(0.24/0.76) ≈ 0.015789, so that

mminC(A) ≈ 0.44 + 0.138947 = 0.578948

mminC(B) ≈ 0.27 + 0.085263 = 0.355263

mminC(A ∪B) ≈ 0.05 + 0.015789 = 0.065789

Therefore, one sees clearly the difference between PCR4 and minC rules. It can be noted
here that minC gives the same result as Dempster’s rule, but the result drawn from minC and
Dempster’s rules is less exact in comparison to PCR4 because minC and Dempster’s rules re-
distribute a fraction of the conflicting mass to A∪B too, although A∪B is not involved in any
conflict (therefore A ∪B doesn’t deserve anything).

We can remark also that in the 2D Bayesian case, the PCR4, minC, and Dempster’s rules
give the same results. For example, let’s take Θ = {A,B}, Shafer’s model and the two following
bba’s

m1(A) = 0.6 m1(B) = 0.4

m2(A) = 0.1 m2(B) = 0.9

The conjunctive consensus yields m12(A) = 0.06, m12(B) = 0.36 with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) +m1(B)m2(A) = 0.58

PCR4, MinC and Dempster’s rules provide

mPCR4(A) = mminC(A) = mDS(A) = 0.142857

mPCR4(B) = mminC(B) = mDS(B) = 0.857143

1.10.4 Example of neutral impact of VBA for PCR4

Let’s consider the previous example with Θ = {A,B}, Shafer’s model and the the two following
bba’s:

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) +m1(B)m2(A) = 0.24

12z is the part of conflict redistributed to A ∪B.
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The canonical form c(A ∩ B) = A ∩ B, thus k12 = m12(A ∩ B) = 0.24 will be distributed
to A and B only proportionally with respect to their corresponding m12(.), i.e. with respect to
0.44 and 0.27 respectively. One gets:

mPCR4|12(A) = 0.5887 mPCR4|12(B) = 0.3613 mPCR4|12(A ∪B) = 0.05

Now let’s introduce a third and vacuous belief assignment mv(A∪B) = 1 and combine altogether
m1(.), m2(.) and mv(.) with the conjunctive consensus. One gets

m12v(A) = 0.44 m12v(B) = 0.27 m12v(A ∪B) = 0.05 m12v(A ∩B ∩ (A ∪B)) = 0.24

Since the canonical form c(A ∩ B ∩ (A ∪ B)) = A ∩ B, m12v(A ∩ B ∩ (A ∪ B)) = 0.24 will be
distributed to A and B only proportionally with respect to their corresponding m12v(.), i.e.
with respect to 0.44 and 0.27 respectively, therefore exactly as above. Thus

mPCR4|12v(A) = 0.5887 mPCR4|12v(B) = 0.3613 mPCR4|12v(A ∪B) = 0.05

In this example one sees that the neutrality property of VBA is effectively well satisfied by
PCR4 rule since

mPCR4|12v(.) = mPCR4|12(.)

A general proof for neutrality of VBA within PCR4 is given in section 1.11.1.

1.10.5 A more complex example for PCR4

Let’s consider now a more complex example involving some null masses (i.e. m12(A) = m12(B) =
0 ) in the conjunctive consensus between sources. So, let’s consider Θ = {A,B,C,D}, Shafer’s
model and the two following belief assignments:

m1(A) = 0 m1(B) = 0.4 m1(C) = 0.5 m1(D) = 0.1

m2(A) = 0.6 m2(B) = 0 m2(C) = 0.1 m2(D) = 0.3

The conjunctive consensus yields here m12(A) = m12(B) = 0, m12(C) = 0.05, m12(D) = 0.03
with the total conflicting mass

k12 = m12(A ∩B) +m12(A ∩ C) +m12(A ∩D)

+m12(B ∩ C) +m12(B ∩D) +m12(C ∩D)

= 0.24 + 0.30 + 0.06 + 0.04 + 0.12 + 0.16 = 0.92

Because m12(A) = m12(B) = 0, the denominator m12(A) + m12(B) = 0 and the transfer
onto A and B should be done proportionally to m2(A) and m1(B), thus:

x

0.6
=

y

0.4
=

0.24

0.6 + 0.4
= 0.24

whence x = 0.144, y = 0.096.

m12(A ∩ C) = 0.30 is transferred to A and C:

x

0.6
=

z

0.5 + 0.1
=

0.30

1.2
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whence x = z = 0.6 · (0.30/1.2) = 0.15.

m12(A ∩D) = 0.06 is transferred to A and D:

x

0.6
=

w

0.3 + 0.1
=

0.06

1

whence x = 0.6 · (0.06) = 0.036 and w = 0.4 · (0.06) = 0.024.

m12(B ∩ C) = 0.04 is transferred to B and C:

y

0.4
=

z

0.6
=

0.04

1

whence y = 0.4 · (0.04) = 0.016 and z = 0.6 · (0.04) = 0.024.

m12(B ∩D) = 0.12 is transferred to B and D:

y

0.4
=

w

0.4
=

0.12

0.8
= 0.15

whence y = 0.4 · (0.15) = 0.06 and w = 0.4 · (0.15) = 0.06.

The partial conflict m12(C ∩ D) = 0.16 is proportionally redistributed to C and D only
according to

z

0.05
=

w

0.03
=

0.16

0.05 + 0.03
= 2

whence z = 0.10 and w = 0.06. Summing all redistributed partial conflicts, one finally gets:

mPCR4(A) = 0 + 0.144 + 0.150 + 0.036 = 0.330

mPCR4(B) = 0 + 0.096 + 0.016 + 0.016 = 0.172

mPCR4(C) = 0.05 + 0.15 + 0.024 + 0.10 = 0.324

mPCR4(D) = 0.03 + 0.024 + 0.06 + 0.06 = 0.174

while minC provides13

mminC(A) = mminC(B) = mminC(A ∪B) = 0.08

mminC(C) = 0.490 mminC(D) = 0.270

The distinction between PCR4 and minC here is that minC transfers equally the 1/3 of con-
flicting mass m12(A ∩ B) = 0.24 onto A, B and A ∪ B, while PCR4 redistributes it to A and
B proportionally to their masses m2(A) and m1(B). Upon to authors opinions, the minC re-
distribution appears less exact than PCR4 since A ∪B is not involved into the partial conflict
A ∩B and we don’t see a reasonable justification on minC transfer onto A ∪B in this case.

13It can be proven that versions a) and b) of minC provide here same result because in this specific example
m12(A) = m12(B) = m12(A ∪B) = 0.
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1.11 The PCR5 rule

1.11.1 Principle of PCR5

Similarly to PCR2-4, PCR5 redistributes the partial conflicting mass to the elements involved
in the partial conflict, considering the canonical form of the partial conflict. PCR5 is the most
mathematically exact redistribution of conflicting mass to non-empty sets following the logic of
the conjunctive rule. But this is harder to implement. PCR5 satisfies the neutrality property of
VBA also. In order to understand the principle of PCR5, let’s start with examples going from
the easiest to the more complex one.

Proof of neutrality of VBA for PCR2-PCR5: PCR2, PCR3, PCR4 and PCR5 rules preserve the
neutral impact of the VBA because in any partial conflict, as well in the total conflict which is a
sum of all partial conflicts, the canonical form of each partial conflict does not include Θ since Θ
is a neutral element for intersection (conflict), therefore Θ gets no mass after the redistribution
of the conflicting mass. This general proof for neutrality of VBA works in dynamic or static
cases for all PCR2-5, since the total ignorance, say It, can not escape the conjunctive normal
form, i.e. the canonical form of It ∩A is A, where A is any set included in DΘ.

1.11.1.1 A two sources example 1 for PCR5

Suppose one has the frame of discernment Θ = {A,B} of exclusive elements, and 2 sources of
evidences providing the following bba’s

m1(A) = 0.6 m1(B) = 0 m1(A ∪B) = 0.4

m2(A) = 0 m2(B) = 0.3 m2(A ∪B) = 0.7

Then the conjunctive consensus yields :

m12(A) = 0.42 m12(B) = 0.12 m12(A ∪B) = 0.28

with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) +m1(B)m2(A) = 0.18

Therefore A and B are involved in the conflict (A ∪ B is not involved), hence only A and B
deserve a part of the conflicting mass, A∪B does not deserve. With PCR5, one redistributes the
conflicting mass 0.18 to A and B proportionally with the masses m1(A) and m2(B) assigned
to A and B respectively. Let x be the conflicting mass to be redistributed to A, and y the
conflicting mass redistributed to B, then

x

0.6
=

y

0.3
=

x+ y

0.6 + 0.3
=

0.18

0.9
= 0.2

whence x = 0.6 · 0.2 = 0.12, y = 0.3 · 0.2 = 0.06. Thus:

mPCR5(A) = 0.42 + 0.12 = 0.54

mPCR5(B) = 0.12 + 0.06 = 0.18

mPCR5(A ∪B) = 0.28
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This result is equal to that of PCR3 and even PCR2, but different from PCR1 and PCR4 in
this specific example. PCR1 and PCR4 yield:

mPCR1(A) = 0.42 +
0.6 + 0

2
· 0.18 = 0.474

mPCR1(B) = 0.12 +
0 + 0.3

2
· 0.18 = 0.147

mPCR1(A ∪B) = 0.28 +
0.4 + 0.7

2
· 0.18 = 0.379

mPCR4(A) = 0.42 + 0.42 · 0.18

0.42 + 0.12
= 0.56

mPCR4(B) = 0.12 + 0.12 · 0.18

0.12 + 0.42
= 0.16

mPCR4(A ∪B) = 0.28

In summary, here are the results obtained from Dempster’s rule (DS), (DSmH), (PCR1),
(PCR4) and (PCR5):

A B A ∪B
mDS 0.512 0.146 0.342
mDSmH 0.420 0.120 0.460
mPCR1 0.474 0.147 0.379
mPCR4 0.560 0.160 0.280
mPCR5 0.540 0.180 0.280

1.11.1.2 A two sources example 2 for PCR5

Now let’s modify a little the previous example and consider now:

m1(A) = 0.6 m1(B) = 0 m1(A ∪B) = 0.4

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.50 m12(B) = 0.12 m12(A ∪B) = 0.20

with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) +m1(B)m2(A) = 0.18

The conflict k12 is the same as in previous example, which means that m2(A) = 0.2 did not
have any impact on the conflict; why?, because m1(B) = 0. Therefore A and B are involved
in the conflict (A ∪ B is not involved), hence only A and B deserve a part of the conflicting
mass, A∪B does not deserve. With PCR5, one redistributes the conflicting mass 0.18 to A and
B proportionally with the masses m1(A) and m2(B) assigned to A and B respectively. The
mass m2(A) = 0.2 is not considered to the weighting factors of the redistribution. Let x be the
conflicting mass to be redistributed to A, and y the conflicting mass redistributed to B. By the
same calculations one has:

x

0.6
=

y

0.3
=

x+ y

0.6 + 0.3
=

0.18

0.9
= 0.2
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whence x = 0.6 · 0.2 = 0.12, y = 0.3 · 0.2 = 0.06. Thus, one gets now:

mPCR5(A) = 0.50 + 0.12 = 0.62

mPCR5(B) = 0.12 + 0.06 = 0.18

mPCR5(A ∪B) = 0.20 + 0 = 0.20

We did not take into consideration the sum of masses of column A, i.e. m1(A) + m2(A) =
0.6 + 0.2 = 0.8, since clearly m2(A) = 0.2 has no impact on the conflicting mass.

In this second example, the result obtained by PCR5 is different from WAO, PCR1, PCR2,
PCR3 and PCR4 because

mWAO(A) = 0.50 +
0.6 + 0.2

2
· 0.18 = 0.572

mWAO(B) = 0.12 +
0 + 0.3

2
· 0.18 = 0.147

mWAO(A ∪B) = 0.20 +
0.4 + 0.5

2
· 0.18 = 0.281

mPCR1(A) = 0.50 +
0.6 + 0.2

0.8 + 0.3 + 0.9
· 0.18 = 0.572

mPCR1(B) = 0.12 +
0 + 0.3

0.8 + 0.3 + 0.9
· 0.18 = 0.147

mPCR1(A ∪B) = 0.20 +
0.4 + 0.5

0.8 + 0.3 + 0.9
· 0.18 = 0.281

mPCR2(A) = 0.50 +
0.6 + 0.2

0.8 + 0.3
· 0.18 ≈ 0.631

mPCR2(B) = 0.12 +
0 + 0.3

0.8 + 0.3
· 0.18 ≈ 0.169

mPCR2(A ∪B) = 0.20

mPCR3(A) = 0.50 + 0.8 · [0.6 · 0.3 + 0.2 · 0
0.8 + 0.3

] ≈ 0.631

mPCR3(B) = 0.12 + 0.3 · [0.6 · 0.3 + 0.2 · 0
0.8 + 0.3

] ≈ 0.169

mPCR3(A ∪B) = 0.20

mPCR4(A) = 0.50 + 0.50 · 0.18

0.50 + 0.12
≈ 0.645

mPCR4(B) = 0.12 + 0.12 · 0.18

0.50 + 0.12
≈ 0.155

mPCR4(A ∪B) = 0.20

The results obtained with Dempster’s rule (DS) and DSm Hybrid rule are:
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mDS(A) = 0.610

mDS(B) = 0.146

mDS(A ∪B) = 0.244

mDSmH(A) = 0.500

mDSmH(B) = 0.120

mDSmH(A ∪B) = 0.380

Let’s examine from this example the convergence of the PCR5 result by introducing a small
positive increment on m1(B), i.e. one starts now with the PCR5 combination of the following
bba’s

m1(A) = 0.6 m1(B) = ǫ m1(A ∪B) = 0.4 − ǫ
m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields: m12(A) = 0.50 − 0.2 · ǫ, m12(B) = 0.12 + 0.5 · ǫ,
m12(A ∪B) = 0.20 − 0.5 · ǫ with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) +m1(B)m2(A) = 0.18 + 0.2 · ǫ

Applying the PCR5 rule for ǫ = 0.1, ǫ = 0.01,ǫ = 0.001 and ǫ = 0.0001 one gets the following
result:

ǫ mPCR5(A) mPCR5(B) mPCR5(A ∪B)

0.1 0.613333 0.236667 0.15
0.01 0.619905 0.185095 0.195
0.001 0.619999 0.180501 0.1995
0.0001 0.62 0.180050 0.19995

Table 1.8: Convergence of PCR5

From Table 1.8, one can see that when ǫ tend towards zero, the results tends towards the
previous result mPCR5(A) = 0.62, mPCR5(B) = 0.18 and mPCR5(A ∪B) = 0.20. Let’s explain
now in details how this limit can be achieved formally. With PCR5, one redistributes the partial
conflicting mass 0.18 to A and B proportionally with the masses m1(A) and m2(B) assigned to
A and B respectively, and also the partial conflicting mass 0.2 ·ǫ to A and B proportionally with
the masses m2(A) and m1(B) assigned to A and B respectively, thus one gets now two weighting
factors in the redistribution for each corresponding set A and B. Let x1 be the conflicting mass
to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial
conflicting mass 0.18. This first partial proportional redistribution is then done according

x1

0.6
=

y1

0.3
=

x1 + y1

0.6 + 0.3
=

0.18

0.9
= 0.2
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whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06. Now let x2 be the conflicting mass to
be redistributed to A, and y2 the conflicting mass redistributed to B from the second partial
conflicting mass 0.2 · ǫ. This first partial proportional redistribution is then done according

x2

0.2
=
y2

ǫ
=
x2 + y2

0.2 + ǫ
=

0.2 · ǫ
0.2 + ǫ

whence x2 = 0.2 · 0.2·ǫ
0.2+ǫ , y2 = ǫ 0.2·ǫ

0.2+ǫ . Thus one gets the following result

mPCR5(A) = m12(A) + x1 + x2 = (0.50 − 0.2 · ǫ) + 0.12 + 0.2 · 0.2 · ǫ
0.2 + ǫ

mPCR5(B) = m12(B) + y1 + y2 = (0.12 + 0.5 · ǫ) + 0.06 + ǫ
0.2 · ǫ
0.2 + ǫ

mPCR5(A ∪B) = m12(A ∪B) = 0.20 − 0.5ǫ

From these formal expressions of mPCR5(.), one sees directly that

lim
ǫ→0

mPCR5(A) = 0.62 lim
ǫ→0

mPCR5(B) = 0.18 lim
ǫ→0

mPCR5(A ∪B) = 0.20

1.11.1.3 A two sources example 3 for PCR5

Let’s go further modifying this time the previous example and considering:

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) +m1(B)m2(A) = 0.18 + 0.06 = 0.24

The conflict k12 is now different from the two previous examples, which means that m2(A) = 0.2
and m1(B) = 0.3 did make an impact on the conflict; why?, because m2(A)m1(B) = 0.2 · 0.3 =
0.06 was added to the conflicting mass. Therefore A and B are involved in the conflict (A∪B is
not involved), hence only A and B deserve a part of the conflicting mass, A∪B does not deserve.
With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with
the masses m1(A) and m2(B) assigned to A and B respectively, and also the partial conflicting
mass 0.06 to A and B proportionally with the masses m2(A) and m1(B) assigned to A and B
respectively, thus one gets two weighting factors of the redistribution for each corresponding
set A and B respectively. Let x1 be the conflicting mass to be redistributed to A, and y1 the
conflicting mass redistributed to B from the first partial conflicting mass 0.18. This first partial
proportional redistribution is then done according

x1

0.6
=

y1

0.3
=

x1 + y1

0.6 + 0.3
=

0.18

0.9
= 0.2
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whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06. Now let x2 be the conflicting mass to
be redistributed to A, and y2 the conflicting mass redistributed to B from second the partial
conflicting mass 0.06. This second partial proportional redistribution is then done according

x2

0.2
=

y2

0.3
=

x2 + y2

0.2 + 0.3
=

0.06

0.5
= 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036. Thus:

mPCR5(A) = 0.44 + 0.12 + 0.024 = 0.584

mPCR5(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5(A ∪B) = 0.05 + 0 = 0.05

The result is different from PCR1, PCR2, PCR3 and PCR4 since one has14:

mPCR1(A) = 0.536

mPCR1(B) = 0.342

mPCR1(A ∪B) = 0.122

mPCR2(A) = mPCR3(A) ≈ 0.577

mPCR2(B) = mPCR3(B) ≈ 0.373

mPCR2(A ∪B) = mPCR3(A ∪B) = 0.05

mPCR4(A) ≈ 0.589

mPCR4(B) ≈ 0.361

mPCR4(A ∪B) = 0.05

Dempster’s rule (DS) and DSm Hybrid rule (DSmH), give for this example:

mDS(A) =
0.44

1− 0.24
≈ 0.579 mDS(B) =

0.27

1− 0.24
≈ 0.355 mDS(A ∪B) =

0.05

1− 0.24
≈ 0.066

mDSmH(A) = 0.440 mDSmH(B) = 0.270 mDSmH(A ∪B) = 0.290

One clearly sees that mDS(A∪B) gets some mass from the conflicting mass although A∪B
does not deserve any part of the conflicting mass since A∪B is not involved in the conflict (only
A and B are involved in the conflicting mass). Dempster’s rule appears to authors opinions
less exact than PCR5 and Inagaki’s rules [10] because it redistribute less exactly the conflicting
mass than PCR5, even than PCR4 and minC, since Dempter’s rule takes the total conflicting
mass and redistributes it to all non-empty sets, even those not involved in the conflict. It can
be shown [9] that Inagaki’s fusion rule [10] (with an optimal choice of tuning parameters) can
become in some cases very close to (PCR5) but upon our opinion (PCR5) result is more exact
(at least less ad-hoc than Inagaki’s one).

14The verification is left to the reader.
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1.11.2 The PCR5 formula

Before explaining the general procedure to apply for PCR5 (see next section), we give here the
PCR5 formula for s = 2 sources: ∀X ∈ GΘ \ {∅}

mPCR5(X) = m12(X) +
∑

Y ∈GΘ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (1.32)

where all sets involved in the formula are in canonical form, m12(.) corresponds to the con-
junctive consensus, i.e. m12(X) ,

∑
X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2) and where all denominators are

different from zero. If a denominator is zero, that fraction is discarded.

Let G = {X1, . . . ,Xn} 6= ∅ (GΘ being either the power-set or hyper-power set depending on the
model we want to deal with), n ≥ 2, the general PCR5 formula for s ≥ 2 sources is given by
∀X ∈ GΘ \ {∅}

mPCR5(X) = m12...s(X) +
∑

2≤t≤s
1≤r1,...,rt≤s

1≤r1<r2<...<rt−1<(rt=s)

∑

Xj2
,...,Xjt∈GΘ\{X}

{j2,...,jt}∈Pt−1({1,...,n})
X∩Xj2

∩...∩Xjs=∅
{i1,...,is}∈Ps({1,...,s})

(
∏r1
k1=1mik1

(X)2) · [∏t
l=2(

∏rl
kl=rl−1+1mikl

(Xjl)]

(
∏r1
k1=1mik1

(X)) + [
∑t

l=2(
∏rl
kl=rl−1+1mikl

(Xjl)]
(1.33)

where i, j, k, r, s and t in (1.33) are integers. m12...s(X) corresponds to the conjunctive consen-
sus on X between s sources and where all denominators are different from zero. If a denominator
is zero, that fraction is discarded; Pk({1, 2, . . . , n}) is the set of all subsets of k elements from
{1, 2, . . . , n} (permutations of n elements taken by k), the order of elements doesn’t count.

Let’s prove here that (1.33) reduces to (1.32) when s = 2. Indeed, if one takes s = 2 in
general PCR5 formula (1.33), let’s note first that:

• 2 ≤ t ≤ s becomes 2 ≤ t ≤ 2, thus t = 2.

• 1 ≤ r1, r2 ≤ (s = 2), or r1, r2 ∈ {1, 2}, but because r1 < r2 one gets r1 = 1 and r2 = 2.

• m12...s(X) becomes m12(X)

• Xj2 , . . . ,Xjt ∈ GΘ \ {X} becomes Xj2 ∈ GΘ \ {X} because t = 2.

• {j2, . . . , jt} ∈ Pt−1({1, . . . , n}) becomes j2 ∈ P1({1, . . . , n}) = {1, . . . , n}

• the condition X ∩Xj2 ∩ . . . ∩Xjs = ∅ becomes X ∩Xj2 = ∅

• {i1, . . . , is} ∈ Ps({1, . . . , s}) becomes {i1, i2} ∈ P2({1, 2}) = {{1, 2}, {2, 1}}

Thus (1.33) becomes when s = 2,
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mPCR5(X) = m12(X)+

∑

t=2
r1=1,r2=2

∑

Xj2
∈GΘ\{X}

j2∈{1,...,n}
X∩Xj2

=∅
{i1,i2}∈{{1,2},{2,1}}

(
∏1
k1=1mik1

(X)2) · [∏2
l=2(

∏rl
kl=rl−1+1mikl

(Xjl)]

(
∏1
k1=1mik1

(X)) + [
∑2

l=2(
∏rl
kl=rl−1+1mikl

(Xjl)]
(1.34)

After elementary algebraic simplification, it comes

mPCR5(X) = m12(X) +
∑

Xj2
∈GΘ\{X}

j2∈{1,...,n}
X∩Xj2

=∅
{i1,i2}∈{{1,2},{2,1}}

mi1(X)2 · [∏2
k2=2mik2

(Xj2 ]

mi1(X) + [
∏2
k2=2mik2

(Xj2 ]
(1.35)

Since
∏2
k2=2mik2

(Xj2) = mi2(Xj2) and condition ”Xj2 ∈ GΘ \ {X} and j2 ∈ {1, . . . , n}” are

equivalent to Xj2 ∈ GΘ \ {X}, one gets:

mPCR5(X) = m12(X) +
∑

Xj2
∈GΘ\{X}

X∩Xj2
=∅

{i1,i2}∈{{1,2},{2,1}}

mi1(X)2 ·mi2(Xj2)

mi1(X) +mi2(Xj2)
(1.36)

This formula can also be written as (denoting Xj2 as Y )

mPCR5(X) = m12(X) +
∑

Y ∈GΘ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (1.37)

which is the same as formula (1.32). Thus the proof is completed.

1.11.3 The PCR5 formula for Bayesian beliefs assignments

For Θ = {θ1, θ2, . . . , θn} with Shafer’s model and s = 2 Bayesian equally reliable sources, i.e.
when quantitative bba’s m1(.) and m2(.) reduce to subjective probability measures P1(.) and
P2(.), after elementary algebraic derivations, the (PCR5) formula for combination of two sources
reduces to the following simple formula, PPCR5

12 (∅) = 0 and ∀θi ∈ Θ,

PPCR5
12 (θi) = P1(θi)

n∑

j=1

P1(θi)P2(θj)

P1(θi) + P2(θj)
+ P2(θi)

n∑

j=1

P2(θi)P1(θj)

P2(θi) + P1(θj)

=
∑

s=1,2

Ps(θi)[

n∑

j=1

Ps(θi)Ps′ 6=s(θj)
Ps(θi) + Ps′ 6=s(θj)

] (1.38)

This formula can be extended for s > 2 sources. One can verify moreover that PPCR5
12 (.) defines

a subjective-combined probability measure satisfying all axioms of classical Probability Theory.
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Proof: From (1.36), when replacing general bba m1(.) and m2(.) by probabilistic masses P1(.)
and P2(.) one gets:

P12(xi) = P1(xi)P2(xi) + P1(xi)
∑

j 6=i

P1(xi)P2(xj)

P1(xi) + P2(xj)
+ P2(xi)

∑

j 6=i

P2(xi)P1(xj)

P2(xi) + P1(xj)

By splitting P1(xi)P2(xi) into two equal parts, one gets

P12(xi) =
1

2
P1(xi)P2(xi)+P1(xi)

∑

j 6=i

P1(xi)P2(xj)

P1(xi) + P2(xj)
+

1

2
P1(xi)P2(xi)+P2(xi)

∑

j 6=i

P2(xi)P1(xj)

P2(xi) + P1(xj)

P12(xi) = P1(xi)[
1

2
P2(xi) +

∑

j 6=i

P1(xi)P2(xj)

P1(xi) + P2(xj)
] + P2(xi)[

1

2
P1(xi) +

∑

j 6=i

P2(xi)P1(xj)

P2(xi) + P1(xj)
]

P12(xi) = P1(xi)[
n∑

j=1

P1(xi)P2(xj)

P1(xi) + P2(xj)
− P1(xi)P2(xi)

P1(xi) + P2(xi)
+

1

2
P2(xi)]

+ P2(xi)[

n∑

j=1

P2(xi)P1(xj)

P2(xi) + P1(xj)
− P2(xi)P1(xi)

P2(xi) + P1(xi)
+

1

2
P1(xi)]

P12(xi) = P1(xi)[
n∑

j=1

P1(xi)P2(xj)

P1(xi) + P2(xj)
− 2P1(xi)P2(xi)

2(P1(xi) + P2(xi))
+
P2(xi)(P1(xi) + P2(xi))

2(P1(xi) + P2(xi))
]

+ P2(xi)[

n∑

j=1

P2(xi)P1(xj)

P2(xi) + P1(xj)
− 2P2(xi)P1(xi)

2(P2(xi) + P1(xi))
+
P1(xi)(P2(xi) + P1(xi))

2(P2(xi) + P1(xi))
]

P12(xi) = P1(xi)[
n∑

j=1

P1(xi)P2(xj)

P1(xi) + P2(xj)
] + P1(xi)[

P 2
2 (xi)− P1(xi)P2(xi)

2(P1(xi) + P2(xi))
]

+ P2(xi)[

n∑

j=1

P2(xi)P1(xj)

P2(xi) + P1(xj)
] + P2(xi)[

P 2
1 (xi)− P2(xi)P1(xi)

2(P2(xi) + P1(xi))
]

P12(xi) = P1(xi)[
n∑

j=1

P1(xi)P2(xj)

P1(xi) + P2(xj)
] + P2(xi)[

n∑

j=1

P2(xi)P1(xj)

P2(xi) + P1(xj)
]

+
P1(xi)P

2
2 (xi)− P 2

1 (xi)P2(xi)

2(P1(xi) + P2(xi))
+
P2(xi)P

2
1 (xi)− P 2

2 (xi)P1(xi)

2(P2(xi) + P1(xi))

P12(xi) = P1(xi)[

n∑

j=1

P1(xi)P2(xj)

P1(xi) + P2(xj)
] + P2(xi)[

n∑

j=1

P2(xi)P1(xj)

P2(xi) + P1(xj)
]

+
P1(xi)P

2
2 (xi)− P 2

1 (xi)P2(xi) + P2(xi)P
2
1 (xi)− P 2

2 (xi)P1(xi)

2(P1(xi) + P2(xi))
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P12(xi) = P1(xi)[

n∑

j=1

P1(xi)P2(xj)

P1(xi) + P2(xj)
] + P2(xi)[

n∑

j=1

P2(xi)P1(xj)

P2(xi) + P1(xj)
] +

0

2(P1(xi) + P2(xi))

P12(xi) = P1(xi)[

n∑

j=1

P1(xi)P2(xj)

P1(xi) + P2(xj)
] + P2(xi)[

n∑

j=1

P2(xi)P1(xj)

P2(xi) + P1(xj)
]

which completes the proof. ✷✷✷

More concisely, the formula (1.38) can be rewritten as:

P12(xi) =
∑

s=1,2

Ps(xi)[

n∑

j=1

Ps(xi)Ps′ 6=s(xj)
Ps(xi) + Ps′ 6=s(xj)

] (1.39)

1.11.4 General procedure to apply the PCR5

Here is the general procedure to apply PCR5:

1. apply the conjunctive rule;

2. calculate all partial conflicting masses separately;

3. if A∩B = ∅ then A, B are involved in the conflict; redistribute the mass m12(A∩B) > 0
to the non-empty sets A and B proportionally with respect to

a) the non-zero masses m1(A) and m2(B) respectively,

b) the non-zero masses m2(A) and m1(B) respectively, and

c) other non-zero masses that occur in some products of the sum of m12(A ∩B);

4. if both sets A and B are empty, then the transfer is forwarded to the disjunctive form
u(A) ∪ u(B), and if this disjunctive form is also empty, then the transfer is forwarded to
the total ignorance in a closed world (or to the empty set if the open world approach is
preferred); but if even the total ignorance is empty one considers an open world (i.e. new
hypotheses might exist) and the transfer is forwarded to the empty set; if say m1(A) = 0
or m2(B) = 0, then the product m1(A)m2(B) = 0 and thus there is no conflicting mass
to be transferred from this product to non-empty sets; if both products m1(A)m2(B) =
m2(A)m1(B) = 0 then there is no conflicting mass to be transferred from them to non-
empty sets; in a general case15 , for s ≥ 2 sources, the mass m12...s(A1∩A2∩ . . .∩ . . . Ar) >
0, with 2 ≤ r ≤ s, where A1 ∩ A2 ∩ . . . ∩ Ar = ∅, resulted from the application of
the conjunctive rule, is a sum of many products; each non-zero particular product is
proportionally redistributed to A1, A2, . . . , Ar with respect to the sub-products of masses
assigned to A1, A2, . . . , Ar respectively by the sources; if both sets A1, A2, . . . , Ar are

15An easier calculation method, denoted PCR5-approximate for s ≥ 3 bba’s, which is an approximation of
PCR5, is to first combine s− 1 bba’s altogether using the conjunctive rule, and the result to be again combined
once more with the s-th bba also using the conjunctive rule; then the weighting factors will only depend on
m12...(s−1)(.) and ms(.) only - instead of depending on all bba’s m1(.), m2(.), . . . , ms(.). PCR5-approximate
result however depends on the chosen order of the sources.
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empty, then the transfer is forwarded to the disjunctive form u(A1)∪ u(A2)∪ . . .∪ u(Ar),
and if this disjunctive form is also empty, then the transfer is forwarded to the total
ignorance in a closed world (or to the empty set if the open world approach is preferred);
but if even the total ignorance is empty one considers an open world (i.e. new hypotheses
might exist) and the transfer is forwarded to the empty set;

5. and so on until all partial conflicting masses are redistributed;

6. add the redistributed conflicting masses to each corresponding non-empty set involved in
the conflict;

7. the sets not involved in the conflict do not receive anything from the conflicting masses
(except some partial or total ignorances in degenerate cases).

The more hypotheses and more masses are involved in the fusion, the more difficult is
to implement PCR5. Yet, it is easier to approximate PCR5 by first combining s − 1 bba’s
through the conjunctive rule, then by combining again the result with the s-th bba also using
the conjunctive rule – in order to reduce very much the calculations of the redistribution of
conflicting mass.

1.11.5 A 3-source example for PCR5

Let’s see a more complex example using PCR5. Suppose one has the frame of discernment
Θ = {A,B} of exclusive elements, and 3 sources such that:

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

m3(A) = 0.4 m3(B) = 0.4 m3(A ∪B) = 0.2

Then the conjunctive consensus yields : m123(A) = 0.284, m123(B) = 0.182 and m123(A∪B) =
0.010 with the conflicting mass k123 = m123(A ∩B) = 0.524, which is a sum of factors.

1. Fusion based on PCR5:

In the long way, each product occurring as a term in the sum of the conflicting mass
should be redistributed to the non-empty sets involved in the conflict proportionally to
the masses (or sub-product of masses) corresponding to the respective non-empty set. For
example, the product m1(A)m3(B)m2(A∪B) = 0.6 ·0.4 ·0.5 = 0.120 occurs in the sum of
k123, then 0.120 is proportionally distributed to the sets involved in the conflict; because
c(A ∩B ∩ (A ∪B)) = A ∩B the transfer is done to A and B with respect to 0.6 and 0.4.
Whence:

x

0.6
=

y

0.4
=

0.12

0.6 + 0.4

whence x = 0.6·0.12 = 0.072, y = 0.4·0.12 = 0.048, which will be added to the masses of A
and B respectively. Another example, the product m2(A)m1(B)m3(B) = 0.2 · 0.3 · 0.4 =
0.024 occurs in the sum of k123, then 0.024 is proportionally distributed to A, B with
respect to 0.20 and 0.3 · 0.4 = 0.12 respectively. Whence:

x

0.20
=

y

0.12
=

0.024

0.32
= 0.075
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whence x = 0.20 · 0.024
0.32 = 0.015 and y = 0.12 · 0.024

0.32 = 0.009, which will be added to the
masses of A, and B respectively.

But this procedure is more difficult, that’s why we can use the following crude approach:

2. Fusion based on PCR5-approximate:

If s sources are involved in the fusion, then first combine using the conjunctive rule s− 1
sources, and the result will be combined with the remaining source.

We resolve now this 3-source example by combining the first two sources

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

with the DSm classic rule (i.e. the conjunctive consensus on hyper-power set DΘ) to get

m12(A) = 0.44 m12(B) = 0.27

m12(A ∪B) = 0.05 m12(A ∩B) = 0.24

Then one combines m12(.) with m3(.) still with the DSm classic rule and one gets as preliminary
step for PCR5-version b just above-mentioned

m123(A) = 0.284 m123(B) = 0.182

m123(A ∪B) = 0.010 m123(A ∩B) = 0.524

The conflicting mass has been derived from

m123(A ∩B) = [m12(A)m3(B) +m3(A)m12(B)] + [m3(A)m12(A ∩B) +m3(B)m12(A ∩B)

+m3(A ∪B)m12(A ∩B)]

= [0.44 · 0.4 + 0.4 · 0.27] + [0.4 · 0.24 + 0.4 · 0.24 + 0.2 · 0.24] = 0.524

But in the last brackets A ∩ B = ∅, therefore the masses of m3(A)m12(A ∩ B) = 0.096,
m3(B)m12(A ∩ B) = 0.096, and m3(A ∩ B)m12(A ∩ B) = 0.048 are transferred to A, B,
and A ∪ B respectively. In the first brackets, 0.44 · 0.4 = 0.176 is transferred to A and B
proportionally to 0.44 and 0.4 respectively:

x

0.44
=

y

0.40
=

0.176

0.84

whence

x = 0.44 · 0.176

0.84
= 0.09219 y = 0.40 · 0.176

0.84
= 0.08381

Similarly, 0.4 · 0.27 = 0.108 is transferred to A and B proportionally to 0.40 and 0.27 and one
gets:

x

0.40
=

y

0.27
=

0.108

0.67

whence

x = 0.40 · 0.108

0.67
= 0.064478 y = 0.27 · 0.108

0.67
= 0.043522
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Adding all corresponding masses, one gets the final result with PCR5 (version b), denoted here
with index PCR5b|{12}3 to emphasize that one has applied the version b) of PCR5 for the
combination of the 3 sources by combining first the sources 1 and 2 together :

mPCR5b|{12}3(A) = 0.536668 mPCR5b|{12}3(B) = 0.405332 mPCR5b|{12}3(A∪B) = 0.058000

1.11.6 On the neutral impact of VBA for PCR5

Let’s take again the example given in section 1.11.1.3 with Θ = {A,B}, Shafer’s model and the
two bba’s

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m1(B) = 0.3 m1(A ∪B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) +m1(B)m2(A) = 0.18 + 0.06 = 0.24

The canonical form c(A∩B) = A∩B, thus m12(A∩B) = 0.18+0.06 = 0.24 will be distributed to
A and B only proportionally with respect to their corresponding masses assigned by m1(.) and
m2(.), i.e: 0.18 redistributed to A and B proportionally with respect to 0.6 and 0.3 respectively,
and 0.06 redistributed to A and B proportionally with respect to 0.2 and 0.3 respectively. One
gets as computed above (see also section 1.11.1.3):

mPCR5|12(A) = 0.584 mPCR5|12(B) = 0.366 mPCR5|12(A ∪B) = 0.05

Now let’s introduce a third and vacuous belief assignment mv(A∪B) = 1 and combine altogether
m1(.), m2(.) and mv(.) with the conjunctive consensus. One gets

m12v(A) = 0.44 m12v(B) = 0.27 m12v(A ∪B) = 0.05 m12v(A ∩B ∩ (A ∪B)) = 0.24

Since the canonical form c(A∩B∩(A∪B)) = A∩B, m12v(A∩B∩(A∪B)) = 0.18+0.06 = 0.24
will be distributed to A and B only (therefore nothing to A ∪ B) proportionally with respect
to their corresponding masses assigned by m1(.) and m2(.) (because mv(.) is not involved since
all its masses assigned to A and B are zero: mv(A) = mv(B) = 0), i.e: 0.18 redistributed to A
and B proportionally with respect to 0.6 and 0.3 respectively, and 0.06 redistributed to A and
B proportionally with respect to 0.2 and 0.3 respectively, therefore exactly as above. Thus

mPCR5|12v(A) = 0.584 mPCR5|12v(B) = 0.366 mPCR5|12v(A ∪B) = 0.05

In this example one sees that the neutrality property of VBA is effectively well satisfied by
PCR5 rule since

mPCR5|12v(.) = mPCR5|12(.)

A general proof for neutrality of VBA within PCR5 is given in section 1.11.1.
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1.11.7 PCR6 as alternative to PCR5 when s > 2

In this volume, Arnaud Martin and Christophe Osswald have proposed the following alternative
rule to PCR5 for combining more than two sources altogether (i.e. s ≥ 3). This new rule denoted
PCR6 does not follow back on the track of conjunctive rule as PCR5 general formula does, but
it gets better intuitive results. For s = 2 PCR5 and PCR6 coincide. The general formula for
PCR616 is:

mPCR6(∅) = 0,

and ∀A ∈ GΘ \ ∅

mPCR6(A) = m12...s(A) +

s∑

i=1

mi(A)2
∑

s−1∩
k=1

Yσi(k)∩A≡∅

(Yσi(1)
,...,Yσi(s−1))∈(GΘ)s−1




s−1∏

j=1

mσi(j)(Yσi(j))

mi(A)+

s−1∑

j=1

mσi(j)(Yσi(j))



,

with mi(A) +
s−1∑

j=1

mσi(j)(Yσi(j)) 6= 0 and where m12...s(.) is the conjunctive consensus rule and

σi counts from 1 to s avoiding i, i.e.:

{
σi(j) = j if j < i,
σi(j) = j + 1 if j ≥ i,

A detailed presentation of PCR6 and application of this rule can be found in Chapters 2
and 11.

1.11.8 Imprecise PCR5 fusion rule (imp-PCR5)

The (imp-PCR5) formula is a direct extension of (PCR5) formula (1.33) using addition, multi-
plication and division operators on sets [18]. It is given for the combination of s ≥ 2 sources by
mI
PCR5(∅) = 0 and ∀X ∈ GΘ \ {∅}:

mI
PCR5(X) =

[ ∑

X1,X2,...,Xs∈GΘ

(X1∩X2∩...∩Xs)=X

∏

i=1,...,s

mI
i (Xi)

]

⊞
[ ∑

2≤t≤s
1≤r1,...,rt≤s

1≤r1<r2<...<rt−1<(rt=s)

∑

Xj2
,...,Xjt∈GΘ\{X}

{j2,...,jt}∈Pt−1({1,...,n})

X∩Xj2
∩...∩Xjs=∅

{i1,...,is}∈Ps({1,...,s})

[NumI(X) �DenI(X)]
]

(1.40)

16Two extensions of PCR6 (i.e. PCR6f and PCR6g) are also proposed by A. Martin and C. Osswald in [13].
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where all sets are in canonical form and where NumI(X) and DenI(X) are defined by

NumI(X) ,
[ ∏

k1=1,...,r1

mI
ik1

(X)2
]
�

[ ∏

l=2,...,t

(
∏

kl=rl−1+1,...,rl

mI
ikl

(Xjl)
]

(1.41)

DenI(X) ,
[ ∏

k1=1,...,r1

mI
ik1

(X)
]
⊞
[ ∑

l=2,...,t

(
∏

kl=rl−1+1,...,rl

mI
ikl

(Xjl)
]

(1.42)

where all denominators-sets DenI(X) involved in (1.40) are different from zero. If a denominator-
set DenI(X) is such that inf(DenI(X)) = 0, then the fraction is discarded. When s = 2 (fusion
of only two sources), the previous (imp-PCR5) formula reduces to its simple following fusion
formula: mI

PCR5(∅) = 0 and ∀X ∈ GΘ \ {∅}

mI
PCR5(X) = mI

12(X)+
∑

Y ∈GΘ\{X}
X∩Y =∅

[(mI
1(X)2mI

2(Y )) � (mI
1(X) +mI

2(Y ))]⊞

[(mI
2(X)2mI

1(Y )) � (mI
2(X) +mI

1(Y ))] (1.43)

with

mI
12(X) ,

∑

X1,X2∈GΘ

X1∩X2=X

mI
1(X1) �mI

2(X2)

1.11.9 Examples for imprecise PCR5 (imp-PCR5)

Example no 1:

Let’s consider Θ = {θ1, θ2}, Shafer’s model and two independent sources with the same imprecise
admissible bba as those given in the table below, i.e.

mI
1(θ1) = [0.1, 0.2] ∪ {0.3} mI

1(θ2) = (0.4, 0.6) ∪ [0.7, 0.8]

mI
2(θ1) = [0.4, 0.5] mI

2(θ2) = [0, 0.4] ∪ {0.5, 0.6}

Working with sets, one gets for the conjunctive consensus

mI
12(θ1) = [0.04, 0.10] ∪ [0.12, 0.15] mI

12(θ2) = [0, 0.40] ∪ [0.42, 0.48]

while the conflicting imprecise mass is given by

kI12 ≡ mI
12(θ1 ∩ θ2) = [mI

1(θ1) �mI
2(θ2)] ⊞ [mI

1(θ2) �mI
2(θ1)] = (0.16, 0.58]

Using the PCR5 rule for Proportional Conflict redistribution,
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• one redistributes the partial imprecise conflicting mass mI
1(θ1) � mI

2(θ2) to θ1 and θ2
proportionally to mI

1(θ1) and mI
2(θ2). Using the fraction bar symbol instead of � for

convenience to denote the division operator on sets, one has

xI1
[0.1, 0.2] ∪ {0.3} =

yI1
[0, 0.4] ∪ {0.5, 0.6} =

([0.1, 0.2] ∪ {0.3}) � ([0, 0.4] ∪ {0.5, 0.6})
([0.1, 0.2] ∪ {0.3}) ⊞ ([0, 0.4] ∪ {0.5, 0.6})

=
[
[0, 0.08] ∪ [0.05, 0.10] ∪ [0.06, 0.12] ∪ [0, 0.12] ∪ {0.15, 0.18}

]

�

[
[0.1, 0.6] ∪ [0.6, 0.7] ∪ [0.7, 0.8] ∪ [0.3, 0.7] ∪ {0.8, 0.9}

]

=
[0, 0.12] ∪ {0.15, 0.18}

[0.1, 0.8] ∪ {0.9}
whence

xI1 = [
[0, 0.12] ∪ {0.15, 0.18}

[0.1, 0.8] ∪ {0.9} ] � ([0.1, 0.2] ∪ {0.3})

=
[0, 0.024] ∪ [0.015, 0.030] ∪ [0.018, 0.036] ∪ [0, 0.036] ∪ {0.045, 0.048}

[0.1, 0.8] ∪ {0.9}

=
[0, 0.036] ∪ {0.045, 0.048}

[0.1, 0.8] ∪ {0.9}

= [
0

0.8
,
0.036

0.1
] ∪ [

0

0.9
,
0.036

0.9
] ∪ [

0.045

0.8
,
0.045

0.1
] ∪ [

0.048

0.8
,

0.048

0.1
]

= [0, 0.36] ∪ [0, 0.04] ∪ [0.05625, 0.45000] ∪ [0.06, 0.48] = [0, 0.48]

yI1 = [
[0, 0.12] ∪ {0.15, 0.18}

[0.1, 0.8] ∪ {0.9} ] � (0, 0.4] ∪ {0.5, 0.6})

=
[
[0, 0.048] ∪ [0, 0.060] ∪ [0, 0.072] ∪ [0, 0.6] ∪ [0, 0.072]

∪ {0, 075, 0.090, 0.090, 0.108}
]

� [0.1, 0.8] ∪ {0.9}

=
[0, 0.072] ∪ {0, 075, 0.090, 0.108}

[0.1, 0.8] ∪ {0.9}

= [
0

0.8
,
0.072

0.1
] ∪ [

0

0.9
,
0.072

0.9
] ∪ [

0.075

0.8
,
0.075

0.1
]

∪ [
0.090

0.8
,

0.090

0.1
] ∪ [

0.108

0.8
,

0.108

0.1
] ∪ {0.075

0.9
,

0.090

0.9
,
0.108

0.9
}

= [0, 0.72] ∪ [0, 0.08] ∪ [0.09375, 0.75] ∪ [0.1125, 0.9] ∪ [0.135, 1.08]

∪ {0.083333, 0.1, 0.12}
= [0, 1.08] ≈ [0, 1]

• one redistributes the partial imprecise conflicting mass mI
1(θ2) � mI

2(θ1) to θ1 and θ2
proportionally to mI

1(θ2) and mI
2(θ1). One gets now the following proportionalization

xI2
[0.4, 0.5]

=
yI2

(0.4, 0.6) ∪ [0.7, 0.8]
=

([0.4, 0.5] � ((0.4, 0.6) ∪ [0.7, 0.8])

([0.4, 0.5] ⊞ ((0.4, 0.6) ∪ [0.7, 0.8])

=
(0.16, 0.30) ∪ [0.28, 0.40]

(0.8, 1.1) ∪ [1.1, 1.3]
=

(0.16, 0.40]

(0.8, 1.3]
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whence

xI2 =
(0.16, 0.40]

(0.8, 1.3]
� [0.4, 0.5] =

(0.064, 0.200]

(0.8, 1.3]
= (

0.064

1.3
,
0.200

0.8
) = (0.049231, 0.250000)

yI2 =
(0.16, 0.40]

(0.8, 1.3]
� (0.4, 0.6) ∪ [0.7, 0.8] =

(0.064, 0.240) ∪ (0.112, 0.320]

(0.8, 1.3]

=
(0.064, 0.320]

(0.8, 1.3]
= (

0.064

1.3
,

0.320

0.8
) = (0.049231, 0.400000)

Hence, one finally gets with imprecise PCR5,

mI
PCR5(θ1) = mI

12(θ1) ⊞ xI1 ⊞ xI2

= ([0.04, 0.10] ∪ [0.12, 0.15]) ⊞ [0, 0.48] ⊞ (0.049231, 0.250000)

= ([0.04, 0.10] ∪ [0.12, 0.15]) ⊞ (0.049231, 0.73)

= (0.089231, 0.83) ∪ (0.169231, 0.88) = (0.089231, 0.88)

mI
PCR5(θ2) = mI

12(θ2) ⊞ yI1 ⊞ yI2

= ([0, 0.40] ∪ [0.42, 0.48]) ⊞ [0, 1] ⊞ (0.049231, 0.400000) ≈ [0, 1]

mI
PCR5(θ1 ∩ θ2) = 0

Example no 2:

Let’s consider a more simple example with Θ = {θ1, θ2}, Shafer’s model and two independent
sources with the following imprecise admissible bba

mI
1(θ1) = (0.2, 0.3) mI

1(θ2) = [0.6, 0.8]

mI
2(θ1) = [0.4, 0.7) mI

2(θ2) = (0.5, 0.6]

Working with sets, one gets for the conjunctive consensus

mI
12(θ1) = (0.08, 0.21) mI

12(θ2) = (0.30, 0.48)

The total (imprecise) conflict between the two imprecise quantitative sources is given by

kI12 ≡ mI
12(θ1 ∩ θ2) = [mI

1(θ1) �mI
2(θ2)] ⊞ [mI

1(θ2) �mI
2(θ1)]

= ((0.2, 0.3) � (0.5, 0.6]) ⊞ ([0.4, 0.7] � [0.6, 0.8])

= (0.10, 0.18) ⊞ [0.24, 0.56) = (0.34, 0.74)

Using the PCR5 rule for Proportional Conflict redistribution of partial (imprecise) conflict
mI

1(θ1) �mI
2(θ2), one has

xI1
(0.2, 0.3)

=
yI1

(0.5, 0.6]
=

(0.2, 0.3) � (0.5, 0.6]

(0.2, 0.3) ⊞ (0.5, 0.6]
=

(0.10, 0.18)

(0.7, 0.9)
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whence

xI1 =
(0.10, 0.18)

(0.7, 0.9)
� (0.2, 0.3) =

(0.02, 0.054)

(0.7, 0.9)
= (

0.02

0.9
,
0.054

0.7
) = (0.022222, 0.077143)

yI1 =
(0.10, 0.18)

(0.7, 0.9)
� (0.5, 0.6] =

(0.050, 0.108)

(0.7, 0.9)
= (

0.050

0.9
,

0.108

0.7
) = (0.055556, 0.154286)

Using the PCR5 rule for Proportional Conflict redistribution of partial (imprecise) conflict
mI

1(θ2) �mI
2(θ1), one has

xI2
[0.4, 0.7)

=
yI2

[0.6, 0.8]
=

[0.4, 0.7) � [0.6, 0.8]

[0.4, 0.7) ⊞ [0.6, 0.8]
=

[0.24, 0.56)

[1, 1.5)

whence

xI2 =
[0.24, 0.56)

[1, 1.5)
� [0.4, 0.7) =

[0.096, 0.392)

[1, 1.5)
= (

0.096

1.5
,

0.392

1
) = (0.064, 0.392)

yI2 =
[0.24, 0.56)

[1, 1.5)
� [0.6, 0.8] =

[0.144, 0.448)

[1, 1.5)
= (

0.144

1.5
,

0.448

1
) = (0.096, 0.448)

Hence, one finally gets with imprecise PCR5,

mI
PCR5(θ1) = mI

12(θ1) ⊞ xI1 ⊞ xI2

= (0.08, 0.21) ⊞ (0.022222, 0.077143) ⊞ (0.064, 0.392)

= (0.166222, 0.679143)

mI
PCR5(θ2) = mI

12(θ2) ⊞ yI1 ⊞ yI2

= (0.30, 0.48) ⊞ (0.055556, 0.154286) ⊞ (0.096, 0.448)

= (0.451556, 1.08229) ≈ (0.451556, 1]

mI
PCR5(θ1 ∩ θ2) = 0

1.12 More numerical examples and comparisons

In this section, we present some numerical examples and comparisons of PCR rules with other
rules proposed in literature.

1.12.1 Example 1

Let’s consider the frame of discernment Θ = {A,B,C}, Shafer’s model (i.e. all intersections
empty), and the 2 following Bayesian bba’s

m1(A) = 0.6 m1(B) = 0.3 m1(C) = 0.1

m2(A) = 0.4 m2(B) = 0.4 m2(C) = 0.2

Then the conjunctive consensus yields : m12(A) = 0.24, m12(B) = 0.12 and m12(C) = 0.02
with the conflicting mass k12 = m12(A∩B)+m12(A∩C)+m12(B∩C) = 0.36+0.16+0.10 = 0.62,
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which is a sum of factors.

From the PCR1 and PCR2 rules, one gets

mPCR1(A) = 0.550 mPCR2(A) = 0.550

mPCR1(B) = 0.337 mPCR2(B) = 0.337

mPCR1(C) = 0.113 mPCR2(C) = 0.113

And from the PCR3 and PCR5 rules, one gets

mPCR3(A) = 0.574842 mPCR5(A) = 0.574571

mPCR3(B) = 0.338235 mPCR5(B) = 0.335429

mPCR3(C) = 0.086923 mPCR5(C) = 0.090000

Dempster’s rule is a particular case of proportionalization, where the conflicting mass is redis-
tributed to the non-empty sets A1, A2, . . . proportionally to m12(A1), m12(A2), . . . respectively
(for the case of 2 sources) and similarly for n sources, i.e.

x

0.24
=

y

0.12
=

z

0.02
=

0.62

0.38

whence x = 0.24 · 0.62
0.38 = 0.391579, y = 0.12 · 0.62

0.38 = 0.195789, z = 0.02 · 0.62
0.38 = 0.032632.

Dempster’s rule yields

mDS(A) = 0.24 + 0.391579 = 0.631579

mDS(B) = 0.12 + 0.195789 = 0.315789

mDS(C) = 0.02 + 0.032632 = 0.052632

Applying PCR4 for this example, one has

x1

0.24
=

y1

0.12
=

0.36

0.24 + 0.12

therefore x1 = 0.24 and y1 = 0.12;

x2

0.24
=

z1
0.02

=
0.16

0.24 + 0.02
=

0.16

0.26

therefore x2 = 0.24(0.16/0.26) = 0.147692 and z1 = 0.02(0.16/0.26) = 0.012308:

y2

0.12
=

z2
0.02

=
0.10

0.12 + 0.02
=

0.10

0.14

therefore y2 = 0.12(0.10/0.14) = 0.085714 and z2 = 0.02(0.10/0.14) = 0.014286. Summing all
of them, one gets finally:

mPCR4(A) = 0.627692 mPCR4(B) = 0.325714 mPCR4(C) = 0.046594

It can be shown that minC combination provides same result as PCR4 for this example.
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1.12.2 Example 2

Let’s consider the frame of discernment Θ = {A,B}, Shafer’s model (i.e. all intersections
empty), and the following two bba’s:

m1(A) = 0.7 m1(B) = 0.1 m1(A ∪B) = 0.2

m2(A) = 0.5 m2(B) = 0.4 m2(A ∪B) = 0.1

Then the conjunctive consensus yields m12(A) = 0.52, m12(B) = 0.13 and m12(A ∪ B) = 0.02
with the total conflict k12 = m12(A ∩B) = 0.33.

From PCR1 and PCR2 rules, one gets:

mPCR1(A) = 0.7180 mPCR2(A) = 0.752941

mPCR1(B) = 0.2125 mPCR2(B) = 0.227059

mPCR1(A ∪B) = 0.0695 mPCR2(A ∪B) = 0.02

From PCR3 and PCR5 rules, one gets

mPCR3(A) = 0.752941 mPCR5(A) = 0.739849

mPCR3(B) = 0.227059 mPCR5(B) = 0.240151

mPCR3(A ∪B) = 0.02 mPCR5(A ∪B) = 0.02

From Dempster’s rule:

mDS(A) = 0.776119 mDS(B) = 0.194030 mDS(A ∪B) = 0.029851

From PCR4, one has
x

0.52
=

y

0.13
=

0.33

0.52 + 0.13
=

0.33

0.65

therefore x = 0.52(0.33/0.65) = 0.264 and y = 0.13(0.33/0.65) = 0.066. Summing, one gets:

mPCR4(A) = 0.784 mPCR4(B) = 0.196 mPCR4(A ∪B) = 0.02

From minC, one has

x

0.52
=

y

0.13
=

z

0.02
=

0.33

0.52 + 0.13 + 0.02
=

0.33

0.67

therefore x = 0.52(0.33/0.67) = 0.256119, y = 0.13(0.33/0.67) = 0.064030 and z = 0.02(0.33/0.02) =
0.009851. Summing, one gets same result as with the Demspter’s rule in this second example:

mminC(A) = 0.776119 mminC(B) = 0.194030 mminC(A ∪B) = 0.029851

1.12.3 Example 3 (Zadeh’s example)

Let’s consider the famous Zadeh’s example17 [31] with Θ = {A,B,C}, Shafer’s model and the
two following belief assignments

m1(A) = 0.9 m1(B) = 0 m1(C) = 0.1

m2(A) = 0 m2(B) = 0.9 m2(C) = 0.1

17A detailed discussion on this example can be found in [18] (Chap. 5, p. 110).



56 PCR RULES FOR INFORMATION FUSION

The conjunctive consensus yields for this case, m12(A) = m12(b) = 0, m12(C) = 0.01. The
masses committed to partial conflicts are given by

m12(A ∩B) = 0.81 m12(A ∩ C) = m12(B ∩ C) = 0.09

and the conflicting mass by

k12 = m1(A)m2(B) +m1(A)m2(C) +m2(B)m1(C) = 0.81 + 0.09 + 0.09 = 0.99

The first partial conflict m12(A ∩B) = 0.9 · 0.9 = 0.81 is proportionally redistributed to A and
B according to

x1

0.9
=

y1

0.9
=

0.81

0.9 + 0.9

whence x1 = 0.405 and y1 = 0.405.

The second partial conflict m12(A ∩ C) = 0.9 · 0.1 = 0.09 is proportionally redistributed to
A and C according to

x2

0.9
=

y2

0.1
=

0.09

0.9 + 0.1

whence x2 = 0.081 and y2 = 0.009.

The third partial conflict m12(B ∩C) = 0.9 · 0.1 = 0.09 is proportionally redistributed to B
and C according to

x3

0.9
=

y3

0.1
=

0.09

0.9 + 0.1

whence x3 = 0.081 and y3 = 0.009.

After summing all proportional redistributions of partial conflicts to corresponding elements
with PCR5, one finally gets:

mPCR5(A) = 0 + 0.405 + 0.081 = 0.486

mPCR5(B) = 0 + 0.405 + 0.081 = 0.486

mPCR5(C) = 0.01 + 0.009 + 0.009 = 0.028

The fusion obtained from other rules yields:

• with Dempster’s rule based on Shafer’s model, one gets the counter-intuitive result

mDS(C) = 1

• with Smets’ rule based on Open-World model, one gets

mS(∅) = 0.99 mS(C) = 0.01

• with Yager’s rule based on Shafer’s model, one gets

mY (A ∪B ∪ C) = 0.99 mDS(C) = 0.01
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• with Dubois & Prade’s rule based on Shafer’s model, one gets

mDP (A∪B) = 0.81 mDP (A∪C) = 0.09 mDP (B ∪C) = 0.09 mDP (C) = 0.01

• with the classic DSm rule based on the free-DSm model, one gets

mDSmC(A ∩B) = 0.81 mDSmC(A ∩ C) = 0.09

mDSmC(B ∩ C) = 0.09 mDSmC(C) = 0.01

• with the hybrid DSm rule based on Shafer’s model, one gets same as with Dubois & Prade
(in this specific example)

mDSmH(A ∪B) = 0.81 mDSmH(A ∪C) = 0.09

mDSmH(B ∪ C) = 0.09 mDSmH(C) = 0.01

• with the WAO rule based on Shafer’s model, one gets

mWAO(A) = 0 +
0.9 + 0

2
· 0.99 = 0.4455

mWAO(B) = 0 +
0 + 0.9

2
· 0.99 = 0.4455

mWAO(C) = 0.01 +
0.1 + 0.1

2
· 0.99 = 0.1090

• with the PCR1 rule based on Shafer’s model, one gets (same as with WAO)

mPCR1(A) = 0 +
0.9

0.9 + 0.9 + 0.2
· 0.99 = 0.4455

mPCR1(B) = 0 +
0.9

0.9 + 0.9 + 0.2
· 0.99 = 0.4455

mPCR1(C) = 0.01 +
0.2

0.9 + 0.9 + 0.2
· 0.99 = 0.1090

• with the PCR2 rule based on Shafer’s model, one gets in this example the same result as
with WAO and PCR1.

• with the PCR3 rule based on Shafer’s model, one gets

mPCR3(A) = 0 + 0.9 · [0 · 0 + 0.9 · 0.9
0.9 + 0.9

+
0.1 · 0 + 0.9 · 0.1

0.9 + 0.2
] ≈ 0.478636

mPCR3(B) = 0 + 0.9 · [0 · 0 + 0.9 · 0.9
0.9 + 0.9

+
0.1 · 0 + 0.9 · 0.1

0.9 + 0.2
] ≈ 0.478636

mPCR3(C) ≈ 0.042728

• With the PCR4 rule based on Shafer’s model, m12(A ∩B) = 0.81 is distributed to A and
B with respect to their m12(.) masses, but because m12(A) and m12(B) are zero, it is
distributed to A and B with respect to their corresponding column sum of masses, i.e.
with respect to 0.9 + 0 = 0.9 and 0 + 0.9 = 0.9;

x1

0.9
=

y1

0.9
=

0.81

0.09 + 0.09
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whence x1 = 0.405 and y1 = 0.405.

m(A ∩ C) = 0.09 is redistributed to A and C proportionally with respect to their corre-
sponding column sums, i.e. 0.9 and 0.2 respectively:

x/0.9 = z/0.2 = 0.09/1.1

wence x = 0.9 · (0.09/1.1) = 0.073636 and z = 0.2 · (0.09/1.1) = 0.016364.

m(B ∩ C) = 0.09 is redistributed to B and C proportionally with respect to their corre-
sponding column sums, i.e. 0.9 and 0.2 respectively:

y/0.9 = z/0.2 = 0.09/1.1

wence y = 0.9 · (0.09/1.1) = 0.073636 and z = 0.2 · (0.09/1.1) = 0.016364.

Summing one gets:

mPCR4(A) = 0.478636 mPCR4(B) = 0.478636 mPCR4(C) = 0.042728

• With the minC rule based on Shafer’s model, one gets:

mminC(A) = 0.405 mminC(B) = 0.405 mminC(C) = 0.190

• With the PCR5 rule based on Shafer’s model, the mass m12(A ∩ B) = 0.9 · 0.9 = 0.81 is
proportionalized according to

x

0.9
=

y

0.9
=

0.81

0.9 + 0.9

whence x = 0.405 and y = 0.405. Similarly, m12(A ∩ C) = 0.09 is proportionalized
according to

x

0.9
=

z

0.9
=

0.09

0.9 + 0.1

whence x = 0.081 and z = 0.009; Similarly, m12(B ∩ C) = 0.09 is proportionalized
according to

y

0.9
=

z

0.1
=

0.09

0.9 + 0.1

whence y = 0.081 and z = 0.009. Summing one gets:

mPCR5(A) = 0 + 0.405 + 0.081 = 0.486

mPCR5(B) = 0 + 0.405 + 0.081 = 0.486

mPCR5(C) = 0.01 + 0.009 + 0.009 = 0.028
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1.12.4 Example 4 (hybrid model)

Let’s consider a hybrid model on Θ = {A,B,C} where A ∩ B = ∅, while A ∩ C 6= ∅ and
B ∩C 6= ∅. This model corresponds to a hybrid model [18]. Then only the mass m12(A∩B) of
partial conflict A∩B will be transferred to other non-empty sets, while the masses m12(A∩C)
stays on A∩C and m12(B ∩C) stays on B ∩C. Let’s consider two sources of evidence with the
following basic belief assignments

m1(A) = 0.5 m1(B) = 0.4 m1(C) = 0.1

m2(A) = 0.6 m2(B) = 0.2 m2(C) = 0.2

Using the table representation, one has

A B C A ∩B A ∩C B ∩ C
m1 0.5 0.4 0.1
m2 0.6 0.2 0.2

m12 0.3 0.08 0.02 0.34 0.16 0.10

Thus, the conjunctive consensus yields

m12(A) = 0.30 m12(B) = 0.08 m12(C) = 0.02

m12(A ∩B) = 0.34 m12(A ∩C) = 0.16 m12(B ∩ C) = 0.10

• with the PCR1 rule, m12(A∩B) = 0.34 is the only conflicting mass, and it is redistributed
to A, B and C proportionally with respect to their corresponding columns’ sums: 0.5 +
0.6 = 1.1, 0.4 + 0.2 = 0.6 and 0.1 + 0.2 = 0.3. The sets A ∩ C and B ∩ C don’t get
anything from the conflicting mass 0.34 since their columns’ sums are zero. According to
proportional conflict redistribution of PCR1, one has

x

1.1
=

y

0.6
=

z

0.3
=

0.34

1.1 + 0.6 + 0.3
= 0.17

Therefore, one gets the proportional redistributions for A, B and C

x = 1.1 · 0.17 = 0.187 y = 0.6 · 0.17 = 0.102 z = 0.3 · 0.17 = 0.051

Thus the final result of PCR1 is given by

mPCR1(A) = 0.30 + 0.187 = 0.487

mPCR1(B) = 0.08 + 0.102 = 0.182

mPCR1(C) = 0.02 + 0.051 = 0.071

mPCR1(A ∩ C) = 0.16

mPCR1(B ∩ C) = 0.10

• with the PCR2 rule, m12(A ∩B) = 0.34 is redistributed to A and B only with respect to
their corresponding columns’ sums: 0.5+ 0.6 = 1.1 and 0.4+ 0.2 = 0.6. The set C doesn’t
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get anything since C was not involved in the conflict. According to proportional conflict
redistribution of PCR2, one has

x

1.1
=

y

0.6
=

0.34

1.1 + 0.6
= 0.2

Therefore, one gets the proportional redistributions for A and B

x = 1.1 · 0.2 = 0.22 y = 0.6 · 0.2 = 0.12

Thus the final result of PCR2 is given by

mPCR2(A) = 0.30 + 0.22 = 0.52

mPCR2(B) = 0.08 + 0.12 = 0.20

mPCR2(C) = 0.02

mPCR2(A ∩C) = 0.16

mPCR2(B ∩C) = 0.10

• PCR3 gives the same result like PCR2 since there is only a partial conflicting mass which
coincides with the total conflicting mass.

• with the PCR4 rule, m12(A ∩ B) = 0.34 is redistributed to A and B proportionally
with respect to m12(A) = 0.30 and m12(B) = 0.08. According to proportional conflict
redistribution of PCR4, one has

x

0.30
=

y

0.08
=

0.34

0.30 + 0.08

Therefore, one gets the proportional redistributions for A and B

x = 0.30 · (0.34/0.38) ≈ 0.26842 y = 0.08 · (0.34/0.38) ≈ 0.07158

Thus the final result of PCR4 is given by

mPCR4(A) = 0.30 + 0.26842 = 0.56842

mPCR4(B) = 0.08 + 0.07158 = 0.15158

mPCR4(C) = 0.02

mPCR4(A ∩ C) = 0.16

mPCR4(B ∩ C) = 0.10

• with the PCR5 rule, m12(A ∩B) = 0.34 is redistributed to A and B proportionally with
respect to m1(A) = 0.5, m2(B) = 0.2 and then with respect to m2(A) = 0.6, m1(B) = 0.4.
According to proportional conflict redistribution of PCR5, one has

x1

0.5
=

y1

0.2
=

0.10

0.5 + 0.2
= 0.10/0.7

x2

0.6
=

y2

0.4
=

0.24

0.6 + 0.4
= 0.24

Therefore, one gets the proportional redistributions for A and B

x1 = 0.5 · (0.10/0.7) = 0.07143 y1 = 0.2 · (0.10/0.7) = 0.02857

x2 = 0.6 · 0.24 = 0.144 y2 = 0.4 · 0.24 = 0.096
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Thus the final result of PCR5 is given by

mPCR5(A) = 0.30 + 0.07143 + 0.144 = 0.51543

mPCR5(B) = 0.08 + 0.02857 + 0.096 = 0.20457

mPCR5(C) = 0.02

mPCR5(A ∩ C) = 0.16

mPCR5(B ∩ C) = 0.10

1.12.5 Example 5 (Target ID tracking)

This example is drawn from Target ID (identification) tracking application pointed out by Dezert
and al. in [5]. The problem consists in updating bba on ID of a target based on a sequence of
uncertain attribute measurements expressed as sensor’s bba. In such case, a problem can arise
when the fusion rule of the predicted ID bba with the current observed ID bba yields to commit
certainty on a given ID of the frame Θ (the set of possible target IDs under consideration).
If this occurs once, then the ID bba remains unchanged by all future observations, whatever
the value they can take ! By example, at a given time the ID system finds with ”certainty”
that a target is a truck, and then during next, say 1000 scans, all the sensor reports claim
with high belief that target is a car, but the ID system is unable to doubt itself of his previous
ID assessment (certainty state plays actually the role of an absorbing/black hole state). Such
behavior of a fusion rule is what we feel drastically dangerous, specially in defence applications
and better rules than the classical ones have to be used to avoid such severe drawback. We
provide here a simple numerical example and we compare the results for the new rules presented
in this chapter. So let’s consider here Shafer’s model, a 2D frame Θ = {A,B} and two bba
m1(.) and m2(.) with

A B A ∪B
m1 1 0 0
m2 0.1 0.9 0

m1(.) plays here the role of a prior (or predicted) target ID bba for a given time step and m2(.)
is the observed target ID bba drawn from some attribute measurement for the time step under
consideration. The conjunctive operator of the prior bba and the observed bba is then

m12(A) = 0.1 m12(A ∩B) = 0.9

Because we are working with Shafer’s model, one has to redistribute the conflicting massm12(A∩
B) = 0.9 in some manner onto the non conflicting elements of power-set. Once the fusion/update
is obtained at a given time, we don’t keep in memory m1(.) and m2(.) but we only use the fusion
result as new prior18 bba for the fusion with the next observation, and this process is reitered
at every observation time. Let’s examine the result of the rule after at first observation time
(when only m2(.) comes in).

• With minC rule: minC rule distributes the whole conflict to A since m12(B) = 0, thus:

mminC|12(A) = 1

18For simplicity, we don’t introduce a prediction ID model here and we just consider as predicted bba for time
k + 1, the updated ID bba available at time k (i.e. the ID state transition matrix equals identity matrix).
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• With PCR1-PCR4 rules: Using PCR1-4, they all coincide here. One has x/1.1 =
y/0.9 = 0.9/2 = 0.45, whence x = 1.1 · (0.45) = 0.495 and y = 0.9 · (0.45) = 0.405. Hence

mPCR1−4|12(A) = 0.595 mPCR1−4|12(B) = 0.405

• With PCR5 rule: One gets x/1 = y/0.9 = 0.9/1.9, whence x = 1 · (0.9/1.9) = 0.473684
and y = 0.9 · (0.9/1.9) = 0.426316. Hence

mPCR5|12(A) = 0.573684 mPCR5|12(B) = 0.426316

Suppose a new observation, expressed by m3(.) comes in at next scan with

m3(A) = 0.4 m3(B) = 0.6

and examine the result of the new target ID bba update based on the fusion of the previous
result with m3(.).

• With minC rule: The conjunctive operator applied on mminC|12(.) and m3(.) yields now

m(minC|12)3(A) = 0.4 m(minC|12)3(A ∩B) = 0.6

Applying minC rule again, one distributes the whole conflict 0.6 to A and one finally
gets19:

mminC|(12)3(A) = 1

Therefore, minC rule does not respond to the new tracking ID observations.

• With PCR1-PCR4 rules: The conjunctive operator applied on mPCR1−4|12(.) and
m3(.) yields now

m(PCR1−4|12)3(A) = 0.238 m(PCR1−4|12)3(B) = 0.243 m(PCR1−4|12)3(A ∩B) = 0.519

– For PCR1-3: x/0.995 = y/1.005 = 0.519/2 = 0.2595, so that x = 0.995 · (0.2595) =
0.258203 and y = 1.005 · (0.2595) = 0.260797. Hence:

mPCR1−3|(12)3(A) = 0.496203 mPCR1−3|(12)3(B) = 0.503797

Therefore PCR1-3 rules do respond to the new tracking ID observations.

– For PCR4: x/0.238 = y/0.243 = 0.519/(0.238 + 0.243) = 0.519/0.481, so that
x = 0.238 · (0.519/0.481) = 0.256802 and y = 0.243 · (0.519/0.481) = 0.262198.
Hence:

mPCR4|(12)3(A) = 0.494802 mPCR4|(12)3(B) = 0.505198

Therefore PCR4 rule does respond to the new tracking ID observations.

19For convenience, we use the notation mminC|(12)3(A) instead of mminC|(minC|12)3(.), and similarly with PCR
indexes.
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• With PCR5 rule: The conjunctive operator applied on mPCR5|12(.) and m3(.) yields
now

m(PCR5|12)3(A) = 0.229474 m(PCR5|12)3(B) = 0.255790 m(PCR5|12)3(A∩B) = 0.514736

Then: x/0.573684 = y/0.6 = (0.573684 · 0.6)/(0.573684 + 0.6) = 0.293273, so that
x = 0.573684 · 0.293273 = 0.168246 and y = 0.6 · 0.293273 = 0.175964. Also: x/0.4 =
y/0.426316 = (0.4 · 0.426316)/(0.4 + 0.426316) = 0.206369, so that x = 0.4 · 0.206369 =
0.082548 and y = 0.426316∆0.206369 = 0.087978. Whence:

mPCR5|(12)3(A) = 0.480268 mPCR5|(12)3(B) = 0.519732

Therefore PCR5 rule does respond to the new tracking ID observations.

It can moreover be easily verified that Dempster’s rule gives the same results as minC here,
hence does not respond to new observations in target ID tracking problem.

1.13 On Ad-Hoc-ity of fusion rules

Each fusion rule is more or less ad-hoc. Same thing for PCR rules. There is up to the present
no rule that fully satisfies everybody. Let’s analyze some of them.

Dempster’s rule transfers the total conflicting mass to non-empty sets proportionally with
their resulting masses. What is the reasoning for doing this? Just to swell the masses of non-
empty sets in order to sum up to 1 and preserve associativity?

Smets’ rule transfers the conflicting mass to the empty set. Why? Because, he says, we
consider on open world where unknown hypotheses might be. This approach does not make
difference between all origins of conflicts since all different conflicting masses are committed
with the same manner to the empty set. Not convincing. And what about real closed worlds?

Yager’s rule transfers all the conflicting mass only to the total ignorance. Should the inter-
nal structure of partial conflicting mass be ignored?

Dubois-Prade’s rule and DSm hybrid rule transfer the conflicting mass to the partial and
total ignorances upon the principle that between two conflicting hypotheses one is right. Not
completely justified either. What about the case when no hypothesis is right?

PCR rules are based on total or partial conflicting masses, transferred to the corresponding
sets proportionally with respect to some functions (weighting coefficients) depending on their
corresponding mass matrix columns. But other weighting coefficients can be found.

Inagaki [10], Lefèvre-Colot-Vannoorenberghe [12] proved that there are infinitely many fu-
sion rules based on the conjunctive rule and then on the transfer of the conflicting mass, all of
them depending on the weighting coefficients/factors that transfer that conflicting mass. How
to choose them, what parameters should they rely on – that’s the question! There is not a
precise measure for this. In authors’ opinion, neither DSm hybrid rule nor PCR rules are not
more ad-hoc than other fusion rules.
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1.14 On quasi-associativity and quasi-Markovian properties

1.14.1 Quasi-associativity property

Let m1(.),m2(.),m3(.) : GΘ 7→ [0, 1] be any three bba’s, and a fusion rule denoted by ⊕
operating on these masses. One says that this fusion rule is associative if and only if:

∀A ∈ GΘ, ((m1 ⊕m2)⊕m3)(A) = (m1 ⊕ (m2 ⊕m3))(A) (1.44)

which is also equal to (m1 ⊕m2 ⊕m3)(A).

Only three fusion rules based on the conjunctive operator are known associative: Dempster’s
rule in DST, Smets’ rule (conjunctive consensus based on the open-world assumption), and the
DSm classic rule on free DSm model. All alternative rules developed in literature so far do not
hold the associativity. Although, some rules such as Yager’s, Dubois & Prade’s, DSm hybrid,
WAO, minC, PCR rules, which are not associative become quasi-associative if one stores the
result of the conjunctive rule at each time when a new bba arises in the combination process.
Instead of combining it with the previous result of the rule, we combine the new bba with the
stored conjunctive rule’s result.

1.14.2 Quasi-Markovian property

Let m1(.),m2(.), . . . ,mn(.) : GΘ 7→ [0, 1] be any n ≥ 3 masses, and a fusion rule denoted by
⊕ operating on these masses. One says that this fusion rule satisfies Markovian property or
Markovian requirement (according to Ph. Smets) if and only if:

∀A ∈ GΘ, andn ≥ 3, (m1⊕m2⊕ . . .⊕mn)(A) = ((m1⊕m2⊕ . . .⊕mn−1)⊕mn)(A) (1.45)

Similarly, only three fusion rules derived from the conjunctive rule are known satisfying the
Markovian requirement, i.e. Dempster’s rule, Smets’ TBM’s rule, and the DSm classic rule on
free DSm model. In an analoguous way as done for quasi-associativity, we can transform a
non-Markovian fusion rule based on conjunctive rule into a Markovian fusion rule by keeping
in the computer’s memory the results of the conjunctive rule - see next section.

1.14.3 Algorithm for Quasi-Associativity and Quasi-Markovian
Requirement

The following algorithm will help transform a fusion rule into an associative and Markovian
fusion rule. Let’s call a rule which first uses the conjunctive rule and then the transfer of the
conflicting mass to empty or non-empty sets quasi-conjunctive rule. the following algorithm
is proposed in order to restore the associativity and Markovian requirements to any quasi-
conjunctive based rules.

Let’s consider a rule R© formed by using: first the conjunctive rule, noted by C©, and second
the transfer/redistribution of the conflicting mass to empty or non-empty sets, noted by the
operator O(.) (no matter how the transfer is done, either proportionally with some parameters,
or transferred to partial or total ignorances and/or to the empty set; if all conflicting mass is
transferred to the empty set, as in Smets’ rule, there is no need for transformation into an as-
sociative or Markovian rule since Smets’ rule has already these properties). Clearly R© ≡ O( C©).
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The idea is simple; we store the conjunctive rule’s result (before doing the transfer) and, when
a new mass arises, one combines this new mass with the conjunctive rule’s result, not with the
result after the transfer of conflicting mass.

Let’s have two bba’s m1(.), m2(.) defined as previously.

a) One applies the conjunctive rule to m1(.) and m2(.) and one stores the result20:

mc(1,2)(.) , [m1 C©m2](.) = [m2 C©m1](.).

b) One applies the operator O(.) of transferring conflicting mass to the non-empty sets,
i.e. O(mc(1,2)(.)). This calculation completely does the work of our fusion rule, i.e.
[m1 R©m2](.) = O(mc(1,2)(.)) that we compute for decision-making purpose.

c) When a new bba, m3(.), arises, we combine using the conjunctive rule this m3(.) with
the previous conjunctive rule’s result mc(1,2)(.), not with O(mc(1,2)(.)). Therefore (by
notation): [mc(1,2) C©m3](.) = mc(c(1,2),3)(.). One stores this results, while deleting the
previous one stored.

d) Now again we apply the operator O(.) to transfer the conflicting mass, i.e. compute
O(mc(c(1,2),3)(.)) needed for decision-making.

e) . . . And so on the algorithm is continued for any number n ≥ 3 of bba’s.

The properties of the conjunctive rule, i.e. associativity and satisfaction of the Markovian
requirement, are passed on to the fusion rule R© too. One remarks that the algorithm gives the
same result if one applies the rule R© to all n ≥ 3 bba’s together, and then one does the transfer
of conflicting mass based on the conjunctive rule’s result only.

For each rule we may adapt our algorithm and store, besides the conjunctive rule’s result,
more information if needed. For example, for the PCR1-3 rules we also need the sum of column
masses to be stored. For PCR5-6 we need to store all bba’s in a mass matrix.

Generalization: The previous algorithm can be extended in a similar way if one considers in-
stead of the conjunctive rule applied first, any associative (respectively Markovian) rule applied
first and next the transfer of masses.

In this section we have proposed a fusion algorithm that transforms a quasi-conjunctive
fusion rule (which first uses the conjunctive rule and then the transfer of conflicting masses
to non-empty sets, except for Smets’ rule) to an associative and Markovian rule. This is very
important in information fusion since the order of combination of masses should not matter, and
for the Markovian requirement the algorithm allows the storage of information of all previous
masses into the last result (therefore not necessarily to store all the masses), which later will
be combined with the new mass. In DSmT, using this fusion algorithm for n ≥ 3 sources, the
DSm hybrid rule and PCRi become commutative, associative and Markovian. Some numerical
examples of the application of this algorithm can be found in [19].

20where the symbol , means by definition.
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1.15 Conclusion

We have presented in this chapter five versions of the Proportional Conflict Redistribution rule
of combination in information fusion, which are implemented as follows: first one uses the con-
junctive rule, then one redistribute the conflicting mass to non-empty sets proportionally with
respect to either the non-zero column sum of masses (for PCR1, PCR2, PCR3) or with respect
to the non-zero masses (of the corresponding non-empty set) that enter in the composition of
each individual product in the partial conflicting masses (PCR5). PCR1 restricted from the
hyper-power set to the power set and without degenerate cases gives the same result as WAO
as pointed out by P. Smets in a private communication. PCR1 and PCR2 redistribute the total
conflicting mass, while PCR3 and PCR5 redistribute partial conflicting masses. PCR1-3 uses
the proportionalization with respect to the sum of mass columns, PCR4 with respect to the re-
sults of the conjunctive rule, and PCR5 with respect to the masses entered in the sum products
of the conflicting mass. PCR4 is an improvement of minC and Dempster’s rules. From PCR1 to
PCR2, PCR3, PCR4, PCR5 one increases the complexity of the rules and also the exactitude of
the redistribution of conflicting masses. All the PCR rules proposed in this chapter preserve the
neutral impact of the vacuous belief assignment but PCR1 and work for any hybrid DSm model
(including Shafer’s model). For the free DSm model, i.e. when all intersections not empty, there
is obviously no need for transferring any mass since there is no conflicting mass, the masses of
the intersections stay on them. Thus only DSm classic rule is applied, no PCR1-5, no DSm
hybrid rule and no other rule needed to apply. In this chapter, PCR, minC and Dempster’s
rules are all compared with respect to the conjunctive rule (i.e. the conjunctive rule is applied
first, then the conflicting mass is redistributed following the way the conjunctive rule works).
Therefore, considering the way each rule works, the rule which works closer to the conjunctive
rule in redistributing the conflicting mass is considered better than other rule. This is not a
subjective comparison between rules, but only a mathematical one.
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Abstract: In this chapter, we present and discuss a new generalized proportional
conflict redistribution rule. The Dezert-Smarandache extension of the Dempster-
Shafer theory has relaunched the studies on the combination rules especially for the
management of the conflict. Many combination rules have been proposed in the last
few years. We study here different combination rules and compare them in terms
of decision on didactic example and on generated data. Indeed, in real applications,
we need a reliable decision and it is the final results that matter. This chapter
shows that a fine proportional conflict redistribution rule must be preferred for the
combination in the belief function theory.

2.1 Introduction

Many fusion theories have been studied for the combination of the experts opinions such as
voting rules [10, 25], possibility theory [7, 27], and belief function theory [2, 15]. We can
divide all these fusion approaches into four steps: the modelization, the parameters estimation
depending on the model (not always necessary), the combination, and the decision. The most
difficult step is presumably the first one. If both possibility and probability-based theories can
modelize imprecise and uncertain data at the same time, in a lot of applications, experts can
express their certitude on their perception of the reality. As a result, probabilities theory such
as the belief function theory is more adapted. In the context of the belief function theory, the
Dempster-Shafer theory (DST) [2, 15] is based on the use of functions defined on the power set
2Θ (that is the set of all the disjunctions of the elements of Θ). Hence the experts can express
their opinion not only on Θ but also on 2Θ as in the probabilities theory. The extension of this
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power set into the hyper-power set DΘ (that is the set of all the disjunctions and conjunctions of
the elements of Θ) proposed by Dezert and Smarandache [3], gives more freedom to the expert.
This extension of the DST is called Dezert-Smarandache Theory (DSmT).

This extension has relaunched the studies on the combination rules. The combination of
multiple sources of information has still been an important subject of research since the proposed
combination rule given by Dempster [2]. Hence, many solutions have been studied in order to
manage the conflict [6, 8, 9, 11, 12, 18, 22, 23, 26]. These combination rules are the most of
time compared following the properties of the operator such as associativity, commutativity,
linearity, anonymity and on special and simple cases of experts responses [1, 22, 24].

In real applications, we need a reliable decision and it is the final results that matter.
Hence, for a given application, the best combination rule is the rule given the best results. For
the decision step, different functions such as credibility, plausibility and pignistic probability
[4, 15, 20] are usually used.

In this chapter, we discuss and compare different combination rules especially managing the
conflict. First, the principles of the DST and DSmT are recalled. We present the formalization
of the belief function models, different rules of combination and decision. The combination rule
(PCR5) proposed by [18] for two experts is mathematically one of the best for the proportional
redistribution of the conflict applicable in the context of the DST and the DSmT. In the section
2.3, we propose a new extension of this rule for more experts, the PCR6 rule. This new rule
is compared to the generalized PCR5 rule given in [5], in the section 2.4. Then this section
presents a comparison of different combination rules in terms of decision in a general case, where
the experts opinions are randomly simulated. We demonstrate also that some combination rules
are different in terms of decision, in the case of two experts and two classes, but most of them
are equivalent.

2.2 Theory bases

2.2.1 Belief Function Models

The belief functions or basic belief assignments m are defined by the mapping of the power set
2Θ onto [0, 1], in the DST , and by the mapping of the hyper-power set DΘ onto [0, 1], in the
DSmT, with:

m(∅) = 0, (2.1)

and ∑

X∈2Θ

m(X) = 1, (2.2)

in the DST , and ∑

X∈DΘ

m(X) = 1, (2.3)

in the DSmT.
The equation (2.1) is the hypothesis at a closed world [15, 16]. We can define the belief

function only with:
m(∅) > 0, (2.4)

and the world is open [20]. In a closed world, we can also add one element in order to propose
an open world.
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These simple conditions in equation (2.1) and (2.2) or (2.1) and (2.3), give a large panel of
definitions of the belief functions, which is one the difficulties of the theory. The belief functions
must therefore be chosen according to the intended application.

2.2.2 Combination rules

Many combination rules have been proposed in the last few years in the context of the belief
function theory ( [6, 16, 18, 20, 22, 26], etc.). In the context of the DST , the combination rule
most used today seems to be the conjunctive rule given by [20] for all X ∈ 2Θ by:

mc(X) =
∑

Y1∩...∩YM=X

M∏

j=1

mj(Yj), (2.5)

where Yj ∈ 2Θ is the response of the expert j, and mj(Yj) the associated belief function.
However, the conflict can be redistributed on partial ignorance like in the Dubois and Prade

rule [6], a mixed conjunctive and disjunctive rule given for all X ∈ 2Θ, X 6= ∅ by:

mDP(X) =
∑

Y1∩...∩YM=X

M∏

j=1

mj(Yj) +
∑

Y1 ∪ ... ∪ YM = X
Y1 ∩ ... ∩ YM = ∅

M∏

j=1

mj(Yj), (2.6)

where Yj ∈ 2Θ is the response of the expert j, and mj(Yj) the associated belief function value.
The corresponding algorithm, building the whole belief function, is algorithm 1 provided in
appendix.

In the context of the DSmT, the conjunctive rule can be used for all X ∈ DΘ and Y ∈ DΘ.
The rule given by the equation (2.6), called DSmH [16], can be written in DΘ for all X ∈ DΘ,
X 6≡ ∅ 1 by:

mH(X) =
∑

Y1∩...∩YM=X

M∏

j=1

mj(Yj) +
∑

Y1∪...∪YM=X

Y1∩...∩YM≡∅

M∏

j=1

mj(Yj) +

∑

{u(Y1)∪...∪u(YM )=X}
Y1,...,YM≡∅

M∏

j=1

mj(Yj) +
∑

{u(Y1)∪...∪u(YM )≡∅andX=Θ}
Y1,...,YM≡∅

M∏

j=1

mj(Yj),

(2.7)

where Yj ∈ DΘ is the response of the expert j, mj(Yj) the associated belief function, and
u(Y ) is the function giving the union of the terms that compose Y [17]. For example if Y =
(A ∩B) ∪ (A ∩ C), u(Y ) = A ∪B ∪ C.

If we want to take the decision only on the elements in Θ, some rules propose to redistribute
the conflict on these elements. The most accomplished is the PCR5 given in [18] for two experts

1The notation X 6≡ ∅ means that X 6= ∅ and following the chosen model in DΘ, X is not one of the elements
of DΘ defined as ∅. For example, if Θ = {A,B,C}, we can define a model for which the expert can provide a
mass on A ∩B and not on A ∩ C, so A ∩B 6≡ ∅ and A ∩ B ≡ ∅
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and for X ∈ DΘ, X 6= ∅ by:

mPCR5(X) = mc(X) +
∑

Y ∈DΘ

X∩Y≡∅

(
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )

)
, (2.8)

where mc(.) is the conjunctive rule given by the equation (2.5).
Note that more rules managing the conflict have been proposed [8, 9, 11, 12, 18, 26]. The

comparison of all the combination rules is not the scope of this paper.

2.2.3 Decision rules

The decision is a difficult task. No measures are able to provide the best decision in all the cases.
Generally, we consider the maximum of one of the three functions: credibility, plausibility, and
pignistic probability.

In the context of the DST, the credibility function is given for all X ∈ 2Θ by:

bel(X) =
∑

Y ∈2X ,Y 6=∅
m(Y ). (2.9)

The plausibility function is given for all X ∈ 2Θ by:

pl(X) =
∑

Y ∈2Θ,Y ∩X 6=∅
m(Y ) = bel(Θ)− bel(Xc), (2.10)

where Xc is the complementary of X. The pignistic probability, introduced by [21], is here
given for all X ∈ 2Θ, with X 6= ∅ by:

betP(X) =
∑

Y ∈2Θ,Y 6=∅

|X ∩ Y |
|Y |

m(Y )

1−m(∅) . (2.11)

Generally the maximum of these functions is taken on the elements in Θ, but we will give the
values on all the focal elements.

In the context of the DSmT the corresponding generalized functions have been proposed
[4, 16]. The generalized credibility Bel is defined by:

Bel(X) =
∑

Y ∈DΘ,Y⊆X,Y 6≡∅
m(Y ) (2.12)

The generalized plausibility Pl is defined by:

Pl(X) =
∑

Y ∈DΘ,X∩Y 6≡∅
m(Y ) (2.13)

The generalized pignistic probability is given for all X ∈ DΘ, with X 6= ∅ is defined by:

GPT(X) =
∑

Y ∈DΘ,Y 6≡∅

CM(X ∩ Y )

CM(Y )
m(Y ), (2.14)

where CM(X) is the DSm cardinality corresponding to the number of parts of X in the Venn
diagram of the problem [4, 16].

If the credibility function provides a pessimist decision, the plausibility function is often
too optimist. The pignistic probability is often taken as a compromise. We present the three
functions for our models.
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2.3 The generalized PCR rules

In the equation (2.8), the PCR5 is given for two experts only. Two extensions for three experts
and two classes are given in [19], and the equation for M experts for X ∈ DΘ, X 6≡ ∅ is given
in [5] and implemented in algorithm 2.

mPCR5(X) = mc(X) +

M∑

i=1

mi(X)
∑

(Yσi(1)
,...,Yσi(M−1))∈(DΘ)M−1

M−1∩
k=1

Yσi(k)∩X≡∅

(
M−1∏

j=1

mσi(j)(Yσi(j))1lj>i

)
∏

Yσi(j)
=X

mσi(j)(Yσi(j))

∑

Z∈{X,Yσi(1)
,...,Yσi(M−1)}

∏

Yσi(j)
=Z

(
mσi(j)(Yσi(j)).T (X=Z,mi(X))

) , (2.15)

where σi counts from 1 to M avoiding i:
{
σi(j) = j if j < i,
σi(j) = j + 1 if j ≥ i, (2.16)

and:
{
T (B,x) = x if B is true,
T (B,x) = 1 if B is false,

(2.17)

We propose another generalization of the equation (2.8) for M experts for X ∈ DΘ, X 6= ∅,
implemented in algorithm 3. This defines the rule PCR6.

mPCR6(X) = mc(X) +

M∑

i=1

mi(X)2
∑

M−1∩
k=1

Yσi(k)∩X≡∅

(Yσi(1)
,...,Yσi(M−1))∈(DΘ)M−1




M−1∏

j=1

mσi(j)(Yσi(j))

mi(X)+

M−1∑

j=1

mσi(j)(Yσi(j))



, (2.18)

where σ is defined like in (2.16).

As Yi is a focal element of expert i, mi(X) +

M−1∑

j=1

mσi(j)(Yσi(j)) 6= 0; the belief function mc

is the conjunctive consensus rule given by the equation (2.5).
We can propose two more general rules given by:

mPCR6f(X) = mc(X) +

M∑

i=1

mi(X)f(mi(X))
∑

M−1∩
k=1

Yσi(k)∩X≡∅

(Yσi(1)
,...,Yσi(M−1))∈(DΘ)M−1




M−1∏

j=1

mσi(j)(Yσi(j))

f(mi(X))+
M−1∑

j=1

f(mσi(j)(Yσi(j)))



, (2.19)
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with the same notations that in the equation (2.18), and f an increasing function defined by
the mapping of [0, 1] onto IR+.

The second generalized rule is given by:

mPCR6g(X) = mc(X) +
M∑

i=1

∑

M−1∩
k=1

Yσi(k)∩X≡∅

(Yσi(1)
,...,Yσi(M−1))∈(DΘ)M−1

mi(X)

(
M−1∏

j=1

mσi(j)(Yσi(j))

)(
∏

Yσi(j)
=X

1lj>i

)
g

(
mi(X)+

∑

Yσi(j)
=X

mσi(j)(Yσi(j))

)

∑

Z∈{X,Yσi(1)
,...,Yσi(M−1)}

g




∑

Yσi(j)
=Z

mσi(j)(Yσi(j)) +mi(X)1lX=Z




,

(2.20)

with the same notations that in the equation (2.18), and g an increasing function defined
by the mapping of [0, 1] onto IR+. These rules are implemented in algorithms 4 and 5.

For instance, we can choose f(x) = g(x) = xα, with α ∈ IR+.

Algorithms for Dubois and Prade’s rule (equation (2.6)), the PCR5 (equation (2.15)), the
PCR6 (equation (2.18)), the PCR6f (equation (2.19)), and the PCR6g (equation (2.20)) com-
binations are given in appendix.

Remarks on the generalized PCR rules

• M−1∩
k=1

Yk ∩ X ≡ ∅ means that
M−1∩
k=1

Yk ∩ X is considered as a conflict by the model:

mi(X)

M−1∏

k=1

mσi(k)(Yσi(k)) has to be redistributed on X and the Yk.

• The second term of the equation (2.18) is null if
M−1∩
k=1

Yk∩X 6≡ ∅, hence in a general model

in DΘ for all X and Y in DΘ\{∅}, X ∩ Y 6= ∅. The PCR5 and PCR6 are exactly the

conjunctive rule: there is never any conflict. However in 22Θ
, there exists X and Y such

that X ∩ Y = ∅.

• One of the principal problem of the PCR5 and PCR6 rules is the non associativity. That
is a real problem for dynamic fusion. Take for example three experts and two classes
giving:

∅ A B Θ

Expert 1 0 1 0 0

Expert 2 0 0 1 0

Expert 3 0 0 1 0



2.4. DISCUSSION ON THE DECISION FOLLOWING THE COMBINATION RULES 75

If we fuse the expert 1 and 2 and then 3, the PCR5 and the PCR6 rules give:





m12(A) = 0.5, m12(B) = 0.5,
and
m(12)3(A) = 0.25, m(12)3(B) = 0.75.

(2.21)

Now if we fuse the experts 2 and 3 and then 1, the PCR5 and the PCR6 rules give:





m23(A) = 0, m23(B) = 1,
and
m1(23)(A) = 0.5, m1(23)(B) = 0.5,

(2.22)

and the result is not the same.

With the generalized PCR6 rule we obtain:

m(123)(A) = 1/3, m(123)(B) = 2/3, (2.23)

a more intuitive and expected result.

• The conflict is not only redistributed on singletons. For example if three experts give:

A ∪B B ∪C A ∪ C Θ

Expert 1 0.7 0 0 0.3

Expert 2 0 0 0.6 0.4

Expert 3 0 0.5 0 0.5

The conflict is given here by 0.7×0.6×0.5=0.21, with the generalized PCR6 rule we obtain:

m(123)(A) = 0.21,

m(123)(B) = 0.14,

m(123)(C) = 0.09,

m(123)(A ∪B) = 0.14 + 0.21.
7

18
≃ 0.2217, (2.24)

m(123)(B ∪ C) = 0.06 + 0.21.
5

18
≃ 0.1183,

m(123)(A ∪ C) = 0.09 + 0.21.
6

18
= 0.16,

m(123)(Θ) = 0.06.

2.4 Discussion on the decision following the combination rules

In order to compare the previous rules in this section, we study the decision on the basic
belief assignments obtained by the combination. Hence, we consider here the induced order on
the singletons given by the plausibility, credibility, pignistic probability functions, or directly
by the masses. Indeed, in order to compare the combination rules, we think that the study
on the induced order of these functions is more informative than the obtained masses values.
All the combination rules presented here are not idempotent, for instance for the conjunctive
non-normalized rule:
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∅ A B C

m1 0 0.6 0.3 0.1

m1 0 0.6 0.3 0.1

m11 0.54 0.36 0.09 0.01

So, if we only compare the rules by looking at the obtained masses, we have to normalize
them with the auto-conflict given by the combination of a mass with itself. However, if m1(A) >
m1(B), then m11(A) > m11(B).

2.4.1 Extending the PCR rule for more than two experts

In [19], two approaches are presented in order to extend the PCR5 rule. The second approach
suggests to fuse the first two experts and then fuse the third expert. However the solution
depend on the order of the experts because of the non-associativity of the rule, and so it is not
satisfying.

The first approach proposed in [19], that is the equation (2.15) proposes to redistribute the
conflict about the singleton, e.g. if we have m1(A)m3(B)m2(A∪B), the conflict is redistributed
on A and B proportionally to m1(A) and m3(B). But this approach do not give solution if we
have for instance m1(A ∪B)m2(B ∪C)m3(A∪C) where the conflict is A∩B ∩C and we have
no idea on the masses for A, B and C.

Moreover, if we have m1(A)m2(B)m3(B) the proposed solution distributes the conflict to A
and B with respect to m1(A) and m2(B)m3(B) and not m2(B) +m3(B) that is more intuitive.
For example, if m1(A) = m2(B) = m3(B) = 0.5, 0.0833 and 0.0416 is added to the masses A
and B respectively, while there is more consensus on B than on A and we would expected the
contrary: 0.0416 and 0.0833 could be added to the masses A and B respectively.

What is more surprising are the results given by PCR5 and PCR6 on the following example:

A B C D E F G

Expert 1 0.0 0.57 0.43 0.0 0.0 0.0 0.0
Expert 2 0.58 0.0 0.0 0.42 0.0 0.0 0.0
Expert 3 0.58 0.0 0.0 0.0 0.42 0.0 0.0
Expert 4 0.58 0.0 0.0 0.0 0.0 0.42 0.0
Expert 5 0.58 0.0 0.0 0.0 0.0 0.0 0.42

As all the masses are on singletons, neither PCR5 nor PCR6 can put any mass on total or
partial ignorance. So the fusion result is always a probability, and bel(X) = betP(X) = pl(X).

Conflict is total: conjunctive rule does not provide any information. PCR5 and PCR6 give
the following results:

A B C D E F G

PCR5 0.1915 0.2376 0.1542 0.1042 0.1042 0.1042 0.1042

PCR6 0.5138 0.1244 0.0748 0.0718 0.0718 0.0718 0.0718

So decision is “A” according to PCR6, and decision is “B” according to PCR5. However,
for any subset of 2, 3 or 4 experts, decision is “A” for any of these combination rules.
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2.4.2 Stability of decision process

The space where experts can define their opinions on which n classes are present in a given

tile is a part of [0, 1]n: E = [0, 1]n ∩
{

(x1, ..., xn) ∈ IR/

n∑

i=1

xi ≤ 1

}
. In order to study the

different combination rules, and the situations where they differ, we use a Monte Carlo method,
considering the masses given on each class (aX) by each expert, as uniform variables, filtering

them by the condition
∑

X∈Θ

aX ≤ 1 for one expert.

Thus, we measure the proportion of situations where decision differs between the conjunctive
combination rule, and the PCR, where conflict is proportionally distributed.

We can not choose A∩B, as the measure of A∩B is always lower (or equal with probability
0) than the measure of A or B. In the case of two classes, A ∪ B is the total ignorance, and
is usually excluded (as it always maximizes bel, pl, betP, Bel, Pl and GPT). We restrict the
possible choices to singletons, A, B, etc. Therefore, it is equivalent to tag the tile by the
most credible class (maximal for bel), the most plausible (maximal for pl), the most probable
(maximal for betP) or the heaviest (maximal for m), as the only focal elements are singletons,
Θ and ∅.

The only situation where the total order induced by the masses m on singletons can be
modified is when the conflict is distributed on the singletons, as is the case in the PCR method.

Thus, for different numbers of classes, the decision obtained by fusing the experts’ opinions
is much less stable:

number of classes 2 3 4 5 6 7

decision change in the two experts case

PCR/DST 0.61% 5.51% 9.13% 12.11% 14.55% 16.7%
PCR/DP 0.61% 2.25% 3.42% 4.35% 5.05% 5.7%
DP/DST 0.00% 3.56% 6.19% 8.39% 10.26% 11.9%

decision change in the three experts case

PCR6/DST 1.04% 8.34% 13.90% 18.38% 21.98% 25.1%
PCR6/DP 1.04% 5.11% 7.54% 9.23% 10.42% 11.3%
DP/DST 0.00% 4.48% 8.88% 12.88% 16.18% 19.0%

Therefore, the specificity of PCR6 appears mostly with more than two classes, and the dif-
ferent combination rules are nearly equivalent when decision must be taken within two possible
classes.

For two experts and two classes, the mixed rule (DP) and the conjunctive rule are equivalent.
For three experts, we use the generalized PCR6 (2.18).

The percentage of decision differences defines a distance between fusion methods:

d(PCR6,DST) ≤ d(PCR6,DP) + d(DP,DST).

The two other triangular inequalities are also true. As we have d(PCR6,DST ) ≥ d(PCR6,DP)
and d(PCR,DST) ≥ d(DP,DST) for any number of experts or classes, we can conclude that the
mixed rule lies between the PCR6 method and the conjunctive rule.

The figure 2.1 shows the density of conflict within E . The left part shows the conflict for
two random experts and a number of classes of 2, 3 or 7. Plain lines show conflict when there
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Figure 2.1: Density of conflict for (left) two uniform random experts and (right) three uniform
random experts; with and without decision change

is difference between decisions, and dashed lines show the overall conflict. Right part shows the
conflict values for three experts; plain lines show the conflict where there is a difference between
the PCR rule and the conjunctive rule.

Conflict is more important in this subspace where decision changes with the method used,
mostly because a low conflict often means a clear decision. The measure on the best class is
then very different than measure on the second best class.

Dashed green line represents the conflict density for 3 classes when there is a difference
between conjunctive rule and mixed rule. Dotted green line represents the conflict density for 3
classes when there is a difference between PCR6 rule and mixed rule. We can see that an high
conflict level emphasizes mostly a decision change between conjunctive and mixed rule.

2.4.3 Calculi for two experts and two classes

For the “two experts and two classes” case, it is difficult to characterize analytically the stability
of the decision process between the conjunctive rule and the PCRrule (the PCR5 and PCR6
rules are the same in the two experts case). Note that in this case the DSmH rule given by the
equation (2.7), the mixed rule given by the equation (2.6) and the conjunctive rule given by the
equation (2.5) are equal. However, we can easily resolve few cases where the final decision does
not depend on the chosen combination rule.

Standard repartition of expert’s opinions is given by this table:

∅ A B Θ

Expert 1 0 a1 b1 1− a1 − b1
Expert 2 0 a2 b2 1− a2 − b2

The conjunctive rule gives:

mc(∅) = a1b2 + a2b1,

mc(A) = a1 + a2 − a1a2 − a1b2 − a2b1 = a1 + a2 − a1a2 −mc(∅),
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mc(B) = b1 + b2 − b1b2 − a1b2 − a2b1 = b1 + b2 − b1b2 −mc(∅),

mc(Θ) = (1− a1 − b1)(1− a2 − b2).

PCR gives:

mPCR(A) = m(A) +
a2

1b2
a1 + b2

+
a2

2b1
a2 + b1

,

mPCR(B) = m(B) +
a1b

2
2

a1 + b2
+

a2b
2
1

a2 + b1
,

mPCR(∅) = 0 and mPCR(Θ) = mc(Θ).

The stability of the decision is reached if we do not have:





mc(A) > mc(B) and mPCR(A) < mPCR(B)
or
mc(A) < mc(B) and mPCR(A) > mPCR(B)

(2.25)

That means for all a1, a2, b1 and b2 ∈ [0, 1]:





a2 + a1(1− a2)− b1(b2 − 1)− b2 > 0

a1(1− a2) + a2

(
(1 + b1

(
1− 2

(1+a2/b1)

))
− b1(1− b2)

−b2
(

1 + a1

(
(1− 2

(1+b2/a1))

))
< 0

a1 + b1 ∈ [0, 1]
a2 + b2 ∈ [0, 1]

or



a2 + a1(1− a2)− b1(b2 − 1)− b2 < 0

a1(1− a2) + a2

(
(1 + b1

(
1− 2

(1+a2/b1)

))
− b1(1− b2)

−b2
(

1 + a1

(
(1− 2

(1+b2/a1))

))
> 0

a1 + b1 ∈ [0, 1]
a2 + b2 ∈ [0, 1]

(2.26)

This system of inequalities is difficult to solve, but with the help of a Monte Carlo method,
considering the weights a1, a2, b1 and b2, as uniform variables we can estimate the proportion
of points (a1, a2, b1, b2) solving this system.

We note that absence of solution in spaces where a1 + b1 > 1 or a2 + b2 > 1 comes from the
two last conditions of the system. Also there is no solution if a1 = b1 (or a2 = b2 by symmetry)
and if a1 = b2 (or a2 = b1 by symmetry). This is proved analytically.

2.4.3.1 Case a1 = b1

In this situation, expert 1 considers that the data unit is equally filled with classes A and B:

∅ A B Θ

Expert 1 0 x x 1− 2x

Expert 2 0 y z 1− y − z
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Figure 2.2: Decision changes, projected on the plane a1, b1.

The conjunctive rule yields:
mc(∅) = 2xy,

mc(A) = x+ y − 2xy − xz = x−mc(∅) + y(1− x),

mc(B) = x+ y − xy − 2xz = x−mc(∅) + z(1 − x),

mc(Θ) = 1− 2x− y − z + 2xy + 2xz.

Therefore, as 1− x ≥ 0:

mc(A) > mc(B) ⇐⇒ y > z.

The PCR yields:
mPCR(∅) = 0

mPCR(A) = x−mc(∅) + y(1− x) +
x2z

x+ z
+

xy2

x+ y
,

mPCR(B) = x−mc(∅) + z(1 − x) +
xz2

x+ z
+

x2y

x+ y
,

mPCR(Θ) = 1− 2x− y − z + 2xy + 2xz.

So, we have:

(mPCR(A) +mc(∅) − x)(x+ y)(x+ z) = y(1− x)(x+ z)(x+ y)

+x2z(x+ y) + y2x(x+ z)

= y(x+ y)(x+ z) + x3(z − y)
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(mPCR(B) +mc(∅)− x)(x+ y)(x+ z) = z(x+ y)(x+ z)− x3(z − y),

mPCR(A) > mPCR(B) ⇐⇒ (y − z)((x+ y)(x+ y)− 2x3) > 0.

As 0 ≤ x ≤ 1
2 , we have 2x3 ≤ x2 ≤ (x + y)(x + z). So mPCR(A) > mPCR(B) if and only if

y > z.
That shows that the stability of the decision is reached if a1 = b1 for all a2 and b2 ∈ [0, 1]

or by symmetry if a2 = b2 for all a1 and b1 ∈ [0, 1].

2.4.3.2 Case a1 = b2

In this situation, expert 1 believes A and the expert 2 believes B with the same weight:

∅ A B Θ

Expert 1 0 x y 1− x− y
Expert 2 0 z x 1− x− z

Figure 2.3: Decision changes, projected on the plane a1, b2.

The conjunctive rule yields:
mc(∅) = x2 + yz,

mc(A) = x+ z − xz −mc(∅) = −x2 + x(1− z) + z(1− y),

mc(B) = x+ y − xy −mc(∅) = −x2 + x(1− y) + y(1− z),
mc(Θ) = 1 +mc(∅)− 2x− y − z + x(y + z).
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Therefore:

mc(A) > mc(B) ⇐⇒ (x− 1)(y − z) > 0,

as 1− x ≥ 0:

mc(A) > mc(B) ⇐⇒ y > z.

The PCR yields:

mPCR(∅) = 0,

mPCR(A) = x+ z − xz −mc(∅) = −x2 + x(1− z) + z(1− y) +
x3

2x
+

yz2

y + z
,

mPCR(B) = x+ y − xy −mc(∅) = −x2 + x(1− y) + y(1− z) +
x3

2x
+

y2z

y + z
,

mPCR(Θ) = 1 +mc(∅)− 2x− y − z + x(y + z).

Therefore:

mPCR(A) > mPCR(B) ⇐⇒ (y − z) ((x− 1)(y + z)− yz) > 0,

as (x− 1) ≤ 0, (x− 1)(y + z)− yz ≤ 0 and:

mPCR(A) > mPCR(B) ⇐⇒ y > z.

That shows that the stability of the decision is reached if a1 = b2 for all a2 and b1 ∈ [0, 1] or by
symmetry if a2 = b1 for all a1 and b2 ∈ [0, 1].

2.4.3.3 Case a2 = 1− a1

We can notice that if a1 + a2 > 1, no change occurs. In this situation, we have b1 + b2 < 1, but
calculus is still to be done.

In this situation, if a2 = 1− a1:

∅ A B Θ

Expert 1 0 x y 1− x− y
Expert 2 0 1− x z x− z

The conjunctive rule yields:

mc(∅) = xz + (1− x)y,

mc(A) = 1 + x2 − x− y + xy − xz,
mc(B) = z − yz + xy − xz,

mc(Θ) = −x2 + x+ xz − xy + yz − z.
Therefore:

mc(A) > mc(B) ⇐⇒ 1 + x2 − x > y + z − yz,
⇐⇒ x(1− x) > (1− y)(1− z),

as z < x and x < 1− y, mc(A) > mc(B) is always true.
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Figure 2.4: Decision changes, projected on the plane a1, a2.

The PCR yields:

mPCR(∅) = 0,

mPCR(A) = mc(A) +
x2z

x+ z
+

(1− x)2y

1− x+ y
,

mPCR(B) = mc(B) +
xz2

x+ z
+

(1− x)y2

1− x+ y
,

mPCR(Θ) = mc(Θ).

Therefore:

mPCR(A) > mPCR(B)

is always true.

Indeed mc(A) > mc(B) is always true and:

x2z

x+ z
>

xz2

x+ z

because x > z and:
(1− x)2y

1− x+ y
>

(1− x)y2

1− x+ y

because 1− x > y.

That shows that the stability of the decision is reached if a2 = 1−a1 for all a2 and a1 ∈ [0, 1]
or by symmetry if a1 = 1− a2 for all a1 and a2 ∈ [0, 1].
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2.5 Conclusion

In this chapter, we have proposed a study of the combination rules compared in term of decision.
A new generalized proportional conflict redistribution (PCR6) rule have been proposed and
discussed. We have presented the pro and con of this rule. The PCR6 rule is more intuitive
than the PCR5. We have shown on randomly generated data, that there is a difference of
decision following the choice of the combination rule (for the non-normalized conjunctive rule,
the mixed conjunctive and disjunction rule of Dubois and Prade, the PCR5 rule and the PCR6
rule). We have also proven, on a two experts and two classes case, the changes following the
values of the basic belief assignments. This difference can be very small in percentage and we
can not say on these data if it is a significant difference. We have conducted this comparison
on real data in the chapter [14].

All this discussion comes from a fine proportional conflict distribution initiated by the con-
sideration of the extension of the discernment space in DΘ. The generalized PCR6 rule can be
used on 2Θ or DΘ.
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2.7 Appendix: Algorithms

An input belief function e is an association of a list of focal classes and their masses. We write
size(e) the number of its focal classes. The focal classes are e[1], e[2], . . . , e[size(e)]. The mass
associated to a class c is e(c), written with parenthesis.

The principle of the algorithms is to use the variable ind to build all the n-uples of focal
elements of the n input belief functions. Then, if the intersection of these is not ∅ or equivalent
to ∅, the corresponding conjunctive mass (the product of all the masses of the focal elements
in the n-uple) is put on the intersection; otherwise, this mass is put on the disjunction (Dubois
and Prade algorithm) or redistributed over the input focal elements.

Algorithm 1: Conflict replaced on partial ignorance, by Dubois and Prade or DSmH

n experts ex: ex[1] . . . ex[n] Fusion of ex by Dubois-Prade method : edp for i = 1 to n do
foreach c in ex[i] do Append c to cl[i];

foreach ind in [1, size(cl[1])] × [1, size(cl[2])] × . . .× [1, size(cl[n])] do
s ← Θ;
for i = 1 to n do s ← s ∩ cl[i][ind[i]];
if s = ∅ then

lconf ← 1;
u ← ∅;
for i = 1 to n do

u ← p ∪ cl[i][ind[i]];
lconf ← lconf × ex[i](cl[i][ind[i]]);

edp(u)← edp(u) + lconf ;

else
lconf ← 1;
for i = 1 to n do lconf ← lconf × ex[i](cl[i][ind[i]]);
edp(s)← edp(s) + lconf ;
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Algorithm 2: Conflict redistributed by the PRC5 combination rule

n experts ex: ex[1] . . . ex[n] Fusion of ex by PCR5 method : ep for i = 1 to n do
foreach c in ex[i] do Append c to cl[i];

foreach ind in [1, size(cl[1])] × [1, size(cl[2])] × . . .× [1, size(cl[n])] do
s ← Θ;
for i = 1 to n do s ← s ∩ cl[i][ind[i]];
if s ≡ ∅ then

lconf ← 1; el is an empty expert;
for i = 1 to n do

lconf ← lconf × ex[i](cl[i][ind[i]]);
if cl[i][ind[i]] in el then el(cl[i][ind[i]])← el(cl[i][ind[i]]) ∗ ex[i](cl[i][ind[i]]);
else el(cl[i][ind[i]])← ex[i](cl[i][ind[i]]);

for c in el do sum← sum+ el(c);
for c in el do ep(c)← ep(c) + g(el(c)) ∗ lconf/sum;

else
lconf ← 1;
for i = 1 to n do lconf ← lconf × ex[i](cl[i][ind[i]]);
ep(s)← ep(s) + lconf ;

Algorithm 3: Conflict redistributed by the PRC6 combination rule

n experts ex: ex[1] . . . ex[n] Fusion of ex by PCR6 method : ep for i = 1 to n do
foreach c in ex[i] do Append c to cl[i];

foreach ind in [1, size(cl[1])] × [1, size(cl[2])] × . . .× [1, size(cl[n])] do
s ← Θ;
for i = 1 to n do s ← s ∩ cl[i][ind[i]];
if s ≡ ∅ then

lconf ← 1; sum ← 0;
for i = 1 to n do

lconf ← lconf × ex[i](cl[i][ind[i]]);
sum ← sum+ ex[i](cl[i][ind[i]]);

for i = 1 to n do
ep(ex[i][ind[i]])← ep(ex[i][ind[i]]) + ex[i](cl[i][ind[i]]) ∗ lconf/sum;

else
lconf ← 1;
for i = 1 to n do lconf ← lconf × ex[i](cl[i][ind[i]]);
ep(s)← ep(s) + lconf ;
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Algorithm 4: Conflict redistributed by the PRC6 combination rule, with a function f
applied on masses before redistribution

n experts ex: ex[1] . . . ex[n] A non-decreasing positive function f Fusion of ex by PCR6f method
: ep for i = 1 to n do

foreach c in ex[i] do Append c to cl[i];

foreach ind in [1, size(cl[1])] × [1, size(cl[2])] × . . .× [1, size(cl[n])] do
s ← Θ;
for i = 1 to n do s ← s ∩ cl[i][ind[i]];
if s ≡ ∅ then

lconf ← 1; sum ← 0;
for i = 1 to n do

lconf ← lconf × ex[i](cl[i][ind[i]]);
sum ← sum+ f(ex[i](cl[i][ind[i]]));

for i = 1 to n do
ep(ex[i][ind[i]])← ep(ex[i][ind[i]]) + f(ex[i](cl[i][ind[i]])) ∗ lconf/sum;

else
lconf ← 1;
for i = 1 to n do lconf ← lconf × ex[i](cl[i][ind[i]]);
ep(s)← ep(s) + lconf ;

Algorithm 5: Conflict redistributed by the PRC6 combination rule, with a function g
applied on masses sums

n experts ex: ex[1] . . . ex[n] A non-decreasing positive function g Fusion of ex by PCR6g method
: ep for i = 1 to n do

foreach c in ex[i] do Append c to cl[i];

foreach ind in [1, size(cl[1])] × [1, size(cl[2])] × . . .× [1, size(cl[n])] do
s ← Θ;
for i = 1 to n do

s ← s ∩ cl[i][ind[i]];

if s ≡ ∅ then
lconf ← 1; el is an empty expert;
for i = 1 to n do

lconf ← lconf × ex[i](cl[i][ind[i]]);
el(cl[i][ind[i]])← el(cl[i][ind[i]]) + ex[i](cl[i][ind[i]]);

sum ← 0;
for c in el do sum← sum+ g(el(c));
for c in el do ep(c)← ep(c) + g(el(c)) ∗ lconf/sum;

else
lconf ← 1;
for i = 1 to n do lconf ← lconf × ex[i](cl[i][ind[i]]);
ep(s)← ep(s) + lconf ;
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Abstract: Dempster’s rule, non-normalized conjunctive rule, Yager’s rule and
Dubois-Prade’s rule for belief functions combination are generalized to be applicable
to hyper-power sets according to the DSm theory. A comparison of the rules with
DSm rule of combination is presented. A series of examples is included.

3.1 Introduction

Belief functions are one of the widely used formalisms for uncertainty representation and pro-
cessing. Belief functions enable representation of incomplete and uncertain knowledge, belief
updating and combination of evidence. Belief functions were originally introduced as a principal
notion of Dempster-Shafer Theory (DST) or the Mathematical Theory of Evidence [13].

For a combination of beliefs Dempster’s rule of combination is used in DST. Under strict
probabilistic assumptions, its results are correct and probabilistically interpretable for any cou-
ple of belief functions. Nevertheless these assumptions are rarely fulfilled in real applications. It
is not uncommon to find examples where the assumptions are not fulfilled and where results of
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Dempster’s rule are counter-intuitive, e.g. see [1, 2, 14], thus a rule with more intuitive results
is required in such situations.

Hence, a series of modifications of Dempster’s rule were suggested and alternative approaches
were created. The classical ones are Dubois and Prade’s rule [9] and Yager’s rule of belief
combination [17]. Others include a wide class of weighted operators [12] and an analogous
idea proposed in [11], the Transferable Belief Model (TBM) using the so-called non-normalized
Dempster’s rule [16], disjunctive (or dual Dempster’s) rule of combination [4, 8], combination
’per elements’ with its special case — minC combination, see [3], and other combination rules.
It is also necessary to mention the method for application of Dempster’s rule in the case of
partially reliable input beliefs [10].

A brand new approach performs the Dezert-Smarandache (or Dempster-Shafer modified)
theory (DSmT) with its DSm rule of combination. There are two main differences: 1) mutual
exclusivity of elements of a frame of discernment is not assumed in general; mathematically it
means that belief functions are not defined on the power set of the frame, but on a so-called
hyper-power set, i.e., on the Dedekind lattice defined by the frame; 2) a new combination
mechanism which overcomes problems with conflict among the combined beliefs and which also
enables a dynamic fusion of beliefs.

As the classical Shafer’s frame of discernment may be considered the special case of a so-
called hybrid DSm model, the DSm rule of combination is compared with the classic rules of
combination in the publications about DSmT [7, 14].

Unfortunately, none of the classical combination rules has been formally generalized to
hyper-power sets, thus their comparison with the DSm rule is not fully objective until now.

This chapter brings a formal generalization of the classical Dempster’s, non-normalized con-
junctive, Dubois-Prade’s, and Yager’s rules to hyper-power sets. These generalizations perform
a solid theoretical background for a serious objective comparison of the DSm rule with the
classical combination rules.

The classic definitions of Dempster’s, Dubois-Prade’s, and Yager’s combination rules are
briefly recalled in Section 3.2, basic notions of DSmT and its state which is used in this text
(Dedekind lattice, hyper-power set, DSm models, and DSmC and DSmH rules of belief combi-
nation) are recalled in Section 3.3.

A generalization of Dempster’s rule both in normalized and non-normalized versions is pre-
sented in Section 3.4, and a generalization of Yager’s rule in Section 3.5. Both these classic
rules are straightforwardly generalized as their ideas work on hyper-power sets simply without
any problem.

More interesting and more complicated is the case of Dubois-Prade’s rule. The nature of
this rule is closer to DSm rule, but on the other hand the generalized Dubois-Prade’s rule is
not compatible with a dynamic fusion in general. It works only for a dynamic fusion without
non-existential constraints, whereas a further extension of the generalized rule is necessary in
the case of a dynamic fusion with non-existential constraints.

Section 3.7 presents a brief comparison of the rules. There is a series of examples included.
All the generalized combination rules are applied to belief functions from examples from the
DSmT book Vol. 1 [14]. Some open problems for a future research are mentioned in Section 3.8
and the concluding Section 3.9 closes the chapter.



3.2. CLASSIC DEFINITIONS 91

3.2 Classic definitions

All the classic definitions assume an exhaustive finite frame of discernment Θ = {θ1, ..., θn},
whose elements are mutually exclusive.

A basic belief assignment (bba) is a mappingm : P(Θ) −→ [0, 1], such that
∑

A⊆Θm(A) = 1,
the values of bba are called basic belief masses (bbm). The value m(A) is called the ba-
sic belief mass1 (bbm) of A. A belief function (BF) is a mapping Bel : P(Θ) −→ [0, 1],
bel(A) =

∑
∅6=X⊆Am(X), belief function Bel uniquely corresponds to bba m and vice-versa.

P(Θ) is often denoted also by 2Θ. A focal element is a subset X of the frame of discernment
Θ, such that m(X) > 0. If a focal element is a one-element subset of Θ, we are referring to a
singleton.

Let us start with the classic definition of Dempster’s rule. Dempster’s (conjunctive) rule of
combination ⊕ is given as (m1 ⊕m2)(A) =

∑
X,Y⊆Θ,X∩Y=AKm1(X)m2(Y ) for A 6= ∅, where

K = 1
1−κ , with κ =

∑
X,Y⊆Θ,X∩Y=∅m1(X)m2(Y ), and (m1 ⊕ m2)(∅) = 0, see [13]; putting

K = 1 and (m1⊕m2)(∅) = κ we obtain the non-normalized conjunctive rule of combination ∩©,
see e. g. [16].

Yager’s rule of combination Y©, see [17], is given as
(m1 Y©m2)(A) =

∑
X,Y⊆Θ,X∩Y=Am1(X)m2(Y ) for ∅ 6= A ⊂ Θ,

(m1 Y©m2)(Θ) = m1(Θ)m2(Θ) +
∑

X,Y⊆Θ,X∩Y=∅m1(X)m2(Y ),
and (m1 Y©m2)(∅) = 0;

Dubois-Prade’s rule of combination DP© is given as
(m1DP©m2)(A) =

∑
X,Y⊆Θ,X∩Y=Am1(X)m2(Y ) +

∑
X,Y⊆Θ,X∩Y=∅,X∪Y=Am1(X)m2(Y ) for ∅ 6=

A ⊆ Θ, and (m1DP©m2)(∅) = 0, see [9].

3.3 Introduction to the DSm theory

Because DSmT is a new theory which is in permanent dynamic evolution, we have to note that
this text is related to its state described by formulas and text presented in the basic publication
on DSmT — in the DSmT book Vol. 1 [14]. Rapid development of the theory is demonstrated
by appearing of the current second volume of the book. For new advances of DSmT see other
chapters of this volume.

3.3.1 Dedekind lattice, basic DSm notions

Dempster-Shafer modified Theory or Dezert-Smarandache Theory (DSmT) by J. Dezert and
F. Smarandache [7, 14] allows mutually overlapping elements of a frame of discernment. Thus,
a frame of discernment is a finite exhaustive set of elements Θ = {θ1, θ2, ..., θn}, but not nec-
essarily exclusive in DSmT. As an example, we can introduce a three-element set of colours
{Red,Green,Blue} from the DSmT homepage2. DSmT allows that an object can have 2 or 3

1m(∅) = 0 is often assumed in accordance with Shafer’s definition [13]. A classical counter example is Smets’
Transferable Belief Model (TBM) which admits positive m(∅) as it assumes m(∅) ≥ 0.

2www.gallup.unm.edu/∼smarandache/DSmT.htm
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colours at the same time: e.g. it can be both red and blue, or red and green and blue in the
same time, it corresponds to a composition of the colours from the 3 basic ones.

DSmT uses basic belief assignments and belief functions defined analogically to the classic
Dempster-Shafer theory (DST), but they are defined on a so-called hyper-power set or Dedekind
lattice instead of the classic power set of the frame of discernment. To be distinguished from
the classic definitions, they are called generalized basic belief assignments and generalized basic
belief functions.

The Dedekind lattice, more frequently called hyper-power set DΘ in DSmT, is defined as the
set of all composite propositions built from elements of Θ with union and intersection operators
∪ and ∩ such that ∅, θ1, θ2, ..., θn ∈ DΘ, and if A,B ∈ DΘ then also A∪B ∈ DΘ and A∩B ∈ DΘ,
no other elements belong to DΘ (θi ∩ θj 6= ∅ in general, θi ∩ θj = ∅ iff θi = ∅ or θj = ∅).

Thus the hyper-power set DΘ of Θ is closed to ∪ and ∩ and θi ∩ θj 6= ∅ in general. Whereas
the classic power set 2Θ of Θ is closed to ∪, ∩ and complement, and θi ∩ θj = ∅ for every i 6= j.

Examples of hyper-power sets. Let Θ = {θ1, θ2}, we have DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2},
i.e. |DΘ| = 5. Let Θ = {θ1, θ2, θ3} now, we have DΘ = {α0, α1, ...α18}, where α0 = ∅, α1 =
θ1 ∩ θ2 ∩ θ3, α2 = θ1 ∩ θ2, α3 = θ1 ∩ θ3, ..., α17 = θ2 ∪ θ3, α18 = θ1 ∪ θ2 ∪ θ3, i.e., |DΘ| = 19 for
|Θ| = 3.

A generalized basic belief assignment (gbba) m is a mapping m : DΘ −→ [0, 1], such that∑
A∈DΘ m(A) = 1 and m(∅) = 0. The quantity m(A) is called the generalized basic belief mass

(gbbm) of A. A generalized belief function (gBF) Bel is a mapping Bel : DΘ −→ [0, 1], such that
Bel(A) =

∑
X⊆A,X∈DΘ m(X), generalized belief function Bel uniquely corresponds to gbba m

and vice-versa.

3.3.2 DSm models

If we assume a Dedekind lattice (hyper-power set) according to the above definition without
any other assumptions, i.e., all elements of an exhaustive frame of discernment can mutually
overlap themselves, we refer to the free DSm model Mf (Θ), i.e., about the DSm model free of
constraints.

In general it is possible to add exclusivity or non-existential constraints into DSm models,
we speak about hybrid DSm models in such cases.

An exclusivity constraint θ1 ∩ θ2 M1
≡ ∅ says that elements θ1 and θ2 are mutually exclusive

in model M1, whereas both of them can overlap with θ3. If we assume exclusivity constraints

θ1 ∩ θ2 M2
≡ ∅, θ1 ∩ θ3 M2

≡ ∅, θ2 ∩ θ3 M2
≡ ∅, another exclusivity constraint directly follows

them: θ1 ∩ θ2 ∩ θ3 M2
≡ ∅. In this case all the elements of the 3-element frame of discernment

Θ = {θ1, θ2, θ3} are mutually exclusive as in the classic Dempster-Shafer theory, and we call
such hybrid DSm model as Shafer’s model M0(Θ).

A non-existential constraint θ3
M3
≡ ∅ brings additional information about a frame of dis-

cernment saying that θ3 is impossible; it forces all the gbbm’s of X ⊆ θ3 to be equal to zero
for any gbba in model M3. It represents a sure meta-information with respect to generalized
belief combination which is used in a dynamic fusion.

In a degenerated case of the degenerated DSm model M∅ (vacuous DSm model in [14]) we
always have m(∅) = 1, m(X) = 0 for X 6= ∅. It is the only case where m(∅) > 0 is allowed in
DSmT.
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The total ignorance on Θ is the union It = θ1 ∪ θ2 ∪ ... ∪ θn. ∅ = {∅M, ∅}, where ∅M is the
set of all elements of DΘ which are forced to be empty through the constraints of the modelM
and ∅ is the classical empty set3.

For a given DSm model we can define (in addition to [14]) ΘM = {θi|θi ∈ Θ, θi 6∈ ∅M},
ΘM

M≡ Θ, and IM =
⋃
θi∈ΘM θi, i.e. IM

M≡ It, IM = It ∩ΘM, IM∅ = ∅. DΘM is a hyper-power
set on the DSm frame of discernment ΘM, i.e., on Θ without elements which are excluded by
the constraints of model M. It holds ΘM = Θ, DΘM = DΘand IM = It for any DSm model
without non-existential constraint. Whereas reduced (or constrained) hyper-power set DΘ

M (or
DΘ(M)) from Chapter 4 in [14] arises from DΘ by identifying of all M-equivalent elements.
DΘ

M0 corresponds to classic power set 2Θ.

3.3.3 The DSm rules of combination

The classic DSm rule DSmC is defined on the free DSm models as it follows4:
mMf (Θ)(A) = (m1 #©m2)(A) =

∑
X,Y ∈DΘ,X∩Y=Am1(X)m2(Y ).

Since DΘ is closed under operators ∩ and ∪ and all the ∩s are non-empty, the classic DSm
rule guarantees that (m1 #©m2) is a proper generalized basic belief assignment. The rule is
commutative and associative. For n-ary version of the rule see [14].

When the free DSm model Mf (Θ) does not hold due to the nature of the problem under
consideration, which requires us to take into account some known integrity constraints, one has
to work with a proper hybrid DSm model M(Θ) 6= Mf (Θ). In such a case, the hybrid DSm
rule of combination DSmH based on the hybrid model M(Θ), Mf (Θ) 6=M(Θ) 6=M∅(Θ), for
k ≥ 2 independent sources of information is defined as: mM(Θ)(A) = (m1 #©m2 #©...#©mk)(A) =
φ(A)[S1(A) +S2(A) +S3(A)], where φ(A) is a characteristic non-emptiness function of a set A,
i. e. φ(A) = 1 if A /∈ ∅ and φ(A) = 0 otherwise. S1 ≡ mMf (Θ), S2(A), and S3(A) are defined
for two sources (for n-ary versions see [14]) as it follows:
S1(A) =

∑
X,Y ∈DΘ, X∩Y=Am1(X)m2(Y ),

S2(A) =
∑

X,Y ∈ ∅, [U=A]∨[(U∈ ∅)∧(A=It)]
m1(X)m2(Y ),

S3(A) =
∑

X,Y ∈DΘ, X∪Y=A, X∩Y ∈ ∅ m1(X)m2(Y ) with U = u(X) ∪ u(Y ), where u(X) is the
union of all singletons θi that compose X and Y ; all the sets A,X, Y are supposed to be in
some canonical form, e.g. CNF. Unfortunately no mention about the canonical form is included
in [14]. S1(A) corresponds to the classic DSm rule on the free DSm model Mf (Θ); S2(A)
represents the mass of all relatively and absolutely empty sets in both the input gbba’s, which
arises due to non-existential constraints and is transferred to the total or relative ignorance;
and S3(A) transfers the sum of masses of relatively and absolutely empty sets, which arise as
conflicts of the input gbba’s, to the non-empty union of input sets5.

On the degenerated DSm model M∅ it must be mM∅(∅) = 1 and mM∅(A) = 0 for A 6= ∅.
The hybrid DSm rule generalizes the classic DSm rule to be applicable to any DSm model.

The hybrid DSm rule is commutative but not associative. It is the reason the n-ary version

3
∅ should be ∅M extended with the classical empty set ∅, thus more correct should be the expression

∅ = ∅M ∪ {∅}.
4To distinguish the DSm rule from Dempster’s rule, we use #© instead of ⊕ for the DSm rule in this text.
5As a given DSm model M is used a final compression step must be applied, see Chapter 4 in [14], which

is part of Step 2 of the hybrid DSm combination mechanism and ”consists in gathering (summing) all masses
corresponding to same proposition because of the constraints of the model”. I.e., gbba’s of M-equivalent elements
ofDΘ are summed. Hence the final gbbam is computed asm(A) =

P

X≡A mM(Θ)(X); it is defined on the reduced
hyper-power set DΘ

M.
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of the rule should be used in practical applications. For the n-ary version of Si(A), see [14].
For easier comparison with generalizations of the classic rules of combination we suppose all
formulas in CNF, thus we can include the compression step into formulas Si(A) as it follows6:

S1(A) =
∑

X≡A, X∈DΘ mMf (Θ)(X) =
∑

X∩Y≡A, X,Y ∈DΘ m1(X)m2(Y ) for ∅ 6= A ∈ DΘ
M,

S2(A) =
∑

X,Y ∈ ∅M, [U≡A]∨[(U∈ ∅M)∧(A=IM)]m1(X)m2(Y ) for ∅ 6= A ∈ DΘ
M,

S3(A) =
∑

X,Y ∈DΘ, (X∪Y )≡A, X∩Y ∈ ∅M)m1(X)m2(Y ) for ∅ 6= A ∈ DΘ
M,

Si(A) = 0 for A = ∅, and for A 6∈ DΘ
M (where U is as it is above).

We can further rewrite the DSmH rule to the following equivalent form:

mM(Θ)(A) = (m1 #©m2)(A) =
∑

X,Y ∈DΘ,X∩Y≡Am1(X)m2(Y ) +∑
X,Y ∈ ∅M, [UM=A]∨[(U∈ ∅M)∧(A=IM)]m1(X)m2(Y ) +∑
X,Y ∈DΘ, X∪Y=A X∩Y ∈ ∅M m1(X)m2(Y ) for all ∅ 6= A ∈ DΘ

M,

mM(Θ)(∅) = 0 and mM(Θ)(A) = 0 for A ∈ (DΘ\DΘ
M).

3.4 A generalization of Dempster’s rule

Let us assume all elements X from DΘ to be in CNF in the rest of this contribution, unless
another form of X is explicitly specified. With X = Y we mean that the formulas X and Y have

the same CNF. With X ≡ Y (X
M≡ Y ) we mean that the formulas X and Y are equivalent in

DSm modelM, i.e. their DNFs are the same up to unions with some constrained conjunctions
of elements of Θ.

Let us also assume non-degenerated hybrid DSm models, i.e., ΘM 6= ∅, IM /∈ ∅M. Let
us denote ∅ = ∅M ∪ {∅}, i.e. set of set of all elements of DΘ which are forced to be empty
trough the constraints of DSm modelM extended with classic empty set ∅, hence we can write

X ∈ ∅M for all ∅ 6= X
M≡ ∅ or X ∈ ∅ for all X

M≡ ∅ including ∅.
The classic Dempster’s rule puts belief mass m1(X)m2(Y ) to X ∩ Y (the rule adds it to

(m1⊕m2)(X∩Y )) whenever it is non-empty, otherwise the mass is normalized. In the free DSm
model all the intersections of non-empty elements are always non-empty, thus no normalization
is necessary and Dempster’s rule generalized to the free DSm model Mf (Θ) coincides with
the classic DSm rule: (m1 ⊕ m2)(A) =

∑
X,Y ∈DΘ, X∩Y=Am1(X)m2(Y ) = (m1 #©m2)(A) =

mMf (Θ)(A). It follows the fact that the classic DSm rule (DSmC rule) is in fact the conjunctive
combination rule generalized to the free DSm model. Hence, Dempster’s rule generalized to the
free DSm model is defined for any couple of belief functions.

Empty intersections can appear in a general hybrid modelM due to the model’s constraints,
thus positive gbbm’s of constrained elements (i.e equivalent to empty set) can appear, hence

the normalization should be used to meet the DSm assumption m(X) = 0 for X
M≡ ∅. If we

sum together all the gbbm’s mMf (Θ)(X) which are assigned to constrained elements of the

6We can further simplify the formulas for DSmH rule by using a special canonical form related to the used
hybrid DSm model, e.g. CNFM(X) = XM ∈ DΘ

M such that CNF (X) ≡ XM. Thus all subexpressions ’≡ A’
can be replaced with ’= A’ in the definitions of Si(A) and ’Si(A) = 0 for A 6∈ DΘ

M’ can be removed from the
definition. Hence we obtain a similar form to that published in DSmT book Vol. 1:
S1(A) =

P

X∩Y =A, X,Y ∈DΘ m1(X)m2(Y ),
S2(A) =

P

X,Y ∈ ∅M, [U=A]∨[(U∈ ∅M)∧(A=IM)]m1(X)m2(Y ) ,

S3(A) =
P

X,Y ∈DΘ, X∪Y =A, X∩Y ∈ ∅M
m1(X)m2(Y ).

Hence all the necessary assumptions of the definitions of Si(A) have been formalized.
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hyper-power set (X ∈ Θ, X
M≡ ∅) and assign the resulting sum to m(∅) (or more precisely

to mM(∅)), we obtain the non-normalized generalized conjunctive rule of combination. If we
redistribute this sum of gbbm’s among non-constrained elements of DΘ using normalization as
it is used in the classic Dempster’s rule, we obtain the generalized Dempster’s rule which meets
DSm assumption m(∅) = 0.

3.4.1 The generalized non-normalized conjunctive rule

The generalized non-normalized conjunctive rule of combination ∩© is given as
(m1 ∩©m2)(A) =

∑
X,Y ∈DΘ,X∩Y≡Am1(X)m2(Y ) for ∅ 6= A ∈ DΘ

M,
(m1 ∩©m2)(∅) =

∑
X,Y ∈DΘ, X∩Y ∈ ∅m1(X)m2(Y ),

and (m1 ∩©m2)(A) = 0 for A 6∈ DΘ
M.

We can easily rewrite it as

(m1 ∩©m2)(A) =
∑

X,Y ∈DΘ,X∩Y≡A
m1(X)m2(Y )

for A ∈ DΘ
M (∅ including), (m1 ∩©m2)(A) = 0 for A 6∈ DΘ

M.

Similarly to the classic case of the non-normalized conjunctive rule, its generalized version is
defined for any couple of generalized belief functions. But we have to keep in mind that positive
gbbm of the classic empty set (m(∅) > 0) is not allowed in DSmT7.

3.4.2 The generalized Dempster’s rule

To eliminate positive gbbm’s of empty set we have to relocate or redistribute gbbm’smMf (Θ)(X)

for all X
M≡ ∅. The normalization of gbbm’s of non-constrained elements of DΘ is used in the

case of the Dempster’s rule.

The generalized Dempster’s rule of combination ⊕ is given as

(m1 ⊕m2)(A) =
∑

X,Y ∈DΘ,X∩Y≡A
Km1(X)m2(Y )

for ∅ 6= A ∈ DΘ
M, where K = 1

1−κ , κ =
∑

X,Y ∈DΘ,X∩Y ∈ ∅ m1(X)m2(Y ), and (m1 ⊕m2)(A) = 0

otherwise, i.e., for A = ∅ and for A /∈ DΘ
M.

Similarly to the classic case, the generalized Dempster’s rule is not defined in fully contra-
dictive cases8 in hybrid DSm models, i.e. whenever κ = 1. Specially the generalized Dempster’s
rule is not defined (and it cannot be defined) on the degenerated DSm model M∅.

To be easily comparable with the DSm rule, we can rewrite the definition of the generalized
Dempster’s rule to the following equivalent form: (m1⊕m2)(A) = φ(A)[S⊕

1 (A)+S⊕
2 (A)+S⊕

3 (A)],

7The examples, which compare DSmH rule with the classic combination rules in Chapter 1 of DSmT book
Vol. 1. [14], include also the non-normalized conjunctive rule (called Smets’ rule there). To be able to correctly
compare all that rules on the generalized level in Section 3.7 of this chapter, we present, here, also a generalization
of the non-normalized conjunctive rule, which does not respect the DSm assumption m(∅) = 0.

8Note that in a static combination it means a full conflict/contradiction between input BF’s. Whereas in
the case of a dynamic combination it could be also a full conflict between mutually non-conflicting or partially
conflicting input BF’s and constraints of a used hybrid DSm model. E.g. m1(θ1 ∪ θ2) = 1, m2(θ2 ∪ θ3) = 1,
where θ2 is constrained in a used hybrid model.
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where φ(A) is a characteristic non-emptiness function of a set A, i. e. φ(A) = 1 if A /∈ ∅ and
φ(A) = 0 otherwise, S⊕

1 (A), S⊕
2 (A), and S⊕

3 (A) are defined by

S⊕
1 (A) = S1(A) =

∑
X,Y ∈DΘ,X∩Y≡Am1(X)m2(Y ),

S⊕
2 (A) = S1(A)

P

Z∈DΘ Z /∈ ∅
S1(Z)

∑
X,Y ∈ ∅Mm1(X)m2(Y ),

S⊕
3 (A) = S1(A)

P

Z∈DΘ Z /∈ ∅
S1(Z)

∑
X,Y ∈DΘ, X∪Y /∈ ∅, X∩Y ∈ ∅M m1(X)m2(Y ).

For proofs see Appendix 3.11.1.

S⊕
1 (A) corresponds to a non-conflicting belief mass, S⊕

3 (A) includes all classic conflicting
masses and the cases where one of X,Y is excluded by a non-existential constraint, and S⊕

2 (A)
corresponds to the cases where both X and Y are excluded by (a) non-existential constraint(s).

It is easy verify that the generalized Dempster’s rule coincides with the classic one on Shafer’s
modelM0, see Appendix 3.11.1. Hence, the above definition of the generalized Dempster’s rule
is really a generalization of the classic Dempster’s rule. Similarly, we can notice that the rule
works also on the free DSm model Mf and its results coincide with those by DSmC rule. We
can define n-ary version of the generalized Dempster’s rule, analogically to n-ary versions of
DSm rules, but because of its associativity it is not necessary in the case of the Dempster’s rule.

3.5 A generalization of Yager’s rule

The classic Yager’s rule puts belief mass m1(X)m2(Y ) to X ∩ Y whenever it is non-empty,
otherwise the mass is added to m(Θ). As all the intersections are non-empty in the free DSm
model, nothing should be added to m1(Θ)m2(Θ) and Yager’s rule generalized to the free DSm
model Mf (Θ) also coincides with the classic DSm rule.

(m1 Y©m2)(A) =
∑

X,Y ∈DΘ,X∩Y=A

m1(X)m2(Y ) = (m1 #©m2)(A).

The generalized Yager’s rule of combination Y© for a general hybrid DSm model M is given as

(m1 Y©m2)(A) =
∑

X,Y ∈DΘ,X∩Y≡A
m1(X)m2(Y )

for A /∈ ∅, ΘM 6= A ∈ DΘ
M,

(m1 Y©m2)(ΘM) =
∑

X,Y ∈DΘ

X∩Y ≡ΘM

m1(X)m2(Y ) +
∑

X,Y ∈DΘ

X∩Y ∈ ∅M

m1(X)m2(Y )

and (m1 Y©m2)(A) = 0 otherwise, i.e. for A ∈ ∅ and for A ∈ (DΘ \DΘ
M).

It is obvious that the generalized Yager’s rule of combination is defined for any couple of
belief functions which are defined on hyper-power set DΘ.

To be easily comparable with the DSm rule, we can rewrite the definition of the generalized
Yager’s rule to an equivalent form: (m1 Y©m2)(A) = φ(A)[S Y©

1 (A) + S Y©
2 (A) + S Y©

3 (A)], where

S Y©
1 (A), S Y©

2 (A), and S Y©
3 (A) are defined by:

S
Y©
1 (A) = S1(A) =

∑

X,Y ∈DΘ, X∩Y≡A
m1(X)m2(Y )
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S
Y©
2 (ΘM) =

∑

X,Y ∈ ∅M

m1(X)m2(Y )

S
Y©
2 (A) = 0 forA 6= ΘM

S
Y©
3 (ΘM) =

∑

X,Y ∈DΘ,

X∪Y /∈ ∅,

X∩Y ∈ ∅M

m1(X)m2(Y )

S
Y©
3 (A) = 0 forA 6= ΘM.

For proofs see Appendix 3.11.2.

Analogically to the case of the generalized Dempster’s rule, S Y©
1 (A) corresponds to non-

conflicting belief mass, S Y©
3 (A) includes all classic conflicting masses and the cases where one

of X,Y is excluded by a non-existential constraint, and S Y©
2 (A) corresponds to the cases where

both X and Y are excluded by (a) non-existential constraint(s).
It is easy to verify that the generalized Yager’s rule coincides with the classic one on Shafer’s

modelM0. Hence the definition of the generalized Yager’s rule is really a generalization of the
classic Yager’s rule, see Appendix 3.11.2.

Analogically to the generalized Dempster’s rule, we can observe that the formulas for the
generalized Yager’s rule work also on the free DSm model and that their results really coincide
with those by DSmC rule. If we admit also the degenerated (vacuous) DSm model M∅, i.e.,
ΘM∅ = ∅, it is enough to modify conditions for (m1 Y©m2)(A) = 0, so that it holds for ΘM 6=
A ∈ ∅ and for A ∈ (DΘ \DΘ

M). Then the generalized Yager’s rule works also on M∅; and
because of the fact that there is the only bba m∅(∅) = 1, m∅(X) = 0 for any X 6= ∅ on M∅,
the generalized Yager’s rule coincides with the DSmH rule there.

3.6 A generalization of Dubois-Prade’s rule

The classic Dubois-Prade’s rule puts belief mass m1(X)m2(Y ) to X ∩ Y whenever it is non-
empty, otherwise the mass m1(X)m2(Y ) is added to X ∪ Y which is always non-empty in the
DST.

In the free DSm model all the intersections of non-empty elements are always non-empty,
thus nothing to be added to unions and Dubois-Prade’s rule generalized to the free model
Mf (Θ) also coincides with the classic DSm rule

(m1DP©m2)(A) =
∑

X,Y ∈DΘ,X∩Y=A

m1(X)m2(Y ) = (m1 #©m2)(A).

In the case of a static fusion, only exclusivity constraints are used, thus all the unions of
Xi ∈ DΘ, X /∈ ∅ are also out of ∅. Thus we can easily generalize Dubois-Prade’s rule as
(m1DP©m2)(A) =

∑
X,Y ∈DΘ,X∩Y≡Am1(X)m2(Y ) +

∑
X,Y ∈DΘ,X∩Y ∈∅M,X∪Y≡Am1(X)m2(Y ) for

∅ 6= A ∈ DΘ
M, and (m1DP©m2)(A) = 0 otherwise, i.e., for A = ∅ or A /∈ DΘ

M.

The situation is more complicated in the case of a dynamic fusion, where non-existential
constraints are used. There are several sub-cases how X ∩ Y ∈ ∅ arises.
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There is no problem if both X,Y are out of ∅, because their union X ∪ Y /∈ ∅. Similarly
if at the least one of X,Y is out of ∅ then their union is also out of ∅.

On the other hand if both X,Y are excluded by a non-existential constraint or if they
are subsets of elements of DΘ excluded by non-existential constraints then their union is also
excluded by the constraints and the idea of Dubois-Prade’s rule is not sufficient to solve this
case. Thus the generalized Dubois-Prade rule should be extended to cover also such cases.

Let us start with a simple solutions. As there is absolutely no reason to prefer any of non-
constrained elements of DΘ, the mass m1(X)m2(Y ) should be either normalized as in Demp-
ster’s rule or added to m(ΘM) as in Yager’s rule. Another option — division of m1(X)m2(Y ) to
k same parts — does not keep a nature of beliefs represented by input belief functions. Because
m1(X)m2(Y ) is always assigned to subsets of X,Y in the case of intersection or to supersets of
X,Y in the case of union, addition of m1(X)m2(Y ) to m(Θ) is closer to Dubois-Prade’s rule
nature as X,Y ⊂ Θ. Whereas the normalization assigns parts of m1(X)m2(Y ) also to sets
which can be disjoint with both of X,Y .

To find a more sophisticated solution, we have to turn our attention to the other cases, where
X∩Y,X∪Y ∈ ∅, and where a simple application of the idea of Dubois-Prade’s rule also does not
work. Let us assume a fixed hybrid DSm modelM(Θ) now. Let us further assume that neither
X nor Y is a part of a set of elements which are excluded with a non-existential constraint, i.e.,
X ∪ Y 6⊆ ⋃Zi where Zis are excluded by a non-existential constraint9. Let us transfer both X
and Y into disjunctive normal form (a union of intersections / a disjunction of conjunctions).
Thus, X ∪ Y is also in disjunctive form (DNF we obtain by simple elimination of repeating
conjuncts/intersections) and at the least one of the conjuncts, let say W = θ1w ∩ θ2w ∩ ...∩ θiw,
contains θjw non-equivalent to empty set in the given DSm model M(Θ). Thus it holds that
θ1w ∪ θ2w ∪ ...∪ θjw /∈ ∅. Hence we can assign belief masses to θ1w ∪ θ2w ∪ ...∪ θjw or to some of
its supersets. This idea fully corresponds to Dubois-Prade’s rule as the empty intersections are
substituted with unions. As we cannot prefer any of the conjuncts — we have to substitute ∩s
with ∪s in all conjuncts of the disjunctive normal form of X ∪ Y — we obtain a union UX∪Y
of elements of Θ. The union UX∪Y includes θjw; thus it is not equivalent to the empty set and
we can assign m1(X)m2(Y ) to UX∪Y ∩ IM /∈ ∅ 10.

Thus we can now formulate a definition of the generalized Dubois-Prade rule. We can distin-
guish three cases of input generalized belief functions: (i) all inputs satisfy all the constraints of
a hybrid DSm modelM(Θ) which is used (a static belief combination), (ii) inputs do not satisfy
the constraints of M(Θ) (a dynamic belief combination), but no non-existential constraint is
used, (iii) completely general inputs which do not satisfy the constraints, and non-existential
constraints are allowed (a more general dynamic combination). According to these three cases,
we can formulate three variants of the generalized Dubois-Prade rule.

9Hence X ∪ Y has had to be excluded by dynamically added exclusivity constraints, e.g. X = θ1 ∩ θ2, Y =
θ2 ∩ θ3 ∩ θ4 X ∪ Y = (θ1 ∩ θ2)∪ (θ2 ∩ θ3 ∩ θ4), and all θ1, θ2, θ3, θ4 are forced to be exclusive by added exclusivity
constraints, thus X ∩ Y,X ∪ Y ∈ ∅M.

10We obtain (θ1 ∪ θ2 ∪ θ3 ∪ θ4) ∩ IM in the example from the previous footnote.
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The simple generalized Dubois-Prade rule of combination DP© is given as11

(m1DP©m2)(A) =
∑

X∩Y≡A
m1(X) m2(Y ) +

∑

X∩Y ∈∅M
X∪Y ≡A

m1(X) m2(Y )

for ∅ 6= A ∈ DΘ
M, and (m1DP©m2)(A) = 0 otherwise, i.e., for A = ∅ and for A ∈ (DΘ \DΘ

M).

The generalized Dubois-Prade rule of combination DP© is given as

(m1DP©m2)(A) =
∑

X∩Y≡A
m1(X)m2(Y ) +

∑

X∩Y ∈∅M
X∪Y ≡A

m1(X)m2(Y ) +
∑

X∪Y ∈∅M
UX∪Y ≡A

m1(X)m2(Y )

for ∅ 6= A ∈ DΘ
M, and

(m1DP©m2)(A) = 0 otherwise, i.e., for A = ∅ and for A ∈ (DΘ \DΘ
M),

where UX∪Y is disjunctive normal form of X ∪ Y with all ∩s substituted with ∪s.

The extended generalized Dubois-Prade rule of combination DP© is given as

(m1DP©m2)(A) =
∑

X∩Y≡A
m1(X) m2(Y ) +

∑

X∩Y ∈∅M
X∪Y ≡A

m1(X) m2(Y )

+
∑

X∪Y ∈∅M
UX∪Y ≡A

m1(X) m2(Y )

for ∅ 6= A 6= ΘM, A ∈ DΘ
M,

(m1DP©m2)(ΘM) =
∑

X∩Y≡ΘM

m1(X) m2(Y ) +
∑

X∩Y ∈ ∅M
X∪Y ≡ΘM

m1(X) m2(Y )

+
∑

X∪Y ∈ ∅M
UX∪Y ≡ΘM

m1(X) m2(Y ) +
∑

UX∪Y ∈ ∅M

m1(X) m2(Y ),

and

(m1DP©m2)(A) = 0

otherwise, i.e., for A ∈ ∅ and for A ∈ (DΘ \DΘ
M),

where UX∪Y is disjunctive normal form of X ∪ Y with all ∩s substituted with ∪s.

In the case (i) there are positive belief masses assigned only to the Xi ∈ DΘ such that
X /∈ ∅, hence the simple generalized Dubois-Prade rule, which ignores all the belief masses
assigned to Y ∈ ∅, may be used. The rule is defined for any couple of BF’s which satisfy the
constraints.

11 We present here 3 variants of the generalized Dubois-Prade rule, formulas for all of them include several
summations over X,Y ∈ DΘ, where X,Y are more specified with other conditions. To simplify the formulas in
order to increase their readability, we do not repeat the common condition X,Y ∈ DΘ in sums in all the following
formulas for the generalized Dubois-Prade rule.
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In the case (ii) there are no UX∪Y ∈ ∅, hence the generalized Dubois-Prade rule, which
ignores multiples of belief masses m1(X)m2(Y ), where UX∪Y ∈ ∅, may be used.

In the case (iii) the extended generalized Dubois-Prade rule must be used, this rule can
handle all the belief masses in any DSm model, see 1a) in Appendix 3.11.3.

It is easy to verify that the generalized Dubois-Prade rule coincides with the classic one in
Shafer’s model M0, see 2) in Appendix 3.11.3.

The classic Dubois-Prade rule is not associative, neither the generalized one is. Similarly to
the DSm approach we can easily rewrite the definitions of the (generalized) Dubois-Prade rule
for a combination of k sources.

Analogically to the generalized Yager’s rule, the formulas for the generalized Dubois-Prade’s
rule work also on the free DSm modelMf and their results coincide with those of DSmC rules
there, see 1b) in Appendix 3.11.3. If we admit also the degenerated (vacuous) DSm modelM∅,
i.e., ΘM∅ = ∅, it is enough again to modify conditions for (m1DP©m2)(A) = 0, so that it holds
for ΘM 6= A ∈ ∅ and for A ∈ (DΘ \DΘ

M). Then the extended generalized Dubois-Prade’s rule
works also on M∅ and it trivially coincides with DSmH rule there.

To be easily comparable with the DSm rule, we can rewrite the definitions of the generalized
Dubois-Prade rules to an equivalent form similar to that of DSm:

the generalized Dubois-Prade rule:

(m1DP©m2)(A) = φ(A)[S
DP©
1 (A) + S

DP©
2 (A) + S

DP©
3 (A)]

where

S
DP©
1 (A) = S1(A) =

∑

X,Y ∈DΘ,X∩Y≡A
m1(X)m2(Y ),

S
DP©
2 (A)=

∑

X,Y ∈∅M, UX∪Y ≡A
m1(X)m2(Y ),

S
DP©
3 (A)=

∑

X,Y ∈DΘ,X∩Y ∈∅M, (X∪Y )≡A
m1(X)m2(Y ).

the simple generalized Dubois-Prade rule:

(m1DP©m2)(A) = φ(A)[S
DP©
1 (A) + S

DP©
3 (A)]

where SDP©
1 (A), SDP©

3 (A) as above;

the extended generalized Dubois-Prade rule:

(m1DP©m2)(A) = φ(A)[S
DP©
1 (A) + S

DP©
2 (A) + S

DP©
3 (A)]

where SDP©
1 (A), SDP©

3 (A) as above, and

S
DP©
2 (A) =

∑

X,Y ∈∅M, [UX∪Y ≡A]∨[UX∪Y ∈∅∧A=ΘM]

m1(X)m2(Y ).

For a proof of equivalence see 3) in Appendix 3.11.3.
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Functions SDP©
1 , SDP©

2 , SDP©
3 have interpretations analogical to S⊕

i and S Y©
i for ⊕ and Y©. SDP©

2 is
principal for distinguishing of the variants of the Dubois-Prade rule. In the case (i) no positive

belief masses are assigned to X ∈ ∅ thus SDP©
2 (A) ≡ 0, in the case (ii) SDP©

2 (A) sums m1(X)m2(Y )
only for UX∪Y ≡ A, whereas in the case (iii) also UX∪Y ∈ ∅M must be included.

In general, some θis can repeat several times in UX∪Y , they are eliminated in DNF. Hence we
obtain a union of elements of Θ which are contained in X,Y . Let us note that this union UX∪Y
of elements of Θ coincides with U = u(X) ∪ u(Y ), more precisely UX∪Y ∩ IM coincides with
U ∩ IM = u(X)∪u(Y )∩ IM. Thus the generalized Dubois-Prade rule gives the same results as
the hybrid DSmH rule does. Let us further note that the extension of Dubois-Prade’s rule, i.e.
addition of m1(X)m2(Y ) to m(ΘM) for X,Y ∈ ∅M also coincides with the computation with
the DSmH rule in the case, where U ∈ ∅M. Hence, the extended generalized Dubois-Prade
rule is fully equivalent to the DSmH rule.

3.7 A comparison of the rules

As there are no conflicts in the free DSm model Mf (Θ) all the presented rules coincide in the
free DSm model Mf (Θ). Thus the following statement holds:

Statement 1. Dempster’s rule, the non-normalized conjunctive rule, Yager’s rule, Dubois-
Prade’s rule, the hybrid DSmH rule, and the classic DSmC rule are all mutually equivalent in
the free DSm model Mf (Θ).

Similarly the classic Dubois-Prade rule is equivalent to the DSm rule for Shafer’s model. But
in general all the generalized rules ⊕, Y©,DP©, and DSm rule are different. A very slight difference
comes in the case of Dubois-Prade’s rule and the DSm rule. A difference appears only in the
case of a dynamic fusion where some belief masses of both (of all in an n-ary case) source
generalized basic belief assignments are equivalent to the empty set (i.e. m1(X),m2(Y ) ∈ ∅M
or mi(Xi) ∈ ∅M). The generalized Dubois-Prade rule is not defined and it must be extended
by adding m1(X)m2(Y ) or Πi mi(Xi) to m(ΘM) in this case. The generalized Dubois-Prade
rule coincides with the DSm rule in all other situations, i.e., whenever all input beliefs fit the
DSm model, which is used, and whenever we work with a DSm model without non-existential
constraints, see the previous section. We can summarize it as it follows:

Statement 2. (i) If a hybrid DSm modelM(Θ) does not include any non-existential constraint
or if all the input belief functions satisfy all the constraints ofM(Θ), then the generalized Dubois-
Prade rule is equivalent to the DSm rule in the modelM(Θ). (ii) The generalized Dubois-Prade
rule extended with addition of m1(X)m2(Y ) (or Πi mi(Xi) in an n-ary case) to m(ΘM) for
X,Y ∈ ∅M (or for Xi ∈ ∅M in an n-ary case) is fully equivalent to the hybrid DSmH rule on
any hybrid DSm model.

3.7.1 Examples

Let us present examples from Chapter 1 from DSm book 1 [14] for an illustration of the com-
parison of the generalized rules with the hybrid DSm rule.

Example 1. The first example is defined on Θ = {θ1, θ2, θ3} as Shafer’s DSm model M0 with
the additional constraint θ3 ≡ ∅, i.e. θ1 ∩ θ2 ≡ θ3 ≡ ∅ in DSm model M1, and subsequently
X ≡ Y ≡ ∅ for all X ⊆ θ1 ∩ θ2 Y ⊆ θ3. We assume two independent source belief assignments
m1,m2, see Table 3.1.



102 A GENERALIZATION OF THE CLASSIC FUSION RULES

Mf
DSmC M1 DSmH ⊕ ∩© Y© DP©

DΘ m1 m2 mDSmC DΘ
M1

mDSmH m⊕ m ∩© m Y© mDP©

θ1 ∩ θ2 ∩ θ3 0 0 0 ∅
θ1 ∩ θ2 0 0 0.21 ∅
θ1 ∩ θ3 0 0 0.13 ∅
θ2 ∩ θ3 0 0 0.14 ∅

θ1 ∩ (θ2 ∪ θ3) 0 0 0 ∅
θ2 ∩ (θ1 ∪ θ3) 0 0 0 ∅
θ3 ∩ (θ1 ∪ θ2) 0 0 0.11 ∅

✷ 0 0 0 ∅
θ1 0.10 0.50 0.21 θ1 0.34 0.600 0.21 0.21 0.34

θ2 0.40 0.10 0.11 θ2 0.25 0.314 0.11 0.11 0.25

θ3 0.20 0.30 0.06 ∅
✷θ1 0 0 0 θ1 0 0 0 0 0

✷θ2 0 0 0 θ2 0 0 0 0 0

✷θ3 0 0 0 ∅
θ1 ∪ θ2 0.30 0.10 0.03 θ1 ∪ θ2 0.41 0.086 0.03 0.68 0.41

θ1 ∪ θ3 0 0 0 θ1 0 0 0 0 0

θ2 ∪ θ3 0 0 0 θ2 0 0 0 0 0

θ1 ∪ θ2 ∪ θ3 0 0 0 θ1 ∪ θ2 0 0 0 0 0

∅ ∅ 0.65

Table 3.1: Example 1 — combination of gbba’s m1,m2 with the DSm rules DSmC, DSmH, and
with the generalized rules ⊕, ∩©, Y©, DP© on hybrid DSm model M1.

A description of Table 3.1. As DSm theory admits general source basic belief assignments
defined on the free DSm modelMf , all elements of DΘ are presented in the first column of the
table. We use the following abbreviations for 4 elements of DΘ: ✷ for (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪
(θ2 ∩ θ3) = (θ1 ∪ θ2) ∩ (θ1 ∪ θ3) ∩ (θ2 ∪ θ3), ✷θ1 for θ1 ∪ (θ2 ∩ θ3) = (θ1 ∪ θ2) ∩ (θ1 ∪ θ3), ✷θ2 for
θ2 ∪ (θ1 ∩ θ3), and ✷θ3 for θ3 ∪ (θ1 ∩ θ2). Thus ✷ is not any operator here, but just a symbol for
abbreviation; it has its origin in the papers about minC combination [3, 5, 6], see also Chapter
10 in DSm book Vol. 1 [14].

Source gbba’s m1,m2 follow in the second and the third column. The central part of the
table contains results of DSm combination of the beliefs: the result obtained with DSmC rule,
i.e. resulting gbba mDSmC , is in the 4th column and the result obtained with DSmH is in the
6th column. Column 5 shows equivalence of elements of the free DSm model Mf to those of
the assumed hybrid DSm model M1. Finally, the right part of the table displays the results of
combination of the source gbba’s with the generalized combination rules (with the generalized
Dempster’s rule ⊕ in the 7-th column, with the generalized non-normalized Dempster’s rule ∩©
in column 8, etc.). The resulting values are always cumulated, thus the value for m(θ1) is only
in the row corresponding to θ1, whereas all the other rows corresponding to sets equivalent to
θ1 contain 0s. Similarly, all the fields corresponding to empty set are blank with the exception
that for m ∩©(∅), i.e. the only one where positive m(∅) is allowed. The same structure of the
table is used also in the following examples.
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Example 2. Le us assume, now, two independent sources m1,m2 over 4-element frame Θ =
{θ1, θ2, θ3, θ4}, where Shafer’s model M0 holds, see Table 3.2.

Mf
DSmC M0

DSmH ⊕ ∩© Y© DP©

DΘ m1 m2 mDSmC DΘ
M0 mDSmH m⊕ m ∩© m Y© mDP©

θ1 ∩ θ2 0 0 0.9604 ∅
θ1 ∩ θ4 0 0 0.0196 ∅
θ2 ∩ θ3 0 0 0.0098 ∅
θ2 ∩ θ4 0 0 0.0098 ∅
θ3 ∩ θ4 0 0 0.0002 ∅
θ1 0.98 0 0 θ1 0 0 0 0 0

θ2 0 0.98 0 θ2 0 0 0 0 0

θ3 0.01 0 0 θ3 0 0 0 0 0

θ4 0.01 0.02 0.0002 θ4 0.0002 1 0.0002 0.0002 0.0002

θ1 ∪ θ2 0 0 0 θ1 ∪ θ2 0.9604 0 0 0 0.9604

θ1 ∪ θ4 0 0 0 θ1 ∪ θ4 0.0196 0 0 0 0.0196

θ2 ∪ θ3 0 0 0 θ2 ∪ θ3 0.0098 0 0 0 0.0098

θ2 ∪ θ4 0 0 0 θ2 ∪ θ4 0.0098 0 0 0 0.0098

θ3 ∪ θ4 0 0 0 θ3 ∪ θ4 0.0002 0 0 0 0.0002

θ1 ∪ θ2 ∪ θ3 ∪ θ4 0 0 0 θ1 ∪ θ2 ∪ θ3 ∪ θ4 0 0 0 0.9998 0

∅ ∅ 0.9998

Table 3.2: Example 2 — combination of gbba’s m1,m2 with the DSm rules DSmC, DSmH, and
with the generalized rules ⊕, ∩©, Y©, DP© on Shafer’s DSm model M0 (rows which contain only
0s and blank fields are dropped).

The structure of Table 3.2 is the same as in the case of Table 3.1. Because of the size of the
full table for DSm combination on a 4-element frame of discernment, rows which contain only
0s and blank fields are dropped.

Note, that input values are shortened by one digit here (i.e. 0.98, 0.02, and 0.01 instead of
0.998, 0.002, and 0.001) in comparison with the original version of the example in [14]. Never-
theless the structure and features of both the versions of the example are just the same.

Example 3. This is an example for Smet’s case, for the non-normalized Dempster’s rule. We
assume Shafer’s modelM0 on a simple 2-element frame Θ = {θ1, θ2}. We assume m(∅) ≥ 0, in
this example, even if it is not usual in DSm theory, see Table 3.3.

Example 4. Let us assume Shafer’s modelM0 on Θ = {θ1, θ2, θ3, θ4} in this example, see Table
3.4.

Example 5. Let us assume again Shafer’s modelM0 on a simple 2-element frame Θ = {θ1, θ2},
see Table 3.5.



104 A GENERALIZATION OF THE CLASSIC FUSION RULES

Mf
DSmC M0

DSmH ⊕ ∩© Y© DP©

DΘ m1 m2 mDSmC DΘ
M0 mDSmH m⊕ m ∩© m Y© mDP©

θ1 ∩ θ2 0 0 0.28 ∅
θ1 0.40 0.60 0.24 θ1 0.48 0.143 0.24 0.24 0.48

θ2 0.40 0.10 0.04 θ2 0.18 0.857 0.04 0.04 0.18

θ1 ∪ θ2 0 0 0 θ1 ∪ θ2 0.34 0 0 0.72 0.34

∅ 0.20 0.30 0.44 ∅ 0.72

Table 3.3: Example 3 — combination of gbba’s m1,m2 with the DSm rules DSmC, DSmH, and
with the generalized rules ⊕, ∩©, Y©, DP© on Shafer’s DSm model M0.

Mf
DSmC M0

DSmH ⊕ ∩© Y© DP©

DΘ m1 m2 mDSmC DΘ
M0 mDSmH m⊕ m ∩© m Y© mDP©

θ1 ∩ θ2 0 0 0.9702 ∅
θ1 ∩ (θ3 ∪ θ4) 0 0 0.0198 ∅
θ2 ∩ (θ3 ∪ θ4) 0 0 0.0098 ∅

θ1 0.99 0 0 θ1 0 0 0 0 0

θ2 0 0.98 0 θ2 0 0 0 0 0

θ1 ∪ θ2 0 0 0 θ1 ∪ θ2 0.9702 0 0 0 0.9702

θ3 ∪ θ4 0.01 0.02 0.0002 θ3 ∪ θ4 0.0002 1 0.0002 0.0002 0.0002

θ1 ∪ θ3 ∪ θ4 0 0 0 θ1 ∪ θ3 ∪ θ4 0.0198 0 0 0 0.0198

θ2 ∪ θ3 ∪ θ4 0 0 0 θ2 ∪ θ3 ∪ θ4 0.0098 0 0 0 0.0098

θ1 ∪ θ2 ∪ θ3 ∪ θ4 0 0 0 θ1 ∪ θ2 ∪ θ3 ∪ θ4 0 0 0 0.9998 0

∅ ∅ 0.9998

Table 3.4: Example 4 — combination of gbba’s m1,m2 with the DSm rules DSmC, DSmH, and
with the generalized rules ⊕, ∩©, Y©, DP© on Shafer’s DSm model M0 (rows which contain only
0s and blank fields are dropped).

M0 (rows which contain only 0s and blank fields are dropped).

Mf
DSmC M0

DSmH ⊕ ∩© Y© DP©

DΘ m1 m2 mDSmC DΘ
M0 mDSmH m⊕ m ∩© m Y© mDP©

θ1 ∩ θ2 0.40 0.30 0.89 ∅
θ1 0.50 0.10 0.05 θ1 0.24 0.45 0.05 0.05 0.24

θ2 0.10 0.60 0.06 θ2 0.33 0.54 0.06 0.06 0.33

θ1 ∪ θ2 0 0 0 θ1 ∪ θ2 0.43 0 0 0.89 0.43

∅ ∅ 0.89

Table 3.5: Example 5 — combination of gbba’s m1,m2 with the DSm rules DSmC, DSmH, and
with the generalized rules ⊕, ∩©, Y©, DP© on Shafer’s DSm model M0.
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Example 6. As all the above examples are quite simple, usually somehow related to Shafer’s
model, we present also one of the more general examples (Example 3) from Chapter 4 DSm
book Vol. 1; it is defined on the DSm model M4.3 based on 3-element frame Θ = {θ1, θ2, θ3}
with constraints θ1 ∩ θ2 ≡ θ2 ∩ θ3 ≡ ∅; and subsequently θ1 ∩ θ2 ∩ θ3 ≡ θ2 ∩ (θ1 ∪ θ3) ≡ ∅, see
Table 3.6.

Mf
DSmC M4.3 DSmH ⊕ ∩© Y© DP©

DΘ m1 m2 mDSmC DΘ
M4.3

mDSmH m⊕ m ∩© m Y© mDP©

θ1 ∩ θ2 ∩ θ3 0 0 0.16 ∅
θ1 ∩ θ2 0.10 0.20 0.22 ∅
θ1 ∩ θ3 0.10 0 0.12 θ1 ∩ θ3 0.17 0.342 0.12 0.12 0.17

θ2 ∩ θ3 0 0.20 0.19 ∅
θ1 ∩ (θ2 ∪ θ3) 0 0 0 θ1 ∩ θ3 0 0 0 0 0

θ2 ∩ (θ1 ∪ θ3) 0 0 0.05 ∅
θ3 ∩ (θ1 ∪ θ2) 0 0 0.01 θ1 ∩ θ3 0 0 0.01 0.01 0

✷ 0 0 0 θ1 ∩ θ3 0 0 0 0 0

θ1 0.10 0.20 0.08 θ1 0.16 0.263 0.08 0.08 0.16

θ2 0.20 0.10 0.03 θ2 0.12 0.079 0.03 0.03 0.12

θ3 0.30 0.10 0.10 θ3 0.23 0.263 0.10 0.10 0.23

✷θ1 0 0 0.02 θ1 0 0 0.02 0.02 0

✷θ2 0 0 0 ✷θ2 0.01 0 0 0 0.01

✷θ3 0 0 0 θ3 0 0 0 0 0

θ1 ∪ θ2 0.10 0 0 θ1 ∪ θ2 0.11 0 0 0 0.11

θ1 ∪ θ3 0.10 0.20 0.02 θ1 ∪ θ3 0.08 0.053 0.02 0.02 0.08

θ2 ∪ θ3 0 0 0 θ2 ∪ θ3 0.05 0 0 0 0.05

θ1 ∪ θ2 ∪ θ3 0 0 0 θ1 ∪ θ2 ∪ θ3 0.07 0 0 0.62 0.07

∅ ∅ 0.62

Table 3.6: Example 6 — combination of gbba’s m1,m2 with the DSm rules DSmC, DSmH, and
with the generalized rules ⊕, ∩©, Y©, DP© on hybrid DSm model M4.3.

3.7.2 A summary of the examples

We can mention that all the rules are defined for all the presented source generalized basic
belief assignments. In the case of the generalized Dempster’s rule it is based on the fact that no
couple of source gbba’s is in full contradiction. In the case of the generalized Dubois-Prade’s
rule we need its extended version in Examples 1, 3, 5, and 6.

In Example 1, it is caused by constraint θ3 ≡ ∅ and positive values m1(θ3) = 0.20 and
m2(θ3) = 0.30, see Table 3.1, hence we have m1(θ3)m2(θ3) = 0.06 > 0 and θ3 ∩ θ3 = θ3 ∪ θ3 =
θ3 ≡ ∅ in DSm modelM1 in question. In Example 3, it is caused by admission of positive input
values for ∅: m1(∅) = 0.20, m2(∅) = 0.30. In Example 5, it is because both m1 and m2 have
positive input values for θ1 ∩ θ2 which is constrained. We have m1(θ1 ∩ θ2)m2(θ1 ∩ θ2) = 0.12
and (θ1 ∩ θ2) ∩ (θ1 ∩ θ2) = θ1 ∩ θ2 ≡ ∅ ≡ (θ1 ∩ θ2) ∪ (θ1 ∩ θ2), hence 0.12 should be added to
Θ by the extended Dubois-Prade’s rule. We have to distinguish this case from different cases
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such as e.g. m1(θ1)m2(θ2) or m1(θ1∩θ2)m2(θ2), where values are normally assigned to union of
arguments (θ1)∪ (θ2) or (θ1 ∩ θ2)∪ θ2 = θ2 respectively. In Example 6, it is analogically caused
by couples of positive inputs m1(θ1 ∩ θ2), m2(θ1 ∩ θ2) and m1(θ1 ∩ θ2), m2(θ2 ∩ θ3).

In Examples 2 and 4, the generalized Dubois-Prade’s rule without extension can be used
because all the elements of DΘ which are constrained (prohibited by the constraints) have 0
values of gbbm’s.

We can observe that, m(∅) > 0 only when using the generalized conjunctive rule ∩©, where
m ∩©(∅) =

∑
Z≡∅m(Z) and m ∩©(X) = mDSmC(X) for X 6≡ ∅. If we distribute m ∩©(∅) with

normalization, we obtain the result m⊕ of the generalized Dempster’s rule ⊕; if we relocate
(add) m ∩©(∅) to m ∩©(Θ) we obtain m Y©, i.e. the result of the generalized Yager’s rule.

The other exception of m(∅) > 0 is in Example 3, where mDSmC(∅) = 0.44 > 0 because
there is m1(∅) > 0 and m2(∅) > 0 what is usually not allowed in DSmT. This example was
included into [14] for comparison of DSmH with the classic non-normalized conjunctive rule
used in TBM.

In accordance with theoretical results we can verify, that the DSmH rule always gives the
same resulting values as the generalized Dubois-Prade rule produces in all 6 examples.

Looking at the tables we can observe, that DSmH and Dubois-Prade’s generate more speci-
fied results (i.e. higher gbbm’s are assigned to smaller elements of DΘ) than both the generalized
non-normalized conjunctive rule ∩© and the generalized Yager’s rule Y© produce. There is some
lost of information when the generalized ⊕ or Y© are applied. Nevertheless, there is some lost of
information also within the application of the DSmH rule. Considering the rules investigated
and compared in this text we obtain the most specific results when the generalized Dempster’s
rule ⊕ is used. Another rules, which produce more specified results than the DSmH rule and
the generalized Dubois-Prade’s rule do, are the generalized minC combination rule [5] and PCR
combination rules [15], which are out of scope of this chapter.

3.8 Open problems

As an open question remains commutativity of a transformation of generalized belief functions
to those which satisfy all the constraints of a used hybrid DSm model with the particular
combination rules. Such a commutation may significantly simplify functions S2 and hence the
entire definitions of the corresponding combination rules. If such a commutation holds for some
combination rule, we can simply transform all input belief functions to those which satisfy
constraints of the DSm model in question at first; and perform static fusion after. No dynamic
fusion is necessary in such a case.

A generalization of minC combination rule, whose computing mechanism (not a motivation
nor an interpretation) has a relation to the conjunctive rules on the free DSm model Mf (Θ)
already in its classic case [3], is under recent development. And it will also appear as a chapter
of this volume.

We have to mention also the question of a possible generalization of conditionalization,
related to particular combination rules to the domain of DSm hyper-power sets.

And we cannot forget for a new family of PCR rules [15], see also a chapter in this volume.
Comparison of these rules, rules presented in this chapter, generalized minC combination and
possibly some other belief combination rules on hyper-power sets can summarize the presented
topic.
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3.9 Conclusion

The classic rules for combination of belief functions have been generalized to be applicable to
hyper-power sets, which are used in DSm theory. The generalization forms a solid theoretical
background for full and objective comparison of the nature of the classic rules with the nature
of the DSm rule of combination. It also enables us to place the DSmT better among the other
approaches to belief functions.
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3.11 Appendix - proofs

3.11.1 Generalized Dempster’s rule

1) Correctness of the definition:
1a)

∑
X,Y ∈DΘ m1(X)m2(Y ) = 1 for any gbba’s m1,m2; multiples 0 ≤ m1(X)m2(Y ) ≤ 1 are

summed to m(A) for X ∩ Y ≡ A, ∅ 6= A ∈ DΘ
M, all the other multiples (i.e., for X ∩ Y = ∅

and for X ∩ Y = A /∈ DΘ
M) are normalized among ∅ 6= A ∈ DΘ

M. Hence the formula for the
generalized Dempster’s rule produces correct gbba m1 ⊕m2 for any input gbba’s m1,m2.
1b) It holds κ =

∑
X,Y ∈DΘ,X∩Y∈∅m1(X)m2(X) = 0 and K = 1

1−κ = 1 in the free DSm model

Mf . Hence we obtain the formula for the free model Mf as a special case of the general
formula.

2) Correctness of the generalization:
Let us suppose Shafer’s DSm modelM0, i.e., θi ∩ θj ≡ ∅ for i 6= j. There are no non-existential
constraints in M0. X ∩ Y ∈ ∅M0 iff {θi|θi ⊆ X} ∩ {θj |θj ⊆ Y } = ∅, hence the same multiples
m1(X)m2(Y ) are assigned to X∩Y = A /∈ ∅ in both the classic and the generalized Dempster’s
rule on Shafer’s DSm model, and the same multiples are normalized by both of the rules. Thus,
the results are the same for any m1,m2 on M0 and for any A ⊆ Θ and other A ∈ DΘ. Hence
the generalized Dempster’s rule is really a generalization of the classic Dempster’s rule.

3) Equivalence of expressions: (m1 ⊕m2)(A)
?
= φ(A)[S⊕

1 (A) + S⊕
2 (A) + S⊕

3 (A)]

φ(A)[S⊕
1 (A) + S⊕

2 (A) + S⊕
3 (A)] = φ(A)

∑

X∩Y ≡A
m1(X)m2(Y )+

φ(A)[
S1(A)∑

Z∈DΘ Z/∈∅
S1(Z)

∑

X,Y ∈ ∅M

m1(X)m2(Y )+

S1(A)∑
Z∈DΘ Z/∈∅

S1(Z)

∑

X∪Y /∈ ∅, X∩Y ∈ ∅M

m1(X)m2(Y )]
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For A /∈ ∅ we obtain the following (as mi(∅) = 0):

∑

X∩Y≡A/∈∅

m1(X)m2(Y ) + [
S1(A)∑

Z∈DΘ Z/∈∅
S1(Z)

∑

X∩Y ∈ ∅

m1(X)m2(Y )] =

∑

X∩Y≡A/∈∅

m1(X)m2(Y ) +

∑
X∩Y≡A/∈∅

m1(X)m2(Y )∑
X∩Y /∈ ∅

m1(X)m2(Y )

∑

X∩Y ∈ ∅

m1(X)m2(Y ) =

∑

X∩Y≡A/∈∅

m1(X)m2(Y )(1 +
1∑

X∩Y /∈ ∅
m1(X)m2(Y )

∑

X∩Y ∈ ∅

m1(X)m2(Y )) =

∑

X∩Y≡A/∈∅

m1(X)m2(Y )(
1 −∑X∩Y ∈ ∅

m1(X)m2(Y )

1 −∑X∩Y ∈ ∅
m1(X)m2(Y )

+

∑
X∩Y ∈ ∅

m1(X)m2(Y )

1−∑X∩Y ∈ ∅
m1(X)m2(Y )

) =

∑

X∩Y≡A/∈∅

m1(X)m2(Y )(
1

1−∑X∩Y ∈ ∅
m1(X)m2(Y )

) =

∑

X∩Y≡A/∈∅

m1(X)m2(Y )
1

1− κ =
∑

X∩Y≡A/∈∅

Km1(X)m2(Y ) = (m1 ⊕m2)(A).

For A ∈ ∅ we obtain:

φ(A)[S⊕
1 (A) + S⊕

2 (A) + S⊕
3 (A)] = 0 · [S⊕

1 (A) + S⊕
2 (A) + S⊕

3 (A)] = 0 = (m1 ⊕m2)(A).

Hence the expression in DSm form is equivalent to the definition of the generalized Dempster’s
rule.

3.11.2 Generalized Yager’s rule

1) Correctness of the definition:
1a)

∑
X,Y ∈DΘ,X∩Y=Am1(X)m2(Y ) = 1 for any gbba’s m1,m2; multiples 0 ≤ m1(X)m2(Y ) ≤ 1

are summed to m(A) for X ∩ Y = A /∈ ∅, all the other multiples (i.e., for X ∩ Y = A ∈ ∅)
are summed to ΘM. Hence the formula for the generalized Yager’s rule produces correct gbba
m1 Y©m2 for any input gbba’s m1,m2.
1b) It holds

∑
X,Y ∈DΘ,X∩Y ∈∅m1(X)m2(X) = 0 in the free DSm modelMf . Thus (m1 Y©m2)(Θ) =

m1(Θ)m2(Θ). Hence we obtain the formula for the free modelMf as a special case of the general
formula.

2) Correctness of the generalization:
Let us suppose Shafer’s DSm modelM0, i.e., θi ∩ θj ≡ ∅ for i 6= j. There are no non-existential
constraints in M0. X ∩ Y ∈ ∅M iff {θi|θi ⊆ X} ∩ {θj |θj ⊆ Y } = ∅, hence the same multiples
m1(X)m2(Y ) are assigned to X ∩ Y = A /∈ ∅, A 6= Θ in both the classic and the generalized
Yager’s rule on Shafer’s DSm model, and the same multiples are summed to Θ by both of the
rules. Thus, the results are the same for any m1,m2 on M0 and any A ⊆ Θ (A ∈ DΘ). Hence
the generalized Yager’s rule is a correct generalization of the classic Yager’s rule.

3) Equivalence of expressions: (m1 Y©m2)(A)
?
= φ(A)[S Y©

1 (A) + S Y©
2 (A) + S Y©

3 (A)]
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For ΘM 6= A /∈ ∅ we obtain the following:

φ(A)[S
Y©
1 (A) + S

Y©
2 (A) + S

Y©
3 (A)] = φ(A)[

∑

X∩Y ≡A
m1(X)m2(Y ) + 0 + 0]

=
∑

X∩Y≡A/∈∅

m1(X)m2(Y ) = (m1 Y©m2)(A).

For A = ΘM we obtain the following:

φ(ΘM)
∑

X∩Y ≡ΘM

m1(X)m2(Y ) + φ(ΘM)[
∑

X,Y ∈ ∅M

m1(X)m2(Y )

+
∑

X∪Y /∈ ∅, X∩Y ∈ ∅M

m1(X)m2(Y )]

=
∑

X∩Y≡ΘM

m1(X)m2(Y ) + [
∑

X∩Y ∈ ∅M

m1(X)m2(Y )] = (m1 Y©m2)(ΘM).

For A ∈ ∅ we obtain φ(A)[S Y©
1 (A) +S Y©

2 (A) +S Y©
3 (A)] = 0[S Y©

1 (A) + 0 + 0] = 0 = (m1⊕m2)(A).
Hence the expression in DSm form is equivalent to the definition of the generalized Yager’s rule.

3.11.3 Generalized Dubois-Prade rule

1) Correctness of the definition:
1a)

∑
X,Y ∈DΘm1(X)m2(Y ) = 1 for any gbba’s m1,m2; Let us assume that m1,m2 satisfy all

the constraints of DSm model M, thus m1(X) ∪ m2(Y ) /∈ ∅ for any X,Y ∈ DΘ
M; multiples

0 ≤ m1(X)m2(Y ) ≤ 1 are summed to m(A) for X ∩ Y = A /∈ ∅, all the other multiples
(i.e., for X ∩ Y = A ∈ ∅) are summed and added to m(A), where A = X ∪ Y , with the simple
generalized Dubois-Prade rule. Hence the simple generalized Dubois-Prade rule produces correct
gbba m1 ⊕m2 for any input gbba’s m1,m2 which satisfy all the constraints of the used DSm
model M.
Let us assume a DSm model M without non-existential constraints, now, thus UX∪Y /∈ ∅ for
any ∅ 6= X,Y ∈ DΘ

M; multiples 0 ≤ m1(X)m2(Y ) ≤ 1 are summed and added to m(A) for
X ∩ Y = A /∈ ∅, other multiples are summed to m(A) for X ∪ Y = A /∈ ∅, X ∩ Y = A ∈ ∅,
all the other multiples (i.e., for X ∪ Y = A ∈ ∅) are summed and added to m(A) where
A = UX∪Y , with the generalized Dubois-Prade rule. Hence the generalized Dubois-Prade rule
produces correct gbba m1 ⊕m2 for any input gbba’s m1,m2 on DSm model M without non-
existential constraints.
For a fully general dynamic belief fusion on any DSm model the following holds:
multiples 0 ≤ m1(X)m2(Y ) ≤ 1 are summed to m(A) for X ∩ Y = A /∈ ∅, other multiples are
summed and added to m(A) for X ∪Y = A /∈ ∅, X ∩ Y = A ∈ ∅, other multiples are summed
and added to m(A) for UX∪Y = A /∈ ∅, X ∪ Y = A ∈ ∅, all the other multiples (i.e., for
UX∪Y = A ∈ ∅) are summed and added to ΘM. Hence the extended generalized Dubois-Prade
rule produces correct gbba m1DP©m2 for any input gbba’s m1,m2 on any hybrid DSm model.

1b) It holds since
∑

X,Y ∈DΘ, X∩Y ∈∅m1(X)m2(X) = 0 =
∑

X∪Y ∈∅ m1(X)m2(X) and one has

also
∑

X∪Y ∈∅ m1(X)m2(X) =
∑

UX∪Y ∈∅m1(X)m2(X) in the free DSm model Mf . Hence, the

Dubois-Prade rule for the free modelMf is a special case of all the simple generalized Dubois-
Prade rule, the generalized Dubois-Prade rule, and the extended generalized Dubois-Prade rule.
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2) Correctness of the generalization:
Let us suppose Shafer’s DSm modelM0 and input BF’s onM0, i.e., θi∩θj ≡ ∅ for i 6= j. There
are no non-existential constraints in M0. X ∩ Y ∈ ∅M0 iff {θi|θi ⊆ X} ∩ {θj |θj ⊆ Y } = ∅,
hence the same multiples m1(X)m2(Y ) are assigned to X ∩ Y = A /∈ ∅, A 6= Θ in both the
classic and the generalized Dubois-Prade rule on Shafer’s DSm model, and the same multiples
are summed and added to X ∪ Y = A /∈ ∅ by both of the rules. X ∪ Y /∈ ∅ for any couple
X,Y ∈ DΘ in Shafer’s model, thus the 3rd sum in the generalized Dubois-Prade rule and the
4th sum in the extended rule for ΘM are always equal to 0 in Shafer’s DSm model. Thus, the
results are always the same for any m1,m2 on M0 and any A ⊆ Θ (and A ∈ DΘ). Hence all
the simple generalized Dubois-Prade rule, the generalized Dubois-Prade rule, and the extended
generalized Dubois-Prade rule are correct generalizations of the classic Dubois-Prade rule.

3) Equivalence of expressions: (m1DP©m2)(A)
?
= φ(A)[SDP©

1 (A) + SDP©
2 (A) + SDP©

3 (A)]

φ(A)[S
DP©
1 (A) + S

DP©
2 (A) + S

DP©
3 (A)] =

φ(A)[
∑

X∩Y ≡A
m1(X)m2(Y ) +

∑

X∪Y ∈∅M, UX∪Y ≡A
m1(X)m2(Y )+

∑

X∩Y ∈∅M, (X∪Y )≡A
m1(X)m2(Y )]

For A /∈ ∅ we simply obtain the following:

1 · [
∑

X∩Y≡A
m1(X)m2(Y ) +

∑

X∪Y ∈∅M, UX∪Y ≡A
m1(X)m2(Y )+

∑

X∩Y ∈∅M, (X∪Y )≡A
m1(X)m2(Y )] = (m1DP©m2)(A),

and for A ∈ ∅, one gets

0 · [SDP©
1 (A) + S

DP©
2 (A) + S

DP©
3 (A)] = 0 = (m1DP©m2)(∅).

The proof for the simple generalized Dubois-Prade rule is a special case of this proof with
SDP©

2 (A) ≡ 0.

The same holds for the extended generalized Dubois-Prade rule for A ∈ ∅ and for ΘM 6=
A /∈ ∅.

For A = ΘM we obtain the following:
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1 · [
∑

X∩Y≡ΘM

m1(X)m2(Y ) +
∑

X∪Y ∈∅M, [UX∪Y ≡ΘM]∨[UX∪Y ∈∅M]

m1(X)m2(Y )

+
∑

X∩Y ∈∅M, (X∪Y )≡ΘM

m1(X)m2(Y )] =

[
∑

X∩Y≡A
m1(X)m2(Y ) +

∑

X∪Y ∈∅M, UX∪Y ≡ΘM

m1(X)m2(Y ) +
∑

UX∪Y ∈∅M

m1(X)m2(Y )

+
∑

X∩Y ∈∅M, (X∪Y )≡ΘM

m1(X)m2(Y )] = (m1DP©m2)(ΘM)

Hence all three versions of the expression in DSm form are equivalent to the corresponding
versions of the definition of the generalized Dubois-Prade rule.

3.11.4 Comparison statements

Statement 1: trivial.
Statement 2(ii): Let us compare definitions of DSmH rule and the generalized Dubois-Prade

rule in DSm form. We have SDP©
1 (A) = S1(A), we can simply observe that SDP©

3 (A) = S3(A).

We have already mentioned that UX∪Y = U = u(X)u(Y ), thus also SDP©
2 (A) = S2(A). Hence

(m1DP©m2)(A) = (m1 #©m2)(A) for any A and any m1,m2 in any hybrid DSm model.
Statement 2(i): If all constraints are satisfied by all input beliefs, we have m1(X) = m2(Y ) = 0

for any X,Y ∈ ∅M and S2(A) = 0 = SDP©
2 (A). If some constraints are not satisfied, but

there is no non-existential constraint in model M, then U = UX∪Y /∈ ∅M, and S2(A) =∑
X,Y ∈∅M, UM=Am1(X)m2(Y ) =

∑
X,Y ∈∅M, UX∪Y ∩IM=Am1(X)m2(Y ) = SDP©

2 (A) again.
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Abstract: A generalization of the minC combination to DSm hyper-power sets
is presented. Both the special formulas for static fusion or dynamic fusion without
non-existential constraints and the quite general formulas for dynamic fusion with
non-existential constraints are included. Examples of the minC combination on
several different hybrid DSm models are presented. A comparison of the generalized
minC combination with the hybrid DSm rule is discussed and explained on examples.

4.1 Introduction

Belief functions are one of the widely used formalisms for uncertainty representation and pro-
cessing. Belief functions enable representation of incomplete and uncertain knowledge, belief
updating and combination of evidence. Originally belief functions were introduced as a principal
notion of Dempster-Shafer Theory (DST) or the Mathematical Theory of Evidence [19].

For combination of beliefs Dempster’s rule of combinations is used in DST. Under strict
probabilistic assumptions, its results are correct and probabilistically interpretable for any cou-
ple of belief functions. Nevertheless these assumptions are rarely fulfilled in real applications.
There are not rare examples where the assumptions are not fulfilled and where results of Demp-
ster’s rule are counter intuitive, e.g. see [2, 3, 20], thus a rule with more intuitive results is
required in such situations.
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Hence series of modifications of Dempster’s rule were suggested and alternative approaches
were created. The classical ones are Dubois-Prade’s rule [13] and Yager’s belief combination
rule [23]. Among the others a wide class of operators [17] and an analogous idea proposed in [15],
Smets’ Transferable Belief Model (TBM) using so-called non-normalized Dempster’s rule [22],
disjunctive (or dual Dempster’s) rule of combination [12], combination ’per elements’ with its
special case — minC combination, see [4, 8], and other combination rules. It is also necessary
to mention the method for application of Dempster’s rule in the case of partially reliable input
beliefs [14].

A brand new approach performs the Dezert-Smarandache (or Dempster-Shafer modified)
theory (DSmT) with its DSm rule of combination. There are two main differences: 1) mutual
exclusivity of elements of a frame of discernment is not assumed in general; mathematically it
means that belief functions are not defined on the power set of the frame, but on a so-called
hyper-power set, i.e. on the Dedekind lattice defined by the frame; 2) a new combination
mechanism which overcomes problems with conflict among the combined beliefs and which also
enables a dynamic fusion of beliefs.

As the classical Shafer’s frame of discernment may be considered the special case of a so-
called hybrid DSm model, the DSm rule of combination is compared with the classic rules of
combination in the publications about DSmT [11, 20]. For better and objective comparison
with the DSm rule the classic Dempster’s, Yager’s, and Dubois-Prade’s rules were generalized
to DSm hyper-power sets [7].

In despite of completely different motivations, ideas and assumptions of minC combination
and DSm rule, there is an analogy in computation mechanisms of these approaches described
in the author’s Chapter 10 in [20]. Unfortunately the minC combination had been designed for
classic belief functions defined only on the power set of a frame of discernment in that time.
Recently, formulas for computation of minC on general n-element frame discernment has been
published [8], and the ideas of minC combination have been generalized to DSm hyper-power
sets in [10].

A goal of this contribution is to continue [5] using the recent results from [10], and complete
a comparison of minC combination and hybrid DSm rules.

4.2 MinC combination on classic frames of discernment

4.2.1 Basic Definitions

All the classic definitions suppose an exhaustive finite frame of discernment Θ = {θ1, ..., θn},
whose elements are mutually exclusive.

A basic belief assignment (bba) is a mappingm : P(Θ) −→ [0, 1], such that
∑

A⊆Θm(A) = 1,

the values of bba are called basic belief masses (bbm).1 A belief function (BF) is a mapping
Bel : P(Θ) −→ [0, 1], Bel(A) =

∑
∅6=X⊆Am(X), belief function Bel uniquely corresponds to

bba m and vice-versa. P(Θ) is often denoted also by 2Θ. A focal element is a subset X of the
frame of discernment Θ, such that m(X) > 0.

Dempster’s (conjunctive) rule of combination ⊕ is given as

(m1 ⊕m2)(A) = K
∑

X∩Y=A

m1(X)m2(Y )

1 m(∅) = 0 is often assumed in accordance with Shafer’s definition [19]. A classical counter example is Smets’
Transferable Belief Model (TBM) which admits positive m(∅) as it assumes m(∅) ≥ 0.
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for A 6= ∅, where K = 1
1−κ , κ =

∑
X∩Y=∅m1(X)m2(Y ), and (m1⊕m2)(∅) = 0, see [19]; putting

K = 1 and (m1⊕m2)(∅) = κ we obtain the non-normalized conjunctive rule of combination ∩©,
see e. g. [22].

An algebra L = (L,∧,∨) is called a lattice if L 6= ∅ and ∧, ∨ are two binary operations meet
and join on L with the following properties: x∧ x = x, x∨ x = x (idempotency), x∧ y = y ∧ x,
x∨y = y∨x (commutativity), (x∧y)∧z = x∧(y∧z), (x∨y)∨z = x∨(y∨z) (associativity), and
x ∧ (y ∨ x) = x, x ∨ (y ∧ x) = x (absorption). If the operations ∧, ∨ satisfy also distributivity,
i.e. x∧ (y∨ z) = (x∧ y)∨ (x∧ z) and x∨ (y∧ z) = (x∨ y)∧ (x∨ z) we speak about a distributive
lattice.
We can equivalently write any element of X ∈ L in conjunctive normal form (CNF):
X =

∧
i=1,...,m(

∨
j=1,...,ki

Xij) for some m, k1, ..., km, Xij ∈ L , i.e. meet of joins.

4.2.2 Ideas of the minC combination

The minC combination (the minimal conflict/contradiction combination) is a generalization of
the non-normalized Dempster’s rule ∩©. m(∅) from ∩© is considered as a conflict (or contradiction)
arising by the conjunctive combination. To handle it, a system of different types of conflicts is
considered according to the basic belief masses producing it.

We distinguish contradictions (conflicts) according to the sets to which the original bbms
were assigned by mi. There is only one type of contradiction (conflict) × on the belief functions
defined on a binary frame of discernment, × corresponds to m(∅); hence the generalized level
of minC combination fully coincides with the (non-normalized) conjunctive rule there. In the
case of an n-element frame of discernment we distinguish different types of conflicts, e.g. A ×
B, A × BC, A × B × C, if mi({A}),mj({B}) > 0, mi({A}),mj({B,C}) > 0, mi({A}),
mj({B}), mk({C}) > 0 etc. A very important role is played by so-called potential conflicts
(contradictions), e.g. AB × BC, which is not a conflict in the case of combination of two
beliefs ({A,B} ∩ {B,C} = {B} 6= ∅), but it can cause a conflict in a later combination with
another belief, e.g. real conflict AB ×BC ×AC because there is {A,B} ∩ {B,C} ∩ {A,C} = ∅
which is different from B × AC. Not to have (theoretically) an infinite number of different
conflicts, the conflicts are divided into classes of equivalence which are called types of conflicts,
e.g. A×B ∼ B ×A ∼ A×B ×B ×B ×A×A×A, etc. For more detail see [4].

In full version of [8], it is shown that the structure of pure and potential conflicts forms a
distributive lattice L(Ω) = (L(Ω),∧,∨), where X ∈ L(Ω) iff either X = {ωi}, where ωi ∈ Ω,
or X = {ωi1 × ωi2 × .... × ωiki

}, where ωij ∈ Ω for 1 ≤ i ≤ n, 1 ≤ j ≤ ki, or X = U ∧ V or
X = U ∨ V for some couple U, V ∈ L(Ω); ∧ ∨ are defined as it follows:
X ∨ Y = {w | w ∈ X or w ∈ Y and (¬∃w′)(w′ ∈ X ∪ Y, w′ ≤ w)},
X ∧Y = {w | w ∈ X ∩Y or [w = ωw1×ωw2× ...×ωwkw , where (∃x ∈ X)(x ≤ w), (∃y ∈ Y )(y ≤
w) and (¬∃w′ ≤ w)((∃x ∈ X)(x ≤ w′), (∃y ∈ Y )(y ≤ w′))]}.
Where it is further defined: x× x = x, y × x = x× y, and x11 × x12 × ...× x1k1 ≤ x21 × x22 ×
...× x2k2 iff (∀x1k)(∃x2m)(x1k = x2m). Note that X ∧ Y = X ∩ Y if X ⊆ Y or Y ⊆ X.

We can extend L(Ω) with ∅ to L∅(Ω) = (L(Ω) ∪ {∅},∧,∨), where x ∧ ∅ = ∅ and x ∨ ∅ = x
for all x ∈ L(Ω). But we do no need it in classical case as no positive gbbm’s are assigned to ∅
in input BF’s and x ∧ y 6= ∅ and x ∨ y 6= ∅ for any x, y ∈ L(Ω).

The generalized level of minC combination gives non-negative weights to all elements of
L(Θ), i.e. also to the conflicts/contradictions and potential conflicts, i.e. it produces and
combines so-called generalized bba’s and generalized belief functions defined on the so-called
generalized frame of discernment L(Θ), which includes also all corresponding types of conflicts.
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The generalized level of minC combination is associative and commutative operation and
it commutes also with coarsening of frame of discernment. After performance of the general-
ized level of the minC, all bbms of both pure and potential conflicts should be reallocated /
proportionalized among all corresponding non-conflicting elements of P(Θ).

Unfortunately such proportionalizations break associativity of the minC combination. Hence
all the input bba’s must be combined on the generalized level at first, and the proportionalization
may not be performed before finishing of the generalized level combination. So it is useful to
keep also generalized level results because of to be prepared for possible additional source of
belief, which we possibly want to combine together with the present input beliefs.

4.2.3 Formulas for the minC combination

Let
⋂
X = X1 ∩X2 ∩ ... ∩Xk and c(X) = {X1, ...,Xk}, where CNF (X) = X1 ∧X2 ∧ ... ∧Xk,

similarly let
⋃
X = X1 ∪ X2 ∪ ... ∪ Xk, where CNF (X) = X1 ∧ X2 ∧ ... ∧ Xk, it holds that

Xi = Xi1 ∨Xi2 ∨ ... ∨Xiki
for any of these Xis thus it corresponds to {Xi1,Xi2, ...,Xiki

}, and⋃
X ∈ P(Θ), let further p(X) = {Y1∪ ...∪Ym | 1≤ m≤k, Yi ∈ c(X) for i = 1, ...,m}. Let all X

from L(Θ) be in CNF in the following formulas, unless another form of X is explicitly specified.

The generalized level of the minC combination is computed for all A ∈ L(Θ) as

m0(A) =
∑

X∧Y=A

m1(X)m2(Y ).

Reallocation of gbbm’s of potential conflicts: for all ∅ 6= A ∈ P(Θ),

m1(A) = m0(A) +
∑

X∈L(Θ)
X 6=A,

T

X=A

m0(X) =
∑

X∈L(Θ)
T

X=A

m0(X).

Final classic bba m we obtain after proportionalization of gbbm’s of pure conflicts.

m(A) =
∑

X∈L(Θ)
∩X=A

m0(X) +
∑

X∈L(Θ)
∩X=∅, A⊆∪X

prop(A,X)m0(X),

where
prop11(A,X) = prop12(A,X) = m1(A)

P

Y ∈p(X)m
1(Y )

for A ∈ p(X),
∑

Y ∈ p(X)m
1(Y ) > 0,

prop11(A,X) = prop12(A,X) = 0 for A /∈ p(X),
prop11(A,X) = 1

|p(X)|−1 for A ∈ p(X),
∑

Y ∈p(X)m
1(Y ) = 0,

prop12(A,X) = 1 for A =
⋃
X,

∑
Y ∈p(X)m

1(Y ) = 0,

prop12(A,X) = 0 for A ⊂ ⋃X, ∑Y ∈p(X)m
1(Y ) = 0,

prop21(A,X) = prop22(A,X) = m1(A)
cbel1(X) for cbel1(X) > 0,

prop21(A,X) = 1
2|

S

X|−1
for cbel1 = 0,

prop22(A,X) = m1(A)
cbel1(X)

for cbel1(X) > 0,

prop22(A,X) = 1 for cbel1(X) = 0 and A =
⋃
X,

prop22(A,X) = 0 for cbel1(X) = 0 and A ⊂ ⋃X,
where cbel1(X) =

∑
∅6=Y ∈P(Θ), Y⊆S

X m
1(Y ), m(∅) = 0 (= m0(∅) = m1(∅)).
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Proportionalization coefficient function propij( , ) determines the proportionalization ratio
for distribution of conflicting gbbm’s. The first index i indicates whether 1) m0(X) is propor-
tionalized only among elements of p(X), i.e, among all conjuncts from CNF (X) and among all
disjunctions of these conjuncts for i = 1, or 2) m0(X) is proportionalized among all subsets of⋃
X for i = 2. The second index indicates the way of proportionalization when the proportion-

alization ratio is ”0
0”: 1) division of m0(X) to the same parts and distribution of these parts

among all conjuncts in question (for i = 1, j = 1) or among all subsets of
⋃
X (for i = 2, j = 1)

is used, or 2) whole conflicting gbbm m0(X) is relocated to
⋃
X for j = 2. prop1j corresponds

to proportionalization a) from [4, 5] and prop2j corresponds to proportionalization b) from [5]
(resp. to c) from [4]). For another proportionalizations see the full version of [8].

Let us present the proportionalization on a small example m0(X), where X = θ1∧ (θ2∨ θ3):
X is already in CNF, i.e. CNF (X) = X, it has two conjuncts singleton θ1 and disjunction
θ2 ∨ θ3, we can construct the only nontrivial disjunction θ1 ∨ θ2 ∨ θ3 from these conjuncts,⋃
X = θ1 ∨ θ2 ∨ θ3.

prop1j proportionalizes conflicting m0(X) among conjuncts θ1, θ2∨θ3, and their disjunction
θ1 ∨ θ2 ∨ θ3:
if m1(θ1) +m1(θ2 ∨ θ3) +m1(θ1 ∨ θ2 ∨ θ3) > 0 we have:

prop1j(θ1,X) =
m1(θ1)

m1(θ1) +m1(θ2 ∨ θ3) +m1(θ1 ∨ θ2 ∨ θ3)

prop1j(θ2 ∨ θ3,X) =
m1(θ2 ∨ θ3)

m1(θ1) +m1(θ2 ∨ θ3) +m1(θ1 ∨ θ2 ∨ θ3)

prop1j(θ1 ∨ θ2 ∨ θ3,X) =
m1(θ1 ∨ θ2 ∨ θ3)

m1(θ1) +m1(θ2 ∨ θ3) +m1(θ1 ∨ θ2 ∨ θ3)

if m1(θ1) +m1(θ2 ∨ θ3) +m1(θ1 ∨ θ2 ∨ θ3) = 0 we have:

prop11(θ1,X) = prop11(θ2 ∨ θ3,X) = prop11(θ1 ∨ θ2 ∨ θ3) = 1/3

prop12(θ1,X) = prop11(θ2 ∨ θ3,X) = 0, prop12(θ1 ∨ θ2 ∨ θ3) = 1.

prop2j proportionalizes conflicting m0(X) among all subsets of
⋃
X = θ1∨θ2∨θ3, i.e. among

θ1, θ2, θ3, θ1 ∨ θ2, θ1 ∨ θ3, θ2 ∨ θ3, θ1 ∨ θ2 ∨ θ3:
if S = m1(θ1) +m1(θ2) +m1(θ3) +m1(θ1∨ θ2) +m1(θ1∨ θ3) +m1(θ2∨ θ3) +m1(θ1∨ θ2∨ θ3) > 0

we have, prop2j(A,X) = m1(A)
S for all A ⊆ ⋃X;

if S = 0 we have, prop21(A,X) = 1/7 for all A ⊆ ⋃X. prop22(A,X) = 0 for all A ⊂ ⋃X,
prop22(

⋃
X) = 1.

4.3 Introduction to DSm theory

Because DSmT is a new theory which is in permanent dynamic evolution, we have to note that
this text is related to its state described by formulas and text presented in the basic publication
on DSmT — in the DSmT book Vol. 1 [20]. Rapid development of the theory is demonstrated
by appearing of the current second volume of the book. For new advances of DSmT see other
chapters of this volume.
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4.3.1 Dedekind lattice and other basic DSm notions

Dempster-Shafer modified Theory or Dezert-Smarandache Theory (DSmT) by J. Dezert and F.
Smarandache [11, 20] allows mutually overlapping elements of a frame of discernment. Thus
a frame of discernment is a finite exhaustive set of elements Θ = {θ1, θ2, ..., θn}, but not nec-
essarily exclusive in DSmT. As an example we can introduce a three-element set of colours
{Red,Green,Blue} from the DSmT homepage2. DSmT allows that an object can have 2 or 3
colours in the same time: e.g. it can be both red and blue, or red and green and blue in the
same time, it corresponds to a composition of general colours from the 3 basic ones.

DSmT uses basic belief assignments and belief functions defined analogically to the classic
Dempster-Shafer theory (DST), but they are defined on so-called hyper-power set or Dedekind
lattice instead of the classic power set of the frame of discernment. To be distinguished from
the classic definitions they are called generalized basic belief assignments and generalized belief
functions3.

The Dedekind lattice, more frequently called hyper-power set DΘ in DSmT, is defined as the
set of all composite propositions built from elements of Θ with union and intersection operators
∪ and ∩ such that ∅, θ1, θ2, ..., θn ∈ DΘ, and if A,B ∈ DΘ then also A∪B ∈ DΘ and A∩B ∈ DΘ,
no other elements belong to DΘ (θi ∩ θj 6= ∅ in general, θi ∩ θj = ∅ iff θi = ∅ or θj = ∅).

Thus the hyper-power set DΘ of Θ is closed to ∪ and ∩ and θi ∩ θj 6= ∅ in general. Whereas
the classic power set 2Θ of Θ with exclusive elements is closed to ∪, ∩ and complement, and
θi ∩ θj = ∅ for every i 6= j.

Examples of hyper-power sets. Let Θ = {θ1, θ2}, we have DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2},
i.e. |DΘ| = 5. For Θ = {θ1, θ2, θ3} we have |Θ| = 3, |DΘ| = 19.

A DSm generalized basic belief assignment (DSm gbba) m is a mapping m : DΘ −→ [0, 1],
such that

∑
A∈DΘ m(A) = 1 and m(∅) = 0. The quantity m(A) is called the DSm generalized

basic belief mass (DSm gbbm) of A. A DSm generalized belief function (DSm gBF) Bel is a
mapping Bel : DΘ −→ [0, 1], such that Bel(A) =

∑
X⊆A,X∈DΘ m(X).

4.3.2 DSm models

If we assume a Dedekind lattice (hyper-power set) according to the above definition without
any other assumptions, i. e. all elements of an exhaustive frame of discernment can mutually
overlap themselves, we speak about the free DSm model Mf (Θ), i. e. about DSm model free
of constraints.

In general it is possible to add exclusivity or non-existential constraints into DSm models,
we speak about hybrid DSm models in such cases.

An exclusivity constraint θ1 ∩ θ2 M1
≡ ∅ says that elements θ1 and θ2 are mutually exclusive

in model M1, whereas both of them can overlap with θ3. If we assume exclusivity constraints

θ1 ∩ θ2 M2
≡ ∅, θ1 ∩ θ3 M2

≡ ∅, θ2 ∩ θ3 M2
≡ ∅, another exclusivity constraint directly follows

them: θ1 ∩ θ2 ∩ θ3 M2
≡ ∅. In this case all the elements of the 3-element frame of discernment

2www.gallup.unm.edu/∼smarandache/DSmT.htm
3 If we want to distinguish these generalized notions from the generalized level of minC combination we

use DSm generalized basic belief assignment, DSm generalized belief mass and function, and analogically minC
generalized basic belief assignment and minC gbbm further in this text, on the other hand no minC generalized
BF has been defined.
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Θ = {θ1, θ2, θ3} are mutually exclusive as in the classic Dempster-Shafer theory, and we call
such hybrid DSm model as Shafer’s model M0(Θ).

A non-existential constraint θ3
M3
≡ ∅ brings an additional information about a frame of

discernment saying that θ3 is impossible, it forces all the gbbm of X ⊆ θ3 to be equal to zero
for any gbba in model M3. It represents a sure meta-information with respect to generalized
belief combination, which is used in a dynamic fusion.

In a degenerated case of the degenerated DSm modelM∅ we always have m(∅) = 1, m(X) = 0
for X 6= ∅. It is the only gbbm on M∅, and it is the only case, where m(∅) > 0 is allowed in
DSmT.

The total ignorance on Θ is the union It = θ1 ∪ θ2 ∪ ... ∪ θn. ∅ = {∅M, ∅}, where ∅M is the
set of all elements of DΘ which are forced to be empty through the constraints of the modelM
and ∅ is the classical empty set4. Because we will not work withM∅ in the present contribution,
we will work only ∅ 6= X ∈ DΘ, thus X ∈ ∅ is the same as X ∈ ∅M in this text.

For a given DSm model we can define (in addition to [20]) ΘM = {θi|θi ∈ Θ, θi 6∈ ∅M},
ΘM

M≡ Θ, and IM =
⋃
θi∈ΘM θi, i.e. IM

M≡ It, IM = It ∩ΘM, IM∅ = ∅. DΘM is a hyper-power
set on the DSm frame of discernment ΘM, i.e. on Θ without elements which are excluded by
the constraints of model M. It holds ΘM = Θ, DΘM = DΘand IM = It for any DSm model
without non-existential constraint. Whereas reduced hyper-power set DΘ

M from Chapter 4 in [20]
arises from DΘ by identifying of all M-equivalent elements. DΘ

M0 corresponds to classic power
set 2Θ.

4.3.3 The DSm rule of combination

The classic DSm rule (DSmC) is defined for belief combination on the free DSm model as it
follows5:

mMf (Θ)(A) = (m1 #©m2)(A) =
∑

X∩Y=A, X,Y ∈DΘ

m1(X)m2(Y ).

Since DΘ is closed under operators ∩ and ∪ and all the ∩s are non-empty, the classic DSm
rule guarantees that (m1 #©m2) is a proper generalized basic belief assignment. The rule is
commutative and associative. For n-ary version of the rule see [20].

When the free DSm model Mf (Θ) does not hold due to the nature of the problem under
consideration, which requires to take into account some known integrity constraints, one has
to work with a proper hybrid DSm model M(Θ) 6= Mf (Θ). In such a case, the hybrid DSm
rule of combination DSmH based on the hybrid model M(Θ), Mf (Θ) 6=M(Θ) 6=M∅(Θ), for
k ≥ 2 independent sources of information is defined as: mM(Θ)(A) = (m1 #©m2 #©...#©mk)(A) =
φ(A)[S1(A)+S2(A)+S3(A)], in full generality, see [20]. For a comparison with minC combination
we use binary version of the rule, thus we have:

mM(Θ)(A) = (m1 #©m2)(A) = φ(A)[S1(A) + S2(A) + S3(A)],

where φ(A) is a characteristic non-emptiness function of a set A, i. e. φ(A) = 1 if A /∈ ∅ and
φ(A) = 0 otherwise. S1 ≡ mMf (Θ), S2(A), and S3(A) are defined by

S1(A) =
∑

X,Y ∈DΘ,X∩Y=A

m1(X) ,m2(Y )

4
∅ should be ∅M extended with the classical empty set ∅, thus more correct should be the expression ∅ =

∅M ∪ {∅}.
5 To distinguish the DSm rule from Dempster’s rule, we use #© instead of ⊕ for the DSm rule in this text.
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S2(A) =
∑

X,Y ∈ ∅, [U=A]∨[(U∈ ∅)∧(A=It)]

m1(X)m2(Y )

S3(A) =
∑

X,Y ∈DΘ, X∪Y=A, X∩Y ∈ ∅

m1(X)m2(Y )

with U = u(X) ∪ u(Y ), where u(X) is the union of all singletons θi that compose X and Y ;
all the sets A,X, Y are supposed to be in some canonical form, e.g. CNF. Unfortunately no
mention about the canonical form is included in [20].

As size of hyper-power set DΘ rapidly increase with cardinality of the frame of discern-
ment Θ some readers may be interested in Chapter 2 of [20] on the generation of hyper-power
sets, including subsection about memory size and complexity. For applications of DSmT see
contributions in second parts of both the volumes of DSmT book.

In [20], is was shown that DSm hyper-power set corresponds to minC generalized frame of
discernment extended with ∅, where overlappings of elements in DSm hyper-power set corre-
spond to elementary conflicts in minC generalized frame of discernment and that the classic
DSm rule numerically coincides with the generalized level of minC combination.

4.4 MinC combination on hyper-power sets

4.4.1 Generalized level of minC combination on hyper-power set

From the correspondence of hyper-power set (Dedekind Lattice) DΘ with distributive lattice
L∅(Θ) representing extended minC generalized frame of discernment and from numerical coinci-
dence of the classic DSm rule with generalized level of minC combination, we obtain coincidence
of generalized level of minC on the hyper-power set with the generalized level of the classic minC
combination and with the classic DSm rule (DSmC). Hence the generalized level of the minC
combination on the hyper-power set is given by the following formula:

(m1mC©m2)0(A) = m0(A) =
∑

X∧Y=A

m1(X)m2(Y ) =
∑

X∩Y=A

m1(X)m2(Y ).

4.4.2 MinC combination on the free DSm model Mf

There are no constraints on the free DSm model, all elements of hyper-power set are allowed to
have a positive (DSm generalized) bbm. It means that there are no conflicting bbms in minC
combination generalized to the free DSm model. Thus no reallocation of bbms is necessary in
minC combination generalized to the free DSm model. Thus minC combination generalized to
the free DSm model coincides with its generalized level from the previous subsection:

m(A) = m0(A) =
∑

X∩Y=A

m1(X)m2(Y ).

Hence the generalized level of the minC combination and the minC combination on the free
DSm model is associative and commutative operation on DSm generalized belief functions. The
combination also commutes with coarsening of the frame of discernment.

Let us note that m(∅) = 0 = m0(∅) always holds as X ∩ Y 6= ∅ for any X,Y ∈ DΘ, and
mi(∅) = 0 for any DSm gbba on DΘ.
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4.4.3 Static minC combination on hybrid DSm models

Let us continue our generalization with a static combination, where DSm model is not changed
within the combination process, i.e. all input belief functions are defined on a hybrid model

in question. Let us suppose a fixed DSm model M, thus we can use ≡ instead of
M≡ for

simplification of generalized minC formulas.
As some of the elements of DΘ are equal to other ones in hybrid DSm model M, we have

to reallocate their m0 gbbm’s to a corresponding elements DΘ
M as it follows:

m1(A) = m0(A) +
∑

X 6=A, X∈DΘ, X≡A
m0(X) =

∑

X∈DΘ, X≡A
m0(X),

for all ∅ 6≡ A ∈ DΘ, (i.e. for all A 6∈ ∅M). This step corresponds to relocation of potential
conflicts in classic minC combination.

The rest is reallocation of m0 bbms of sets which are equivalent to ∅; such sets correspond to
pure conflicts in the classic case. Analogically to the proportionalization of gbbm of pure conflict
X to its power set P(

⋃
X) in the classic minC combination, we proportionalize6 conflicting

gbbm m0(X) to substructure of the DSm model M defined by
⋃
X, i.e. to D

S

X
M , we do not

care about Y ≡ ∅M because they are not allowed by model M.

m(A) = m1(A) + reallocated gbbm′s of conflicts.

m(A) =
∑

X∈DΘ

X≡A

m0(X) +
∑

X∈DΘ

X≡∅, A⊆∪X

prop(A,X)m0(X),

where proportionalization coefficient function prop is analogous to the prop in the classic version;
there are only the following differences in notation: we use X ∈ DΘ instead of X ∈ L(Θ),

X ∈ DΘ
M instead of X ∈ P(Θ), bel1M instead of cbel1, |DΘ

M| .... P(Θ) = 2|Θ|, |D
S

X
M | ....

2|
S

X| = |p(X)|, A ∈ D
c(X)
M .... A ∈ p(X), Z ∈ ∅M ....

⋃
Z = ∅, and similarly. Where

D
c(X)
M = {Y ∈ DΘ

M | c(Y ) ⊆ c(X)}, i.e. elements of D
c(X)
M are all unions and intersections

constructed from conjuncts from CNF (X) (from Xi such that CNF (X) = X1 ∩ ... ∩Xk). Let
X be such that CNF (X) = (θ1∪θ2)∩(θ1∪θ3)∩θ4 for example, thus c(X) = {θ1∪θ2, θ1∪θ3, θ4},
and D

c(X)

Mf contains e.g. θ1∪θ2∪θ4 and (θ1∪θ2)∩θ4, but neither θ1∪θ4 or θ1∩θ4 nor θ2∪θ3∪θ4
as θ1, θ2, θ3, θ2 ∪ θ3, θ2 ∪ θ4, θ3 ∪ θ4 are not elements of c(X).

For m0(X) > 0 we have that (
⋃
X) 6∈ ∅M in static combination, because X ⊆ ⋃X and

similarly for all input focal elements Xi from which m0(X) is computed Xi ⊆
⋃
X. Thus we

have no problem with cardinality |D∪X
M | which is always ≥ 2.

It is possible to show that
∑

X∈DΘ
M
m(X) = 1, i.e. m(A) correctly defines static combination of

gbba’s on hybrid DSm modelM. We can also show that the above definition coincides with the
classic minC combination on the Shafer’s DSm model M0. Hence the above definition really
generalizes the classic minC combination.

4.4.4 Dynamic minC combination

To make a full generalization of minC combination in the DSm nature. We have to allow
also a change of a DSm model during combination, i.e. to allow input belief functions which

6If a proportionalization ratio is not defined, i.e. if it should be ” 0
0
” then either 1) division to the same parts

or 2) reallocation to
S

X is used, analogically to the classic case.
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are defined on more general model that is the resulting one, i.e. we have to be prepared to
prohibition of some input focal elements. In such a case we have no immediate suggestion
how reallocate m0(X) for X ≡ ∅ such that also

⋃
X ≡ ∅. In correspondence to non-defined

proportionalization ratios we can distribute it among all non-empty elements of DSm modelM
or to relocate it to whole IM. We can represent both these proportionalizations with coefficient
functions prop(A,X) for computation of proportion of conflicting gbbm m0(X) which to be
reallocated to ∅ 6≡ A ∈ D∪X

M and analogical dyn(A,X) for dynamic fusion proportionalization
of m0(X) where

⋃
X ≡ ∅. With respect to two types of proportionalization and two variants of

non-defined proportionalizaton ratios managing we obtain four variants of coefficient function
prop and two variants coefficient function dyn: of prop11(A,X), prop12(A,X), prop21(A,X),
prop22(A,X), dyn1(A,X), and dyn2(A,X). We can summarize the dynamic minC combination
as it follows:

m0(A) =
∑

X,Y ∈DΘ

X∩Y =A

m1(X)m2(Y )

mij(A) =
∑

X∈DΘ

X≡A

m0(X) +
∑

∅≡X∈DΘ

A⊆S

X

propij(A,X)m0(X) +
∑

X∈DΘ
S

X≡∅

dynj(A,X)m0(X)

for all ∅ 6≡ A ∈ DΘ
M, where |DΘ

M| > 1 and where propij(A,X), dynj(A,X) are defined as it
follows:
prop11(A,X) = prop12(A,X) = m1(A)

P

A,Y ∈D
c(X)
M

m1(Y ) for A ∈ Dc(X)
M ,

∑
Y ∈Dc(X)

M
m1(Y ) > 0,

prop11(A,X) = prop12(A,X) = 0 for A /∈ Dc(X)
M ,

prop11(A,X) = 1

|Dc(X)
M |−1

for A ∈ Dc(X)
M ,

∑
Y ∈Dc(X)

M
m1(Y ) = 0,

prop12(A,X) = 1 for A =
⋃
X,

∑
Y ∈Dc(X)

M
m1(Y ) = 0,

prop12(A,X) = 0 for A ⊂ ⋃X, ∑
Y ∈Dc(X)

M
m1(Y ) = 0,

prop21(A,X) = m1(A)
bel1M(X)

for bel1M(X) > 0,

prop21(A,X) = 1
|D∪X

M |−1
for bel1M(X) = 0,

prop22(A,X) = m1(A)
bel1M(X)

for bel1M(X) > 0,

prop22(A,X) = 1 for bel1M(X) = 0 and A =
⋃
X,

prop22(A,X) = 0 for bel1M(X) = 0 and A ⊂ ⋃X,

dyn1(A, ) = m1(A)
P

Z∈DΘ
M
m1(Z)

, if
∑

Z∈DΘ
M

m1(Z)>0,

dyn1(A, ) = 1
|DΘ

M|−1
, if

∑
Z∈DΘ

M

m1(Z) = 0,

dyn2(A, ) = m1(A)
P

Z∈DΘ
M
m1(Z)

, if
∑

Z∈DΘ
M

m1(Z)>0,

dyn2(IM, ) = 1, if
∑

Z∈DΘ
M

m1(Z) = 0,
dyn2(A, ) = 0, if

∑
Z∈DΘ

M

m1(Z) = 0, A 6= IM,

mij(A) = 0 for A ≡ ∅.
Similarly to the classic case we can show that

∑
X∈DΘ

M
m(X) = 1 hence the above formulas

produce a correct gbba also for dynamic combination.
If we want to combine 3 or more (k) gBF’s, we apply twice or more times (k times) the

binary combination on the generalized level (in the classic minC terminology), i.e. on the free
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Mf M1 M2 M2 M3 M3 M4 M4 M5 M5 M6 M7 M7

m1 m2 m0 mij m1j m2j m1j m2j m1j m2j m1j m2j mij m1j m2j

θ1∩θ2∩θ3 0 0 0.16
θ1 ∩ θ2 0.10 0.20 0.22 0.26
θ1 ∩ θ3 0.10 0 0.12 0.14 0.15 0.20 0.18 0.41
θ2 ∩ θ3 0 0.20 0.19 0.23 0.30 0.41 0.42 0.70

θ1∩(θ2∪θ3) 0 0 0 0.00
θ2∩(θ1∪θ3) 0 0 0.05 0.06
θ3∩(θ1∪θ2) 0 0 0.01 0.01 0.01 0.02

✷ 0 0 0 0
θ1 0.10 0.20 0.08 0.10 0.26 0.14 0.31 0.24 0.39 0.41 0.62 0.67
θ2 0.20 0.10 0.03 0.04 0.10 0.05 0.17 0.09 0.17 0.15 0.27 0.07 0.37 0.33
θ3 0.30 0.10 0.10 0.12 0.13 0.13 0.29 0.23 0.37 0.39 0.31 0.23 1.00

✷θ1 0 0 0.02 0.02 0.025 0.03
✷θ2 0 0 0 0 0 0
✷θ3 0 0 0 0

θ1 ∪ θ2 0.10 0 0 0 0 0 0 0 0 0 0.01 0
θ1 ∪ θ3 0.10 0.20 0.02 0.02 0.025 0.03 0.05 0.03 0.06 0.05
θ2 ∪ θ3 0 0 0 0 0 0 0 0 0 0 0 0
θ1∪θ2∪θ3 0 0 0 0 0 0 0 0 0 0

Table 4.1: MinC combination of gbba’s m1 and m2 on hybrid DSm models M1, ...,M7.

DSm model, (or equivalently k-ary combination on the free DSm model), and after it we use
some proportionalization in the same way as in the case of the minC combination of two gBF’s.
Hence we can see that the minC combination is defined on any DSm model for any k generalized
belief functions.

4.5 Examples of minC combination

Three simple examples for both the static and dynamic fusion on Shafer’s DSm modelM0 have
been presented in [10]. Nevertheless, for an illustration of all main properties of the generalized
minC rule it is necessary to see, how the rule works on general hybrid DSm models. Therefore
we present examples of fusion on seven different hybrid DSm models M1, ...,M7 in this text,
see Table 4.1.

For easier comparison of the generalized minC combination with the hybrid DSm rule we use
the models from Examples 1 — 7, see DSm book Vol. 1 [20], Chapter 4. All the combinations are
applied to two generalized belief functions on a 3-element frame of discernment Θ = {θ1, θ2, θ3}.
The hybrid DSm models from the examples are given as it follows:

M1 : θ1 ∩ θ2 ∩ θ3
M1≡ ∅,

M2 : θ1 ∩ θ2
M2≡ ∅, thus also θ1 ∩ θ2 ∩ θ3

M2≡ ∅,
M3 : θ2 ∩ (θ1 ∪ θ3)

M3≡ ∅ and hence also θ1 ∩ θ2
M3≡ θ2 ∩ θ3

M3≡ θ1 ∩ θ2 ∩ θ3
M3≡ ∅,

M4 =M0: θ1 ∩ θ2
M4≡ θ2 ∩ θ3

M4≡ θ1 ∩ θ3
M4≡ ∅ and hence also θ1 ∩ θ2 ∩ θ3

M4≡ θ1 ∩ (θ2 ∪ θ3)
M4≡

θ2 ∩ (θ1 ∪ θ3)
M4≡ θ3 ∩ (θ2 ∪ θ3)

M4≡ ✷
M4≡ ∅, and further ✷θ1

M4≡ θ1, ✷θ2
M4≡ θ2, ✷θ3

M4≡ θ3,

M5 : θ1
M5≡ ∅ (θ1 is removed from Θ = {θ1, θ2, θ2} in fact) thus all X ∈ DΘ which include

intersection with θ1 are forced to be empty ( i.e. X
M5≡ ∅), and all Y ∈ DΘ which include union

with θ1 are forced to be equivavent to some element of DΘ
M5

,

M6 : θ1
M6≡ θ2

M6≡ ∅, thus θ1 ∪ θ3
M6≡ θ2 ∪ θ3

M6≡ θ1 ∪ θ2 ∪ θ3
M6≡ θ3 ∪ (θ1 ∩ θ2)

M6≡ θ3, and all
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other X ∈ DΩ are forced to be empty ( i.e. X
M6≡ ∅),

M7 : θ3 ∪ (θ1 ∩ θ2)
M7≡ ∅, i.e. also θ3

M7≡ ∅ and θ1 ∩ θ2
M7≡ ∅, thus only θ1 ∪ (θ2 ∩ θ3)

M7≡
θ1

M7

6≡ ∅, θ2 ∪ (θ1 ∩ θ3)
M7≡ θ2

M7

6≡ ∅, θ3 ∪ (θ1 ∩ θ2)
M7≡ θ3

M7

6≡ ∅, and all the other X ∈ DΘ are
constrained, for more details see [20].

We use the following abbreviations for 4 elements of DΘ: ✷ for (θ1∩θ2)∪(θ1∩θ3)∪(θ2∩θ3) =
(θ1 ∪ θ2)∩ (θ1 ∪ θ3)∩ (θ2 ∪ θ3), ✷θ1 for θ1 ∪ (θ2∩ θ3) = (θ1 ∪ θ2)∩ (θ1 ∪ θ3), ✷θ2 for θ2∪ (θ1 ∩ θ3),
and ✷θ3 for θ3 ∪ (θ1 ∩ θ2). Thus ✷ is not any operator here, but just a symbol for abbreviation;
it has its origin in the papers about minC combination [4, 10], see also Chapter 10 in DSm book
Vol. 1 [20].

The generalized BF’s Bel1 and Bel2 are represented by generalized bba’s m1 and m2 from
the referred Examples 1—7 again. For the values of gbbm’s mi(A) see the 2nd and 3rd column
of Table 4.1. All elements of the hyper-power set DΘ, which correspond to the given frame of
the discernment Θ, are placed in first column of the table.

For better comparison of different results of the generalized minC combination on different
DSm models we put all the results into one table. Every row of the table body contain an element
A of DΘ, corresponding values of source gbba’s mi(A), value m0(A), which corresponds to the
free DSm model Mf , and gbbm’s mij(A) corresponding to hybrid DSm models M1 — M7

referred in the first row of the table head. The fourth column of Table 4.1 present values m0(A)
of the generalized level of the generalized minC combination. These values coincide with the
resulting values m(A) on the free DSm model Mf , where values for all elements A ∈ DΘ are
defined and printed.

To space economizing, we present the DSm models Mi together with the resulting gbbm
values mij(A) in the corresponding columns of Table 4.1: only values for A ∈ DΘ

Mi
are printed.

The 0 values for A ∈ DΘ which are constrained (forced by constraints to be empty) are not

printed, similarly the 0 values for X ∈ DΘ which are Mi-equivalent to some A ∈ DΘ
Mi

(A
Mi≡

X 6= A) are also not printed. Thus for example θ1 ∩ θ2 ∩ θ3
M1≡ ∅, θ1 ∩ θ2 ∩ θ3

M2≡ θ1 ∩ θ2
M2≡ ∅

consequently mij(θ1 ∩ θ2 ∩ θ3) = 0 in both models M1 and M2 and mij(θ1 ∩ θ2) = 0 in model

M2, hence the corresponding cells in the table are blank. Similarly θ1 ∩ (θ2 ∪ θ3)
M2≡ θ1 ∩ θ3,

θ2 ∩ (θ1 ∪ θ3)
M2≡ θ2 ∩ θ3, ✷θ3 = θ3 ∪ (θ1 ∩ θ2)

M2≡ θ3, and ✷
M2≡ θ3 ∩ (θ1 ∪ θ2), thus values

m0(X) are added to values m0(A) and m1(X) = mij(X) = 0 for all such Xs and corresponding

As (A
M2≡ X 6= A), i.e. mij(θ1 ∩ (θ2 ∪ θ3)),mij(θ2 ∩ (θ1 ∪ θ3)),mij(✷θ3)mij(✷) are forced to

be 0 in DSm model M2, hence the corresponding cells in the 6th and 7th columns of the table
are also blank. On the other hand there are printed 0 values for mij(θ1 ∪ θ2) = mij(θ2 ∪ θ3) =
mij(θ1 ∪ θ2 ∪ θ3) = mij(✷θ2) = 0 because these 0 values are not forced by constraints of the
model M2 but they follow values of input gbba’s m1 and m2. M4 ≡ M0 is Shafer’s DSm
model thus the values are printed just for A ∈ 2Θ in the 10-th and 11-th columns. For details
on equivalence of A ∈ DΘ on hybrid DSm models M3,M5,M6,M7, see Chapter 4 in DSm
book Vol. 1 [20]; for the model M3 see also Example 6 in Chapter 3 of this volume, specially
the 5-th column of Table 3.6 as the modelM3 coincides with DSm modelM4.3 there. There is
no row for ∅ in Table 4.1 as all the cells should be blank there.

Because of the values mi(A) of the used gbba’s m1 and m2, there is no difference between
mi1 and mi2 on all the models M1, ...,M7, moreover, there is also no difference between m1j

and m2j on model M1. Trivially, there is no difference on trivial DSm model M6 which have
the only element θ3 not equivalent to empty set (DΘ

M6
= {θ3, ∅}) thus there is the only possible
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gbbm m(θ3) = 1 on the model M6. Trivially, there is also no difference among mij on the free
DSm model Mf because there is no constraint and consequently no proportionalization there.

To economize space in the table again, only columns with different values are printed. Results
m1 of the combination step which groups together values m0(X) of Mi-equivalent elements of
DΘ are not presented from the same reason.

4.6 Comparison of the generalized minC combination and

hybrid DSm combination rules

There is presented minC combination of generalized BF’s Bel1 and Bel2 on the free DSm model
and on 7 hybrid DSm models in the previous section. For a comparison of the generalized minC
combination rule with the hybrid DSm rule (DSmH rule), we compute or recall the DSm rule
results on the same DSm models from the examples in DSm book 1 [20], Chapter 4. We
present the results in the same way as there were presented the results of the generalized minC
combination in the previous section, see Table 4.2. From the definitions of the both the rules

Mf M1 M2 M3 M4 M5 M6 M7

m1 m2 mMf mDSmH mDSmH mDSmH mDSmH mDSmH mDSmH mDSmH

θ1∩θ2∩θ3 0 0 0.16
θ1 ∩ θ2 0.10 0.20 0.22 0.22
θ1 ∩ θ3 0.10 0 0.12 0.12 0.14 0.17
θ2 ∩ θ3 0 0.20 0.19 0.19 0.26 0.33

θ1∩(θ2∪θ3) 0 0 0 0.02
θ2∩(θ1∪θ3) 0 0 0.05 0.07
θ3∩(θ1∪θ2) 0 0 0.01 0.03 0.03

✷ 0 0 0 0
θ1 0.10 0.20 0.08 0.08 0.12 0.16 0.18 0.43
θ2 0.20 0.10 0.03 0.03 0.08 0.12 0.13 0.24 0.24
θ3 0.30 0.10 0.10 0.10 0.17 0.23 0.24 0.39 1.00

✷θ1 0 0 0.02 0.04 0.04
✷θ2 0 0 0 0.01 0.01 0.01
✷θ3 0 0 0 0.07

θ1 ∪ θ2 0.10 0 0 0 0.09 0.11 0.11 0.33
θ1 ∪ θ3 0.10 0.20 0.02 0.02 0.06 0.08 0.17
θ2 ∪ θ3 0 0 0 0 0 0.05 0.05 0.04
θ1∪θ2∪θ3 0 0 0 0 0 0.07 0.12

Table 4.2: DSmH combination of gbba’s m1 and m2 on hybrid DSm models M1, ...,M7.

it is obvious that the minC and DSmH rules coincide themselves on the free DSm model and
that they coincide also with the classic DSm (DSmC) rule and with the conjunctive rule of
combination of gBF’s on DSm hyper-power sets. In the examples we can compare the fourth
columns in both the tables.

Trivially, both the rules coincide also on trivial DSm models with the only non-empty
element, see e.g. M6 and the corresponding columns in the tables.

The presented examples are not enough conflicting to present differences between proportion-
alizations propi1 and propi2. Therefore we add another example for presentation of their differ-
ences and for better presentation of their relation to DSmH rule. For this reason we use a mod-
ified Zadeh’s example on Shafer’s model on 4-element frame of discernment Θ = {θ1, θ2, θ3, θ4}:
M8 =Mf (Θ). The small non-conflicting element is split to two parts θ3 and θ4 and similarly
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its bbms. In the same time, it is a modification of the example from subsection 5.4.1 from
Chapter 5 in DSm book Vol. 1, where small parts of m(θ3 ∪ θ4) are more specified to θ3 and
θ4 in inputs bba’s, see Table 4.3. When coarsening {θ1, θ2, θ3, θ4} to {θ1, θ2, θ3 ≡ θ4} in our
present example, we obtain an instance of the classic Zadeh’s example. Hence our example in
Table 4.3 is just one of many possible refinements of Zadeh’s example.

The structure of the table is analogous to that of previous tables. As the whole table
representing DΘ has 167 rows, all the rows which include only 0s and blank cells are skipped.
Different results of minC using 4 proportionalizations are presented in 5-8th columns of the table.
DSmH results are presented in 9-th column. As it is already mentioned in the introduction,
we cannot forget that Dempster’s rule produces correct results for combination of any 2 belief
functions which correctly represent mutually probabilistically independent evidences, which are
not in full contradiction, on Shafer’s model. Therefore we present also the result of application
of Dempster’s rule in the last column of Table 4.3.

Mf M8 M8 M8 M8 M8 M8

m1 m2 m0 m11 m12 m21 m22 mDSmH m⊕
θ1 ∩ θ2 0 0 0.9506

θ1 ∩ θ3 0 0 0.0098

θ2 ∩ θ4 0 0 0.0097

θ3 ∩ θ4 0 0 0.0001

θ1∩(θ3∪θ4) 0 0 0.0196

θ2∩(θ3∪θ4) 0 0 0.0097

θ1 0.98 0 0 0.31686 0 0.31686 0 0 0

θ2 0 0.97 0 0.31686 0 0.31686 0 0 0

θ3 0 0.01 0.0001 0.00992 0.00992 0.01578 0.01578 0.0001 0.20

θ4 0.01 0 0.0002 0.00994 0.00994 0.02166 0.02166 0.0002 0.40

θ1 ∪ θ2 0 0 0 0.31686 0.95060 0.31686 0.95060 0.9506 0

θ1 ∪ θ3 0 0 0 0 0 0 0 0.0098 0

θ2 ∪ θ4 0 0 0 0 0 0 0 0.0097 0

θ3 ∪ θ4 0.01 0.02 0.0002 0.02954 0.02954 0.01196 0.01196 0.0003 0.40

θ1∪θ3∪θ4 0 0 0 0 0 0 0 0.0196 0

θ2∪θ3∪θ4 0 0 0 0 0 0 0 0.0097 0

Table 4.3: Comparison of minC combination, hybrid DSm and Dempster’s rules on a modified
Zadeh’s example on Shafer’s model M8 ≡ M0(Θ) for a 4-element frame of discernment Θ =
{θ1, θ2, θ3, θ4}. (Only non-empty non-zero rows of the table are printed.)

Results of the minC combination are usually more specified (i.e. gbbm’s are located to less
focal elements) in general cases, compare the columns corresponding to the same DSm models in
Tables 4.1 and 4.2, see also comparison in Table 4.3. It holds more when using proportionaliza-
tions propi1, which produce more specified results than proportionalizations propi2 do. There
are also examples, where it is not possible to say which rule produces more of less specified
results. It is in cases of totally conflicting focal elements, where all input gbbm’s corresponding
to these elements are assigned to X ≡ ∅ by m0 ≡ mMf .

Moreover the counter examples arise in a special cases of input gBF’s with focal elements
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which are all totally conflicting and some of them assign(s) gbba to overlapping element(s)
of frame of discernment. For example, let us assume hybrid DSm model M2 and gBF’s
Bel3, Bel4, Bel5 given by gbba’s m3(θ1) = 1, m4(θ2 ∩ θ3) = 1 and m5(θ1 ∩ θ2 ∩ θ3) = 1.

When combining Bel3 and Bel4 using prop22 we obtain a counter example for static fusion:
m11(θ1) = m11(θ2 ∩ θ3) = m11(θ1 ∪ (θ2 ∩ θ3)) = 1/3, m12(θ1 ∪ (θ2 ∩ θ3)) = 1, m21(X) =
1/12, m22(θ1 ∪ θ2 ∪ θ3) = 1, whereas for DSmH we obtain mDSmH(θ1 ∪ (θ2 ∩ θ3)) = 1, i.e.
mDSmH(✷θ1) = 1. We can immediately see that θ1∪θ2∪θ3 ⊃ θ1∪ (θ2∩θ3). When using prop21

it not possible to say which of the rules produces more specified results as m21 assigns 1/12 to
every element of modelM: one of them is equal to ✷θ1 = θ1∪ (θ2∩ θ3) (to what DSmH assigns
1), 4 of them are subset of ✷θ1, 3 of them are supersets of ✷θ1 and 4 of them are incomparable.

When combining Bel3 and Bel5 using prop21 we obtain a similar case for dynamic fusion:
m11(θ1) = m12(θ1) = m22(θ1) = mDSmH(θ1) = 1 and m21(X) = 1/12 for all ∅ 6≡ X ∈ DΘ

M2
.

m21 assigns 1/12 to every element of model M again: one of them is equal to θ1 (to what
DSmH assigns 1, 1 of them θ1 ∩ θ3 is subset of θ1, 4 of them (✷θ1, θ1 ∪ θ2, θ1 ∪ θ3, θ1 ∪ θ2 ∪ θ3)
are supersets of θ1 and other 6 of them are incomparable.

A detail study of situations where it is not possible say whether minC combination produces
more specified results and situations where DSmH rule produces more specified results is an
open problem for future.

The principal difference between the minC combination and the hybrid DSm rule is the
following: DSmH rule handles separately individual multiples of gbbm’s m1(X)m2(Y ) and
assign them to intersection (if non-empty) or to union (if non-empty) of focal elements X and Y .
Whereas the minC combination groups together all the multiples, where X∩Y are mutuallyM-
equivalent and assigns the result to X∩Y (if non-empty) or proportionalizes it to focal elements
derived from

⋃
(X ∩ Y ). Hence multiples mi(θ1)mj(θ2 ∩ θ3),mi(θ1)mj(θ1 ∩ θ2 ∩ θ3),mi(θ1 ∩

θ2)mj(θ2 ∩ θ3),mi(θ1 ∩ θ2)mj(θ1 ∩ θ2 ∩ θ3) and other M-equivalent are reallocated all together
in the minC combination. Similarly multiples mi(θ1)mj(θ2),mi(θ1)mj(θ1∩θ2),mi(✷θ1)mj(θ1∩
θ2),mi(θ1 ∩ θ2)mj(θ1 ∪ θ2),mi(θ1 ∩ θ2)mj(θ1 ∪ θ2 ∪ θ3) and other M-equivalent are reallocated
also all together in the minC combination. This is also the reason of minC results in the special
cases, where X ∪ Y ⊂ ⋃(X ∩ Y ) and m1(Z) = 0 for all Z ∈ DΘ

M, as in the previous paragraph.

The other principal difference is necessity of n-ary version of the rule for DSmH. Whereas
we can apply (n-1) times computation of binary m0 and some proportionalization after, in the
case of the binary minC combination.

4.7 Related works.

We have to remember again the comparison of classic minC with DSmH on Shafer’s DSm model
at first, see Chapter 10 in [20].

To have a solid theoretical background for comparison of DSm rules with the classic ones,
a generalization of Dempster’s rule, Yager’s rule [23], and Dubois-Prade rule [13] has been
presented in [6, 7], see also Chapter 3 in this volume, and the generalized minC combination
in [8].

We cannot forget for new types of DSm rules, especially Proportional Conflict Redistribution
Rules [21], which are ”between” DSmC and DSmH rules on one side and minC approach on the
other side. Comparison of these rules with the generalized minC approach is a very interesting
task for forthcoming research.
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We have to mention also works by Besnard [1] and his collaborators Jaouen [16] and Perin
[18], who propose to replace the classical Boolean algebras with a distributive lattice, hoping it
might solve Smets’ bomb issue. Their distributed lattice generated on a frame of discernment is
the free DSm model in fact, it also coincides with a lattice L(Θ) in minC combination. Moreover
these authors use a conflicting relation for a construction of their evidential structure. There
is no concept of negation similarly to DSm approach. Comparison of the conflicting relation
with DSm constraints and of the evidential structures with hybrid DSm models is still an open
problem for future research to formulate a relation between the two independently developed
approaches to belief combination on distributive lattices. Nevertheless neither this issue really
new as it has been started and unfortunately unfinished by Philippe Smets in 2004/2005.

4.8 Conclusion

The minC combination rule generalized to DSm hyper-power sets and general hybrid DSm
models has been presented both for static and dynamic fusion of generalized belief functions.

Examples of the generalized minC combination on several hybrid DSm models have been
presented and discussed. After it, a comparison of the generalized minC combination and the
hybrid DSm rule has been performed and several open problems for a future research has been
defined.

A step for inclusion of minC combination into family of DSm combination rules has been
done.
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Chapter 5

Pre-Boolean algebra, ordered DSmT
and DSm continuous models
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16 Bis, Avenue Prieur de la Côte d’Or,
Arcueil, F 94114, France.

Abstract: When implementing the DSmT, a difficulty may arise from the possible
huge dimension of hyper-power sets, which are indeed free structures. However, it is
possible to reduce the dimension of these structures by involving logical constraints.
In this chapter, the logical constraints will be related to a predefined order over the
logical propositions. The use of such orders and their resulting logical constraints
will ensure a great reduction of the model complexity. Such results will be applied to
the definition of continuous DSm models. In particular, a simplified description of
the continuous impreciseness is considered, based on impreciseness intervals of the
sensors. From this viewpoint, it is possible to manage the contradictions between
continuous sensors in a DSmT manner, while the complexity of the model stays
handleable.

5.1 Introduction

Recent advances [6] in the Dezert Smarandache Theory have shown that this theory was able
to handle the contradiction between propositions in a quite flexible way. This new theory has
been already applied in different domains; e.g.:

• Data association in target tracking [9] ,

• Environmental prediction [2] .

Although free DSm models are defined over hyper-power sets, which sizes evolve exponentially
with the number of atomic propositions, it appears that the manipulation of the fusion rule
is still manageable for practical problems reasonably well shaped. Moreover, the hybrid DSm
models are of lesser complexity.

If DSmT works well for discrete spaces, the manipulation of continuous DSm models is still an
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unknown. Nevertheless, the management of continuous data is an issue of main interest. It is
necessary for implementing a true fusion engine for localization informations; and associated
with a principle of conditioning, it will be a main ingredient for implementing filters for the
localization. But a question first arises: what could be an hyper-power set for a continuous
DSm model? Such first issue does not arises so dramatically in Dempster Shafer Theory or for
Transfer Belief Models [7]. In DST, a continuous proposition could just be a measurable subset.
On the other hand, a free DSm model, defined over an hyper-power set, will imply that any
pair of propositions will have a non empty intersection. This is disappointing, since the notion
of point (a minimal non empty proposition) does not exist anymore in an hyper-power set.

But even if it is possible to define a continuous propositional model in DST/TBM, the manip-
ulation of continuous basic belief assignment is still an issue [4, 8]. In [4] , Ristic and Smets
proposed a restriction of the bba to intervals of IR . It was then possible to derive a mathemat-
ical relation between a continuous bba density and its Bel function.

In this chapter, the construction of continuous DSm models is proposed. This construction is
based on a constrained model, where the logical constraints are implied by the definition of an
order relation over the propositions.

A one-dimension DSm model will be implemented, where the definition of the basic belief as-
signment relies on a generalized notion of intervals. Although this construction has been fulfilled
on a different ground, it shares some surprising similarities with Ristic and Smets viewpoint.
As in [4], the bba will be seen as density defined over a 2-dimension measurable space. We will
be able to derive the Belief function from the basic belief assignment, by applying an integral
computation. At last, the conjunctive fusion operator, ⊕, is derived by a rather simple integral
computation.

Section 5.2 makes a quick introduction of the Dezert Smarandache Theory. Section 5.3 is about
ordered DSm models. In section 5.4, a continuous DSm model is defined. This method is re-
stricted to only one dimension. The related computation methods are detailed. In section 5.5,
our algorithmic implementation is described and an example of computation is given. The paper
is then concluded.

5.2 A short introduction to the DSmT

The theory and its meaning are widely explained in [6]. However, we will particularly focus on
the notion of hyper-power sets, since this notion is fundamental subsequently.

The Dezert Smarandache Theory belongs to the family of Evidence Theories. As the Demp-
ster Shafer Theory [3] [5] or the Transferable Belief Models [7], the DSmT is a framework for
fusing belief informations, originating from independent sensors. However, free DSm models
are defined over Hyper-power sets, which are fully open-world extensions of sets. It is possible
to restrict this full open-world hypothesis by adding propositional constraints, resulting in the
definition of an hybrid Dezert Smarandache model.

The notion of hyper-power set is thus a fundamental ingredient of the DSmT. Hyper-power
sets could be considered as a free pre-Boolean algebra. As these structures will be of main
importance subsequently, the next sections are devoted to introduce them in details. As a
prerequisite, the notion of Boolean algebra is quickly introduced now.
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5.2.1 Boolean algebra

Definition. A Boolean algebra is a sextuple (Φ,∧,∨,¬,⊥,⊤) such that:

• Φ is a set, called set of propositions,

• ⊥,⊤ are specific propositions of Φ, respectively called false and true,

• ¬ : Φ→ Φ is a unary operator,

• ∧ : Φ× Φ→ Φ and ∨ : Φ× Φ→ Φ are binary operators,

and verifying the following properties:

A1. ∧ and ∨ are commutative:

∀φ,ψ ∈ Φ, φ ∧ ψ = ψ ∧ φ and φ ∨ ψ = ψ ∨ φ ,

A2. ∧ and ∨ are associative:

∀φ,ψ, η ∈ Φ, (φ ∧ ψ) ∧ η = φ ∧ (ψ ∧ η) and (φ ∨ ψ) ∨ η = φ ∨ (ψ ∨ η) ,

A3. ⊤ is neutral for ∧ and ⊥ is neutral for ∨:

∀φ ∈ Φ, φ ∧⊤ = φ and φ ∨ ⊥ = φ ,

A4. ∧ and ∨ are distributive for each other:

∀φ,ψ, η ∈ Φ, φ ∧ (ψ ∨ η) = (φ ∧ ψ) ∨ (φ ∧ η) and φ ∨ (ψ ∧ η) = (φ ∨ ψ) ∧ (φ ∨ η) ,

A5. ¬ defines the complement of any proposition:

∀φ ∈ Φ, φ ∧ ¬φ = ⊥ and φ ∨ ¬φ = ⊤ .

The Boolean algebra (Φ,∧,∨,¬,⊥,⊤) will be also referred to as the Boolean algebra Φ, the
structure being thus implied. An order relation ⊂ is defined over Φ by:

∀φ,ψ ∈ Φ , φ ⊂ ψ ∆⇐⇒ φ ∧ ψ = φ .

Fundamental examples. The following examples are two main conceptions of Boolean al-
gebra.

Example 1. Let Ω be a set and P(Ω) be the set of its subsets. For any A ⊂ Ω, denote
∼ A = Ω \ A its complement. Then

(
P(Ω),∩,∪,∼, ∅,Ω

)
is a Boolean algebra.

The proof is immediate by verifying the properties A1 to A5.

Example 2. For any i ∈ {1, . . . , n}, let θi = {0, 1}i−1 × {0} × {0, 1}n−i . Let Θ = {θ1, . . . , θn}
and denote ⊥ = ∅, ⊤ = {0, 1}n and B(Θ) = P

(
{0, 1}n

)
. Define the operators ∧, ∨ and ¬ by

φ∧ ψ = φ∩ ψ, φ∨ ψ = φ∪ ψ and ¬φ = ⊤ \ φ for any φ,ψ ∈ B(Θ) . Then
(
B(Θ),∧,∨,¬,⊥,⊤

)

is a Boolean algebra.

The second example seems just like a rewriting of the first one, but it is of the most im-
portance. It is called the free Boolean algebra generated by the set of atomic propositions Θ.
Figure 5.1 shows the structure of such algebra, when n = 2. The free Boolean algebra B(Θ) is
deeply related to the classical propositional logic: it gives the (logical) equivalence classes of the
propositions generated from the atomic propositions of Θ. Although we give here an explicit
definition of B(Θ) by means of its binary coding P

(
{0, 1}n

)
, the truly rigorous definition of B(Θ)

is made by means of the logical equivalence (which is out of the scope of this presentation).
Thus, the binary coding of the atomic propositions θi ∈ Θ is only implied.
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a

¬a
b ¬b

a ∧ b a ∧ ¬b

¬a ∧ b ¬a ∧ ¬b

a ∨ ¬b

¬a ∧ b
⊤

Figure 5.1: Boolean algebra B
(
{a, b}

)
; (partial)

Fundamental proposition.

Proposition 3. Any Boolean algebra is isomorph to a Boolean algebra derived from a set, i.e.(
P(Ω),∩,∪,∼, ∅,Ω

)
.

Proofs should be found in any good reference; see also [1].

5.2.2 Hyper-power sets

Definition of hyper-power set. Let’s consider a finite set Θ of atomic propositions, and
denote

(
B(Θ),∧,∨,¬,⊥,⊤

)
the free Boolean algebra generated by Θ. For any Σ ⊂ P(Θ),

define ϕ(Σ), element of B(Θ), by1 ϕ(Σ) =
∨
σ∈Σ

∧
θ∈σ θ. The set < Θ >=

{
ϕ(Σ)

/
Σ ⊂ P(Θ)

}

is called hyper-power set generated by Θ.

It is noticed that both ⊥ = ϕ(∅) and ⊤ = ϕ
(
P(Θ)

)
are elements of < Θ >. Figure 5.2 shows

the structure of the hyper-power set, when n = 2. Typically, it appears that the elements of
the hyper-power set are built only from ¬-free components.
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⊥ a ∧ b a b a ∨ b ⊤
Figure 5.2: Hyper-power set < a, b >= {⊥, a ∧ b, a, b, a ∨ b,⊤}

Example 3. Hyper-power set generated by Θ = {a, b, c}.

< a, b, c >=
{
⊥, a, b, c, a ∧ b ∧ c, a ∧ b, b ∧ c, c ∧ a, a ∨ b ∨ c,⊤
a ∨ b, b ∨ c, c ∨ a, (a ∧ b) ∨ c, (b ∧ c) ∨ a, (c ∧ a) ∨ b,
(a ∨ b) ∧ c, (b ∨ c) ∧ a, (c ∨ a) ∧ b, (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a)

}

The following table associates some Σ ⊂ P(Θ) to their related hyper-power element ϕ(Σ).

1It is assumed
W

φ∈∅ = ⊥ and
V

φ∈∅ = ⊤ .
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This table is partial; there is indeed 256 possible choices for Σ. It appears that ϕ is not
one-to-one:

Σ ϕ(Σ) reduced form in < Θ >

∅ ⊥ ⊥
{∅} ⊤ ⊤{

{a}; {b}; {c}
}

a ∨ b ∨ c a ∨ b ∨ c{
{a, b}; {b, c}; {c, a}

}
(a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a){

{a, c}; {b, c}; {a, b, c}
}

(a ∧ c) ∨ (b ∧ c) ∨ (a ∧ b ∧ c) (a ∨ b) ∧ c{
{a, c}; {b, c}

}
(a ∧ c) ∨ (b ∧ c) (a ∨ b) ∧ c

Remark. In the DSmT book 1 [6], the hyper-power sets have been defined by means of the
Smarandache encoding. Our definition is quite related to this encoding. In fact this encoding
is just implied in the definition of ϕ.

Hyper-power set as a free pre-Boolean algebra. It is easy to verify on example 3 that
< Θ > is left unchanged by any application of the operators ∧ and ∨. For example:

(a ∧ b) ∧
(
(b ∧ c) ∨ a

)
= (a ∧ b ∧ b ∧ c) ∨ (a ∧ b ∧ a) = a ∧ b .

This result is formalized by the following proposition.

Proposition 4. Let φ,ψ ∈< Θ >. Then φ ∧ ψ ∈< Θ > and φ ∨ ψ ∈< Θ >.

Proof. Let φ,ψ ∈< Θ >.
There are Σ ⊂ P(Θ) and Γ ⊂ P(Θ) such that φ = ϕ(Σ) and ψ = ϕ(Γ) .
By applying the definition of ϕ, it comes immediately:

ϕ(Σ) ∨ ϕ(Γ) =
∨

σ∈Σ∪Γ

∧

θ∈σ
θ .

It is also deduced:

ϕ(Σ) ∧ ϕ(Γ) =

(
∨

σ∈Σ

∧

θ∈σ
θ

)
∧
(
∨

γ∈Γ

∧

θ∈γ
θ

)
.

By applying the distributivity, it comes:

ϕ(Σ) ∧ ϕ(Γ) =
∨

σ∈Σ

∨

γ∈Γ

((∧

θ∈σ
θ

)
∧
(∧

θ∈γ
θ

))
=

∨

(σ,γ)∈Σ×Γ

∧

θ∈σ∪γ
θ .

Then ϕ(Σ) ∧ ϕ(Γ) = ϕ(Λ) , with Λ =
{
σ ∪ γ

/
(σ, γ) ∈ Σ× Γ

}
.

✷✷✷

Corollary and definition. Proposition 4 implies that ∧ and ∨ infer inner operations within
< Θ > . As a consequence,

(
< Θ >,∧,∨,⊥,⊤

)
is an algebraic structure by itself. Since it does

not contains the negation ¬, this structure is called the free pre-Boolean algebra generated by
Θ.
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5.2.3 Pre-Boolean algebra

Generality. Typically, a free algebra is an algebra where the only constraints are the intrin-
sic constraints which characterize its fundamental structures. For example in a free Boolean
algebra, the only constraints are A1 to A5, and there are no other constraints put on the
propositions. But conversely, it is indeed possible to derive any algebra by constraining its
free counterpart. This will be our approach for defining pre-Boolean algebra in general: a pre-
Boolean algebra will be a constrained free pre-Boolean algebra. Constraining a structure is a
quite intuitive notion. However, a precise mathematical definition needs the abstract notion of
equivalence relations and classes. Let us start with the intuition by introducing an example.

Example 4. Pre-Boolean algebra generated by Θ = {a, b, c} and constrained by a ∧ b = a ∧ c
and a ∧ c = b ∧ c.
For coherence with forthcoming notations, these constraints will be designated by using the set
of propositional pairs Γ =

{
(a ∧ b, a ∧ c), (a ∧ c, b ∧ c)

}
.

The idea is to start from the free pre-Boolean algebra < a, b, c >, propagate the constraints, and
then reduce the propositions identified by the constraints.

It is first deduced a ∧ b = a ∧ c = b ∧ c = a ∧ b ∧ c.
It follows (a ∧ b) ∨ c = c, (b ∧ c) ∨ a = a and (c ∧ a) ∨ b = b.
Also holds (a ∨ b) ∧ c = (b ∨ c) ∧ a = (c ∨ a) ∧ b = (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) = a ∧ b ∧ c .
By discarding these cases from the free structure < a, b, c >, it comes the following constrained
pre-Boolean algebra:

< a, b, c >Γ=
{
⊥, a ∧ b ∧ c, a, b, c, a ∨ b, b ∨ c, c ∨ a, a ∨ b ∨ c,⊤

}

Of course, it is necessary to show that there is actually no further reduction in < a, b, c >Γ.
This is done by explicating a model; for example the structure of figure 5.3.
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Figure 5.3: Pre-Boolean algebra < a, b, c >Γ; (⊥ and ⊤ are omitted)

For the reader not familiar with the notion of equivalence classes, the following construction
is just a mathematical formalization of the constraint propagation which has been described in
example 4. Now, it is first introduced the notion of morphism between structures.
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Magma. A (∧,∨,⊥,⊤)-magma, also called magma for short, is a quintuple (Φ,∧,∨,⊥,⊤)
where Φ is a set of propositions, ∧ and ∨ are binary operators on Φ, and ⊥ and ⊤ are two
elements of Φ.

The magma (Φ,∧,∨,⊥,⊤) may also be referred to as the magma Φ, the structure being thus
implied. Notice that an hyper-power set is a magma.

Morphism. Let (Φ,∧,∨,⊥,⊤) and (Ψ,∧,∨,⊥,⊤) be two magma. A morphism µ from the
magma Φ to the magma Ψ is a mapping from Φ to Ψ such that:

• µ(φ ∧ ψ) = µ(φ) ∧ µ(ψ) and µ(φ ∨ ψ) = µ(φ) ∨ µ(ψ) ,

• µ(⊥) = ⊥ and µ(⊤) = ⊤ .

A morphism is an isomorphism if it is a bijective mapping. In such case, the magma Φ and the
magma Ψ are said to be isomorph, which means that they share the same structure.

The notions of (∧,∨)-magma and of (∧,∨)-morphism are defined similarly by discarding ⊥ and
⊤.

Propagation relation. Let < Θ > be a free pre-Boolean algebra. Let Γ ⊂< Θ > × < Θ >
be a set of propositional pairs; for any pair (φ,ψ) ∈ Γ is defined the constraint φ = ψ . The
propagation relation associated to the constraints, and also denoted Γ, is defined recursively by:

• φΓφ, for any φ ∈< Θ >,

• If (φ,ψ) ∈ Γ, then φΓψ and ψΓφ,

• If φΓψ and ψΓη, then φΓη,

• If φΓη and ψΓζ, then (φ ∧ ψ)Γ(η ∧ ζ) and (φ ∨ ψ)Γ(η ∨ ζ)

The relation Γ is thus obtained by propagating the constraint over < Θ >. It is obviously
reflexive, symmetric and transitive; it is an equivalence relation. An equivalence class for Γ
contains propositions which are identical in regards to the constraints.

It is now time to define the pre-Boolean algebra.

Pre-Boolean algebra.

Proposition 5. Let be given a free pre-Boolean algebra < Θ > and a set of propositional pairs
Γ ⊂< Θ > × < Θ > . Then, there is a magma < Θ >Γ and a morphism µ :< Θ >→< Θ >Γ

such that: {
µ
(
< Θ >

)
=< Θ >Γ ,

∀φ,ψ ∈< Θ >, µ(φ) = µ(ψ) ⇐⇒ φΓψ .

The magma < Θ >Γ is called the pre-Boolean algebra generated by Θ and constrained by the
constraints φ = ψ where (φ,ψ) ∈ Γ .

Proof. For any φ ∈< Θ >, define φΓ =
{
ψ ∈< Θ >

/
ψΓφ

}
; this set is called the class of φ

for Γ .
It is a well known fact, and the proof is immediate, that φΓ = ψΓ or φΓ ∩ ψΓ = ∅ for any
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φ,ψ ∈< Θ > ; in particular, φΓ = ψΓ ⇐⇒ φΓψ .
Now, assume ηΓ = φΓ and ζΓ = ψΓ, that is ηΓφ and ζΓψ.
It comes (η ∧ ζ)Γ(φ ∧ ψ) and (η ∨ ζ)Γ(φ ∨ ψ).
As a consequence, (η ∧ ζ)Γ = (φ ∧ ψ)Γ and (η ∨ ζ)Γ = (φ ∨ ψ)Γ.
At last:

(
ηΓ = φΓ and ζΓ = ψΓ

)
⇒
(

(η ∧ ζ)Γ = (φ ∧ ψ)Γ and (η ∨ ζ)Γ = (φ ∨ ψ)Γ

)

The proof is then concluded easily, by setting:





< Θ >Γ=
{
φΓ

/
φ ∈< Θ >

}
,

∀φ,ψ ∈< Θ >, φΓ ∧ ψΓ = (φ ∧ ψ)Γ and φΓ ∨ ψΓ = (φ ∨ ψ)Γ ,

∀φ ∈< Θ >, µ(φ) = φΓ .

✷✷✷

From now on, the element µ(φ), where φ ∈< Θ >, will be denoted φ as if φ were an element of
< Θ >Γ . In particular, µ(φ) = µ(ψ) will imply φ = ψ in < Θ >Γ (but not in < Θ >).

Proposition 6. Let be given a free pre-Boolean algebra < Θ > and a set of propositional pairs
Γ ⊂< Θ > × < Θ > . Let < Θ >Γ and < Θ >′

Γ be pre-Boolean algebras generated by Θ and
constrained by the family Γ . Then < Θ >Γ and < Θ >′

Γ are isomorph.

Proof. Let µ :< Θ >→< Θ >Γ and µ′ :< Θ >→< Θ >′
Γ be as defined in proposition 5.

For any φ ∈< Θ >, define ν
(
µ(φ)

)
= µ′(φ) .

Then, ν
(
µ(φ)

)
= ν

(
µ(ψ)

)
implies µ′(φ) = µ′(ψ) .

By definition of µ′, it is derived φΓψ and then µ(φ) = µ(ψ) .
Thus, ν is one-to-one.
By definition, it is also implied that ν is onto.

✷✷✷

This property thus says that there is a structural uniqueness of < Θ >Γ .

Example 5. Let us consider again the pre-Boolean algebra generated by Θ = {a, b, c} and con-
strained by a ∧ b = a ∧ c and a ∧ c = b ∧ c. In this case, the mapping µ :< Θ >→< Θ >Γ is
defined by:

• µ
(
{⊥}

)
= {⊥}, µ

({
a, (b ∧ c) ∨ a

})
= {a}, µ

({
b, (c ∧ a) ∨ b

})
= {b},

µ
({
c, (a ∧ b) ∨ c

})
= {c}, µ

(
{a ∨ b ∨ c}

)
= {a ∨ b ∨ c}, µ

(
{⊤}

)
= {⊤} ,

• µ
(
{a ∨ b}

)
= {a ∨ b}, µ

(
{b ∨ c}

)
= {b ∨ c}, µ

(
{c ∨ a}

)
= {c ∨ a} ,

• µ
({
a ∧ b ∧ c, a ∧ b, b ∧ c, c ∧ a, (a ∨ b) ∧ c, (b ∨ c) ∧ a, (c ∨ a) ∧ b,

(a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a)
})

= {a ∧ b ∧ c} .
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Between sets and hyper-power sets.

Proposition 7. The Boolean algebra
(
P(Θ),∩,∪,∼, ∅,Θ

)
, considered as a (∧,∨,⊥,⊤)-magma,

is isomorph to the pre-Boolean algebra < Θ >Γ, where Γ is defined by:

Γ =
{

(θ ∧ ϑ,⊥)
/
θ, ϑ ∈ Θ and θ 6= ϑ

}
∪
{(

∨

θ∈Θ

θ,⊤
)}

.

Proof. Recall the notation ϕ(Σ) =
∨
σ∈Σ

∧
θ∈σ θ for any Σ ⊂ P(Θ) .

Define µ :< Θ >→ P(Θ) by setting2 µ
(
ϕ(Σ)

)
=
⋃
σ∈Σ

⋂
θ∈σ{θ} for any Σ ⊂ P(Θ) .

It is immediate that µ is a morphism.
Now, by definition of Γ, µ

(
ϕ(Σ)

)
= µ

(
ϕ(Λ)

)
is equivalent to ϕ(Σ)Γϕ(Λ) .

The proof is then concluded by proposition 6.

✷✷✷

Thus, sets, considered as Boolean algebra, and hyper-power sets are both extremal cases of the
notion of pre-Boolean algebra. But while hyper-power sets extend the structure of sets, hyper-
power sets are more complex in structure and size than sets. A practical use of hyper-power
sets becomes quickly impossible. Pre-Boolean algebra however allows intermediate structures
between sets and hyper-power sets.

A specific kind of pre-Boolean algebra will be particularly interesting when defining the DSmT.
Such pre-Boolean algebra will forbid any interaction between the trivial propositions ⊥,⊤ and
the other propositions. These algebra, called insulated pre-Boolean algebra, are characterized
now.

Insulated pre-Boolean algebra. A pre-Boolean algebra < Θ >Γ verifies the insulation
property if Γ ⊂

(
< Θ > \{⊥,⊤})

)
×
(
< Θ > \{⊥,⊤})

)
.

Proposition 8. Let < Θ >Γ a pre-Boolean algebra verifying the insulation property. Then
holds for any φ,ψ ∈< Θ >Γ :

{
φ ∧ ψ = ⊥ ⇒ (φ = ⊥ or ψ = ⊥) ,

φ ∨ ψ = ⊤ ⇒ (φ = ⊤ or ψ = ⊤) .

In other words, all propositions are independent with each other in a pre-Boolean algebra with
insulation property.

The proof is immediate, since it is impossible to obtain φ∧ψΓ⊥ or φ∨ψΓ⊤ without involv-
ing ⊥ or ⊤ in the constraints of Γ. Examples 3 and example 4 verify the insulation property.
On the contrary, a non empty set does not.

Corollary and definition. Let < Θ >Γ be a pre-Boolean algebra, verifying the insulation prop-
erty. Define ≪ Θ ≫Γ=< Θ >Γ \{⊥,⊤} . The operators ∧ and ∨ restrict to ≪ Θ ≫Γ , and(
≪ Θ ≫Γ,∧,∨

)
is an algebraic structure by itself, called insulated pre-Boolean algebra. This

structure is also referred to as the insulated pre-Boolean algebra ≪ Θ≫Γ.

2It is defined
T

θ∈∅ θ = Θ .



140 PRE-BOOLEAN ALGEBRA, ORDERED DSMT AND DSM CONTINUOUS MODELS

Proposition 9. Let < Θ >Γ and < Θ >′
Γ be pre-Boolean algebras with insulation properties.

Assume that the insulated pre-Boolean algebra ≪ Θ ≫Γ and ≪ Θ ≫′
Γ are (∧,∨)-isomorph.

Then < Θ >Γ and < Θ >′
Γ are isomorph.

Deduced from the insulation property.

All ingredients are now gathered for the definition of Dezert Smarandache models.

5.2.4 The free Dezert Smarandache Theory

Dezert Smarandache Model. Assume that Θ is a finite set. A Dezert Smarandache model
(DSmm) is a pair (Θ,m), where Θ is a set of propositions and the basic belief assignment m is
a non negatively valued function defined over < Θ > such that:

∑

φ∈<Θ>

m(φ) =
∑

φ∈≪Θ≫
m(φ) = 1 .

The property
∑

φ∈≪Θ≫m(φ) = 1 implies that the propositions of Θ are exhaustive.

Belief Function. Assume that Θ is a finite set. The belief function Bel related to a bba m
is defined by:

∀φ ∈< Θ >, Bel(φ) =
∑

ψ∈<Θ>:ψ⊂φ
m(ψ) . (5.1)

The equation (6.1) is invertible:

∀φ ∈< Θ >, m(φ) = Bel(φ)−
∑

ψ∈<Θ>:ψ(φ

m(ψ) .

Fusion rule. Assume that Θ is a finite set. For a given universe Θ , and two basic belief
assignments m1 and m2, associated to independent sensors, the fused basic belief assignment is
m1 ⊕m2 , defined by:

m1 ⊕m2(φ) =
∑

ψ1,ψ2∈<Θ>:ψ1∧ψ2=φ

m1(ψ1)m2(ψ2) . (5.2)

Remarks. It appears obviously that the previous definitions could be equivalently restricted
to ≪ Θ≫, owing to the insulation properties.

From the insulation property (φ 6= ⊥ and ψ 6= ⊥) ⇒ (φ ∧ ψ) 6= ⊥ and the definition of the
fusion rule, it appears also that these definitions could be generalized to any algebra < Θ >Γ

with the insulation property.

5.2.5 Extensions to any insulated pre-Boolean algebra

Let ≪ Θ ≫Γ be an insulated pre-Boolean algebra. The definition of bba m, belief Bel and
fusion ⊕ is thus kept unchanged.

• A basic belief assignment m is a non negatively valued function defined over ≪ Θ ≫Γ

such that: ∑

φ∈≪Θ≫Γ

m(φ) = 1 .
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• The belief function Bel related to a bba m is defined by:

∀φ ∈≪ Θ≫Γ, Bel(φ) =
∑

ψ∈≪Θ≫Γ:ψ⊂φ
m(ψ) .

• Being given two basic belief assignments m1 and m2, the fused basic belief assignment
m1 ⊕m2 is defined by:

m1 ⊕m2(φ) =
∑

ψ1,ψ2∈≪Θ≫Γ:ψ1∧ψ2=φ

m1(ψ1)m2(ψ2) .

These extended definitions will be applied subsequently.

5.3 Ordered DSm model

From now on, we are working only with insulated pre-Boolean structures.

In order to reduce the complexity of the free DSm model, it is necessary to introduce logical
constraints which will lower the size of the pre-Boolean algebra. Such constraints may appear
clearly in the hypotheses of the problem. In this case, constraints come naturally and approx-
imations may not be required. However, when the model is too complex and there are no
explicit constraints for reducing this complexity, it is necessary to approximate the model by
introducing some new constraints. Two rules should be applied then:

• Only weaken informations3; do not produce information from nothing,

• minimize the information weakening.

First point guarantees that the approximation does not introduce false information. But some
significant informations (e.g. contradictions) are possibly missed. This drawback should be
avoided by second point.

In order to build a good approximation policy, some external knowledge, like distance or order
relation among the propositions could be used. Behind these relations will be assumed some
kind of distance between the informations: more are the informations distant, more are their
conjunctive combination valuable.

5.3.1 Ordered atomic propositions

Let (Θ,≤) be an ordered set of atomic propositions. This order relation is assumed to describe
the relative distance between the information. For example, the relation φ ≤ ψ ≤ η implies
that φ and ψ are closer informations than φ and η . Thus, the information contained in φ∧ η is
stronger than the information contained in φ ∧ ψ . Of course, this comparison does not matter
when all the information is kept, but when approximations are necessary, it will be useful to be
able to choose the best information.

3Typically, a constraint like φ ∧ ψ ∧ η = φ ∧ ψ will weaken the information, by erasing η from φ ∧ ψ ∧ η .
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Sketchy example. Assume that 3 independent sensors are giving 3 measures about a con-
tinuous parameter, that is x, y and z. The parameters x, y, z are assumed to be real values,
not of the set IR but of its pre-Boolean extension (theoretical issues will be clarified later4).
The fused information could be formalized by the proposition x∧ y∧ z (in a DSmT viewpoint).
What happen if we want to reduce the information by removing a proposition. Do we keep
x ∧ y , y ∧ z or x ∧ z ? This is of course an information weakening. But it is possible that one
information is better than an other. At this stage, the order between the values x, y, z will be
involved. Assume for example that x ≤ y < z . It is clear that the proposition x∧ z indicates a
greater contradiction than x ∧ y or y ∧ z . Thus, the proposition x ∧ z is the one which should
be kept! The discarding constraint x ≤ y ≤ z ⇒ x ∧ y ∧ z = x ∧ z is implied then.

5.3.2 Associated pre-Boolean algebra and complexity.

In regard to the previous example, the insulated pre-Boolean algebra associated to the ordered
propositions (Θ,≤) is ≪ Θ≫Γ , where Γ is defined by:

Γ =
{

(φ ∧ ψ ∧ η, φ ∧ η)
/
φ,ψ, η ∈ Θ and φ ≤ ψ ≤ η

}
.

The following property give an approximative bound of the size of ≪ Θ ≫Γ in the case of a
total order.

Proposition 10. Assume that (Θ,≤) is totally ordered. Then, ≪ Θ ≫Γ is a substructure of
the set Θ2 .

proof. Since the order is total, first notice that the added constraints are:

∀φ,ψ, η ∈ Θ , φ ∧ ψ ∧ η = min{φ,ψ, η} ∧max{φ,ψ, η} .

Now, for any φ ∈ Θ , define φ̆ by5:

φ̆ ,
{

(ϕ1, ϕ2) ∈ Θ2
/
ϕ1 ≤ φ ≤ ϕ2

}

It is noteworthy that:

φ̆ ∩ ψ̆ =
{

(ϕ1, ϕ2) ∈ Θ2
/
ϕ1 ≤ min{φ,ψ} and max{φ,ψ} ≤ ϕ2

}

and

φ̆ ∩ ψ̆ ∩ η̆ =
{

(ϕ1, ϕ2) ∈ Θ2
/
ϕ1 ≤ min{φ,ψ, η} and max{φ,ψ, η} ≤ ϕ2

}
.

By defining m = min{φ,ψ, η} and M = max{φ,ψ, η} , it is deduced:

φ̆ ∩ ψ̆ ∩ η̆ = m̆ ∩ M̆ . (5.3)

Figure 5.4 illustrates the construction of φ̆, φ̆ ∩ ψ̆ and property (5.3).

4In particular, as we are working in a pre-Boolean algebra, x∧y makes sense and it is possible that x∧y 6= ⊥
even when x 6= y .

5wherethesymbol, means equals by definition.
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Figure 5.4: Construction of φ̆

Let A ⊂ P(Θ2) be generated by φ̆|φ∈Θ with ∩ and ∪ , ie.:

A =
⋃

n≥0

{
n⋃

k=1

(
φ̆k ∩ ψ̆k

)
/
∀k , φ̆k, ψ̆k ∈ Θ

}
.

A consequence of (5.3) is that A is an insulated pre-Boolean algebra which satisfies the
constraints of Γ. Then, the mapping:

` :





≪ Θ≫Γ −→ A
n∨

k=1

nk∧

l=1

φk,l 7−→
n⋃

k=1

nk⋂

l=1

φ̆k,l , where φk,l ∈ Θ

is an onto morphism of pre-Boolean algebra.
Now, let us prove that ` is a one-to-one morphism.

Lemma 11. Assume:

n⋃

k=1

(
φ̆1
k ∩ φ̆2

k

)
⊂

m⋃

l=1

(
ψ̆1
l ∩ ψ̆2

l

)
, where φjk , ψ

j
l ∈ Θ .

Then:

∀k , ∃l , min{φ1
k, φ

2
k} ≤ min{ψ1

l , ψ
2
l } and max{φ1

k, φ
2
k} ≥ max{ψ1

l , ψ
2
l }

and

∀k , ∃l , φ̆1
k ∩ φ̆2

k ⊂ ψ̆1
l ∩ ψ̆2

l .

Proof of lemma. Let k ∈ [[1, n]] .
Define m = min{φ1

k, φ
2
k} and M = max{φ1

k, φ
2
k} .

Then holds (m,M) ∈ φ̆1
k ∩ φ̆2

k , implying (m,M) ∈ ⋃m
l=1

(
ψ̆1
l ∩ ψ̆2

l

)
.

Let l be such that (m,M) ∈ ψ̆1
l ∩ ψ̆2

l .
Then m ≤ min{ψ1

l , ψ
2
l } and M ≥ max{ψ1

l , ψ
2
l } .

At last, φ̆1
k ∩ φ̆2

k ⊂ ψ̆1
l ∩ ψ̆2

l .

✷✷
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From inequalities min{φ1
k, φ

2
k} ≤ min{ψ1

l , ψ
2
l } and max{φ1

k, φ
2
k} ≥ max{ψ1

l , ψ
2
l } is also

deduced (φ1
k ∧ φ2

k) ∧ (ψ1
l ∧ ψ2

l ) = φ1
k ∧ φ2

k (definition of Γ) .
This property just means φ1

k ∧ φ2
k ⊂ ψ1

l ∧ ψ2
l . It is lastly deduced:

Lemma 12. Assume:
n⋃

k=1

(
φ̆1
k ∩ φ̆2

k

)
⊂

m⋃

l=1

(
ψ̆1
l ∩ ψ̆2

l

)
, where φjk , ψ

j
l ∈ Θ .

Then:
n∨

k=1

(
φ1
k ∧ φ2

k

)
⊂

m∨

l=1

(
ψ1
l ∧ ψ2

l

)
.

From this lemma, it is deduced that ` is one to one.
At last ` is an isomorphism of pre-Boolean algebra, and ≪ Θ ≫Γ is a substructure of
Θ2 .

✷✷✷

5.3.3 General properties of the model

In the next section, the previous construction will be extended to the continuous case, ie.
(IR,≤) . However, a strict logical manipulation of the propositions is not sufficient and instead
a measurable generalization of the model will be used. It has been seen that a proposition of
≪ Θ ≫Γ could be described as a subset of Θ2 . In this subsection, the proposition model will
be characterized precisely. This characterization will be used and extended in the next section
to the continuous case.

Proposition 13. Let φ ∈≪ Θ≫Γ .
Then `(φ) ⊂ T , where T =

{
(φ,ψ) ∈ Θ2

/
φ ≤ ψ

}
.

Proof. Obvious, since ∀φ ∈ Θ , φ̆ ⊂ T .

✷✷✷

Definition 14. A subset θ ⊂ Θ2 is increasing if and only if:

∀ (φ,ψ) ∈ θ , ∀η ≤ φ , ∀ζ ≥ ψ , (η, ζ) ∈ θ .

Let U =
{
θ ⊂ T

/
θ is increasing and θ 6= ∅

}
be the set of increasing non-empty subsets of

T . Notice that the intersection or the union of increasing non-empty subsets are increasing
non-empty subsets, so that (U ,∩,∪) is an insulated pre-Boolean algebra.

Proposition 15. For any choice of Θ ,
{
`(φ)

/
φ ∈≪ Θ≫Γ

}
⊂ U .

When Θ is finite, U =
{
`(φ)

/
φ ∈≪ Θ≫Γ

}
.

Proof of ⊃ . Obvious, since φ̆ is increasing for any φ ∈ Θ .

Proof of ⊂ . Let θ ∈ U and let (a, b) ∈ θ .
Since ă ∩ b̆ =

{
(α, β) ∈ Θ2

/
α ≤ a and β ≥ b

}
and θ is increasing, it follows ă ∩ b̆ ⊂ θ .

At last, θ =
⋃

(a,b)∈θ ă ∩ b̆ =`
(∨

(a,b)∈θ a ∧ b
)

.

Notice that
∨

(a,b)∈θ a ∧ b is actually defined, since θ is finite when Θ is finite.
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✷✷✷

Figure 5.5 gives an example of increasing subsets, element of U .

When infinite ∨-ing are allowed, notice that U may be considered as a model for ≪ Θ≫Γ even

θ

�
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�
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�
�

�
�

�
�

�
�

�

Figure 5.5: Example of increasing subset θ ∈ U

if Θ is infinite. In the next section, the continuous pre-Boolean algebra related to (IR,≤) will
be modeled by the measurable increasing subsets of

{
(x, y) ∈ IR2

/
x ≤ y

}
.

5.4 Continuous DSm model

In this section, the case Θ = IR is considered.

Typically, in a continuous model, it will be necessary to manipulate any measurable propo-
sition, and for example intervals. It comes out that most intervals could not be obtained by
a finite logical combination of the atomic propositions, but rather by infinite combinations.
For example, considering the set formalism, it is obtained [a, b] =

⋃
x∈[a,b]{x} , which suggests

the definition of the infinite disjunction “
∨
x∈[a,b] x”. It is known that infinite disjunctions are

difficult to handle in a logic. It is better to manipulate the models directly. The pre-Boolean
algebra to be constructed should verify the property x ≤ y ≤ z ⇒ x ∧ y ∧ z = x ∧ z . As
discussed previously and since infinite disjunctions are allowed, a model for such algebra are
the measurable increasing subsets.

5.4.1 Measurable increasing subsets

A measurable subset A ⊂ IR2 is a measurable increasing subset if:
{
∀ (x, y) ∈ A , x ≤ y ,
∀ (x, y) ∈ A , ∀a ≤ x , ∀b ≥ y , (a, b) ∈ A .

The set of measurable increasing subsets is denoted U .

Example. Let f : IR → IR be a non decreasing measurable mapping such that f(x) ≥ x for
any x ∈ IR. The set

{
(x, y) ∈ IR2

/
f(x) ≤ y

}
is a measurable increasing subset.

“Points”. For any x ∈ IR, the measurable increasing subset x̆ is defined by:

x̆ =
{

(a, b) ∈ IR2
/
a ≤ x ≤ b

}
.

The set x̆ is of course a model for the point x ∈ IR within the pre-Boolean algebra (refer to
section 5.3).
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Generalized intervals. A particular class of increasing subsets, the generalized intervals,
will be useful in the sequel.

For any x ∈ IR, the measurable sets x̀ and x́ are defined by:

{
x̀ =

{
(a, b) ∈ IR2

/
a ≤ b and x ≤ b

}
,

x́ =
{

(a, b) ∈ IR2
/
a ≤ b and a ≤ x

}
.

The following properties are derived:

x̆ = x̀ ∩ x́ , x̀ =
⋃

z∈[x,+∞[

z̆ and x́ =
⋃

z∈]−∞,x]

z̆

Moreover, for any x, y such that x ≤ y, it comes:

x̀ ∩ ý =
⋃

z∈[x,y]

z̆ .

As a conclusion, the set x̀, x́ and x̀ ∩ ý (with x ≤ y) are the respective models for the intervals
[x,+∞[ , ] −∞, x] and [x, y] within the pre-Boolean algebra. Naturally, the quotation marks`
(opening) and´(closing) are used respectively for opening and closing the intervals. Figure 5.6
illustrates various cases of interval models.

At last, the set x̀∩ ý, where x, y ∈ IR are not constrained, constitutes a generalized definition of
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Figure 5.6: Interval models

the notion of interval. In the case x ≤ y, it works like “classical” interval, but in the case x > y,
it is obtained a new class of intervals with negative width (last case in figure 5.6). Whatever,
x̀ ∩ ý comes with a non empty inner, and may have a non zero measure.

The width δ = y−x
2 of the interval x̀ ∩ ý could be considered as a measure of contradiction

associated with this proposition, while its center µ = x+y
2 should be considered as its median

value. The interpretation of the measure of contradiction is left to the human. Typically, a
possible interpretation could be:

• δ < 0 means contradictory informations,

• δ = 0 means exact informations,

• δ > 0 means imprecise informations.
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It is also noteworthy that the set of generalized intervals

I = {x̀ ∩ ý/x, y ∈ IR}

is left unchanged by the operator ∩ , as seen in the following proposition 16 :

Proposition 16 (Stability). Let x1, x2, y1, y2 ∈ IR .
Define x = max{x1, x2} and y = min{y1, y2} .
Then

(
x̀1 ∩ ý1

)
∩
(
x̀2 ∩ ý2

)
= x̀ ∩ ý .

Proof is obvious.

This last property make possible the definition of basic belief assignment over generalized in-
tervals only. This assumption is clearly necessary in order to reduce the complexity of the
evidence modeling. Behind this assumption is the idea that a continuous measure is described
by an imprecision/contradiction around the measured value. Such hypothesis has been made
by Smets and Ristic [4]. From now on, all the defined bba will be zeroed outside I. Now, since
I is invariant by ∩ , it is implied that all the bba which will be manipulated, from sensors or
after fusion, will be zeroed outside I. This makes the basic belief assignments equivalent to a
density over the 2-dimension space IR2 .

5.4.2 Definition and manipulation of the belief

The definitions of bba, belief and fusion result directly from section 5.2, but of course the bba
becomes density and the summations are replaced by integrations.

Basic Belief Assignment. As discussed previously, it is hypothesized that the measures
are characterized by a precision interval around the measured values. In addition, there is
an uncertainty about the measure which is translated into a basic belief assignment over the
precision intervals.

According to these hypotheses, a bba will be a non negatively valued function m defined over
U , zeroed outside I (set of generalized intervals), and such that:

∫

x,y∈IR
m
(
x̀ ∩ ý

)
dxdy = 1 .

Belief function. The function of belief, Bel, is defined for any measurable proposition φ ∈ U
by:

Bel (φ) =

∫

x̀∩ý⊂φ
m
(
x̀ ∩ ý

)
dxdy .

In particular, for a generalized interval x̀ ∩ ý :

Bel
(
x̀ ∩ ý

)
=

∫ +∞

u=x

∫ y

v=−∞
m
(
ù ∩ v́

)
dudv .
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Fusion rule. Being given two basic belief assignments m1 and m2, the fused basic belief
assignment m1 ⊕m2 is defined by the curvilinear integral:

m1 ⊕m2

(
x̀ ∩ ý

)
=

∫

C={(φ,ψ)/φ∩ψ=x̀∩ý}
m1(φ)m2(ψ) dC .

Now, from hypothesis it is assumed that mi is positive only for intervals of the form x̀i ∩ ýi.
Proposition 16 implies:

x̀1 ∩ ý1 ∩ x̀2 ∩ ý2 = x̀ ∩ ý where

{
x = max{x1, x2} ,
y = min{y1, y2} .

It is then deduced:

m1 ⊕m2

(
x̀ ∩ ý

)
=

∫ x

x2=−∞

∫ +∞

y2=y
m1

(
x̀ ∩ ý

)
m2

(
x̀2 ∩ ý2

)
dx2dy2

+

∫ x

x1=−∞

∫ +∞

y1=y
m1

(
x̀1 ∩ ý1

)
m2

(
x̀ ∩ ý

)
dx1dy1

+

∫ x

x1=−∞

∫ +∞

y2=y
m1

(
x̀1 ∩ ý

)
m2

(
x̀ ∩ ý2

)
dx1dy2

+

∫ x

x2=−∞

∫ +∞

y1=y
m1

(
x̀ ∩ ý1

)
m2

(
x̀2 ∩ ý

)
dx2dy1 .

In particular, it is now justified that a bba, from sensors or fused, will always be zeroed outside
I .

5.5 Implementation of the continuous model

Setting. In this implementation, the study has been restricted to the interval [−1, 1] instead
of IR. The previous results still hold by truncating over [−1, 1] . In particular, any bba m is
zeroed outside I1

−1 = {x̀ ∩ ý/x, y ∈ [−1, 1]} and its related belief function is defined by:

Bel
(
x̀ ∩ ý

)
=

∫ 1

u=x

∫ y

v=−1
m
(
ù ∩ v́

)
dudv ,

for any generalized interval of I1
−1 . The bba resulting of the fusion of two bba’s m1 and m2 is

defined by:

m1 ⊕m2

(
x̀ ∩ ý

)
=

∫ x

x2=−1

∫ 1

y2=y
m1

(
x̀ ∩ ý

)
m2

(
x̀2 ∩ ý2

)
dx2dy2

+

∫ x

x1=−1

∫ 1

y1=y
m1

(
x̀1 ∩ ý1

)
m2

(
x̀ ∩ ý

)
dx1dy1

+

∫ x

x1=−1

∫ 1

y2=y
m1

(
x̀1 ∩ ý

)
m2

(
x̀ ∩ ý2

)
dx1dy2

+

∫ x

x2=−1

∫ 1

y1=y
m1

(
x̀ ∩ ý1

)
m2

(
x̀2 ∩ ý

)
dx2dy1 .
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Method. A theoretical computation of these integrals seems uneasy. An approximation of
the densities and of the integrals has been considered. More precisely, the densities have been
approximated by means of 2-dimension Chebyshev polynomials , which have several good prop-
erties:

• The approximation grows quickly with the degree of the polynomial, without oscillation
phenomena,

• The Chebyshev transform is quite related to the Fourier transform, which makes the
parameters of the polynomials really quickly computable by means of a Fast Fourier
Transform,

• Integration is easy to compute.

In our tests, we have chosen a Chebyshev approximation of degree 128 × 128 , which is more
than sufficient for an almost exact computation.

Example. Two bba m1 and m2 have been constructed by normalizing the following functions
mm1 and mm2 defined over [−1, 1]2 :

mm1

(
x̀ ∩ ý

)
= exp

(
−(x+ 1)2 − y2

)

and

mm2

(
x̀ ∩ ý

)
= exp

(
−x2 − (y − 1)2

)
.

The fused bba m1 ⊕m2 and the respective belief function b1, b2, b1 ⊕ b2 have been computed.
This computation has been instantaneous. All functions have been represented in the figures 5.7
to 5.14.

Interpretation. The bba m1 is a density centered around the interval [−1, 0] , while m2 is a
density centered around [0, 1] . This explains why the belief b1 increases faster from the interval
[−1,−1] to [−1, 1] than from the interval [1, 1] to [−1, 1] . And this property is of course inverted
for b2 .

A comparison of the fused bba m1 ⊕m2 with the initial bba’s m1 and m2 makes apparent a
global forward move of the density. This just means that the fused bba is put on intervals
with less imprecision, and possibly on some intervals with negative width (ie. associated with
a degree of contradiction). Of course there is nothing surprising here, since information fusion
will reduce imprecision and produce some contradiction! It is also noticed that the fused bba
is centered around the interval [0, 0] . This result matches perfectly the fact that m1 and m2 ,
and their related sensors, put more belief respectively over the interval [−1, 0] and the interval
[0, 1] ; and of course [−1, 0] ∩ [0, 1] = [0, 0] .

5.6 Conclusion

A problem of continuous information fusion has been investigated and solved in the DSmT
paradigm. The conceived method is based on the generalization of the notion of hyper-power
set. It is versatile and is able to specify the typical various degrees of contradiction of a DSm
model. It has been implemented efficiently for a bounded continuous information. The work
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Figure 5.7: Non normalized bba mm1
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Figure 5.8: Non normalized bba mm2
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Figure 5.9: Basic belief assignment m1
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Figure 5.10: Basic belief assignment m2
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Figure 5.11: Belief function b1
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Figure 5.12: Belief function b2
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Figure 5.13: Fused bba m1 ⊕m2
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Figure 5.14: Fused bba b1 ⊕ b2

is still prospective, but applications should be done in the future on localization problems. At
this time, the concept is restricted to one-dimension informations. However, works are now
accomplished in order to extend the method to multiple-dimensions domains.
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Abstract: Recent works have investigated the problem of the conflict redistribution
in the fusion rules of evidence theories. As a consequence of these works, many
new rules have been proposed. Now, there is not a clear theoretical criterion for a
choice of a rule instead another. The present chapter proposes a new theoretically
grounded rule, based on a new concept of sensor independence. This new rule avoids
the conflict redistribution, by an adaptive combination of the beliefs. Both the logical
grounds and the algorithmic implementation are considered.

6.1 Introduction

Recent works have underlined the limitations of the historical rule of Dempster and Shafer for
fusing the information [4, 9]. The difficulty comes essentially from the conflict generation which
is inherent to the rule definition. By the way, a sequential use of the rules would result in an
accumulation of the conflict, if there were not a process for removing it. Many solutions have
been proposed for managing this conflict. The following methods are noteworthy:

• Constraining, relaxing or adapting the models in order to avoid the conflict,

• Weakening the conflicting information with the time,

• Redistributing the conflict within the rules.

Model adaptations are of different natures. Close to Dempster-Shafer theory, Appriou [1] sug-
gests to reduce the possible contradictions by a convenient setting of the problem hypotheses.
Smets [11] removes the nullity constraint on the belief of the empty proposition (TBM); this
way, the conflict is no more a problem. Dezert and Smarandache [5, 10] defined evidences on
models with weakened negations (free DSmT and similar models). By weakening or suppressing
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the negation, the conflict actually disappears. The TBM of Smets and the DSmT of Dezert and
Smarandache are both theoretically grounded. TBM is axiomatically derived, while free DSmT
is constructed logically [3]. Moreover, although the DSmT keeps the nullity constraint for the
empty proposition, it is possible to interpret the TBM by means of a constrained DSm model.

Avoiding the conflict by adapted models is not satisfactory however. Indeed, there are many
cases where such models appear quite artificial and not well suited to represent the real world.
Weakening the information is not satisfactory either; in many cases, the choice of a weakening
criterion is rather subjective. Experimentations [8] have shown better results by means of rules
with conflict redistributions adapted to the problem.1 Florea, Jousselme and al [7] proposed
recently a new family of rules which are adaptive with the conflict level. In this case, there is
an important idea: the redistribution policy is now changing automatically as a function of the
conflict.

Many new rules have been proposed. However, there is not a clear theoretical criterion for a
choice of a rule instead another. Now, these new rules, and particularly the adaptive rule of Flo-
rea and Jousselme, have uncovered a new fact: there is not a simple and permanent definition
of the fusion rule for any fusion problem. More precisely, the structure of the fusion rule may
depend on the structure of the problem. In this chapter, we are proposing a methodology for
computing fusion rules, being given a problem setting. This methodology is logically grounded
and based on a new concept of sensor independence. As a result, the rules are obtained from
a constrained convex optimization. These computed rules cannot be derived mathematically in
general.

The next section introduces evidence theories and their various viewpoints. As a general frame-
work for these theories, the notions of hyperpower sets and of pre-Boolean algebras are briefly
reminded. Section 6.3 settles a new methodology for deriving the fusion rule. This methodology
is based on an entropic notion of sensor independence. Then, section 6.4 discusses about the
implementations and the properties of the new rule. Typical examples are considered. Sec-
tion 6.5 is more theoretical and exposes the logical fundaments of our methodology. At last,
section 6.6 concludes.

6.2 Viewpoints in evidence theories

In this section, we are discussing about theories for combining evidences expressed by belief
functions. Since pre-Boolean algebra is a common framework for all these theories, in particular
as a generalization of sets and hyperpower sets, we are now introducing briefly this notion.

6.2.1 Pre-Boolean algebra

The theory of Dezert and Smarandache is based on the fundamental notion of pre-Boolean
algebra, or hyperpower sets. These algebras will describe the logical modeling of the knowledge.
This chapter is not dedicated to a thorough exposition of the theory of pre-Boolean algebra.
The reader should refer to the chapter 5 of this book for a precise theoretical definition. Now,
the present section will introduce these notions qualitatively, and some typical examples will be
provided.

1In fact, Dempster-Shafer rule is also a rule with redistribution of the conflict. But in this case, the redistri-
bution is uniform.
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6.2.1.1 General principle

Subsequently, the conjunction and disjunction are denoted ∧ and ∨. The negation, when used,
is denoted ¬. The empty set is denoted ⊥ while the tautology, or full ignorance, is denoted
⊤. Notice that these notations are not the most classical in the domain of evidence theories.
Typically, ∩,∪,Θ \ ·, ∅,Θ are used instead of ∧,∨,¬,⊥,⊤. However, ∧,∨,¬,⊥,⊤ are notations
widely used in logics and Boolean algebra. Since the connexions are important between these
theories, we will use the logical notations in general.

Definition. A pre-Boolean algebra could be seen as a subset of a Boolean algebra which is
stable for the conjunction and the disjunction. As a consequence, a pre-Boolean algebra together
with the two operators, conjunction and disjunction, is an algebraic structure.

This algebraic structure has the same properties than a Boolean algebra, except that it does not
implement explicitly the notion of negation. In particular, the following properties are provided
by the pre-Boolean algebra for the binary operators:

Commutativity. φ ∧ ψ = ψ ∧ φ and φ ∨ ψ = ψ ∨ φ ,

Associativity. φ ∧ (ψ ∧ η) = (φ ∧ ψ) ∧ η and φ ∨ (ψ ∨ η) = (φ ∨ ψ) ∨ η ,

Distributivity. φ ∧ (ψ ∨ η) = (φ ∧ ψ) ∨ (φ ∧ η) and φ ∨ (ψ ∧ η) = (φ ∨ ψ) ∧ (φ ∨ η) ,

Idempotence. φ ∧ φ = φ and φ ∨ φ = φ ,

Neutral sup/sub-elements. φ ∧ (φ ∨ ψ) = φ and φ ∨ (φ ∧ ψ) = φ ,

for any φ,ψ, η in the pre-Boolean algebra.

6.2.1.2 Example

Free pre-Boolean algebra. Let a, b, c be three atomic propositions. Consider the free
Boolean algebra B(a, b, c) generated by a, b, c :

B(a, b, c) =
{∨

(α,β,γ)∈A
(
α ∧ β ∧ γ

)/
A ⊂ {a,¬a} × {b,¬b} × {c,¬c}

}
.

It is well known that B(a, b, c) contains 223
= 256 elements.

The free pre-Boolean algebra generated by the propositions a, b, c is the smaller subset of
B(a, b, c) containing a, b, c and stable for ∧ and ∨. This set, denoted < a, b, c >, is defined
extensionally by:

< a, b, c >= {⊥, a ∧ b ∧ c, a ∧ b, a ∧ c, b ∧ c, a ∧ (b ∨ c), b ∧ (a ∨ c), c ∧ (a ∨ b), a, b, c,
(a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c), (a ∧ b) ∨ c, (a ∧ c) ∨ b, (b ∧ c) ∨ a, a ∨ b, a ∨ c, b ∨ c, a ∨ b ∨ c,⊤}

It is easily verified that a conjunctive or disjunctive combination of propositions of < a, b, c >
is still a proposition of < a, b, c >. For example:

(
a ∧ (b ∨ c)

)
∨ b =

(
(a ∧ b) ∨ (a ∧ c)

)
∨ b = (a ∧ c) ∨ b .

Moreover, < a, b, c > is obviously the smallest set, which is stable for ∧ and ∨. In particular, it
is noticed that ⊥,⊤ ∈< a, b, c > since ⊥ =

∨
α∈∅ α and ⊤ =

∧
α∈∅ α .
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The free pre-Boolean algebra < a, b, c > is also called hyperpower set generated by a, b, c . It is
also denoted DΘ, where Θ = {a, b, c} . Notice that the tautology ⊤ is often excluded from the
definition of the hyperpower set [10] . By the way, Dambreville excluded both ⊥ and ⊤ from
a previous definition [3]. These differences have a quite limited impact, when considering the
free DSmT. Whatever, it is generally assumed that a ∨ b ∨ c = ⊤ ; but this is an additional
hypothesis.

A Boolean algebra is a constrained pre-Boolean algebra. A Boolean algebra is a subset
of itself and is stable for ∧ and ∨. Thus, it is a pre-Boolean algebra. Now, we will see on an
example that a set could be seen as an hyperpower set which has been constrained by logical
constraints. Since a Boolean algebra could be considered as a set, this result implies more
generally that a Boolean algebra could be obtained by constraining a free pre-Boolean algebra.

Denote Θ = {a, b, c} . Consider the Boolean algebra P(Θ) related to the set operators ∩,∪,Θ\·
and neutral elements ∅,Θ. This Boolean algebra is extensionally defined by:

P(Θ) =
{
∅, a, b, c, {a, b}, {a, c}, {b, c},Θ

}
.

Now, consider the hyperpower set < a, b, c > and apply to it the constraints:

Γ =
{
a ∧ b = b ∧ c = a ∧ c = ⊥ , a ∨ b ∨ c = ⊤

}
.

It is then derived:




a ∧ b ∧ c = a ∧ (b ∨ c) = b ∧ (a ∨ c) = c ∧ (a ∨ b) = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c) = ⊥ ,
(a ∧ b) ∨ c = c , (a ∧ c) ∨ b = b , (b ∧ c) ∨ a = a ,
a ∨ b ∨ c = ⊤ .

Denoting < a, b, c >Γ the resulting constrained pre-Boolean algebra, it comes:

< a, b, c >Γ= {⊥, a, b, c, a ∨ b, a ∨ c, b ∨ c,⊤} .

Then, < a, b, c >Γ contains exactly the same number of elements than P(Θ). More precisely, by
the Boolean properties of ∧ and ∨, it is clear that < a, b, c >Γ and P(Θ) are isomorph as pre-
Boolean algebra. While < a, b, c >Γ does not define the negation explicitly, this isomorphism
shows that the negation is implicitly defined in < a, b, c >Γ . In fact, the negation of < a, b, c >Γ

has been built by the constraints. This is an important property of pre-Boolean algebra:

The constraints put on a free pre-Boolean algebra partially characterize the negation
operator.

As a consequence, there is a partial definition of the negation in a pre-Boolean algebra. This
negation is entirely undefined in an hyperpower set and is entirely defined in a set. But there
are many intermediate cases.

Example of constrained pre-Boolean algebra. Let Θ = {a, b, c} be a set of atomic propo-
sitions and Γ = {a ∧ b = a ∧ c} be a set of constraints. By propagating the constraints, it is
obtained:

a ∧ b = a ∧ c = (a ∧ b) ∨ (a ∧ c) = (a ∧ b) ∧ (a ∧ c) = a ∧ b ∧ c .
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Consequently:

a ∧ (b ∨ c) = a ∧ b ∧ c , (a ∧ b) ∨ c = c , (a ∧ c) ∨ b = b .

b ∧ (a ∨ c) = c ∧ (a ∨ b) = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c) = b ∧ c .

At last, the constrained pre-Boolean algebra is extensionally defined by:

< a, b, c >Γ= {⊥, a ∧ b ∧ c, b ∧ c, a, b, c, (b ∧ c) ∨ a, a ∨ b, a ∨ c, b ∨ c, a ∨ b ∨ c,⊤}

This configuration is modeled in figure 6.1. This model ensures that the propagation of the
constraints is complete in the definition of < a, b, c >Γ.
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(b ∧ c) ∨ a a ∨ b b ∨ c c ∨ a a ∨ b ∨ c
Figure 6.1: Pre-Boolean algebra < a, b, c >Γ; (⊥ and ⊤ are omitted)

6.2.1.3 Notations

Let Θ be a set of atomic propositions. The free pre-Boolean algebra generated by Θ is denoted
< Θ > .

Now, let Γ be a set of constraints over the propositions of < Θ >. The pre-Boolean algebra
generated by Θ and constrained by Γ is denoted < Θ >Γ . Of course, it comes < Θ >∅=< Θ >
(the pre-Boolean algebra generated by Θ and constrained by an empty Γ is an hyperpower set).

A proposition φ is a subproposition of proposition ψ if and only if φ∧ψ = φ ; subsequently, the
property φ ∧ ψ = φ is also denoted φ ⊂ ψ .

6.2.2 Belief

It is now given a pre-Boolean algebra < Θ >Γ as a logical framework for the knowledge repre-
sentation. The theories of evidence also implement a belief on each logical proposition. This
belief contains both an imprecision and an uncertainty information. The following sections
consider two main styles for implementing the belief. In the DSmT and DST (Dempster Shafer
Theory) [9], the belief over the empty proposition is always zero. In the TBM (Transferable
Belief Model) [11], the belief over the empty proposition may be non zero. These viewpoints
are related to two slightly different logical interpretations, as stated in section 6.5.
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6.2.2.1 DSmT and DST

DSmT defines the notion of belief in a same way than DST. The only difference is that DST
works on a set, while DSmT works on any pre-Boolean algebra. Fundamental differences will
also arise, when defining the fusion of the information (section 6.2.3).

Basic Belief Assignment. A basic belief assignment (bba) to the pre-Boolean algebra
< Θ >Γ is a real valued function defined over < Θ >Γ such that:

∑

φ∈<Θ>Γ

m(φ) = 1 , m(⊥) = 0 and m ≥ 0 .

Typically, m represents the knowledge of an expert or of a sensor. By hypothesizing m(⊥) = 0,
the DSmT assumes the coherence of the information.

The bba is a belief density, describing the information intrinsic to the propositions. The full
belief of a proposition is thus the compilation of the bba of its sub-propositions.

Belief function. The belief function Bel related to a bba m is defined by:

∀φ ∈< Θ >Γ, Bel(φ) =
∑

ψ∈<Θ>Γ:ψ⊂φ
m(ψ) . (6.1)

It is generally considered that Bel
(∨

θ∈Θ θ
)

= 1 , which means that Θ matches all possible
information.

6.2.2.2 TBM and TBM-like bba

Like the DST, the TBM works on a set. However, in the TBM interpretation the belief put
on the empty set is not necessarily zeroed. It is also possible to mix this hypothesis with a
pre-Boolean modeling, as follows.

TBM-like Basic Belief Assignment. A basic belief assignment to the pre-Boolean algebra
< Θ >Γ is a real valued function defined over < Θ >Γ such that:

∑

φ∈<Θ>Γ

m(φ) = 1 and m ≥ 0 .

By removing the hypothesis m(⊥) = 0, the coherence of the information is canceled. The co-
herence and non-coherence hypotheses have a logical interpretation, as explained in section 6.5.

In fact, it is also possible to simulate the TBM (and TBM-like models) by means of the DSmT
(with the coherence hypothesis). The idea is to simulate the empty set of TBM by the pre-
Boolean proposition

∧
θ∈Θ θ . This result, although simple, is outside the scope of this chapter

and will not be developed further. To end with this subsection, it is noticed that Smets pro-
poses a slightly different definition of the belief function by excluding the belief of the empty
set. Smets belief function will be denoted and defined by:

BelS(φ) =
∑

ψ∈<Θ>Γ:⊥6=ψ⊂φ
m(ψ) .

This truncated belief function is not used subsequently, since we work essentially on bba and
on the full belief function Bel as defined in (6.1).
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6.2.3 Fusion rules

The main contribution of evidence theories consists in their fusion rules. It is assumed then
that two or more sources of information are providing a viewpoint about the universe. These
viewpoints are described by specific bbas for each sensor. The question then is to make a unique
representation of the information, i.e. a unique bba, from these several bbas. Several rules for
fusing such information have been elaborated.

There are essentially two kinds of rules. The first kind avoids any conflict redistribution. The
theorists generally agree then on a unique fusion rule, the conjunctive rule (without redistribu-
tion). Two models avoid the conflict redistribution: the transferable belief model of Smets and
the free DSmT. In both theories, a strong constraint is put on the model. TBM puts non zero
weights on the empty set, while free DSmT removes the negation from the model. In many
cases however, these hypotheses are too restrictive.

When the conflict is taken into account and is redistributed, many possible rules have been
proposed. No model restriction is needed anymore, but it is difficult to decide for a definitive
fusion rule.

The following sections introduce shortly these various concepts of rules.

6.2.3.1 Fusion rule in free DSmT and similar models.

Free DSmT is defined on an hyperpower set. A fundamental property of an hyperpower set is
that the empty proposition cannot be generated from non empty propositions. More generally,
a pre-Boolean algebra < Θ >Γ, where the constraints in Γ do not generate ⊥, will also satisfy
such property:

φ,ψ ∈< Θ >Γ \{⊥} =⇒ φ ∧ ψ ∈< Θ >Γ \{⊥} . (6.2)

This property will be called an insulation property.

Assume now a pre-Boolean algebra < Θ >Γ satisfying (6.2). Then, two bbas m1 and m2 over
< Θ >Γ will be fused into a bba m1 ⊕m2 as follows:

∀φ ∈< Θ >Γ , m1 ⊕m2(φ) =
∑

ψ∧η=φ
m1(ψ)m2(η) . (6.3)

This definition is compatible with the constraint m1 ⊕m2(⊥) = 0 of DSmT, since it comes by
the insulation property:

m1(ψ) 6= 0 and m2(η) 6= 0 imply ψ ∧ η ∈< Θ >Γ \{⊥} .

The insulation property is often a too strong hypothesis for many problems. The TBM viewpoint
will not request such structure constraints. But as a consequence, the coherence property of
the bba will be removed.

6.2.3.2 Fusion rule for TBM-like bbas

In the TBM paradigm, two bbas m1 and m2 over < Θ >Γ will be fused into a bba m1 ⊕m2 as
follows:

∀φ ∈< Θ >Γ , m1 ⊕m2(φ) =
∑

ψ∧η=φ
m1(ψ)m2(η) . (6.4)
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There is no particular restriction on the choice of < Θ >Γ in this case. It is for example possible
that the model contains two non empty propositions ψ and η such that ψ ∧ η = ⊥ . Assuming
that the initial bbas m1 and m2 are such that m1(ψ) > 0 and m2(η) > 0, it comes from the
definition that m1 ⊕ m2(⊥) > 0 . But the rule is still compatible with the TBM paradigm,
since then the coherence constraint m1 ⊕ m2(⊥) = 0 is removed. By the way, removing this
constraint is not satisfactory in many cases. In particular, it is well known that the weight of
the contradiction may increase up to 1 by iterating the fusion stages.

6.2.3.3 General case

While the fusion rule is clearly defined by (6.3) for models avoiding the conflict, there are many
possible rules when this conflict has to be redistributed. Typically, the rule could be defined in
two steps. First, compute the conjunctive function µ of m1 and m2 by:

∀φ ∈< Θ >Γ , µ(φ) =
∑

ψ∧η=φ
m1(ψ)m2(η) .

The function µ is like the fusion rule in the TBM paradigm. It cannot be used directly, since
µ(⊥) have to be redistributed when µ(⊥) > 0 . Redistributing the conflict means:

• Constructing a function ρ on < Θ >Γ such that:

ρ(⊥) = 0 ,
∑

φ∈<Θ>Γ

ρ(φ) = 1 and ρ ≥ 0 ,

• Derive the bba m1 ⊕m2 by:

m1 ⊕m2(φ) = µ(φ) + ρ(φ)µ(⊥) .

There are many possible rules deduced from the redistribution principle. Moreover, the re-
distribution may be dependent of a local conflict, like the PCR rules [6, 8] also introduced in
chapter 2 of this book. It is also noticed that some authors [7] allows negative redistributions
by removing the constraint ρ ≥ 0 . These new rules are as well legitimate and interesting, but
by allowing negative redistributions, the criterion for defining rules is again weakened. The
question now is how to decided for a rule or another? This choice is certainly dependent of the
structure of the fusion problem. Actually, Florea, Jousselme and al [7] proposed a rule adaptive
with the conflict level. More generally, it is foreseeable that a fusion rule should be defined or
computed specifically for a given fusion problem.

In the next sections, we will derive logically a new ruling method, which avoids the conflict re-
distribution by exploiting a new concept of independence of the sensors. The new rules will be
essentially computed from an entropic optimization problem. This problem may be unsolvable,
which will imply a rejection of the hypotheses (too high conflict between the sources). Other-
wise, it will adapt the belief dispatching in a much more flexible way than the usual conjunctive
function µ.

6.3 Entropic approach of the rule definition

To begin with this new rule concept, we will directly settle the concrete optimization principles
of our method. The logical justifications will come later, in section 6.5.
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6.3.1 Independent sources and entropy

Actually, the idea is not completely new, and Dezert used it in order to give a first justification
to the free DSmT [5]. More precisely, the free rule could be rewritten:

∀φ ∈< Θ >Γ , m1 ⊕m2(φ) =
∑

ψ∧η=φ
fo(ψ, η) ,

where:

fo(ψ, η) = m1(ψ)m2(η) . (6.5)

If we are interpreting mi as a kind of probability, the relation (6.5) is like the probabilistic inde-
pendence, where fo(ψ, η) is a kind of joint probability. Section 6.5 will clarify this probabilistic
viewpoint. Now, there is a link between the notion of probabilistic independence and the notion
of entropy, which is often forgotten. The law fo(ψ, η) = m1(ψ)m2(η) is a maximizer of the
entropy, with respect to the constraint of marginalization:

fo ∈ arg max
f
−
∑

ψ,η

f(ψ, η) ln f(ψ, η)

under constraints:

f ≥ 0 ,
∑

ψ

f(ψ, η) = m2(η) and
∑

η

f(ψ, η) = m1(ψ) .

(6.6)

This is actually how Dezert derived the conjunctive rule of free DSmT [5], although he did not
make an explicit mention to the probability theory. Now, the equation (6.6) has a particular
interpretation in the paradigm of information theory: fo is the law which contains the maximum
of information, owing to the fact that its marginals are m1 and m2. By the way, independent
sources of information should provide the maximum of information, so that the maximization
of entropy appears as the good way to characterize independent sources. When the constraints
are just the marginalizations, the solution to this maximization is the independence relation
fo(ψ, η) = m1(ψ)m2(η). In Bayesian theory particularly, the marginalizations are generally the
only constraints, and the notion of independent sources of information reduces to the notion
of independent propositions. But in the case of evidence theories, there is the problem of the
conflict, which adds constraints.

6.3.2 Definition of a new rule for the DSmT

Let be defined a pre-Boolean algebra < Θ >Γ, constituting the logical framework of the in-
formation. Let be defined two bbas m1 and m2 over < Θ >Γ. The bbas are assumed to be
coherent, so that m1(⊥) = m2(⊥) = 0 . Then the fusion of m1 and m2 is the bba m1 ⊕ m2
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defined by:

∀φ ∈< Θ >Γ , m1 ⊕m2(φ) =
∑

ψ∧η=φ
fo(ψ, η) ,

where:

fo ∈ arg max
f
−
∑

ψ,η

f(ψ, η) ln f(ψ, η)

under constraints:

f ≥ 0 ,
∑

ψ

f(ψ, η) = m2(η) ,
∑

η

f(ψ, η) = m1(ψ) ,

and ∀ψ, η ∈< Θ >Γ , ψ ∧ η = ⊥ =⇒ f(ψ, η) = 0 .

(6.7)

This rule will be named Entropy Maximizing Rule (EMR).

Corollary of the definition. The fused basic belief assignment is compatible with the coherence
constraint m1 ⊕m2(⊥) = 0 of DSmT.

Proof is immediate owing to the constraints ψ ∧ η = ⊥ =⇒ f(ψ, η) = 0 in the optimization.

6.3.3 Feasibility of the rule

The rule is feasible when there is a solution to the optimization. The feasibility is obtained as
soon there is a solution to the constraints.

Definition. The fused bba m1 ⊕m2 is defined if and only if there exists a function f such
that:

f ≥ 0 ,
∑

ψ

f(ψ, η) = m2(η) ,
∑

η

f(ψ, η) = m1(ψ) ,

and ∀ψ, η ∈< Θ >Γ , ψ ∧ η = ⊥ =⇒ f(ψ, η) = 0 .

(6.8)

In next section, it will be shown on examples that the fusion is not always feasible. Actually,
the infeasibility of the rule is a consequence of fundamental incompatibilities of the information.

6.3.4 Generalizations

6.3.4.1 Fusion of N bbas

It will be seen that the fusion rule defined previously is not associative. This means that the
sources of information do not have the same weight in a sequential fusion. However, when it
is needed to fuse N sources of information simultaneously, the fusion method has then to be
generalized to N bbas. The subsequent definition makes this generalization.

N-ary rule. Let be defined a pre-Boolean algebra < Θ >Γ, constituting the logical framework
of the information. Let be defined N coherent bbas mi|1≤i≤N over < Θ >Γ. Then the fusion of
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mi|1≤i≤N is the bba ⊕[mi|1 ≤ i ≤ N ] defined by:

∀φ ∈< Θ >Γ , ⊕[mi|1 ≤ i ≤ N ](φ) =
∑

VN
i=1 ψi=φ

fo(ψi|1 ≤ i ≤ N) ,

where:

fo ∈ arg max
f
−
∑

ψ

f(ψi|1 ≤ i ≤ N) ln f(ψi|1 ≤ i ≤ N)

under constraints:

f ≥ 0 , ∀i,
∑

ψj |j 6=i
f(ψj|1 ≤ j ≤ N) = mi(ψi) ,

and ∀ψ ∈< Θ >NΓ ,
N∧

i=1

ψi = ⊥ =⇒ f(ψi|1 ≤ i ≤ N) = 0 .

(6.9)

6.3.4.2 Approximation of the rule

The definition of our rule needs the maximization of the entropy of f under various constraints.
An algorithm for solving this maximization is proposed in section 6.4. The problem is solved
by means of a variational method. By the way, it may be interesting to have a more direct
computation of the rule. In particular, better computations of the rule could be obtained by
approximating the optimization problem.

As soon as a solution is feasible, there are many ways to approximate the rules. The main point
is to approximate the entropy H(f) = −∑ψ,η f(ψ, η) ln f(ψ, η) by a function H̃(f) such that

H̃(f) ≃ H(f) . Then, the rule is just rewritten:

∀φ ∈< Θ >Γ , m1 ⊕m2(φ) =
∑

ψ∧η=φ
fo(ψ, η) ,

where:

fo ∈ arg max
f

H̃(f) ,

under constraints:

f ≥ 0 ,
∑

ψ

f(ψ, η) = m2(η) ,
∑

η

f(ψ, η) = m1(ψ) ,

and ∀ψ, η ∈< Θ >Γ , ψ ∧ η = ⊥ =⇒ f(ψ, η) = 0 .

(6.10)

An example of approximation is H̃(f) = −∑ψ,η f
2(ψ, η), which is obtained by a first order

derivation of ln. Approximated rules will not be investigated in the present chapter.

6.4 Implementation and properties

This section is devoted to the development of basic properties of the rule EMR and to practical
implementation on examples.
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6.4.1 Properties

Commutativity. Let m1 and m2 be two bbas over < Θ >Γ . By definition (6.7), the fused
bba m1 ⊕m2 exists if and only if m2 ⊕m1 exists. Then m1 ⊕m2 = m2 ⊕m1 .

Neutral element. Define the bba of total ignorance ν by ν(⊤) = 1 . Let m be a bba over
< Θ >Γ . Then the fused bba m⊕ ν exists, and m⊕ ν = m .

Proof. Since
∑

φ fo(φ,ψ) = ν(ψ) and fo ≥ 0 , it is deduced fo(φ,ψ) = 0 unless ψ = ⊤.
Now, since

∑
ψ fo(φ,ψ) = m(φ), it is concluded:

fo(φ,⊤) = m(φ) and fo(φ,ψ) = 0 for ψ 6= ⊤ .

This function satisfies the hypotheses of (6.7), thus implying the existence of m⊕ ν .
Then the result m⊕ ν = m is immediate.

✷✷✷

Belief enhancement. Let be given two bbas m1 and m2, and assume that there exists a
fused bba m1 ⊕ m2 computed by (6.7). Denote by Bel1 ⊕ Bel2 the belief function related to
m1 ⊕m2 . Then:

Bel1 ⊕ Bel2(φ) ≥ max
{

Bel1(φ),Bel2(φ)
}

for any φ ∈< Θ >Γ . (6.11)

Proof.
Proof of Bel1 ⊕ Bel2(φ) ≥ Bel1(φ) .
Let fo be a function satisfying to (6.7).
Then Bel1 ⊕ Bel2(φ) =

∑
ψ⊂φm1 ⊕m2(ψ) =

∑
η∧ξ⊂φ fo(η, ξ) .

In particular, Bel1 ⊕ Bel2(φ) ≥∑ψ⊂φ
∑

η fo(ψ, η) .
At last, Bel1 ⊕Bel2(φ) ≥∑ψ⊂φm1(ψ) = Bel1(φ) .

Conclusion. It is similarly proved Bel1 ⊕ Bel2(φ) ≥ Bel2(φ) and then the final result.

✷✷✷

Corollary. Let be given two bbas m1 and m2, and assume that there exists a fused bba m1⊕m2

computed by (6.7). Let φ1, . . . , φn ∈< Θ >Γ be such that φi ∧ φj = ⊥ for any i 6= j . Then the
property

∑n
i=1 max

{
Bel1(φi),Bel2(φi)

}
≤ 1 is necessarily true.

This result is a direct consequence of the belief enhancement. It could be used as a criterion
for proving the non existence of the fusion rule.

Associativity. The computed rule ⊕ is not associative.

Proof. Consider the bbas m1, m2 and m3 defined on the Boolean algebra {⊥, a,¬a,⊤} by :

{
m1(a) = m2(a) = 0.5 and m1(⊤) = m2(⊤) = 0.5 ,
m3(¬a) = 0.5 and m3(⊤) = 0.5 .

We are now comparing the fusions (m1 ⊕m2)⊕m3 and m1 ⊕ (m2 ⊕m3) .

Computing (m1 ⊕m2)⊕m3.
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First it is noticed that there is no possible conflict between m1 and m2, so that m1 ⊕m2

could be obtained by means of the usual conjunctive rule:

m1 ⊕m2(a) = 0.5× 0.5 + 0.5 × 0.5 + 0.5× 0.5 = 0.75 and m1 ⊕m2(⊤) = 0.5× 0.5 .

As a consequence:

max
{

Bel1 ⊕ Bel2(a),Bel3(a)
}

+ max
{

Bel1 ⊕ Bel2(¬a),Bel3(¬a)
}

= 0.75 + 0.5 > 1 .

It is concluded that (m1 ⊕m2)⊕m3 does not exist.

Computing m1 ⊕ (m2 ⊕m3).
It is known that Bel2 ⊕Bel3 ≥ max

{
Bel2,Bel3

}
when m2 ⊕m3 exists.

Since max
{

Bel2(a),Bel3(a)
}

= max
{

Bel2(¬a),Bel3(¬a)
}

= 0.5 , it is deduced that neces-
sarily m2 ⊕m3(a) = m2 ⊕m3(¬a) = 0.5
It appears that m2 ⊕m3(a) = m2 ⊕m3(¬a) = 0.5 is actually a valid solution, since it is
derived from fo such that fo(a,⊤) = fo(⊤,¬a) = 0.5 (zeroed on the other cases).
It is also deduced by a similar reasoning that m1 ⊕ (m2 ⊕ m3) exists and is necessary
defined by m1 ⊕ (m2 ⊕m3)(a) = m1 ⊕ (m2 ⊕m3)(¬a) = 0.5 .

The associativity thus fails clearly on this example.

✷✷✷

Compatibility with the probabilistic bound hypothesis. A temptation in evidence the-
ories is to link the notion of probability with the notion of belief by means of the relation:

Bel(φ) ≤ p(φ) for any φ ∈< Θ >Γ . (6.12)

In general, this relation is not compatible with the fusion rules.

For example, let us test Dempster-Shafer rule on the relation (6.12)
Let be given m1 and m2 defined on {⊥, a,¬a,⊤} by m1(a) = m1(¬a) = 0.5 and
m2(a) = m2(⊤) = 0.5 .
It is deduced Bel1(a) = Bel1(¬a) = 0.5 , Bel2(a) = 0.5 and Bel2(¬a) = 0 .
The choice of m1 and m2 is thus compatible with the bound hypothesis (6.12), and
it follows p(a) = p(¬a) = 0.5 .
Now, Dempster-Shafer rule implies m1 ⊕m2(a) = 2/3 and m1 ⊕m2(¬a) = 1/3 .
Confronting m1 ⊕m2 to (6.12), it comes p(a) ≥ 2/3 .
This is contradictory with the previously obtained relation p(¬a) = 0.5 .

This difficulty is avoided by some theorists by saying that the notion of probability is dependent
of the considered sensor, or that belief and probability are two separated notions.

In our opinion, probability should be considered as an absolute notion. We will see in section 6.5,
that the belief could be considered as a probabilistic modal proposition. Then there are two
cases:

• If the modal propositions are not comparable to the propositions without modality, then
there is no obvious relation between the belief and the probability. This is particularly
the case of the TBM paradigm.
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• If the modal propositions are comparable to the propositions without modality (axiom
m.iii of section 6.5), then the bound hypothesis (6.12) is recovered. Moreover, the fusion
rule EMR is then logically derived.

This anticipatory logical result has the following implication:

The rule EMR is compatible with the bound hypothesis (6.12).

But this result is already foreseeable from the property (6.11). Indeed, property (6.11) makes
impossible the construction of a counter-example like the previous one of this paragraph.

Idempotence. The rule is not idempotent: it always increases the precision of a bba, when
possible. However it will be idempotent, when the precision of the bba cannot be increased
(e.g. a probability).

This obvious property is just illustrated on examples subsequently.

6.4.2 Algorithm

The optimization (6.7) is convex and is not difficult. The implemented algorithm is based on
Rosen’s gradient projection method. Now, the gradient of H(f) =

∑
ψ,η −f(ψ, η) ln f(ψ, η) is

characterized by:

DfH(f) =
∑

ψ,η

−(1 + ln f(ψ, η)) df(ψ, η) .

Then, the algorithm follows the synopsis:

1. Find a feasible solution f0 to the simplex:

f0 ≥ 0 ,
∑

ψ

f0(ψ, η) = m2(η) ,
∑

η

f0(ψ, η) = m1(ψ) ,

and ∀ψ, η ∈< Θ >Γ , ψ ∧ η = ⊥ =⇒ f0(ψ, η) = 0 .

If such a solution does not exist, then stop: the fusion is not possible.

Otherwise, set t = 0 and continue on next step.

2. Build ∆ft by solving the linear program:

max
∆ft

∑

ψ,η

−(1 + ln ft(ψ, η)) ∆ft(ψ, η) ,

under constraints:

ft + ∆ft ≥ 0 ,
∑

ψ

∆ft(ψ, η) =
∑

η

∆ft(ψ, η) = 0 ,

and ∀ψ, η ∈< Θ >Γ , ψ ∧ η = ⊥ =⇒ ∆ft(ψ, η) = 0 .

3. Repeat ∆ft := ∆ft/2 until H(ft + ∆ft) > H(ft) .

4. Set ft+1 = ft + ∆ft. Then set t := t+ 1 .

5. Reiterate from step 2 until full convergence.

The linear programming library Coin-LP has been used in our implementation.
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6.4.3 Examples

In this section is studied the fusion of bbas mi defined over P
(
{a, b, c}

)
by:

{
m1(a) = α1 , m1(b) = 0 , m1(c) = γ1 and m1({a, b, c}) = 1− α1 − γ1 ,

m2(a) = 0 , m2(b) = β2 , m2(c) = γ2 and m2({a, b, c}) = 1− β2 − γ2 .

This is a slight generalization of Zadeh’s example. The fusion m1⊕m2 is solved by the algorithm,
but also mathematically. The solutions were identical by the both methods. The results of fusion
are presented for particular choices of the parameters α, β, γ.

Mathematical solution. Assume that f is is a function over P
(
{a, b, c}

)2
verifying the

conditions (6.8) of the rule. The marginal constraints say:





∑

B⊂{a,b,c}
f(a,B) = α1 ,

∑

B⊂{a,b,c}
f(c,B) = γ1 ,

∑

B⊂{a,b,c}
f({a, b, c}, B) = 1− α1 − γ1 ,

∑

A⊂{a,b,c}
f(A, b) = β2 ,

∑

A⊂{a,b,c}
f(A, c) = γ2 ,

∑

A⊂{a,b,c}
f(A, {a, b, c}) = 1− β2 − γ2 ,

∑

B⊂{a,b,c}
f(A,B) = 0 and

∑

A⊂{a,b,c}
f(A,B) = 0 in any other cases.

(6.13)
Since f(A,B) = 0 for any (A,B) such that A ∩B = ∅ and f ≥ 0, it is deduced that :

f
(
a, {a, b, c}

)
, f
(
{a, b, c}, b

)
, f(c, c) , f

(
c, {a, b, c}

)
, f
(
{a, b, c}, c

)
and f

(
{a, b, c}, {a, b, c}

)

are the only values of f , which are possibly non zero. Then the system (6.13) reduces to the
linear solution:





f
(
a, {a, b, c}

)
= α1 , f

(
{a, b, c}, b

)
= β2 , f(c, c) = θ , f

(
c, {a, b, c}

)
= γ1 − θ ,

f
(
{a, b, c}, c

)
= γ2 − θ , f

(
{a, b, c}, {a, b, c}

)
= 1− α1 − β2 − γ1 − γ2 + θ ,

f(A,B) = 0 for any other case.

(6.14)

This solution depends on the only unknow parameter θ. The optimal parameter θo is obtained
by solving:

max
θ

(h(θ) + h(γ1 − θ) + h(γ2 − θ) + h(1− α1 − β2 − γ1 − γ2 + θ)) where h(τ) = −τ ln τ .

The function fo is then computed by using θo in (6.14). And m1 ⊕m2 is of course obtained by
m1 ⊕m2(φ) =

∑
ψ∧η=φ fo(ψ, η) .

It is sometimes impossible to find a valid parameter θ. The condition of existence is easily
derived:

θ exists if and only if max{0, α1 + β2 + γ1 + γ2 − 1} ≤ min{γ1, γ2} . (6.15)
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When this condition is fulfilled, the optimal parameter is given by2:

θo =
γ1γ2

1− α1 − β2
when α1 + β2 < 1 , θo = 0 when α1 + β2 = 1 . (6.16)

Then, it is not difficult to check that θo is bounded accordingly to the existence condition:

max{0, α1 + β2 + γ1 + γ2 − 1} ≤ θo ≤ min{γ1, γ2} .

Experimentation.
Zadeh’s example.
Zadeh’s example is defined by α1 = β2 = 0, 99 and γ1 = γ2 = 0.01 . This fusion is rejected by
EMR.

More generally, assume γ1 = 1− α1 and γ2 = 1− α2 . Then the condition:

max{0, α1 + β2 + γ1 + γ2 − 1} ≤ min{γ1, γ2}
fails unless when γ1 = γ2 = 1 . The case γ1 = γ2 = 1 is trivial, since it means a perfect
agreement between the two sources. Thus, Zadeh’s example is rejected by EMR, even if there
is a negligible conflict between the two sources.

By the way, this is not surprising. In Zadeh’s example, the bbas are put on the singletons
only. Then, the bbas work like probabilities, thus defining an uncertainty but without any
imprecision. Since the information provided by the sources are free from any imprecision, there
are only two possible cases: either the information are the same, either some information are
false.

Now, imagine again that our information come with a negligible conflict:

m1(a) = m2(b) = ǫ and m1(c) = m2(c) = 1− ǫ .
This could indeed happen, when our information have been obtained from slightly distorted
sources. Now, it has been seen that EMR rejects this fusion. Thus, we have to be cautious
when using EMR and the following recommendation has to be considered:

If the sources of information are distorted, even slightly, these distortions have to
be encoded in the bbas by an additional imprecision.

Typically, by weakening the bbas as follows:
{
m1(a) = m2(b) = ρǫ , m1(c) = m2(c) = ρ(1− ǫ) ,
m1

(
{a, b, c}

)
= m2

(
{a, b, c}

)
= 1− ρ , with ρ ≤ 1

1+ǫ ,

the fusion is again possible by means of EMR.

Extended example.
The following table summarizes the fusion by EMR for various values of α, β, γ :

α1 γ1 β2 γ2 m = m1 ⊕m2

0.501 0 0.501 0 Rejection

0.499 0 0.499 0 m(a) = m(b) = 0.499 , m({a, b, c}) = 0.002

0.3 0.1 0.3 0.1 m(a) = m(b) = 0.3 , m(c) = 0.175 , m({a, b, c}) = 0.225

0.3 0.05 0.3 0.05 m(a) = m(b) = 0.3 , m(c) = 0.09375 , m({a, b, c}) = 0.30625

0.3 0.01 0.3 0.01 m(a) = m(b) = 0.3 , m(c) = 0.01975 , m({a, b, c}) = 0.38025

2Other cases are not compliant with the existence condition (6.15).
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Comparison.
In this last example, we compare the fusion by EMR and by Dempster-Shafer of the bbas m1

and m2 defined by:

{
m1(a) = m1({a, b}) = m1({a, c}) = m1({b, c}) = m1({a, b, c}) = 0.2 ,

m2(a) = m2({a, b}) = m2({a, c}) = m2({b, c}) = m2({a, b, c}) = 0.2 .

The following table presents the fusion results for Dempster-Shafer (DST) and for EMR:

A a b c {a, b} {a, c} {b, c} {a, b, c}
m1 ⊕m2(A) / DST 0.390 0.087 0.087 0.131 0.131 0.131 0.043

m1 ⊕m2(A) / EMR 0.411 0.093 0.093 0.107 0.107 0.153 0.036

We will not argue about the advantage of EMR compared to DST on such simple example. The
important point is to notice how the bba concentration subtly changes from DST to EMR. In
general, the belief enforcement of the small propositions is stronger in EMR. But the case of
proposition {b, c} is different, since it is made weaker by DST than by EMR. This is perhaps
a consequence of a greater belief attraction of proposition a compared to b and c, during the
fusion process.

6.5 Logical ground of the rule

This section justifies logically the definition (6.7) of EMR. This logical development, based
on modal logics, is quite similar to what have been previously done in the DSmT book 1,
chapter 8 [3]. Actually, the modal operators will be applied to non modal proposition only
for the simplicity of the exposition (the definitions of [3] were more general), but there is no
significant change in the logic. Now, the reader could also refer to [3] since it introduces the
logic on examples. Subsequently, the logic behind EMR will be exposed directly.

In [3] the definition of the logic was axiomatic. Since logic is not usual for many readers, such
axiomatic definition is avoided in this presentation. A model viewpoint is considered now. More
precisely, the description of our modal logic is made in the framework of a Boolean algebra.
Typically, a logical relation ⊢ φ, i.e. φ is proved, is replaced by φ = ⊤ in the Boolean algebra.
In the same way, a relation ⊢ φ → ψ is replaced by φ ⊂ ψ. Moreover, the modal relations
are directly used within the Boolean algebra, i.e. ✷φ ⊂ φ is the Boolean counterpart of the
logical axiom ⊢ ✷φ→ φ. We will not justify here the soundness of this Boolean framework, in
regards to the modal propositions. But such framework is of course tightly related to an implied
Kripke’s model. By the way, it is also assumed that our model is complete for the logic. But
all these technical considerations should be ignored by most readers.

Notation. Subsequently, the proposition φ\ψ is a shortcut for φ∧¬ψ . Moreover, the notation
φ ( ψ is used as a shortcut for φ ⊂ ψ and φ 6= ψ .

6.5.1 The belief as a probability of a modal proposition

Many evidence theorists are particularly cautious, when comparing belief and probabilities.
On the first hand, there is a historical reason. As new theories of uncertainty, the evidence
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theories had to confront the already existing theory of probability. On the second hand, the sub-
additivity property of the belief is often proposed as a counter-argument against the probabilistic
hypothesis. In this introductory subsection, it is seen that this property is easily fulfilled by
means of modal propositions.

Sub-additivity, modality and probability. Subsequently, the belief Beli(φ) of a proposi-
tion φ according to a sensor i is interpreted as the probability p(✷iφ) of the modal proposition
✷iφ . It is not the purpose of this paragraph to make a full justification of this interpretation,
but rather to explain how the modal interpretation is able to overcome the sub-additivity prop-
erty.

First at all, it is important to understand the meaning of the modal operator ✷i . The modal
proposition ✷iφ characterizes all the information, which sensor i can associate for sure to the
proposition φ.

For example, the equation ✷iφ = ⊤ means: sensor i considers φ as true in any
configuration of the system.

Then, it is noticed that the modal propositions fulfill a logical sub-additivity property:

(✷iφ ∨✷iψ) ⊂ ✷i(φ ∨ ψ) . (6.17)

The converse is false in general. This well-known property will be proved in the subsequent
section. It has a concrete interpretation. The proposition ✷iφ describes logically the information
about φ which is granted as sure by the sensor i. But there are information which sensor i can
attribute to φ ∨ ψ for sure, but which cannot be attributed without ambiguity to φ or to
ψ alone. These ambiguous information are exactly described by the non empty proposition
✷i(φ ∨ ψ) \ (✷iφ ∨✷iψ) .

The important point now is that the logical sub-additivity directly implies the sub-additivity
of the belief. From (6.17), it is derived: p(✷iφ ∨ ✷iψ) ≤ p

(
✷i(φ ∨ ψ)

)
. Assume now that φ

and ψ are disjoint, i.e. φ ∧ ψ = ⊥. It is also hypothesized that ✷i is coherent, which implies
✷iφ∧✷iψ = ⊥ (coherent sensors will consider disjoint propositions as disjoint). Then it comes:
p(✷iφ) + p(✷iψ) ≤ p

(
✷i(φ ∨ ψ)

)
, and it is finally deduced: Beli(φ) + Beli(ψ) ≤ Beli(φ ∨ ψ) ,

from the modal definition of Beli . At last, we have recovered the sub-additivity of Beli from
the logical sub-additivity of the modal operator ✷i .

It appears that the sub-additivity is not incompatible with a probabilistic interpretation of the
belief. The sub-additivity seems rather related to a modal nature of the belief. At the end of
this paragraph, a last word has to be said about the TBM paradigm. Belief as defined in (6.1),
that is including the mass assignment of the empty set, is not sub-additive in TBM. Only
the truncated belief BelS is sub-additive. This is a consequence of the possible non-zero mass
assignment of the empty set. By the way, there is also a modal interpretation of this fact. It
is seen subsequently that the TBM paradigm is equivalent to remove the coherence hypothesis
about the modality ✷i. But the incoherence of ✷i allows ✷iφ∧✷iψ 6= ⊥ even when φ∧ψ = ⊥.
As a consequence, the sub-additivity cannot be recovered from the modal hypothesis either,
when considering incoherent sensors.

This introduction has revealed some similar characteristics of the belief functions and the modal
operators. The forthcoming sections establish a complete correspondence between the evidence
theories and the probabilistic modal logic.
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6.5.2 Definition of the logic

Let Θ be a set of atomic propositions. Let Γ be a set of Boolean constraints built from Θ and
the Boolean operators. The constraints of Γ are describing the logical priors which are known
about the atomic propositions. Then, define BΓ(Θ) the Boolean algebra generated by Θ and
compliant with the constraints of Γ.3 The algebra BΓ(Θ) will describe the real world.

The real world will be observed by sensors. Let I be the set of the sensors. The sensors of I
may be combined by pairs, thus constituting composite sensors. The set of composite sensors,
denoted J , is defined recursively as follows:

I ⊂ J and (i, j) ∈ J for any i, j ∈ J .

Among the (composite) sensors of J , it will be assumed that some pairs of sensors are mutually
independent.

For i, j ∈ J , the notation i× j indicates that the sensors i and j are independent. (6.18)

To any sensor i ∈ J is associated a modal operators ✷i (for short, the notation ✷i,j will be used
instead of ✷(i,j)). The modal operators ✷i will describe logically the information received and
interpreted by sensor i. The modal operators will act on any proposition of BΓ(Θ). For any
φ ∈ BΓ(Θ) , the proposition ✷iφ is an interpretation of the real proposition φ by the sensor i.
It is noticed that ✷iφ is not necessarily a proposition of BΓ(Θ), so that ✷i should be considered
as an external operator. In order to manipulate these modal propositions, we will consider the
Boolean algebra BΓ(Θ,✷) generated by Θ and ✷iφ where φ ∈ BΓ(Θ) and i ∈ J . It is also
assumed that the algebra BΓ(Θ,✷) is compliant with the following constraints on the modal
propositions:

m.i. ✷i⊤ = ⊤ , for any i ∈ J ,

m.ii. ✷i(¬φ ∨ ψ) ⊂ (¬✷iφ ∨✷iψ) , for any φ,ψ ∈ BΓ(Θ) and i ∈ J ,

m.iii. (optional) ✷iφ ⊂ φ , for any φ ∈ BΓ(Θ) and i ∈ J ,

m.iv. ✷iφ ⊂ ✷i,jφ , for any φ ∈ BΓ(Θ) and i, j ∈ J ,

m.indep. ✷i,jφ ⊂ (✷iφ ∨✷jφ) , for any φ ∈ BΓ(Θ) and i, j ∈ J such that i× j .

Together with the axioms m.∗, the algebra BΓ(Θ,✷) is a model characterizing our modal logic.
It is necessary to explain the signification of these axioms.

Axiom m.i explains that the sensors hold any tautology (trivially true propositions) for true.

Axiom m.ii is the model counterpart of the axiom ⊢ ✷i(φ→ ψ)→ (✷iφ→ ✷iψ) of modal logic,
which is a modus ponens encoded within the modality. In other word, axiom m.ii just says that
the sensors make logical deductions. Together, axioms m.i and m.ii express that the sensors are
reasoning logically.

Axiom m.iii says that the sensors always say the truth. More precisely, it says that φ is true
whenever sensor i considers φ as true. This axiom implies the coherence of the sensors. By
the way, it is probably stronger than the coherence hypothesis. Axiom m.iii is considered as
optional. It will be suppressed in the case of the TBM paradigm, but used otherwise.

3BΓ(Θ) could be obtained by propagating the constraints of Γ within the free Boolean algebra B(Θ).
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Axiom m.iv says that the knowledge increases with the number of sensors used. More precisely,
m.iv means that the surety of a proposition φ is greater according to i, j than according to i
only. Although this axiom seems quite natural, it is noticed that it is not necessarily compatible
with fusion rules involving a redistribution of the conflict.

Axiom m.indep expresses a logical independence of the sensors. Assuming i, j to be independent
sensors (i.e. i × j), the axiom m.indep then says that the information obtained from the joint
sensor (i, j) could be obtained separately from one of the sensors i or j. In other word, there is
no possible interaction between the sensors i and j during the observation process.

m.i, m.ii and m.iii are typically the axioms of the system T of modal logic. Before concluding
this subsection, some useful logical theorems are now derived.

6.5.2.1 Useful theorems

The following theorems will be deduced without the help of the optional axiom m.iii. The
axioms used for each theorem will be indicated at the end of the proof.

The modality is non decreasing. Let i ∈ J and φ,ψ ∈ BΓ(Θ) . Then:

φ ⊂ ψ implies ✷iφ ⊂ ✷iψ .

Proof. φ ⊂ ψ implies ¬φ ∨ ψ = ⊤ .
By applying axiom m.i, it comes ✷i

(
¬φ ∨ ψ

)
= ⊤ .

Now, m.ii implies ✷i

(
¬φ ∨ ψ

)
⊂ ¬✷iφ ∨✷iψ .

Consequently ¬✷iφ ∨✷iψ = ⊤ .
As a conclusion, ✷iφ ⊂ ✷iψ .

✷✷✷

The proof requested the axioms m.i and m.ii.

Modality and conjunction. (✷iφ ∧✷iψ) = ✷i(φ ∧ ψ) for any φ,ψ ∈ BΓ(Θ) and i ∈ J .

Proof.
Proof of (✷iφ ∧✷iψ) ⊂ ✷i(φ ∧ ψ) .
Since ¬φ ∨ ¬ψ ∨ (φ ∧ ψ) = ⊤ , axiom m.i implies ✷i

(
¬φ ∨ ¬ψ ∨ (φ ∧ ψ)

)
= ⊤ .

Now, m.ii implies ✷i

(
¬φ ∨ ¬ψ ∨ (φ ∧ ψ)

)
⊂ ¬✷iφ ∨ ¬✷iψ ∨✷i(φ ∧ ψ) .

Consequently ¬✷iφ ∨ ¬✷iψ ∨✷i(φ ∧ ψ) = ⊤ .
As a conclusion, (✷iφ ∧✷iψ) ⊂ ✷i(φ ∧ ψ) .

Proof of (✷iφ ∧✷iψ) ⊃ ✷i(φ ∧ ψ) .
Since ✷i is non decreasing, it is proved ✷i(φ ∧ ψ) ⊂ ✷iφ and ✷i(φ ∧ ψ) ⊂ ✷iψ.

✷✷✷

The proof requested the axioms m.i and m.ii.

Modality and disjunction. (✷iφ ∨ ✷iψ) ⊂ ✷i(φ ∨ ψ) for any φ,ψ ∈ BΓ(Θ) and i ∈ J . In
general, (✷iφ ∨✷iψ) 6= ✷i(φ ∨ ψ) .
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Proof.
Proof of (✷iφ ∨✷iψ) ⊂ ✷i(φ ∨ ψ) .
Since ✷i is non decreasing, it is proved ✷iφ ⊂ ✷i(φ ∨ ψ) and ✷iψ ⊂ ✷i(φ ∨ ψ) .
Then the result.

A counter-example for (✷iφ∨✷iψ) = ✷i(φ∨ψ) needs the construction of a dedicated model
of the logic. This construction is outside the scope of the chapter. Readers interested in
models constructions for modal logics could refer to [2].

✷✷✷

The proof requested the axioms m.i and m.ii.

Conjunction of heterogeneous modalities. (✷iφ∧✷jψ) ⊂ ✷i,j(φ∧ψ) for any φ,ψ ∈ BΓ(Θ)
and i, j ∈ J . In other words, if sensor i asserts φ and sensor j asserts ψ, then the fused sensor
asserts φ ∧ ψ .

Proof. Axioms m.iv says ✷iφ ⊂ ✷i,jφ and ✷jψ ⊂ ✷i,jψ .
Since (✷i,jφ ∧✷i,jψ) = ✷i,j(φ ∧ ψ) , it is deduced (✷iφ ∧✷jψ) ⊂ ✷i,j(φ ∧ ψ) .

✷✷✷

The proof requested the axioms m.i, m.ii and m.iv.

Disjunction of heterogeneous modalities. (✷iφ ∨ ✷jφ) ⊂ ✷i,jφ for any φ ∈ BΓ(Θ) and
i, j ∈ J . In other words, if sensor i or sensor j assert φ, then the fused sensor asserts φ .

Proof. Axioms m.iv says ✷iφ ⊂ ✷i,jφ and ✷jφ ⊂ ✷i,jφ .
Then, the result is immediate.

✷✷✷

The proof requested the axiom m.iv.

The converse of this property is obtained by means of axiom m.indep, when the sensors i, j are
independent.

6.5.3 Fusion rule

The purpose of this subsection is to derive logically the fusion rule on < Θ >Γ, the pre-Boolean
algebra generated by Θ within the Boolean algebra BΓ(Θ).4 In a first step, the fusion will
be derived in a strict logical acceptation, by means of the modal operators. In a second step,
the notion of belief is also introduced by means of probabilistic modal propositions. But as a
preliminary, we are beginning by introducing the notion of partitions.

6.5.3.1 Preliminary definitions.

Partition. Let Π ⊂ B(Θ) be a set of propositions. The set Π is a partition of ⊤ if it satisfies
the following properties:

4In this case Γ may contain constraints outside < Θ >. But this is the same notion of pre-Boolean algebra
discussed earlier.
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• The propositions of Π are exclusive (i.e. disjoint): φ ∧ ψ = ⊥ for any φ,ψ ∈ Π such that
φ 6= ψ ,

• The propositions of Π are exhaustive:
∨
φ∈Π φ = ⊤ .

Notice that Π may contain ⊥, in this definition.

Partition and complement. Let Π be a partition and let A ⊂ Π and B ⊂ Π. Then:



∨

φ∈A
φ


 \



∨

φ∈B
φ


 =




∨

φ∈A\B
φ


 .

This property just tells that the Boolean algebra generated by Π is isomorph to the Boolean
structure implied by the set Π \ {⊥}. The proof of this result is obvious from the definition.

Partitions and probabilities. Partitions are useful since they make possible the definition
of a probability by means of elementary density. More precisely, for any partition Π and any
subset A ⊂ Π, the probability of the proposition

∨
φ∈A φ is given by:

p



∨

φ∈A
φ


 =

∑

φ∈A
p(φ) .

This property will be particularly useful subsequently for linking the logical fusion to the belief
fusion.

Joint partitions. Let Π and Λ be two partitions of ⊤. Let Γ = {φ ∧ ψ/φ ∈ Π and ψ ∈ Λ}
be the set of joint propositions obtained from Π and Λ. Then Γ is a partition.

Proof. Let φ, φ′ ∈ Π and ψ,ψ′ ∈ Λ be such that (φ,ψ) 6= (φ′, ψ′).
The exclusivity of (φ ∧ ψ) and (φ′ ∧ ψ′) is a direct consequence of:

(φ ∧ ψ) ∧ (φ′ ∧ ψ′) = (φ ∧ φ′) ∧ (ψ ∧ ψ′) = ⊥ .

The exhaustivity is derived from:

∨

φ∈Π

∨

ψ∈Λ

(φ ∧ ψ) =



∨

φ∈Π

φ


 ∧



∨

ψ∈Λ

ψ


 = ⊤ ∧⊤ = ⊤ .

✷✷✷

Corollary of the proof. (φ ∧ ψ) = (φ′ ∧ ψ′) and (φ,ψ) 6= (φ′, ψ′) imply (φ ∧ ψ) = (φ′ ∧ ψ′) = ⊥ .

This corollary will be useful for the computation of φ(i,j) , subsequently.
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6.5.3.2 Logical fusion

Definition of the logical fusion. Logically, the information provided by the sensor i ∈ J is
described by the modal propositions ✷iφ, where φ ∈< Θ >Γ. The propositions of BΓ(Θ)\ < Θ >Γ

are not considered explicitly, since our discernment is restricted to < Θ >Γ.

Let i, j ∈ J be two sensors which are independent, i.e. such that i× j. The fusion of i and j is
simply defined as the composite sensor (i, j). Now arises the following issue: How to character-
ize the fused information ✷i,jφ from the primary information ✷iφ and ✷jφ ? In order to solve
this question, we introduce first the notion of basic propositional assignments which constitute
the elementary logical components of the information.

Definition of the basic propositional assignments. Let i ∈ J be a sensor. The basic
propositional assignments (bpa) related to sensor i are the modal propositions φ(i) defined for
any φ ∈< Θ >Γ by:

φ(i) = ✷iφ \




∨

ψ∈<Θ>Γ:ψ(φ

✷iψ


 . (6.19)

The bpa φ(i) is the logical information, which sensor i attributes to proposition φ intrinsically.
The information of φ(i) cannot be attributed to smaller propositions than φ.

Subsequently, the bpas appear as essential tools for characterizing the fusion rule.

Logical properties of the bpa.
Exclusivity. The bpas φ(i), where φ ∈< Θ >Γ, are exclusive for any given sensor i ∈ J :

∀φ,ψ ∈< Θ >Γ , φ 6= ψ ⇒ φ(i) ∧ ψ(i) = ⊥ . (6.20)

Proof. From the definition, it is deduced:

φ(i) ∧ ψ(i) = ✷i(φ ∧ ψ) ∧




∧

η∈<Θ>Γ:η(φ

¬✷iη


 ∧




∧

η∈<Θ>Γ:η(ψ

¬✷iη


 .

Since φ ∧ ψ ( φ or φ ∧ ψ ( ψ when φ 6= ψ, it comes φ(i) ∧ ψ(i) = ⊥ .

✷✷✷

Exhaustivity. The bpas φ(i), where φ ∈< Θ >Γ, are exhaustive for any given sensor i ∈ J :

∨

ψ∈<Θ>Γ:ψ⊂φ
ψ(i) = ✷iφ , and in particular:

∨

ψ∈<Θ>Γ

ψ(i) = ⊤ . (6.21)

Proof. The proof is recursive.
It is first noticed that ✷i⊥ = ⊥(i) .

Now, let φ ∈< Θ >Γ and assume
∨
η⊂ψ η

(i) = ✷iψ for any ψ ( φ .
Then:

∨

ψ⊂φ
ψ(i) = φ(i) ∨



∨

ψ(φ

∨

η⊂ψ
η(i)


 = φ(i) ∨



∨

ψ(φ

✷iψ


 .
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It follows
∨
ψ⊂φ ψ

(i) =
(
✷iφ \

(∨
ψ(φ✷iψ

))
∨
(∨

ψ(φ✷iψ
)

= ✷iφ ∨
(∨

ψ(φ✷iψ
)
.

Since ✷i is non decreasing, it is deduced
∨
ψ⊂φ ψ

(i) = ✷iφ .

✷✷✷

Partition. Being both disjoint and exhaustive, the bpas φ(i), where φ ∈< Θ >Γ, constitute a
partition of ⊤ .

Joint partition. Let i, j ∈ J . The propositions φ(i) ∧ ψ(j), where φ,ψ ∈< Θ >Γ, constitute a
partition of ⊤ .

Computing the fusion. Let i, j ∈ J be such that i× j . Then, the following property holds
for any φ ∈< Θ >Γ :

φ(i,j) =
∨

ψ,η∈<Θ>Γ:ψ∧η=φ

(
ψ(i) ∧ η(j)

)
. (6.22)

Proof.
Lemma.

✷i,jφ =
∨

ψ∧η⊂φ
(✷iψ ∧✷jη) =

∨

ψ∧η⊂φ

(
ψ(i) ∧ η(j)

)
.

Proof of lemma. From the property ✷iψ ∧✷jη ⊂ ✷i,j(ψ ∧ η) of section 6.5.2.1 and the
non decreasing property of ✷i,j, it is deduced:

∨

ψ∧η⊂φ
(✷iψ ∧✷jη) ⊂ ✷i,jφ .

Now, the axiom m.indep implies ✷i,jφ ⊂ (✷iφ ∨✷jφ) and then:

✷i,jφ ⊂
(
(✷iφ ∧✷j⊤) ∨ ((✷i⊤ ∧✷jφ)

)
.

As a consequence,
∨
ψ∧η⊂φ(✷iψ ∧✷jη) = ✷i,jφ .

Now, since ✷iψ =
∨
ξ⊂ψ ξ

(i) and ✷jη =
∨
ζ⊂η ζ

(j) (refer to the exhaustivity property),
it comes also:

✷i,jφ =
∨

ψ∧η⊂φ

∨

ξ⊂ψ

∨

ζ⊂η

(
ξ(i) ∧ ζ(j)

)
=

∨

ξ∧ζ⊂φ

(
ξ(i) ∧ ζ(j)

)
.

✷✷

From the definition of the bpa, it is deduced:

φ(i,j) = ✷i,jφ \



∨

ψ(φ

✷i,jψ


 =

∨

η∧ξ⊂φ

(
η(i) ∧ ξ(j)

)
\



∨

η∧ξ(φ

(
η(i) ∧ ξ(j)

)

 .

Now, since the propositions η(i) ∧ ξ(j) constitute a partition (and taking into account the
corollary of the proof in section 6.5.3.1), it comes:

φ(i,j) =
∨

η∧ξ=φ

(
η(i) ∧ ξ(j)

)
.

✷✷✷
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Conclusion. The sensors i, j ∈ J being independent, the fused sensor (i, j) is computed from
i and j accordingly to the following process:

• Build φ(i) = ✷iφ \
(∨

ψ∈<Θ>Γ:ψ(φ✷iψ
)

= ✷iφ \
(∨

ψ∈<Θ>Γ:ψ(φ ψ
(i)
)

and

φ(j) = ✷jφ \
(∨

ψ∈<Θ>Γ:ψ(φ ✷jψ
)

= ✷jφ \
(∨

ψ∈<Θ>Γ:ψ(φ ψ
(j)
)

for any φ ∈< Θ >Γ ,

• Compute φ(i,j) =
∨
η,ξ∈<Θ>Γ:η∧ξ=φ

(
η(i) ∧ ξ(j)

)
for any φ ∈< Θ >Γ ,

• Derive ✷i,jφ =
∨
ψ∈<Θ>Γ:ψ⊂φ ψ

(i,j) for any φ ∈< Θ >Γ .

Obviously, this process is almost identical to the computation of the fused belief Beli ⊕ Belj in
free DSmT or in the TBM paradigm (while including the empty proposition in the definition
of the belief function):

• Set mi(φ) = Beli(φ)−∑ψ(φmi(ψ) and mj(φ) = Belj(φ)−∑ψ(φmj(ψ) ,

• Compute mi ⊕mj(φ) =
∑

η∧ξ=φmi(η)mj(ξ) ,

• Get back Beli ⊕ Belj(φ) =
∑

ψ⊂φmi ⊕mj(ψ) .

It is yet foreseeable that mi ⊕mj(φ) could be interpreted as p
(
φ(i,j)

)
owing to some additional

hypotheses about the probabilistic independence of the propositions. This idea will be combined
with the entropic maximization method described in section 6.3, resulting in a logically inter-
preted fusion rule for the evidence theories.

For now, we are discussing about the signification of optional axiom m.iii which has not been
used until now.

The consequence of axiom m.iii. Axiom m.iii says ✷iφ ⊂ φ and in particular implies
✷i⊥ ⊂ ⊥ and then ✷i⊥ = ⊥ . Thus, there are two important properties related to m.iii:

• It establishes a comparison of the propositions φ and their interpretation ✷iφ by means
of ✷iφ ⊂ φ ,

• It makes the sensors i coherent by implying ✷i⊥ = ⊥ .

By removing m.iii, the incoherence ✷i⊥ 6= ⊥ is made possible, and this has a fundamental
interpretation in term of evidence theories.

• Allowing the incoherence ✷i⊥ 6= ⊥ is a logical counterpart of the TBM paradigm,

• Hypothesizing the coherence ✷i⊥ = ⊥ is a logical counterpart of the DSmT or DST
paradigm.

Next section establishes the connection between the logical fusion and the belief fusion.
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6.5.3.3 From logical to belief fusion

Subsequently, we are assuming that a probability p is defined over the Boolean algebra BΓ(Θ,✷).
This probability is known partially by means of the sensors. For any i ∈ J and any φ ∈< Θ >Γ

are then defined:

• The belief Beli(φ) = p(✷iφ) ,

• The basic belief assignment mi(φ) = p
(
φ(i)
)

.

For any i, j ∈ J such that i× j (independent sensors), the fused bba and belief are defined by:

mi ⊕mj = mi,j and Beli ⊕ Belj = Beli,j . (6.23)

The propositions φ(i) constituting a partition of ⊤, the logical property

φ(i) = ✷iφ \




∨

ψ∈<Θ>Γ:ψ(φ

ψ(i)


 (6.24)

implies:

mi(φ) = Beli(φ)−
∑

ψ(φ

mi(ψ) .

From the exhaustivity property, i.e. ✷iφ =
∨
ψ⊂φ ψ

(i), is derived:

Beli(φ) =
∑

ψ⊂φ
mi(ψ) .

By the way, two fundamental properties of evidence theories have been recovered from our
logical approach. Now, the remaining question is about the fusion rule.

From the definition and the computation of φ(i,j), it is deduced:

mi ⊕mj(φ) = p
(
φ(i,j)

)
= p



∨

η∧ξ=φ

(
η(i) ∧ ξ(j)

)

 .

Since the propositions η(i) ∧ ξ(j) are constituting a partition (and owing to the corollary of the
proof in section 6.5.3.1), it is obtained:

mi ⊕mj(φ) =
∑

η∧ξ=φ
p
(
η(i) ∧ ξ(j)

)
. (6.25)

It is not possible to reduce (6.25) anymore, without an additional hypothesis. In order to
compute p

(
η(i) ∧ ξ(j)

)
, the independence of sensors i and j will be again instrumental. But

this time, the independence is considered from an entropic viewpoint, and the probabilities
p
(
η(i) ∧ ξ(j)

)
are computed by maximizing the entropy of p over the propositions η(i) ∧ ξ(j).

Denoting P(Θ) = P
(
BΓ(Θ,✷)

)
the set of all probabilities over BΓ(Θ,✷), the probabilities

p
(
η(i) ∧ ξ(j)

)
are obtained by means of the program:

p ∈ max
q∈P(Θ)

∑

η,ξ∈<Θ>Γ

−q
(
η(i) ∧ ξ(j)

)
ln q

(
η(i) ∧ ξ(j)

)
,

under constraints: q
(
φ(i)
)

= mi(φ) and q
(
φ(j)

)
= mj(φ) for any φ ∈< Θ >Γ .

(6.26)
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Combining (6.25) and (6.26), it becomes possible to derive mi ⊕mj from mi and mj . Three
different cases arise.

• Axiom m.iii is removed. Then, the fusion rule (6.4) of TBM is recovered,

• Axiom m.iii is used, but < Θ >Γ verifies the insulation property (6.2). Then, the fusion
rule (6.3) of free DSmT is recovered,

• Axiom m.iii is used in the general case. Then, the definition (6.7) of EMR is recovered.
Moreover, ✷i(φ) ⊂ φ implies Beli(φ) ≤ p(φ), which is exactly the bound hypothesis (6.12).
(Notice that the constraints Beli,j(φ) ≤ p(φ) could be discarded from (6.7) because of the
belief enhancement property of section 6.4)

The logical justification of rule EMR is now completed.

6.6 Conclusion

In this chapter, a new fusion rule have been defined for evidence theories. This rule is computed
in order to maximize the entropy of the joint information. This method provides an adaptive
implementation of the independence hypothesis of the sensors. The rule has been tested on
typical examples by means of an algorithmic optimization and by means of a direct computation.
It has been shown that it does not generate conflicts and is compatible with a probabilistic bound
interpretation of the belief function. It is still able to detect truly conflicting sources however,
since the optimization may be unfeasible on these cases. At last, a main contribution of this
rule is also that it is derived from an interpretation of evidence theories by means of modal
logics.
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Abstract: The Dezert-Smarandache theory of plausible and paradoxical reason-
ing is based on the premise that some elements θi of a frame Θ have a non-empty
intersection. These elements are called exhaustive. In number theory, this prop-
erty is observed only in non-Archimedean number systems, for example, in the ring
Zp of p-adic integers, in the field ∗Q of hyperrational numbers, in the field ∗R of
hyperreal numbers, etc. In this chapter, I show that non-Archimedean structures
are infinite DSm models in that each positive exhaustive element is greater (or less)
than each positive exclusive element. Then I consider three principal versions of the
non-Archimedean logic: p-adic valued logic MZp

, hyperrational valued logic M∗Q,
hyperreal valued logic M∗R, and their applications to plausible reasoning. These
logics are constructed for the first time.

7.1 Introduction

The development of fuzzy logic and fuzziness was motivated in large measure by the need for
a conceptual framework which can address the issue of uncertainty and lexical imprecision.
Recall that fuzzy logic was introduced by Lofti Zadeh in 1965 (see [20]) to represent data and
information possessing nonstatistical uncertainties. Florentin Smarandache had generalized
fuzzy logic and introduced two new concepts (see [16], [18], [17]):

1. neutrosophy as study of neutralities;

2. neutrosophic logic and neutrosophic probability as a mathematical model of uncertainty,
vagueness, ambiguity, imprecision, undefined, unknown, incompleteness, inconsistency,
redundancy, contradiction, etc.

183
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Neutrosophy is a new branch of philosophy, which studies the nature of neutralities, as
well as their logical applications. This branch represents a version of paradoxism studies. The
essence of paradoxism studies is that there is a neutrality for any two extremes. For example,
denote by A an idea (or proposition, event, concept), by Anti-A the opposite to A. Then there
exists a neutrality Neut-A and this means that something is neither A nor Anti-A. It is readily
seen that the paradoxical reasoning can be modeled if some elements θi of a frame Θ are not
exclusive, but exhaustive, i. e., here θi have a non-empty intersection. A mathematical model
that has such a property is called the Dezert-Smarandache model (DSm model). A theory of
plausible and paradoxical reasoning that studies DSm models is called the Dezert-Smarandache
theory (DSmT). It is totally different from those of all existing approaches managing uncertain-
ties and fuzziness. In this chapter, I consider plausible reasoning on the base of particular case
of infinite DSm models, namely, on the base of non-Archimedean structures.

Let us remember that Archimedes’ axiom is the formula of infinite length that has one of
two following notations:

• for any ε that belongs to the interval [0, 1], we have

(ε > 0) ⊃ [(ε ≥ 1) ∨ (ε+ ε ≥ 1) ∨ (ε+ ε+ ε ≥ 1) ∨ . . .], (7.1)

• for any positive integer ε, we have

[(1 ≥ ε) ∨ (1 + 1 ≥ ε) ∨ (1 + 1 + 1 ≥ ε) ∨ . . .]. (7.2)

Formulas (7.1) and (7.2) are valid in the field Q of rational numbers and as well as in the
field R of real numbers. In the ring Z of integers, only formula (7.2) has a nontrivial sense,
because Z doesn’t contain numbers of the open interval (0, 1).

Also, Archimedes’ axiom affirms the existence of an integer multiple of the smaller of two
numbers which exceeds the greater: for any positive real or rational number ε, there exists a
positive integer n such that ε ≥ 1

n or n · ε ≥ 1.

The negation of Archimedes’ axiom has one of two following forms:

• there exists ε that belongs to the interval [0, 1] such that

(ε > 0) ∧ [(ε < 1) ∧ (ε+ ε < 1) ∧ (ε+ ε+ ε < 1) ∧ . . .], (7.3)

• there exists a positive integer ε such that

[(1 < ε) ∧ (1 + 1 < ε) ∧ (1 + 1 + 1 < ε) ∧ . . .]. (7.4)

Let us show that (7.3) is the negation of (7.1). Indeed,

¬∀ε [(ε > 0) ⊃ [(ε ≥ 1) ∨ (ε+ ε ≥ 1) ∨ (ε+ ε+ ε ≥ 1) ∨ . . .]] ≡
∃ε¬¬[(ε > 0) ∧ ¬[(ε ≥ 1) ∨ (ε+ ε ≥ 1) ∨ (ε+ ε+ ε ≥ 1) ∨ . . .]] ≡
∃ε (ε > 0) ∧ [¬(ε ≥ 1) ∧ ¬(ε+ ε ≥ 1) ∧ ¬(ε+ ε+ ε ≥ 1) ∧ . . .]] ≡

∃ε (ε > 0) ∧ [(ε < 1) ∧ (ε+ ε < 1) ∧ (ε+ ε+ ε < 1) ∧ . . .]]
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It is obvious that formula (7.3) says that there exist infinitely small numbers (or infinites-
imals), i. e., numbers that are smaller than all real or rational numbers of the open interval
(0, 1). In other words, ε is said to be an infinitesimal if and only if, for all positive integers n,
we have |ε| < 1

n . Further, formula (7.4) says that there exist infinitely large integers that are
greater than all positive integers. Infinitesimals and infinitely large integers are called nonstan-
dard numbers or actual infinities.

The field that satisfies all properties of R without Archimedes’ axiom is called the field of
hyperreal numbers and it is denoted by ∗R. The field that satisfies all properties of Q with-
out Archimedes’ axiom is called the field of hyperrational numbers and it is denoted by ∗Q.
By definition of field, if ε ∈ R (respectively ε ∈ Q), then 1/ε ∈ R (respectively 1/ε ∈ Q).
Therefore ∗R and ∗Q contain simultaneously infinitesimals and infinitely large integers: for an
infinitesimal ε, we have N = 1

ε , where N is an infinitely large integer.

The ring that satisfies all properties of Z without Archimedes’ axiom is called the ring of
hyperintegers and it is denoted by ∗Z. This ring includes infinitely large integers. Notice that
there exists a version of ∗Z that is called the ring of p-adic integers and is denoted by Zp.

I shall show in this chapter that nonstandard numbers (actual infinities) are exhaustive
elements (see section 7.3). This means that their intersection isn’t empty with some other
elements. Therefore non-Archimedean structures of the form ∗S (where we obtain ∗S on the
base of the set S of exclusive elements) are particular case of the DSm model. These structures
satisfy the properties:

1. all members of S are exclusive and S ⊂ ∗S,

2. all members of ∗S\S are exhaustive,

3. if a member a is exhaustive, then there exists a exclusive member b such that a ∩ b 6= ∅,

4. there exist exhaustive members a, b such that a ∩ b 6= ∅,

5. each positive exhaustive member is greater (or less) than each positive exclusive member.

I shall consider three principal versions of the logic on non-Archimedean structures: hy-
perrational valued logic M∗Q, hyperreal valued logic M∗R, p-adic valued logic MZp , and their
applications to plausible and fuzzy reasoning.

7.2 Standard many-valued logics

Let us remember that a first-order logical language L consists of the following symbols:

1. Variables:

(i) Free variables: a0, a1, a2, . . . , aj , . . . (j ∈ ω)

(ii) Bound variables: x0, x1, x2, . . . , xj, . . . (j ∈ ω)
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2. Constants:

(i) Function symbols of arity i (i ∈ ω): F i0, F
i
1, F

i
2, . . . , F

i
j , . . . (j ∈ ω). Nullary function

symbols are called constants.

(ii) Predicate symbols of arity i (i ∈ ω): P i0, P
i
1, P

i
2, . . . , P

i
j , . . . (j ∈ ω).

3. Logical symbols:

(i) Propositional connectives of arity nj : �n0
0 ,�n1

1 , . . . ,�nr
r , which are built by superpo-

sition of negation ¬ and implication ⊃.

(ii) Quantifiers: Q0,Q1, ...,Qq.

4. Auxiliary symbols: (, ), and , (comma).

Terms are inductively defined as follows:

1. Every individual constant is a term.

2. Every free variable (and every bound variable) is a term.

3. If Fn is a function symbol of arity n, and t1, . . . , tn are terms, then Fn(t1, . . . , tn) is a
term.

Formulas are inductively defined as follows:

1. If Pn is a predicate symbol of arity n, and t1, . . . , tn are terms, then Pn(t1, . . . , tn) is a
formula. It is called atomic or an atom. It has no outermost logical symbol.

2. If ϕ1, ϕ2, . . . , ϕn are formulas and �n is a propositional connective of arity n, then
�n(ϕ1, ϕ2, . . . , ϕn) is a formula with outermost logical symbol �n.

3. If ϕ is a formula not containing the bound variable x, a is a free variable and Q is a
quantifier, then Qxϕ(x), where ϕ(x) is obtained from ϕ by replacing a by x at every
occurrence of a in ϕ, is a formula. Its outermost logical symbol is Q.

A formula is called open if it contains free variables, and closed otherwise. A formula with-
out quantifiers is called quantifier-free. We denote the set of formulas of a language L by L. We
will write ϕ(x) for a formula possibly containing the bound variable x, and ϕ(a) respectively
ϕ(t) for the formula obtained from ϕ by replacing every occurrence of the variable x by the
free variable a respectively the term t. Hence, we shall need meta-variables for the symbols of
a language L. As a notational convention we use letters ϕ, φ, ψ, . . . to denote formulas.

A matrix, or matrix logic, M for a language L is given by:

1. a non-empty set of truth values V of cardinality |V | = m,

2. a subset D ⊆ V of designated truth values,

3. an algebra with domain V of appropriate type: for every n-place connective � of L there
is an associated truth function f : V n 7→ V , and

4. for every quantifier Q, an associated truth function Q̃: ℘(V )\∅ 7→ V
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Notice that a truth function for quantifiers is a mapping from non-empty sets of truth values
to truth values: for a non-empty set M ⊆ V , a quantified formula Qxϕ(x) takes the truth value
Q̃(M) if, for every truth value v ∈ V , it holds that v ∈M iff there is a domain element d such
that the truth value of ϕ in this point d is v (all relative to some interpretation). The set M is
called the distribution of ϕ. For example, suppose that there are only the universal quantifier
∀ and the existential quantifier ∃ in L. Further, we have the set of truth values V = {⊤,⊥},
where ⊥ is false and ⊤ is true, i. e., the set of designated truth values D = {⊤}. Then we
define the truth functions for the quantifiers ∀ and ∃ as follows:

1. ∀̃({⊤}) = ⊤

2. ∀̃({⊤,⊥}) = ∀̃({⊥}) = ⊥

3. ∃̃({⊥}) = ⊥

4. ∃̃({⊤,⊥}) = ∃̃({⊤}) = ⊤

Also, a matrix logic M for a language L is an algebraic system denoted

M = <V, f0, f1, . . . , fr, Q̃0, Q̃1, . . . , Q̃q,D>

where

1. V is a non-empty set of truth values for well-formed formulas of L,

2. f0, f1, . . . , fr are a set of matrix operations defined on the set V and assigned to corre-
sponding propositional connectives �n0

0 ,�n1
1 , . . . ,�nr

r of L,

3. Q̃0, Q̃1, . . . , Q̃q are a set of matrix operations defined on the set V and assigned to corre-
sponding quantifiers Q0,Q1, ...,Qq of L,

4. D is a set of designated truth values such that D ⊆ V .

Now consider (n + 1)-valued  Lukasiewicz’s matrix logic Mn+1 defined as the ordered system
<Vn+1,¬,⊃,∨,∧, ∃̃, ∀̃, {n}> for any n > 2, n ∈ N, where

1. Vn+1 = {0, 1, . . . , n},

2. for all x ∈ Vn+1, ¬x = n− x,

3. for all x, y ∈ Vn+1, x ⊃ y = min(n, n− x+ y),

4. for all x, y ∈ Vn+1, x ∨ y = (x ⊃ y) ⊃ y = max(x, y),

5. for all x, y ∈ Vn+1, x ∧ y = ¬(¬x ∨ ¬y) = min(x, y),

6. for a subset M ⊆ Vn+1, ∃̃(M) = max(M), where max(M) is a maximal element of M ,

7. for a subset M ⊆ Vn+1, ∀̃(M) = min(M), where min(M) is a minimal element of M ,

8. {n} is the set of designated truth values.
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The truth value 0 ∈ Vn+1 is false, the truth value n ∈ Vn+1 is true, and other truth values
x ∈ Vn+1 are neutral.

The ordered system <VQ,¬,⊃,∨,∧, ∃̃, ∀̃, {1}> is called rational valued  Lukasiewicz’s matrix
logic MQ, where

1. VQ = {x : x ∈ Q} ∩ [0, 1],

2. for all x ∈ VQ, ¬x = 1− x,

3. for all x, y ∈ VQ, x ⊃ y = min(1, 1 − x+ y),

4. for all x, y ∈ VQ, x ∨ y = (x ⊃ y) ⊃ y = max(x, y),

5. for all x, y ∈ VQ, x ∧ y = ¬(¬x ∨ ¬y) = min(x, y),

6. for a subset M ⊆ VQ, ∃̃(M) = max(M), where max(M) is a maximal element of M ,

7. for a subset M ⊆ VQ, ∀̃(M) = min(M), where min(M) is a minimal element of M ,

8. {1} is the set of designated truth values.

The truth value 0 ∈ VQ is false, the truth value 1 ∈ VQ is true, and other truth values x ∈ VQ

are neutral.

Real valued  Lukasiewicz’s matrix logic MR is the ordered system <VR,¬,⊃,∨,∧, ∃̃, ∀̃, {1}>,
where

1. VR = {x : x ∈ R} ∩ [0, 1],

2. for all x ∈ VR, ¬x = 1− x,

3. for all x, y ∈ VR, x ⊃ y = min(1, 1 − x+ y),

4. for all x, y ∈ VR, x ∨ y = (x ⊃ y) ⊃ y = max(x, y),

5. for all x, y ∈ VR, x ∧ y = ¬(¬x ∨ ¬y) = min(x, y),

6. for a subset M ⊆ VR, ∃̃(M) = max(M), where max(M) is a maximal element of M ,

7. for a subset M ⊆ VR, ∀̃(M) = min(M), where min(M) is a minimal element of M ,

8. {1} is the set of designated truth values.

The truth value 0 ∈ VR is false, the truth value 1 ∈ VR is true, and other truth values x ∈ VR

are neutral.

Notice that the elements of truth value sets Vn+1, VQ, and VR are exclusive: for any members
x, y we have x ∩ y = ∅. Therefore  Lukasiewicz’s logics are based on the premise of existence
Shafer’s model. In other words, these logics are built on the families of exclusive elements
(see [15], [14]).
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However, for a wide class of fusion problems, “the intrinsic nature of hypotheses can be
only vague and imprecise in such a way that precise refinement is just impossible to obtain in
reality so that the exclusive elements θi cannot be properly identified and precisely separated”
(see [19]). This means that if some elements θi of a frame Θ have non-empty intersection, then
sources of evidence don’t provide their beliefs with the same absolute interpretation of elements
of the same frame Θ and the conflict between sources arises not only because of the possible
unreliability of sources, but also because of possible different and relative interpretation of Θ
(see [3], [4]).

7.3 Many-valued logics on DSm models

Definition 1. A many-valued logic is said to be a many-valued logic on DSm model if some
elements of its set V of truth values are not exclusive, but exhaustive.

Recall that a DSm model (Dezert-Smarandache model) is formed as a hyper-power set. Let
Θ = {θ1, . . . , θn} be a finite set (called frame) of n exhaustive elements. The hyper-power set
DΘ is defined as the set of all composite propositions built from elements of Θ with ∩ and ∪
operators such that:

1. ∅, θ1, . . . , θn ∈ DΘ;

2. if A,B ∈ DΘ, then A ∩B ∈ DΘ and A ∪B ∈ DΘ;

3. no other elements belong to DΘ, except those obtained by using rules 1 or 2.

The cardinality of DΘ is majored by 22n
when the cardinality of Θ equals n, i. e. |Θ| = n.

Since for any given finite set Θ, |DΘ| ≥ |2Θ|, we call DΘ the hyper-power set of Θ. Also, DΘ

constitutes what is called the DSm model Mf (Θ). However elements θi can be truly exclusive.
In such case, the hyper-power set DΘ reduces naturally to the classical power set 2Θ and this
constitutes the most restricted hybrid DSm model, denoted byM0(Θ), coinciding with Shafer’s
model. As an example, suppose that Θ = {θ1, θ2} with DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2}, where
θ1 and θ2 are truly exclusive (i. e., Shafer’s modelM0 holds), then because θ1 ∩ θ2 =M0 ∅, one
gets DΘ = {∅, θ1 ∩ θ2 =M0 ∅, θ1, θ2, θ1 ∪ θ2} = {∅, θ1, θ2, θ1 ∪ θ2} = 2Θ.

Now let us show that every non-Archimedean structure is an infinite DSm model, but no
vice versa. The most easy way of setting non-Archimedean structures was proposed by Abra-
ham Robinson in [13]. Consider a set Θ consisting only of exclusive members. Let I be any
infinite index set. Then we can construct an indexed family ΘI , i. e., we can obtain the set of
all functions: f : I 7→ Θ such that f(α) ∈ Θ for any α ∈ I.

A filter F on the index set I is a family of sets F ⊂ ℘(I) for which:

1. A ∈ F , A ⊂ B ⇒ B ∈ F ;

2. A1, . . . , An ∈ F ⇒
n⋂
k=1

Ak ∈ F ;

3. ∅ /∈ F .



190 DSM MODELS AND NON-ARCHIMEDEAN REASONING

The set of all complements for finite subsets of I is a filter and it is called a Frechet filter.
A maximal filter (ultrafilter) that contains a Frechet filter is called a Frechet ultrafilter and it
is denoted by U .

Let U be a Frechet ultrafilter on I. Define a new relation ∽ on the set ΘI by

f ∽ g ≡ {α ∈ I : f(α) = g(α)} ∈ U . (7.5)

It is easily be proved that the relation ∽ is an equivalence. Notice that formula (7.5) means
that f and g are equivalent iff f and g are equal on an infinite index subset. For each f ∈ ΘI

let [f ] denote the equivalence class of f under ∽. The ultrapower ΘI/U is then defined to be
the set of all equivalence classes [f ] as f ranges over ΘI :

ΘI/U , {[f ] : f ∈ ΘI}.

Also, Robinson has proved that each non-empty set Θ has an ultrapower with respect to a
Frechet ultrafilter U . This ultrapower ΘI/U is said to be a proper nonstandard extension of Θ
and it is denoted by ∗Θ.

Proposition 1. Let X be a non-empty set. A nonstandard extension of X consists of a mapping
that assigns a set ∗A to each A ⊆ Xm for all m ≥ 0, such that ∗X is non-empty and the following
conditions are satisfied for all m,n ≥ 0:

1. The mapping preserves Boolean operations on subsets of Xm: if A ⊆ Xm, then ∗A ⊆
(∗X)m; if A,B ⊆ Xm, then ∗(A ∩B) = (∗A ∩ ∗B), ∗(A ∪B) = (∗A ∪ ∗B), and ∗(A\B) =
(∗A)\(∗B).

2. The mapping preserves Cartesian products: if A ⊆ Xm and B ⊆ Xn, then ∗(A × B) =
∗A× ∗B, where A×B ⊆ Xm+n. ✷

This proposition is proved in [5].

Recall that each element of ∗Θ is an equivalence class [f ] as f : I 7→ Θ. There exist two
groups of members of ∗Θ (see Fig. 7.1):

1. functions that are constant, e. g., f(α) = m ∈ Θ for infinite index subset {α ∈ I}. A
constant function [f = m] is denoted by ∗m,

2. functions that aren’t constant.

The set of all constant functions of ∗Θ is called standard set and it is denoted by σΘ. The
members of σΘ are called standard. It is readily seen that σΘ and Θ are isomorphic: σΘ ≃ Θ.

The following proposition can be easily proved:

Proposition 2. For any set Θ such that |Θ| ≥ 2, there exists a proper nonstandard extension
∗Θ for which ∗Θ\σΘ 6= ∅.
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Figure 7.1: The members of ∗Θ: constant and non-constant functions.

Proof. Let I1 = {α1, α2, . . . , αn, . . .} ⊂ I be an infinite set and let U be a Frechet ultrafilter.
Suppose that Θ1 = {m1, . . . ,mn} such that |Θ1| ≥ 1 is the subset of Θ and there is a mapping:

f(α) =

{
mk if α = αk;
m0 ∈ Θ if α ∈ I\I1

and f(α) 6= mk if α = αk mod (n+ 1), k = 1, . . . , n and α 6= αk.
Show that [f ] ∈ ∗Θ\σΘ. The proof is by reductio ad absurdum. Suppose there is m ∈ Θ

such that m ∈ [f(α)]. Consider the set:

I2 = {α ∈ I : f(α) = m} =





{αk} if m = mk, k = 1, . . . , n;
I\I1 if m = m0.
∅ if m /∈ {m0,m1, . . . ,mn}.

In any case I2 /∈ U , because {αk} /∈ U , ∅ /∈ U , I\I1 /∈ U . Thus, [f ] ∈ ∗Θ\σΘ. ✷

The standard members of ∗Θ are exclusive, because their intersections are empty. Indeed,
the members of Θ were exclusive, therefore the members of σΘ are exclusive too. However the
members of ∗Θ\σΘ are exhaustive. By definition, if a member a ∈ ∗Θ is nonstandard, then
there exists a standard member b ∈ ∗Θ such that a ∩ b 6= ∅ (for example, see the proof of
proposition 2). We can also prove that there exist exhaustive members a ∈ ∗Θ, b ∈ ∗Θ such
that a ∩ b 6= ∅.

Proposition 3. There exist two inconstant functions f1, f2 such that the intersection of f1, f2

isn’t empty.

Proof. Let f1 : I 7→ Θ and f2 : I 7→ Θ. Suppose that [fi 6= n], ∀n ∈ Θ, i = 1, 2, i. e., f1, f2 aren’t
constant. By proposition 2, these functions are nonstandard members of ∗Θ. Further consider
an indexed family F (α) for all α ∈ I such that {α ∈ I : fi(α) ∈ F (α)} ∈ U ≡ [fi] ∈ B as i = 1, 2.
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Consequently it is possible that, for some αj ∈ I, f1(αj) ∩ f2(αj) = nj and nj ∈ F (αj). ✷

Thus, non-Archimedean structures are infinite DSm-models, because these con-
tain exhaustive members. In next sections, we shall consider the following non-Archimedean
structures:

1. the nonstandard extension ∗Q (called the field of hyperrational numbers),

2. the nonstandard extension ∗R (called the field of hyperreal numbers),

3. the nonstandard extension Zp (called the ring of p-adic integers) that we obtain as follows.
Let the set N of natural numbers be the index set and let Θ = {0, . . . , p− 1}. Then the
nonstandard extension ΘN\U = Zp.

Further, we shall set the following logics on non-Archimedean structures: hyperrational
valued logic M∗Q, hyperreal valued logic M∗R, p-adic valued logic MZp . Note that these many-
valued logics are the particular cases of logics on DSm models.

7.4 Hyper-valued Reasoning

7.4.1 Hyper-valued matrix logics

Assume that ∗Q[0,1] = QN
[0,1]/U is a nonstandard extension of the subset Q[0,1] = Q ∩ [0, 1] of

rational numbers and σQ[0,1] ⊂ ∗Q[0,1] is the subset of standard members. We can extend the
usual order structure on Q[0,1] to a partial order structure on ∗Q[0,1]:

1. for rational numbers x, y ∈ Q[0,1] we have x ≤ y in Q[0,1] iff [f ] ≤ [g] in ∗Q[0,1], where
{α ∈ N : f(α) = x} ∈ U and {α ∈ N : g(α) = y} ∈ U ,

i. e., f and g are constant functions such that [f ] = ∗x and [g] = ∗y,

2. each positive rational number ∗x ∈ σQ[0,1] is greater than any number [f ] ∈ ∗Q[0,1]\σQ[0,1],

i. e., ∗x > [f ] for any positive x ∈ Q[0,1] and [f ] ∈ ∗Q[0,1], where [f ] isn’t constant
function.

These conditions have the following informal sense:

1. The sets σQ[0,1] and Q[0,1] have isomorphic order structure.

2. The set ∗Q[0,1] contains actual infinities that are less than any positive rational number
of σQ[0,1].

Define this partial order structure on ∗Q[0,1] as follows:

O∗Q 1. For any hyperrational numbers [f ], [g] ∈ ∗Q[0,1], we set [f ] ≤ [g] if

{α ∈ N : f(α) ≤ g(α)} ∈ U .

2. For any hyperrational numbers [f ], [g] ∈ ∗Q[0,1], we set [f ] < [g] if

{α ∈ N : f(α) ≤ g(α)} ∈ U

and [f ] 6= [g], i. e., {α ∈ N : f(α) 6= g(α)} ∈ U .
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3. For any hyperrational numbers [f ], [g] ∈ ∗Q[0,1], we set [f ] = [g] if f ∈ [g].

This ordering relation is not linear, but partial, because there exist elements [f ], [g] ∈ ∗Q[0,1],
which are incompatible.

Introduce two operations max, min in the partial order structure O∗Q:

1. for all hyperrational numbers [f ], [g] ∈ ∗Q[0,1], min([f ], [g]) = [f ] if and only if [f ] ≤ [g]
under condition O∗Q,

2. for all hyperrational numbers [f ], [g] ∈ ∗Q[0,1], max([f ], [g]) = [g] if and only if [f ] ≤ [g]
under condition O∗Q,

3. for all hyperrational numbers [f ], [g] ∈ ∗Q[0,1], min([f ], [g]) = max([f ], [g]) = [f ] = [g] if
and only if [f ] = [g] under condition O∗Q,

4. for all hyperrational numbers [f ], [g] ∈ ∗Q[0,1], if [f ], [g] are incompatible under condition
O∗Q, then min([f ], [g]) = [h] iff there exists [h] ∈ ∗Q[0,1] such that

{α ∈ N : min(f(α), g(α)) = h(α)} ∈ U .

5. for all hyperrational numbers [f ], [g] ∈ ∗Q[0,1], if [f ], [g] are incompatible under condition
O∗Q, then max([f ], [g]) = [h] iff there exists [h] ∈ ∗Q[0,1] such that

{α ∈ N : max(f(α), g(α)) = h(α)} ∈ U .

Note there exist the maximal number ∗1 ∈ ∗Q[0,1] and the minimal number ∗0 ∈ ∗Q[0,1] under
condition O∗Q. Therefore, for any [f ] ∈ ∗Q[0,1], we have: max(∗1, [f ]) = ∗1, max(∗0, [f ]) = [f ],
min(∗1, [f ]) = [f ] and min(∗0, [f ]) = ∗0.

Now define hyperrational-valued matrix logic M∗Q:

Definition 2. The ordered system <V∗Q,¬,⊃,∨,∧, ∃̃, ∀̃, {∗1}> is called hyperrational valued
matrix logic M∗Q, where

1. V∗Q = ∗Q[0,1] is the subset of hyperrational numbers,

2. for all x ∈ V∗Q, ¬x = ∗1− x,

3. for all x, y ∈ V∗Q, x ⊃ y = min(∗1, ∗1− x+ y),

4. for all x, y ∈ V∗Q, x ∨ y = (x ⊃ y) ⊃ y = max(x, y),

5. for all x, y ∈ V∗Q, x ∧ y = ¬(¬x ∨ ¬y) = min(x, y),

6. for a subset M ⊆ V∗Q, ∃̃(M) = max(M), where max(M) is a maximal element of M ,

7. for a subset M ⊆ V∗Q, ∀̃(M) = min(M), where min(M) is a minimal element of M ,

8. {∗1} is the set of designated truth values.
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The truth value ∗0 ∈ V∗Q is false, the truth value ∗1 ∈ V∗Q is true, and other truth values
x ∈ V∗Q are neutral.

Let us consider a nonstandard extension ∗R[0,1] = RN
[0,1]/U for the subset R[0,1] = R ∩ [0, 1]

of real numbers. Let σR[0,1] ⊂ ∗R[0,1] be the subset of standard members. We can extend the
usual order structure on R[0,1] to a partial order structure on ∗R[0,1]:

1. for real numbers x, y ∈ R[0,1] we have x ≤ y in R[0,1] iff [f ] ≤ [g] in ∗R[0,1], where
{α ∈ N : f(α) = x} ∈ U and {α ∈ N : g(α) = y} ∈ U ,

2. each positive real number ∗x ∈ σR[0,1] is greater than any number [f ] ∈ ∗R[0,1]\σR[0,1],

As before, these conditions have the following informal sense:

1. The sets σR[0,1] and R[0,1] have isomorphic order structure.

2. The set ∗R[0,1] contains actual infinities that are less than any positive real number of
σR[0,1].

Define this partial order structure on ∗R[0,1] as follows:

O∗R 1. For any hyperreal numbers [f ], [g] ∈ ∗R[0,1], we set [f ] ≤ [g] if

{α ∈ N : f(α) ≤ g(α)} ∈ U .

2. For any hyperreal numbers [f ], [g] ∈ ∗R[0,1], we set [f ] < [g] if

{α ∈ N : f(α) ≤ g(α)} ∈ U

and [f ] 6= [g], i.e.,{α ∈ N : f(α) 6= g(α)} ∈ U .

3. For any hyperreal numbers [f ], [g] ∈ ∗R[0,1], we set [f ] = [g] if f ∈ [g].

Introduce two operations max, min in the partial order structure O∗R:

1. for all hyperreal numbers [f ], [g] ∈ ∗R[0,1], min([f ], [g]) = [f ] if and only if [f ] ≤ [g] under
condition O∗R,

2. for all hyperreal numbers [f ], [g] ∈ ∗R[0,1], max([f ], [g]) = [g] if and only if [f ] ≤ [g] under
condition O∗R,

3. for all hyperreal numbers [f ], [g] ∈ ∗R[0,1], min([f ], [g]) = max([f ], [g]) = [f ] = [g] if and
only if [f ] = [g] under condition O∗R,

4. for all hyperreal numbers [f ], [g] ∈ ∗R[0,1], if [f ], [g] are incompatible under condition O∗R,
then min([f ], [g]) = [h] iff there exists [h] ∈ ∗R[0,1] such that

{α ∈ N : min(f(α), g(α)) = h(α)} ∈ U .

5. for all hyperreal numbers [f ], [g] ∈ ∗R[0,1], if [f ], [g] are incompatible under condition O∗R,
then max([f ], [g]) = [h] iff there exists [h] ∈ ∗R[0,1] such that

{α ∈ N : max(f(α), g(α)) = h(α)} ∈ U .
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Note there exist the maximal number ∗1 ∈ ∗R[0,1] and the minimal number ∗0 ∈ ∗R[0,1]

under condition O∗R.

As before, define hyperreal valued matrix logic M∗R:

Definition 3. The ordered system <V∗R,¬,⊃,∨,∧, ∃̃, ∀̃, {∗1}> is called hyperreal valued matrix
logic M∗R, where

1. V∗R = ∗R[0,1] is the subset of hyperreal numbers,

2. for all x ∈ V∗R, ¬x = ∗1− x,

3. for all x, y ∈ V∗R, x ⊃ y = min(∗1, ∗1− x+ y),

4. for all x, y ∈ V∗R, x ∨ y = (x ⊃ y) ⊃ y = max(x, y),

5. for all x, y ∈ V∗R, x ∧ y = ¬(¬x ∨ ¬y) = min(x, y),

6. for a subset M ⊆ V∗R, ∃̃(M) = max(M), where max(M) is a maximal element of M ,

7. for a subset M ⊆ V∗R, ∀̃(M) = min(M), where min(M) is a minimal element of M ,

8. {∗1} is the set of designated truth values.

The truth value ∗0 ∈ V∗R is false, the truth value ∗1 ∈ V∗R is true, and other truth values
x ∈ V∗R are neutral.

7.4.2 Hyper-valued probability theory and hyper-valued fuzzy logic

Let X be an arbitrary set and let A be an algebra of subsets A ⊂ X, i. e.

1. union, intersection, and difference of two subsets of X also belong to A;

2. ∅,X belong to A.

Recall that a finitely additive probability measure is a nonnegative set function P(·) defined
for sets A ∈ A that satisfies the following properties:

1. P(A) ≥ 0 for all A ∈ A,

2. P(X) = 1 and P(∅) = 0,

3. if A ∈ A and B ∈ A are disjoint, then P(A ∪B) = P(A) + P(B). In particular P(¬A) =
1−P(A) for all A ∈ A.

The algebra A is called a σ-algebra if it is assumed to be closed under countable union (or
equivalently, countable intersection), i. e. if for every n, An ∈ A causes A =

⋃
n
An ∈ A.

A set function P(·) defined on a σ-algebra is called a countable additive probability measure
(or a σ-additive probability measure) if in addition to satisfying equations of the definition of
finitely additive probability measure, it satisfies the following countable additivity property: for
any sequence of pairwise disjoint sets An, P(A) =

∑
n

P(An). The ordered system (X,A,P) is

called a probability space.
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Now consider hyper-valued probabilities. Let I be an arbitrary set, let A be an algebra of
subsets A ⊂ I, and let U be a Frechet ultrafilter on I. Set for A ∈ A:

µU(A) =

{
1, A ∈ U ;
0, A /∈ U .

Hence, there is a mapping µU : A 7→ {0, 1} satisfying the following properties:

1. µU (∅) = 0, µU (I) = 1;

2. if µU (A1) = µU(A2) = 0, then µU(A1 ∪A2) = 0;

3. if A1 ∩A2 = ∅, then µU (A1 ∪A2) = µU(A1) + µU(A2).

This implies that µU is a probability measure. Notice that µU isn’t σ-additive. As an
example, if A is the set of even numbers and B is the set of odd numbers, then A ∈ U implies
B /∈ U , because the filter U is maximal. Thus, µU(A) = 1 and µU (B) = 0, although the
cardinalities of A and B are equal.

Definition 4. The ordered system (I,A, µU ) is called a probability space.

Let’s consider a mapping: f : I ∋ α 7→ f(α) ∈M . Two mappings f , g are equivalent: f ∽ g
if µU({α ∈ I : f(α) = g(α)}) = 1. An equivalence class of f is called a probabilistic events and
is denoted by [f ]. The set ∗M is the set of all probabilistic events of M . This ∗M is a proper
nonstandard extension defined above.

Under condition 1 of proposition 1, we can obtain a nonstandard extension of an algebra A
denoted by ∗A. Let ∗X be an arbitrary nonstandard extension. Then the nonstandard algebra
∗A is an algebra of subsets A ⊂ ∗X if the following conditions hold:

1. union, intersection, and difference of two subsets of ∗X also belong to ∗A;

2. ∅, ∗X belong to ∗A.

Definition 5. A hyperrational (respectively hyperreal) valued finitely additive probability mea-
sure is a nonnegative set function ∗P : ∗A 7→ V∗Q (respectively ∗P : ∗A 7→ V∗R) that satisfies the
following properties:

1. ∗P(A) ≥ ∗0 for all A ∈ ∗A,

2. ∗P(∗X) = ∗1 and ∗P(∅) = ∗0,

3. if A ∈ ∗A and B ∈ ∗A are disjoint, then ∗P(A ∪ B) = ∗P(A) + ∗P(B). In particular
∗P(¬A) = ∗1− ∗P(A) for all A ∈ ∗A.

Now consider hyper-valued fuzzy logic.

Definition 6. Suppose ∗X is a nonstandard extension. Then a hyperrational (respectively
hyperreal) valued fuzzy set A in ∗X is a set defined by means of the membership function ∗µA:
∗X 7→ V∗Q (respectively by means of the membership function ∗µA: ∗X 7→ V∗R).
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A set A ⊂ ∗X is called crisp if ∗µA(u) = ∗1 or ∗µA(u) = ∗0 for any u ∈ ∗X.

The logical operations on hyper-valued fuzzy sets are defined as follows:

1. ∗µA∩B(x) = min(∗µA(x), ∗µB(x));

2. ∗µA∪B(x) = max(∗µA(x), ∗µB(x));

3. ∗µA+B(x) = ∗µA(x) + ∗µB(x)− ∗µA(x) · ∗µB(x);

4. ∗µ¬A(x) = ¬∗µA(x) = ∗1− ∗µA(x).

7.5 p-Adic Valued Reasoning

Let us remember that the expansion

n = α−N · p−N +α−N+1 · p−N+1 + . . .+α−1 · p−1 +α0 +α1 · p+ . . .+αk · pk + . . . =

+∞∑

k=−N
αk · pk,

where αk ∈ {0, 1, . . . , p− 1}, ∀k ∈ Z, and α−N 6= 0, is called the canonical expansion of p-adic
number n (or p-adic expansion for n). The number n is called p-adic. This number can be
identified with sequences of digits: n = . . . α2α1α0, α−1α−2 . . . α−N . We denote the set of such
numbers by Qp.

The expansion n = α0 +α1 · p+ . . .+αk · pk + . . . =
∞∑
k=0

αk · pk, where αk ∈ {0, 1, . . . , p− 1},
∀k ∈ N ∪ {0}, is called the expansion of p-adic integer n. The integer n is called p-adic. This
number sometimes has the following notation: n = . . . α3α2α1α0. We denote the set of such
numbers by Zp.

If n ∈ Zp, n 6= 0, and its canonical expansion contains only a finite number of nonzero digits
αj , then n is natural number (and vice versa). But if n ∈ Zp and its expansion contains an
infinite number of nonzero digits αj , then n is an infinitely large natural number. Thus the set
of p-adic integers contains actual infinities n ∈ Zp\N, n 6= 0. This is one of the most important
features of non-Archimedean number systems, therefore it is natural to compare Zp with the
set of nonstandard numbers ∗Z. Also, the set Zp contains exhaustive elements.

7.5.1 p-Adic valued matrix logic

Extend the standard order structure on {0, . . . , p−1} to a partial order structure on Zp. Define
this partial order structure on Zp as follows:

OZp Let x = . . . xn . . . x1x0 and y = . . . yn . . . y1y0 be the canonical expansions of two p-adic
integers x, y ∈ Zp.

1. We set x ≤ y if we have xn ≤ yn for each n = 0, 1, . . .

2. We set x < y if we have xn ≤ yn for each n = 0, 1, . . . and there exists n0 such that
xn0 < yn0.

3. We set x = y if xn = yn for each n = 0, 1, . . .
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Now introduce two operations max, min in the partial order structure on Zp:

1 for all p-adic integers x, y ∈ Zp, min(x, y) = x if and only if x ≤ y under condition OZp ,

2 for all p-adic integers x, y ∈ Zp, max(x, y) = y if and only if x ≤ y under condition OZp ,

3 for all p-adic integers x, y ∈ Zp, max(x, y) = min(x, y) = x = y if and only if x = y under
condition OZp .

The ordering relation OZp is not linear, but partial, because there exist elements x, z ∈ Zp,
which are incompatible. As an example, let p = 2 and let x = −1

3 = . . . 10101 . . . 101,
z = −2

3 = . . . 01010 . . . 010. Then the numbers x and z are incompatible.

Thus,

4 Let x = . . . xn . . . x1x0 and y = . . . yn . . . y1y0 be the canonical expansions of two p-adic
integers x, y ∈ Zp and x, y are incompatible under condition OZp . We get min(x, y) =
z = . . . zn . . . z1z0, where, for each n = 0, 1, . . ., we set

1. zn = yn if xn ≥ yn,

2. zn = xn if xn ≤ yn,

3. zn = xn = yn if xn = yn.

We get max(x, y) = z = . . . zn . . . z1z0, where, for each n = 0, 1, . . ., we set

1. zn = yn if xn ≤ yn,

2. zn = xn if xn ≥ yn,

3. zn = xn = yn if xn = yn.

It is important to remark that there exists the maximal number Nmax ∈ Zp under condition
OZp . It is easy to see:

Nmax = −1 = (p− 1) + (p− 1) · p+ . . . + (p − 1) · pk + . . . =
∞∑

k=0

(p − 1) · pk

Therefore

5 min(x,Nmax) = x and max(x,Nmax) = Nmax for any x ∈ Zp.

Now consider p-adic valued matrix logic MZp .

Definition 7. The ordered system <VZp ,¬,⊃,∨,∧, ∃̃, ∀̃, {Nmax}> is called p-adic valued matrix
logic MZp, where

1. VZp = {0, . . . , Nmax} = Zp,

2. for all x ∈ VZp , ¬x = Nmax − x,

3. for all x, y ∈ VZp, x ⊃ y = (Nmax −max(x, y) + y),

4. for all x, y ∈ VZp, x ∨ y = (x ⊃ y) ⊃ y = max(x, y),
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5. for all x, y ∈ VZp, x ∧ y = ¬(¬x ∨ ¬y) = min(x, y),

6. for a subset M ⊆ VZp, ∃̃(M) = max(M), where max(M) is a maximal element of M ,

7. for a subset M ⊆ VZp, ∀̃(M) = min(M), where min(M) is a minimal element of M ,

8. {Nmax} is the set of designated truth values.

The truth value 0 ∈ Zp is false, the truth value Nmax ∈ Zp is true, and other truth values
x ∈ Zp are neutral.

Proposition 4. The logic MZ2 = <VZ2,¬,⊃,∨,∧, ∃̃, ∀̃, {Nmax}> is a Boolean algebra.

Proof. Indeed, the operation ¬ in MZ2 is the Boolean complement:

1. max(x,¬x) = Nmax,

2. min(x,¬x) = 0. ✷

7.5.2 p-Adic probability theory

7.5.2.1 Frequency theory of p-adic probability

Let us remember that the frequency theory of probability was created by Richard von Mises
in [10]. This theory is based on the notion of a collective: “We will say that a collective is a
mass phenomenon or a repetitive event, or simply a long sequence of observations for which
there are sufficient reasons to believe that the relative frequency of the observed attribute would
tend to a fixed limit if the observations were infinitely continued. This limit will be called the
probability of the attribute considered within the given collective” [10].

As an example, consider a random experiment S and by L = {s1, . . . , sm} denote the set of
all possible results of this experiment. The set S is called the label set, or the set of attributes.
Suppose there are N realizations of S and write a result xj after each realization. Then we
obtain the finite sample: x = (x1, . . . , xN ), xj ∈ L. A collective is an infinite idealization of this
finite sample: x = (x1, . . . , xN , . . .), xj ∈ L. Let us compute frequencies νN (α;x) = nN (α;x)/N ,
where nN(α;x) is the number of realizations of the attribute α in the first N tests. There exists
the statistical stabilization of relative frequencies: the frequency νN (α;x) approaches a limit as
N approaches infinity for every label α ∈ L. This limit P(α) = lim νN (α;x) is said to be the
probability of the label α in the frequency theory of probability. Sometimes this probability is
denoted by Px(α) to show a dependence on the collective x. Notice that the limits of relative
frequencies have to be stable with respect to a place selection (a choice of a subsequence) in the
collective. A. Yu. Khrennikov developed von Mises’ idea and proposed the frequency theory of
p-adic probability in [6, 7]. We consider here Khrennikov’s theory.

We shall study some ensembles S = SN , which have a p-dic volume N , where N is the
p-adic integer. If N is finite, then S is the ordinary finite ensemble. If N is infinite, then S
has essentially p-adic structure. Consider a sequence of ensembles Mj having volumes lj · pj ,
j = 0, 1, . . . Get S = ∪∞j=0Mj . Then the cardinality |S| = N . We may imagine an ensemble S as
being the population of a tower T = TS , which has an infinite number of floors with the follow-
ing distribution of population through floors: population of j-th floor is Mj . Set Tk = ∪kj=0Mj .
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This is population of the first k + 1 floors. Let A ⊂ S and let there exists: n(A) = lim
k→∞

nk(A),

where nk(A) = |A ∩ Tk|. The quantity n(A) is said to be a p-adic volume of the set A.

We define the probability of A by the standard proportional relation:

P(A) , PS(A) =
n(A)

N
, (7.6)

where |S| = N , n(A) = |A ∩ S|.

We denote the family of all A ⊂ S, for which P(A) exists, by GS . The sets A ∈ GS are said
to be events. The ordered system (S,GS ,PS) is called a p-adic ensemble probability space for
the ensemble S.

Proposition 5. Let F be the set algebra which consists of all finite subsets and their comple-
ments. Then F ⊂ GS.

Proof. Let A be a finite set. Then n(A) = |A| and the probability of A has the form:

P(A) =
|A|
|S|

Now let B = ¬A. Then |B∩Tk| = |Tk|−|A∩Tk|. Hence there exists lim
k→∞

|B∩Tk| = N−|A|.
This equality implies the standard formula:

P(¬A) = 1−P(A)

In particular, we have: P(S) = 1. ✷

The next propositions are proved in [6]:

Proposition 6. Let A1, A2 ∈ GS and A1 ∩A2 = ∅. Then A1 ∪A2 ∈ GS and

P(A1 ∪A2) = P(A1) + P(A2).

✷

Proposition 7. Let A1, A2 ∈ GS. The following conditions are equivalent:

1. A1 ∪A2 ∈ GS,

2. A1 ∩A2 ∈ GS,

3. A1\A2 ∈ GS,

4. A2\A1 ∈ GS. ✷

But it is possible to find sets A1, A2 ∈ GS such that, for example, A1 ∪A2 /∈ GS . Thus, the
family GS is not an algebra, but a semi-algebra (it is closed only with respect to a finite unions
of sets, which have empty intersections). GS is not closed with respect to countable unions of
such sets.
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Proposition 8. Let A ∈ GS, P(A) 6= 0 and B ∈ GA. Then B ∈ GS and the following Bayes
formula holds:

PA(B) =
PS(B)

PS(A)
(7.7)

Proof. The tower TA of the A has the following population structure: there are MAj elements
on the j-th floor. In particular, TAk

= Tk ∩A. Thus

nAk
(B) = |B ∩ TAk

| = |B ∩ Tk| = nk(B)

for each B ⊂ A. Hence the existence of nA(B) = lim
k→∞

nAk
(B) implies the existence of nS(B)

with nS(B) = lim
k→∞

nk(B). Moreover, nS(B) = nA(B). Therefore,

PA(B) =
nA(B)

nS(A)
=
nA(B)/|S|
nS(A)/|S| .

✷

Proposition 9. Let N ∈ Zp, N 6= 0 and let the ensemble S−1 have the p-adic volume −1 =
Nmax (it is the largest ensemble).

1. Then SN ∈ GS−1 and

PS−1(SN ) =
|SN |
|S−1|

= −N

2. Then GSN
⊂ GS−1 and probabilities PSN

(A) are calculated as conditional probabilities with
respect to the subensemble SN of ensemble S−1:

PSN
(A) = PS−1(

A

SN
) =

PS−1(A)

PS−1(SN )
, A ∈ GSN

✷

7.5.2.2 Logical theory of p-adic probability

Transform the matrix logic MZp into a p-adic probability theory. Let us remember that a
formula ϕ has the truth value 0 ∈ Zp in MZp if ϕ is false, a formula ϕ has the truth value
Nmax ∈ Zp in MZp if ϕ is true, and a formula ϕ has other truth values α ∈ Zp in MZp if ϕ is
neutral.

Definition 8. A function P(ϕ) is said to be a probability measure of a formula ϕ in MZp if
P(ϕ) ranges over numbers of Qp and satisfies the following axioms:

1. P(ϕ) = α
Nmax

, where α is a truth value of ϕ;

2. if a conjunction ϕ ∧ ψ has the truth value 0, then P(ϕ ∨ ψ) = P(ϕ) + P(ψ),

3. P(ϕ ∧ ψ) = min(P(ϕ),P(ψ)).
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Notice that:

1. taking into account condition 1 of our definition, if ϕ has the truth value Nmax for any its
interpretations, i. e., ϕ is a tautology, then P(ϕ) = 1 in all possible worlds, and if ϕ has
the truth value 0 for any its interpretations, i. e., ϕ is a contradiction, then P(ϕ) = 0 in
all possible worlds;

2. under condition 2, we obtain P(¬ϕ) = 1−P(ϕ).

Since P(Nmax) = 1, we have

P(max{x ∈ VZp}) =
∑

x∈VZp

P(x) = 1

All events have a conditional plausibility in the logical theory of p-adic probability:

P(ϕ) ≡ P(ϕ/Nmax), (7.8)

i. e., for any ϕ, we consider the conditional plausibility that there is an event of ϕ, given an
event Nmax,

P(ϕ/ψ) =
P(ϕ ∧ ψ)

P(ψ)
. (7.9)

7.5.3 p-Adic fuzzy logic

The probability interpretation of the logic MZp shows that this logic is a special system of fuzzy
logic. Indeed, we can consider the membership function µA as a p-adic valued predicate.

Definition 9. Suppose X is a non-empty set. Then a p-adic-valued fuzzy set A in X is a set
defined by means of the membership function µA: X 7→ Zp, where Zp is the set of all p-adic
integers.

It is obvious that the set A is completely determined by the set of tuples {<u, µA(u)> : u ∈
X}. We define a norm | · |p : Qp 7→ R on Qp as follows:

|n =

+∞∑

k=−N
αk · pk|p , p−L,

where L = max{k : n ≡ 0 mod pk} ≥ 0, i. e. L is an index of the first number distinct
from zero in p-adic expansion of n. Note that |0|p , 0. The function | · |p has values 0 and
{pγ}γ∈Z on Qp. Finally, |x|p ≥ 0 and |x|p = 0 ≡ x = 0. A set A ⊂ X is called crisp if
|µA(u)|p = 1 or |µA(u)|p = 0 for any u ∈ X. Notice that |µA(u) = 1|p = 1 and |µA(u) = 0|p = 0.
Therefore our membership function is an extension of the classical characteristic function. Thus,
A = B causes µA(u) = µB(u) for all u ∈ X and A ⊆ B causes |µA(u)|p 6 |µB(u)|p for all u ∈ X.

In p-adic fuzzy logic, there always exists a non-empty intersection of two crisp sets. In fact,
suppose the sets A, B have empty intersection and A, B are crisp. Consider two cases under
condition µA(u) 6= µB(u) for any u. First, |µA(u)|p = 0 or |µA(u)|p = 1 for all u and secondly
|µB(u)|p = 0 or |µB(u)|p = 1 for all u. Assume we have µA(u0) = Nmax for some u0, i. e.,
|µA(u0)|p = 1. Then µB(u0) 6= Nmax, but this doesn’t mean that µB(u0) = 0. It is possible
that |µA(u0)|p = 1 and |µB(u0)|p = 1 for u0.



7.6. CONCLUSION 203

Now we set logical operations on p-adic fuzzy sets:

1. µA∩B(x) = min(µA(x), µB(x));

2. µA∪B(x) = max(µA(x), µB(x));

3. µA+B(x) = µA(x) + µB(x)−min(µA(x), µB(x));

4. µ¬A(x) = ¬µA(x) = Nmax − µA(x) = −1− µA(x).

7.6 Conclusion

In this chapter, one has constructed on the basis of infinite DSm models three logical many-
valued systems: MZp , M∗Q, and M∗R. These systems are principal versions of the non-
Archimedean logic and they can be used in probabilistic and fuzzy reasoning. Thus, the DSm
models assumes many theoretical and practical applications.
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Chapter 8

An In-Depth Look at Quantitative
Information Fusion Rules

Florentin Smarandache
Department of Mathematics,

The University of New Mexico,
200 College Road,

Gallup, NM 87301, U.S.A.

Abstract: This chapter may look like a glossary of the fusion rules and
we also introduce new ones presenting their formulas and examples: Conjunc-
tive, Disjunctive, Exclusive Disjunctive, Mixed Conjunctive-Disjunctive rules, Con-
ditional rule, Dempster’s, Yager’s, Smets’ TBM rule, Dubois-Prade’s, Dezert-
Smarandache classical and hybrid rules, Murphy’s average rule, Inagaki-Lefevre-
Colot-Vannoorenberghe Unified Combination rules [and, as particular cases:
Iganaki’s parameterized rule, Weighted Average Operator, minC (M. Daniel),
and newly Proportional Conflict Redistribution rules (Smarandache-Dezert) among
which PCR5 is the most exact way of redistribution of the conflicting mass to
non-empty sets following the path of the conjunctive rule], Zhang’s Center Com-
bination rule, Convolutive x-Averaging, Consensus Operator (Jøsang), Cautious
Rule (Smets), α-junctions rules (Smets), etc. and three new T -norm & T -conorm
rules adjusted from fuzzy and neutrosophic sets to information fusion (Tchamova-
Smarandache). Introducing the degree of union and degree of inclusion with respect
to the cardinal of sets not with the fuzzy set point of view, besides that of intersection,
many fusion rules can be improved. There are corner cases where each rule might
have difficulties working or may not get an expected result. As a conclusion, since no
theory neither rule fully satisfy all needed applications, the author proposes a Uni-
fication of Fusion Theories extending the power and hyper-power sets from previous
theories to a Boolean algebra obtained by the closures of the frame of discernment
under union, intersection, and complement of sets (for non-exclusive elements one
considers a fuzzy or neutrosophic complement). And, at each application, one selects
the most appropriate model, rule, and algorithm of implementation.

The material of this chapter has been presented at NASA Langley Research Center, Hampton, Virginia, on
November 5, 2004.

205



206 QUANTITATIVE INFORMATION FUSION RULES

8.1 Introduction

Let’s consider the frame of discernment Θ = {θ1, θ2, . . . , θn}, with n ≥ 2, and two sources of
information:

m1(·),m2(·) : SΘ → [0, 1].

For the simplest frame Θ = {θ1, θ2} one can define a mass matrix as follows:

θ1 θ2 θ1 ∪ θ2 θ1 ∩ θ2 Cθ1 Cθ2 C(θ1 ∩ θ2) ∅
m1(·) m11 m12 m13 m14 m15 m16 m17 m18

m2(·) m21 m22 m23 m24 m25 m26 m27 m28

In calculations we take into account only the focal elements, i.e. those for which m1(·) or
m2(·) > 0. In the Shafer’s model one only has the first three columns of the mass matrix,
corresponding to θ1, θ2, θ1 ∪ θ2, while in the Dezert-Smarandache free model only the first four
columns corresponding to θ1, θ2, θ1 ∪ θ2, θ1 ∩ θ2. But here we took the general case in order to
include the possible complements (negations) as well.

We note the combination of these bba’s, using any of the below rule “r”, by

mr = m1 ⊗r m2.

All the rules below are extended from their power set 2Θ = (Θ,∪) = {∅, θ1, θ2, θ1 ∪ θ2},
which is a set closed under union, or hyper-power set DΘ = (Θ,∪,∩) = {∅, θ1, θ2, θ1∪θ2, θ1∩θ2}
which is a distributive lattice called hyper-power set, to the super-power set SΘ = (Θ,∪,∩, C) =
{∅, θ1, θ2, θ1 ∪ θ2, θ1 ∩ θ2, Cθ1, Cθ2, C(θ1 ∩ θ2)}, which is a Boolean algebra with respect to the
union, intersection, and complement (C is the complement).

Of course, all of these can be generalized for Θ of dimension n ≥ 2 and for any number of
sources s ≥ 2.

Similarly one defines the mass matrix, power-set, hyper-power set, and super-power set for
the general frame of discernment.

A list of the main rules we have collected from various sources available in the open literature
is given in the next sections.

8.2 Conjunctive Rule

If both sources of information are telling the truth, then we apply the conjunctive rule, which
means consensus between them (or their common part):

∀A ∈ SΘ, one has m1(A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2),

where the Total Conflicting Mass is:

k12 =
∑

X1,X2∈SΘ

X1∩X2=∅

m1(X1)m2(X2).
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8.3 Disjunctive Rule

If at least one source of information is telling the truth, we use the optimistic disjunctive rule
proposed by Dubois and Prade in [7]:

m∪(∅) = 0, and ∀A ∈ SΘ \ ∅, one has m∪(A) =
∑

X1,X2∈SΘ

X1∪X2=A

m1(X1)m2(X2).

8.4 Exclusive Disjunctive Rule

If only one source of information is telling the truth, but we don’t know which one, then one
uses the exclusive disjunctive rule [7] based on the fact that X1 ⊻ X2 means either X1 is true,
or X2 is true, but not both in the same time (in set theory let’s use X1 ⊻ X2 for exclusive
disjunctive):

m⊻(∅) = 0, and ∀A ∈ SΘ \ ∅, one has m⊻(A) =
∑

X1,X2∈SΘ

X1⊻X2=A

m1(X1)m2(X2).

8.5 Mixed Conjunctive-Disjunctive Rule

This is a mixture of the previous three rules in any possible way [7]. As an example, suppose
we have four sources of information and we know that: either the first two are telling the truth
or the third, or the fourth is telling the truth. The mixed formula becomes:

m∩∪(∅) = 0,

and

∀A ∈ SΘ \ ∅, one has m∩∪(A) =
∑

X1,X2,X3,X4∈SΘ

((X1∩X2)∪X3)⊻X4=A

m1(X1)m2(X2)m3(X3)m4(X4).

8.6 Conditioning Rule

This classical conditioning rule proposed by Glenn Shafer in Dempster-Shafer Theory [26] looks
like the conditional probability (when dealing with Bayesian belief functions) but it is different.
Shafer’s conditioning rule is commonly used when there exists a bba, say mS(·), such that for
an hypothesis, say A, one has mS(A) = 1 (i.e. when the subjective certainty of an hypothesis
to occur is given by an expert). Shafer’s conditioning rule consists in combining mS(·) directly
with another given bba for belief revision using Dempster’s rule of combination. We point out
that this conditioning rule could be used also whatever rule of combination is chosen in any
other fusion theory dealing with belief functions. After fusioning m1(.) with mS(A) = 1, the
conflicting mass is transferred to non-empty sets using Dempster’s rule in DST, or DSmH or
PCR5 in DSmT, etc. Another family of belief conditioning rules (BCR) is proposed as a new
alternative in chapter 9 of this book.
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8.7 Dempster’s Rule

This is the most used fusion rule in applications and this rule influenced the development of
other rules. Shafer has developed the Dempster-Shafer Theory of Evidence [26] based on the
model that all hypotheses in the frame of discernment are exclusive and the frame is exhaustive.
Dempster’s rule for two independent sources is given by [26]

mD(∅) = 0,

and

∀A ∈ SΘ \ ∅, one has mD(A) =
1

1− k12
·

∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2).

8.8 Modified Dempster-Shafer rule (MDS)

MDS rule was introduced by Dale Fixsen and Ronald P. S. Mahler in 1997 [11] for identifying
objects in a finite universe U containing N elements, and it merges Bayesian and Dempster-
Shafer theories.
Let B and C be two bodies of evidence:B = {(S1,m1), (S2,m2), . . . , (Sb,mb)} and C = {(T1, n1),
(T2, n2), . . . (Tc, nc)} where Si, 1 ≤ i ≤ b, Tj , 1 ≤ j ≤ c, are subsets of the universe U ,and
(Si,mi) represents for the source B the hypothesis object is in Si with a belief (mass assignment)
of mi with of course

∑
imi = 1. Similarly for (Tj , nj) for each j.

Then B and C can be fused just following Dempster’s rule and one gets a new body of
evidence B ⋆ C. The elements of B ⋆ C are intersections of Si ∩ Tj for all i = 1, . . . , b and
j = 1, . . . , c, giving the following masses:

rij = minj
αDS(Si, Tj)

αDS(B,C)

if αDS(B,C) 6= 0 (it is zero only in the total degenerate case).
The Dempster-Shafer agreement αDS(., .) is defined by [11]:

αDS(B,C) =

b∑

i=1

c∑

j=1

minjαDS(Si, Tj) with αDS(S, T ) =
ρ(S ∩ T )

ρ(S)ρ(T )

where the set function ρ(S) = 1 if S 6= ∅ and ρ(∅) = 0; αDS(S, T ) = 1 if S ∩ T 6= ∅ and zero
otherwise.

The agreement between bodies of evidence is just 1−k, where k is the conflict from Dempster-
Shafer Theory. In 1986, J. Yen had proposed a similar rule, but his probability model was
different from Fixsen-Mahler MDS’s (see [50] for details).

8.9 Murphy’s Statistical Average Rule

If we consider that the bba’s are important from a statistical point of view, then one averages
them as proposed by Murphy in [24]:

∀A ∈ SΘ, one has mM (A) =
1

2
[m1(A) +m2(A)].
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Or, more general, mmixing(A) = 1
2 [w1m1(A)+w2m2(A)], where w1, w2 are weights reflecting

the reliability of sources.

8.10 Dezert-Smarandache Classic Rule (DSmC)

DSmC rule [31] is a generalization of the conjunctive rule from the power set to the hyper-power
set.

∀A ∈ SΘ, one has mDSmC(A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2).

It can also be extended on the Boolean algebra (Θ,∪,∩, C) in order to include the complements
(or negations) of elements.

8.11 Dezert-Smarandache Hybrid Rule (DSmH)

DSmH rule [31] is an extension of the Dubois-Prade rule for the dynamic fusion. The middle
sum in the below formula does not occur in Dubois-Prade’s rule, and it helps in the transfer of
the masses of empty sets — whose disjunctive forms are also empty — to the total ignorance.

mDSmH(∅) = 0,

and

∀A ∈ SΘ \ ∅ one has

mDSmH(A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2) +
∑

X1,X2∈∅
(A=U)∨{U∈∅∧A=I}

m1(X1)m2(X2)

+
∑

X1,X2∈SΘ

X1∪X2=A
X1∩X2∈∅

m1(X1)m2(X2)

where all sets are in canonical form (i.e. for example the set (A ∩ B) ∩ (A ∪ B ∪ C)) will be
replaced by its canonical form A ∩B), and U is the disjunctive form of X1 ∩X2 and is defined
as follows:

U(X) = X if X is a singleton,

U(X1 ∩X2) = U(X1) ∪ U(X2), and

U(X1 ∪X2) = U(X1) ∪ U(X2);

while I = θ1 ∪ θ2 ∪ · · · ∪ θn is the total ignorance.
Formally the canonical form has the properties:

i) c(∅) = ∅;

ii) if A is a singleton, then c(A) = A;

iii) if A ⊆ B, then c(A ∩B) = A and c(A ∪B) = B;

iv) the second and third properties apply for any number of sets.
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8.12 Smets’ TBM Rule

In the TBM (Transferable Belief model) approach, Philippe Smets [36] does not transfer the
conflicting mass, but keeps it on the empty set, meaning that m(∅) > 0 signifies that there
might exist other hypotheses we don’t know of in the frame of discernment (this is called an
open world).

mS(∅) = k12 =
∑

X1,X2∈SΘ

X1∩X2=∅

m1(X1)m2(X2).

and

∀A ∈ SΘ \ ∅, one has mS(A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2).

8.13 Yager’s Rule

R. Yager transfers the total conflicting mass to the total ignorance [44], i.e.

mY (∅) = 0, mY (I) = m1(I)m2(I) +
∑

X1,X2∈SΘ

X1∩X2=∅

m1(X1)m2(X2)

where I = total ignorance, and

∀A ∈ SΘ \ {∅, I}, one has mY (A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2).

8.14 Dubois-Prade’s Rule

This rule [8] is based on the principle that if two sources are in conflict, then at least one is
true, and thus transfers the conflicting mass m(A ∩B) > 0 to A ∪B.

mDP (∅) = 0,

and

∀A ∈ SΘ \ ∅ one has

mDP (A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2) +
∑

X1,X2∈SΘ

X1∪X2=A
X1∩X2=∅

m1(X1)m2(X2).

8.15 Weighted Operator (Unification of the Rules)

The Weighted Operator (WO) proposed by T. Inagaki in [15] and later by Lefevre-Colot-
Vannoorenberghe in [19] is defined as follows:

mWO(∅) = wm(∅) · k12,
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and
∀A ∈ SΘ \ ∅, one has mWO(A) =

∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2) + wm(A) · k12

where wm(A) ∈ [0, 1] for any A ∈ SΘ and
∑

X∈SΘ wm(X) = 1 and wm(A) are called weighting
factors.

8.16 Inagaki’s Unified Parameterized Combination Rule

Inagaki’s Unified Parameterized Combination Rule [15] is defined by

∀A ∈ SΘ \ {∅, I}, one has mU
p (A) = [1 + p · k12]

∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2),

and
mU
p (∅) = 0,mU

p (I) = [1 + p · k12]
∑

X1,X2∈SΘ

X1∩X2=I

m1(X1)m2(X2) + [1 + p · k12 − p]k12

where the parameter 0 ≤ p ≤ 1/[1 − k12 −m∩(I)], and k12 is the conflict.
The determination of parameter p, used for normalization, is not well justified in the litera-

ture, but may be found through experimental data, simulations, expectations [39]. The greater
is the parameter p, the greater is the change to the evidence.

8.17 The Adaptive Combination Rule (ACR)

Mihai Cristian Florea, Anne-Laure Jousselme, Dominic Grenier and Eloi Bossé propose a new
class of combination rules for the evidence theory as a mixing between the disjunctive (p) and
conjunctive (q) rules [12, 13]. The adaptive combination rule (ACR) between m1 and m2 is
defined by (m1 ⋄m2)(∅) = 0 and :

(m1 ⋄m2)(A) = α(k)p(A) + β(k)q(A) , ∀A ⊆ Θ, A 6= ∅ (8.1)

Here, α and β are functions of the conflict k = q(∅) from [0, 1] to [0,+∞[. The ACR may be
expressed according only to the function β (because of the condition

∑
A⊆Θ(m1 ⋄m2)(A) = 1)

as follows:

(m1 ⋄m2)(A) = [1− (1− k)β(k)]p(A) + β(k)q(A) , ∀A ⊆ Θ, A 6= ∅ (8.2)

and (m1 ⋄m2)(∅) = 0 where β is any function such that β : [0, 1]→ [0,+∞[.
In the general case α and β are functions of k with no particular constraint. However, a

desirable behaviour of the ACR is that it should act more like the disjunctive rule p whenever k
is close to 1 (i.e. at least one source is unreliable), while it should act more like the conjunctive
rule q, if k is close to 0 (i.e. both sources are reliable). This amounts to add three conditions
on the general formulation:

(C1) α is an increasing function with α(0) = 0 and α(1) = 1;

(C2) β is a decreasing function with β(0) = 1 and β(1) = 0.



212 QUANTITATIVE INFORMATION FUSION RULES

(C3) α(k) = 1− (1− k)β(k)

In particular, when k = 0 the sources are in total agreement and (m1 ⋄m2)(A) = p(A),∀A ⊆ Θ,
the conjunction represents the combined evidence, while when k = 1 the sources are in total
conflict and (m1 ⋄m2)(A) = q(A),∀A ⊆ Θ, the disjunction is the best choice considering that
one of them is wrong.

Note that the three conditions above are dependent and (C1) can be removed, since it is a
consequence of the (C2) and (C3). The particular case of the adaptive combination rule can be
stated as Equation (8.2), ∀A ⊆ Θ, A 6= ∅ and m(∅) = 0, where β is any decreasing function
such that β : [0, 1]→ [0, 1] and β(0) = 1 and β(1) = 0.

8.18 The Weighted Average Operator (WAO)

The Weighted Average Operator (WAO) for two sources proposed in [17] consists in first,
applying the conjunctive rule to the bba’s m1(·) and m2(·) and second, redistribute the total
conflicting mass k12 to all nonempty sets in SΘ proportionally with their mass averages, i.e. for
the set, say A, proportionally with the weighting factor:

wJDV (A,m1,m2) =
1

2
(m1(A) +m2(A)).

The authors do not give an analytical formula for it. WAO does not work in degenerate cases
as shown in chapter 1.

8.19 The Ordered Weighted Average operator (OWA)

It was introduced by Ronald R. Yager [46, 48]. The OWA of dimension n is defined as
F : Rn 7→ R such that

F (a1, a2, . . . , an) =

n∑

j=1

wjbj

where b1 ≥ b2 . . . ≥ bn and the weights wj ∈ [0, 1] with
∑n

j=1wj = 1.

OWA satisfies the following properties:
a) Symmetry: For any permutation Π, one has F (aΠ(1), aΠ(2),...,aΠ(n)

) = F (a1, a2, . . . , an).

b) Monotonicity: If ∀j, aj ≥ dj then F (a1, a2, . . . , an) ≥ F (d1, d2, . . . , dn).
c) Boundedness: minj(aj) ≤ F (a1, a2, . . . , an) ≤ maxj(aj).
d) Idempotency: If ∀j, aj = a, then F (a1, a2, . . . , an) = F (a, a, . . . , a) = a.

A measure associated with this operator with weighting vector W = (w1, w2, . . . , wn) is the
Attitude-Character (AC) defined as: AC(W ) =

∑n
j=1wj

n−j
n−1 .

8.20 The Power Average Operator (PAO)

It was introduced by Ronald Yager in [47] in order to allow values being aggregated to support
and reinforce each other. This operator is defined by:

PAO(a1, a2, . . . , an) =

∑n
i=1(1 + T (ai)ai)∑n
i=1(1 + T (a− i))
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where T (ai) =
∑n

j=1j 6=i sup(ai, aj) and sup(a, b) denotes the support for a from b which satisfies
the properties:
a) sup(a, b) ∈ [0, 1];
b) sup(a, b) = sup(b, a);
c) sup(a, b) ≥ sup(x, y) if |a− b| < |x− y|.

8.21 Proportional Conflict Redistribution Rules (PCR)

8.21.1 PCR1 Fusion rule

In 2004, F. Smarandache and J. Dezert independently developed a Proportional Conflict Re-
distribution Rule (PCR1), which similarly consists in first, applying the conjunctive rule to the
bba’s m1(·) and m2(·) and second, redistribute the total conflicting mass k12 to all nonempty
sets in SΘ proportionally with their nonzero mass sum, i.e. for the set, say A, proportionally
with the weighting factor:

wSD(A,m1,m2) = m1(A) +m2(A) 6= 0.

The analytical formula for PCR1, non-degenerate and degenerate cases, is:

mPCR1(∅) = 0,

and

∀A ∈ SΘ \ ∅, one has mPCR1(A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2) +
c12(A)

d12
· k12,

where c12(A) is the sum of masses corresponding to the set A, i.e. c12(A) = m1(A)+m2(A) 6= 0,
d12 is the sum of nonzero masses of all nonempty sets in SΘ assigned by the sources m1(·) and
m2(·) [in many cases d12 = 2, but in degenerate cases it can be less], and k12 is the total con-
flicting mass.

Philippe Smets pointed out that PCR1 gives the same result as the WAO for non-degenerate
cases, but PCR1 extends actually WAO, since PCR1 works also for the degenerate cases when
all column sums of all non-empty sets are zero because in such cases, the conflicting mass is
transferred to the non-empty disjunctive form of all non-empty sets together; when this dis-
junctive form happens to be empty, then one can consider an open world (i.e. the frame of
discernment might contain new hypotheses) and thus all conflicting mass is transferred to the
empty set.

For the cases of the combination of only one non-vacuous belief assignment m1(·) with
the vacuous belief assignment1 mv(·) where m1(·) has mass assigned to an empty element, say
m1(·) > 0 as in Smets’ TBM, or as in DSmT dynamic fusion where one finds out that a previous
non-empty element A, whose mass m1(A) > 0, becomes empty after a certain time, then this
mass of an empty set has to be transferred to other elements using PCR1, but for such case
[m1 ⊗ mv](·) is different from m1(·). This severe draw-back of WAO and PCR1 forces us to
develop more sophisticated PCR rules satisfying the neutrality property of VBA with better
redistributions of the conflicting information.

1The VBA (vacuous belief assignment) is the bba mv(total ignorance) = 1.
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8.21.2 PCR2-PCR4 Fusion rules

F. Smarandache and J. Dezert then developed more improved versions of Proportional Conflict
Redistribution Rule (PCR2-4). A detailed presentation of these rules can be found in Chapter
1 of this book.

In the PCR2 fusion rule, the total conflicting mass k12 is redistributed only to the non-empty
sets involved in the conflict (not to all non-empty sets as in WAO and PCR1) proportionally with
respect to their corresponding non-empty column sum in the mass matrix. The redistribution is
then more exact (accurate) than in PCR1 and WAO. A nice feature of PCR2 is the preservation
of the neutral impact of the VBA and of course its ability to deal with all cases/models.

mPCR2(∅) = 0,

and ∀A ∈ SΘ \ ∅ and A involved in the conflict, one has

mPCR2(A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2) +
c12(A)

e12
· k12,

while for a set B ∈ SΘ \ ∅ not involved in the conflict one has:

mPCR2(B) =
∑

X1,X2∈SΘ

X1∩X2=B

m1(X1)m2(X2),

where c12(A) is the non-zero sum of the column of X in the mass matrix, i.e. c12(A) =
m1(A) +m2(A) 6= 0, k12 is the total conflicting mass, and e12 is the sum of all non-zero column
sums of all non-empty sets only involved in the conflict (in many cases e12 = 2, but in some
degenerate cases it can be less). In the degenerate case when all column sums of all non-empty
sets involved in the conflict are zero, then the conflicting mass is transferred to the non-empty
disjunctive form of all sets together which were involved in the conflict. But if this disjunctive
form happens to be empty, then one considers an open world (i.e. the frame of discernment
might contain new hypotheses) and thus all conflicting mass is transferred to the empty set.

A non-empty set X ∈ SΘ is considered involved in the conflict if there exists another set
Y ∈ SΘ such that X ∩Y = 0 and m12(X ∩ Y ) > 0. This definition can be generalized for s ≥ 2
sources.

PCR3 transfers partial conflicting masses, instead of the total conflicting mass. If an in-
tersection is empty, say A ∩ B = ∅, then the mass m(A ∩ B) > 0 of the partial conflict is
transferred to the non-empty sets A and B proportionally with respect to the non-zero sum
of masses assigned to A and respectively to B by the bba’s m1(·) and m2(·). The PCR3 rule
works if at least one set between A and B is non-empty and its column sum is non-zero. When
both sets A and B are empty, or both corresponding column sums of the mass matrix are zero,
or only one set is non-empty and its column sum is zero, then the mass m(A∩B) is transferred
to the non-empty disjunctive form u(A) ∪ u(B) [which is defined as follows: u(A) = A if A is a
singleton, u(A∩B) = u(A∪B) = u(A)∪u(B)]; if this disjunctive form is empty then m(A∩B)
is transferred to the non-empty total ignorance in a closed world approach or to the empty
set if one prefers to adopt the Smets’ open world approach; but if even the total ignorance is
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empty (a completely degenerate case) then one considers an open world (i.e. new hypotheses
might be in the frame of discernment) and the conflicting mass is transferred to the empty set,
which means that the original problem has no solution in the close world initially chosen for
the problem.

mPCR3(∅) = 0,

and ∀A ∈ SΘ \ ∅, one has

mPCR3(A) =
∑

X1,X2∈SΘ

X1∩X2=A

m1(X1)m2(X2) + c12(A)

·
∑

X∈SΘ\A
X∩A=∅

m1(A)m2(X) +m2(A)m1(X)

c12(A) + c12(X)

+
∑

X1,X2∈SΘ\A
X1∩X2=∅

u(X1)∪u(X2)=A

[m1(X1)m2(X2) +m1(X2)m2(X1)]

+ ΨΘ(A) ·
∑

X1,X2∈SΘ\A
X1∩X2=∅

u(X1)=u(X2)=A

[m1(X1)m2(X2) +m2(X1)m1(X2)]

where c12(A) is the non-zero sum of the mass matrix column corresponding to the set A, and
the total ignorance characteristic function ΨΘ(A) = 1 if A is the total ignorance, and 0 otherwise.

The PCR4 fusion rule improves Milan Daniel’s minC rule [3–5]. After applying the conjunc-
tive rule, Daniel uses the proportionalization with respect to the results of the conjunctive rule,
and not with respect to the masses assigned to each nonempty set by the sources of information
as done in PCR1-3 or the next PCR5. PCR4 also uses the proportionalization with respect to
the results of the conjunctive rule, but with PCR4 the conflicting mass m12(A ∩ B) > 0 when
A ∩ B = ∅ is distributed to A and B only because only A and B were involved in the conflict
{A∪B was not involved in the conflict since m12(A∩B) = m1(A)m2(B)+m2(A)m1(B)}, while
minC [both its versions a) and b)] redistributes the conflicting mass m12(A ∩B) to A, B, and
A∪B. Also, for the mixed sets such as C∩(A∪B) = ∅ the conflicting mass m12(C∩(A∪B)) > 0
is distributed to C and A ∪B because only them were involved in the conflict by PCR4, while
minC version a) redistributes m12(C ∩ (A ∪B)) to C, A ∪B, C ∪ A ∪ B and minC version b)
redistributes m12(C ∩ (A ∪B)) even worse to A, B, C, A ∪B, A ∪ C, B ∪ C, A ∪B ∪ C. The
PCR5 formula for the fusion of two sources is given by

mPCR4(∅) = 0,

and ∀A ∈ SΘ \ ∅, one has

mPCR4(A) = m12(A) +
∑

X∈SΘ\A
X∩A=∅

m12(X)
m12(A ∩X)

m12(A) +m12(X)
,

where m12(·) is the conjunctive rule, and all denominators m12(A) +m12(X) 6= 0; (if a denom-
inator corresponding to some X is zero, the fraction it belongs to is discarded and the mass
m12(A ∩X) is transferred to A and X using PCR3.
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8.21.3 PCR5 Fusion Rule

PCR5 fusion rule is the most mathematically exact form of redistribution of the conflicting
mass to non-empty sets which follows backwards the tracks of the conjunctive rule formula.
But it is the most difficult to implement. In order to better understand it, let’s start with some
examples:

• Example 1:

A B A ∪B
m1 0.6 0 0.4
m2 0 0.3 0.7

The conjunctive rule yields:

m12 0.42 0.12 0.28

and the conflicting mass k12 = 0.18.

Only A and B were involved in the conflict,

k12 = m12(A ∩B) = m1(A)m2(B) +m2(A)m1(B) = m1(A)m2(B) = 0.6 · 0.3 = 0.18.

Therefore, 0.18 should be distributed to A and B proportionally with respect to 0.6 and
0.3 {i.e. the masses assigned to A and B by the sources m1(·) and m2(·)} respectively.
Let x be the conflicting mass to be redistributed to A and y the conflicting mass to be
redistributed to B (out of 0.18), then:

x

0.6
=

y

0.3
=

x+ y

0.6 + 0.3
=

0.18

0.9
= 0.2,

whence x = 0.6 · 0.2 = 0.12, y = 0.3 · 0.2 = 0.06, which is normal since 0.6 is twice bigger
than 0.3. Thus:

mPCR4(A) = 0.42 + 0.12 = 0.54,

mPCR4(B) = 0.12 + 0.06 = 0.18,

mPCR4(A ∪B) = 0.28 + 0 = 0.28.

This result is the same as PCR2-3.

• Example 2:

Let’s modify a little the previous example and have the mass matrix

A B A ∪B
m1 0.6 0 0.4
m2 0.2 0.3 0.5

The conjunctive rule yields:
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m12 0.50 0.12 0.20

and the conflicting mass k12 = 0.18.

The conflict k12 is the same as in previous example, which means that m2(A) = 0.2 did
not have any impact on the conflict; why?, because m1(B) = 0.

A and B were involved in the conflict, A ∪ B is not, hence only A and B deserve a part
of the conflict, A ∪B does not deserve.

With PCR5 one redistributes the conflicting mass 0.18 to A and B proportionally with the
masses m1(A) and m2(B) respectively, i.e. identically as above. The mass m2(A) = 0.2
is not considered to the weighting factors of redistribution since it did not increase or
decrease the conflicting mass. One obtains x = 0.12 and y = 0.06, which added to the
previous masses yields:

mPCR4(A) = 0.50 + 0.12 = 0.62,

mPCR4(B) = 0.12 + 0.06 = 0.18,

mPCR4(A ∪B) = 0.20.

This result is different from all PCR1-4.

• Example 3:

Let’s modify a little the previous example and have the mass matrix

A B A ∪B
m1 0.6 0.3 0.1
m2 0.2 0.3 0.5

The conjunctive rule yields:

m12 0.44 0.27 0.05

and the conflicting mass

k12 =m12(A ∩B)=m1(A)m2(B) +m2(A)m1(B)=0.6 · 0.3 + 0.2 · 0.3=0.18 + 0.06=0.24.

Now the conflict is different from the previous two examples, because m2(A) and m1(B)
are both non-null. Then the partial conflict 0.18 should be redistributed to A and B
proportionally to 0.6 and 0.3 respectively (as done in previous examples, and we got
x1 = 0.12 and y1 = 0.06), while 0.06 should be redistributed to A and B proportionally
to 0.2 and 0.3 respectively.

For the second redistribution one similarly calculate the proportions:

x2

0.2
=
y2

0.3
=

x2 + y2

0.2 + 0.3
=

0.06

0.5
= 0.12,

whence x = 0.2 · 0.12 = 0.024, y = 0.3 · 0.12 = 0.036. Thus:

mPCR4(A) = 0.44 + 0.12 + 0.024 = 0.584,

mPCR4(B) = 0.27 + 0.06 + 0.036 = 0.366,

mPCR4(A ∪B) = 0.05 + 0 = 0.050.

This result is different from PCR1-4.
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The formula of the PCR5 fusion rule for two sources is given by [35]:

mPCR5(∅) = 0,

and ∀A ∈ SΘ \ ∅, one has

mPCR5(A) = m12(A) +
∑

X∈SΘ\{A}
X∩A=∅

[
m1(A)2 ·m2(X)

m1(A) +m2(X)
+
m2(A)2 ·m1(X)

m2(A) +m1(X)

]
,

where m12(·) is the conjunctive rule, and all denominators are different from zero; if a denomi-
nator is zero, the fraction it belongs to is discarded.

The general PCR5 formula for s ≥ 2 sources is given by (see Chapter 1)

mPCR5(∅) = 0,

and ∀A ∈ SΘ \ ∅ by

mPCR5(A) = m12...s(A) +
∑

2≤t≤s
1≤r1,...,rt≤s

1≤r1<r2<...<rt−1<(rt=s)

∑

Xj2
,...,Xjt∈SΘ\{A}

{j2,...,jt}∈Pt−1({1,...,n})
A∩Xj2

∩...∩Xjs=∅
{i1,...,is}∈Ps({1,...,s})

(
∏r1
k1=1mik1

(A)2) · [∏t
l=2(

∏rl
kl=rl−1+1mikl

(Xjl)]

(
∏r1
k1=1mik1

(A)) + [
∑t

l=2(
∏rl
kl=rl−1+1mikl

(Xjl)]
,

where i, j, k, r, s and t are integers. m12...s(A) corresponds to the conjunctive consensus on
A between s sources and where all denominators are different from zero. If a denominator is
zero, that fraction is discarded; Pk({1, 2, . . . , n}) is the set of all subsets of k elements from
{1, 2, . . . , n} (permutations of n elements taken by k), the order of elements doesn’t count.

8.21.4 PCR6 Fusion Rule

PCR6 was developed by A. Martin and C. Osswald in 2006 (see Chapters [22] and [23] for more
details and applications of this new rule) and it is an alternative of PCR5 for the general case
when the number of sources to combine become greater than two (i.e. s ≥ 3). PCR6 does not
follow back on the track of conjunctive rule as PCR5 general formula does, but it gets better
intuitive results. For s = 2 PCR5 and PCR6 coincide. The general formula for PCR62 when
extended to super-power set SΘ is:

mPCR6(∅) = 0,

and ∀A ∈ SΘ \ ∅

2Two extensions of PCR6 (i.e. PCR6f and PCR6g) are also proposed by A. Martin and C. Osswald in [22].



8.22. THE MINC RULE 219

mPCR6(A) = m12...s(A) +

s∑

i=1

mi(A)2
∑

s−1∩
k=1

Yσi(k)∩A≡∅

(Yσi(1)
,...,Yσi(s−1))∈(SΘ)s−1




s−1∏

j=1

mσi(j)(Yσi(j))

mi(A)+

s−1∑

j=1

mσi(j)(Yσi(j))



,

with mi(A) +

s−1∑

j=1

mσi(j)(Yσi(j)) 6= 0 and where m12...s(.) is the conjunctive consensus rule and

σi counts from 1 to s avoiding i, i.e.:

{
σi(j) = j if j < i,
σi(j) = j + 1 if j ≥ i,

8.22 The minC Rule

The minC rule (minimum conflict rule) proposed by M. Daniel in [3–5] improves Dempster’s
rule since the distribution of the conflicting mass is done from each partial conflicting mass to
the subsets of the sets involved in partial conflict proportionally with respect to the results of
the conjunctive rule results for each such subset. It goes by types of conflicts. The author did
not provide an analytical formula for this rule in his previous publications but only in Chapter
4 of this volume. minC rule is commutative, associative, and non-idempotent.

Let m12(X ∩ Y ) > 0 be a conflicting mass, where X ∩ Y = ∅, and X, Y may be singletons
or mixed sets (i.e. unions or intersections of singletons).

minC has two versions, minC a) and minC b), which differs from the way the redistribution
is done: either to the subsets X, Y , and X∪Y in version a), or to all subsets of P (u(X)∪u(Y ))
in version b).

One applies the conjunctive rule, and then the partial conflict, say m12(A ∩ B), when
A ∩ B = ∅, is redistributed to A, B, A ∪ B proportionally to the masses m12(A), m12(B),
and m12(A ∪ B) respectively in both versions a) and b). PCR4 redistributes the conflicting
mass to A and B since only them were involved in the conflict.

But for a mixed set, as shown above, say C ∩ (A ∪ B) = ∅, the conflicting mass m12(C ∩
(A ∪B)) > 0 is distributed by PCR4 to C and A ∪ B because only them were involved in the
conflict, while the minC version a) redistributes m12(C ∩ (A∪B)) to C, A∪B, C ∪A∪B, and
minC version b) redistributes m12(C ∩ (A ∪B)) even worse to A, B, C, A ∪B, A ∪ C, B ∪ C,
A ∪B ∪ C.

Another example is that the mass m12(A∩B∩C)) > 0, when A∩B∩C = ∅, is redistributed
in both versions minC a) and minC b) to A, B, C, A ∪B, A ∪ C, B ∪ C, A ∪B ∪ C.

When the conjunctive rule results are zero for all the nonempty sets that are redistributed
conflicting masses, the conflicting mass is averaged to each such set.
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8.23 The Consensus Operator

Consensus Operator (CO) proposed by A. Jøsang in [16] is defined only on binary frames
of discernment. CO doesn’t work on non-exclusive elements (i.e. on models with nonempty
intersections of sets).

On the frame Θ = {θ1, θ2} of exclusive elements, θ2 is considered the complement/negation
of θ1.

If the frame of discernment has more than two elements, then by a simple or normal coars-
ening it is possible to derive a binary frame containing any element A and its complement C(A).
Let m(·) be a bba on a (coarsened) frame Θ = {A, C(A)}, then one defines an opinion resulted
from this bba is:

wA = (bA, dA, uA, αA),

where bA = m(A) is the belief of A, dA = m(C(A)) is the disbelief of A, uA = m(A ∪ C(A)) is
the uncertainty of A, and αA represents the atomicity of A. Of course bA + dA + uA = 1, for
A 6= ∅.

The relative atomicity expresses information about the relative size of the state space (i.e.
the frame of discernment). For every operator, the relative atomicity of the output belief
is computed as a function of the input belief operands. The relative atomicity of the input
operands is determined by the state space circumstances, or by a previous operation in case
that operation’s output is used as input operand. The relative atomicity itself can also be
uncertain, and that’s what’s called state space uncertainty. Possibly the state space uncertainty
is a neglected problem in belief theory. It relates to Smets’ open world, and to DSm paradoxical
world. In fact, the open world breaks with the “exhaustive” assumption, and the paradoxical
world breaks with the “exclusive” assumption of classic belief theory.

CO is commutative, associative, and non-idempotent.
Having two experts with opinions on the same element A,

w1A = (b1A, d1A, u1A, α1A) and

w2A = (b2A, d2A, u2A, α2A), one first computes

k = u1A + u2A − u1A · u2A.

Let’s note by b12A = (b12A, d12A, u12A, α12A) the consensus opinion between w1A and w2A. Then:

a) for k 6= 0 one has:

b12A = (b1A · u2A + b2A · u1A)/k

d12A = (d1A · u2A + d2A · u1A)/k

u12A = (u1A · u2A)/k

α12A =
α1Au2A + α2Au1A − (α1A + α2A)u1Au2A

u1A + u2A − 2u1Au2A

b) for k = 0 one has:

b12A = (γ12A · b1A + b2A)/(γ12A + 1)

d12A = (γ12A · d1A + d2A)/(γ12A + 1)

u12A = 0

α12A = (γ12A · α1A + α2A)/(γ12A + 1)

where γ12A = u2A/u1A represents the relative dogmatism between opinions b1A and b2A.



8.24. ZHANG’S CENTER COMBINATION RULE 221

The formulas are not justified, and there is not a well-defined method for computing the
relative atomicity of an element when a bba is known.

For frames of discernment of size greater than n, or with many sources, or in the open world
it is hard to implement CO.

A bba m(·) is called Bayesian on the frame Θ = {θ1, θ2} of exclusive elements if m(θ1∪θ2) =
0, otherwise it is called non Bayesian.

If one bba is Bayesian, say m1(·), and another is not, say m2(·), then the non Bayesian bba
is ignored! See below mCO(·) = m1(·):
Example

A B A ∪B
m1 0.3 0.7 0.0
m2 0.8 0.1 0.1

mCO 0.3 0.7 0.0

Because

bA dA uA αA
m1A 0.3 0.7 0.0 0.5
m2A 0.8 0.1 0.1 0.5

α1A = α2A = |A∩Θ|
|Θ| = 0.5, where |X| means the cardinal of X, whence α12A = 0.5.

Similarly one computes the opinion on B, because:

bB dB uB αB
m1B 0.7 0.3 0.0 0.5
m2B 0.1 0.8 0.1 0.5

If both bba’s are Bayseian, then one uses their arithmetic mean.

8.24 Zhang’s Center Combination Rule

The Center Combination Rule proposed by L. Zhang in [54] is given by

∀A ∈ SΘ, one has mZ(A) = k ·
∑

X1,X2∈SΘ

X1∩X2=A

|X1 ∩X2|
|X1| · |X2|

m1(X1)m2(X2).

where k is a renormalization factor, |X| is the cardinal of the set X, and

r(X1,X2) =
|X1 ∩X2|
|X1| · |X2|

represents the degree (measure) of intersection of the sets X1 and X2.
In Dempster’s approach the degree of intersection was assumed to be 1.
The degree of intersection could be defined in many ways, for example

r(X1,X2) =
|X1 ∩X2|
|X1 ∪X2|

could be better defined this way since if the intersection is empty the degree of intersection is
zero, while for the maximum intersection, i.e. when X1 = X2, the degree of intersection is 1.

One can attach the r(X1,X2) to many fusion rules.
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8.25 The Convolutive x-Averaging

The Convolutive x-Averaging proposed by Ferson-Kreinovich in [10] is defined as

∀A ∈ SΘ, one has mX(A) =
∑

X1,X2∈SΘ

(X1+X2)/2=A

m1(X1)m2(X2)

This rule works for hypotheses defined as subsets of the set of real numbers.

8.26 The α-junctions Rules

The α-junctions rules [37] are generalizations of the above Conjunctive and Disjunctive Rules,
and they are parameterized with respect to α ∈ [0, 1]. Philippe Smets finds the rules for the
elementary frame of discernment Θ with two hypotheses, using a matrix operator KX , for each
X ∈ {∅, A,B,A ∪B} and shows that it is possible to extend them by iteration to larger frames
of discernment. These rules are more theoretical and hard to apply.

8.27 The Cautious Rule

The Cautious Rule3 has been proposed by Philippe Smets in 2000 and is just theoretical. Also,
Smets does not provide a formula or a method for calculating this rule. He states [38] this
Theorem:

Letm1, m2 be two bba’s, and q1, q2 their corresponding commonality functions, and SP (m1),
SP (m2) the set of specializations of m1 and m2 respectively. Then the hyper-cautious combi-
nation rule

m1⊛2 = min{m | m ∈ SP (m1) ∩ SP (m2)},
and the commonality of m1⊛2 is q12 where q12(A) = min{q1(A), q2(A)}.

We recall that the commonality function of a bba m(·) is q : SΘ → [0, 1] such that:

q(A) =
∑

X∈SΘ

X⊇A

m(X) for all A ∈ SΘ.

Now a few words about the least commitment and specialization.

a) Least Commitment, or Minimum Principle, means to assign a missing mass of a bba or
to transfer a conflicting mass to the least specific element in the frame of discernment (in
most of the cases to the partial ignorances or to the total ignorance). “The Principle of
Minimal Commitment consists in selecting the least committed belief function in a set
of equally justified belief functions. This selection procedure does not always lead to a
unique solution in which case extra requirements are added. The principle formalizes the
idea that one should never give more support than justified to any subset of Ω. It satisfies
a form of skepticism, of a commitment, of conservatism in the allocation of our belief. In
its spirit, it is not far from what the probabilists try to achieve with the maximum entropy
principle.” [Philippe Smets]

3More details about this rule can be found in [6].
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b) About specialization [18]:

Suppose at time to one has the evidence m0(·) which gives us the value of an hypothesis
A as m0(A). When a new evidence m1(·) comes in at time t1 > t0, then m0(A) might
flow down to the subsets of A therefore towards a more specific information. The impact
of a new bba might result in a redistribution of the initial mass of A, m0(A), towards its
more specific subsets. Thus m1(·) is called a specialization of m0(·).

8.28 Other fusion rules

Yen’s rule is related to fuzzy set, while the p-boxes method to upper and lower probabilities
(neutrosophic probability is a generalization of upper and lower probability) - see Sandia Tech.
Rep.

8.29 Fusion rules based on T -norm and T -conorm

These rules proposed by Tchamova, Dezert and Smarandache in [40] started from the T -norm
and T -conorm respectively in fuzzy and neutrosophic logics, where the “and” logic operator ∧
corresponds in fusion to the conjunctive rule, while the “or” logic operator ∨ corresponds to the
disjunctive rule. While the logic operators deal with degrees of truth and degrees of falsehood,
the fusion rules deal with degrees of belief and degrees of disbelief of hypotheses.

A T-norm is a function Tn : [0, 1]2 → [0, 1], defined in fuzzy/neutrosophic set theory and
fuzzy/neutrosophic logic to represent the “intersection” of two fuzzy/neutrosophic sets and
the fuzzy/neutrosophic logical operator “and” respectively. Extended to the fusion theory the
T -norm will be a substitute for the conjunctive rule.

The T -norm satisfies the conditions:

a) Boundary Conditions: Tn(0, 0) = 0, Tn(x, 1) = x.

b) Commutativity: Tn(x, y) = Tn(y, x).

c) Monotonicity: If x ≤ u and y ≤ v, then Tn(x, y) ≤ Tn(u, v).

d) Associativity: Tn(Tn(x, y), z) = Tn(x, Tn(y, z)).

There are many functions which satisfy the T -norm conditions. We present below the most
known ones:

• The Algebraic Product T -norm: Tn−algebraic(x, y) = x · y

• The Bounded T -norm: Tn−bounded(x, y) = max{0, x+ y − 1}

• The Default (min) T -norm [21, 51]: Tn−min(x, y) = min{x, y}.

A T-conorm is a function Tc : [0, 1]2 → [0, 1], defined in fuzzy/neutrosophic set theory
and fuzzy/neutrosophic logic to represent the “union” of two fuzzy/neutrosophic sets and the
fuzzy/neutrosophic logical operator “or” respectively. Extended to the fusion theory the T -
conorm will be a substitute for the disjunctive rule.

The T -conorm satisfies the conditions:
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a) Boundary Conditions: Tc(1, 1) = 1, Tc(x, 0) = x.

b) Commutativity: Tc(x, y) = Tc(y, x).

c) Monotonicity: if x ≤ u and y ≤ v, then Tc(x, y) ≤ Tc(u, v).

d) Associativity: Tc(Tc(x, y), z) = Tc(x, Tc(y, z)).

There are many functions which satisfy the T -conorm conditions. We present below the most
known ones:

• The Algebraic Product T -conorm: Tc−algebraic(x, y) = x+ y − x · y

• The Bounded T -conorm: Tc−bounded(x, y) = min{1, x + y}

• The Default (max) T -conorm [21, 51]: Tc−max(x, y) = max{x, y}.

Then, the T -norm Fusion rules are defined as follows:

m∩12(A) =
∑

X,Y ∈SΘ

X∩Y=A

Tn(m1(X),m2(Y ))

and the T -conorm Fusion rules are defined as follows:

m∪12(A) =
∑

X,Y ∈SΘ

X∪Y=A

Tc(m1(X),m2(Y ))

The min T -norm rule yields results, very closed to Conjunctive Rule. It satisfies the principle
of neutrality of the vacuous bba, reflects the majority opinion, converges towards idempotence.
It is simpler to apply, but needs normalization.

”What is missed it is a strong justification of the way of presenting the fusion process. But
we think, the consideration between two sources of information as a vague relation, character-
ized with the particular way of association between focal elements, and corresponding degree
of association (interaction) between them is reasonable.” (Albena Tchamova)

”Min rule can be interpreted as an optimistic lower bound for combination of bba and the
below Max rule as a prudent/pessimistic upper bound.” (Jean Dezert)

The T -norm and T -conorm are commutative, associative, isotone, and have a neutral ele-
ment.

8.30 Improvements of fusion rules

Degree of Intersection

The degree of intersection measures the percentage of overlapping region of two sets X1, X2

with respect to the whole reunited regions of the sets using the cardinal of sets not the fuzzy
set point of view [27]:

d(X1 ∩X2) =
|X1 ∩X2|
|X1 ∪X2|

,
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where |X| means cardinal of the set X.

This definition of the degree of intersection is different from Zhang’s previous one. For the
minimum intersection/overlapping, i.e. when X1 ∩X2 = ∅, the degree of intersection is 0, while
for the maximum intersection/overlapping, i.e. when X1 = X2, the degree of intersection is 1.

Degree of Union

The degree of intersection measures the percentage of non-overlapping region of two sets X1,
X2 with respect to the whole reunited regions of the sets using the cardinal of sets not the fuzzy
set point of view [27]:

d(X1 ∪X2) =
|X1 ∪X2| − |X1 ∩X2|

|X1 ∪X2|
.

For the maximum non-overlapping, i.e. when X1 ∩X2 = ∅, the degree of union is 1, while
for the minimum non-overlapping, i.e. when X1 = X2, the degree of union is 0.

The sum of degrees of intersection and union is 1 since they complement each other.

Degree of Inclusion

The degree of intersection measures the percentage of the included region X1 with respect to
the includant region X2 [27]:

Let X1 ⊆ X2, then

d(X1 ⊆ X2) =
|X1|
|X2|

.

d(∅ ⊆ X2) = 0 because nothing is included in X2, while d(X2 ⊆ X2) = 1 because X2 is
fulfilled by inclusion. By definition d(∅ ⊆ ∅) = 1.

And we can generalize the above degree for n ≥ 2 sets.

Improvements of Credibility, Plausibility and Communality Functions

Thus the Bel(·), Pl(·) and Com(·) functions can incorporate in their formulas the above degrees
of inclusion and intersection respectively:

• Credibility function improved:

∀A ∈ SΘ \ ∅, one has Beld(A) =
∑

X∈SΘ

X⊆A

|X|
|A|m(X)

• Plausibility function improved:

∀A ∈ SΘ \ ∅, one has Pld(A) =
∑

X∈SΘ

X∩A 6=∅

|X ∩A|
|X ∪A|m(X)

• Communality function improved:

∀A ∈ SΘ \ ∅, one has Comd(A) =
∑

X∈ SΘ

A⊆X

|A|
|X| ·m(X)
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Improvements of quantitative fusion rules

• Disjunctive rule improved:

∀A ∈ SΘ \ ∅, one has m∪d(A) = k∪d ·
∑

X1,X2∈SΘ

X1∪X2=A

|X1 ∪X2| − |X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2),

where k∪d is a constant of renormalization.

• Dezert-Smarandache classical rule improved:

∀A ∈ SΘ, one has mDSmCd(A) = kDSmCd ·
∑

X1,X2∈SΘ

X1∩X2=A

|X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2),

where kDSmCd is a constant of renormalization. It is similar with the Zhang’s Center Com-
bination rule extended on the Boolean algebra (Θ,∪,∩, C) and using another definition
for the degree of intersection.

• Dezert-Smarandache hybrid rule improved:

∀A ∈ SΘ \ ∅ one has

mDSmHd(A) = kDSmHd

·
{

∑

X1,X2∈SΘ

X1∩X2=A

|X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2)

+
∑

X1,X2∈∅
(A=U)∨{U∈∅∧A=I}

m1(X1)m2(X2)

+
∑

X1,X2∈SΘ

X1∪X2=A
X1∩X2=∅

|X1 ∪X2| − |X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2)

}

where kDSmHd is a constant of renormalization.

• Smets’ rule improved:

mS(∅) = k12 = kSd ·
∑

X1,X2∈SΘ

X1∩X2=∅

|X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2),

and

∀A ∈ SΘ \ ∅, one has mS(A) = kSd ·
∑

X1,X2∈SΘ

X1∩X2=A

|X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2),

where kSd is a constant of renormalization.
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• Yager’s rule improved:

mY (∅) = 0,mY (I) = kY d · {m1(I)m2(I) +
∑

X1,X2∈SΘ

X1∩X2=∅

|X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2)}

and

∀A ∈ SΘ \ {∅, I}, one has mY d(A) = kY d ·
∑

X1,X2∈SΘ

X1∩X2=A

|X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2).

where I = total ignorance and kY d is a constant of renormalization.

• Dubois-Prade’s rule improved:
mDP (∅) = 0,

and

∀A ∈ SΘ \ ∅ one has

mDP (A) = kDPd

·





∑

X1,X2∈SΘ

X1∩X2=A

|X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2)

+
∑

X1,X2∈SΘ

X1∪X2=A
X1∩X2=∅

|X1 ∪X2| − |X1 ∩X2|
|X1 ∪X2|

m1(X1)m2(X2)





,

where kDPd is a constant of renormalization.

8.31 Extension of bba on neutrosophic sets

- Let T , I, F ⊆ [0, 1]. An element x(T, I, F ) belongs to a neutrosophic set M as follows:
its membership is T , its nonmembership is F , and its indeterminacy is I.

- Define a neutrosophic basic belief assignment (nbba):

n(·) : SΘ → [0, 1]3, n(A) = (TA, IA, FA),

where TA = belief in A, FA = disbelief in A, IA = indeterminacy on A.

- Admissibility condition: For each A ∈ SΘ, there exist scalars tA ∈ TA, iA ∈ IA, fA ∈ FA
such that: ∑

A∈SΘ

(tA + iA + fA) = 1.

- When FA = IA = φ nbba coincides with bba.
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- Intuitionistic Fuzzy Set can not be applied since the sum of
components for a single set < 1.

- N -norms/conorms [42, 43] use nbba’s for information fusion.

- All fusion rules and functions can be extended on nbba’s.

N-norms

Nn :
(
[0, 1] × [0, 1] × [0, 1]

)2 → [0, 1] × [0, 1] × [0, 1]

Nn

((
x1, x2, x3

)
,
(
y1, y2, y3

))
=
(
NnT

(
x1, y1

)
, NnI

(
x2, y2

)
, NnF

(
x3, y3

))

- For each component, J ∈ {T, I, F}, Nn satisfies the conditions:

a) Boundary Conditions: NnJ(0, 0) = 0, NnJ(x, 1) = x.

b) Commutativity: NnJ(x, y) = NnJ(y, x).

c) Monotonicity: If x ≤ u and y ≤ v, then NnJ(x, y) ≤ NnJ(u, v).

d) Associativity: NnJ(NnJ(x, y), z) = NnJ(x,NnJ(y, z)).

Nn represents intersection in neutrosophic set theory, respectively the and operator in
neutrosophic logic.

- Most known ones:

• The Algebraic Product N -norm: Nn−algebraicJ(x, y) = x · y
• The Bounded N -Norm: Nn−boundedJ(x, y) = max{0, x + y − 1}
• The Default (min) N -norm: Nn−minJ(x, y) = min{x, y}.

N-conorms

Nc :
(
[0, 1] × [0, 1] × [0, 1]

)2 → [0, 1] × [0, 1] × [0, 1]

Nc

((
x1, x2, x3

)
,
(
y1, y2, y3

))
=
(
NcT

(
x1, y1

)
, NcI

(
x2, y2

)
, NcF

(
x3, y3

))

- For each component, J ∈ {T, I, F}, Nc satisfies the conditions:

a) Boundary Conditions: NcJ(1, 1) = 1, NcJ(x, 0) = x.

b) Commutativity: NcJ(x, y) = NcJ(y, x).

c) Monotonicity: if x ≤ u and y ≤ v, then NcJ(x, y) ≤ NcJ(u, v).

d) Associativity: NcJ(NcJ(x, y), z) = NcJ(x,NcJ(y, z)).

Nc represents union in neutrosophic set theory, respectively the or operator in neutro-
sophic logic.

- Most known ones:

• The Algebraic Product N -conorm: Nc−algebraicJ(x, y) = x+ y − x · y
• The Bounded N -conorm: Nc−boundedJ(x, y) = min{1, x+ y}
• The Default (max) N -conorm: Nc−maxJ(x, y) = max{x, y}.
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N-norm and N-conorm based fusion rules

Let n1(·) and n2(·) be nbba’s.

N -norm fusion rulesare defined as follows:

n∩12(A) =
∑

X,Y ∈S∧Θ
X∩Y=A

Nn(n1(X), n2(Y ))

N -conorm fusion rules are defined as follows:

n∪12(A) =
∑

X,Y ∈S∧Θ
X∪Y=A

Nc(n1(X), n2(Y ))

- they can replace the conjunctive respectively disjunctive rules (Smarandache 2004)

- need normalizations

Example of N-norm fusion rule

A first doctor’s belief about a patient’s disease A is 0.4, disbelief 0.2, while about the second
disease B his belief is 0.1 with disbelief 0.2 and not sure 0.1. Second doctor is more confident
in disease B with 0.6, his disbelief on A is 0.1 and 0.3 not sure on A.

Hence n1(A) = (0.4, 0, 0.2), n1(B) = (0.1, 0.1, 0.2), and n2(A) = (0, 0.3, 0.1), n2(B) =
(0.6, 0, 0) are nbba’s and frame of discernment {A,B}. Using the Algebraic Product N -norm
fusion rule we get:

n12(A) = (0, 0, 0.02), n12(B) = (0.06, 0, 0),

n12(A ∩B) = (0.24, 0, 0) + (0, 0.03, 0.02) = (0.24, 0.03, 0.02).

Transfer the conflicting mass n12(A∩B) to A and B proportionally to their mass sums (following
PCR3):

x1/(0.4 + 0) = y1/(0.1 + 0.6) = 0.24/1.1,

hence

x1 = 0.4(0.24/1.1) = 0.087273, y1 = 0.7(0.24/1.1) = 0.152727;

x2/0.3 = y2/0.1 = 0.03/0.4,

hence

x2 = 0.3(0.03/0.4) = 0.0225, y2 = 0.1(0.03/0.4) = 0.0075;

x3/0.3 = y3/0.2 = 0.02/0.5,

hence

x3 = 0.3(0.02/0.5) = 0.012, y3 = 0.2(0.02/0.5) = 0.008.
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Summing them with the previous one gets: n12tr(A) = (0.087273, 0.0225, 0.032), n12tr(B) =
(0.212727, 0.0075, 0.008) and renormalize (divide by their sum= 0.37):

n12tr-norm(A) = (0.235873, 0.060811, 0.086486),

n12tr-norm(B) = (0.574938, 0.02027, 0.021622).

Remark: If first done the normalization and second the transfer the result will be the same [20].

8.32 Unification of Fusion Rules (UFR)

If variable y is directly proportional with variable p, then y = k · p, where k is a constant. If
variable y is inversely proportional with variable q, then y = k · 1

q ; we can also say that y is

directly proportional with variable 1
q . In a general way, we say that y is directly proportional

with variables p1, p2, . . . , pm and inversely proportionally with variables q1, q2, . . . , qn, where
m,n ≥ 1, then:

y = k · p1 · p2 · . . . · pm
q1 · q2 · . . . · qn

= k · P
Q
,

where P =
∏m
i=1 pi and Q =

∏n
j=1 qj.

Then a Unification of Fusion Rules (UFR) is given by : mUFR(∅) = 0 and ∀A ∈ SΘ \ ∅ one
has

mUFR(A) =
∑

X1,X2 ∈ SΘ

X1 ⋆ X2 = A

d(X1 ⋆ X2)R(X1,X2)

+
P (A)

Q(A)
·

∑

X ∈ SΘ \ A
X ⋆ A ∈ E

d(X ⋆ A) · R(A,X)

P (A)/Q(A) + P (X)/Q(X)

where ⋆ means intersection or union of sets (depending on the application or problem to be
solved);
d(X ⋆ Y ) is the degree of intersection or union respectively;
R(X,Y ) is a T -norm/conorm (or N -norm/conorm in a more general case) fusion combina-
tion rule respectively (extension of conjunctive or disjunctive rules respectively to fuzzy or
neutrosophic operators) or any other fusion rule; the T -norm and N -norm correspond to the
intersection of sets, while the T -conorm and N -conorm to the disjunction of sets;
E is the ensemble of sets (in majority cases they are empty sets) whose masses must be trans-
ferred (in majority cases to non-empty sets, but there are exceptions for the open world);
P (A) is the product of all parameters directly proportional with A;
while Q(A) is the product of all parameters inversely proportional with A [in most of the cases
P (A) and Q(A) are derived from the masses assigned to the set A by the sources].
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8.33 Unification of Fusion Theories (UFT)

As a conclusion, since no theory neither rule fully satisfy all needed applications, the author
proposes [27–30] a Unification of (Quantitative) Fusion Theories extending the power and hyper-
power sets from previous theories to a Boolean algebra obtained by the closures of the frame of
discernment under union, intersection, and complement of sets (for non-exclusive elements one
considers a fuzzy or neutrosophic complement).

And, at each application, one selects the most appropriate model, rule, and algorithm of
implementation.

Since everything depends on the application/problem to solve, this scenario looks like a
logical chart designed by the programmer in order to write and implement a computer program,
or even like a cooking recipe.

Here it is the scenario attempting for a unification and reconciliation of the fusion theories
and rules:

1) If all sources of information are reliable, then apply the conjunctive rule, which means
consensus between them (or their common part):

2) If some sources are reliable and others are not, but we don’t know which ones are unreli-
able, apply the disjunctive rule as a cautious method (and no transfer or normalization is
needed).

3) If only one source of information is reliable, but we don’t know which one, then use the
exclusive disjunctive rule based on the fact that X1 ⊻ X2 ⊻ · · · ⊻ Xn means either X1 is
reliable, or X2, or and so on, or Xn, but not two or more in the same time.

4) If a mixture of the previous three cases, in any possible way, use the mixed conjunctive-
disjunctive rule.

5) If we know the sources which are unreliable, we discount them. But if all sources are fully
unreliable (100%), then the fusion result becomes the vacuum bba (i.e. m(Θ) = 1, and
the problem is indeterminate. We need to get new sources which are reliable or at least
they are not fully unreliable.

6) If all sources are reliable, or the unreliable sources have been discounted (in the default
case), then use the DSm classic rule (which is commutative, associative, Markovian) on
Boolean algebra (Θ,∪,∩, C), no matter what contradictions (or model) the problem has.
I emphasize that the super-power set SΘ generated by this Boolean algebra contains
singletons, unions, intersections, and complements of sets.

7) If the sources are considered from a statistical point of view, use Murphy’s average rule
(and no transfer or normalization is needed).

8) In the case the model is not known (the default case), it is prudent/cautious to use the
free model (i.e. all intersections between the elements of the frame of discernment are
non-empty) and DSm classic rule on SΘ, and later if the model is found out (i.e. the
constraints of empty intersections become known), one can adjust the conflicting mass at
any time/moment using the DSm hybrid rule.
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9) Now suppose the model becomes known [i.e. we find out about the contradictions (=
empty intersections) or consensus (= non-empty intersections) of the problem/applica-
tion]. Then:

9.1) If an intersection A ∩ B is not empty, we keep the mass m(A ∩B) on A ∩B, which
means consensus (common part) between the two hypotheses A and B (i.e. both
hypotheses A and B are right) [here one gets DSmT].

9.2) If the intersection A ∩B = ∅ is empty, meaning contradiction, we do the following :

9.2.1) if one knows that between these two hypotheses A and B one is right and the
other is false, but we don’t know which one, then one transfers the mass m(A∩B)
to m(A ∪ B), since A ∪ B means at least one is right [here one gets Yager’s if
n = 2, or Dubois-Prade, or DSmT];

9.2.2) if one knows that between these two hypotheses A and B one is right and the
other is false, and we know which one is right, say hypothesis A is right and B
is false, then one transfers the whole mass m(A ∩ B) to hypothesis A (nothing
is transferred to B);

9.2.3) if we don’t know much about them, but one has an optimistic view on hypotheses
A and B, then one transfers the conflicting mass m(A ∩ B) to A and B (the
nearest specific sets in the Specificity Chains) [using Dempster’s, PCR2–5 ]

9.2.4) if we don’t know much about them, but one has a pessimistic view on hypotheses
A and B, then one transfers the conflicting mass m(A ∩ B) to A ∪ B (the
more pessimistic the further one gets in the Specificity Chains: (A ∩ B) ⊂ A ⊂
(A ∪ B) ⊂ I); this is also the default case [using DP’s, DSm hybrid rule,
Yager’s]; if one has a very pessimistic view on hypotheses A and B then one
transfers the conflicting mass m(A ∩B) to the total ignorance in a closed world
[ Yager’s, DSmT ], or to the empty set in an open world [ TBM];

9.2.5.1) if one considers that no hypothesis between A and B is right, then one transfers
the mass m(A∩B) to other non-empty sets (in the case more hypotheses do exist
in the frame of discernment) — different from A, B, A∪B — for the reason that:
if A and B are not right then there is a bigger chance that other hypotheses in
the frame of discernment have a higher subjective probability to occur; we do
this transfer in a closed world [DSm hybrid rule]; but, if it is an open world, we
can transfer the mass m(A ∩B) to the empty set leaving room for new possible
hypotheses [here one gets TBM];

9.2.5.2) if one considers that none of the hypotheses A, B is right and no other hypoth-
esis exists in the frame of discernment (i.e. n = 2 is the size of the frame of
discernment), then one considers the open world and one transfers the mass to
the empty set [here DSmT and TBM converge to each other].

Of course, this procedure is extended for any intersections of two or more sets: A∩B ∩C, etc.
and even for mixed sets: A ∪ (B ∪ C), etc.

If it is a dynamic fusion in a real time and associativity and/or Markovian process are
needed, use an algorithm which transforms a rule (which is based on the conjunctive rule and
the transfer of the conflicting mass) into an associative and Markovian rule by storing the pre-
vious result of the conjunctive rule and, depending of the rule, other data. Such rules are called
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quasi-associative and quasi-Markovian.

Some applications require the necessity of decaying the old sources because their information
is considered to be worn out.

If some bba is not normalized (i.e. the sum of its components is < 1 as in incomplete
information, or > 1 as in paraconsistent information) we can easily divide each component by
the sum of the components and normalize it. But also it is possible to fusion incomplete and
paraconsistent masses, and then normalize them after fusion. Or leave them unnormalized since
they are incomplete or paraconsistent.

PCR5 does the most mathematically exact (in the fusion literature) redistribution of the
conflicting mass to the elements involved in the conflict, redistribution which exactly follows
the tracks of the conjunctive rule.
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Abstract: In this chapter we propose a new family of Belief Conditioning Rules
(BCR) for belief revision. These rules are not directly related with the fusion of
several sources of evidence but with the revision of a belief assignment available at
a given time according to the new truth (i.e. conditioning constraint) one has about
the space of solutions of the problem.

9.1 Introduction

In this chapter we define several Belief Conditioning Rules (BCR) for use in information fusion
and for belief revision. Suppose we have a basic belief assignment (bba) m1(.) defined on
hyper-power set DΘ, and we find out that the truth is in a given element A ∈ DΘ. So far in
literature devoted to belief functions and the mathematical theory of evidence, there has been
used Shafer’s Conditioning Rule (SCR) [2], which simply combines the mass m1(.) with a specific
bba focused on A, i.e. mS(A) = 1, and then uses Dempster’s rule to transfer the conflicting mass
to non-empty sets. But in our opinion this conditioning approach based on the combination of
two bba’s is subjective since in such procedure both sources are subjective. While conditioning a
mass m1(.), knowing (or assuming) that the truth is in A, means that we have an absolute (not
subjective) information, i.e. the truth is in A has occurred (or is assumed to have occurred),
thus A was realized (or is assumed to be realized), hence it is an absolute truth. ”Truth in A”
must therefore be considered as an absolute truth when conditioning, while mS(A) = 1 used
in SCR does not refer to an absolute truth actually, but only to a subjective certainty in the
possible occurrence of A given by a second source of evidence. This is the main and fundamental
distinction between our approaches (BCRs) and Shafer’s (SCR). In our opinion, SCR does not
do a conditioning, but only a fusion of m1(.) with a particular bba mS(A) = 1. The main
advantage of SCR is that it is simple and thus very appealing, and in some cases it gives the
same results with some BCRs, and it remains coherent with conditional probability when m1(.)
is a Bayesian belief assignment. In the sequel, we will present many (actually thirty one BCR

237



238 BELIEF CONDITIONING RULES

rules, denoted BCR1-BCR31) new alternative issues for belief conditioning. The sequel does
not count: a) if we first know the source m1(.) and then that the truth is in A (or is supposed
to be in A), or b) if we first know (or assume) the truth is in A, and then we find the source
m1().The results of conditioning are the same. In addition, we work on a hyper-power set,
that is a generalization of the power set. The best among these BCR1-31, that we recommend
researchers to use, are: BCR17 for a pessimistic/prudent view on conditioning problem and
a more refined redistribution of conflicting masses, or BCR12 for a very pessimistic/prudent
view and less refined redistribution. After a short presentation of SCR rule, we present in the
following sections all new BCR rules we propose, many examples, and a very important and
open challenging question about belief fusion and conditioning.

9.2 Shafer’s conditioning rule (SCR)

Before going further in the development of new belief conditioning rules, it is important to recall
the conditioning of beliefs proposed by Glenn Shafer in [2] (p.66–67) and reported below.

So, let’s suppose that the effect of a new evidence (say source 2) on the frame of discernment
Θ is to establish a particular subset B ⊂ Θ with certainty. Then Bel2 will give a degree of belief
one to the proposition corresponding to B and to every proposition implied by it:

Bel2(A) =

{
1, ifB ⊂ A;

0, otherwise.

Since the subset B is the only focal element of Bel2, its basic belief assignment is one,
i.e. m2(B) = 1. Such a function Bel2 is then combinable with the (prior) Bel1 as long as
Bel1(B̄) < 1, and the Dempster’s rule of combination (denoted ⊕) provides the conditional
belief Bel1(.|B) = Bel1 ⊕Bel2 (according to Theorem 3.6 in [2]). More specifically, one gets for
all A ⊂ Θ,

Bel1(A|B) =
Bel1(A ∪ B̄)− Bel1(B̄)

1− Bel1(B̄)

Pl1(A|B) =
Pl1(A ∩B)

Pl1(B)

where Pl(.) denotes the plausibility function.

9.3 Belief Conditioning Rules (BCR)

Let Θ = {θ1, θ2, . . . , θn}, n ≥ 2, and the hyper-power set1 DΘ. Let’s consider a basic belief
assignment (bba) m(.) : DΘ 7→ [0, 1] such that

∑
X∈DΘ m(X) = 1.

Suppose one finds out that the truth is in the set A ∈ DΘ \{∅}. Let PD(A) = 2A∩DΘ \{∅},
i.e. all non-empty parts (subsets) of A which are included in DΘ. Let’s consider the nor-
mal cases when A 6= ∅ and

∑
Y ∈PD(A)m(Y ) > 0. For the degenerate case when the truth

1The below formulas can also be defined on the power set 2Θ and respectively super-power set SΘ in exactly
the same way.
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is in A = ∅, we consider Smets’ open-world, which means that there are other hypotheses
Θ′ = {θn+1, θn+2, . . . θn+m}, m ≥ 1, and the truth is in A ∈ DΘ′ \{∅}. If A = ∅ and we consider
a close-world, then it means that the problem is impossible. For another degenerate case, when∑

Y ∈PD(A)m(Y ) = 0, i.e. when the source gave us a totally (100%) wrong information m(.),

then, we define: m(A|A) , 1 and, as a consequence, m(X|A) = 0 for any X 6= A.

Let s(A) = {θi1 , θi2, . . . , θip}, 1 ≤ p ≤ n, be the singletons/atoms that compose A (For
example, if A = θ1 ∪ (θ3 ∩ θ4) then s(A) = {θ1, θ3, θ4}.). We consider three subsets of DΘ \ ∅,
generated by A:

• D1 = PD(A), the parts of A which are included in the hyper-power set, except the empty
set;

• D2 = {(Θ \ s(A)),∪,∩} \ {∅}, i.e. the sub-hyper-power set generated by Θ \ s(A) under
∪ and ∩, without the empty set.

• D3 = (DΘ \ {∅}) \ (D1 ∪D2); each set from D3 has in its formula singletons from both
s(A) and Θ \ s(A) in the case when Θ \ s(A) is different from empty set.

D1, D2 and D3 have no element in common two by two and their union is DΘ \ {∅}.

Examples of decomposition of DΘ \ {∅} = D1 ∪D2 ∪D3: Let’s consider Θ = {A,B,C} and the
free DSm model.

• If one supposes the truth is in A, then D1 = {A,A∩B,A∩C,A∩B∩C} ≡ P(A)∩(DΘ\∅),
i.e. D1 contains all the parts of A which are included in DΘ, except the empty set. D2

contains all elements which do not contain the letter A, i.e. D2 = ({B,C},∪,∩) =
D{B,C} = {B,C,B ∪C,B ∩C}. D3 = {A∪B,A∪C,A∪B ∪C,A∪ (B ∩C)}, i.e. In this
case, sets whose formulas contain both the letters A and at least a letter from {B,C} and
are not included in D1.

• If one supposes the truth is in A∩B, then one has D1 = {A∩B,A∩B ∩C}, D2 = {C};
i.e. D2 elements do not contain the letters A, B; and D3 = {A,B,A∪B,A∩C,B∩C, . . .},
i.e. what’s left from DΘ \ {∅} after removing D1 and D2.

• If one supposes the truth is in A∪B, then one has D1 = {A,B,A∩B,A∪B}, and all other
sets included in these four ones, i.e. A ∩C, B ∩C, A ∩B ∩C, A ∪ (B ∩C), B ∪ (A ∩C),
(A ∩ C) ∪ (B ∩ C), etc; D2 = {C}, i.e. D2 elements do not contain the letters A, B and
D3 = {A ∪ C,B ∪ C,A ∪B ∪ C,C ∪ (A ∩B)}.

• If one supposes the truth is in A∪B ∪C, then one has D1 = DΘ \ {∅}. D2 does not exist
since s(A ∪ B ∪ C) = {A,B,C} and Θ \ {A,B,C} = ∅; i.e. D2 elements do not contain
the letters A, B, C. D3 does not exist since (DΘ \ {∅}) \D1 = ∅.

• If one supposes the truth is in A∩B∩C, then one has D1 = {A∩B∩C}; D2 does not exist;
i.e. D2 elements do not contain the letters A, B, C and D3 equals everything else, i.e.
(DΘ\{∅})\D1 = {A,B,C,A∩B,A∩C,B∩C,A∪B,A∪C,B∪C,A∪B∪C,A∪(B∩C), . . .};
D3 has 19− 1− 1 = 17 elements.

We propose several Belief Conditioning Rules (BCR) for deriving a (posterior) conditioning
belief assignment m(.|A) from a (prior) bba m(.) and a conditioning set A ∈ DΘ \ {∅}. For all
forthcoming BCR formulas, of course we have:
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m(X|A) = 0, if X /∈ D1 (9.1)

For all forthcoming BCR formulas, we suppose all denominators are non-zero.

9.3.1 Belief Conditioning Rule no. 1 (BCR1)

The Belief Conditioning Rule no. 1, denoted BCR1 for short, is defined for X ∈ D1 by the
formula

mBCR1(X|A) = m(X) +
m(X) ·∑Z∈D2∪D3

m(Z)∑
Y ∈D1

m(Y )
=

m(X)∑
Y ∈D1

m(Y )
(9.2)

This is the easiest transfer of masses of the elements from D2 and D3 to the non-empty
elements from D1. This transfer is done indiscriminately in a similar way to Dempster’s rule
transfer, but this transfer is less exact. Therefore the sum of masses of non-empty elements
from D2 and D3 is transferred to the masses of non-empty elements from D1 proportionally
with respect to their corresponding non-null masses.

In a set of sets, such as D1, D2, D3, DΘ, we consider the inclusion of sets, ⊆, which is
a partial ordering relationship. The model of DΘ generates submodels for D1, D2 and D3

respectively.
Let W ∈ D3. We say X ∈ D1 is the k-largest, k ≥ 1, element from D1 that is included in

W , if: ∄Y ∈ D1 \ {X} with X ⊂ Y , and Y ⊂ W . Depending on the model, there are k ≥ 1
such elements. Similarly, we say that X ∈ D1 is the k-smallest, k ≥ 1, element from D1 that
is included in W , if: ∄Y ∈ D1 \ {X} with Y ⊂ X, and Y ⊂ W . Since in many cases there are
k ≥ 1 such elements, we call each of them a k-smallest element.

We recall that the DSm Cardinal, i.e. CardDSm(X) for X ∈ DΘ, is the number of distinct
parts that compose X in the Venn Diagram. It depends on the model and on the cardinal of
Θ, see [3] for details.
We partially increasingly order the elements in D1 using the inclusion relationship and their
DSm Cardinals. Since there are elements X,Y ∈ D1 that are in no relationship with each other
(i.e. X * Y , Y * X), but having the same DSm Cardinal, we list them together in a same
class. We, similarly as in statistics, say that X is a k-median, k ≥ 1, element if X is in the
middle of D1 in the case when cardinal of D1, Card(D1), is odd, or if Card(D1) is even we
take the left and right classes from the middle of D1 list. We also compute a k-average, k ≥ 1,
element of D1 by first computing

∑
X∈D1

CardDSm(X)/Card(D1). Then k-average elements
are those whose DSm Cardinal is close to the atomic average of D1. For each computation of
k-largest, k-smallest, k-median, or k-average we take the whole class of a such element. In a
class as stated above, all elements have the same DSm Cardinal and none is included in another
one.

Let’s see a few examples:

a) Let Θ = {A,B,C}, Shafer’s model, and the truth is in B ∪C.

D1 = {B,C,B ∪ C} CardDSm(B) = CardDSm(C) = 1 CardDSm(B ∪ C) = 2

In D1, we have: the 1-largest element is B ∪ C; the k-smallest (herein 2-smallest) are B,
C; the k-median (herein 2-median) is the class of C, which is formed by the elements B,
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C; the k-average of D1 is (CardDSm(B)+CardDSm(C)+CardDSm(B∪C))/Card(D1) =
(1 + 1 + 2)/3 = 1.333333 ≈ 1 and the k-averages are B, C.

b) Let Θ = {A,B,C}, free DSm model, and the truth is in B ∪ C. Then:

D1 = {B ∩ C ∩A︸ ︷︷ ︸
CardDSm=1

, B ∩ C,B ∩A,C ∩A︸ ︷︷ ︸
CardDSm=2

,

(B ∩C) ∪ (B ∩A), (B ∩ C) ∪ (C ∩A), (B ∩A) ∪ (C ∩A)︸ ︷︷ ︸
CardDSm=3

,

(B ∩ C) ∪ (B ∩A) ∪ (C ∩A), B,C︸ ︷︷ ︸
CardDSm=4

, B ∪ (C ∩A), C ∪ (B ∩A)︸ ︷︷ ︸
CardDSm=5

, B ∪ C︸ ︷︷ ︸
CardDSm=6

}

Therefore Card(D1) = 13.

D2 = { A︸︷︷︸
CardDSm=4

} and Card(D2) = 1.

D3 = {A ∪ (B ∩ C)︸ ︷︷ ︸
CardDSm=5

, A ∪B,A ∪ C︸ ︷︷ ︸
CardDSm=6

, A ∪B ∪C︸ ︷︷ ︸
CardDSm=7

} and Card(D3) = 4.

One verifies easily that:

Card(DΘ) = 19 = Card(D1) + Card(D2) + Card(D3) + 1 element (the empty set)

c) Let Θ = {A,B,C}, free DSm model, and the truth is in B.

D1 = {B ∩ C ∩A︸ ︷︷ ︸
class 1

, B ∩A,B ∩ C︸ ︷︷ ︸
class 2

, B︸︷︷︸
class 3

}

CardDSm(class 1) = 1 CardDSm(class 2) = 2 CardDSm(class 3) = 3

The D1 list is increasingly by class DSm Cardinals. The 1-largest element is B; the 1-
smallest is B ∩ C ∩ A; the 2-median elements are B ∩ A, B ∩ C; the average of DSm
Cardinals is [1 · (1) + 2 · (2) + 1 · (3)]/4 = 2. The 2-average elements are B ∩A, B ∩ C.

For the following BCR formulas, the k-largest, k-smallest, k-median, and k-average elements
respectively are calculated only for those elements fromD1 that are included in a given W (where
W ∈ D3), not for the whole D1.

9.3.2 Belief Conditioning Rule no. 2 (BCR2)

In Belief Conditioning Rule no. 2, i.e. BCR2 for short, a better transfer is proposed. While the
sum of masses of elements from D2 is redistributed in a similar way to the non-empty elements
from D1 proportionally with respect to their corresponding non-null masses, the masses of
elements from D3 are redistributed differently, i.e. if W ∈ D3 then its whole mass, m(W ), is
transferred to the k-largest (with respect to inclusion from D1) set X ⊂ W ; this is considered
a pessimistic/prudent way. The formula of BCR2 for X ∈ D1 is defined by:
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mBCR2(X|A) = m(X) +
m(X) ·∑Z∈D2

m(Z)
∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W,X is k-largest

m(W )/k (9.3)

or equivalently

mBCR2(X|A) =
m(X) ·∑Z∈D1∪D2

m(Z)∑
Y ∈D1

m(Y )
+

∑

W∈D3

X⊂W,X is k-largest

m(W )/k (9.4)

where X is the k-largest (with respect to inclusion) set included in W . The previous formula is
actually equivalent in the Shafer’s model to the following formula:

mBCR2(X|A) =
m(X) ·∑Z∈D1∪D2

m(Z)
∑

Y ∈D1
m(Y )

+
∑

W∈D3

W=X when Θ\s(A)≡∅

m(W )/k (9.5)

9.3.3 Belief Conditioning Rule no. 3 (BCR3)

The Belief Conditioning Rule no. 3, i.e. BCR3 is a dual of BCR2, but the transfer of m(W ) is
done to the k-smallest, k ≥ 1, (with respect to inclusion) set X ⊂W , i.e. in an optimistic way.
The formula of BCR3 for X ∈ D1 is defined by:

mBCR3(X|A) = m(X) +
m(X) ·∑Z∈D2

m(Z)
∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W,X is k-smallest

m(W )/k (9.6)

or equivalently

mBCR3(X|A) =
m(X) ·∑Z∈D1∪D2

m(Z)
∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W,X is k-smallest

m(W )/k (9.7)

where X is the k-smallest, k ≥ 1, (with respect to inclusion) set included in W .

There are cases where BCR2 and BCR3 coincide, i.e. when there is only one, or none,
X ⊂W for each W ∈ D3.

9.3.4 Belief Conditioning Rule no. 4 (BCR4)

In an average between pessimistic and optimistic ways, we can consider ”X k-median” in the
previous formulas in order to get the Belief Conditioning Rule no. 4 (BCR4), i.e. for any
X ∈ D1,



9.3. BELIEF CONDITIONING RULES (BCR) 243

mBCR4(X|A) = m(X) +
m(X) ·∑Z∈D2

m(Z)
∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W,X is k-median

m(W )/k (9.8)

or equivalently

mBCR4(X|A) =
m(X) ·∑Z∈D1∪D2

m(Z)
∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W,X is k-median

m(W )/k (9.9)

where X is a k-median element of all elements from D1 which are included in W . Here we do
a medium (neither pessimistic nor optimistic) transfer.

9.3.5 Belief Conditioning Rule no. 5 (BCR5)

We replace ”X is k-median” by ”X is k-average” in BCR4 formula in order to obtain the BCR5,
i.e. for any X ∈ D1,

mBCR5(X|A) =
m(X) ·∑Z∈D1∪D2

m(Z)
∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W,X is k-average

m(W )/k (9.10)

where X is a k-average element of all elements from D1 which are included in W . This transfer
from D3 is also medium and the result close to BCR4’s.

9.3.6 Belief Conditioning Rule no. 6 (BCR6)

BCR6 does a uniform redistribution of masses of each element W ∈ D3 to all elements from D1

which are included in W , i.e. for any X ∈ D1,

mBCR6(X|A) =
m(X) ·∑Z∈D1∪D2

m(Z)
∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W

m(W )

Card{V ∈ D1|V ⊂W}
(9.11)

where Card{V ∈ D1|V ⊂W} is the cardinal (number) of D1 sets included in W .

9.3.7 Belief Conditioning Rule no. 7 (BCR7)

In our opinion, a better (prudent) transfer is done in the following Belief Conditioning Rule no.
7 (BCR7) defined for any X ∈ D1 by:
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mBCR7(X|A) = m(X) +
m(X) ·∑Z∈D2

m(Z)∑
Y ∈D1

m(Y )

+m(X) ·
∑

W∈D3

X⊂W,S(W )6=0

m(W )

S(W )
+

∑

W∈D3

X⊂W,X is k-largest

S(W )=0

m(W )/k

where S(W ) ,
∑

Y ∈D1,Y⊂W

m(Y ).

Or, simplified we get:

mBCR7(X|A) = m(X) ·
[∑

Z∈D1∪D2
m(Z)

∑
Y ∈D1

m(Y )
+

∑

W∈D3

X⊂W,S(W )6=0

m(W )

S(W )

]

+
∑

W∈D3

X⊂W,X is k-largest

S(W )=0

m(W )/k (9.12)

The transfer is done in the following way:

• the sum of masses of elements in D2 are redistributed to the non-empty elements from
D1 proportionally with respect to their corresponding non-null masses (similarly as in
BCR1-BCR6 and BCR8-BCR11 defined in the sequel);

• for each element W ∈ D3, its mass m(W ) is distributed to all elements from D1 which
are included in W and whose masses are non-null proportionally with their corresponding
masses (according to the second term of the formula (9.12));

• but, if all elements from D1 which are included in W have null masses, then m(W ) is
transferred to the k-largest X from D1, which is included in W (according to the last
term of the formula (9.12)); this is the pessimistic/prudent way.

9.3.8 Belief Conditioning Rule no. 8 (BCR8)

A dual of BCR7 is the Belief Conditioning Rule no. 8 (BCR8), where we consider the opti-
mistic/more specialized way, i.e. ”X is k-largest” is replaced by ”X is k-smallest”, k ≥ 1 in
(9.12). Therefore, BCR8 formula for any X ∈ D1 is given by :
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mBCR8(X|A) = m(X) ·
[∑

Z∈D1∪D2
m(Z)

∑
Y ∈D1

m(Y )
+

∑

W∈D3

X⊂W,S(W )6=0

m(W )

S(W )

]

+
∑

W∈D3

X⊂W,X is k-smallest

S(W )=0

m(W )/k (9.13)

where S(W ) ,
∑

Y ∈D1,Y⊂W

m(Y ).

9.3.9 Belief Conditioning Rule no. 9 (BCR9)

In an average between pessimistic and optimistic ways, we can consider ”X k-median” in the
previous formulas (9.12) and (9.13) instead of ”k-largest” or ”k-smallest” in order to get the
Belief Conditioning Rule no. 9 (BCR9).

9.3.10 Belief Conditioning Rule no. 10 (BCR10)

BCR10 is similar to BCR9 using an average transfer (neither pessimistic nor optimistic) from
D3 to D1. We only replace ”X k-median” by ”X k-average” in BCR9 formula.

9.3.11 Belief Conditioning Rule no. 11 (BCR11)

BCR11 does a uniform redistribution of masses of D3 to D1, as BCR6, but when S(W ) = 0 for
W ∈ D3. BCR11 formula for any X ∈ D1 is given by:

mBCR11(X|A) = m(X) ·
[∑

Z∈D1∪D2
m(Z)∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W,S(W )6=0

m(W )

S(W )

]

+
∑

W∈D3

X⊂W,
S(W )=0

m(W )

Card{V ∈ D1|V ⊂W}
(9.14)

where Card{V ∈ D1|V ⊂W} is the cardinal (number) of D1 sets included in W .

9.3.12 More Belief Conditioning Rules (BCR12-BCR21)

More versions of BCRs can be constructed that are distinguished through the way the masses
of elements from D2 ∪ D3 are redistributed to those in D1. So far, in BCR1-11, we have
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redistributed the masses of D2 indiscriminately to D1, but for the free and some hybrid DSm
models of DΘ we can do a more exact redistribution.

There are elements in D2 that don’t include any element from D1; the mass of these elements
will be redistributed identically as in BCR1-. But other elements from D2 that include at least
one element from D1 will be redistributed as we did before with D3. So we can improve the
last ten BCRs for any X ∈ D1 as follows:

mBCR12(X|A) = m(X) +
[
m(X) ·

∑

Z∈D2

∄Y ∈D1 withY⊂Z

m(Z)
]
/
∑

Y ∈D1

m(Y )

+
∑

Z∈D2

X⊂Z,X is k-largest

m(Z)/k +
∑

W∈D3

X⊂W,X is k-largest

m(W )/k (9.15)

or equivalently

mBCR12(X|A) =
[
m(X) ·

∑

Z∈D1,

orZ∈D2 |∄Y ∈D1 withY⊂Z

m(Z)
]
/
∑

Y ∈D1

m(Y )

+
∑

W∈D2∪D3

X⊂W,X is k-largest

m(W )/k (9.16)

mBCR13(X|A) =
[
m(X) ·

∑

Z∈D1,

orZ∈D2 |∄Y ∈D1 withY⊂Z

m(Z)
]
/
∑

Y ∈D1

m(Y )

+
∑

W∈D2∪D3

X⊂W,X is k-smallest

m(W )/k (9.17)

mBCR14(X|A) =
[
m(X) ·

∑

Z∈D1,

orZ∈D2 |∄Y ∈D1 withY⊂Z

m(Z)
]
/
∑

Y ∈D1

m(Y )

+
∑

W∈D2∪D3

X⊂W,X is k-median

m(W )/k (9.18)
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mBCR15(X|A) =
[
m(X) ·

∑

Z∈D1,

orZ∈D2 |∄Y ∈D1 withY⊂Z

m(Z)
]
/
∑

Y ∈D1

m(Y )

+
∑

W∈D2∪D3

X⊂W,X is k-average

m(W )/k (9.19)

mBCR16(X|A) =
[
m(X) ·

∑

Z∈D1,

orZ∈D2 |∄Y ∈D1 withY⊂Z

m(Z)
]
/
∑

Y ∈D1

m(Y )

+
∑

W∈D2∪D3

X⊂W

m(W )

Card{V ∈ D1|V ⊂W}
(9.20)

mBCR17(X|A) = m(X) ·
[
[ ∑

Z∈D1,

orZ∈D2 |∄Y ∈D1 withY⊂Z

m(Z)
]
/
∑

Y ∈D1

m(Y ) +
∑

W∈D2∪D3

X⊂W
S(W )6=0

m(W )

S(W )

]

+
∑

W∈D2∪D3

X⊂W,X is k-largest
S(W )=0

m(W )/k (9.21)

mBCR18(X|A) = m(X) ·
[
[ ∑

Z∈D1,

orZ∈D2 |∄Y ∈D1 withY⊂Z

m(Z)
]
/
∑

Y ∈D1

m(Y ) +
∑

W∈D2∪D3

X⊂W
S(W )6=0

m(W )

S(W )

]

+
∑

W∈D2∪D3

X⊂W,X is k-smallest
S(W )=0

m(W )/k (9.22)
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mBCR19(X|A) = m(X) ·
[
[ ∑

Z∈D1,

orZ∈D2 |∄Y ∈D1 withY⊂Z

m(Z)
]
/
∑

Y ∈D1

m(Y ) +
∑

W∈D2∪D3

X⊂W
S(W )6=0

m(W )

S(W )

]

+
∑

W∈D2∪D3

X⊂W,X is k-median
S(W )=0

m(W )/k (9.23)

mBCR20(X|A) = m(X) ·
[
[ ∑

Z∈D1,

orZ∈D2 |∄Y ∈D1 withY⊂Z

m(Z)
]
/
∑

Y ∈D1

m(Y ) +
∑

W∈D2∪D3

X⊂W
S(W )6=0

m(W )

S(W )

]

+
∑

W∈D2∪D3

X⊂W,X is k-average
S(W )=0

m(W )/k (9.24)

mBCR21(X|A) = m(X) ·
[
[ ∑

Z∈D1,

orZ∈D2 |∄Y ∈D1 withY⊂Z

m(Z)
]
/
∑

Y ∈D1

m(Y ) +
∑

W∈D2∪D3

X⊂W
S(W )6=0

m(W )

S(W )

]

+
∑

W∈D2∪D3

X⊂W
S(W )=0

m(W )

Card{V ∈ D1|V ⊂W}
(9.25)

Surely, other combinations of the ways of redistributions of masses from D2 and D3 to D1

can be done, obtaining new BCR rules.

9.4 Examples

9.4.1 Example no. 1 (free DSm model with non-Bayesian bba)

Let’s consider Θ = {A,B,C}, the free DSm model (no intersection is empty) and the following
prior bba

m1(A) = 0.2 m1(B) = 0.1 m1(C) = 0.2 m1(A ∪B) = 0.1 m1(B ∪ C) = 0.1
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m1(A ∪ (B ∩ C)) = 0.1 m1(A ∩B) = 0.1 m1(A ∪B ∪ C) = 0.1

and let’s assume that the truth is in B ∪C, i.e. the conditioning term is B ∪ C. Then:

D1 = {B ∩ C ∩A︸ ︷︷ ︸
CardDSm=1

, B ∩C,B ∩A,C ∩A︸ ︷︷ ︸
CardDSm=2

,

(B ∩ C) ∪ (B ∩A), (B ∩ C) ∪ (C ∩A), (B ∩A) ∪ (C ∩A)︸ ︷︷ ︸
CardDSm=3

,

(B ∩ C) ∪ (B ∩A) ∪ (C ∩A), B,C︸ ︷︷ ︸
CardDSm=4

, B ∪ (C ∩A), C ∪ (B ∩A)︸ ︷︷ ︸
CardDSm=5

, B ∪ C︸ ︷︷ ︸
CardDSm=6

}

Therefore Card(D1) = 13.

We recall that ∀X ∈ DΘ, the DSm Cardinal of X, CardDSm(X), is equal to the number of
distinct parts that compose X in the Venn Diagram (see below) according to the given model
on DΘ. By definition, CardDSm(∅) = 0 (see [3] for examples and details).

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩❅❘

A
�✠
B

❅■C

Figure 9.1: Venn Diagram for the 3D free DSm model

D2 = { A︸︷︷︸
CardDSm=4

} and Card(D2) = 1.

D3 = {A ∪ (B ∩ C)︸ ︷︷ ︸
CardDSm=5

, A ∪B,A ∪ C︸ ︷︷ ︸
CardDSm=6

, A ∪B ∪ C︸ ︷︷ ︸
CardDSm=7

} and Card(D3) = 4.

One verifies easily that:

Card(DΘ) = 19 = Card(D1) + Card(D2) + Card(D3) + 1 element (the empty set)

The masses of elements from D2 ∪D3 are transferred to the elements of D1. The ways these
transfers are done make the distinction between the BCRs.

a) In BCR1, the sum of masses of D2 and D3 are indiscriminately distributed to B, C, B∪C,
A∩B, proportionally to their corresponding masses 0.1, 0.2, 0.1, and respectively 0.1, i.e.

m(D2 ∪D3) = m1(A) +m1(A ∪B) +m1(A ∪ (B ∩C)) +m1(A ∪B ∪ C) = 0.5

xB
0.1

=
yC
0.2

=
zB∪C
0.1

=
wB∩A

0.1
=

0.5

0.5
= 1

whence xB = 0.1, yC = 0.2, zB∪C = 0.1 and wB∩A = 0.1 are added to the original masses
of B, C, B ∪ C and B ∩A respectively.
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Finally, one gets with BCR1-based conditioning:

mBCR1(B|B ∪ C) = 0.2

mBCR1(C|B ∪ C) = 0.4

mBCR1(B ∪ C|B ∪ C) = 0.2

mBCR1(B ∩A|B ∪ C) = 0.2

b) In BCR2, m(D2) = m1(A) = 0.2 and is indiscriminately distributed to B, C, B ∪ C,
A ∩B, proportionally to their corresponding masses, i.e.

xB
0.1

=
yC
0.2

=
zB∪C
0.1

=
wB∩A

0.1
=

0.2

0.5
= 0.4

whence xB = 0.04, yC = 0.08, zB∪C = 0.04 and wB∩A = 0.04.

m(D3) is redistributed, element by element, to the k-largest D1 element in each case:
m1(A ∪B) = 0.1 to B ∪ (C ∩A), since B ∪ (C ∩A) ∈ D1 and it is the 1-largest one from
D1 included in A∪B; m1(A∪ (B ∩C)) = 0.1 to (B ∩A)∪ (C ∩A)∪ (B ∩C) for a similar
reason; m1(A ∪B ∪ C) = 0.1 to B ∪C. Finally, one gets with BCR2-based conditioning:

mBCR2(B|B ∪ C) = 0.14

mBCR2(C|B ∪ C) = 0.28

mBCR2(B ∪ C|B ∪ C) = 0.24

mBCR2(B ∩A|B ∪ C) = 0.14

mBCR2((B ∩A) ∪ (C ∩A) ∪ (B ∩ C)|B ∪ C) = 0.10

mBCR2(B ∪ (C ∩A)|B ∪ C) = 0.10

c) In BCR3, instead of k-largest D1 elements, we consider k-smallest ones. m(D2) =
m1(A) = 0.2 is exactly distributed as in BCR2. But m(D3) is, in each case, redistributed
to the k-smallest D1 element, which is A ∩B ∩ C (1-smallest herein). Hence:

mBCR3(B|B ∪ C) = 0.14

mBCR3(C|B ∪ C) = 0.28

mBCR3(B ∪ C|B ∪ C) = 0.14

mBCR3(B ∩A|B ∪ C) = 0.14

mBCR3(A ∩B ∩ C|B ∪C) = 0.30

d) In BCR4, we use k-median.

• A ∪B includes the following D1 elements:

A ∩B ∩ C,B ∩ C,B ∩A,C ∩A, (B ∩ C) ∪ (B ∩A), |︸︷︷︸
median herein

(B ∩C)∪ (C ∩A), (B ∩A)∪ (C ∩A), (B ∩C)∪ (B ∩A)∪ (C ∩A), B,B ∪ (A∩C)

Hence we take the whole class: (B∩C)∪(B∩A), (B∩C)∪(C∩A), (B∩A)∪(C∩A),
i.e. 3-medians; each one receiving 1/3 of 0.1 = m1(A ∪B).
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• A ∪ (B ∩ C) includes the following D1 elements:

A ∩B ∩ C,B ∩ C,B ∩A,C ∩A, |︸︷︷︸
median herein

(B∩C)∪ (B∩A), (B ∩C)∪ (C ∩A), (B∩A)∪ (C ∩A), (B ∩C)∪ (B∩A)∪ (C ∩A)

Hence we take the left and right (to the median) classes: B ∩ C, B ∩ A, C ∩ A,
(B ∩C) ∪ (B ∩A), (B ∩ C) ∪ (C ∩A), (B ∩A) ∪ (C ∩A), i.e. 6-medians, each ones
receiving 1/6 of 0.1 = m1(A ∪ (B ∩ C)).

• A ∪ B ∪ C includes all D1 elements, hence the 3-medians are (B ∩ C) ∪ (B ∩ A),
(B∩C)∪(C∩A) and (B∩A)∪(C∩A); each one receiving 1/3 of 0.1 = m1(A∪B∪C)

Totalizing, one finally gets:

mBCR4(B|B ∪ C) = 42/300

mBCR4(C|B ∪ C) = 84/300

mBCR4(B ∪C|B ∪ C) = 42/300

mBCR4(B ∩A|B ∪C) = 47/300

mBCR4(B ∩C|B ∪ C) = 5/300

mBCR4(C ∩A|B ∪C) = 5/300

mBCR4((B ∩ C) ∪ (B ∩A)|B ∪ C) = 25/300

mBCR4((B ∩ C) ∪ (C ∩A)|B ∪ C) = 25/300

mBCR4((B ∩A) ∪ (C ∩A)|B ∪ C) = 25/300

e) In BCR5, we compute k-average, i.e. the k-average of DSm cardinals of the D1 elements
included in eack W ∈ D3.

• For A ∪B, using the results got in BCR4 above:

∑

X∈D1,X⊂A∪B
CardDSm(X) = 1 + 3 · (2) + 3 · (3) + 4 + 4 + 5 = 29

The average DSm cardinal per element is 29/10 = 2.9 ≈ 3. Hence (B ∩C)∪ (B∩A),
(B ∩ C) ∪ (C ∩A), (B ∩A) ∪ (C ∩A), i.e. the 3-average elements, receive each 1/3
of 0.1 = m1(A ∪B).

• For A ∪ (B ∩C), one has

∑

X∈D1,X⊂A∪(B∩C)

CardDSm(X) = 1 + 3 · (2) + 3 · (3) + 4 = 20

The average DSm cardinal per element is 20/8 = 2.5 ≈ 3. Hence again (B ∩ C) ∪
(B ∩A), (B ∩ C) ∪ (C ∩A), (B ∩ A) ∪ (C ∩ A), i.e. the 3-average elements, receive
each 1/3 of 0.1 = m1(A ∪ (B ∩ C)).

• For A ∪B ∪ C, one has

∑

X∈D1,X⊂A∪B∪C
CardDSm(X) = 1 + 3 · (2) + 3 · (3) + 4 + 2 · (4) + 2 · (5) + 6 = 44
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The average DSm cardinal per element is 44/13 = 3.38 ≈ 3. Hence (B∩C)∪(B∩A),
(B ∩ C) ∪ (C ∩A), (B ∩A) ∪ (C ∩A), i.e. the 3-average elements, receive each 1/3
of 0.1 = m1(A ∪B ∪C).

Totalizing, one finally gets:

mBCR5(B|B ∪ C) = 42/300

mBCR5(C|B ∪ C) = 84/300

mBCR5(B ∪C|B ∪ C) = 42/300

mBCR5(B ∩A|B ∪C) = 42/300

mBCR5((B ∩ C) ∪ (B ∩A)|B ∪ C) = 30/300

mBCR5((B ∩ C) ∪ (C ∩A)|B ∪ C) = 30/300

mBCR5((B ∩A) ∪ (C ∩A)|B ∪C) = 30/300

f) In BCR6, the k-average is replaced by uniform redistribution of D3 elements’ masses to
all D1 elements included in each W ∈ D3.

• The mass m1(A∪B) = 0.1 is equally split among each D1 element included in A∪B
(see the list of them in BCR4 above), hence 1/10 of 0.1 to each.

• Similarly, m1(A∪ (B ∩C)) = 0.1 is equally split among each D1 element included in
A ∪ (B ∩ C), hence 1/8 of 0.1 to each.

• And, in the same way, m1(A ∪B ∪C) = 0.1 is equally split among each D1 element
included in A ∪B ∪ C, hence 1/13 of 0.1 to each.

Totalizing, one finally gets:

mBCR6(B|B ∪ C) = 820/5200

mBCR6(C|B ∪ C) = 1996/5200

mBCR6(B ∪ C|B ∪ C) = 768/5200

mBCR6(B ∩A|B ∪ C) = 885/5200

mBCR6(A ∩B ∩ C|B ∪ C) = 157/5200

mBCR6(B ∩ C|B ∪ C) = 157/5200

mBCR6(C ∩A|B ∪ C) = 157/5200

mBCR6((B ∩ C) ∪ (B ∩A)|B ∪ C) = 157/5200

mBCR6((B ∩ C) ∪ (C ∩A)|B ∪ C) = 157/5200

mBCR6((B ∩A) ∪ (C ∩A)|B ∪ C) = 157/5200

mBCR6((B ∩ C) ∪ (B ∩A) ∪ (C ∩A)|B ∪ C) = 157/5200

mBCR6(B ∪ (C ∩A)|B ∪ C) = 92/5200

mBCR6(C ∪ (B ∩A)|B ∪ C) = 40/5200

g) In BCR7, m(D2) is also indiscriminately redistributed, but m(D3) is redistributed in a
different more refined way.
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• The mass m1(A ∪ B) = 0.1 is transferred to B and B ∩ A since these are the only
D1 elements included in A ∪ B whose masses are non-zero, proportionally to their
corresponding masses, i.e.

xB
0.1

=
wB∩A

0.1
=

0.1

0.2
= 0.5

whence xB = 0.05 and wB∩A = 0.05.

• m1(A ∪ (B ∩ C)) = 0.1 is transferred to B ∩A only since no other D1 element with
non-zero mass is included in A ∪ (B ∩C).

• m1(A ∪B ∪C) = 0.1 is similarly transferred to B, C, B ∩A, B ∪ C, i.e.

xB
0.1

=
yC
0.2

=
zB∪C
0.1

=
wB∩A

0.1
=

0.1

0.5
= 0.2

whence xB = 0.02, yC = 0.04, zB∪C = 0.02 and wB∩A = 0.02.

Totalizing, one finally gets:

mBCR7(B|B ∪C) = 0.21

mBCR7(C|B ∪C) = 0.32

mBCR7(B ∪ C|B ∪ C) = 0.16

mBCR7(B ∩A|B ∪ C) = 0.31

h) In BCR8-11, since there is no W ∈ D3 such that the sum of masses of D1 elements included
in W be zero, i.e. s(W ) 6= 0, we can not deal with ”k-elements”, hence the results are
identical to BCR7.

i) In BCR12, m(D2) is redistributed differently. m1(A) = 0.2 is transferred to (A ∩ B) ∪
(A∩C) since this is the 1-largest D1 element included in A. m(D3) is transferred exactly
as in BCR2. Finally, one gets:

mBCR12(B|B ∪ C) = 0.1

mBCR12(C|B ∪ C) = 0.2

mBCR12(B ∪ C|B ∪C) = 0.2

mBCR12(B ∩A|B ∪ C) = 0.1

mBCR12((B ∩A) ∪ (C ∩A) ∪ (B ∩C)|B ∪ C) = 0.1

mBCR12((A ∩B) ∪ (A ∩ C)|B ∪ C) = 0.1

mBCR12(B ∪ (C ∩A)|B ∪C) = 0.1

j) In BCR13, m(D2) is redistributed to the 1-smallest, i.e. to A ∩ B ∩ C and m(D3) is
redistributed as in BCR3. Therefore one gets:

mBCR13(B|B ∪ C) = 0.1

mBCR13(C|B ∪ C) = 0.2

mBCR13(B ∪C|B ∪ C) = 0.1

mBCR13(B ∩A|B ∪C) = 0.1

mBCR13(A ∩B ∩ C|B ∪ C) = 0.5
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k) In BCR14, m1(A) = 0.2, where A ∈ D2, is redistributed to the k-medians of A ∩ B ∩ C,
B∩A, C∩A, (B∩A)∪ (C ∩A) which are included in A and belong to D1. The 2-medians
are B ∩ A, C ∩ A, hence each receives 1/2 of 0.2. m(D3) is redistributed as in BCR4.
Therefore one gets:

mBCR14(B|B ∪ C) = 30/300

mBCR14(C|B ∪ C) = 60/300

mBCR14(B ∪ C|B ∪C) = 30/300

mBCR14(B ∩A|B ∪ C) = 65/300

mBCR14(B ∩ C|B ∪C) = 5/300

mBCR14(C ∩A|B ∪ C) = 35/300

mBCR14((B ∩C) ∪ (B ∩A)|B ∪C) = 25/300

mBCR14((B ∩C) ∪ (C ∩A)|B ∪C) = 25/300

mBCR14((B ∩A) ∪ (C ∩A)|B ∪ C) = 25/300

l) In BCR15, m1(A) = 0.2, where A ∈ D2, is redistributed to the k-averages.

1

4
·[CardDSm(A∩B∩C)+CardDSm(B∩C)+CardDSm(C∩A)+CardDSm((B∩A)∪(C∩A))]

=
1 + 2 + 2 + 3

4
= 2

Hence each of B∩C, C∩A receives 1/2 of 2; m(D3) is redistributed as in BCR5. Therefore
one gets:

mBCR15(B|B ∪ C) = 3/30

mBCR15(C|B ∪ C) = 6/30

mBCR15(B ∪ C|B ∪ C) = 3/30

mBCR15(B ∩A|B ∪C) = 6/30

mBCR15(C ∩A|B ∪C) = 3/30

mBCR15((B ∩ C) ∪ (B ∩A)|B ∪ C) = 3/30

mBCR15((B ∩ C) ∪ (C ∩A)|B ∪ C) = 3/30

mBCR15((B ∩A) ∪ (C ∩A)|B ∪ C) = 3/30

m) In BCR16, m1(A) = 0.2, where A ∈ D2, is uniformly transferred to all D1 elements
included in A, i.e. to A∩B ∩C, B ∩A, C ∩A, (B ∩A)∪ (C ∩A), hence each one receives
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1/4 of 0.2. m(D3) is redistributed as in BCR6. Therefore one gets:

mBCR16(B|B ∪ C) = 612/5200

mBCR16(C|B ∪ C) = 1080/5200

mBCR16(B ∪C|B ∪ C) = 560/5200

mBCR16(B ∩A|B ∪C) = 937/5200

mBCR16(A ∩B ∩ C|B ∪ C) = 417/5200

mBCR16(B ∩C|B ∪ C) = 157/5200

mBCR16(C ∩A|B ∪C) = 417/5200

mBCR16((B ∩ C) ∪ (B ∩A)|B ∪ C) = 157/5200

mBCR16((B ∩ C) ∪ (C ∩A)|B ∪ C) = 157/5200

mBCR16((B ∩A) ∪ (C ∩A)|B ∪ C) = 417/5200

mBCR16((B ∩ C) ∪ (B ∩A) ∪ (C ∩A)|B ∪ C) = 157/5200

mBCR16(B ∪ (C ∩A)|B ∪ C) = 92/5200

mBCR16(C ∪ (B ∩A)|B ∪ C) = 40/5200

n) In BCR17, m1(A) = 0.2, where A ∈ D2, is transferred to B ∩ A since B ∩ A ⊂ A and
m1(B ∩ A) > 0. No other D1 element with non-zero mass is included in A. m(D3) is
redistributed as in BCR7. Therefore one gets:

mBCR17(B|B ∪ C) = 0.17

mBCR17(C|B ∪ C) = 0.24

mBCR17(B ∪ C|B ∪C) = 0.12

mBCR17(B ∩A|B ∪ C) = 0.47

o) BCR18-21 give the same result as BCR17 since no k-elements occur in these cases.

p) SCR does not work for free DSm models. But we can use the extended (from the power
set 2Θ to the hyper-power set DΘ) Dempster’s rule (see Daniel’s Chapter [1]) in order
to combine m1(.) with m2(B ∪ C) = 1, because the truth is in B ∪ C, as in Shafer’s
conditioning rule. But since we have a free DSm model, no transfer is needed, hence
Dempster’s rule is reduced to DSm Classic rule (DSmC), which is a generalization of
conjunctive rule. One gets:

mDSmC(B|B ∪ C) = 0.1

mDSmC(C|B ∪ C) = 0.2

mDSmC(B ∪C|B ∪ C) = 0.2

mDSmC(B ∩A|B ∪ C) = 0.1

mDSmC((A ∩B) ∪ (A ∩ C)|B ∪C) = 0.2

mDSmC(B ∪ (A ∩ C)|B ∪C) = 0.1

mDSmC((A ∩B) ∪ (B ∩ C) ∪ (C ∩A)|B ∪ C) = 0.1

In the free DSm model, if the truth is in A, BCR12 gives the same result as m1(.) fusioned
with m2(A) = 1 using the classic DSm rule.
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9.4.2 Example no. 2 (Shafer’s model with non-Bayesian bba)

Let’s consider Θ = {A,B,C} with Shafer’s model and the following prior bba:

m1(A) = 0.2 m1(B) = 0.1 m1(C) = 0.2

m1(A ∪B) = 0.1 m1(B ∪ C) = 0.1 m1(A ∪B ∪ C) = 0.3

Let’s assume as conditioning constraint that the truth is in B ∪C. DΘ is decomposed into

D1 = {B,C,B ∪ C}

D2 = {A}

D3 = {A ∪B,A ∪C,A ∪B ∪ C}

The Venn Diagram corresponding to Shafer’s model for this example is given in Figure 9.2
below.

✫✪
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✫✪
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B
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Figure 9.2: Venn Diagram for the 3D Shafer’s model

a) In BCR1, m(D2 ∪D3) = m1(A) + m1(A ∪ B) + m1(A ∪B ∪ C) = 0.6 is redistributed to
B, C, B ∪ C, proportionally to their corresponding masses 0.1, 0.2, 0.1 respectively, i.e.

xB
0.1

=
yC
0.2

=
zB∪C
0.1

=
0.6

0.4
= 1.5

whence xB = 0.15, yC = 0.30, zB∪C = 0.15 are added to the original masses of B, C,
B ∪ C respectively. Finally, one gets with BCR1-based conditioning:

mBCR1(B|B ∪C) = 0.25

mBCR1(C|B ∪ C) = 0.50

mBCR1(B ∪ C|B ∪ C) = 0.25

b) In BCR2, m(D2) = m1(A) = 0.2 and is indiscriminately distributed to B, C and B ∪ C
proportionally to their corresponding masses, i.e.

xB
0.1

=
yC
0.2

=
zB∪C
0.1

=
0.2

0.4
= 0.5

whence xB = 0.05, yC = 0.10, and zB∪C = 0.05.
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For D3, m1(A∪B) = 0.1 is transferred to B (1-largest), m1(A∪B∪C) = 0.3 is transferred
to A ∪B. Finally, one gets with BCR2-based conditioning:

mBCR2(B|B ∪C) = 0.25

mBCR2(C|B ∪C) = 0.30

mBCR2(B ∪ C|B ∪ C) = 0.45

c) In BCR3 for D3, m1(A ∪B) = 0.1 is transferred to B (1-smallest), m1(A ∪B ∪ C) = 0.3
is transferred to B, C (2-smallest). Finally, one gets with BCR3-based conditioning:

mBCR3(B|B ∪C) = 0.40

mBCR3(C|B ∪C) = 0.45

mBCR3(B ∪ C|B ∪ C) = 0.15

d) In BCR4 for D3, m1(A ∪ B) = 0.1 is transferred to B (1-median), m1(A ∪ B ∪ C) = 0.3
is transferred to B, C (2-medians). Finally, one gets same result as with BCR3, i.e.

mBCR4(B|B ∪C) = 0.40

mBCR4(C|B ∪C) = 0.45

mBCR4(B ∪ C|B ∪ C) = 0.15

e) In BCR5 for D3, m1(A ∪B) = 0.1 is transferred to B. Let’s compute

1

3
· [CardDSm(B) + CardDSm(C) + CardDSm(B ∪ C)] =

1 + 1 + 2

3
≈ 1

Hence 2-averages are B and C. So with BCR5, one gets same result as with BCR3, i.e.

mBCR5(B|B ∪C) = 0.40

mBCR5(C|B ∪C) = 0.45

mBCR5(B ∪ C|B ∪ C) = 0.15

f) In BCR6 for D3, m1(A ∪ B) = 0.1 is transferred to B (the only D1 element included in
A∪B), m1(A∪B ∪C) = 0.3 is transferred to B, C, B ∪C, each one receiving 1/3 of 0.3.
Finally, one gets

mBCR6(B|B ∪C) = 0.35

mBCR6(C|B ∪C) = 0.40

mBCR6(B ∪ C|B ∪ C) = 0.25

g) In BCR7 for D3, m1(A ∪ B) = 0.1 is transferred to B since B ⊂ A ∪ B and m(B) > 0;
m1(A ∪B ∪C) = 0.3 is transferred to B, C, B ∪C proportionally to their corresponding
masses:

xB
0.1

=
yC
0.2

=
zB∪C
0.1

=
0.3

0.4
= 0.75

whence xB = 0.075, yC = 0.15, and zB∪C = 0.075. Finally, one gets

mBCR7(B|B ∪ C) = 0.325

mBCR7(C|B ∪ C) = 0.450

mBCR7(B ∪ C|B ∪ C) = 0.225
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h) BCR8-11 give the same result as BCR7 in this example, since there is no case of k-elements.

i) In BCR12: For D2 for all BCR12-21, m1(A) = 0.2 is redistributed to B, C, B ∪ C as in
BCR2. m(D3) is redistributed as in BCR2. The result is the same as in BCR2.

j) BCR13-15 give the same result as in BCR3.

k) BCR16 gives the same result as in BCR6.

l) BCR17-21: For D3, m1(A ∪ B) = 0.1 is transferred to B (no case of k-elements herein);
m1(A ∪B ∪C) = 0.3 is transferred to B, C, B ∪C proportionally to their corresponding
masses as in BCR7. Therefore one gets same result as in BCR7, i.e.

mBCR17(B|B ∪ C) = 0.325

mBCR17(C|B ∪ C) = 0.450

mBCR17(B ∪C|B ∪ C) = 0.225

m) BCR22, 23, 24, 25, 26 give the same results as BCR7, 8, 9, 10, 11 respectively since D2 is
indiscriminately redistributed to D1 elements.

n) BCR27, 28, 29, 30, 31 give the same results as BCR2, 3, 4, 5, 6 respectively for the same
reason as previously.

o) If one applies the SCR, i.e. one combines with Dempster’s rule m1(.) with m2(B∪C) = 1,
because the truth is in B ∪ C as Glenn Shafer proposes, one gets:

mSCR(B|B ∪ C) = 0.25

mSCR(C|B ∪ C) = 0.25

mSCR(B ∪ C|B ∪ C) = 0.50

9.4.3 Example no. 3 (Shafer’s model with Bayesian bba)

Let’s consider Θ = {A,B,C,D} with Shafer’s model and the following prior Bayesian bba:

m1(A) = 0.4 m1(B) = 0.1 m1(C) = 0.2 m1(D) = 0.3

Let’s assume that one finds out that the truth is in C∪D. From formulas of BCRs conditioning
rules one gets the same result for all the BCRs in such example according to the following table

A B C D

m1(.) 0.4 0.1 0.2 0.3

mBCR1−31(.|C ∪D) 0 0 0.40 0.60

Table 9.1: Conditioning results based on BCRs given the truth is in C ∪D.

Let’s examine the conditional bba obtained directly from the fusion of the prior bba m1(.)
with the belief assignment focused only on C ∪D, say m2(C ∪D) = 1 using three main rules of
combination (Dempster’s rule, DSmH and PCR5). After elementary derivations, one gets final
results given in Table 9.2. In the Bayesian case, all BCRs and Shafer’s conditioning rule (with
Dempster’s rule) give the same result.
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A B C D C ∪D A ∪ C ∪D B ∪ C ∪D
mDS(.|C ∪D) 0 0 0.40 0.60 0 0 0

mDSmH(.|C ∪D) 0 0 0.20 0.30 0 0.40 0.10
mPCR5(.|C ∪D) 0.114286 0.009091 0.20 0.30 0.376623 0 0

Table 9.2: Conditioning results based on Dempster’s, DSmH and PCR5 fusion rules.

9.5 Classification of the BCRs

Let’s note:

Du
2 = Redistribution of the whole D2 is done undifferentiated to D1

Du
3 = Redistribution of the whole D3 is done undifferentiated to D1

Dp
2 = Redistribution of D2 is particularly done from each Z ∈ D2 to specific elements in D1

Dp
3 = Redistribution of D3 is particularly done from each W ∈ D3 to specific elements in D1

Ds
2 = D2 is split into two disjoint subsets: one whose elements have the property that s(W ) 6= 0,

an another one such that its elements have s(W ) = 0. Each subset is differently redistributed
to D1

Ds
3 = D3 is similarly split into two disjoint subsets, that are redistributed as in Ds

2.

Thus, we can organize and classify the BCRs as follows:

Ways of redistribution Belief Conditioning Rule Specific Elements
Du

2 ,Du
3 BCR1

Du
2 , D

p
3





BCR2

BCR3

BCR4

BCR5

BCR6





k − largest

k − smallest

k −median

k − average

uniform distribution

Du
2 , D

s
3






BCR7

BCR8

BCR9

BCR10

BCR11






k − largest

k − smallest

k −median

k − average

uniform distribution

Dp
2
, Dp

3






BCR12

BCR13

BCR14

BCR15

BCR16






k − largest

k − smallest

k −median

k − average

uniform distribution

Ds
2, D

s
3





BCR17

BCR18

BCR19

BCR20

BCR21





k − largest

k − smallest

k −median

k − average

uniform distribution

Table 9.3: Classification of Belief Conditioning Rules



260 BELIEF CONDITIONING RULES

Other belief conditioning rules could also be defined according to Table 9.4. But in our opinions,
the most detailed and exact transfer is done by BCR17. So, we suggest to use preferentially
BCR17 for a pessimistic/prudent view on conditioning problem and a more refined redistri-
bution of conflicting masses, or BCR12 for a very pessimistic/prudent view and less refined
redistribution. If the Shafer’s models holds for the frame under consideration, BCR12-21 will
coincide with BCR2-11.

Ways of redistribution Belief Conditioning Rule Specific Elements

Dp
2
, Ds

3






BCR22

BCR23

BCR24

BCR25

BCR26






k − largest

k − smallest

k −median

k − average

uniform distribution

Ds
2, D

p
3






BCR27

BCR28

BCR29

BCR30

BCR31






k − largest

k − smallest

k −median

k − average

uniform distribution

Table 9.4: More Belief Conditioning Rules

In summary, the best among these BCR1-31, that we recommend to use, are: BCR17 for a
pessimistic/prudent view on conditioning problem and a more refined redistribution of conflict-
ing masses, or BCR12 for a very pessimistic/prudent view and less refined redistribution.

BCR17 does the most refined redistribution of all BCR1-31, i.e.
- the mass m(W ) of each element W in D2 ∪D3 is transferred to those X ∈ D1 elements which
are included in W if any proportionally with respect to their non-empty masses;
- if no such X exists, the mass m(W ) is transferred in a pessimistic/prudent way to the k-largest
elements from D1 which are included in W (in equal parts) if any;
- if neither this way is possible, then m(W ) is indiscriminately distributed to all X ∈ D1 pro-
portionally with respect to their nonzero masses.

BCR12 does the most pessimistic/prudent redistribution of all BCR1-31, i.e.:
- the mass m(W ) of each W in D2 ∪ D3 is transferred in a pessimistic/prudent way to the
k-largest elements X from D1 which are included in W (in equal parts) if any;
- if this way is not possible, then m(W ) is indiscriminately distributed to all X from D1 pro-
portionally with respect their nonzero masses.

BCR12 is simpler than BCR17. BCR12 can be regarded as a generalization of SCR from
the power set to the hyper-power set in the free DSm free model (all intersections non-empty).
In this case the result of BCR12 is equal to that of m1(.) combined with m2(A) = 1, when the
truth is in A, using the DSm Classic fusion rule.
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9.6 Properties for all BCRs

1. For any X /∈ PD(A) = D1, one has mBCR(X|A) = 0 by definition.

2. One has: ∑

X∈PD(A)

mBCR(X|A) = 1

This can be proven from the fact that
∑

X∈DΘ m(X) = 1. and DΘ \ {∅} = D1 ∪D2 ∪D3,
where D1, D2 and D3 have no element in common two by two. Since all masses of all
elements from D2 and D3 are transferred to the non-empty elements of D1using BCRs,
no mass is lost neither gained, hence the total sum of masses remains equal to 1.

3. Let Θ = {θ1, θ2, . . . , θn} and A = θ1 ∪ θ2 ∪ . . . ∪ θn be the total ignorance. Then,
mBCR1−31(X|A) = m(X) for all X in DΘ, because DΘ \ {∅} coincides with D1. Hence
there is no mass to be transferred from D2 or D3 to D1 since D2 and D3 do not exist (are
empty).

4. This property reduces all BRCs to the Bayesian formula: mBCR(X|A) = m(X∩A)/m(A)
for the trivial Bayesian case when focal elements are only singletons (no unions, neither
intersections) and the truth is in one singleton only.

Proof: Let’s consider Θ = {θ1, θ2, ..., θn}, n ≥ 2, and all θi not empty, and DΘ ≡ Θ.
Let’s have a bba m(.) : DΘ 7→ [0, 1]. Without loss of generality, suppose the truth is in
θ1 where m(θ1) > 0. Then mBCR(θ1|θ1) = 1 and mBCR(X|θ1) = 0 for all X different
from θ1. Then 1 = mBCR(θ1|θ1) = m(θ1 ∩ θ1)/m(θ1) = 1, and for i 6= 1, we have
0 = mBCR(θi|θ1) = m(∅)/m(θ1) = 0.

5. In the Shafer’s model, and a Bayesian bba m(.), all BCR1-31 coincide with SCR. In this
case the conditioning with BCRs and fusioning with Dempster’s rule commute.

Proof: In a general case we can prove it as follows: Let Θ = {θ1, θ2, . . . , θn}, n ≥ 2,
and without loss of generality let’s suppose the truth is in T = θ1 ∪ θ2 ∪ . . . ∪ θp, for
1 ≤ p ≤ n. Let’s consider two Bayesian masses m1(.) and m2(.). Then we can consider
all other elements θp+1, . . . , θn as empty sets and in consequence the sum of their masses
as the mass of the empty set (as in Smets’ open world). BCRs work now exactly as
(or we can say it is reduced to) Dempster’s rule redistributing this empty set mass to the
elements in T proportionally with their nonzero corresponding mass. D1 = {θ1, θ2, . . . , θp},
D2 = {θp+1, . . . , θn}, D3 does not exist. And redistributing in m1(.|T ) this empty sets’
mass to non-empty sets θ1, θ2, . . . , θp using BCRs is equivalent to combining m1(.) with
mS(θ1∪ θ2∪ . . .∪ θp) = 1. Similarly for m2(.|T ). Since Dempter’s fusion rule and Shafer’s
conditioning rule commute and BCRs are reduced to Dempster’s rule in a Shafer’s model
and Bayesian case, then BCRs commute with Dempster’s fusion rule in this case. QED

6. In the free DSm model, BCR12 can be regarded as a generalization of SCR from the power
set to the hyper-power set. The result of BCR12 conditioning of a mass m1(.), when the
truth is in A, is equal to that of fusioning m1(.) with m2(A) = 1, using the DSm Classic
Rule.
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9.7 Open question on conditioning versus fusion

It is not too difficult to verify that fusion rules and conditioning rules do not commute in general,
except in Dempster-Shafer Theory because Shafer’s fusion and conditioning rules are based on
the same operator2 (Dempster’s rule), which make derivations very simple and appealing.

We however think that things may be much more complex in reality than what has been
proposed up to now if we follow our interpretation of belief conditioning and do not see the belief
conditioning as just a simple fusion of the prior bba with a bba focused on the conditioning event
where the truth is (subjectively) supposed to be. From our belief conditioning interpretation,
we make a strong difference between the fusion of several sources of evidences (i.e. combination
of bba’s) and the conditioning of a given belief assignment according some extra knowledge
(carrying some objective/absolute truth on a given subset) on the model itself. In our opinion,
the conditioning must be interpreted as a revision of bba according to new integrity constraint
on the truth of the space of the solutions. Based on this new idea on conditioning, we are face
to a new and very important open question which can be stated as follows3:

Let’s consider two prior bba’s m1(.) and m2(.) provided by two (cognitively) independent
sources of evidences defined on DΘ for a given model M (free, hybrid or Shafer’s model) and
then let’s assume that the truth is known to be later on in a subset A ∈ DΘ, how to compute
the combined conditional belief?

There are basically two possible answers to this question depending on the order the fusion
and the conditioning are carried out. Let’s denote by ⊕ the generic symbol for fusion operator
(PCR5, DSmH or whatever) and by Cond(.) the generic symbol for conditioning operator
(typically BCRs).

1. Answer 1 (Fusion followed by conditioning (FC)):

mFC(.|A) = Cond(m1(.)⊕m2(.)) (9.26)

2. Answer 2 (Conditioning followed by the fusion (CF)):

mCF (.|A) = Cond(m1(.))︸ ︷︷ ︸
m1(.|A)

⊕Cond(m2(.))︸ ︷︷ ︸
m2(.|A)

(9.27)

Since in general4 the conditioning and the fusion do not commute, mFC(.|A) 6= mCF (.|A),
the fundamental open question arises: How to justify the choice for one answer with respect to
the other one (or maybe with respect to some other answers if any) to compute the combined
conditional bba from m1(.), m2(.) and any conditioning subset A?

2Proof of commutation between the Shafer’s conditioning rule and Dempster’s rule: Let m1(.) be a bba
and mS(A) = 1. Then, because Dempster’s rule, denoted ⊕, is associative we have (m1 ⊕mS) ⊕ (m2 ⊕mS) =
m1⊕(mS⊕m2)⊕mS and because it is commutative we get m1⊕(m2⊕mS)⊕mS and again because it is associative
we have: (m1 ⊕m2)⊕ (mS ⊕mS); hence, since mS ⊕mS = mS, it is equal to: (m1 ⊕m2)⊕mS = m1 ⊕m2 ⊕mS,
QED.

3The question can be extended for more than two sources actually.
4Because none of the new fusion and conditioning rules developed up to now satisfies the commutativity, but

Dempster’s rule.
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The only argumentation (maybe) for justifying the choice of mFC(.|A) or mCF (.|A) is only
imposed by the possible temporal/sequential processing of sources and extra knowledge one
receives, i.e. if one gets first m1(.) and m2(.) and later one knows that the truth is in A then
mFC(.|A) seems intuitively suitable, but if one gets first m1(.) and A, and later m2(.), then
mCF (.|A) looks in better agreement with the chronology of information one has received in that
case. If we make abstraction of temporal processing, then this fundamental and very difficult
question remains unfortunately totally open.

9.7.1 Examples of non commutation of BCR with fusion

9.7.1.1 Example no. 1 (Shafer’s model and Bayesian bba’s)

Let’s consider Θ = {A,B,C} with Shafer’s model and the following prior Bayesian bba’s

m1(A) = 0.2 m1(B) = 0.6 m1(C) = 0.2

m2(A) = 0.1 m2(B) = 0.4 m2(C) = 0.5

Let’s suppose one finds out the truth is in A∪B and let’s examine the results mCF (.|A∪B)
and mFC(.|A ∪ B) obtained from either the conditioning followed by the fusion, or the fusion
followed by the conditioning.

• Case 1 : BCRs-based Conditioning followed by the PCR5-based Fusion

Using BCRs for conditioning, the mass m1(C) = 0.2 is redistributed to A and B propor-
tionally to the masses 0.2 and 0.6 respectively; thus x/0.2 = y/0.6 = 0.2/(0.2+0.6) = 1/4
and therefore x = 0.2 · (1/4) = 0.05 is added to m1(A), while y = 0.6 · (1/4) = 0.15 is
added to m1(B). Hence, one finally gets

m1(A|A ∪B) = 0.25 m1(B|A ∪B) = 0.75 m1(C|A ∪B) = 0

Similarly, the conditioning of m2(.) using the BCRs, will provide

m2(A|A ∪B) = 0.2 m2(B|A ∪B) = 0.8 m2(C|A ∪B) = 0

If one combines m1(.|A ∪B) and m2(.|A ∪B) with PCR5 fusion rule, one gets5

mCBCRsFPCR5
(A|A ∪B) = 0.129198 mCBCRsFPCR5

(B|A ∪B) = 0.870802

• Case 2 : PCR5-based Fusion followed by the BCRs-based Conditioning

If one combines first m1(.) and m2(.) with PCR5 fusion rule, one gets

mPCR5(A) = 0.090476 mPCR5(B) = 0.561731 mPCR5(C) = 0.347793

and if one applies any of BCR rules for conditioning the combined prior mPCR5(.), one
finally gets

mFPCR5CBCRs
(A|A ∪B) = 0.138723 mFPCR5CBCRs

(B|A ∪B) = 0.861277

5We specify explicitly in notations mCF (.) and mF C(.) the type of the conditioning and fusion rules used
for convenience, i.e mCBCRsFPCR5

(.) means that the conditioning is based on BCRs and the fusion is based on
PCR5.
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From cases 1 and 2, one has proved that there exists at least one example for which PCR5
fusion and BCRs conditioning do not commute since

mFPCR5CBCRs
(.|A ∪B) 6= mCBCRsFPCR5

(.|A ∪B).

• Case 3 : BCRs-based Conditioning followed by Dempster’s rule-based Fusion

If we consider the same masses m1(.) and m2(.) and if we apply the BCRs to each of them,
one gets

m1(A|A ∪B) = 0.25 m1(B|A ∪B) = 0.75 m1(C|A ∪B) = 0

m2(A|A ∪B) = 0.20 m2(B|A ∪B) = 0.80 m2(C|A ∪B) = 0

then if one combines them with Dempster’s rule, one finally gets

mCBCRsFDS
(A|A ∪B) = 0.076923 mCBCRsFDS

(B|A ∪B) = 0.923077

• Case 4 : Dempster’s rule based Fusion followed by BCRs-based Conditioning

If we apply first the fusion of m1(.) with m2(.) with Dempster’s rule of combination, one
gets

mDS(A) = 0.055555 mDS(B) = 0.666667 mDS(C) = 0.277778

and if one applies BCRs for conditioning the prior mDS(.), one finally gets

mFDSCBCRs
(A|A ∪B) = 0.076923 mFDSCBCRs

(B|A ∪B) = 0.923077

From cases 3 and 4, we see that all BCRs (i.e. BCR1-BCR31) commute with Dempster’s
fusion rule in a Shafer’s model and Bayesian case since:

mFDSCBCRs
(.|A ∪B) = mCBCRsFDS

(.|A ∪B).

But this is a trivial result because in this specific case (Shafer’s model with Bayesian
bba’s), we know (cf Property 5 in Section 9.6) that BCRs coincide with SCR and already
know that SCR commutes with Dempter’s fusion rule.

9.7.1.2 Example no. 2 (Shafer’s model and non Bayesian bba’s)

Let’s consider Θ = {A,B,C} with Shafer’s model and the following prior non Bayesian bba’s

m1(A) = 0.3 m1(B) = 0.1 m1(C) = 0.2 m1(A ∪B) = 0.1 m1(B ∪ C) = 0.3

m2(A) = 0.1 m2(B) = 0.2 m2(C) = 0.3 m2(A ∪B) = 0.2 m2(B ∪ C) = 0.2

Let’s suppose one finds out the truth is in B∪C and let’s examine the results mCF (.|B∪C)
and mFC(.|B ∪ C) obtained from either the conditioning followed by the fusion, or the fusion
followed by the conditioning. In this second example we only provide results for BCR12 and
BCR17 since we consider them as the most appealing BCR rules. We decompose DΘ into
D1 = {B,C,B ∪C}, D2 = {A} and D3 = {A ∪B}.
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• Case 1 : BCR12/BCR17-based Conditioning followed by the PCR5-based Fusion

Using BCR12 or BCR17 for conditioning m1(.) and m2(.), one gets herein the same result
with both BCRs for each conditional bba, i.e.

m1(B|B ∪C) = 0.25 m1(C|B ∪ C) = 0.30 m1(B ∪C|B ∪ C) = 0.45

m2(B|B ∪ C) = 15/35 m2(C|B ∪ C) = 12/35 m2(B ∪ C|B ∪ C) = 8/35

If one combines m1(.|B ∪ C) and m2(.|B ∪ C) with PCR5 fusion rule, one gets

mCBCR17FPCR5
(.|B ∪ C) = mCBCR12FPCR5

(.|B ∪ C)

with

mCBCR12FPCR5
(B|B ∪ C) = 0.446229

mCBCR12FPCR5
(C|B ∪ C) = 0.450914

mCBCR12FPCR5
(B ∪ C|B ∪C) = 0.102857

• Case 2 : PCR5-based Fusion followed by BCR12/BCR17-based Conditioning

If one combines first m1(.) and m2(.) with PCR5 fusion rule, one gets

mPCR5(A) = 0.236167 mPCR5(B) = 0.276500 mPCR5(C) = 0.333333

mPCR5(A ∪B) = 0.047500 mPCR5(B ∪ C) = 0.141612

and if one applies any of BCR12 or BCR17 rules for conditioning the (combined) prior
mPCR5(.), one finally gets the same final result with BCR12 and BCR17, i.e.

mFPCR5CBCR17
(.|B ∪ C) = mFPCR5CBCR12

(.|B ∪ C)

with

mFPCR5CBCR12
(B|B ∪ C) = 0.415159

mFPCR5CBCR12
(C|B ∪ C) = 0.443229

mFPCR5CBCR12
(B ∪ C|B ∪C) = 0.141612

From cases 1 and 2, one has proved that there exists at least one example for which PCR5
fusion and BCR12/17 conditioning rules do not commute since

mFPCR5CBCR12/17
(.|B ∪ C) 6= mCBCR12/17FPCR5

(.|B ∪ C).

• Case 3 : BCR12/BCR17-based Conditioning followed by Dempster’s rule-based Fusion

If we consider the same masses m1(.) and m2(.) and if we apply the BCR12 or BCR17 to
each of them, one gets same result, i.e.

m1(B|B ∪C) = 0.25 m1(C|B ∪ C) = 0.30 m1(B ∪C|B ∪ C) = 0.45

m2(B|B ∪ C) = 15/35 m2(C|B ∪ C) = 12/35 m2(B ∪ C|B ∪ C) = 8/35
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then if one combines them with Dempster’s rule, one finally gets

mCBCR12FDS
(B|B ∪ C) =

125

275

mCBCR12FDS
(C|B ∪ C) =

114

275

mCBCR12FDS
(C|B ∪ C) =

36

275

and same result for mCBCR17FDS
(.).

• Case 4 : Dempster’s rule based Fusion followed by BCR12/BCR17-based Conditioning

If we apply first the fusion of m1(.) with m2(.) with Dempster’s rule of combination, one
gets

mDS(A) = 10/59 mDS(B) = 22/59 mDS(C) = 19/59

mDS(A ∪B) = 2/59 mDS(B ∪ C) = 6/59

and if one applies BCR12 (or BCR17) for conditioning the prior mDS(.), one finally gets
(same result is obtained with BCR17)

mFDSCBCR12
(B|B ∪ C) =

1348

2773

mFDSCBCR12
(C|B ∪ C) =

1083

2773

mFDSCBCR12
(B ∪ C|B ∪ C) =

342

2773

In BCR12, mDS(A) = 10/59 is distributed to B, C, B∪C proportionally to their masses,
i.e.

xB
22/59

=
yC

19/59
=
zB∪C
6/59

=
10/59

47/59
=

10

47

whence xB = (22/59) · (10/47) = 220/2773, yC = (19/59) · (10/47) = 190/2773 and
zB∪C = (6/59) · (10/47) = 60/2773, and mDS(A ∪ B) = 2/59 is distributed to B only,
since B is the 1-largest.

In BCR17, mDS(A) = 10/59 is similarly distributed to B, C, B ∪ C and mDS(A ∪B) is
also distributed to B only, since B ⊂ A and mDS(B) > 0 and B is the only element with
such properties. Herein BCR12 and BCR17 give the same result.

Therefore from cases 3 and 4, we see that BCR12 (and BCR17) don’t commute with Dem-
spter’s rule for Shafer’s model and a non-Bayesian bba since

mCBCR12FDS
(.|B ∪ C) 6= mFDSCBCR12

(.|B ∪ C).
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• Case 5 : SCR-based Conditioning followed by Dempster’s rule based Fusion

If we consider the masses m1(.) and m2(.) and if we apply the SCR to each of them for
conditioning, one gets

m1(B|B ∪C) = 2/7 m1(C|B ∪C) = 2/7 m1(B ∪ C|B ∪ C) = 3/7

m2(B|B ∪C) = 4/9 m2(C|B ∪C) = 3/9 m2(B ∪ C|B ∪ C) = 2/9

then if one combines them with Dempster’s rule, one finally gets

mCSCRFDS
(B|B ∪ C) =

24

49
mCSCRFDS

(C|B ∪ C) =
19

49
mCSCRFDS

(C|B ∪C) =
6

49

• Case 6 : Dempster’s rule based Fusion followed by the SCR-based Conditioning

If we apply first the fusion of m1(.) with m2(.) with Dempster’s rule of combination, one
gets

mDS(A) = 10/59 mDS(B) = 22/59 mDS(C) = 19/59

mDS(A ∪B) = 2/59 mDS(B ∪ C) = 6/59

and if one applies SCR for conditioning the prior mDS(.), one finally gets

mFDSCSCR
(B|B∪C) =

24

49
mFDSCBCRs

(C|B∪C) =
19

49
mFDSCBCRs

(B∪C|B∪C) =
6

49

From cases 5 and 6, we verify that SCR commutes with Demspter’s rule for Shafer’s model and
non-Bayesian bba6 because

mCSCRFDS
(.|B ∪ C) = mFDSCSCR

(.|B ∪C).

9.8 Conclusion

We have proposed in this chapter several new Belief Conditioning Rules (BCRs) in order to
adjust a given prior bba m(.) with respect to the new conditioning information that have come
in. The BCRs depend on the model of DΘ. Several examples were presented that compared
these BCRs among themselves and as well with Shafer’s Conditioning Rule (SCD). Except for
SCD, in general the BCRs do not commute with the fusion rules, and the sequence in which
they should be combined depends on the chronology of information received.

9.9 References

[1] Daniel M., Classical Combination Rules Generalized to DSm Hyper-power Sets and their
Comparison with the Hybrid DSm Rule, see Chapter 3 in this volume.

[2] Shafer G., A Mathematical Theory of Evidence, Princeton Univ. Press, Princeton, NJ,
1976.

6This property has been proved by Shafer in [2].



268 BELIEF CONDITIONING RULES

[3] Smarandache F., Dezert J. (Editors), Applications and Advances of DSmT for In-
formation Fusion, Collected Works, American Research Press, Rehoboth, June 2004,
http://www.gallup.unm.edu/~smarandache/DSmT-book1.pdf.

[4] Smarandache F., Dezert J., A Simple Proportional Conflict Redistribution Rule,
arXiv Archives, Los Alamos National Laboratory, July-August 2004; the Abstract
and the whole paper are available at http://arxiv.org/abs/cs.AI/0408010 and at
http://arxiv.org/PS_cache/cs/pdf/0408/0408010.pdf.

[5] Smarandache F., Dezert J., A Simple Proportional Conflict Redistribution Rule, in Inter-
national Journal of Applied Mathematics and Statistics, Vol. 3, No. J05, pp. 1–36, 2005.

[6] Smarandache F., Dezert J., Information Fusion Based on New Proportional Conflict Re-
distribution Rules, Proc. of Fusion 2005, Philadelphia, July 26-29, 2005.

[7] Smarandache F., Dezert J., Proportional Conflict Redistribution Rules for Information
Fusion, see Chapter 1 in this volume.



Chapter 10

Fusion of qualitative beliefs
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Abstract: This chapter introduces the notion of qualitative belief assignment to
model beliefs of human experts expressed in natural language (with linguistic labels).
We show how qualitative beliefs can be efficiently combined using an extension of
Dezert-Smarandache Theory (DSmT) of plausible and paradoxical quantitative rea-
soning to qualitative reasoning. We propose a new arithmetic on linguistic labels
which allows a direct extension of classical or hybrid DSm fusion rules. An ap-
proximate qualitative PCR5 rule is also proposed jointly with a Qualitative Average
Operator. We also show how crisp or interval mappings can be used to deal indirectly
with linguistic labels. A very simple example is provided to illustrate our qualitative
fusion rules.

10.1 A brief historic of previous works

Since fifteen years qualitative methods for reasoning under uncertainty developed in Artificial
Intelligence are attracting more and more people of Information Fusion community, specially
those working in the development of modern multi-source1 systems for defense. Their aim is
to propose solutions for processing and combining qualitative information to take into account
efficiently information provided by human sources (or semi-intelligent expert systems) and usu-
ally expressed in natural language rather than direct quantitative information. George Polya
was one of the first mathematicians to attempt a formal characterization of qualitative human
reasoning in 1954 [26, 27], then followed by Lofti Zadeh’s works [40]- [45].

The interest of qualitative reasoning methods is to help in decision-making for situations
in which the precise numerical methods are not appropriate (whenever the information/input
are not directly expressed in numbers). Several formalisms for qualitative reasoning have been
proposed as extensions on the frames of probability, possibility and/or evidence theories [2, 5,

1Where both computers, sensors and human experts are involved in the loop.
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9, 12, 37, 39, 42, 45]. The limitations of numerical techniques are discussed in [22]. We browse
here few main approaches. A detailed presentation of theses techniques can be found in [24].

In [34], Wellman proposes a general characterization of qualitative probability to relax pre-
cision in representation and reasoning within the probabilistic framework. His basic idea was
to develop Qualitative Probabilistic Networks (QPN) based on a Qualitative Probability Lan-
guage (QPL) defined by a set of numerical underlying probability distributions. The major
interest of QPL is to specify the partial rankings among degrees of belief rather than assessing
their magnitudes on a cardinal scale. Such method cannot be considered as truly qualitative in
our opinion, since it rather belongs to the family of imprecise probability [33] and probability
bounds analysis (PBA) methods [11].

Some advances have been done by Darwiche in [5] for a symbolic generalization of Probabil-
ity Theory; more precisely, Darwiche proposes a support (symbolic and/or numeric) structure
which contains all information able to represent and conditionalize the state of belief. Dar-
wiche shows that Probability Theory fits within his new support structure framework as several
other theories, but Demspter-Shafer Theory doesn’t fit in. Based on Demspter-Shafer The-
ory [29] (DST), Wong and Lingras [38] propose a method for generating a (numerical) basic
belief functions from preference relations between each pair of propositions be specified quali-
tatively. The algorithm proposed doesn’t provide however a unique solution and doesn’t check
the consistency of qualitative preference relations. Bryson and al. [4, 16] propose a procedure
called Qualitative Discriminant Procedure (QDP) that involves qualitative scoring, imprecise
pairwise comparisons between pairs of propositions and an optimization algorithm to generate
consistent imprecise quantitative belief function to combine. Very recently, Ben Yaglane in [1]
has reformulated the problem of generation of quantitative (consistent) belief functions from
qualitative preference relations as a more general optimization problem under additional non
linear constraints in order to minimize different uncertainty measures (Bezdek’s entropy, Dubois
& Prade non-specificity, etc).

In [18, 19], Parsons proposes a qualitative Dempster-Shafer Theory, called Qualitative Evi-
dence Theory (QET), by using techniques from qualitative reasoning [2]. Parsons’ idea is to use
qualitative belief assignments (qba), denoted here qm(.) assumed to be only 0 or +, where +
means some unknown value between 0 and 1. Parsons proposes, using operation tables, a very
simple arithmetic for qualitative addition + and multiplication × operators. The combination
of two (or more) qba’s then actually follows the classical conjunctive consensus operator based
on his qualitative multiplication table. Because of impossibility of qualitative normalization,
Parsons uses the un-normalized version of Dempster’s rule by committing a qualitative mass
to the empty set following the open-world approach of Smets [32]. This approach cannot deal
however with truly closed-world problems because there is no issue to transfer the conflicting
qualitative mass or to normalize the qualitative belief assignments in the spirit of DST. An
improved version of QET has been proposed [18] for using refined linguistic quantifiers as sug-
gested by Dubois & Prade in [10]. The fusion of refined qualitative belief masses follows the
un-normalized Dempster’s rule based on an underlying numerical interval arithmetic associated
with linguistic quantifiers. Actually, this refined QTE fits directly within DSmT framework
since it corresponds to imprecise (quantitative) DSmC fusion rule [6, 30].

From 1995, Parsons seems to have switched back to qualitative probabilistic reasoning [23]
and started to develop Qualitative Probabilistic Reasoner (QPR). Recently, Parsons discussed
about the flaw discovered in QPR and gave some issues with new open questions [25].

In Zadeh’s paradigm of computing with words (CW) [42]- [45] the combination of qualita-
tive/vague information expressed in natural language is done essentially in three steps: 1) a
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translation of qualitative information into fuzzy membership functions, 2) a fuzzy combination
of fuzzy membership functions; 3) a retranslation of fuzzy (quantitative) result into natural
language. All these steps cannot be uniquely accomplished since they depend on the fuzzy
operators chosen. A possible issue for the third step is proposed in [39].

In this chapter, we propose a simple arithmetic of linguistic labels which allows a direct
extension of classical (quantitative) combination rules proposed in the DSmT framework into
their qualitative counterpart. Qualitative beliefs assignments are well adapted for manipulated
information expressed in natural language and usually reported by human expert or AI-based
expert systems. In other words, we propose here a new method for computing directly with
words (CW) and combining directly qualitative information Computing with words, more pre-
cisely computing with linguistic labels, is usually more vague, less precise than computing with
numbers, but it is expected to offer a better robustness and flexibility for combining uncertain
and conflicting human reports than computing with numbers because in most of cases human
experts are less efficient to provide (and to justify) precise quantitative beliefs than qualitative
beliefs. Before extending the quantitative DSmT-based combination rules to their qualitative
counterparts, it will be necessary to define few but new important operators on linguistic labels
and what is a qualitative belief assignment. Then we will show though simple examples how
the combination of qualitative beliefs can be obtained in the DSmT framework.

10.2 Qualitative Operators

We propose in this section a general arithmetic for computing with words (or linguistic labels).
Computing with words (CW) and qualitative information is more vague, less precise than com-
puting with numbers, but it offers the advantage of robustness if done correctly since :

” It would be a great mistake to suppose that vague knowledge must be false. On the contrary,
a vague belief has a much better chance of being true than a precise one, because there are more
possible facts that would verify it.” – Bertrand Russell [28].

So let’s consider a finite frame Θ = {θ1, . . . , θn} of n (exhaustive) elements θi, i = 1, 2, . . . , n,
with an associated modelM(Θ) on Θ (either Shafer’s modelM0(Θ), free-DSm modelMf (Θ),
or more general any Hybrid-DSm model [30]). A modelM(Θ) is defined by the set of integrity
constraints on elements of Θ (if any); Shafer’s model M0(Θ) assumes all elements of Θ truly
exclusive, while free-DSm model Mf (Θ) assumes no exclusivity constraints between elements
of the frame Θ.

Let’s define a finite set of linguistic labels L̃ = {L1, L2, . . . , Lm} where m ≥ 2 is an integer.
L̃ is endowed with a total order relationship ≺, so that L1 ≺ L2 ≺ . . . ≺ Lm. To work on a
close linguistic set under linguistic addition and multiplication operators, we extends L̃ with
two extreme values L0 and Lm+1 where L0 corresponds to the minimal qualitative value and
Lm+1 corresponds to the maximal qualitative value, in such a way that

L0 ≺ L1 ≺ L2 ≺ . . . ≺ Lm ≺ Lm+1

where ≺ means inferior to, or less (in quality) than, or smaller (in quality) than, etc. hence a
relation of order from a qualitative point of view. But if we make a correspondence between
qualitative labels and quantitative values on the scale [0, 1], then Lmin = L0 would correspond
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to the numerical value 0, while Lmax = Lm+1 would correspond to the numerical value 1, and
each Li would belong to [0, 1], i. e.

Lmin = L0 < L1 < L2 < . . . < Lm < Lm+1 = Lmax

From now on, we work on extended ordered set L of qualitative values

L = {L0, L̃, Lm+1} = {L0, L1, L2, . . . , Lm, Lm+1}

The qualitative addition and multiplication operators are respectively defined in the following
way:

• Addition :

Li + Lj =

{
Li+j, if i+ j < m+ 1,

Lm+1, if i+ j ≥ m+ 1.
(10.1)

• Multiplication :

Li × Lj = Lmin{i,j} (10.2)

These two operators are well-defined, commutative, associative, and unitary. Addition of labels
is a unitary operation since L0 = Lmin is the unitary element, i.e. Li+L0 = L0+Li = Li+0 = Li
for all 0 ≤ i ≤ m+ 1. Multiplication of labels is also a unitary operation since Lm+1 = Lmax is
the unitary element, i.e. Li×Lm+1 = Lm+1×Li = Lmin{i,m+1} = Li for 0 ≤ i ≤ m+1. L0 is the
unit element for addition, while Lm+1 is the unit element for multiplication. L is closed under
+ and ×. The mathematical structure formed by (L,+,×) is a commutative bisemigroup with
different unitary elements for each operation. We recall that a bisemigroup is a set S endowed
with two associative binary operations such that S is closed under both operations.

If L is not an exhaustive set of qualitative labels, then other labels may exist in between
the initial ones, so we can work with labels and numbers - since a refinement of L is possible.
When mapping from L to crisp numbers or intervals, L0 = 0 and Lm+1 = 1, while 0 < Li < 1,
for all i, as crisp numbers, or Li included in [0, 1] as intervals/subsets.

For example, L1, L2, L3 and L4 may represent the following qualitative values: L1 ,
very poor, L2 , poor, L3 , good and L4 , very good where , symbol means ”by definition”.

We think it is better to define the multiplication × of Li×Lj by Lmin{i,j} because multiplying
two numbers a and b in [0, 1] one gets a result which is less than each of them, the product
is not bigger than both of them as Bolanos et al. did in [3] by approximating Li × Lj =
Li+j > max{Li, Lj}. While for the addition it is the opposite: adding two numbers in the
interval [0, 1] the sum should be bigger than both of them, not smaller as in [3] case where
Li + Lj = min{Li, Lj} < max{Li, Lj}.

10.2.1 Qualitative Belief Assignment

We define a qualitative belief assignment (qba), and we call it qualitative belief mass or q-mass
for short, a mapping function

qm(.) : GΘ 7→ L
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where GΘ corresponds the space of propositions generated with ∩ and ∪ operators and elements
of Θ taking into account the integrity constraints of the model. For example if Shafer’s model
is chosen for Θ, then GΘ is nothing but the classical power set 2Θ [29], whereas if free DSm
model is adopted GΘ will correspond to Dedekind’s lattice (hyper-power set) DΘ [30]. Note
that in this qualitative framework, there is no way to define normalized qm(.), but qualitative
quasi-normalization is still possible as seen further. Using the qualitative operations defined
previously we can easily extend the combination rules from quantitative to qualitative. In the
sequel we will consider s ≥ 2 qualitative belief assignments qm1(.), . . . , qms(.) defined over the
same space GΘ and provided by s independent sources S1, . . . , Ss of evidence.

Important note: The addition and multiplication operators used in all qualitative fusion for-
mulas in next sections correspond to qualitative addition and qualitative multiplication operators
defined in (10.1) and (10.2) and must not be confused with classical addition and multiplication
operators for numbers.

10.2.2 Qualitative Conjunctive Rule (qCR)

The qualitative Conjunctive Rule (qCR) of s ≥ 2 sources is defined similarly to the quantitative
conjunctive consensus rule, i.e.

qmqCR(X) =
∑

X1,...,Xs∈GΘ

X1∩...∩Xs=X

s∏

i=1

qmi(Xi) (10.3)

The total qualitative conflicting mass is given by

K1...s =
∑

X1,...,Xs∈GΘ

X1∩...∩Xs=∅

s∏

i=1

qmi(Xi)

10.2.3 Qualitative DSm Classic rule (q-DSmC)

The qualitative DSm Classic rule (q-DSmC) for s ≥ 2 is defined similarly to DSm Classic fusion
rule (DSmC) as follows : qmqDSmC(∅) = L0 and for all X ∈ DΘ \ {∅},

qmqDSmC(X) =
∑

X1,,...,Xs∈DΘ

X1∩...∩Xs=X

s∏

i=1

qmi(Xi) (10.4)

10.2.4 Qualitative DSm Hybrid rule (q-DSmH)

The qualitative DSm Hybrid rule (q-DSmH) is defined similarly to quantitative DSm hybrid
rule [30] as follows: qmqDSmH(∅) = L0 and for all X ∈ GΘ \ {∅}

qmqDSmH(X) , φ(X) ·
[
qS1(X) + qS2(X) + qS3(X)

]
(10.5)

where φ(X) is the characteristic non-emptiness function of a set X, i.e. φ(X) = Lm+1 if X /∈ ∅

and φ(X) = L0 otherwise, where ∅ , {∅M, ∅}. ∅M is the set of all elements of DΘ which have
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been forced to be empty through the constraints of the modelM and ∅ is the classical/universal
empty set. qS1(X) ≡ qmqDSmC(X), qS2(X), qS3(X) are defined by

qS1(X) ,
∑

X1,X2,...,Xs∈DΘ

X1∩X2∩...∩Xs=X

s∏

i=1

qmi(Xi) (10.6)

qS2(X) ,
∑

X1,X2,...,Xs∈∅

[U=X]∨[(U∈∅)∧(X=It)]

s∏

i=1

qmi(Xi) (10.7)

qS3(X) ,
∑

X1,X2,...,Xk∈DΘ

X1∪X2∪...∪Xs=X
X1∩X2∩...∩Xs∈∅

s∏

i=1

qmi(Xi) (10.8)

where all sets are in canonical form and where U , u(X1) ∪ . . . ∪ u(Xs) where u(X) is the
union of all θi that compose X, It , θ1 ∪ . . . ∪ θn is the total ignorance. qS1(X) is nothing
but the qDSmC rule for s independent sources based on Mf (Θ); qS2(X) is the qualitative
mass of all relatively and absolutely empty sets which is transferred to the total or relative
ignorances associated with non existential constraints (if any, like in some dynamic problems);
qS3(X) transfers the sum of relatively empty sets directly onto the (canonical) disjunctive form
of non-empty sets. qDSmH generalizes qDSmC works for any models (free DSm model, Shafer’s
model or any hybrid models) when manipulating qualitative belief assignments.

10.3 Qualitative Average Operator

The Qualitative Average Operator (QAO) is an extension of Murphy’s numerical average oper-
ator [15]. But here we define two types of QAO’s:

a) A pessimistic (cautious) one :

QAOp(Li, Lj) = L⌊ i+j
2

⌋ (10.9)

where ⌊x⌋ means the lower integer part of x, i.e. the greatest integer less than or equal
to x;

a) An optimistic one :

QAOo(Li, Lj) = L⌈ i+j
2

⌉ (10.10)

where ⌈x⌉ means the upper integer part of x, i.e. the smallest integer greater than or
equal to x.

QAO can be generalized for s ≥ 2 qualitative sources.
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10.4 Qualitative PCR5 rule (q-PCR5)

In classical (i.e. quantitative) DSmT framework, the Proportional Conflict Redistribution rule
no. 5 (PCR5) defined in Chapter 1 has been proven to provide very good and coherent results
for combining (quantitative) belief masses, see [7, 31] and Chapters 2 and 13 in this volume
for discussions and justifications. When dealing with qualitative beliefs and using Dempster-
Shafer Theory (DST), we unfortunately cannot normalize, since it is not possible to divide
linguistic labels by linguistic labels. Previous authors have used the un-normalized Dempster’s
rule, which actually is equivalent to the Conjunctive Rule in Shafer’s model and respectively
to DSm conjunctive rule in hybrid and free DSm models. Following the idea of (quantitative)
PCR5 fusion rule (1.32), we can however use a rough approximation for a qualitative version
of PCR5 (denoted qPCR5) as it will be presented in next example, but we did not succeed so
far to get a general formula for qualitative PCR5 fusion rule (q-PCR5) because the division of
labels could not be defined.

10.5 A simple example

Let’s consider the following set of ordered linguistic labels L = {L0, L1, L2, L3, L4, L5} (for
example, L1, L2, L3 and L4 may represent the values: L1 , very poor, L2 , poor, L3 , good
and L4 , very good, where , symbol means by definition), then addition and multiplication
tables are:

+ L0 L1 L2 L3 L4 L5

L0 L0 L1 L2 L3 L4 L5

L1 L1 L2 L3 L4 L5 L5

L2 L2 L3 L4 L5 L5 L5

L3 L3 L4 L5 L5 L5 L5

L4 L4 L5 L5 L5 L5 L5

L5 L5 L5 L5 L5 L5 L5

Table 10.1: Addition table

× L0 L1 L2 L3 L4 L5

L0 L0 L0 L0 L0 L0 L0

L1 L0 L1 L1 L1 L1 L1

L2 L0 L1 L2 L2 L2 L2

L3 L0 L1 L2 L3 L3 L3

L4 L0 L1 L2 L3 L4 L4

L5 L0 L1 L2 L3 L4 L5

Table 10.2: Multiplication table



276 FUSION OF QUALITATIVE BELIEFS

The tables for QAOp and QAOo operators are:

QAOp L0 L1 L2 L3 L4 L5

L0 L0 L0 L1 L1 L2 L2

L1 L0 L1 L1 L2 L2 L3

L2 L1 L1 L2 L2 L3 L3

L3 L1 L2 L2 L3 L3 L4

L4 L2 L2 L3 L3 L4 L4

L5 L2 L3 L3 L4 L4 L5

Table 10.3: Table for QAOp

QAOo L0 L1 L2 L3 L4 L5

L0 L0 L1 L1 L2 L2 L3

L1 L1 L1 L2 L2 L3 L3

L2 L1 L2 L2 L3 L3 L4

L3 L2 L2 L3 L3 L4 L4

L4 L2 L3 L3 L4 L4 L5

L5 L3 L3 L4 L4 L5 L5

Table 10.4: Table for QAOo

Let’s consider now a simple two-source case with a 2D frame Θ = {θ1, θ2}, Shafer’s model
for Θ, and qba’s expressed as follows:

qm1(θ1) = L1, qm1(θ2) = L3, qm1(θ1 ∪ θ2) = L1

qm2(θ1) = L2, qm2(θ2) = L1, qm2(θ1 ∪ θ2) = L2

10.5.1 Qualitative Fusion of qba’s

• Fusion with (qCR): According to qCR combination rule (10.3), one gets the result in
Table 10.5, since

qmqCR(θ1) = qm1(θ1)qm2(θ1) + qm1(θ1)qm2(θ1 ∪ θ2)

+ qm2(θ1)qm1(θ1 ∪ θ2)

= (L1 × L2) + (L1 × L2) + (L2 × L1)

= L1 + L1 + L1 = L1+1+1 = L3

qmqCR(θ2) = qm1(θ2)qm2(θ2) + qm1(θ2)qm2(θ1 ∪ θ2)

+ qm2(θ2)qm1(θ1 ∪ θ2)

= (L3 × L1) + (L3 × L2) + (L1 × L1)

= L1 + L2 + L1 = L1+2+1 = L4
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qmqCR(θ1 ∪ θ2) = qm1(θ1 ∪ θ2)qm2(θ1 ∪ θ2) = L1 × L2 = L1

qmqCR(∅) , K12 = qm1(θ1)qm2(θ2) + qm1(θ2)qm2(θ1)

= (L1 × L1) + (L2 × L3) = L1 + L2 = L3

In summary, one gets

θ1 θ2 θ1 ∪ θ2 ∅ θ1 ∩ θ2
qm1(.) L1 L3 L1

qm2(.) L2 L1 L2

qmqCR(.) L3 L4 L1 L3 L0

Table 10.5: Fusion with qCR

• Fusion with (qDSmC): If we accepts the free-DSm model instead Shafer’s model, ac-
cording to qDSmC combination rule (10.4), one gets the result in Table 10.6,

θ1 θ2 θ1 ∪ θ2 ∅ θ1 ∩ θ2
qm1(.) L1 L3 L1

qm2(.) L2 L1 L2

qmqDSmC(.) L3 L4 L1 L0 L3

Table 10.6: Fusion with qDSmC

• Fusion with (qDSmH): Working with Shafer’s model for Θ, according to qDSmH com-
bination rule (10.5), one gets the result in Table 10.7.

θ1 θ2 θ1 ∪ θ2 ∅ θ1 ∩ θ2
qm1(.) L1 L3 L1

qm2(.) L2 L1 L2

qmqDSmH(.) L3 L4 L4 L0 L0

Table 10.7: Fusion with qDSmC

since qmqDSmH(θ1 ∪ θ2) = L1 + L3 = L4.

• Fusion with QAO: Working with Shafer’s model for Θ, according to QAO combination
rules (10.9) and (10.10), one gets the result in Table 10.8.

• Fusion with (qPCR5): Following PCR5 method, we propose to transfer the qualitative
partial masses

a) qm1(θ1)qm2(θ2) = L1 × L1 = L1 to θ1 and θ2 in equal parts (i.e. proportionally to
L1 and L1 respectively, but L1 = L1); hence 1

2L1 should go to each of them.
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θ1 θ2 θ1 ∪ θ2
qm1(.) L1 L3 L1

qm2(.) L2 L1 L2

qmQAOp(.) L1 L2 L1

qmQAOo(.) L2 L2 L2

Table 10.8: Fusion of qba’s with QAO’s

b) qm2(θ1)qm1(θ2) = L2×L3 = L2 to θ1 and θ2 proportionally to L2 and L3 respectively;
but since we are not able to do an exact proportionalization of labels, we approximate
through transferring 1

3L2 to θ1 and 2
3L2 to θ2.

The transfer (1/3)L2 to θ1 and (2/3)L2 to θ2 is not arbitrary, but it is an approximation
since the transfer was done proportionally to L2 and L3, and L2 is smaller than L3; we
mention that it is not possible to do an exact transferring. Nobody in the literature has
done so far normalization of labels, and we tried to do a quasi-normalization [i.e. an
approximation].

Summing a) and b) we get: 1
2L1 + 1

3L2 ≈ L1, which represents the partial conflicting
qualitative mass transferred to θ1, and 1

2L1 + 2
3L2 ≈ L2, which represents the partial

conflicting qualitative mass transferred to θ2. Here we have mixed qualitative and quan-
titative information.

Hence we will finally get:

θ1 θ2 θ1 ∪ θ2 ∅ θ1 ∩ θ2
qm1(.) L1 L3 L1

qm2(.) L2 L1 L2

qmqPCR5(.) L4 L5 L1 L0 L0

Table 10.9: Fusion with qPCR5

For the reason that we can not do a normalization (neither previous authors on qualita-
tive fusion rules did), we propose for the first time the possibility of quasi-normalization
(which is an approximation of the normalization), i.e. instead of dividing each qualitative
mass by a coefficient of normalization, we subtract from each qualitative mass a qualitative
coefficient (label) of quasi-normalization in order to adjust the sum of masses.

Subtraction on L is defined in a similar way to the addition:

Li − Lj =

{
Li−j, if i ≥ j;
L0, if i < j;

(10.11)

L is closed under subtraction as well.

The subtraction can be used for quasi-normalization only, i. e. moving the final label
result 1-2 steps/labels up or down. It is not used together with addition or multiplication.
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The increment in the sum of fusioned qualitative masses is due to the fact that multipli-
cation on L is approximated by a larger number, because multiplying any two numbers
a, b in the interval [0, 1], the product is less than each of them, or we have approximated
the product a× b = min{a, b}.
Using the quasi-normalization (subtracting L1), one gets with qDSmH and qPCR5, the
following quasi-normalized masses (we use ⋆ symbol to specify the quasi-normalization):

θ1 θ2 θ1 ∪ θ2 ∅ θ1 ∩ θ2
qm1(.) L1 L3 L1

qm2(.) L2 L1 L2

qm⋆
qDSmH(.) L2 L3 L3 L0 L0

qm⋆
qPCR5(.) L3 L4 L0 L0 L0

Table 10.10: Fusion with quasi-normalization

10.5.2 Fusion with a crisp mapping

If we consider the labels as equidistant, then we can divide the whole interval [0,1] into five
equal parts, hence mapping the linguistic labels Li onto crisp numbers as follows:

L0 7→ 0, L1 7→ 0.2, L2 7→ 0.4, L3 7→ 0.6, L4 7→ 0.8, L5 7→ 1

Then the qba’s qm1(.) and qm2(.) reduce to classical (precise) quantitative belief masses m1(.)
and m2(.). In our simple example, one gets

m1(θ1) = 0.2 m1(θ2) = 0.6 m1(θ1 ∪ θ2) = 0.2

m2(θ1) = 0.4 m2(θ2) = 0.2 m2(θ1 ∪ θ2) = 0.4

We can apply any classical (quantitative) fusion rules. For example, with quantitative Con-
junctive Rule, Dempster-Shafer (DS), DSmC, DSmH, PCR5 and Murphy’s (Average Operator
- AO) rules, one gets the results in Tables 10.11 and 10.12.

θ1 θ2 θ1 ∪ θ2
m1(.) 0.2 0.6 0.2
m2(.) 0.4 0.2 0.4

mCR(.) 0.24 0.40 0.08
mDSmC(.) 0.24 0.40 0.08

mDS(.) ≈ 0.333 ≈ 0.555 ≈ 0.112
mDSmH(.) 0.24 0.40 0.36
mPCR5(.) 0.356 0.564 0.080
mAO(.) 0.3 0.4 0.3

Table 10.11: Fusion through a crisp mapping

Important remark: The mapping of linguistic labels Li into crisp numbers xi ∈ [0, 1] is a
very difficult problem in general since the crisp mapping must generate from qualitative belief
masses qmi(.), i = 1, . . . , s, a set of complete normalized precise quantitative belief masses
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∅ θ1 ∩ θ2
m1(.)
m2(.)

mCR(.) 0.28 0
mDSmC(.) 0 0.28

mDS(.) 0 0
mDSmH(.) 0 0
mPCR5(.) 0 0
mAO(.) 0 0

Table 10.12: Fusion through a crisp mapping (cont’d)

mi(.), i = 1, . . . , s (i.e. a set of crisp numbers in [0, 1] such
∑

X∈GΘ mi(X) = 1, ∀i = 1, . . . , s).
According to [35, 36], such direct crisp mapping function can be found/built only if the qba’s
satisfy a given set of constraints. Generally a crisp mapping function and qba’s generate for at
least one of sources to combine either a paraconsistent (quantitative) belief assignments (if the
sum of quantitative masses is greater than one) or an incomplete belief assignment (if the sum of
masses is less than one). An issue would be in such cases to make a (quantitative) normalization
of all paraconsistent and incomplete belief assignments drawn from crisp mapping and qba’s
before combining them with a quantitative fusion rule. The normalization of paraconsistent
and incomplete bba’s reflects somehow the difference in the interpretations of labels used by
the sources (i.e. each source carries its own (mental/internal) representation of the linguistic
label he/she uses when committing qualitative beliefs on any given proposition). It is possible
to approximate the labels by crisp numbers of by subunitary subsets (in imprecise information),
but the accuracy is arguable.

10.5.3 Fusion with an interval mapping

An other issue to avoid the direct manipulation of qualitative belief masses, is to try to as-
sign intervals assign intervals or more general subunitary subsets to linguistic labels in order to
model the vagueness of labels into numbers. We call this process, the interval mapping of qba’s.
This approach is less precise than the crisp mapping approach but is a quite good compromise
between qualitative belief fusion and (precise) quantitative belief fusion.

In our simple example, we can easily check that the following interval mapping

L0 7→ [0, 0.1), L1 7→ [0.1, 0.3), L2 7→ [0.3, 0.5), L3 7→ [0.5, 0.7), L4 7→ [0.7, 0.9), L5 7→ [0.9, 1]

allows us to build two set of admissible2 imprecise (quantitative) belief masses:

mI
1(θ1) = [0.1, 0.3) mI

2(θ1) = [0.3, 0.5)

mI
1(θ2) = [0.5, 0.7) mI

2(θ2) = [0.1, 0.3)

mI
1(θ1 ∪ θ2) = [0.1, 0.3) mI

2(θ1 ∪ θ2) = [0.3, 0.5)

2Admissibility condition means that we can pick up at least one number in each interval of an imprecise belief
mass in such a way that the sum of these numbers is one (see [30] for details and examples). For example, mI

1(.) is
admissible since there exist 0.22 ∈ [0.1, 0.3), 0.55 ∈ [0.5, 0.7), and 0.23 ∈ [0.1, 0.3) such that 0.22+0.55+0.23 = 1.
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These two admissible imprecise belief assignments can then be combined with (imprecise)
combination rules proposed in [30] and based on the following operators for interval calculus:
If X1,X2,. . . , Xn are real sets, then their sum is:

∑

k=1,...,n

Xk = {x | x =
∑

k=1,...,n

xk, x1 ∈ X1, . . . , xn ∈ Xn}

while their product is:

∏

k=1,...,n

Xk = {x | x =
∏

k=1,...,n

xk, x1 ∈ X1, . . . , xn ∈ Xn}

The results obtained with an interval mapping for the different (quantitative) rules of com-
bination are summarized in Tables 10.13 and 10.14.

θ1 θ2 θ1 ∪ θ2
mI

1(.) [0.1, 0.3) [0.5, 0.7) [0.1, 0.3)
mI

2(.) [0.3, 0.5) [0.1, 0.3) [0.3, 0.5)

mI
CR(.) [0.09, 0.45) [0.21, 0.65) [0.03, 0.15)

mI
DSmC(.) [0.09, 0.45) [0.21, 0.65) [0.03, 0.15)

mI
DSmH(.) [0.09, 0.45) [0.21, 0.65) [0.19, 0.59)

mI
PCR5(.) [0.15125, 0.640833) [0.30875, 0.899167) [0.03, 0.15)

mI
AO(.) [0.2, 0.4) [0.3, 0.5) [0.2, 0.4)

Table 10.13: Fusion Results with interval mapping

∅ θ1 ∩ θ2
mI

1(.)
mI

2(.)

mI
CR(.) [0.16, 0.44) 0

mI
DSmC(.) 0 [0.16, 0.44)

mI
DSmH(.) 0 0

mI
PCR5(.) 0 0

mI
AO(.) 0 0

Table 10.14: Fusion Results with interval mapping (cont’d)

10.6 Conclusion

We have extended in this chapter the use of DSmT from quantitative to qualitative belief
assignments. In order to apply the fusion rules to qualitative information, we defined the
+, ×, and even − operators working on the set of linguistic labels. Tables of qualitative
calculations are presented and examples using the corresponding qualitative-type Conjunctive,
DSm Classic, DSm Hybrid, PCR5 rules, and qualitative-type Average Operator. We also mixed
the qualitative and quantitative information in an attempt to refine the set of linguistic labels
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for a better accuracy. Since a normalization is not possible because the division of labels does
not work, we introduced a quasi-normalization (i.e. approximation of the normalization). Then
mappings were designed from qualitative to (crisp or interval) quantitative belief assignments.
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ance, Journées SEE Fonctions de Croyance, Espace Hamelin, Paris, Dec. 8&9, 2005.

[2] Bobrow D., Qualitative reasoning about physical systems, Elsevier Publishers Ltd., North-
Holland, 1984.

[3] Bolanos J., De Campos L.M., Moral S., Propagation of linguistic labels in causal networks,
Proc. of 2nd IEEE Int. Conf. on Fuzzy Systems, Vol. 2, pp. 863–870, 28 March–1 April
1993.

[4] Bryson N., Mobolurin A.A., A qualitative discriminant approach for generating quantitative
belief functions, IEEE Transactions on Knowledge and Data Engineering, Vol. 10, no. 2,
pp. 345 - 348, March-April 1998.

[5] Darwiche A., Ginsberg M.L.,A Symbolic Generalization of Probability Theory, Proceedings
of the Tenth National Conference on Artificial Intelligence, AAAI Press, Menlo Park, CA,
Paul Rosenbloom and Peter Szolovits (Editors), pp. 622–627, 1992.

[6] Dezert J., Smarandache F., DSmT: A new paradigm shift for information fusion, in Pro-
ceedings of Cogis 06 Conference, Paris, March 15-17, 2006.

[7] Dezert J., Tchamova A., Smarandache F., Konstantinova P., Target Type Tracking with
PCR5 and Dempster’s rules: A Comparative Analysis, in Proceedings of Fusion 2006 In-
ternational Conference on Information Fusion, Firenze, Italy, July 10-13, 2006.

[8] Dezert J., Smarandache F., Introduction to the fusion of quantitative and qualitative beliefs,
in Information & Security Journal, Vol. 20, June 2006.

[9] Dubois D., Prade H., Fuzzy arithmetic in qualitative reasoning, Modelling and Control of
Systems in Engineering, Quantum Mechanics, Economics and Biosciences (Proc. of the
Bellman Continuum Workshop 1988 Sophia Antipolis, p.457), Ed. Blaquière, A., Springer-
Verlag, Berlin, 1989.

[10] Dubois D., Prade H., Godo L., Lopez de Mantaras R., A symbolic approach to reasoning
with linguistic quantifiers, Proc. of the 8th Conf. on Uncertainty in Artificial Intelligence,
p. 74, Stanford, Ed. Dubois D., Wellman M.P., D’Ambrosio B., and Smets Ph., Morgan
Kaufman, San Mateo, 1992.

[11] Ferson S., Donald S., Probability bounds analysis, International Conference on Probabilistic
Safety Assessment and Management (PSAM4), New York, NY, Springer-Verlag, 1998.

[12] Lamata M. T., Moral S., Calculus with linguistic probabilities and beliefs, Chap. 7, pp.
133-152 in Advances In The Demspter-Shafer Theory of Evidence (Yager R., Kacprzyk J.
and Fedrizzi M. Editors), John Wiley & Sons, New York, 1994.



10.7. REFERENCES 283

[13] Martin A., Osswald C., A new generalization of the proportional conflict redistribution rule
stable in terms of decision, see Chapter 2 in this volume.

[14] Martin A., Osswald C., Generalized proportional conflict redistribution rule applied to Sonar
imagery and Radar targets classification, see Chapter 11 in this volume.

[15] Murphy C. K., Combining belief functions when evidence conflicts, Decision Support Sys-
tems, Elsevier Publisher, Vol. 29, pp. 1–9, 2000.

[16] Ngwenyama O.K., Bryson N., Generating belief functions from qualitative preferences: an
approach to eliciting expert judgments and deriving probability functions, Data & Knowl-
edge Eng., Vol. 28, no. 2, pp. 145–159, Nov. 1998.

[17] Parsons S., Qualitative methods for reasoning under uncertainty, PhD Thesis, Dept. of
Elec. Eng., Queen Mary and Westfield College, 1993.

[18] Parsons S., Mamdani E., Qualitative Dempster-Shafer Theory, Proceedings of the Third
EMACS International Workshop on Qualitative Reasoning and Decision Technologies,
Barcelona, Spain, 1993.

[19] Parsons S., Some qualitative approaches to applying Dempster-Shafer theory, Information
and Decision technologies, Vol. 19, pp. 321–337, 1994.

[20] Parsons S., Current approaches to handling imperfect information in data and knowledge
bases, IEEE Transactions on Knowledge and Data Engineering, Vol. 8, no. 3, pp. 353–372,
June 1996.

[21] Parsons S., Fox J., Argumentation and decision making, IEE Colloquium on Decision Mak-
ing and Problem Solving (Digest No: 1997/366), pp. 8/1–8/7, 16 Dec. 1997.

[22] Parsons S., Hunter A., A review of uncertainty handling formalisms, Applications of Un-
certainty Formalisms, pp. 8–37, 1998.

[23] Parsons S., A proof theoretic approach to qualitative probabilistic reasoning, Int. J. of Ap-
prox. Reas., Vol. 19, nos 3-4, pp. 265–297, Oct.-Nov. 1998.

[24] Parsons S., Qualitative Methods for Reasoning under Uncertainty, MIT Press, 2001.

[25] Parsons S., On precise and correct qualitative probabilistic inference, Int. J. of Approx.
Reas., Vol. 35, no. 2, pp. 111–135, Feb. 2004.

[26] Polya G.,Patterns of Plausible Inference, Princeton University Press, Princeton, NJ, 1954.
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Generalized proportional conflict
redistribution rule applied to Sonar
imagery and Radar targets
classification
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29806 Brest Cedex 9,

France.

Abstract: In this chapter, we present two applications in information fusion in
order to evaluate the generalized proportional conflict redistribution rule presented
in chapter [7]. Most of the time the combination rules are evaluated only on simple
examples. We study here different combination rules and compare them in terms of
decision on real data. Indeed, in real applications, we need a reliable decision and
it is the final results that matter. Two applications are presented here: a fusion of
human experts opinions on the kind of underwater sediments depicted on a sonar
image and a classifier fusion for radar targets recognition.

11.1 Introduction

We have presented and discussed some combination rules in the chapter [7]. Our study was
essentially on the redistribution of conflict rules. We have proposed a new proportional conflict
redistribution rule. We have seen that the decision can be different following the rule. Most of
the time the combination rules are evaluated only on simple examples. In this chapter, we study
different combination rules and compare them in terms of decision on real data. Indeed, in real
applications, we need a reliable decision and it is the final results that matter. Hence, for a
given application, the best combination rule is the rule giving the best results. For the decision
step, different functions such as credibility, plausibility and pignistic probability [1, 9, 13] are
usually used.

289
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In this chapter, we present the advantages of the DSmT for the modelization of real applica-
tions and also for the combination step. First, the principles of the DST and DSmT are recalled.
We present the formalization of the belief function models, different rules of combination and
decision. One combination rule (PCR5) proposed by [12] for two experts is mathematically one
of the best for the proportional redistribution of the conflict applicable in the context of the
DST and the DSmT. We compare here an extension of this rule for more than two experts, the
PCR6 rule presented in the chapter [7], and other rules using the same data model.

Two applications are presented here: a fusion of human experts opinions on the kind of
underwater sediments depicted on a sonar image and a classifier fusion for radar targets recog-
nition.

The first application relates to the seabed characterization, for instance in order to help
the navigation of Autonomous Underwater Vehicles or provide data to sedimentologists. The
sonar images are obtained with many imperfections due to instrumentations measuring a huge
number of physical data (geometry of the device, coordinates of the ship, movements of the
sonar, etc.). In this kind of applications, the reality is unknown. If human experts have to
classify sonar images they can not provide with certainty the kind of sediment on the image.
Thus, for instance, in order to train an automatic classification algorithm, we must take into
account this difference and the uncertainty of each expert. We propose in this chapter how to
solve this human experts fusion.

The second application allows to really compare the combination rules. We present an
application of classifiers fusion in order to extract the information for the automatic target
recognition. The real data are provided by measures in the anechoic chamber of ENSIETA
(Brest, France) obtained by illuminating 10 scale reduced (1:48) targets of planes. Hence, all
the experimentations are controlled and the reality is known. The results of the fusion of three
classifiers are studied in terms of good-classification rates.

This chapter is organized as follow: In the first section, we recall combination rules presented
in the chapter [7] that we compare them in this chapter. The section 11.3 proposes a way of
fusing human expert’s opinions in uncertain environments such as the underwater environment.
This environment is described with sonar images which are the most appropriate in such en-
vironment. The last section presents the results of classifiers fusion in an application of radar
targets recognition.

11.2 Backgrounds on combination rules

We recall here the combination rules presented and discussed in chapter [7] and compare them
on two real applications in the following sections. For more details on the theory, see chapter [7].

In the context of the DST, the non-normalized conjunctive rule is one of the most used rule
and is given by [13] for all X ∈ 2Θ by:

mc(X) =
∑

Y1∩...∩YM=X

M∏

j=1

mj(Yj), (11.1)

where Yj ∈ 2Θ is a response of the expert j, and mj(Yj) is the associated basic belief assignment.

In this chapter, we focus on rules where the conflict is redistributed. With the rule given by
Dubois and Prade [3], a mixed conjunctive and disjunctive rule, the conflict is redistributed on
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partial ignorance. This rule is given for all X ∈ 2Θ, X 6= ∅ by:

mDP(X) =
∑

Y1∩...∩YM=X

M∏

j=1

mj(Yj) +
∑

Y1∪...∪YM=X

Y1∩...∩YM=∅

M∏

j=1

mj(Yj), (11.2)

where Yj ∈ 2Θ is a response of the expert j, and mj(Yj) the associated basic belief assignment.
In the context of the DSmT, the non-normalized conjunctive rule can be used for all X ∈ DΘ

and Y ∈ DΘ. The mixed rule given by the equation (11.2) has been rewritten in [10], and called
DSmH, for all X ∈ DΘ, X 6≡ ∅ 1 by:

mH(X) =
∑

Y1∩...∩YM=X

M∏

j=1

mj(Yj) +
∑

Y1∪...∪YM=X

Y1∩...∩YM≡∅

M∏

j=1

mj(Yj) +

∑

{u(Y1)∪...∪u(YM)=X}
Y1,...,YM≡∅

M∏

j=1

mj(Yj) +
∑

{u(Y1)∪...∪u(YM )≡∅andX=Θ}
Y1,...,YM≡∅

M∏

j=1

mj(Yj),

(11.3)

where Yj ∈ DΘ is a response of the expert j, mj(Yj) the associated basic belief assignment,
and u(Y ) is the function giving the union of the terms that compose Y [11]. For example if
Y = (A ∩B) ∪ (A ∩ C), u(Y ) = A ∪B ∪ C.

If we want to take the decision only on the elements in Θ, some rules propose to redistribute
the conflict proportionally on these elements. The most accomplished is the PCR5 given in [12].
The equation for M experts, for X ∈ DΘ, X 6≡ ∅ is given in [2] by:

mPCR5(X) = mc(X) +

M∑

i=1

mi(X)
∑

(Yσi(1)
,...,Yσi(M−1))∈(DΘ)M−1

M−1∩
k=1

Yσi(k)∩X≡∅

(
M−1∏

j=1

mσi(j)(Yσi(j))1lj>i

)
∏

Yσi(j)
=X

mσi(j)(Yσi(j))

∑

Z∈{X,Yσi(1)
,...,Yσi(M−1)}

∏

Yσi(j)
=Z

(
mσi(j)(Yσi(j)).T (X=Z,mi(X))

) , (11.4)

where σi counts from 1 to M avoiding i:

{
σi(j) = j if j < i,
σi(j) = j + 1 if j ≥ i, (11.5)

and:
{
T (B,x) = x if B is true,
T (B,x) = 1 if B is false,

(11.6)

1The notation X 6≡ ∅ means that X 6= ∅ and following the chosen model in DΘ, X is not one of the elements
of DΘ defined as ∅. For example, if Θ = {A,B,C}, we can define a model for which the expert can provide a
mass on A ∩B and not on A ∩ C, so A ∩B 6≡ ∅ and A ∩ C ≡ ∅
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We have proposed another proportional conflict redistribution rule PCR6 rule in the chapter
[7], for M experts, for X ∈ DΘ, X 6= ∅:

mPCR6(X) = mc(X) +

M∑

i=1

mi(X)2
∑

M−1∩
k=1

Yσi(k)∩X≡∅

(Yσi(1)
,...,Yσi(M−1))∈(DΘ)M−1




M−1∏

j=1

mσi(j)(Yσi(j))

mi(X)+
M−1∑

j=1

mσi(j)(Yσi(j))



, (11.7)

where σ is defined like in (11.5).

As Yi is a focal element of expert i, mi(X) +
M−1∑

j=1

mσi(j)(Yσi(j)) 6= 0; the belief function mc

is the conjunctive consensus rule given by the equation (11.1). The PCR6 and PCR5 rules are
exactly the same in the case of 2 experts.

We have also proposed two more general rules given by:

mPCRf(X) = mc(X)+

∑M
i=1mi(X)f(mi(X))

∑

M−1∩
k=1

Yσi(k)∩X≡∅

(Yσi(1)
,...,Yσi(M−1))∈(DΘ)M−1




M−1∏

j=1

mσi(j)(Yσi(j))

f(mi(X))+
M−1∑

j=1

f(mσi(j)(Yσi(j)))



, (11.8)

with the same notations that in the equation (11.7), and f is an increasing function defined
by the mapping of [0, 1] onto IR+.

The second generalized rule is given by:

mPCRg(X) = mc(X) +

M∑

i=1

∑

M−1∩
k=1

Yσi(k)∩X≡∅

(Yσi(1)
,...,Yσi(M−1))∈(DΘ)M−1

mi(X)

(
M−1∏

j=1

mσi(j)(Yσi(j))

)(
∏

Yσi(j)
=X

1lj>i

)
g

(
mi(X)+

∑

Yσi(j)
=X

mσi(j)(Yσi(j))

)

∑

Z∈{X,Yσi(1)
,...,Yσi(M−1)}

g




∑

Yσi(j)
=Z

mσi(j)(Yσi(j)) +mi(X)1lX=Z



,

(11.9)

with the same notations that in the equation (11.7), and g is an increasing function defined
by the mapping of [0, 1] onto IR+.

In this chapter, we choose f(x) = g(x) = xα, with α ∈ IR+.
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11.3 Experts fusion in Sonar imagery

Seabed characterization serves many useful purposes, e.g. help the navigation of Autonomous
Underwater Vehicles or provide data to sedimentologists. In such sonar applications, seabed
images are obtained with many imperfections [5]. Indeed, in order to build images, a huge
number of physical data (geometry of the device, coordinates of the ship, movements of the
sonar, etc.) has to be taken into account, but these data are polluted with a large amount of
noises caused by instrumentations. In addition, there are some interferences due to the signal
traveling on multiple paths (reflection on the bottom or surface), due to speckle, and due to
fauna and flora. Therefore, sonar images have a lot of imperfections such as imprecision and
uncertainty; thus sediment classification on sonar images is a difficult problem. In this kind of
applications, the reality is unknown and different experts can propose different classifications of
the image. Figure 11.1 exhibits the differences between the interpretation and the certainty of
two sonar experts trying to differentiate the type of sediment (rock, cobbles, sand, ripple, silt)
or shadow when the information is invisible. Each color corresponds to a kind of sediment and
the associated certainty of the expert for this sediment expressed in term of sure, moderately
sure and not sure. Thus, in order to train an automatic classification algorithm, we must take
into account this difference and the uncertainty of each expert. Indeed, image classification is
generally done on a local part of the image (pixel, or most of the time on small tiles of e.g.
16×16 or 32×32 pixels). For example, how a tile of rock labeled as not sure must be taken into
account in the learning step of the classifier and how to take into account this tile if another
expert says that it is sand? Another problem is: how should we consider a tile with more than
one sediment?

In this case, the space of discernment Θ represents the different kind of sediments on sonar
images, such as rock, sand, silt, cobble, ripple or shadow (that means no sediment information).
The experts give their perception and belief according to their certainty. For instance, the expert
can be moderately sure of his choice when he labels one part of the image as belonging to a
certain class, and be totally doubtful on another part of the image. Moreover, on a considered
tile, more than one sediment can be present.

Consequently we have to take into account all these aspects of the applications. In order
to simplify, we consider only two classes in the following: the rock referred as A, and the
sand, referred as B. The proposed models can be easily extended, but their study is easier to
understand with only two classes.

Hence, on certain tiles, A and B can be present for one or more experts. The belief functions
have to take into account the certainty given by the experts (referred respectively as cA and cB ,
two numbers in [0, 1]) as well as the proportion of the kind of sediment in the tile X (referred
as pA and pB, also two numbers in [0, 1]). We have two interpretations of “the expert believes
A”: it can mean that the expert thinks that there is A on X and not B, or it can mean that the
expert thinks that there is A on X and it can also have B but he does not say anything about
it. The first interpretation yields that hypotheses A and B are exclusive and with the second
they are not exclusive. We only study the first case: A and B are exclusive. But on the tile X,
the expert can also provide A and B, in this case the two propositions “the expert believes A”
and “the expert believes A and B” are not exclusive.
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Figure 11.1: Segmentation given by two experts.

11.3.1 Models

We have proposed five models and studied these models for the fusion of two experts [6]. We
present here the three last models for two experts and two classes. In this case the conjunctive
rule (11.1), the mixed rule (11.2) and the DSmH (11.3) are similar. We give the obtained results
on a real database for the fusion of three experts in sonar.

Model M3 In our application, A, B and C cannot be considered exclusive on X. In order
to propose a model following the DST, we have to study exclusive classes only. Hence, in our
application, we can consider a space of discernment of three exclusive classes Θ = {A∩Bc, B ∩
Ac, A ∩B} = {A′, B′, C ′}, following the notations given on the figure 11.2.
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Figure 11.2: Notation of the intersection of two classes A and B.

Hence, we can propose a new model M3 given by:

if the expert says A:{
m(A′ ∪ C ′) = cA,
m(A′ ∪B′ ∪ C ′) = 1− cA,

if the expert says B:{
m(B′ ∪ C ′) = cB ,
m(A′ ∪B′ ∪ C ′) = 1− cB ,

if the expert says A and B:{
m(C ′) = pA.cA + pB .cB ,
m(A′ ∪B′ ∪ C ′) = 1− (pA.cA + pB .cB).

(11.10)

Note that A′ ∪B′ ∪ C ′ = A ∪B. On our numerical example we obtain:

A′ ∪ C ′ B′ ∪C ′ C ′ A′ ∪B′ ∪C ′

m1 0.6 0 0 0.4

m2 0 0 0.5 0.5

Hence, the conjunctive rule, the credibility, the plausibility and the pignistic probability are
given by:

element mc bel pl betP

∅ 0 0 0 −
A′ = A ∩Bc 0 0 0.5 0.2167

B′ = B ∩Ac 0 0 0.2 0.0667

A′ ∪B′ = (A ∩Bc) ∪ (B ∩Ac) 0 0 0.5 0.2833

C ′ = A ∩B 0.5 0.5 1 0.7167

A′ ∪ C ′ = A 0.3 0.8 1 0.9333

B′ ∪ C ′ = B 0 0.5 1 0.7833

A′ ∪B′ ∪ C ′ = A ∪B 0.2 1 1 1

where

mc(C
′) = mc(A ∩B) = 0.2 + 0.3 = 0.5. (11.11)
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In this example, with this model M3 the decision will beA with the maximum of the pignistic
probability. But the decision could a priori be taken also on C ′ = A ∩ B because mc(C

′) is
the highest. We have seen that if we want to take the decision on A ∩ B, we must considered
the maximum of the masses because of inclusion relations of the credibility, plausibility and
pignistic probability.

Model M4 In the context of the DSmT, we can write C = A∩B and easily propose a fourth
model M4, without any consideration on the exclusivity of the classes, given by:

if the expert says A:{
m(A) = cA,
m(A ∪B) = 1− cA,

if the expert says B:{
m(B) = cB ,
m(A ∪B) = 1− cB ,

if the expert says A and B:{
m(A ∩B) = pA.cA + pB .cB ,
m(A ∪B) = 1− (pA.cA + pB .cB).

(11.12)

This model M4 allows to represent our problem without adding an artificial class C. Thus, the
model M4 based on the DSmT gives:

A B A ∩B A ∪B
m1 0.6 0 0 0.4

m2 0 0 0.5 0.5

The obtained mass mc with the conjunctive rule yields:

mc(A) = 0.30,
mc(B) = 0,
mc(A ∩B) = m1(A)m2(A ∩B) +m1(A ∪B)m2(A ∩B)

= 0.30 + 0.20 = 0.5,
mc(A ∪B) = 0.20.

(11.13)

These results are exactly similar to the model M3. These two models do not present ambi-
guity and show that the mass on A ∩B (rock and sand) is the highest.

The generalized credibility, the generalized plausibility and the generalized pignistic proba-
bility are given by:

element mc Bel Pl GPT

∅ 0 0 0 −
A 0.3 0.8 1 0.9333

B 0 0.5 0.7 0.7833

A ∩B 0.5 0.5 1 0.7167

A ∪B 0.2 1 1 1
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Like the model M3, on this example, the decision will be A with the maximum of pignistic
probability criteria. But here also the maximum of mc is reached for A ∩B = C ′.

If we want to consider only the kind of possible sediments A and B and do not allow their
conjunction, we can use a proportional conflict redistribution rule such as the PCR rule:

mPCR(A) = 0.30 + 0.5 = 0.8,
mPCR(B) = 0,
mPCR(A ∪B) = 0.20.

(11.14)

The credibility, the plausibility and the pignistic probability are given by:

element mPCR bel pl betP

∅ 0 0 0 −
A 0.8 0.8 1 0.9

B 0 0 0.2 0.1

A ∪B 0.2 1 1 1

On this numerical example, the decision will be the same as the conjunctive rule, here the
maximum of pignistic probability is reached for A (rock). In the next section, we see that is
not always the case.

Model M5 Another model is M5 which can be used in both the DST and the DSmT. It
considers only one belief function according to the proportion, given by:





m(A) = pA.cA,
m(B) = pB.cB ,
m(A ∪B) = 1− (pA.cA + pB.cB).

(11.15)

If for one expert, the tile contains only A, pA = 1, and m(B) = 0. If for another expert, the
tile contains A and B, we take into account the certainty and proportion of the two sediments
but not only on one focal element. Consequently, we have simply:

A B A ∪B
m1 0.6 0 0.4

m2 0.3 0.2 0.5

In the DST context, the conjunctive rule, the credibility, the plausibility and the pignistic
probability are given by:

element mc bel pl betP

∅ 0.12 0 0 −
A 0.6 0.6 0.8 0.7955

B 0.08 0.08 0.28 0.2045

A ∪B 0.2 0.88 0.88 1

In this case we can not decide A ∩B, because the conflict is on ∅.
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In the DSmT context, the conjunctive rule, the generalized credibility, the generalized plau-
sibility and the generalized pignistic probability are given by:

element mc Bel Pl GPT

∅ 0 0 0 −
A 0.6 0.72 0.92 0.8933

B 0.08 0.2 0.4 0.6333

A ∩B 0.12 0.12 1 0.5267

A ∪B 0.2 1 1 1

The decision with the maximum of pignistic probability criteria is still A.

The PCR rule provides:

element mPCR bel pl betP

∅ 0 0 0 −
A 0.69 0.69 0.89 0.79

B 0.11 0.11 0.31 0.21

A ∪B 0.2 1 1 1

where

mPCR(A) = 0.60 + 0.09 = 0.69,
mPCR(B) = 0.08 + 0.03 = 0.11.

With this model and example of the PCR rule, the decision will be also A, and we do not have
difference between the conjunctive rules in the DST and DSmT.

11.3.2 Experimentation

Database Our database contains 42 sonar images provided by the GESMA (Groupe d’Etudes
Sous-Marines de l’Atlantique). These images were obtained with a Klein 5400 lateral sonar with
a resolution of 20 to 30 cm in azimuth and 3 cm in range. The sea-bottom depth was between
15 m and 40 m.

Three experts have manually segmented these images, giving the kind of sediment (rock,
cobble, sand, silt, ripple (horizontal, vertical or at 45 degrees)), shadow or other (typically
ships) parts on images, helped by the manual segmentation interface presented in figure 11.3.
All sediments are given with a certainty level (sure, moderately sure or not sure). Hence, each
pixel of every image is labeled as being either a certain type of sediment or a shadow or other.

The three experts provide respectively, 30338, 31061, and 31173 homogeneous tiles, 8069,
7527, and 7539 tiles with two sediments, 575, 402, and 283 tiles with three sediments, 14, 7,
and 2 tiles with four, and 1, 0, and 0 tile for five sediments, and 0 for more.

Results We note A = rock, B = cobble, C = sand, D = silt, E = ripple, F = shadow
and G = other, hence we have seven classes and Θ = {A,B,C,D,E, F,G}. We applied the
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Figure 11.3: Manual Segmentation Interface.

generalized model M5 on tiles of size 32×32 given by:





m(A) = pA1.c1 + pA2.c2 + pA3.c3, for rock,
m(B) = pB1.c1 + pB2.c2 + pB3.c3, for cobble,
m(C) = pC1.c1 + pC2.c2 + pC3.c3, for ripple,
m(D) = pD1.c1 + pD2.c2 + pD3.c3, for sand,
m(E) = pE1.c1 + pE2.c2 + pE3.c3, for silt,
m(F ) = pF1.c1 + pF2.c2 + pF3.c3, for shadow,
m(G) = pG1.c1 + pG2.c2 + pG3.c3, for other,
m(Θ) = 1− (m(A) +m(B) +m(C) +m(D) +m(E) +m(F ) +m(G)),

(11.16)

where c1, c2 and c3 are the weights associated to the certitude respectively: “sure”, “moderately
sure” and “not sure”. The chosen weights are here: c1 = 2/3, c2 = 1/2 and c3 = 1/3. Indeed
we have to consider the cases when the same kind of sediment (but with different certainties) is
present on the same tile. The proportion of each sediment in the tile associated to these weights
is noted, for instance for A: pA1, pA2 and pA3.

The total conflict between the three experts is 0.2244. This conflict comes essentially from
the difference of opinion of the experts and not from the tiles with more than one sediment.
Indeed, we have a weak auto-conflict (conflict coming from the combination of the same expert
three times). The values of the auto-conflict for the three experts are: 0.0496, 0.0474, and
0.0414. We note a difference of decision between the three combination rules given by the
equations (11.7) for the PCR6, (11.2) for the mixed rule and (11.1) for the conjunctive rule.
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The proportion of tiles with a different decision is 0.11% between the mixed rule and the
conjunctive rule, 0.66% between

the PCR6 and the mixed rule, and 0.73% between the PCR6 and the conjunctive rule.

These results show that there is a difference of decision according to the combination rules
with the same model. However, we can not know what is the best decision, and so what is the
most precise rule among the experimented ones, because on this application no ground truth
is known. We compare these same rules in another application, where the reality is completely
known.

11.4 Classifiers fusion in Radar target recognition

Several types of classifiers have been developed in order to extract the information for the
automatic target recognition (ATR). We have proposed different approaches of information
fusion in order to outperform three radar target classifiers [4]. We present here the results
reached by the fusion of three classifiers with the conjunctive rule, the DSmH, the PCR5 and
the PCR6.

11.4.1 Classifiers

The three classifiers used here are the same as in [4]. The first one is a fuzzy K-nearest
neighbors classifier, the second one is a multilayer perceptron (MLP) that is a feed forward
fully connected neural network. And the third one is the SART (Supervised ART) classifier [8]
that uses the principle of prototype generation like the ART neural network, but unlike this
one, the prototypes are generated in a supervised manner.

11.4.2 Database

The database is the same than in [4]. The real data were obtained in the anechoic chamber
of ENSIETA (Brest, France) using the experimental setup shown on figure 11.4. We have
considered 10 scale reduced (1:48) targets (Mirage, F14, Rafale, Tornado, Harrier, Apache,
DC3, F16, Jaguar and F117).

Each target is illuminated in the acquisition phase with a frequency stepped signal. The data
snapshot contains 32 frequency steps, uniformly distributed over the band B = [11650MHZ,
17850MHz], which results in a frequency increment of ∆f = 200MHz. Consequently, the slant
range resolution and ambiguity window are given by:

∆Rs = c/(2B) ≃ 2.4m, Ws = c/(2∆f) = 0.75m. (11.17)

The complex signature obtained from a backscattered snapshot is coherently integrated via
FFT in order to achieve the slant range profile corresponding to a given aspect of a given target.
For each of the 10 targets 150 range profiles are thus generated corresponding to 150 angular
positions, from -50 degrees to 69.50 degrees, with an angular increment of 0.50 degrees.

The database is randomly divided in a training set (for the three supervised classifiers) and
test set (for the evaluation). When all the range profiles are available, the training set is formed
by randomly selecting 2/3 of them, the others being considered as the test set.
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Figure 11.4: Experimental setup.

11.4.3 Model

The numerical outputs of the classifiers for each target and each classifier, normalized between
0 and 1, define the input masses. In order to keep only the most credible classes we consider the
two highest values of these outputs referred as oij for the jth classifier and the target i. Hence,
we obtain only three focal elements (two targets and the ignorance Θ).

The classifier does not provide equivalent belief in mean. For example, the fuzzy K-nearest
neighbors classifier easily provides a belief of 1 for a target, whereas the two other classifiers
always provide a not null belief on the second target and on ignorance. In order to balance the
classifiers, we weight each belief function by an adaptive threshold given by:

fj =
0.8

mean(oij)
.

0.8

mean(bij)
, (11.18)

where mean(oij) is the mean of the belief of the two targets on all the previous considered
signals for the classifier j, mean(bij) is the similar mean on bij = fj.oij . First, fj is initialized
to 1. Hence, the mean of belief on the singletons tends toward 0.8 for each classifier, and 0.2
on Θ.

Moreover, if the belief assignment on Θ for a given signal and classifier is less than 0.001,
we keep the maximum of the mass and force the other in order to reach 0.001 on the ignorance
and so avoid total conflict with the conjunctive rule.

11.4.4 Results

We have conducted the division of the database into training database and test database, 800
times in order to estimate better the good-classification rates. We have obtained a total conflict
of 0.4176. The auto-conflict, reached by the combination of the same classifier three times, is
0.1570 for the fuzzy K-nearest neighbor, 0.4055 for the SART and 0.3613 for the multilayer
perceptron. The auto-conflict for the fuzzy K-nearest neighbor is weak because it happens
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Rule Conj. DP PCRf√x PCRg√x PCR6 PCRgx2 PCRfx2 PCR5

Conj. 0 0.68 1.53 1.60 2.02 2.53 2.77 2.83

DP 0.68 0 0.94 1.04 1.47 2.01 2.27 2.37

PCRf√x 1.53 0.94 0 0.23 0.61 1.15 1.49 1.67

PCRg√x 1.60 1.04 0.23 0 0.44 0.99 1.29 1.46

PCR6 2.04 1.47 0.61 0.44 0 0.55 0.88 1.08

PCRgx2 2.53 2.01 1.15 0.99 0.55 0 0.39 0.71

PCRfx2 2.77 2.27 1.49 1.29 0.88 0.39 0 0.51

PCR5 2.83 2.37 1.67 1.46 1.08 0.71 0.51 0

Table 11.1: Proportion of targets with a different decision (%)

Rule % Confidence Interval

Conjunctive 89.83 [89.75 : 89.91]

DP 89.99 [89.90 : 90.08]

PCRfx0.3 90.100 [90.001 : 90.200]

PCRf√x 90.114 [90.015 : 90.213]

PCRfx0.7 90.105 [90.006 : 90.204]

PCRg√x 90.08 [89.98 : 90.18]

PCR6 90.05 [89.97 : 90.13]

PCRgx2 90.00 [89.91 : 90.10]

PCRfx2 89.94 [89.83 : 90.04]

PCR5 89.85 [89.75 : 89.85]

Table 11.2: Good-classification rates (%)

many times that the mass is only on one class (and ignorance), whereas there are two classes
with a non-null mass for the SART and the multilayer perceptron. Hence, the fuzzy K-nearest
neighbor reduces the total conflict during the combination. The total conflict here is higher
than in the previous application, but it comes here from the modelization essentially and not
from a difference of opinion given by the classifiers.

The proportion of targets with a different decision is given in percentage, in the table 11.1.
These percentages are more important for this application than the previous application on
sonar images. Hence the conjunctive rule and the mixed rule are very similar. In terms of
similarity, we can give this order: conjunctive rule, the mixed rule (DP), PCR6f and PCR6g
with a concave mapping, PCR6, PCR6f and PCR6g with a convex mapping, and PCR5.

The final decision is taken with the maximum of the pignistic probabilities. Hence, the
results reached by the generalized PCR are significantly better than the conjunctive rule and
the PCR5, and better than the mixed rule (DP). The conjunctive rule and the PCR5 give the
worst classification rates on these data (there is no significantly difference), whereas they have
a high proportion of targets with a different decision.

The best classification rate (see table 11.2) is obtained with PCRf√x, but is not signifi-
cantly better than the results obtained with the other versions PCRf , using a different concave
mapping.
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11.5 Conclusion

In this chapter, we have proposed a study of the combination rules compared in terms of
decision. The generalized proportional conflict redistribution (PCR6) rule (presented in the
chapter [7]) has been evaluated. We have shown on real data that there is a difference of decision
following the choice of the combination rule. This difference can be very small in percentage
but leads to significant difference in good-classification rates. Moreover, a high proportion with
a different decision does not lead to a high difference in terms of good-classification rates. The
last application shows that we can achieve better good-classification rates with the generalized
PCR6 than with the conjunctive rule, the DSmH (i.e. the mixed DP rule), or PCR5.

The first presented application shows that the modelization on DΘ can resolve easily some
problems. If the application needs a decision step and if we want to consider the conjunctions
of the elements of the discernment space, we have to take the decision directly on the masses
(and not on the credibilities, plausibilities or pignistic probabilities). Indeed, these functions
are increasing and can not give a decision on the conjunctions of elements. In real applications,
most of the time, there is no ambiguity and we can take the decision, else we have to propose
a new decision function that can reach a decision on conjunctions and also on singletons.

The conjunctions of elements can be considered (and so DΘ) in many applications, espe-
cially in image processing, where an expert can provide elements with more than one class. In
estimation applications, where intervals are considered, encroaching intervals (with no empty
intersection) can provide a better modelization.
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électromagnétique, Ph.D. Thesis, Université de Bretagne Occidentale, Brest, France, 1999.

[9] Shafer G., A mathematical theory of evidence, Princeton University Press, 1976.

[10] Smarandache F., Dezert J. (Editors), Applications and Advances of DSmT for Information
Fusion, Collected Works, American Research Press, Rehoboth, June 2004.

[11] Smarandache F., Dezert J., Combination of beliefs on hybrid DSm models, pp. 61-103
in [10].

[12] Smarandache F., Dezert J., Information Fusion Based on New Proportional Conflict Re-
distribution Rules, Proc. of International Conference on Information Fusion, Fusion 2005,
Philadelphia, USA, July 2005.

[13] Smets Ph., The Combination of Evidence in the Transferable Belief Model, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, Vol. 12, no. 5, pp. 447–458, 1990.



Chapter 12

Multitarget Tracking in Clutter
based on Generalized Data
Association: Performance
Evaluation of Fusion Rules

J. Dezert A. Tchamova, T. Semerdjiev, P. Konstantinova
ONERA, Institute for Parallel Processing,

29 Av. de la Division Leclerc, Bulgarian Academy of Sciences,
92320 Châtillon, “Acad. G. Bonchev” Str.,bl.25-A, 1113 Sofia,

France. Bulgaria.

Abstract: The objective of this chapter is to present and compare different fusion
rules which can be used for Generalized Data Association (GDA) for multitarget
tracking (MTT) in clutter. Most of tracking methods including Target Identification
(ID) or attribute information are based on classical tracking algorithms such PDAF,
JPDAF, MHT, IMM, etc. and either on the Bayesian estimation and prediction of
target ID, or on fusion of target class belief assignments through the Dempster-Shafer
Theory (DST) and Dempster’s rule of combination. The main purpose of this study
is to pursue our previous works on the development of a new GDA-MTT based
on Dezert-Smarandache Theory (DSmT) but compare it also with standard fusion
rules (Dempster’s, Dubois & Prade’s, Yager’s) and with the new fusion rules: Pro-
portional Conflict Redistribution rule No.5(PCR5), fusion rule based on T-Conorm
and T-Norm Fuzzy Operators(TCN rule) and the Symmetric Adaptive Combination
(SAC) rule. The goal is to assess the efficiency of all these different fusion rules
for the applied GDA-MTT in critical, highly conflicting situation. This evaluation
is based on a Monte Carlo simulation for a particular difficult maneuvering MTT
problem in clutter.

This work is partially supported by MONT grants I1205/02, MI-1506/05 and by Center of Excellence
BIS21++ grant (FP6-2004-ACC-SSA-2).
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12.1 Introduction

The idea of incorporating Target Identification (ID) information or target attribute measure-
ments into classical (i.e. kinematics-based) tracking filters to improve multitarget tracking
systems is not new and many approaches have been proposed in the literature over the last
fifteen years. For example, in [14, 15, 21] an improved PDAF (Probabilistic Data Association
Filter) had been developed for autonomous navigation systems based on Target Class ID and
ID Confusion matrix, and also on another version based on imprecise attribute measurements
combined within Dempster’s rule. At the same time Lerro in [20] developed the AI-PDAF
(Amplitude Information PDAF). Since the nineties many improved versions of classical track-
ing algorithms like IMM, JPDAF, IMM-PDAF, MHT, etc. including attribute information
have been proposed (see [12] and [6] for a recent overview). Recent contributions have been
done by Blasch and al. in [7–10, 31] for Group Target Tracking and classification. In last two
years efforts have been done also by Hwang and al. in [17–19]. We recently discovered that the
Hwang’s MTIM (Multiple-target Tracking and Identity Management) algorithm is very close to
our Generalized Data Association GDA-MTT. The difference between MTIM and GDA-MTT
lies fundamentally in the Attribute Data Association procedure. MTIM is based on MAJPDA
(Modified Approximated JPDA) coupled with RMIMM (Residual-mean Interacting Multiple
Model) algorithm while the GDA-MTT is based on GNN (Global Nearest Neighbour) approach
for data association incorporating both kinematics and attribute measurements (with more so-
phisticated fusion rules dealing with fuzzy, imprecise and potentially highly conflicting target
attribute measurements), coupled with standard IMM-CMKF(Converted Measurement Kalman
Filter) [1, 5, 23]. The last recent attempt for solving the GDA-MTT problem was proposed by
Bar-Shalom and al. in [6] and expressed as a multiframe assignment problem where the multi-
frame association likelihood was developed to include the target classification results based on
the confusion matrix that specifies the prior accuracy of the target classifier. Such multiframe
s-D assignment algorithm should theoretically provide performances close to the optimality for
MTT systems but remains computationally greedy. The purpose of this chapter is to compare
the performances of several fusion rules usable into our new GDA-MTT algorithm based on
a difficult MTT scenario with eleven closely spaced and maneuvering in some regions targets,
belonging only to two classes within clutter and with only 2D kinematical measurements and
attribute measurement.

This chapter is organized as follows. In section 12.2 we present our approach for GDA-
MTT algorithm emphasizing only on the new developments in comparison with our previous
GDA-MTT algorithm, developed in [26, 29]. In our previous works, we proved the efficiency of
GDA-MTT (in term of Track Purity Performance) based on the DSm Hybrid rule of combination
over the GDA-MTT based on Dempster’s rule but also over the KDA-MTT (Kinematics-only-
based Data Association) trackers on simple two targets scenarios (with and without clutter). In
section 12.3 we remind the main fusion rules we investigate for our new GDA-MTT algorithm.
Most of these rules are well-known in the literature [24, 26], but the PCR5, TCN and SAC
rules presented here, which are really new ones, were recently proposed in [16, 27, 28, 30].
Due to space limitations, we assume that the reader is familiar with basics on Target Tracking
[2–5, 11, 12], on DST [25] and on DSmT [26] for fusion of uncertain, imprecise and possibly
highly conflicting information. Section 12.4 presents and compares several Monte Carlo results
for different versions of our GDA-MTT algorithm based on the fusion rules proposed in section
12.3 for a particular MTT scenario. Conclusion is given in section 12.5.
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12.2 General principle of GDA-MTT

Classical target tracking algorithms consist mainly in two basic steps: data association to as-
sociate proper measurements (usually kinematics measurement z(k) representing either posi-
tion, distance, angle, velocity, acceleration, etc.) with correct targets and track filtering to
estimate and predict the state of targets once data association has been performed. The
first step is very important for the quality of tracking performance since its goal is to asso-
ciate correctly (or at least as best as possible) observations to existing tracks (or eventually
new born targets). The data association problem is very difficult to solve in dense multi-
target and cluttered environment. To eliminate unlikely (kinematics-based) observation-to-
track pairings, the classical validation test is carried on the Mahalanobis distance d2(i, j) ,
(zj(k) − ẑi(k|k − 1))′S−1(k)(zj(k) − ẑi(k|k − 1)) ≤ γ computed from the measurement zj(k)
and its prediction ẑi(k|k − 1) computed by the tracker of target i (see [2] for details). Once
all the validated measurements have been defined for the surveillance region, a clustering pro-
cedure defines the clusters of the tracks with shared observations. Further the decision about
observation-to-track associations within the given cluster with n existed tracks and m received
measurements is considered. The Converted Measurement Kalman Filter coupled with a clas-
sical IMM (Interacting Multiple Model) for maneuvering target tracking is used to update the
targets’ state vectors.
This new GDA-MTT improves data association process by adding attribute measurements (like
amplitude information or RCS (radar cross section)), or eventually as in [6] Target ID de-
cision coupled with confusion matrix, to classical kinematical measurements to increase the
performance of the MTT system. When attribute data are available, the generalized (kine-
matics and attribute) likelihood ratios are used to improve the assignment. The GNN ap-
proach is used in order to make a decision for data association. Our new GDA approach
consists in choosing a set of assignments {χij}, for i = 1, . . . n and j = 1, . . . ,m, that as-
sures maximum of the total generalized likelihood ratio sum by solving the classical assign-
ment problem min

∑n
i=1

∑m
j=1 aijχij using the extended Munkres algorithm [13] and where

aij = − log(LRgen(i, j)) with LRgen(i, j) = LRk(i, j)LRa(i, j), where LRk(i, j) and LRa(i, j)
are kinematics and attribute likelihood ratios respectively, and

χij =

{
1 if measurement j is assigned to track i

0 otherwise

and where the elements aij of the assignment matrix A = [aij ] take the following values [22]:

aij =

{
∞ if d2

ij > γ

− log(LRk(i, j)LRa(i, j)) if d2
ij ≤ γ

The solution of the assignment matrix is the one that minimizes the sum of the chosen elements.
We solve the assignment problem by realizing the extension of Munkres algorithm, given in [13].
As a result one obtains the optimal measurements to tracks association. Once the optimal
assignment is found, i.e. the (what we feel) correct association is available, then standard
tracking filter is used depending on the dynamics of the target under tracking. We will not recall
classical tracking filtering methods here which can be found in many standard textbooks [5, 12].
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12.2.1 Kinematics Likelihood Ratios for GDA

The kinematics likelihood ratios LRk(i, j) involved into aij are quite easy to obtain because they
are based on classical statistical models for spatial distribution of false alarms and for correct
measurements [5]. LRk(i, j) is evaluated as LRk(i, j) = LF true(i, j)/LF false where LF true is
the likelihood function that the measurement j originated from target (track) i and LF false the
likelihood function that the measurement j originated from false alarm. At any given time k,
LF true is defined1 as LF true =

∑r
l=1 µl(k)LF l(k) where r is the number of the models (in our

case of two nested models r = 2 is used for CMKF-IMM), µl(k) is the probability (weight) of the
model l for the scan k, LF l(k) is the likelihood function that the measurement j is originated
from target (track) i according to the model l, i.e. LF l(k) = 1

2π
√

|Si
l(k)|

e−d
2
l (i,j)/2. LF false is

defined as LF false = Pfa/Vc, where Pfa is the false alarm probability and Vc is the resolution
cell volume chosen as in [6] as Vc =

∏nz
i=1

√
12Rii. In our case, nz = 2 is the measurement vector

size and Rii are sensor error standard deviations for azimuth β and distance D measurements.

12.2.2 Attribute Likelihood Ratios for GDA

The major difficulty to implement GDA-MTT depends on the correct derivation of coefficients
aij, and more specifically the attribute likelihood ratios LRa(i, j) for correct association between
measurement j and target i based only on attribute information. When attribute data are
available and their quality is sufficient, the attribute likelihood ratio helps a lot to improve
MTT performance. In our case, the target type information is utilized from RCS attribute
measurement through fuzzification interface proposed in [29]. A particular confusion matrix is
constructed to model the sensor’s classification capability. This work presents different possible
issues to evaluate LRa(i, j) depending on the nature of the attribute information and the fusion
rules used to predict and to update each of them. The specific attribute likelihood ratios are
derived within both DSmT and DST frameworks.

12.2.2.1 Modeling the Classifier

The way of constructing the confusion matrix is based on some underlying decision-making
process based on specific attribute features measurements. In this particular case, it is based
on the fuzzification interface, described in our previous work [26, 29]. Through Monte Carlo
simulations, the confusion matrix for two different average values of RCS is obtained, in terms of
the first frame of hypotheses Θ1 = {(S)mall, (B)ig}. Based on the fuzzy rules, described in [29],
defining the correspondence between RCS values and the respective targets’ types, the final
confusion matrix T = [tij] in terms of the second frame of hypotheses Θ2 = {(F)ighter, (C)argo}
is constructed. Their elements tij represent the probability to declare that the target type is i
when its real type is j. Thus the target’s type probability mass vector for classifier output is
the j-th column of the confusion matrix T. When false alarms arise, their mass vector consists
in an equal distribution of masses among the two classes of targets.

12.2.2.2 Attribute Likelihood Ratio within DSmT

The approach for deriving LRa(i, j) within DSmT is based on relative variations of pignistic
probabilities [26] for the target type hypotheses, Hj (j = 1 for Fighter, j = 2 for Cargo)

1where indexes i and j have been omitted here for LF notation convenience.
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included in the frame Θ2 conditioned by the correct assignment. These pignistic probabilities
are derived after the fusion between the generalized basic belief assignments of the track’s old
attribute state history and the new attribute/ID observation, obtained within the particular
fusion rule. It is proven [26] that this approach outperforms most of the well-known ones for
attribute data association. It is defined as:

δi(P
∗) =

| ∆i(P
∗|Z)−∆i(P

∗|Ẑ = Ti) |
∆i(P ∗|Ẑ = Ti)

(12.1)

where 



∆i(P
∗|Z) =

∑2
j=1

|P ∗
TiZ(Hj)−P ∗

Ti
(Hj)|

P ∗
Ti

(Hj)

∆i(P
∗|Ẑ = Ti) =

∑2
j=1

|P ∗
TiZ=Ti

(Hj)−P ∗
Ti

(Hj)|
P ∗

Ti
(Hj)

i.e. ∆i(P
∗|Ẑ = Ti) is obtained by forcing the attribute observation mass vector to be the same

as the attribute mass vector of the considered real target, i.e. mZ(.) = mTi(.). The decision
for the right association relies on the minimum of expression (12.1). Because the generalized
likelihood ratio LRgen is looking for the maximum value, we define the final form of the attribute
likelihood ratio to be inversely proportional to the δi(P

∗) with i defining the number of the track,
i.e. LRa(i, j) = 1/δi(P

∗).

12.2.2.3 Attribute Likelihood Ratio within DST

LRa(i, j) within DST is defined from the derived attribute likelihood function proposed in [3, 12].
If one considers the observation-to-track fusion process using Dempster’s rule, the degree of
conflict kij is computed as the assignment of mass committed to the conflict, i.e. m(∅). The
larger this assignment is, the less likely is the correctness of observation j to track i assignment.
Then, the reasonable choice for the attribute likelihood function is LHF i,j = 1 − kij . The
attribute likelihood function for the possibility that a given observation j originated from the
false alarm is computed as LHF fa,j = 1 − kfa,j . Finally the attribute likelihood ratio to be
used in GDA is obtained as LRa(i, j) = LHF i,j/LHF fa,j .

12.3 Fusion rules proposed for GDA-MTT

Imprecise, uncertain and even contradicting information or data are characteristics of the real
world situations and must be incorporated into modern MTT systems to provide a complete
and accurate model of the monitored problem. On the other hand, the conflict and paradoxes’
management in collected knowledge is a major problem especially during the fusion of many
information sources. Indeed the conflict increases with the number of sources or with the num-
ber of processed scans in MTT. Hence a reliable issue for processing and/or reassigning the
conflicting probability masses is required. Such a situation involves also some decision-making
procedures based on specific data bases to achieve proper knowledge extraction for a better
understanding of the overall monitored problem. It is important and valuable to achieve hi-
erarchical extraction of relevant information and to improve the decision accuracy such that
highly accurate decisions can be made progressively. There are many valuable fusion rules in
the literature to deal with imperfect information based on different mathematical models and
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on different methods for transferring the conflicting mass onto admissible hypotheses of the
frame of the problem. DST [24, 25] was the first theory for combining uncertain information
expressed as basic belief assignments with Dempster’s rule.
Recently, DSmT [26] was developed to overcome the limitations of DST (mainly due to the
well-known inconsistency of Dempster’s rule for highly conflicting fusion problem and the limi-
tations of the Shafer’s model itself) and for combining uncertain, imprecise and possibly highly
conflicting sources of information for static or dynamic fusion applications. DSmT is actually
a natural extension of DST. The major differences between these two theories is on the nature
of the hypotheses of the frame Θ on which are defined the basic belief assignments (bba) m(.),
i.e. either on the power set 2Θ for DST or on the hyper-power set (Dedekind’s lattice., i.e. the
lattice closed by ∩ and ∪ set operators) DΘ for DSmT. Let’s consider a frame Θ = {θ1, . . . , θn}
of finite number of hypotheses assumed for simplicity to be exhaustive. Let’s denote GΘ the
classical power set of Θ (if we assume Shafer’s model with all exclusivity constraints between
elements of Θ) or denote GΘ the hyper-power set DΘ (if we adopt DSmT and we know that
some elements can’t be refined because of their intrinsic fuzzy and continuous nature). A basic
belief assignment m(.) is then defined as m : GΘ → [0, 1] with m(∅) = 0 and

∑
X∈GΘ m(X) = 1.

The differences between DST and DSmT lie in the model of the frame Θ one wants to deal with
but also in the rules of combination to apply. Recently in [30] the authors propose to connect
the combination rules for information fusion with particular fuzzy operators, focusing on the
T-norm based Conjunctive rule as an analog of the ordinary conjunctive rule of combination. It
is especially because the conjunctive rule is appropriate for identification problems, restricting
the set of hypotheses one is looking for. A new fusion rule, called Symmetric Adaptive Combi-
nation (SAC) rule, has been recently proposed in [16] which is an adaptive mixing between the
disjunctive and conjunctive rule.

The main fusion rules we have investigated in this work, already presented in details in Chapter
1 of this volume and in [26], are: Dempster’s rule, Yager’s rule, Dubois & Prade’s rule, Hybrid
DSm fusion rule, and PCR5 fusion rule. Moreover the two following fusion rules have been also
tested and analyzed in this work:

• T-Conorm-Norm fusion rule

The TCN (T-Conorm-Norm) rule represents a new class of combination rules based on
specified fuzzy T-Conorm/T-Norm operators. It does not belong to the general Weighted
Operator Class. This rule takes its source from the T-norm and T-conorm operators
in fuzzy logics, where the AND logic operator corresponds in information fusion to the
conjunctive rule and the OR logic operator corresponds to the disjunctive rule. The
general principle of the new TCN rule developed in [30] consists in the following steps :

– Step 1: Defining the min T-norm conjunctive consensus: The min T-norm conjunc-

tive consensus is based on the default min T-norm function. The way of association
between the focal elements of the given two sources of information is defined as
X = Xi ∩Xj , and the degree of association is as follows:

m̃(X) = min {m1(Xi),m2(Xj)}
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where m̃(X) represents2 the mass of belief associated to the given proposition X
by using T-Norm based conjunctive rule. The TCN Combination rule in Dempster
Shafer Theory framework is defined for ∀X ∈ 2Θ by the equation:

m̃(X) =
∑

Xi ∩ Xj = X

Xi, Xj ∈ 2
Θ

min {m1(Xi),m2(Xj)} (12.2)

– Step 2: Distribution of the mass, assigned to the conflict

The distribution of the mass, assigned to the obtained partial conflicts follows in
some degree the distribution of conflicting mass in DSmT Proportional Conflict Re-
distribution Rule 5 [27], but the procedure here is based on fuzzy operators. Let us
denote the two bbas, associated with the information sources in a matrix form:

[
m1(.)
m2(.)

]
=

[
m1(θ1) m1(θ2) m1(θ1 ∪ θ2)
m2(θ1) m2(θ2) m2(θ1 ∪ θ2)

]

The general procedure for fuzzy based PCR5 conflict redistribution is as follows:

∗ Calculate all partial conflicting masses separately;

∗ If θ1 ∩ θ2 = ⊘, then θ1 and θ2 are involved in the conflict; redistribute the
corresponding masses m12(θ1∩θ2) > 0 involved in the particular partial conflicts
to the non-empty sets θ1 and θ2 with respect to the maximum between m1(θ1)
and m2(θ2) and with respect to the maximum between m1(θ2) and m2(θ1) ;

∗ Finally, for the given above two sources the min T-Norm conjunctive consensus
yields:

m̃(θ1) = min(m1(θ1),m2(θ1))+min(m1(θ1),m2(θ1∪θ2))+min(m1(θ1∪θ2),m2(θ1))

m̃(θ2) = min(m1(θ2),m2(θ2))+min(m1(θ2),m2(θ1∪θ2))+min(m1(θ1∪θ2),m2(θ2))

m̃(θ1 ∪ θ2) = min(m1(θ1 ∪ θ2),m2(θ1 ∪ θ2))

∗ The basic belief assignment, obtained as a result of the applied TCN rule with
fuzzy based Proportional Conflict Redistribution Rule 5 becomes:

m̃PCR5(θ1) = m̃(θ1)+m1(θ1)×min(m1(θ1),m2(θ2))

max(m1(θ1),m2(θ2))
+m2(θ1)×min(m1(θ2),m2(θ1))

max(m1(θ2),m2(θ1))

m̃PCR5(θ2) = m̃(θ2)+m2(θ2)×min(m1(θ1),m2(θ2))

max(m1(θ1),m2(θ2))
+m1(θ2)×min(m1(θ2),m2(θ1))

max(m1(θ2),m2(θ1))

2We introduce in this chapter the over-tilded notation for masses to specify that the masses of belief are
obtained with fuzzy T-norm operator.



312 MTT IN CLUTTER BASED ON GDA

– Step 3: Normalization of the result:

The final step of the TCN rule concerns the normalization procedure:

m̃PCR5(X) =
m̃PCR5(X)∑

X 6= ⊘

X ∈ 2
Θ

m̃PCR5(X)
.

The nice features of the new rule could be defined as: very easy to implement, satisfying
the impact of neutrality of Vacuous Belief Assignment; commutative, convergent to idem-
potence, reflecting majority opinion, assuring an adequate data processing in case of total
conflict.

• Symmetric Adaptive Combination rule

The generic adaptive combination rule (ACR) is a mixing between the disjunctive and
conjunctive rule and it is defined by mACR(A) = 0 and ∀A ∈ 2Θ by:

mACR(A) = α(k12).m∪(A) + β(k12).m∩(A) ,

where α and β are functions of the conflict k12 = m∩(⊘) from [0, 1] to [0,+∞]. mACR(.)
must be a normalized bba(assuming a closed world) and a desirable behavior of ACR is
that it should act more like the disjunctive rule whenever k12 → 1 (at least one source
is unreliable), while it should act more like the conjunctive rule, when k12 → 0 (both
sources are reliable). The three following conditions have to be satisfied by the weighting
functions α and β:

– C1: α is increasing with α(0) = 0 and α(1) = 1;

– C2: β is decreasing with β(0) = 1 and β(1) = 0;

– C3: α(k12) = 1− (1− k12)β(k12).

A symmetric AC (SAC rule) with symmetric weightings for m∩(.) and m∪(.) is defined
by mSAC(⊘) = 0 and ∀A ∈ 2Θ by:

mSAC(A) = α0(k12).m∪(A) + β0(k12).m∩(A) ,

where

α0(k12) =
k12

1− k12 + k2
12

;

β0(k12) =
1− k12

1− k12 + k2
12

.

12.4 Simulation scenario and results

12.4.1 Simulation scenario

The simulation scenario (Fig.12.1) consists of eleven air targets with only two classes. The
stationary sensor is located at the origin. The sampling period is Tscan = 5 sec and measurement
standard deviations are 0.3 deg and 100 m for azimuth and range respectively. The targets go
from West to East in three groups with the following type order CFCFCFCFCFC (F=Fighter,
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C=Cargo) with constant velocity 100m/sec. The first group consists of three targets (CFC)
moving from North-West with heading 120 degrees from North. At scan number 15th the group
performs a maneuver with transversal acceleration 5.2m/s2 and settles towards East, moving in
parallel according to X axis. The second group consists of five closely spaced targets (FCFCF)
moving in parallel from West to East without maneuvering. The third group consists of three
targets (CFC) moving from South-West with heading 60 degrees from North. At scan number
15th the group performs a maneuver with transversal acceleration −5.2m/s2 and settles towards
East, moving in parallel according to X axis. The inter-distance between the targets during
scans 17th - 48th (the parallel segment) is approximately 300 m. At scan number 48th the
first and the third group make new maneuvers. The first one is directed to North-East and
the second - to South-East. Process noise standard deviations for the two nested models for
constant velocity IMM are 0.1m/s2 and 7m/s2 respectively. The number of false alarms (FA)
follows a Poisson distribution and FA are uniformly distributed in the surveillance region.
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Figure 12.1: Multitarget Scenario with eleven targets

Monte Carlo simulations are made for two different average values of Radar Cross Section in or-
der to obtain the confusion matrix in terms of the first frame of hypotheses Θ1 = {Small,Big}.
According to the fuzzy rules in [26, 29], defining the correspondence between Radar Cross Sec-
tion values and the respective targets’ types, the confusion matrix in terms of the second frame
of hypotheses Θ2 = {Fighter, Cargo} is constructed. The two simulation cases correspond to
the following parameters for the probability of target detection, the probability of false alarms
and the confusion matrices:

• Case 1: Pd = 1.0, Pfa = 0.0, T1 =

[
0.995 0.005
0.005 0.995

]

• Case 2: Pd = 0.98, Pfa = 1.e−5, T2 =

[
0.95 0.05
0.05 0.95

]
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12.4.2 Simulation results

In this section we present and discuss the simulation results for 100 Monte Carlo runs. The
evaluation of fusion rules’ performance is based on the criteria of tracks’ purity, tracks’ life,
percentage of miscorrelation and variation of pignistic entropy in confirmed tracks’ attribute
states. Track’s purity criteria examines the ratio between the number of particular performed
(observation j-track i) associations (in case of detected target) over the total number of all
possible associations during the tracking scenario. Track’s life is evaluated as an average number
of scans before track’s deletion. The track deletion is performed after the a priori defined number
(in our case it is assumed to be 3) of incorrect associations or missed detections. The percentage
of miscorrelation examines the relative number of incorrect (observation-track) associations
during the scans. The results for GDA are obtained by different fusion rules. Relying on our
previous work [26, 29], where the performance of DSm Classic and DSm Hybrid rules were
examined, in the present work the attention is directed to the well-known Dempster’s rule,
Yager’s, Dubois & Prade’s, and especially to PCR5 and the new TCN and SAC rules. From
results presented in Tables 12.1-12.4 in next sections, it is obvious that for both cases 1 and 2
the track’s purity and tracks’ life in the case of KDA-MTT are significantly lower with respect
to all GDA-MTT, and a higher percentage of miscorrelation is obtained with KDA-MTT than
with GDA-MTT. The figures 12.2 and 12.3 show typical tracking performances for KDA-MTT
and GDA-MTT systems.

Figure 12.2: Typical performance with KDA-MTT

12.4.2.1 Simulation results for case 1

Case no. 1 is characterized by maximum probability of target detection, Pd = 1, probability of

false alarms Pfa = 0, and well defined confusion matrix: T1 =

[
0.995 0.005
0.005 0.995

]
. The problem
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Figure 12.3: Typical performance with GDA-MTT

consists in the proximity of the targets (inter-distance of 300 m) with bad sensor distance
resolution (σD = 100m). It results in cross-associations. The Monte Carlo results on track
purity based on KDA-MTT and on GDA-MTT (based on PCR5, Dempster’s (DS), Yager’s
(Y),Dubois & Prade’s (DP) rule (DP) rules3, DSmH) rule and the new TCN and SAC fusion
rules) are given in Table 12.1. Each number of the table gives the ratio of correct measurement-
target association for a given target and a given MTT algorithm and the last row of the table
provides the average purity performance for all targets and for each algorithm.
One can see that the corresponding fields for results obtained via Dempster’s rule of combination
are empty (see Tables 12.1-12.4). There are two major reasons for this:

1. The case of increasing intrinsic conflicts between the fused bodies of evidence (generalized
basic belief assignments of targets’ tracks histories and new observations), yields a poor
targets tracks’ performance. The situation when this conflict becomes unity, is a stressful,
but a real one. It is the moment, when Dempster’s rule produces indefiniteness. The fusion
process stops and the attribute histories of tracking tracks cannot be updated. As a result
the whole tracking process corrupts. Actually in such a case there is a need of an artificial
break and intervention into the real time tracking process, which could cause noncoherent
results. Taking into account all these particularities, we can summarize that the fusion
process within DST is not fluent and cannot be controlled without prior unjustified and
artificial assumptions and some heuristic engineering tricks. As a consequence no one of
the performance criteria cannot be evaluated.

2. In case when in the updated track’s attribute history one of the hypotheses in the frame of

3Yager’s rule, Dubois & Prade’s (DP) rule, DSmH) rule coincide in our example because we are working with
only a 2D specific classes frame Θ2. This is normal. In general, Yager’s, DP and DSmH) do no longer coincide
when the cardinality of the frame becomes greater than two.
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the problem is supported by unity, from this point on, Dempster’s rule becomes indifferent
to all observations, detected during the next scans. It means, the track’s attribute history
remains unchanged regardless of the new observations. It is a dangerous situation, which
hides the real opportunity for producing the non-adequate results.

KDA PCR5 TCN SAC DS DSmH/Y/DP/
T1 0.4102 0.9971 0.9971 0.9971 - 0.9971
T2 0.3707 0.9966 0.9769 0.9955 - 0.9953
T3 0.4226 0.9990 0.9793 0.9979 - 0.9978
T4 0.6198 0.9998 0.9703 0.9903 - 0.9903
T5 0.5826 0.9997 0.9541 0.9902 - 0.9867
T6 0.5836 1.0000 0.9743 1.0000 - 0.9964
T7 0.6174 1.0000 0.9500 0.9900 - 1.0000
T8 0.6774 0.9847 0.9478 0.9671 - 0.9847
T9 0.4774 0.9426 0.9478 0.8812 - 0.9410
T10 0.4241 0.9543 0.9645 0.7729 - 0.9528
T11 0.4950 0.9595 0.9581 0.8238 - 0.9595

Average 0.5164 0.9848 0.9655 0.9460 - 0.9820

Table 12.1: Track’s purity for KDA and GDA-MTT (case 1)

The results of the percentage of track’s life duration and miscorrelation are given in Table 12.2.

Trackers Track Life [%] MisCor [%]
KDA-MTT 58.15 48.36
GDAPCR5-MTT 98.75 1.52
GDATCN -MTT 97.03 3.45
GDASAC -MTT 95.23 5.40
GDADS-MTT - -
GDADSm/Y/DP -MTT 98.52 1.80

Table 12.2: Average Track’s life and Miscorrelations (case 1)

The figure 12.4 shows the average variation of pignistic entropy in tracks’ attribute histories
during the scans, obtained by using different fusion rules (PCR5, TCN, SAC and DSmH/Y/DP).
Looking on the results achieved according to GDA-MTT, it can be underlined that :

1. The tracks’ purity, obtained by PCR5 and DSmH/Y/DP rules outperform the tracks’
purity results obtained by using all other rules. In this 2D frame case based on Shafer’s
model DSmH/Y/DP tracks’ purity results are equal which is normal. The TCN rule leads
to a small (approximately 2 percent) decrease in GDA performance.

2. According to Table 12.2, the average tracks’ life and the percentage of miscorrelation
related to the performance of the PCR5 rule are a little bit better than the DSmH/Y/DP,
and outperforms all other rules’ results (approximately with 2 percent for TCN and with
3 percent for SAC rule).

3. According to the average values of pignistic entropy, associated with updated tracks’ at-
tribute histories during the consecutive scans (Fig.12.4), one can see that it is character-
ized with small values (for all fusion rules), in the interval [0, 0.05]. The entropy, obtained
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Figure 12.4: Average variation of Pignistic Entropy in tracks’ attribute histories

via PCR5 and SAC rules demonstrates smallest values, approaching zero, following by
DSmH/Y/DP and TCN fusion rules.

12.4.2.2 Simulation results for case 2

Case no. 2 (Pd = 0.98, Pfa = 1.e−5, T2 =

[
0.95 0.05
0.05 0.95

]
) is more difficult than case no.1 since

the presence of false alarms and missed target detections significantly degrade the process of
data association even in the case of GDA. But in comparison with KDA, one can see in Table
12.3 that the use of the attribute type information still helps to reduce the cross-associations
and increases the track’s purity performance. PCR5 rule behaves stable and keeps its best
performance in this difficult case, followed by DSmH/Y/DP, SAC and TCN rules. While in
case 1, the TCN performs very well (following PCR5 and DSmH/Y/DP), in case 2 it shows
poor tracks’ purity results, because of the fuzzy based processing and the confusion matrix’s
influence. The results of tracks’ life duration and miscorrelation are given in Table 12.4.

The figure 12.5 shows the average variation of pignistic entropy in tracks’ attribute histories
during the scans, obtained by using different fusion rules (PCR5, TCN, SAC and DSmH/Y/DP)
in case 2.
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KDA PCR5 TCN SAC DS DSmH/Y/DP/
T1 0.3055 0.8138 0.3660 0.3971 - 0.6431
T2 0.2717 0.7921 0.3219 0.3657 - 0.6252
T3 0.3338 0.7907 0.3657 0.4024 - 0.6550
T4 0.5114 0.8778 0.5074 0.6707 - 0.7709
T5 0.4022 0.8164 0.4071 0.6074 - 0.7209
T6 0.3712 0.8055 0.4588 0.6298 - 0.6922
T7 0.4069 0.8098 0.4464 0.6043 - 0.6921
T8 0.4545 0.8367 0.4974 0.6179 - 0.7359
T9 0.7436 0.7436 0.4253 0.4886 - 0.6310
T10 0.3040 0.7055 0.3931 0.4397 - 0.6202
T11 0.3697 0.7621 0.4566 0.5086 - 0.6414

Average 0.3742 0.7958 0.4223 0.5211 - 0.6753

Table 12.3: Track’s purity for KDA and GDA-MTT (case 2)

Trackers Track Life [%] MisCor [%]
KDA-MTT 45.87 62.58
GDAPCR5-MTT 84.26 20.42
GDATCN -MTT 50.34 57.77
GDASAC -MTT 59.26 47.89
GDADS-MTT - -
GDADSm/Y/DP -MTT 73.29 32.47

Table 12.4: Average Track’s life and Miscorrelations (case 2)

The variation of pignistic entropy in updated tracks’ attribute histories, based on all fusion rules
starts with peaks, because of the full ignorance, encountered in initial tracks’ attribute states
(initial tracks’ histories). During the next 3-4 scans it decreases gradually and settles in the
interval [0.05 − 0.3]. The pignistic entropies, obtained by PCR5 and SAC rules show smallest
values. It means that in this more difficult case 2, PCR5 and SAC rules lead to results which
are more informative in comparison with the other rules.

12.5 Conclusions

In this paper a comparison of the performances of different fusion rules is presented and com-
pared in order to assess their efficiency for GDA for MTT in highly conflicting situations in
clutter. A model of an attribute type classifier is considered on the base of particular input
fuzzification interface according to the target RCS values and on fuzzy rule base according to
the target type. A generalized likelihood ratio is obtained and included in the process of GDA.
The classification results rely on the confusion matrix specifying the accuracy of the classifier
and on the implemented fusion rules (Dempster’s, Yager’s, Dubois & Prade’s, DSmH), PCR5,
TCN and SAC). The goal was to examine their advantages and milestones and to improve
association results. This work confirms the benefits of attribute utilization and shows some
hidden drawbacks, when the sources of information remain in high conflict, especially in case
of using Dempster’s rule of combination. In clutter-free environment with maximum of target
detection probability and very good classifier quality, the results, according to the performance
criteria, obtained via PCR5 rule outperform the corresponding results obtained by using all
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Figure 12.5: Average variation of Pignistic Entropy in tracks’ attribute histories

the other combination rules tested. When tracking conditions decrease (presence of clutter,
missed target detections with lower classifier quality), the PCR5 fusion rule still provides the
best performances with respect to other rules tested for our new GDA-MTT algorithm. This
work reveals also the real difficulty to define and to choose an unique or a multiple performance
criteria for the fair evaluation of different fusion rules. Actually the choice of the fusion rule is
in practice highly conditioned by the performance criteria that the system designer considers
as the most important for his application. More efforts on multicriteria-based methods for per-
formance evaluation are under investigations. Further works on GDA-MTT would be to define
some precise benchmark for difficult multitarget tracking and classification scenarios and to see
if the recent MITM approach (i.e. RMIMM coupled with MAJPDA) can be improved by our
new generalized data association method.
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Abstract: We analyze the behavior of several combinational rules for temporal/se-
quential attribute data fusion for target type estimation. Our comparative analysis
is based on: Dempster’s fusion rule, Proportional Conflict Redistribution rule no.
5 (PCR5), Symmetric Adaptive Combination (SAC) rule and a new fusion rule,
based on fuzzy T-conorm and T-norm operators (TCN). We show through very sim-
ple scenario and Monte-Carlo simulation, how PCR5, TCN and SAC rules allow
a very efficient Target Type Tracking and reduce drastically the latency delay for
correct Target Type decision with respect to Demspter’s rule. For cases presenting
some short Target Type switches, Demspter’s rule is proved to be unable to detect
the switches and thus to track correctly the Target Type changes. The approach
proposed here is totally new, efficient and promising to be incorporated in real-time
Generalized Data Association - Multi Target Tracking systems (GDA-MTT). The
Matlab source code of simulations is freely available upon request to authors and
part of this code can also be found in [5].

This work is partially supported by the Bulgarian National Science Fund-grants MI-1506/05, EC FP6 funded
project - BIS21++ (FP6-2004-ACC-SSA-2). This chapter is an extended version of [5].
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13.1 Introduction

The main purpose of information fusion is to produce reasonably aggregated, refined and/or
complete granule of data obtained from a single or multiple sources with consequent reasoning
process, consisting in using evidence to choose the best hypothesis, supported by it. Data As-
sociation (DA) with its main goal to partitioning observations into available tracks becomes a
key function of any surveillance system. An issue to improve track maintenance performances
of modern Multi Target Trackers (MTT) [1, 2], is to incorporate Generalized Data1 Association
(GDA) in tracking algorithms [15]. At each time step, GDA consists in associating current (at-
tribute and kinematics) measurements with predicted measurements (attributes and kinematics)
for each target. GDA can be actually decomposed into two parts [15]: Attribute-based Data
Association (ADA) and Kinematics-based Data Association (KDA). Once ADA is obtained, the
estimation of the attribute/type of each target must be updated using a proper and an efficient
fusion rule. This process is called attribute tracking and consists in combining information col-
lected over time from one (or more) sensor to refine the knowledge about the possible changes of
the attributes of the targets. We consider here the possibility that the attributes tracked by the
system can change over time, like the color of a chameleon moving in a variable environment.
In some military applications, target attribute can change since for example it can be declared
as neutral at a given scan and can become a foe several scans later; or like in the example
considered in this chapter, a tracker can become mistaken when tracking several closely-spaced
targets and thus could eventually track sequentially different targets observing that way a true
sequence of different types of targets. In such a case, although the attribute of each target
is invariant over time, at the attribute-tracking level the type of the target committed to the
(hidden unresolved) track varies with time and must be tracked efficiently to help to discrimi-
nate how many different targets are hidden in the same unresolved track. Our motivation for
attribute fusion is inspired from the necessity to ascertain the targets’ types, information, that
in consequence has an important implication for enhancing the tracking performance. Combi-
nation rules are special types of aggregation methods. To be useful, one system has to provide
a way to capture, analyze and utilize through the fusion process the new available data (evi-
dence) in order to update the current state of knowledge about the problem under consideration.

Dempster-Shafer Theory (DST) [10] is one of widely used frameworks in target tracking
when one wants to deal with uncertain information and take into account attribute data and/or
human-based information into modern tracking systems. DST, thanks to belief functions, is well
suited for representing uncertainty and combining information, especially in case of low con-
flicts between the sources (bodies of evidence) with high beliefs. When the conflict increases2

and becomes very high (close to 1), Dempster’s rule yields unfortunately unexpected, or what
authors feel, counter-intuitive results [11, 17]. Dempster’s rule also presents difficulties in its
implementation/programming because of unavoidable numerical rounding errors due to the fi-
nite precision arithmetic of our computers.
To overcome the drawbacks of Dempster’s fusion rule and in the meantime extend the domain
of application of the belief functions, we have proposed recently a new mathematical framework,
called Dezert-Smarandache Theory (DSmT) with a new set of combination rules, among them
the Proportional Conflict Redistribution no. 5 which proposes a sophisticated and efficient so-

1Data being kinematics and attribute.
2Which often occurs in Target Type Tracking problem as it will be shown in the sequel.
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lution for information fusion as it will be shown further. The basic idea of DSmT is to work on
Dedekind’s lattice (called Hyper-Power Set) rather than on the classical power set of the frame
as proposed in DST and, when needed, DSmT can also take into account the integrity con-
straints on elements of the frame, constraints which can also sometimes change over time with
new knowledge. Hence DSmT deals with uncertain, imprecise and high conflicting information
for static and dynamic fusion as well [3, 4, 11].

Recently in [16] the authors propose to connect the combination rules for information fusion
with particular fuzzy operators. These rules take their source from the T-norm and T-conorm
operators in fuzzy logics, where the AND logic operator corresponds in information fusion to
the conjunctive rule and the OR logic operator corresponds to the disjunctive rule. While
the logic operators deal with degrees of truth and false, the fusion rules deal with degrees of
belief of hypotheses. In [16] the focus is on the T-norm based Conjunctive rule as an analog
of the ordinary conjunctive rule of combination. It is appropriate for identification problems,
restricting the set of hypotheses one is looking for. A new fusion rule, called Symmetric Adaptive
Combination (SAC) rule, has been recently proposed in [7] which is an adaptive mixing between
the disjunctive and conjunctive rule. This rule acts more like the disjunctive rule whenever at
least one source is unreliable, while it acts more like the conjunctive rule, when both sources
are reliable. In the next section we present briefly the basics of DST and DSmT. In section
13.3, we present the Target Type Tracking problem and examine four solutions to solve it; the
first solution being based on Dempster’s rule and the next ones based on PCR5, TCN and SAC
rules. In section 13.4, we evaluate all the solutions on a very simple academic but checkable3

example and provide a comparative analysis on Target Type Tracking performances obtained
by Dempster’s, PCR5, TCN and SAC rules. Concluding remarks are given in section 13.5.

13.2 Fusion Rules proposed for Target Type Tracking

13.2.1 Basics on DST and DSmT

Shafer’s model, denoted here M0(Θ), in DST [10] considers Θ = {θ1, . . . , θn} as a finite set of
n exhaustive and exclusive elements representing the possible states of the world, i.e. solutions
of the problem under consideration. Θ is called the frame of discernment by Shafer. In DSmT
framework [11], one starts with the free DSm model Mf (Θ) where Θ = {θ1, . . . , θn} (called
simply frame) is only assumed to be a finite set of n exhaustive elements4. If one includes some
integrity constraints in Mf (Θ), say by considering θ1 and θ2 truly exclusive (i.e. θ1 ∩ θ2 = ∅),
then the model is said hybrid. When we include all exclusivity constraints on elements of Θ,
Mf (Θ) reduces to Shafer’s model M0(Θ) which can be viewed actually as a particular case of
DSm hybrid model. Between the free-DSm model and the Shafer’s model, there exists a wide
class of fusion problems represented in term of DSm hybrid models where Θ involves both fuzzy
continuous hypothesis and discrete hypothesis.

Based on Θ and Shafer’s model, the power set of Θ, denoted 2Θ, is defined as follows:

3Our Matlab source code is available upon request to help the reader to check by him/herself the validity of
our results. Part of this code can be also found [5].

4The exclusivity assumption is not fundamental in DSmT because one wants to deal with elements which
cannot be refined into precise finer exclusive elements - see [11] for discussion.
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1) ∅, θ1, . . . , θn ∈ 2Θ.

2) If X,Y ∈ 2Θ, then X ∪ Y belong to 2Θ.

3) No other elements belong to 2Θ, except those obtained by using rules 1) or 2).

In DSmT and without additional assumption on Θ but the exhaustivity of its elements
(which is not a crucial assumption), we define the hyper-power set, i.e. Dedekind’s lattice, DΘ

as follows:

1’) ∅, θ1, . . . , θn ∈ DΘ.

2’) If X,Y ∈ DΘ, then X ∩ Y and X ∪ Y belong to DΘ.

3’) No other elements belong to DΘ, except those obtained by using rules 1’) or 2’).

When Shafer’s modelM0(Θ) holds, DΘ reduces to the classical power set 2Θ. Without loss
of generality, we denotes GΘ the general set on which will be defined the basic belief assignments
(or masses), i.e. GΘ = 2Θ if Shafer’s model is adopted whereas GΘ = DΘ if some other (free or
hybrid) DSm models are preferred depending on the nature of the problem.

From a frame Θ, we define a (general) basic belief assignment (bba) as a mapping m(.) :
GΘ → [0, 1] associated to a given source, say s, of evidence as

ms(∅) = 0 and
∑

X∈GΘ

ms(X) = 1 (13.1)

ms(X) is the gbba of X committed by the source s. The elements of G having a strictly positive
mass are called focal elements of source s. The set F of all focal elements is the core (or kernel)
of the belief function of the source s.

The belief and plausibility of any proposition X ∈ GΘ are defined5 as:

Bel(X) ,
∑

Y⊆X
Y ∈GΘ

m(Y ) and Pl(X) ,
∑

Y ∩X 6=∅
Y ∈GΘ

m(Y ) (13.2)

These definitions remain compatible with the classical Bel(.) and Pl(.) functions proposed
by Shafer in [10] whenever Shafer’s model is adopted for the problem under consideration since
GΘ reduces to 2Θ.

13.2.2 Fusion rules

A wide variety of rules exists for combining basic belief assignments [9, 12, 14] and the purpose
of this chapter is not to browse in details all fusion rules but only to analyze and compare the
main ruels used with DST and DSmT approaches (Dempster’s, PCR5, SAC rules) and the TCN
fusion rule. Since these rules have already been presented in details in chapters 1 and 12, they
will not be repeated in this chapter. Our main goal is to show their performance on a very
simple Target Type Tracking example.

5The index of the source has been omitted for simplicity.
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13.3 The Target Type Tracking Problem

13.3.1 Formulation of the problem

The Target Type Tracking Problem can be simply stated as follows:

• Let k = 1, 2, ..., kmax be the time index and consider M possible target types Ti ∈ Θ =
{θ1, . . . , θM} in the environment; for example Θ = {Fighter, Cargo} and T1 , Fighter,
T2 , Cargo; or Θ = {Friend, Foe,Neutral}, etc.

• at each instant k, a target of true type T (k) ∈ Θ (not necessarily the same target) is
observed by an attribute-sensor (we assume a perfect target detection probability here).

• the attribute measurement of the sensor (say noisy Radar Cross Section for example) is
then processed through a classifier which provides a decision Td(k) on the type of the
observed target at each instant k.

• The sensor is in general not totally reliable and is characterized by a M ×M confusion
matrix

C = [cij = P (Td = Tj |True Target Type = Ti)]

Question: How to estimate T (k) from the sequence of declarations obtained from the unreliable
classifier up to time k, i.e. how to build an estimator T̂ (k) = f(Td(1), . . . , Td(k)) of T (k) ?

13.3.2 Proposed issues

We propose in this work four methods for solving the Target Type Tracking Problem. All meth-
ods assume the same Shafer’s model for the frame of Target Types Θ and also use the same
information (vacuous belief assignment as prior belief and same sequence of measurements, i.e.
same set of classifier declarations to get a fair comparative analysis). Three of proposed issues
are based on the ordinary combination of belief functions and the fourth - on a new class of
fusion rules, based on particular fuzzy operations.

The principle of our estimators is based on the sequential combination of the current basic
belief assignment (drawn from classifier decision, i.e. our measurements) with the prior bba
estimated up to current time from all past classifier declarations. In the first approach, the
Demspter’s rule is used for estimating the current Target type, while in the next three ap-
proaches we use PCR5, TCN and SAC rules.

Here is how our Target Type Tracker (TTT) works:

a) Initialization step (i.e. k = 0). Select the target type frame Θ = {θ1, . . . , θM} and set the
prior bba m−(.) as vacuous belief assignment, i.e m−(θ1 ∪ . . . ∪ θM) = 1 since one has no
information about the first target type that will be observed.

b) Generation of the current bba mobs(.) from the current classifier declaration Td(k) based
on attribute measurement. At this step, one takes mobs(Td(k)) = cTd(k)Td(k) and all the
unassigned mass 1−mobs(Td(k)) is then committed to total ignorance θ1 ∪ . . . ∪ θM .
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c) Combination of current bba mobs(.) with prior bba m−(.) to get the estimation of the
current bba m(.). Symbolically we will write the generic fusion operator as ⊕, so that
m(.) = [mobs ⊕ m−](.) = [m− ⊕ mobs](.). The combination ⊕ is done according either
Demspter’s rule (i.e. m(.) = mD(.)) or PCR5, SAC and TCN rules (i.e. m(.) = mPCR5(.),
m(.) = mSACR(.) and m̃(.) = mTCN (.)).

d) Estimation of True Target Type is obtained from m(.) by taking the singleton of Θ,
i.e. a Target Type, having the maximum of belief (or eventually the maximum Pignistic
Probability6 [11]).

e) set m−(.) = m(.); do k = k + 1 and go back to step b).

13.4 Simulation results

In order to evaluate the performances of all considered estimators and to have a fair comparative
analysis of all fusion rules (Dempster’s, PCR5, TCN and SAC), we did a set of Monte-Carlo
simulations on a very simple scenario for a 2D Target Type frame, i.e. Θ = {(F )ighter, (C)argo}
for two classifiers, a good one C1 and a poor one C2 corresponding to the following confusion
matrices:

C1 =

[
0.995 0.005
0.005 0.995

]
and C2 =

[
0.65 0.35
0.35 0.65

]

In our scenario we consider that there are two closely-spaced targets: one Cargo (C) and
one Fighter(F). Due to circumstances, attribute measurements received are predominately from
one or another, and both target generates actually one single (unresolved kinematics) track.
In the real world, the tracking system should in this case maintain two separate tracks: one
for cargo and one for fighter, and based on the classification, allocate the measurement to the
proper track. But in difficult scenario like this one, there is no way in advance to know the
true number of targets because they are unresolved and that’s why only a single track is main-
tained. Of course, the single track can further be split into two separate tracks as soon as
two different targets are declared based on the attribute tracking. This is not the purpose of
our work however since we only want to examine how work PCR5, TCN, SAC and Dempster’s
rules for Target Type Tracking. To simulate such scenario, a true Target Type sequence (the
groundtruth) over 100 scans was generated according figures 13.1, 13.2, 13.3 and 13.4 below.
The sequence starts with the observation of a Cargo Type (i.e. we call it Type 2) and then the
observation of the Target Type switches onto Fighter Type (we call it Type 1) with different
time step T [scans] as follows: (Fig.13.1 - T has a variable number of scans, Fig.13.2 - T = 10
scans, Fig.13.3 - T = 5 scans and Fig.13.4 - T = 3 scans). Our goal is to investigate what is
the behavior of different fusion rules in case of variable switches’ time step and also in cases of
equal switches’ time step, when target type changes appear to be more frequent, or in other
words, to test until which point the proposed fusion rules are able to detect and to adapt to the
occurring type’s changes. As a simple analogy, tracking the target type changes committed to
the same (hidden unresolved) track can be interpreted as tracking color changes of a chameleon
moving in a tree on its leaves and on its trunk.

6We don’t provide here the results based on Pignistic Probabilities since in our simulations the conclusions
are unchanged when working with max. of belief or max. of Pign. Proba.
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Our simulation consists of 1000 Monte-Carlo runs and we compute and show in the sequel
the averaged performances of the four fusion rules. At each time step k the decision Td(k) is
randomly generated according to the corresponding row of the confusion matrix of the classifier
given the true Target Type (known in simulations). Then the algorithm presented in the
previous section is applied. The complete Matlab source code of our simulation is freely available
upon request to authors.
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Figure 13.1: Sequence of True Target Type, T -variable number of scans

13.4.1 Results for classifier 1

Figures 13.5 - 13.8 show the belief masses, committed to Cargo type, obtained by our Target
Type Trackers based on Demspter’s rule (red curves -x-), PCR5 rule (blue curves -pentagram-),
TCN rule (green curves -diamond-), SAC rule (magenta curves -o-). Figures 13.9 - 13.12 show
the belief masses, committed to Fighter type. The investigations are for periods of target type
switches respectively: figures 13.5 and 13.9 for T -variable time step; figures 13.6 and 13.10 for
T = 10 scans; figures 13.7 and 13.11 for T = 5 scans; figures 13.8 and 13.12 for T = 3 scans.
The target type classifier is C1.

It can be seen that the TTT based on Dempster’s rule and for a very good classifier is unable
to track properly the quick changes of target type. This phenomenon is due to the too long
integration time necessary to the Demspter’s rule for recovering the true belief estimation.

Demspter’s rule presents a very long latency delay (about 8 scans in case of T = 10 scans)
as we can see during the first type switch when almost all the basic belief mass is committed
onto only one element of the frame. This rule does not provide a symmetric target type esti-
mation - it is evident that graphics representing the estimated probability masses before and
after the switching points are not settled in interval around the expected average value of mass
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Figure 13.2: Sequence of True Target Type, T = 10 scans
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Figure 13.3: Sequence of True Target Type, T = 5 scans

m(C) = 0.5. In this case of very good target type classifier SAC rule, followed by PCR5 and
TCN rules can quickly detect the type changes. They properly re-estimate the belief masses,
providing a symmetric type estimation contrariwise to Dempster’s rule. So in this configuration
the TTT based on Demspter’s rule works almost blindly since it is unable to detect the fighter
in most of scans where the true target type is a Fighter.
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Figure 13.4: Sequence of True Target Type, T = 3 scans

Figures 13.5-13.12 show clearly the efficiency of PCR5, SAC and TCN rules with respect to
Demspter’s rule. Comparing the results obtained for T with variable time step, T = 10scans,
T = 5scans and T = 3scans, one can make the conclusion, that the processes of reacting and
adapting to the type changes for PCR5, TCN and SAC rules do not depend on the duration of
switching interval. Their behavior is quite stable and effective.
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Figure 13.5: Belief mass for Cargo Type,T -variable step, case 1
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Figure 13.6: Belief mass for Cargo Type, T = 10 scans, case 1
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Figure 13.7: Belief mass for Cargo Type, T = 5 scans, case 1
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Figure 13.8: Belief mass for Cargo Type, T = 3 scans, case 1
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Figure 13.9: Belief mass for Fighter Type,T -variable step, case 1
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Figure 13.10: Belief mass for Fighter Type, T = 10 scans, case 1
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Figure 13.11: Belief mass for Fighter Type, T = 5 scans, case 1
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Figure 13.12: Belief mass for Fighter Type, T = 3 scans, case 1
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13.4.2 Results for classifier 2

Figures 13.13 - 13.16 show the belief masses, committed to Cargo type, obtained by our Target
Type Trackers based on Demspter’s rule (red curves -x-), PCR5 rule (blue curves -pentagram-),
TCN rule (green curves -diamond-), SAC rule (magenta curves -o-). Figures 13.17 - 13.20 show
the belief masses, committed to Fighter type. The investigations are for periods of target type
switches respectively: figures 13.13 and 13.17 - for T with variable time step, figures 13.14 and
13.18 - for T = 10 scans, figures 13.15 and 13.19 - for T = 5 scans, figures 13.16 and 13.20 - for
T = 3 scans. The target type classifier is C2.

Paradoxically, we can observe that Demspter’s rule seems to work better with a poor clas-
sifier than with a good one, because we can see from the red curves that Dempster’s rule in
that case produces small change detection peaks (with always an important latency delay al-
though). This phenomenon is actually not so surprising and comes from the fact that the
belief mass of the true type has not well been estimated by Dempster’s rule (since the mass
is not so close to its extreme value) and thus the bad estimation of Target Type facilitates
the ability of Dempster’s rule to react to new incoming information and detect changes. An
asymetric Target type estimation is detected as in the case of a very good classifier. When from
Demspter’s rule, one obtains an over-confidence onto only one focal element of the power-set,
it then becomes very difficult for the Dempster’s rule to readapt automatically, efficiently and
quickly to any changes of the state of the nature which varies with the time and this behavior
is very easy to check either analytically or through simple simulations. The major reason for
this unsatisfactory behavior of Dempster’s rule can be explained with its main weakness: coun-
terintuitive averaging of strongly biased evidence, which in the case of poor classifier is not valid.

What is important according to the performances of PCR5, TCN and SAC rule is that in
this case of the poor classifier PCR5 provides the best adaptation to the type changes and
quick re-estimation of probability mass, assigned to corresponding target type. It is followed
by TCN rule. Both of the rules (PCR5 and TCN) provide a symmetric type estimation in
term of probability mass. In the same time SAC rule reacts more slowly than PCR5 and TCN
and demonstrates the bad behavior of Dempster’s rule, providing an asymetric target type
estimation. The process of reacting and adapting to the type changes for PCR5, TCN and SAC
rules do not depend on the duration of switching interval even in the case of considered poor
classifier.
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Figure 13.13: Belief mass for Cargo Type, T -variable step, case 2
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Figure 13.14: Belief mass for Cargo Type, T = 10 scans, case 2



338 TARGET TYPE TRACKING

10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

Scan number

P
ro

ba
bi

lit
y 

M
as

s,
 a

ss
ig

ne
d 

to
 C

ar
go

 m
(C

)

Estimation of Belief assignment for Cargo Type Groundtruth

Demspter’s rule

SAC rule

PCR5 rule

TCNPCR5−based rule

Figure 13.15: Belief mass for Cargo Type, T = 5 scans, case 2
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Figure 13.16: Belief mass for Cargo Type, T = 3 scans, case 2
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Figure 13.17: Belief mass for Fighter Type, variable step, case 2
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Figure 13.18: Belief mass for Fighter Type, T = 10scans, case 2
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Figure 13.19: Belief mass for Fighter Type, T = 5scans, case 2

10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

Scan Number

P
ro

ba
bi

lit
y 

M
as

s,
 a

ss
ig

ne
d 

to
 F

ig
ht

er
 m

(F
)

Estimation of Belief Assignment for Fighter Type Groundtruth

Demspter’s rule

SAC rule

PCR5 rule

TCNPCR5−based rule

Figure 13.20: Belief mass for Fighter Type, T = 3 scans, case 2
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13.5 Conclusions

Four Target Type Trackers (TTT) have been proposed and compared in this chapter. Our
trackers are based on four combinational rules for temporal attribute data fusion for target type
estimation: 1) Dempster’s rule drawn from Dempster-Shafer Theory (DST); 2) Proportional
Conflict Redistribution rule no. 5, PCR5 rule drawn from Dezert-Smarandache Theory (DSmT);
3) new class fusion rule, based on fuzzy T-Conorm and T-Norm operators (TCN); 4) new
Symmetric Adaptive Combination (SAC) rule, drawn as a particular mixture of disjunctive and
conjunctive rules. Our comparative analysis shows through a very simple scenario and Monte-
Carlo simulation that PCR5, TCN and SAC rules allow a very efficient Target Type Tracking,
reducing drastically the latency delay for correct Target Type decision, while Dempster’s rule
demonstrates risky behavior, keeping indifference to the detected target type changes. The
temporal fusion process utilizes the new knowledge in an incremental manner and hides the
possibility for arising bigger conflicts between the new incoming and the previous updated
evidence. Dempster’s rule cannot detect quickly and efficiently target type changes, and thus
to track them correctly. It hides the risk to produce counter-intuitive and non adequate results.
Dempster’s rule and the SAC rule do not provide a symmetric target type estimation. Our
PCR5/TCN/SAC-based Target Type Trackers are totally new, efficient and promising to be
incorporated in real-time Generalized Data Association - Multi Target Tracking systems (GDA-
MTT). The process of reacting and adapting to the type changes for PCR5, TCN and SAC
rules do not depend on the duration of switching interval in both cases - of well defined and of
poor classifier. It provides an important result on the behavior of these three rules with respect
to Dempster’s rule.
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Chapter 14

A DSmT-based Fusion Machine for
Robot’s Map Reconstruction

Xinhan Huang, Xinde Li, Min Wang
Intelligent Control and Robotics Laboratory,

Department of Control Science and Engineering,
Huazhong University of Science and Technology,

Wuhan 430074, China.

Abstract: Characteristics of uncertainty and imprecision, even imperfection is
presented from knowledge acquisition in map reconstruction of autonomous mobile
robots. Especially in the course of building grid map using sonar, this characteristic
of uncertainty is especially servere. Jean Dezert and Florentin Smarandache have
recently proposed a new information fusion theory (DSmT), whose greatest merit is
to deal with uncertainty and conflict of information, and also proposed a series of
proportional conflict redistribution rules (PRC1∼PCR5), therein, presently PCR5
is the most precise rule to deal with conflict factor according to its authors, though
the complexity of computation might be increased correspondingly. In this chapter,
according to the fusion machine based on the theory of DSmT coupled with PCR5,
we not only can fuse information of the same reliable degree from homogeneous
or heterogeneous sensors, but also the different reliable degree of evidential sources
with the discounting theory. Then we established the belief model for sonar grid map,
and constructed the generalized basic belief assignment function (gbbaf). Pioneer II
virtual mobile robot with 16 sonar range finders on itself served as the experiment
platform, which evolves in a virtual environment with some obstacles (discernable
objects) and 3D Map was rebuilt online with our self-developing software platform.
At the same time, we also compare it from other methods (i.e. Probability theory,
Fuzzy theory and Dempster-Shafer Theory (DST)). The results of the comparison
shows the new tool to have a better performance in map reconstruction of mobile
robot. It also supplied with a foundation to study the Self-Localization And Mapping
(SLAM) problem with the new tool further.
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14.1 Introduction

The study on exploration of entirely unknown environment for intelligent mobile robots has been
a popular and difficult subject for experts in the robotic field for a long time. Robots do not
know the environment around themselves, that is, they have no experienced knowledge about the
environment such as size, shape, layout of the environment, and also no signs such as beacons,
landmarks, allowing them to determine their location about robot within the environment.
Thus, the relation between self-localization and map building for mobile robot is like the chicken
and egg problem [3, 16]. This is because if the mobile robot builds the map of the environment,
then it must know the real position of itself within the environment; at the same time, if the
robot wants to know its own position, then it must have a referenced map of the environment.
Though it is hard to answer this question, some intelligent sensors such as odometer, electronic
compass, sonar detector, laser range finder and vision sensor are installed on the mobile robot
as if a person has perceptive organs.

How to manage and utilize this perceptive information acquired by organs, it’s a new subject
in information fusion, which will play an important role herein. As far as we know, experts
have not yet given a unified expression. Just aiming to the practical field or system, proposed
architecture of control such as hierarchical, concentrative, distributive and composite, and then
according to the different integrated hierarchy, we compared the validity of all kinds of classical
(Probability) and intelligent (Fuzzy, Neural-Networks (NN), Rough Set theory, Dempster-Shafer
theory (DST), etc.) arithmetic. As far as the mobile robot is concerned, the popular arithmetic
of self-localization in an unknown environment relying on interoceptive sensors (odometer, elec-
tronic compass) and exteroceptive sensors (sonar detector, laser range finder and visual sensor)
is Markov location [10] or Monte Carlo location [28]. The map of the environment is built by
applying some arithmetic such as Probability theory, Fuzzy Set theory and DST. The informa-
tion of environment can be expressed as grid map, geometrical feature or topological map, etc.,
where the grid map is the most popular arithmetic expression [8, 9]. In this chapter, a new tool
of the Fusion Machine based on DSmT [5, 6, 22] coupling with PCR5 is introduced to apply
to the map reconstruction of mobile robots. DSmT mentioned here that has been proposed
by Jean Dezert and Florentin Smarandache based on Bayesian theory and Dempster-Shafer
theory [21] recently is a general, flexible and valid arithmetic of fusion. Its largest advantage
is that it can deal with uncertain and imprecise information effectively, which supplies with a
powerful tool to deal with uncertain information acquired by sonar detector in the course of
building the grid map. Moreover, through the rule of PCR5, which is also proposed by Jean
Dezert and Florentin Smarandache [23–25], we can refine and redistribute the conflict mass to
improve the precision and correctness of fusion. The comparison of the new tool from other
methods is done to testify it to have a better performance to solve the puzzle.

14.2 The fusion machine

14.2.1 General principle

At first, here the fusion machine is referred to a theory tool to combine and integrate the
imperfect information without preprocessing it (i.e. filter the information) according to the
different combination rules (i.e. DST, DSmT, etc.). It even redistributes the conflict masses to
other basic belief masses according to the constraints of system using the different redistribution
rules (i.e. PCR1∼PCR5, minC [2], WAO [11], etc.). Of course, how to adopt the fusion rule must
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be considered according to the different application. Here we consider the application, and give a
special fusion machine (shown in Fig. 14.1). In Fig. 14.1, k sources of evidences (i.e. the inputs)
provide basic belief assignments over a propositional space generated by elements of a frame
of discernment and set operators endowed with eventually a given set of integrity constraints,
which depend on the nature of elements of the frame. The set of belief assignments need then to
be combined with a fusion operator. Since in general the combination of uncertain information
yields a degree of conflict, say K, between sources, this conflict must be managed by the fusion
operator/machine. The way the conflict is managed is the key of the fusion step and makes
the difference between the fusion machines. The fusion can be performed globally/optimally
(when combining the sources in one derivation step all together) or sequentially (one source after
another as in Fig. 14.1). The sequential fusion processing (well adapted for temporal fusion) is
natural and more simple than the global fusion but in general remains only suboptimal if the
fusion rule chosen is not associative, which is the case for most of fusion rules, but Dempster’s
rule. In this chapter, the sequential fusion based on the PCR5 rule is chosen because PCR5 has
shown good performances in works and because the sequential fusion is much more simple to
implement and to test. The optimal (global) PCR5 fusion rule formula for k sources is possible
and has also been proposed [23] but is much more difficult to implement and has not been
tested yet. A more efficient PCR rule (denoted PCR6) proposed very recently by Martin and
Osswald in [15], which outperforms PCR5, could be advantageously used in the fusion machine
instead PCR5. Such idea is currently under investigation and new results will be reported in
a forthcoming publication. We present in more details in next section the DSmT-based fusion
machine.

Figure 14.1: A kind of sequential fusion machine

14.2.2 Basis of DSmT

DSmT (Dezert-Smarandache Theory) is a new, general and flexible arithmetic of fusion, which
can solve the fusion problem of different tiers including data-tier, feature-tier and decision-tier,
and even, not only can solve the static problem of fusion, but also can solve the dynamic one.
Especially, it has a prominent merit that it can deal with uncertain and highly conflicting
information [5, 6, 22].
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14.2.2.1 Simple review of DSmT

1) Let Θ = {θ1, θ2, · · · , θn}, be the frame of discernment, which includes n finite focal elements
θi(i = 1, · · · , n). Because the focal elements are not precisely defined and separated, so that no
refinement of Θ in a new larger set Ωref of disjoint elementary hypotheses is possible.

2) The hyper-power set DΘ is defined as the set of all compositions built from elements of Θ
with ∪ and ∩ (Θ generates DΘ under operators ∪ and ∩) operators such that

a) ∅, θ1, θ2, · · · , θn ∈ DΘ.

b) If A,B ∈ DΘ, then A ∩B ∈ DΘ and A ∪B ∈ DΘ.

c) No other elements belong to DΘ, except those obtained by using rules a) or b).

3) General belief and plausibility functions

Let Θ = {θ1, θ2, · · · , θn} be the general frame of discernment. For every evidential source
S, let us define a set of map of m(·) : DΘ → [0, 1] associated to it (abandoning Shafer’s model)
by assuming here that the fuzzy/vague/relative nature of elements θi(i = 1, · · · , n) can be non-
exclusive, as well as no refinement of Θ into a new finer exclusive frame of discernment Θref is
possible. The mapping m(·) is called a generalized basic belief assignment function if it satisfies

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1,

then m(A) is called A’s generalized basic belief assignment function (gbbaf). The general belief
function and plausibility function are defined respectively in almost the same manner as within
the DST, i.e.

Bel(A) =
∑

B∈DΘ,B⊆A
m(B) (14.1)

Pl(A) =
∑

B∈DΘ,B∩A 6=∅
m(B) (14.2)

4) Classical (free) DSm rule of combination

Let Mf (Θ) be a free DSm model. The classical (free) DSm rule of combination (denoted
(DSmC) for short) for k ≥ 2 sources is given ∀A 6= ∅, andA ∈ DΘas follows:

mMf (Θ)(A) ∼= [m1 ⊕ · · · ⊕mk](A) =
∑

X1,··· ,Xk∈DΘ

X1∩···∩Xk=A

k∏

i=1

mi(Xi) (14.3)

14.2.2.2 Fusion of unreliable sources

1) On the necessity of discounting sources

In fact, sources of information are unreliable in real systems due to the sources with different
knowledge and experience. For example, from the point of view of the mobile robots’ sensors,
the metrical precision and resolution with laser range finder are both higher than that with
sonar sensor. Even if they are the same sonar sensors, then they have also different precision
due to the manufacturing and other factors. Under this condition, if we treat data of unreliable
information sources as data of reliable sources to be fused, then the result is very unreliable
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and even reverses. Thus, unreliable resources must be considered, and then DSmT based on
the discounting method [7, 12, 21, 26] does well in dealing with unreliable sensors.

2) Principle of discounting method

Let’s consider k evidential sources of information (S1, S2, . . . , Sk), here we work out a uniform
way in dealing with the homogeneous and heterogeneous information sources. So we get the
discernment frame Θ = {θ1, θ2, · · · , θn}, m(·) is the basic belief assignment, let mi(·) : DΘ →
[0, 1] be a set of maps, and let pi represent reliable degree supported by Si (i = 1, 2, . . . , k),
considering

∑
A∈DΘ mi(A) = 1, let It = θ1 ∪ θ2 ∪ · · · ∪ θn express the total ignorance, and then

let mg
i (It) = 1− pi + pimi(It) represent the belief assignment of the total ignorance for global

system (after discounting), and then this is because of existing occurrence of malfunction, that
is,
∑

A∈DΘ mi(A) = pi, we assign the quantity 1−pi to the total ignorance again. Thus, the rule
of combination for DSmT based on discounting method with k ≥ 2 evidential sources is given as
in the formula (14.3), i.e. the conjunctive consensus on the hyper-power set by mg

Mf (Θ)
(∅) = 0

and ∀A 6= ∅ ∈ DΘ,

mg
Mf (Θ)

(A) ∼= [mg
1 ⊕ . . .⊕mg

k](A) =
∑

X1,··· ,Xk∈DΘ

X1∩···∩Xk=A

k∏

i=1

pimi(Xi) (14.4)

14.2.3 The PCR5 fusion rule

When integrity constraints are introduced in the model, one has to deal with the conflicting
masses, i.e. all the masses that would become assigned to the empty set through the DSmC
rule. Many fusion rules (mostly based on Shafer’s model) have been proposed [20] for managing
the conflict. Among these rules, Dempster’s rule [21] redistributes the total conflicting mass
over all propositions of 2Θ through a simple normalization step. This rule has been the source
of debates and criticisms because of its unexpected/counter-intuitive behavior in some cases.
Many alternatives have then been proposed [20, 22] for overcoming this drawback. In DSmT,
we have first extended the Dubois & Prade’s rule [7, 22] for taking into account any integrity
constraints in the model and also the possible dynamicity of the model and the frame. This first
general fusion rule, called DSmH (DSm Hybrid) rule, consists just in transferring the partial
conflicts onto the partial ignorances1. The DSmH rule has been recently and advantageously
replaced by the more sophisticated Proportional Conflict Redistribution rule no.5 (PCR5).
According to Smarandache and Dezert, PCR5 does a better redistribution of the conflicting
mass than Dempster’s rule since PCR5 goes backwards on the tracks of the conjunctive rule
and redistributes the partial conflicting masses only to the sets involved in the conflict and
proportionally to their masses put in the conflict, considering the conjunctive normal form of
the partial conflict. PCR5 is quasi-associative and preserves the neutral impact of the vacuous
belief assignment. Since PCR5 is presented in details in [23], we just remind PCR5 rule for only
two sources2: mPCR5(∅) = 0 , and for all X ∈ G \ {∅},

mPCR5(X) = m12(X) +
∑

Y ∈G\{X}
X∩Y =∅

[
m2

1(X)m2(Y )

m1(X) +m2(Y )
+

m2
2(X)m1(Y )

m2(X) +m1(Y )

]
, (14.5)

1Partial ignorance being the disjunction of elements involved in the partial conflicts.
2A general expression of PCR5 for an arbitrary number (s > 2) of sources can be found in [23].



348 DSMT-BASED FUSION MACHINE

where all sets are in canonical form and m12(X) =
∑

X1,X2∈GΘ

X1∩X2

m1(X1) ·m2(X2) corresponds

to the conjunctive consensus on X between the two sources and where all denominators are
different from zero. If a denominator is zero, that fraction is discarded.

Figure 14.2: Sketch of the principle of sonar

14.3 Modeling of Sonar Grid Map Building Based on DSmT

Here we mainly discuss a sonar sensor, whose working principle (shown as Fig. 14.2) is: pro-
ducing sheaves of cone-shaped wave and detecting the objects by receiving the reflected wave.
Due to the restriction of sonar physical characteristic, metrical data has uncertainty as follows:
a) Beside its own error of making, the influence of external environment is also very great, for
example, temperature, humidity, atmospheric pressure and so on.
b) Because the sound wave spreads outwards through a form of loudspeaker, and there exists
a cone-shaped angle, we cannot know the true position of object detected among the fan-shaped
area, with the enlargement of distance between sonar and it.
c) The use of many sonar sensors will result in interference with each other. For example,
when the i-th sonar gives out detecting wave towards an object of irregular shape, if the angle
of incidence is too large, the sonar wave might be reflected out of the receiving range of the i-th
sonar sensor or also might be received by other sonar sensors.
d) Because sonar sensors utilize the reflection principle of sound wave, if the object absorbs
most of heavy sound wave, the sonar sensor might be invalid.

Pointing to the characteristics of sonar’s measurement, we construct a model of uncertain
information acquired from grid map using sonar based on DSmT. Here we suppose there are
two focal elements in system, that is, Θ = {θ1, θ2}. Where θ1 means grid is empty, θ2 means
occupied, and then we can get its hyper-power set DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2}. Every grid
in environment is scanned k ≥ 5 times, each of which is viewed as source of evidence. Then
we may define a set of map aiming to every source of evidence and construct the general basic
belief assignment functions (gbbaf) as follows: m(θ1) is defined as the gbbaf for grid-unoccupied
(empty); m(θ2) is defined as the gbbaf for grid-occupied; m(θ1 ∩ θ2) is defined as the gbbaf for
holding grid-unoccupied and occupied simultaneous (conflict). m(θ1 ∪ θ2) is defined as the gb-
baf for grid-ignorance due to the restriction of knowledge and present experience (here referring
to the gbbaf for these grids still not scanned presently), it reflects the degree of ignorance of
grid-unoccupied or occupied.

The gbbaf of a set of map m(·) : DΘ → [0, 1] is constructed by authors such as the formulae
(14.6)∼(14.9) according to sonar physical characteristics.
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m(θ1) = E(ρ)E(θ) =





(1− (ρ/R)2)λ if

{
Rmin ≤ ρ ≤ R ≤ Rmax
0 ≤ θ ≤ ω/2

0 otherwise

(14.6)

m(θ2) = O(ρ)O(θ) =




e−3ρv(ρ−R)2λ if

{
Rmin ≤ ρ ≤ R+ ǫ ≤ Rmax
0 ≤ θ ≤ ω/2

0 otherwise

(14.7)

m(θ1 ∩ θ2) =





[1− [2(ρ−R+2ǫ)
R ]

2
]λ if

{
Rmin ≤ ρ ≤ R ≤ Rmax
0 ≤ θ ≤ ω/2

0 otherwise

(14.8)

m(θ1 ∪ θ2) =





tanh(2(ρ−R))λ if

{
R ≤ ρ ≤ Rmax
0 ≤ θ ≤ ω/2

0 otherwise

(14.9)

where λ = E(θ) = O(θ) is given by (see [8] for justification)

λ =

{
1− (2θ/ω)2 if 0 ≤ |θ| ≤ ω/2
0 otherwise

(14.10)

where ρv in formula (14.7) is defined as an environment adjusting variable, that is, the less the
object is in environment, the greater the variable ρv is, and makes the function of m(θ2) more
sensitive. Here let ρv be one. E(·) and O(·) are expressed as the Effect Function of ρ, θ to grid’s
empty or occupancy. In order to insure the sum of all masses to be one, we must renormalize it.
The analysis on the characteristics of gbbaf are shown as Fig. 14.3∼Fig. 14.7, when R = 1.5m.
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Figure 14.3: m(θ1) as function of ρ given by (14.6)
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Figure 14.4: m(θ2) as function of ρ given by (14.7)
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Figure 14.5: m(θ1 ∩ θ2) as function of ρ given by (14.8)

Seen from Fig. 14.3, m(θ1) has a falling tendency with the increasing of distance between
grid and sonar, and has the maximum at Rmin and zero at R. From the point of view of the
working principle of sonar, the more the distance between them approaches the measured value,
the more that grid might be occupied. Thus the probability that grid indicated is empty is very
low, of course the gbbaf of grid-unoccupied is given a low value.

From Fig. 14.4, m(θ2) takes on the distribution of Gaussian function with respect to the
addition of distance between them, has the maximum at R, which answers for the characteristic
of sonar acquiring information.

From Fig. 14.5, m(θ1 ∩ θ2) takes on the distribution of a parabola function with respect
to the addition of distance between them. In fact, when m(θ1) equals m(θ2), m(θ1 ∩ θ2) has
the maximum there. But it is very difficult and unnecessary to find the point of intersection
of the two functions. Generally, we let the position of R− 2ε replace the point of intersection.
Experience indicates that its approximate value is more rational.
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Figure 14.6: m(θ1 ∪ θ2) as function of ρ given by (14.9)
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Figure 14.7: λ as function of θ given by (14.10)

From Fig. 14.6, m(θ1∪θ2) takes on the distribution of the hyperbola function with respect to
the addition of distance between them, and zero at R. This function reflects well the ignorance of
grid information at R ≤ ρ ≤ Rmax. The relation between θ and λ is reflected in Fig. 14.7, where
the more the position of grid approaches the central axis, the greater λ becomes, that is, the
greater the contribution to belief assignment is. Otherwise, the lower it is. In short, the general
basic belief assignment functions (gbbaf) entirely fit with the characteristic of sonar acquiring
information. This supplies a theoretic foundation for dealing with uncertain information in grid
map building.

14.4 Sonar Grid Map Building Based on Other Methods

To apply the probability theory and fuzzy set theory to map building, at first, two functions of
uncertainty are introduced. Here the working environment U of robot is separated into m× n
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Figure 14.8: Sketch of the layout of sonars

rectangle grids of same size. Every grid is represented by Gij , U = {Gij |i ∈ [1,m], j ∈ [1, n]},
according to the reference [29]. Two functions are applied to represent the uncertainty of sonar
as follows:

Γ(θ) =

{
1− 21

(
θπ
180

)2
, if 0 ≤ |θ| ≤ 12.5o,

0, if |θ| > 12.5o.
(14.11)

Γ(ρ) = 1− (1 + tanh(2(ρ− ρv)))/2, (14.12)

where θ represents the angle between the center-axis and the spot (i, j) measured in Fig.
14.2. ρv is the pre-defined value, which reflects the smooth transferring point from the certainty
to uncertainty. Γ(θ) shows that the nearer by center- axis is the spot (i, j), the larger is the
density of the wave. Γ(ρ) shows that the farther away from the sonar is it, the lower is the
reliability, while the nearer by the sonar it is, the higher is the reliability of correct measurement.

1) Probability Theory

Elfes and Moravec [8, 9] firstly represented the probability of the grid occupied by obsta-
cles with probability theory. Then Thrun, Fox and Burgard [27], Olson [17], Romero and
Morales [19] also proposed the different methods of map reconstruction by themselves based on
probability theory. According to the above methods, we give the general description of map
building based on probability theory. To avoid an amount of computation, we suppose that
all grids are independent. For every grid Gij , let s(Gij) = E represent the grid empty, while
s(Gij) = O represent the grid occupied and P [s(Gij) = E] and P [s(Gij) = O] the probabilities
of these events with the constraint P [s(Gij) = E] + P [s(Gij) = O] = 1. According to the
physical characteristics, the probability model to map the sonar perception datum is given by
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P [s(Gij) = O|R] = P [s(ρ, θ) = O|R] =





(1− λ′)/2, if 0 ≤ ρ < R− 2ε,

[1− λ′
(
1− (2 + a)2

)
]/2, if R− 2ε ≤ ρ < R− ε,

[1 + λ′
(
1− a2

)
]/2, if R− ε ≤ ρ < R+ ε,

1/2, if ρ ≥ R+ ε

(14.13)
where λ′ = Γ(θ) · Γ(ρ) and a = (ρ−R)/ε. Seen from Eq. (14.13), the mapping between the

sonar data and probability answers for the physical characteristics of sonar. For the data out-
side the measurement range, the probability value is 0.5, that is, the uncertainty is the largest.
When the distance between the grid in the range and the sonar is less than the measurement,
the nearer by the sonar it is, the less is the possibility of grid occupied, while the nearer by the
location of the measurement is the grid, and the larger is the possibility of grid occupied.

The fusion algorithm for multi-sensors is given according to the Bayesian estimate as follows:

P [s(Gij) = O|R1, · · · , Rk+1] =
P [s(Gij) = O|Rk+1] · P [s(Gij) = O|R1, · · · , Rk]∑

X∈{E,O}
P [s(Gij) = X|Rk+1] · P [s(Gij) = X|R1, · · · , Rk]

(14.14)
Remark: In order to make the equation (14.14) hold, we must suppose at the beginning of
map building

∀Gij ∈ U, P [s(Gij) = E] = P [s(Gij) = O] = 0.5

2) Fuzzy Set Theory

Map building based on fuzzy logic is firstly proposed by Giuseppe Oriolo et al. [18]; they
define two fuzzy sets Ψ (represents grid empty) and Ω (represents grid occupied), which of size
all are equal to U , correspondingly, their membership functions are µΨ and µΩ. Similarly, we
can get fuzzy model to map the sonar perception datum.

µS(R)Ψ(Gij) = λ′ · fΨ(ρ,R) (14.15)

µS(R)Ω(Gij) = λ′ · fΩ(ρ,R), (14.16)

where

fΨ(ρ,R) =





kE , if 0 ≤ ρ < R− ε,
kE((R− ρ)/ε)2, if R− ε ≤ ρ < R,

0, if ρ ≥ R.

fΩ(ρ,R) =





kO, if 0 ≤ ρ < R− ε,
kO((R − ρ)/ε)2, if R− ε ≤ ρ < R+ ε,

0, if ρ ≥ R.
Here, fΨ(ρ,R) represents the influence of ρ,R on the membership µΨ of grid Gij . fΩ(ρ,R)

represents the influence of ρ,R on the membership µΩ of grid Gij . kE and kO are constants
with 0 < kE ≤ 1 and 0 < kO ≤ 1. λ′ is same as the definition in (14.13). Seen from the Eq.
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(14.15) and (14.16), if the grid has the great possibility of occupation, then the membership is
µΨ small, while the membership µΩ is great. If the grid is outside the measuring range, then
µΨ = 0 and µΩ = 0. The fusion algorithm for multi-sensors is given according to the union
operator in the fuzzy theory as follow: ∀X ∈ {Ψ,Ω},

µ
S(R1,··· ,Rk+1)
X (Gij) = µ

S(R1,··· ,Rk)
X (Gij)+µ

S(Rk+1)(Gij )
X −µS(R1,··· ,Rk)

X (Gij)·µS(Rk+1)
X (Gij). (14.17)

Remark: Initially, we suppose µΨ(Gij) = µΩ(Gij) = 0 (∀Gij ∈ U). According to membership
of every grid, we can get the final map representation as follows:

M = Ψ2 ∩ Ω ∩A ∩ I (14.18)

Here, A = Ψ ∩ Ω, I = Ψ ∩Ω. At the same time, the rule of fuzzy intersection is

µi∩j(Gij) = µi(Gij) · µj(Gij), ∀ Gij ∈ U,
and the rule of fuzzy complementation is

µi(Gij) = 1− µi(Gij), ∀ Gij ∈ U.
The larger is the membership of Gij belonging to the fuzzy set M , the greater is the possibility
of the grid occupied.

3) Dempster-Shafer Theory (DST)

The idea of using belief functions for representing someone’s subjective feeling of uncertainty
was first proposed by Shafer [21], following the seminal work of Dempster [4] about upper and
lower probabilities induced by a multi-valued mappings. The use of belief functions as an alter-
native to subjective probabilities for representing uncertainty was later justified axiomatically
by Smets [26], who introduced the Transferable Belief Model (TBM), providing a clear and
coherent interpretation of the various concepts underlying the theory.

Let θi (i = 1, 2, . . . , n) be some exhaustive and exclusive elements (hypotheses) of interest
taking on values in a finite discrete set Θ, called the frame of discernment. Let us assume that
an agent entertains beliefs concerning the value of θi, given a certain evidential corpus. We
postulate that these beliefs may be represented by a belief structure (or belief assignment),
i.e. a function from 2Θ to [0, 1] verifying

∑
A⊆Θm(A) = 1 and m(∅) = 0 for all A ⊆ Θ, the

quantity m(A) represents the mass of belief allocated to proposition ”θi ⊆ A”, and that cannot
be allocated to any strict sub-proposition because of lack of evidence. The subsets A of Θ such
that m(A) > 0 are called the focal elements of m. The information contained in the belief
structure may be equivalently represented as a belief function bel, or as a plausibility function
pl, defined respectively as bel(A) =

∑
B⊆Am(B) and pl(A) =

∑
B∩A 6=∅m(B). The quantity

bel(A), called the belief in A, is interpreted as the total degree of belief in A (i.e. in the
proposition ”θi ⊆ A”), whereas pl(A) denotes plausibility of A, i.e. the amount of belief that
could potentially be transferred to A, taking into account the evidence that does not contradict
that hypothesis.

Now we assume the simplest situation that two distinct pieces of evidence induce two belief
structures m1 and m2. The orthogonal sum of m1 and m2, denoted as m = m1 ⊕m2 is defined
as:

m(A) = K−1
∑

B∩C=A

m1(B)m2(C), (14.19)
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Figure 14.9: Flowchat of procedure of sonar map building based on DSmT and PCR5

Here K = 1 − ∑
B∩C=∅

m1(B)m2(C) for A 6= ∅ and m(∅) = 0. The orthogonal sum (also

called Dempster’s rule of combination) is commutative and associative. It plays a fundamental
operation for combining different evidential sources in evidence theory. DST as an information
fusion method has been applied to the environment exploration and map reconstruction [1, 13].
This method can assure to have a precise result in fusing the same or different multi-sources
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information from the sensors on the robot. According to the requirement of sonar grid map
building, we need only to consider a simple 2D frame Θ = {θ1, θ2}, where θ1 means ”the grid is
empty”, and θ2 means ”the grid is occupied”, and then we work with basic belief assignments
defined on its power set 2Θ = {∅, θ1, θ2, θ1 ∪ θ2}. According to DST, let mDST (∅) = 0, here
mDST (θ1) is defined as the basic belief assignment function (bbaf) for grid-empty, mDST (θ2) is
defined as the basic belief assignment function (bbaf) for grid-occupied, mDST (θ1∪θ2) is defined
as the basic belief assignment function for grid-ignorance. We may also construct basic belief
assignment function such asmDST (θ1) = m(θ1), mDST (θ2) = m(θ2), mDST (θ1∪θ2) = m(θ1∪θ2).
bbaf reflects still the characteristics of uncertainty for sonar grip map building in Fig. 14.2.
Though here we define the same bbaf as DSmT, considering the definition of DST must be
satisfied, we must renormalize them while acquiring sonar grid information [13, 14]. The new
basic belief assignment after fusing two evidence sources from the sonar range finders can be
obtained by the combination rule in Eq. (14.19).

14.5 Simulation Experiment

The experiment consists in simulating the autonomous navigation of a virtual Pioneer II Robot
carrying 16 simulated sonar detectors in a 5000mm×5000mm square array with an unknown
obstacle/object. The map building with sonar sensors on the mobile robot is done from the
simulator of SRIsim (shown in Fig.14.10) of ActivMedia company and our self-developing exper-
imental or simulation platform together. (shown in Fig. 14.11). Here the platform developed
with the tool software of visual c++ 6.0 and OpenGL servers as a client end, which can connect
the server end (also developed by ourselves, which connects the SRIsim and the client). When
the virtual robot runs in the virtual environment, the server end can collect many information
(i.e. the location of robot, sensors reading, velocity .etc) from the SRIsim. Through the proto-
col of TCP/IP, the client end can get any information from the server end and fuse them. The
Pioneer II Robot may begin to run at arbitrary location; here we choose the location (1500mm,
2700mm) with an 88 degrees angle the robot faces to. We let the robot move at speeds of
transverse velocity 100mm/s and turning-velocity 50degree/s around the object in the world
map plotted by the Mapper (a simple plotting software), which is opened in the SRIsim shown
in Fig. 14.10.

We adopt grid method to build map. Here we assume that all the sonar sensors have the
same reliability. The global environment is divided into 50×50 lattices (which of size are same).
The object in Fig. 14.10 is taken as a regular rectangular box. When the virtual robot runs
around the object, through its sonar sensors, we can clearly recognize the object and know its
appearance, and even its location in the environment. To describe the experiment clearly, the
flowchart of procedure of sonar map is given in Fig. 14.9. The main steps of procedure based
on the new tool are given as follows:

1. Initialize the parameters of robot (i.e. initial location, moving velocity, etc.).

2. Acquire 16 sonar readings, and robot’s location, when the robot is running (Here we set
the first timer, of which interval is 100 ms.).

3. Compute gbbaf of the fan-form area detected by each sonar sensor.
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Figure 14.10: A world map opened in the SRIsim

Figure 14.11: The platform for simulation or real experiment

4. Check whether some grids are scanned more than 5 times by sonar sensors (Same sonar in
different location, or different sonar sensors. Of course, here we suppose each sonar sensor
has the same characteristics.)? If ”yes”, then go to next step, otherwise, go to step 2.

5. According to the combination rule and the PCR5 in (14.3) and (14.5) respectively, we can
get the new basic belief masses, and redistribute the conflicting mass to the new basic
belief masses in the order of the sequential fusion, until all 5 times are over.
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6. Compute the credibility/total belief of occupancy bel(θ2) of some grids, which have been
fused according to (14.1).

7. Update the map of the environment. (Here we set the second timer, of which interval is
100 ms) Check whether all the grids have been fused? If ”yes”, then stop robot and exit.
Otherwise, go to step 2.
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Figure 14.12: Map reconstruction with DSmT coupling with PCR5 (3D)

Finally, we rebuild the map shown in the Fig. 14.12 (3D) and Fig. 14.13 (2D) with the new
tool. We also rebuild the map by other methods (i.e. probability theory, fuzzy theory, DST) in
Fig. 14.14–Fig. 14.16. Because the other methods are not new, here we don’t give the detailed
steps. If the reader has some interest in them, please refer to their corresponding reference. We
give the result of comparison in Table 14.5. Through the figure and table, it can be concluded
that:
1) In Fig. 14.12, the Z axis shows the Belief of every grid occupied. The value 0 indicates that
the grid is fully empty, and the value 1 indicates that this grid is fully occupied. This facilitates
very much the development of human-computer interface of mobile robot exploring unknown,
dangerous and sightless area.
2) Low coupling. Even if there are many objects in grid map, but there occurs no phenomenon
of the apparently servered, but actually connected. Thus, it supplies with a powerful evidence
for self-localization, path planning and navigation of mobile robot.
3) High validity of calculation. The fusion machine considering the restrained spreading arith-
metic is adopted [29], and overcomes the shortcoming that the global grids in map must be
reckoned once for sonar scanning every time, and improves the validity of calculation.
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Figure 14.13: Map reconstruction with DSmT coupling with PCR5 (2D)
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Figure 14.14: Map reconstruction with probability theory (2D)

4) Seen from the Fig. 14.12, the new tool has a better performance than just DSmT in building
map, (see also [13, 14]), because of considering the conflict factor, and redistributing the conflict
masses to other basic belief masses according to the PCR5.

5) Seen from the Table 14.5, Probability theory spends the least time, while Fuzzy theory spends
the most time. But Map reconstruction with probability theory has very low precision and high
mistaken judging rate shown in Fig. 14.14. Though the new tool spends a little more time than
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Figure 14.15: Map reconstruction with fuzzy theory (2D)
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Figure 14.16: Map reconstruction with DS theory (2D)

probability theory. However, it has very high precision shown in Fig. 14.12 and Fig. 14.13 the
same as the fuzzy theory and very low mistaken judging rate shown in Fig. 14.15. In fact, the
comparison in map building between DST and DSmT have been made in details by us in [13].
Of course, here DST presents high precision and general mistaken rate shown in Fig. 14.16
without considering the PCR rules and other conflict redistribution rules. We don’t compare
the new tool from the fusion machine based on DST coupling with PCR5. Through the analysis
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Probability Theory Fuzzy Set Theory DST DSmT

Total spent time (ms) 18146 35823 19673 19016

Map precision Very low Very high High Very high

Mistaken rate High Low Medium Very low

Table 14.1: Comparison of the performances of the different approaches

of comparison among the four tools in Table 14.5, we testify the new tool to play a better role
in map building.

14.6 Conclusion

In this chapter, we have applied a fusion machine based on DSmT coupled with PCR5 for mobile
robot’s map building in a small environment. Then we have established the belief model for
sonar grid map, and constructed the generalized basic belief assignment function. Through the
simulation experiment, we also have compared the new tool with the other methods, and got
much better performances for robot’s map building. Since it is necessary to consider also robot’s
self-localization as soon as the size of environment becomes very large, complex, and irregular,
we are currently doing some research works in Self-Localization And Mapping (SLAM) based
on this new tool which improves the robustness and practicability of the fusion processing. In
conclusion, our study has supplied a shortcut for human-computer interface for mobile robot
exploring unknown environment and has established a firm foundation for the study of dynamic
unknown environment and multi-robots’ building map and SLAM together.
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Abstract: The work covered here had for objective to write a MatlabTM program
able to execute efficiently the DSmT hybrid rule of combination. As we know the
DSmT hybrid rule of combination is highly complex to execute and requires high
amounts of resources. We have introduced a novel way of understanding and treating
the rule of combination and thus were able to develop a MatlabTM program that would
avoid the high level of complexity and resources needs.

15.1 Introduction

The purpose of DSmT [3] was to introduce a theory that would allow to correctly fuse data,
even in presence of conflicts between sources of evidence or in presence of constraints. However,
as we know, the DSmT hybrid rule of combination is very complex to compute and to use in
data fusion compared to other rules of combination [4]. We will show in the following sections,
that there’s a way to avoid the high level of complexity of DSmT hybrid rule of combination
permitting to program it into MatlabTM. An interesting fact to know is that the code developed
and presented in this chapter is the first one known to the authors to be complete and functional.
A partial code, useful for the calculation of the DSmT hybrid rule of combination, is presented
in [3]. However, its function is to calculate complete hyper-power sets, and its execution took us
over a day for |Θ| = 6. This has made it impossible to have a basis for comparison of efficiency
for our code, which is able to execute a complete DSmH combination in a very short period
of time. We will begin by a brief review of the theory used in the subsequent sections, where
there will be presented a few definitions followed by a review of Dempster-Shafer theory and
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its problem with mass redistribution. We will then look at Dezert-Smarandache theory and its
complexity. It is followed by a section presenting the methodology used to avoid the complexity
of DSmT hybrid rule of combination. We will conclude with a short performance analysis and
with the developed MatlabTM code in appendix.

15.2 Theories

15.2.1 Definitions

A minimum of knowledge is required to understand DSmT, we’ll thus begin with a short review
of important concepts.

• Frame of discernment (Θ) : Θ = {θ1, θ2, . . . θn}. It’s the set including every possible
object θi.

• Power set
(
2Θ
)
: represents the set of all possible sets using the objects of the frame of

discernment Θ. It includes the empty set and excludes intersections. The power set is
closed under union. With the frame of discernment defined above, we get the power set

2Θ = {∅, {θ1} , {θ2} , . . . {θn} , {θ1, θ2} , . . . {θ1, θ2, . . . θn} , . . . ,Θ} .

• Hyper-power set
(
DΘ
)
: represents the set of all possible sets using the objects of the

frame of discernment Θ. The hyper-power sets are closed under union and intersection
and includes the empty set. With the frame of discernment Θ = {θ1, θ2}, we get the
hyper-power set DΘ = {∅, {θ1} , {θ2} , {θ1 ∩ θ2} , {θ1 ∪ θ2}}.

• Belief (Bel(A)): is an evaluation of the minimal level of certainty, or trust, that a set can
have.

• Plausibility (Pl(A)): is an evaluation of the maximal level of certainty, or trust, that a set
can have.

• Constraint : a set considered impossible to obtain.

• Basic belief assignment (bba) : m : 2Θ → [0, 1], so the mass given to a set A ⊆ Θ follows
m (A) ∈ [0, 1].

• Core of Θ (K): The set of all focal elements of Θ, where a focal element is a subset A of
Θ such that m(A) > 0.

15.2.2 Dempster-Shafer Theory

The DST rule of combination is a conjunctive normalized rule working on the power set as
described previously. It combines information with intersections, meaning that it works only
with the bba’s intersections. The theory also makes the hypothesis that the sources of evidence
are mathematically independent. The ith bba’s source of evidence is denoted mi. Equation
(15.1) describes the DST rule of combination where K is the conflict. The conflict in DST is
defined as in equation (15.2).



15.2. THEORIES 367

(m1 ⊕m2) (C) =
1

1−K
∑

A ∩B = C

m1 (A)m2 (B) ∀C ⊆ Θ (15.1)

K =
∑

A,B ⊆ Θ
A ∩B = ∅

m1 (A)m2 (B) (15.2)

15.2.2.1 DST combination example

Let’s consider the case where we have an air traffic surveillance officer in charge of monitoring
readings from two radars. The radars constitute our two sources of evidence. In this case,
both radars display a target with the level of confidence (bba) of its probable identity. Radar
1 shows that it would be an F-16 aircraft (θ1) with m1 (θ1) = 0.50, an F-18 aircraft (θ2) with
m1 (θ2) = 0.10, one of both with m1 (θ1 ∪ θ2) = 0.30, or it might be another airplane (θ3) with
m1 (θ3) = 0.10. Collected data from radars 1 and 2 are shown in table 15.1. We can easily see
from that table that the frame of discernment Θ = {θ1, θ2, θ3} is sufficient to describe this case.

The evident contradiction between the sources causes a conflict to be resolved before inter-
preting the results. Considering the fact that the DST doesn’t admit intersections, we’ll have to
discard some possible sets. Also, the air traffic surveillance officer got intelligence information
recommending exclusion of the case {θ3}, creating a constraint on {θ3}. Table 15.2 represents
the first step of the calculation before the redistribution of the conflicting mass.

(
2Θ
)

m1 (A) m2 (A)

{θ1} 0.5 0.1

{θ2} 0.1 0.6

{θ3} 0.1 0.2

{θ1, θ2} 0.3 0.1

Table 15.1: Events from two sources of evidence to combine

As we can see in table 15.2, the total mass of conflict is
∑
m (∅) = 0.59. So among all the

possible sets, 0.59 of the mass is given to ∅. This would make it the most probable set. Using
equation (15.1) the conflict is redistributed proportionally among focal elements. Results are
given in tables 15.3 and 15.4. Finally, we can see that the most probable target identity is an
F-18 aircraft.

The problem, which was predictable by analytical analysis of equation (15.1), occurs when
conflict (K) get closer to 1. As K grows closer to 1, the DST rule of combination tends to give
incoherent results.

15.2.3 Dezert-Smarandache Theory

Instead of the power set, used in DST, the DSmT uses the hyper-power set. DSmT is thus able
to work with intersections. They also differ by their rules of combination. DSmT developed
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m1 (θ1) m1 (θ2) m1 (θ3) m1 (θ1 ∪ θ2)
0.5 0.1 0.1 0.3

m2 (θ1) θ1 θ1 ∩ θ2 = ∅ θ1 ∩ θ3 = ∅ θ1
0.1 0.05 0.01 0.01 0.03

m2 (θ2) θ1 ∩ θ2 = ∅ θ2 θ2 ∩ θ3 = ∅ θ2
0.6 0.30 0.06 0.06 0.18

m2 (θ3) θ1 ∩ θ3 = ∅ θ2 ∩ θ3 = ∅ θ3 = ∅ (θ1 ∪ θ2) ∩ θ3 = ∅
0.2 0.10 0.02 0.02 0.06

m2 (θ1 ∪ θ2) θ1 θ2 (θ1 ∪ θ2) ∩ θ3 = ∅ θ1 ∪ θ2
0.1 0.05 0.01 0.01 0.03

Table 15.2: Results from disjunctive combination of information from table 15.1 before mass
redistribution

m1 (θ1) m1 (θ2) m1 (θ3) m1 (θ1 ∪ θ2)
0.5 0.1 0.1 0.3

m2 (θ1) θ1 ∅ ∅ θ1
0.1 0.05

1−0.59 0 0 0.03
1−0.59

m2 (θ2) ∅ θ2 ∅ θ2
0.6 0 0.06

1−0.59 0 0.18
1−0.59

m2 (θ3) ∅ ∅ ∅ ∅
0.2 0 0 0 0

m2 (θ1 ∪ θ2) θ1 θ2 ∅ θ1 ∪ θ2
0.1 0.05

1−0.59
0.01

1−0.59 0 0.03
1−0.59

Table 15.3: Results from disjunctive combination of information from table 15.1 with mass
redistribution

in [3], possesses two1 rules of combination which are able to work around the conflicted mass
redistribution problem:

• Classic DSm rule of combination (DSmC), which is based on the free model Mf (Θ)

m (C) =
∑

A∩B=C

m1 (A)m2 (B) A,B ∈ DΘ,∀C ∈ DΘ (15.3)

• Hybrid DSm rule of combination (DSmH), which is able to work with many types of
constraints

1Actually more fusion rules based on Proportional Conflict Redistributions (PCR) have been presented in
Part 1 of this book. The implementation of these new PCR rules will be presented and discussed in a forthcoming
publication.
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m1⊕2 (∅) 0.000

m1⊕2 (θ1) 0.317

m1⊕2 (θ2) 0.610

m1⊕2 (θ1 ∪ θ2) 0.073

Table 15.4: Final results for the example of DST combination

mM(Θ) (A) = φ (A) [S1 (A) + S2 (A) + S3 (A)] (15.4)

S1 (A) =
∑

X1∩X2=A

m1 (X1)m2 (X2) ∀X1,X2 ∈ DΘ (15.5)

S2 (A) =
∑

[(u(X1)∪u(X2))=A]∨[((u(X1)∪u(X2))∈∅)∧(A=It)]

m1 (X1)m2 (X2) ∀X1,X2 ∈ ∅

(15.6)

S3 (A) =
∑

X1∪X2=A

m1 (X1)m2 (X2) ∀X1,X2 ∈ DΘ and X1 ∩X2 ∈ ∅ (15.7)

Note that φ (A) in equation (15.4) is a binary function resulting in 0 for empty or impossible
sets and in 1 for focal elements. In equation (15.6), u (X) represents the union of all objects
of set X. Careful analysis of equation (15.7) tells us that it’s the union of all objects of sets
X1 and X2, when it is not empty. Finally, also from equation (15.6), It represents the total
ignorance, or the union of all objects part of the frame of discernment. Further information on
how to understand and proceed in the calculation of DSmH is available in subsequent sections.

15.2.3.1 DSmC combination example

This example cannot be resolved by DST because of highly conflicting sources of evidence (K
tends toward 1). Sources’ information shown in table 15.5 gives us, with DSmC, the results
displayed in table 15.6. As we can see, no mass is associated to an empty set since DSmC
is based on free DSm model which does not allow integrity constraints (by definition). Final
results for the present example, given by table 15.7, tell us that the most probable identity of
the target to identify is an hybrid of objects of type θ1 and θ2.

15.3 How to avoid the complexity

15.3.1 Simpler way to view the DSmT hybrid rule of combination

First of all, one simple thing to do in order to keep the use of resources at low levels is to
keep only the useful data. For example, table 15.6 shouldn’t be entered as is in a program
but reduced to the equivalent table 15.8. This way, the only allocated space to execute the
calculation is the data space we actually need.
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(
DΘ
)

m1 (A) m2 (A)

{θ1} 0.8 0.0

{θ2} 0.0 0.9

{θ3} 0.2 0.1

{θ1, θ2} 0.0 0.0

Table 15.5: Events from two sources of evidence to combine

m1 (θ1) m1 (θ2) m1 (θ3) m1 (θ1 ∪ θ2)
0.8 0.0 0.2 0.0

m2 (θ1) θ1 θ1 ∩ θ2 θ1 ∩ θ3 θ1
0.0 0.00 0.00 0.00 0.00

m2 (θ2) θ1 ∩ θ2 θ2 θ1 ∩ θ3 θ2
0.9 0.72 0.00 0.18 0.00

m2 (θ3) θ1 ∩ θ3 θ2 ∩ θ3 θ3 (θ1 ∪ θ2) ∩ θ3
0.1 0.08 0.00 0.02 0.00

m2 (θ1 ∪ θ2) θ1 θ2 (θ1 ∪ θ2) ∩ θ3 θ1 ∪ θ2
0.0 0.00 0.00 0.00 0.00

Table 15.6: Results from DSmC rule of combination with table 15.1 information

(θ1) 0.00 (θ1 ∩ θ2) 0.72 (θ1 ∪ θ2) 0.00

(θ2) 0.00 (θ1 ∩ θ3) 0.08 (θ1 ∪ θ3) 0.00

(θ3) 0.02 (θ2 ∩ θ3) 0.18 (θ2 ∪ θ3) 0.00

(∅) 0.00 (θ1 ∩ θ2) ∪ θ3 0.00 (θ1 ∪ θ2) ∩ θ3 0.00

(θ1 ∪ θ2 ∪ θ3) 0.00 (θ1 ∩ θ3) ∪ θ2 0.00 (θ1 ∪ θ3) ∩ θ2 0.00

(θ1 ∩ θ2 ∩ θ3) 0.00 (θ2 ∩ θ3) ∪ θ1 0.00 (θ2 ∪ θ3) ∩ θ1 0.00

Table 15.7: Final results for the example of DSmC combination (m1⊕2)

This is especially important for full explicit calculation of equation (15.4). As the num-
ber of possible objects and/or the number of possible sources of evidence grows, we would
avoid extraordinary increase in resources needs (since the increase follows Dedekind’s sequence
progression in the worst case [3]).

15.3.1.1 Simple procedure for effective DSmH

Instead of viewing DSmH as a mathematical equation, we propose to view it as a procedure.
Table 15.9 displays that procedure. Obviously, it is still equivalent to the mathematical equation,
but this way has the advantage of being very easily understood and implemented. The ease of
its implementation is due to the high resemblance of the procedure to pseudo-code, a common
step in software engineering.
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m1 (θ1) m1 (θ3)
0.8 0.2

m2 (θ2) θ1 ∩ θ2 θ1 ∩ θ3
0.9 0.72 0.18

m2 (θ3) θ1 ∩ θ3 θ3
0.1 0.08 0.02

Table 15.8: Reduced version of table 15.6

Step S1 If (θ1 ∩ θ2) is a constraint, then continue at step S3,
(θ1 ∩ θ2) otherwise, the mass m1 (X1)m2 (X2) is added to the mass A = (θ1 ∩ θ2).
Step S3 If (θ1 ∪ θ2) is a constraint, then continue at step S2,
(θ1 ∪ θ2) otherwise, the mass m1 (X1)m2 (X2) is added to the mass A = (θ1 ∪ θ2).
Step S2 If (u (X1) ∪ u (X2)) is a constraint, then add mass to It,
(u (X1) ∪ u (X2)) otherwise, the mass m1 (X1)m2 (X2) is added to the mass A = (u (X1) ∪ u (X2)).

Table 15.9: Procedure to apply to each pair of sets (X1,X2) until its combined mass is given to
a set

15.3.2 Notation system used

15.3.2.1 Sum of products

The system we conceived treats information in terms of union of intersections or sum of products.
The sum (ADD) is being represented by union (∪), and the product (MULT) by intersection
(∩). We have chosen this, instead of product of sums, to avoid having to treat parenthesis. We
could also use the principles developed for logic circuits such as Karnaugh table, Boolean rules,
etc. Here are few examples of this notation:

• θ1 ∩ θ2 ∩ θ3 = θ1θ2θ3 = [1,MULT, 2,MULT, 3]

• θ1 ∪ θ2 ∪ θ3 = θ1 + θ2 + θ3 = [1, ADD, 2, ADD, 3]

• (θ1 ∩ θ2) ∪ θ3 = θ1θ2 + θ3 = [1,MULT, 2, ADD, 3] = [3, ADD, 1,MULT, 2]

• (θ1 ∪ θ2) ∩ θ3 = (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) = θ1θ3 + θ2θ3 = [1,MULT, 3, ADD, 2,MULT, 3]

• (θ1 ∩ θ2 ∩ θ3) ∪ (θ4 ∩ θ5) = θ1θ2θ3 + θ4θ5 = [1,MULT, 2,MULT, 3, ADD, 4,MULT, 5]

15.3.2.2 Conversion between sum of products and product of sums notation

As we have seen above, we will use the sum of products as our main way of writing sets. However,
as we will later see, we will need to use the product of sums or intersections of unions in some
parts of our system to simplify the calculation process. More specifically, this dual system of
notation, introduced in the last two columns of table 15.10, was done so we would be able to use
the same algorithm to work with the matrix of unions and the matrix of intersections. Table
15.10 thus presents the notation used, accompanied with its equivalent mathematical notation.
We can see in the sum of products notation in table 15.10, that a line represents a monomial of
product type (e.g. θ1θ3) and that lines are then summed to get unions (e.g. θ1θ3 + θ2). In the



372 REDUCING DSMT HYBRID RULE COMPLEXITY

product of sums notation, we have the reversed situation where lines represents a monomial of
sum type (e.g. θ1 + θ3) and that lines are then multiplied to get intersections (e.g. θ2 (θ1 + θ3)).

Mathematical Matlab input/output Sum of products Product of sums

{θ1} [1]

[
1

] [
1

]

{θ1 ∪ θ2} [1, ADD, 2]

[
1
2

] [
1 2

]

{θ1 ∩ θ2} [1,MULT, 2]

[
1 2

] [
1
2

]

{(θ2) ∪ (θ1 ∩ θ3)} [2, ADD, 1,MULT, 3]

[
2
1 3

]
–

{(θ1 ∪ θ2) ∩ (θ2 ∪ θ3)} – –

[
1 2
2 3

]

{(θ1 ∩ θ2) ∪ (θ2 ∩ θ3)} [1,MULT, 2, ADD, 2,MULT, 3]

[
1 2
2 3

]
–

{(θ2) ∩ (θ1 ∪ θ3)} – –

[
2
1 3

]

Table 15.10: Equivalent notations for events

The difficult part is the conversion step from the sum of products to the product of sums
notation. For the simple cases, such as the ones presented in the first three lines of table 15.10
consist only in changing matrices lines into columns and columns into lines. For simplification
in the conversion process we also use the absorption rule as described in equation (15.8) which
is derived from the fact that (θ1θ2) ⊆ θ1. Using that rule, we can see how came the two last
rows of table 15.10 by looking at the process detailed in equations (15.9) and (15.10).

θ1 + θ1θ2 = θ1 (15.8)

(θ1 ∪ θ2) ∩ (θ2 ∪ θ3) = (θ1 + θ2) (θ2 + θ3) = θ1θ2 + θ1θ3 + θ2 + θ2θ3 = θ1θ3 + θ2 (15.9)

(θ1 ∩ θ2) ∪ (θ2 ∩ θ3) = θ1θ2 + θ2θ3 = θ2 (θ1 + θ3) (15.10)

However, in the programmed MatlabTM code, the following procedure is used and works for
any case. It’s based on the use of DeMorgan’s laws as seen in equations (15.11) and (15.12).
Going through DeMorgan twice let’s us avoid the use of negative sets. Hence, we will still
respect DSm theory even with the use of this mathematical law. The use of absorption rule, as
described in equation (15.8) also helps us achieve better simplification.

A B = A + B (15.11)

A + B = AB (15.12)

Here’s how we proceed for the case of conversion from a set in sum of products to a set in
product of sums notation. It’s quite simple actually, we begin with an inversion of operators
(changing additions (∪) for multiplications (∩) and multiplications for additions), followed by
distribution of products and a simplification step. We then end it with a second inversion
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of operators. Since we have used the inversion two times, we don’t have to indicate the not

operator, (A = A).

Let’s now proceed with a short example. Suppose we want to convert the set shown in
equation (15.13) to a set in product of sums notation. We proceed first as said, with an inversion
of operators, which gives the set in equation (15.14). We then distribute the multiplication as
we did to get the set in equation (15.15). This is then followed by a simplification giving us
equation (15.16), and a final inversion of operators gives us the set in equation (15.17). The
set in equation (15.17) represents the product of sums notation version of the set in equation
(15.13), which is in sum of products. A simple distribution of products and simplification can
get us back from (15.17) to (15.13).

θ1 + θ2θ3 + θ2θ4 (15.13)

(θ1)
(
θ2 + θ3

) (
θ2 + θ4

)
(15.14)

θ1 θ2 + θ1 θ2 θ4 + θ1 θ2 θ3 + θ1 θ3 θ4 (15.15)

θ1 θ2 + θ1 θ3 θ4 (15.16)

(θ1 + θ2) (θ1 + θ3 + θ4) (15.17)

15.3.3 How simple can it be

We have completed conception of a MatlabTM code for the dynamic case. We’ve tried to
optimize the code but some work is still necessary. It’s now operational for a restricted body
of evidence and well behaved. Here’s an example of the input required by the system with the
events from table 15.11. We will also proceed with θ2 as a constraint making the following
constraints too:

• θ1 ∩ θ2 ∩ θ3

• θ1 ∩ θ2

• θ2 ∩ θ3

• (θ1 ∪ θ3) ∩ θ2

Note that having θ2 as a constraint, has an impact on more cases than the enumerated ones
above. In fact, if we obtain cases like θ1 ∪ θ2 for instance, since θ2 is a constraint, the resulting
case would then be θ1. We will have to consider this when evaluating final bba for the result.

As we can see, only focal elements are transmitted to and received from the system. More-
over, these focal elements are all in sum of products. The output also include Belief and Plau-
sibility values of the result.

Notice also that we have dynamic constraints capability, meaning that we can put constraints
on each step of the combination. They can also differ at each step of the calculation. Instead
of considering constraints only at the final step of combination, this system is thus able to
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(
DΘ
)

m1 (A) m2 (A) m3 (A)

{θ1} 0.7 0.0 0.1

{θ2} 0.0 0.6 0.1

{θ3} 0.2 0.0 0.5

{θ1 ∪ θ2} 0.0 0.0 0.3

{θ1 ∪ θ3} 0.0 0.2 0.0

{θ2 ∪ θ3} 0.0 0.2 0.0

{θ2 ∩ θ3} 0.1 0.0 0.0

Table 15.11: Information from three sources

reproduce real data fusion conditions where constraints may vary. Three different cases are
presented here, keeping the same input information but varying the constraints conditions.

Complete commented listing of the produced MatlabTM code is available in the appendix.
For the present section, only the parameters required in input and the output are displayed.

% Example with dynamic constraints kept stable

% INPUT FOR THE MATLAB PROGRAM

number_sources = 3; kind = [’dynamic’];

info(1).elements = {[1],[3], [2, MULT, 3]}; info(1).masses = [0.7, 0.2, 0.1];

info(2).elements = {[2],[1, ADD, 3], [2, ADD, 3]}; info(2).masses = [0.6, 0.2, 0.2];

info(3).elements = {[1], [2], [3], [1, ADD, 2]}; info(3).masses = [0.1, 0.1, 0.5, 0.3];

constraint{1} = {[2], [1, MULT, 2], [2, MULT, 3],...

[1, MULT, 2, ADD, 3, MULT, 2], [1, MULT, 2, MULT, 3]};

constraint{2} = {[2], [1, MULT, 2], [2, MULT, 3],...

[1, MULT, 2, ADD, 2, MULT, 3], [1, MULT, 2, MULT, 3]};

% OUTPUT OF THE MATLAB PROGRAM

DSm hybrid Plausibility Belief

1 : m=0.28800000 1 : m=1.00000000 1 : m=0.82000000

1 MULT 3 : m=0.53200000 1 MULT 3 : m=1.00000000 1 MULT 3 : m=0.53200000

3 : m=0.17800000 3 : m=1.00000000 3 : m=0.71000000

1 ADD 3 : m=0.00200000 1 ADD 3 : m=1.00000000 1 ADD 3 : m=1.00000000

% Example with dynamic constraints applied only once at the end

% CONSTRAINTS INPUT FOR THE MATLAB PROGRAM

constraint{1} = {};

constraint{2} = {[2], [1, MULT, 2], [2, MULT, 3],...

[1, MULT, 2, ADD, 2, MULT, 3], [1, MULT, 2, MULT, 3]};

% OUTPUT OF THE MATLAB PROGRAM

DSm hybrid Plausibility Belief

1 : m=0.36800000 1 : m=1.00000000 1 : m=0.61000000

1 MULT 3 : m=0.24200000 1 MULT 3 : m=1.00000000 1 MULT 3 : m=0.24200000

3 : m=0.39000000 3 : m=1.00000000 3 : m=0.63200000

% Example with dynamic constraints varying between steps of calculation

% CONSTRAINTS INPUT FOR THE MATLAB PROGRAM
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constraint{1} = {[2, MULT, 3], [2, ADD, 3]};

constraint{2} = {[2], [1, MULT, 2], [2, MULT, 3],...

[1, MULT, 2, ADD, 2, MULT, 3], [1, MULT, 2, MULT, 3]};

% OUTPUT OF THE MATLAB PROGRAM

DSm hybrid Plausibility Belief

1 : m=0.31200000 1 : m=1.00000000 1 : m=0.55400000

1 ADD 3 : m=0.14800000 1 ADD 3 : m=1.00000000 1 ADD 3 : m=1.00000000

1 MULT 3 : m=0.24200000 1 MULT 3 : m=1.00000000 1 MULT 3 : m=0.24200000

3 : m=0.29800000 3 : m=1.00000000 3 : m=0.54000000

15.3.4 Optimization in the calculation algorithm

15.3.4.1 How does it work

Being treated by a vectorial interpreter, our MatlabTM code had to be adapted in consequence.
We have also been avoiding, as much as we could, the use of for and while loops.

Our MatlabTM code was conceived with two main matrices, one containing intersections,
the other one containing unions. The input information is placed into a matrix identified as the
fusion matrix. When building this matrix, our program puts in a vector each unique objects
that will be used, hence defining total ignorance (It) for the case in input. Each elements of this
matrix is a structure having two fields: sets and masses. Note also that only the first row and
column of the matrix is filled with the input information. The rest of the matrix will contain
the result.

It is easier to proceed with the intersection between two sets A and B using product of sums
and to proceed with the union A∪B using sum of products. Because of that, we have chosen to
keep the intersection matrix in the product of sums notation and the union matrix in the sum
of products while working on these matrices separately.

To build the union matrix, we use information from the fusion matrix with the sum of
products notation. The intersection matrix uses the product of sums notation for its construction
with the information from the fusion matrix. However, once the intersection matrix is built, a
simple conversion to the sum of products notation is done as we have described earlier. This
way, data from this table can be compatible with those from the fusion and the union matrices.

Once the basis of the union matrix is defined, a calculation of the content is done by
evaluating the result of the union of focal elements combination m1 (Xi)m2 (Xj). The equivalent
is done with the intersection matrix, replacing the union with an intersection obviously. Once
the calculation of the content of the intersection matrix completed, it is converted to the sum
of product notation.

The next step consist to fill up the fusion matrix with the appropriate information depending
on the presence of constraints and following the procedure described earlier for the calculation
of the DSmH combination rule.

In the case we want to fuse information from more than two sources, we could choose to fuse
the information dynamically or statically. The first case is being done by fusing two sources at
a time. The latter case considers information from all sources at once. Note however that our
code is only able to proceed with the calculation dynamically for the time being. We will now
proceed step by step with a full example, interlaced with explanations on the procedure, using
the information from table 15.11 and the constraints described in section 15.3.3.
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Table 15.12 gives us the union result from each combination of focal elements from the
first two sources of evidence. The notation used in the case for union matrices is the sum of
products. In the case of table 15.13, the intersection matrix, it is first built in the product of
sums notation so the same calculation algorithm can be used to evaluate the intersection result
from each combination of focal elements from the first two sources of evidence as it was used in
the union matrix. As we’ll see, a conversion to the sum of products notation is done to be able
to obtain table 15.14.

m2

m1

[
2

]

0.6

[
1
3

]

0.2

[
2
3

]

0.2

[
1

]

0.7

[
1
2

]

0.42

[
1
3

]

0.14




1
2
3




0.14

[
3

]

0.2

[
2
3

]

0.12

[
1
3

]

0.04

[
2
3

]

0.04

[
2 3

]

0.1

[
2

]

0.06

[
1
3

]

0.02

[
2
3

]

0.02

Table 15.12: Union matrix with bba’s m1,m2 information from table 15.11 in sum of products
notation

m2

m1

[
2

]

0.6

[
1 3

]

0.2

[
2 3

]

0.2

[
1

]

0.7

[
1
2

]

0.42

[
1

]

0.14

[
1
2 3

]

0.14

[
3

]

0.2

[
2
3

]

0.12

[
3

]

0.04

[
3

]

0.04

[
2
3

]

0.1

[
2
3

]

0.06

[
2
3

]

0.02

[
2
3

]

0.02

Table 15.13: Intersection matrix with bba’s m1,m2 information from table 15.11 in product of
sums notation
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We obtained θ2θ3 as a result in the second result cell in the last row of table 15.13 because
the intersection (θ2 · θ3) · (θ1 + θ3) gives us θ1θ2θ3 + θ2θ3 which, following absorption rule, gives
us θ2θ3. The same process occurs on the second result cell in the first row of the same table
where θ1 · (θ1 + θ3) = θ1 + θ1θ3 = θ1.

m2

m1

[
2

]

0.6

[
1
3

]

0.2

[
2
3

]

0.2

[
1

]

0.7

[
1 2

]

0.42

[
1

]

0.14

[
1 2
1 3

]

0.14

[
3

]

0.2

[
2 3

]

0.12

[
3

]

0.04

[
3

]

0.04

[
2 3

]

0.1

[
2 3

]

0.06

[
2 3

]

0.02

[
2 3

]

0.02

Table 15.14: Intersection matrix with bba’s m1,m2 information from table 15.11 in sum of
products notation

From the tables 15.12 and 15.14 we proceed with the DSmH and choose, according to con-
straints, from which table the result will come. We might also have to evaluate (u (X1) ∪ u (X2)),
or give the mass to the total ignorance if the intersection and union matrices’ sets are con-
strained. We’ve displayed the choice made in the fusion matrix in table 15.15 with these
symbols ∩ (intersection), ∪ (union), u (union of the sum of objects of combined sets), It (total
ignorance). As you will see, we have chosen a case where we have constraints applied at each
step of combination, e.g. when [m1,m2] and when [m1 ⊕m2,m3] are combined.

Table 15.16 is the simplified version of table 15.15 in which sets has been adapted to consider
constraints. It’s followed by table 15.17 which represents the results from the first combination.

As we can see in table 15.15, the first result cell from the first row was obtained from the
union matrix because θ1 ∩ θ2 is a constraint. Also, the first result cell from the last row was
obtained from the union of the sum of objects of the combined sets because θ2∩θ3 is a constraint
in the intersection table (table 15.14) at the same position, so is θ2 in the union table (table
15.12).
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m2

m1

[
2

]

0.6

[
1
3

]

0.2

[
2
3

]

0.2

[
1

]

0.7

[
1
2

]

0.42
∪

[
1

]

0.14
∩

[
1 2
1 3

]

0.14
∩

[
3

]

0.2

[
2
3

]

0.12
∪

[
3

]

0.04
∩

[
3

]

0.04
∩

[
2 3

]

0.1

[
2
3

]

0.06
u

[
1
3

]

0.02
∪

[
2
3

]

0.02
∪

Table 15.15: Fusion matrix with bba’s m1,m2 information from table 15.11 in sum of products
notation

m2

m1

[
2

]

0.6

[
1
3

]

0.2

[
2
3

]

0.2

[
1

]

0.7

[
1

]

0.42
∪

[
1

]

0.14
∩

[
1 3

]

0.14
∩

[
3

]

0.2

[
3

]

0.12
∪

[
3

]

0.04
∩

[
3

]

0.04
∩

[
2 3

]

0.1

[
3

]

0.06
u

[
1
3

]

0.02
∪

[
3

]

0.02
∪

Table 15.16: Simplified fusion matrix with bba’s m1,m2 information from table 15.11 in sum
of products notation

On the first row of table 15.16, the first result giving us θ1 is obtained because θ1 ∪ θ2 = θ1
when θ2 is a constraint. The same process gave us θ1 ∩ θ3 in the last cell of the first row. In
that case, we obtained that result having θ1∩ θ2 as a constraint where θ1θ2 + θ1θ3 = θ1θ3. Since
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we have more than two sources and have chosen a dynamic methodology: once the first two
sources combined, we will have to proceed with a second combination. This time, we combine
the results from the first combination m1⊕m2 with the third event from source of evidence m3.

[1] [3] [1 ∪ 3] [1 ∩ 3]

0.56 0.28 0.02 0.14

Table 15.17: Result of the combination of m1 and m2 from table 15.11

Table 15.18 represents the union matrix from second combination.

m3

m1 ⊕m2

[
1

]

0.1

[
2

]

0.1

[
3

]

0.5

[
1
2

]

0.3

[
1

]

0.56

[
1

]

0.056

[
1
2

]

0.056

[
1
3

]

0.28

[
1
2

]

0.168

[
3

]

0.28

[
1
3

]

0.028

[
2
3

]

0.028

[
3

]

0.14




1
2
3




0.084

[
1 3

]

0.14

[
1

]

0.014

[
1 3
2

]

0.014

[
3

]

0.07

[
1
2

]

0.042

[
1
3

]

0.02

[
1
3

]

0.002




1
2
3





0.002

[
1
3

]

0.01




1
2
3





0.006

Table 15.18: Union matrix with bba’s m1 ⊕m2,m3 information comes from tables 15.11 and
15.15 in sum of products notation

Table 15.19 and 15.20 are the intersection matrix with product of sums and sum of products
notation respectively.
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m3

m1 ⊕m2

[
1

]

0.1

[
2

]

0.1

[
3

]

0.5

[
1 2

]

0.3

[
1

]

0.56

[
1

]

0.056

[
1
2

]

0.056

[
1
3

]

0.28

[
1

]

0.168

[
3

]

0.28

[
1
3

]

0.028

[
2
3

]

0.028

[
3

]

0.14

[
1 2
3

]

0.084

[
1
3

]

0.14

[
1
3

]

0.014




1
2
3





0.014

[
1
3

]

0.07

[
1
3

]

0.042

[
1 3

]

0.02

[
1

]

0.002

[
2
1 3

]

0.002

[
3

]

0.01

[
1 2
1 3

]

0.006

Table 15.19: Intersection matrix with bba’s m1 ⊕ m2,m3 information from tables 15.11 and
15.15 in product of sums notation

m3

m1 ⊕m2

[
1

]

0.1

[
2

]

0.1

[
3

]

0.5

[
1
2

]

0.3

[
1

]

0.56

[
1

]

0.056

[
1 2

]

0.056

[
1 3

]

0.28

[
1

]

0.168

[
3

]

0.28

[
1 3

]

0.028

[
2 3

]

0.028

[
3

]

0.14

[
1 3
2 3

]

0.084

[
1 3

]

0.14

[
1 3

]

0.014

[
1 2 3

]

0.014

[
1 3

]

0.07

[
1 3

]

0.042

[
1
3

]

0.02

[
1

]

0.002

[
1 2
1 3

]

0.002

[
3

]

0.01

[
1
2 3

]

0.006

Table 15.20: Intersection matrix with bba’s m1 ⊕ m2,m3 information from tables 15.11 and
15.15 in sum of products notation
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Finally we get table 15.21 which consists of the final fusion matrix, table 15.22 which is a
simplified version of 15.21, and table 15.23 which compiles equivalent results giving us the result
of the DSmH for the information from table 15.11 with same constraints applied at each step
of combination.

m3

m1 ⊕m2

[
1

]

0.1

[
2

]

0.1

[
3

]

0.5

[
1
2

]

0.3

[
1

]

0.56

[
1

]

0.056
∩

[
1
2

]

0.056
∪

[
1 3

]

0.28
∩

[
1

]

0.168
∩

[
3

]

0.28

[
1 3

]

0.028
∩

[
2
3

]

0.028
∪

[
3

]

0.14
∩

[
1 3
2 3

]

0.084
∩

[
1 3

]

0.14

[
1 3

]

0.014
∩

[
1 3
2

]

0.014
∪

[
1 3

]

0.07
∩

[
1 3

]

0.042
∩

[
1
3

]

0.02

[
1

]

0.002
∩




1
2
3




0.002
∪

[
3

]

0.01
∩

[
1
2 3

]

0.006
∩

Table 15.21: Fusion matrix with bba’s m1 ⊕m2,m3 information from table 15.11 and 15.15 in
sum of products notation

15.3.5 Performances analysis

Since no other implementation of DSmT on DΘ is known, we don’t have the possibility of
comparing it. However, we are able to track the evolution of the execution time with the
growth in the number of objects or the number of sources. The same can be done with the
memory requirement. Until another implementation of the DSmH is written, it is the only
pertinent feasible performances analysis. The program usually gives us as output the DSmH
calculation results with plausibility and belief values. However, the tests we have realized were
done on the DSmH alone. The code, which can be found in the appendix, had also to be
modified to output time and size of variables which can undoubtedly affect time of execution
and probably size required by the program.

For the measurement of the time of execution, we have only used the tic toc MatlabTM

command between each tested cases. The clear command, which clears variables values, was
also used to prevent MatlabTM from altering execution time by using already existing variables.
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m3

m1 ⊕m2

[
1

]

0.1

[
2

]

0.1

[
3

]

0.5

[
1
2

]

0.3

[
1

]

0.56

[
1

]

0.056
∩

[
1

]

0.056
∪

[
1 3

]

0.28
∩

[
1

]

0.168
∩

[
3

]

0.28

[
1 3

]

0.028
∩

[
3

]

0.028
∪

[
3

]

0.14
∩

[
1 3

]

0.084
∩

[
1 3

]

0.14

[
1 3

]

0.014
∩

[
1 3

]

0.014
∪

[
1 3

]

0.07
∩

[
1 3

]

0.042
∩

[
1
3

]

0.02

[
1

]

0.002
∩

[
1
3

]

0.002
∪

[
3

]

0.01
∩

[
1

]

0.006
∩

Table 15.22: Simplified fusion matrix version of table 15.21 in sum of products notation

[1] [3] [1 ∩ 3] [1 ∪ 3]

0.288 0.178 0.532 0.002

Table 15.23: Final result of DSmH for information from table 15.11

For the size of variable measurements, we have used the whos command at the end of the
file hybrid.m. The program is divided into 22 files, however the main variables are contained
in hybrid.m. Most of the functions of the programmed system calls very few other functions
one into another. We also assume that once MatlabTM leaves a function, it destroys all of its
variables. We considered hence the memory size values obtained within hybrid.m a good lower
estimate of the required memory size.

Note also that the tests were done on a Toshiba Satellite Pro 6100 station which has a
Pentium M 4 running at 1.69 GHz, 2x512 MB of RAM PC2700, and an 80 GB hard drive
running at 7200 rpm.
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15.3.5.1 Execution time vs |Θ|
Figure (15.1) shows us evolution of the execution time versus the cardinality of Θ for |Θ| going
from 3 to 9. Since there are large number of possible testing parameters, we have chosen to
perform the tests in a specific case. It consists of measuring the evolution of the execution time
versus |Θ| while keeping the number of sources to 5 with the same information provided by each
source for each point. Each source gives a bba with only six focal elements (|K| = 6).

We have chosen also to put only six constraints on each point. Moreover, the constraints
are dynamical and applied at each step of combination. As we can see on figure (15.1), time
evolves exponentially with |Θ|.

3 4 5 6 7 8 9
10

0

10
1

10
2

10
3

Figure 15.1: Evolution of execution time (sec) vs the cardinality of Θ
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15.3.5.2 Execution time vs Number of sources

Figure (15.2) shows us the evolution of the execution time versus the number of sources going
from 3 to 9. Since there are large number of possible testing parameters, we have chosen to
perform the tests in a specific case. It consists of measuring the evolution of the execution time
versus the number of sources while keeping |Θ| to 5 with information varying for each source
for each point.

Each source gives a bba with only six focal elements (|K| = 6). We have chosen also to put
only six constraints on each point; moreover, the constraints are dynamical and applied at each
step of combination. As we can see on figure (15.2), time also evolves exponentially with the
number of sources.
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Figure 15.2: Evolution of execution time (sec) vs the number of sources
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15.3.5.3 Execution time vs |K|
Figure (15.2) shows us evolution of the execution time versus the core dimension or the number
of non-zero masses going from 3 to 9. In this case, we have chosen to perform the tests while
keeping |Θ| to 3 with a fixed number of sources of 5. We have chosen also to put only three
constraints on each step of combination. As we can see on figure (15.3), time evolves almost
linearly with the core dimension.
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Figure 15.3: Evolution of execution time (sec) vs the cardinality of K
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15.3.5.4 Memory size vs the number of sources or |Θ|
Figure (15.4) was realized under the same conditions as the input conditions for the execution
time performance tests. We note that even with an increasing memory requirement, memory
needs are still small. It is, of course, only the requirement for one of the many functions of our
system. However, subdivisions of the code in many functions, the memory management system
of MatlabTM and the fact that we only keep the necessary information to fuse helps keeping it
at low levels. Also, during the tests we have observed in the Windows XP Pro task manager
the amount of system memory used by MatlabTM. We’ve noted the memory use going from 79
MB before starting the test, to a peak usage of 86 MB.
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Figure 15.4: Evolution of memory size (KB) of hybrid.m workspace vs the number of sources
or |Θ|

We have also tried it once in static mode with a core dimension of 10 from five sources
and ten constraints with three objects in the frame of refinement to see how much memory it
would take. In that simple case, we went from 79 MB (before the test started) to 137 MB (a
peak memory usage during the test). A huge hunger for resources was predictable for the static
calculation mode with the enormous matrix it has to build with all the input information.
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15.3.5.5 Further optimization to be done

Our code’s algorithm is an optimization of the original DSmH calculation process. However,
certain parts of our program remains to be optimized. First of all, the possibility of rejecting
information and transferring it’s mass to total ignorance in the case it’s mass is too small or if we
have too many information should be added. Second point, at many stages of our calculation,
sorting is required. As we know, sorting is one of the most time consuming process in programs
and it’s also the case in our program. We’ve used two for loops for sorting within two other
for loops to go through all the elements of the matrix within the file ordre_grandeur.m. So
as the quantity of information grows, MatlabTM might eventually have problems sorting the
inputted information. The use of an optimized algorithm replacing this part is recommended.
There’s also the possibility of using the MatlabTM command sort with some adaptations to be
able to do the following sorting.

Our required sorting process in ordre_grandeur.m should be able to sort sets first according
to the sets’ size. Then, for equal sized sets, the sorting process should be able to sort in numerical
order of objects. So the following set : θ4 + θ1θ3θ4 + θ2θ3 + θ1θ3 should be ordered this way :
θ4 + θ1θ3 + θ2θ3 + θ1θ3θ4. A sorting process is also in use within the file tri.m which is able to
sort matrices or sets. However the sorting process should also be optimized there.

15.4 Conclusion

As we have seen, even with the apparent complexity of DSmH, it is still possible to engineer an
efficient procedure of calculation. Such a procedure enables us to conceive an efficient MatlabTM

code. We have conceived such a code that can perform within a reasonable amount of time
by limiting the number of for and while loops exploiting Matlab’sTM vectorial calculation
capabilities. However, even if we have obtained an optimal process of evaluating DSmH, there’s
still work to be done to optimize some parts of our code involving sorting.

Two avenues can be taken in the future. The first one would be to increase optimization
of the actual code, trying to reduce further the number of loops, particularly in sorting. The
second avenue would now be to explore how to optimize and program new combination rules
such as the adaptive combination rule (ACR) [1], and the proportional conflict redistribution
(PCR) rule [1].
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15.7 Appendix: MatlabTMcode listings

The code listed in this chapter is the property of the Government of Canada, DRDC Valcartier
and has been developed by M.-L. Gagnon and P. Djiknavorian under the supervision of Dominic
Grenier at Laval University, Quebec, Canada.

The code is available as is for educational purpose only. The authors can’t be held responsible
of any other usage. Users of the code use it at their own risks. For any other purpose, users of
the code should obtain an autorization from the authors.

15.7.1 File : aff ensemble.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function displaying elements and mass from a set

%

% info: elements and mass information to display

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function aff_ensemble(info)

%#inbounds

%#realonly

nI = length(info);

for k = 1 : nI

%% displays only the non empty elements

if ~isequal(info(k).elements,[])

disp([num2str(info(k).elements) ’ : m=’ num2str(info(k).masses,’%12.8f’)]);

end

end

disp(’ ’)

15.7.2 File : aff matrice.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function displaying elements and mass

%

% info: elements and mass information to display

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function aff_matrice(info)

%#inbounds

%#realonly

[m,n] = size(info);

%% go through all the objects

for k = 1 : m

for g = 1 : n

ensemble = info(k,g).elements

for h = 1 : length(ensemble)

disp([num2str(ensemble{h})]);
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end

disp ([ ’m : ’ num2str(info(k,g).masses,’%6.4f’) ]);

end

end

15.7.3 File : bon ordre.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function ordering vectors in sets

%

% ensembleN, ensembleM : two sets in which we have to see if some values

% are identical, if so, they must be put at the same position

%

% ensembleNOut, ensembleMOut : output vector

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ensembleMOut, ensembleNOut] = bon_ordre(ensembleM, ensembleN)

%#inbounds

%#realonly

ensembleMOut = {};

ensembleNOut = {};

ensemble1 = [];

ensemble2 = [];

ensemble_temp = [];

plus_grand = 1;

%% go through all the objects

if length(ensembleN) >= length(ensembleM)

ensemble1 = ensembleN;

ensemble2 = ensembleM;

plus_grand = 1;

else

ensemble1 = ensembleM;

ensemble2 = ensembleN;

plus_grand = 2;

end

%% check if there is two identical sets, otherwise check vectors

for g = 1 : length(ensemble2)

for h = 1 : length(ensemble1)

if isequal(ensemble1{h},ensemble2{g})

ensemble_temp = ensemble1{g};

ensemble1{g} = ensemble1{h};

ensemble1{h} = ensemble_temp;

end

end

end

if isequal(plus_grand,1)

ensembleMOut = ensemble2;

ensembleNOut = ensemble1;

elseif isequal(plus_grand,2)

ensembleNOut = ensemble2;

ensembleMOut = ensemble1;

end
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15.7.4 File : calcul DSm hybrid auto.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function to execute a DSm hybrid rule of combination

% in dynamic or static mode

%

% Output: displayed in sum of product

% sum for union

% product for intersection

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte)

%#inbounds

%#realonly

global ADD

global MULT

ADD = -2;

MULT = -1;

Iall = [];

Ihyb = [];

contraire = [];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% compute the product of sum

[contraire_complet, contraire] = faire_contraire(info);

%% case with two sources

if isequal(nombre_source,2)

Ihyb = hybride(info, contrainte{1},contraire,2,nombre_source,contraire_complet);

shafer = 0;

Iall = depart(Ihyb,2);

Ihyb = depart(Ihyb,1);

disp(’DSm hybride’);

aff_ensemble(Ihyb);

else

%% case with more than two sources : check the type ’sorte’ of DSmH

%% case dynamic

if isequal(sorte,’dynamique’)

Ihyb = hybride(info,contrainte{1},contraire,2,nombre_source,contraire_complet);

for g = 3 : nombre_source

Ihyb = depart(Ihyb,2);

ensemble_step = {};

masses_step = [];

disp(’DSm hybride’);

aff_ensemble(Ihyb)

for h = 1 : length(Ihyb)

ensemble_step{h} = Ihyb(h).elements;

masses_step(h) = Ihyb(h).masses;

end

info(1).elements = {}; info(1).masses = [];

info(2).elements = {}; info(2).masses = [];

info(1).elements = ensemble_step; info(1).masses = masses_step;

info(2) = info(g);

[contraire_complet, contraire] = faire_contraire(info);

clear Ihyb;

Ihyb = hybride(info,contrainte{g-1},contraire,2,nombre_source,contraire_complet);
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end

%% replace numerical value of ADD and MULT by the text ’ADD’,’MULT’

Iall = depart(Ihyb,2);

Ihyb = depart(Ihyb,1);

disp(’DSm hybride’);

aff_ensemble(Ihyb);

%% case static

else

Ihyb = hybride(info,contrainte{nombre_source -1},contraire,1, ...

nombre_source,contraire_complet);

%% replace numerical value of ADD and MULT by the text ’ADD’,’MULT’

Iall = depart(Ihyb,2);

Ihyb = depart(Ihyb,1);

disp(’DSm hybride’);

aff_ensemble(Ihyb);

end

end

%% compute belief and plausibility

Isel = Iall;

fboe = {’pl’ ’bel’};

for k=1:length(fboe)

switch fboe{k}

case ’pl’

Pds = plausibilite(Isel,contrainte);

disp(’Plausibilite’);

Pds = depart(Pds,1);

aff_ensemble(Pds);

case ’bel’

Bds = croyance(Isel);

disp(’Croyance’);

Bds = depart(Bds,1);

aff_ensemble(Bds);

end

end

15.7.5 File : calcul DSm hybride.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: main file to execute a DSm hybrid rule of combination

% in dynamic or static mode

%

% Output: displayed in sum of product

% sum for union

% product for intersection

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

clc;

%#inbounds

%#realonly

global ADD

global MULT
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ADD = -2;

MULT = -1;

Iall = [];

Ihyb = [];

info = [];

contrainte = [];

contraire = [];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% WRITE EVENTS AND CONSTRAINTS IN SUM OF PRODUCT NOTATION %

% nombre_source = 2;

% info(1).elements = {[1], [1, ADD, 2], [1, ADD, 3], [2], [2, ADD, 3], [3]};

% info(1).masses = [0.2, 0.17, 0.33, 0.03, 0.17, 0.1];

% info(2).elements = {[1], [2], [3]};

% info(2).masses = [0.2, 0.4, 0.4];

%%contrainte{1} = {};

% %contrainte{1} = {[1, MULT, 2], [1, MULT, 3], [2, MULT, 3]};

% contrainte{1} = {[1, MULT, 2], [1, MULT, 3], [2, MULT, 3],...

% [1, MULT, 2,ADD, 1, MULT, 3]...

% [1, MULT, 2,ADD, 2, MULT, 3]...

% [1, MULT, 3,ADD, 2, MULT, 3]...

% [1, MULT, 2,ADD, 1, MULT, 3, ADD, 2, MULT, 3]};

% nombre_source = 3; sorte = [’dynamique’];

% info(1).elements = {[1],[3], [2, MULT, 3]};

% info(1).masses = [0.7, 0.2, 0.1];

% info(2).elements = {[2],[1, ADD, 3], [2, ADD, 3]};

% info(2).masses = [0.6, 0.2, 0.2];

% info(3).elements = {[1], [2], [3], [1, ADD, 2]};

% info(3).masses = [0.1, 0.1, 0.5, 0.3];

% contrainte{1} = {[2, MULT, 3], [2, ADD, 3]};

% contrainte{2} = {[2], [1, MULT, 2], [2, MULT, 3],...

% [1, MULT, 2, ADD, 2, MULT, 3], [1, MULT, 2, MULT, 3]};

nombre_source = 2;

info(1).elements = {[1, MULT, 2, ADD, 1, MULT, 3, ADD, 2, MULT, 3], [1]};

info(1).masses = [0.6, 0.4];

info(2).elements = {[1, MULT, 2, ADD, 1, MULT, 3, ADD, 2, MULT, 3], [1]};

info(2).masses = [0.4, 0.6];

contrainte{1} = {};

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% compute the product of sum

[contraire_complet, contraire] = faire_contraire(info);

%% case with two sources

if isequal(nombre_source,2)

Ihyb = hybride(info, contrainte{1},contraire,2,nombre_source,contraire_complet);

shafer = 0;

Iall = depart(Ihyb,2);

Ihyb = depart(Ihyb,1);

disp(’DSm hybride’);
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aff_ensemble(Ihyb);

else

%% case with more than two sources : check the type ’sorte’ of DSmH

%% case dynamic

if isequal(sorte,’dynamique’)

Ihyb = hybride(info,contrainte{1},contraire,2,nombre_source,contraire_complet);

for g = 3 : nombre_source

Ihyb = depart(Ihyb,2);

ensemble_step = {};

masses_step = [];

disp(’DSm hybride’);

aff_ensemble(Ihyb)

for h = 1 : length(Ihyb)

ensemble_step{h} = Ihyb(h).elements;

masses_step(h) = Ihyb(h).masses;

end

info(1).elements = {}; info(1).masses = [];

info(2).elements = {}; info(2).masses = [];

info(1).elements = ensemble_step; info(1).masses = masses_step;

info(2) = info(g);

[contraire_complet, contraire] = faire_contraire(info);

clear Ihyb;

Ihyb = hybride(info,contrainte{g-1},contraire,2,nombre_source, ...

contraire_complet);

end

%% replace numerical value of ADD and MULT by the text ’ADD’,’MULT’

Iall = depart(Ihyb,2);

Ihyb = depart(Ihyb,1);

disp(’DSm hybride’);

aff_ensemble(Ihyb);

%% case static

else

Ihyb = hybride(info,contrainte{nombre_source -1},contraire,1,...

nombre_source,contraire_complet);

%% replace numerical value of ADD and MULT by the text ’ADD’,’MULT’

Iall = depart(Ihyb,2);

Ihyb = depart(Ihyb,1);

disp(’DSm hybride’);

aff_ensemble(Ihyb);

end

end

%% compute belief and plausibility

Isel = Iall;

fboe = {’pl’ ’bel’};

for k=1:length(fboe)

switch fboe{k}

case ’pl’

Pds = plausibilite(Isel,contrainte);

disp(’Plausibilite’);

Pds = depart(Pds,1);

aff_ensemble(Pds);

case ’bel’

Bds = croyance(Isel);
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disp(’Croyance’);

Bds = depart(Bds,1);

aff_ensemble(Bds);

end

end

15.7.6 File : croyance.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that computes belief

%

% I : final information for which we want to compute belief

%

% croyance_complet: output giving belief values and objects

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function croyance_complet = croyance(I)

%#inbounds

%#realonly

global ADD

global MULT

ADD = -2;

MULT = -1;

info = [];

matrice_monome = [];

ignorance = [];

nombreElement = 0;

ensemble = {};

vecteur1 = [];

vecteur2 = [];

f = 1;

j = 1;

%% separates objects, remove words ADD and MULT

for g = 1 : length(I)

if ~isempty(I(g).elements)

ensemble{f} = I(g).elements;

vecteur1(f) = I(g).masses;

vecteur2(f) = 1;

f = f + 1;

end

end

info(1).elements = ensemble;

info(1).masses = vecteur1;

info(2).elements = ensemble;

info(2).masses = vecteur2;

[matrice_monome,ignorance,nombreElement] = separation(info,1);

matrice_monome = ordre_grandeur(matrice_monome,2);

%% produces the union matrix

matrice_intersection_contraire = intersection_matrice(matrice_monome,1);

matrice_intersection_contraire = ordre_grandeur(matrice_intersection_contraire,2);

matrice_intersection_contraire = dedouble(matrice_intersection_contraire,2);

%% Those for which union equals the monome (by lines), we add their masses.

[m,n] = size(matrice_intersection_contraire);

for g = 2 : m
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for h = 2 : n

if isequal(matrice_intersection_contraire(g,h).elements,...

matrice_monome(g,1).elements)

resultat(j).elements = matrice_monome(g,1).elements;

resultat(j).masses = matrice_intersection_contraire(g,h).masses;

j = j + 1;

end

end

end

croyance_complet = dedouble(resultat,1);

15.7.7 File : dedouble.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that removes identical values and simplifies object

%

% matrice: matrix to simplify, can be a set

% sorte: indicates if input is a matrix or a set

%

% retour: output once simplified

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [retour] = dedouble(matrice,sorte)

%#inbounds

%#realonly

global REPETE

REPETE = 0;

%% case set

if isequal(sorte,1)

ensembleOut = [];

j = 1;

%% go through elements of the set

for g = 1 : length(matrice)

for h = g + 1 : length(matrice)

if isequal(matrice(h).elements,matrice(g).elements)

matrice(h).elements = REPETE;

matrice(g).masses = matrice(g).masses + matrice(h).masses;

end

end

if ~isequal(matrice(g).elements,REPETE) & ~isequal(matrice(g).masses,0)

ensembleOut(j).elements = matrice(g).elements;

ensembleOut(j).masses = matrice(g).masses;

j = j + 1;

end

end

retour = ensembleOut;

%% case matrix

else

[m,n] = size(matrice);

vecteur1 = [];

vecteur2 = [];

if m > 1

u = 2;

y = 2;
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else

u = 1;

y = 1;

end

%% go through elements of the matrix

for h = u : m

for g = y : n

ensemble = {};

ensemble = matrice(h,g).elements;

j = 1;

nouvel_ensemble = {};

%% go through all vectors of the matrix

for k = 1 : length(ensemble)

vecteur1 = ensemble{k};

if ~isempty(vecteur1)

for f = k + 1 : length(ensemble)

vecteur2 = ensemble{f};

%% check if there is two identical vectors

if ~isempty(vecteur2)

if isequal(vecteur1, vecteur2)

vecteur1 = REPETE;

else

%% check if a vector is included in another

%% 2 intersection 2union3 : remove 2union3

compris = 0;

for v = 1 : length(vecteur1)

for c = 1 : length(vecteur2)

if isequal(vecteur1(v),vecteur2(c))

compris = compris + 1;

end

end

end

if length(vecteur1) < length(vecteur2)

if isequal(compris, length(vecteur1))

vecteur2 = REPETE;

end

else

if isequal(compris, length(vecteur2))

vecteur1 = REPETE;

end

end

end

ensemble{f} = vecteur2;

end

end

ensemble{k} = vecteur1;

end

if ~isequal(ensemble{k},REPETE)

nouvel_ensemble{j} = ensemble{k};

j = j + 1;

end

end

matriceOut(h,g).elements = nouvel_ensemble;
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matriceOut(h,g).masses = matrice(h,g).masses;

end

end

matriceOut = tri(matriceOut,1);

retour = matriceOut;

end

15.7.8 File : depart.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function putting ADD and MULT

%

% ensemble_complet: set for which we want to add ADD and MULT

% each element is a cell including vectors

% each vector is a product and a change of vector is a sum

% sorte: to know if it has to be in numerical value or not

%

% ensemble_final: output with ADD and MULT

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ensemble_final] = depart(ensemble_complet,sorte)

%#inbounds

%#realonly

global A

global M

global ADDS

global MULTS

ADDS = ’ ADD ’;

MULTS = ’ MULT ’;

A = -2;

M = -1;

ensemble = [];

ensemble_final = [];

%% go through vectors of the set

for g = 1 : length(ensemble_complet)

ensemble = ensemble_complet(g).elements;

for k = 1 : length(ensemble)

%% first time

if isequal(k,1)

if isequal(length(ensemble{k}),1)

if isequal(sorte,1)

ensemble_final(g).elements = [num2str(ensemble{1})];

else

ensemble_final(g).elements = [ensemble{1}];

end

else

vecteur = ensemble{k};

for f = 1 : length(vecteur)

if isequal(f,1)

if isequal(sorte,1)

ensemble_final(g).elements = [num2str(vecteur(f))];

else

ensemble_final(g).elements = [vecteur(f)];

end
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else

if isequal(sorte,1)

ensemble_final(g).elements = [...

ensemble_final(g).elements, ...

MULTS, num2str(vecteur(f))];

else

ensemble_final(g).elements = [...

ensemble_final(g).elements, ...

M, vecteur(f)];

end

end

end

end

%% puts ’ ADD ’ since change of vector

else

if isequal(sorte,1)

ensemble_final(g).elements = ...

[ensemble_final(g).elements, ADDS];

else

ensemble_final(g).elements = ...

[ensemble_final(g).elements, A];

end

if isequal(length(ensemble{k}),1)

if isequal(sorte,1)

ensemble_final(g).elements = ...

[ensemble_final(g).elements, ...

num2str(ensemble{k})];

else

ensemble_final(g).elements = ...

[ensemble_final(g).elements, ...

ensemble{k}];

end

%% puts ’ MULT ’

else

premier = 1;

vecteur = ensemble{k};

for f = 1 : length(vecteur)

if premier == 1

if isequal(sorte,1)

ensemble_final(g).elements = ...

[ensemble_final(g).elements,...

num2str(vecteur(f))];

else

ensemble_final(g).elements = ...

[ensemble_final(g).elements, ...

vecteur(f)];

end

premier = 0;

else

if isequal(sorte,1)

ensemble_final(g).elements = ...

[ensemble_final(g).elements, ...
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MULTS, num2str(vecteur(f))];

else

ensemble_final(g).elements = ...

[ensemble_final(g).elements, ...

M, vecteur(f)];

end

end

end

end

end

end

ensemble_final(g).masses = ensemble_complet(g).masses;

end

15.7.9 File : DSmH auto.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% description: file from which we can call the function version of the DSmH

%

%%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

% The examples used in this file were available in :

%’’Advances and Applications of DSmT for Information Fusion’’

% written by par Jean Dezert and Florentin Smarandache, 2004

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all; clc;

info = [];

contrainte = [];

global ADD

global MULT

ADD = -2;

MULT = -1;

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 1, Page 21’);

nombre_source = 2;

sorte = [’dynamique’];

info(1).elements = {[1],[2],[3],[1, ADD, 2]};

info(1).masses = [0.1, 0.4, 0.2, 0.3];

info(2).elements = {[1],[2],[3],[1, ADD, 2]};

info(2).masses = [0.5, 0.1, 0.3, 0.1];

contrainte{1} = {[1, MULT, 2, MULT, 3],[1, MULT, 2],[2, MULT, 3],...

[1, MULT, 3],[3],[1, MULT, 3, ADD, 2, MULT, 3],...

[1, MULT, 2, ADD, 1, MULT, 3],[1, MULT, 2, ADD, 2, MULT, 3]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);
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%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 5, Page 86’);

nombre_source = 2;

info(1).elements = {[1, MULT, 3],[3],[1, MULT, 2],[2],[1],...

[1, ADD, 3],[1, ADD, 2]};

info(1).masses = [0.1, 0.3, 0.1, 0.2, 0.1, 0.1, 0.1];

info(2).elements = {[2, MULT, 3],[3],[1, MULT, 2],[2],[1],[1, ADD, 3]};

info(2).masses = [0.2, 0.1, 0.2, 0.1, 0.2, 0.2];

contrainte{1} = {[1, MULT, 3], [1, MULT, 2, MULT, 3],[1],...

[1, MULT, 2],[1, MULT, 2, ADD, 1, MULT, 3]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 2, Page 90’);

nombre_source = 2;

info(1).elements = {[1, MULT, 2, MULT, 3],[2, MULT, 3],[1, MULT, 3],...

[1, MULT, 3, ADD, 2, MULT, 3],[3],[1, MULT, 2],[1, MULT, 2, ADD, 2, MULT, 3],...

[1, MULT, 2, ADD, 1, MULT, 3],[1, MULT, 2, ADD, 1, MULT, 3, ADD, 2, MULT, 3],...

[3, ADD, 1, MULT, 2],[2],[2, ADD, 1, MULT, 3],[2, ADD, 3],[1],...

[1, ADD, 2, MULT, 3],[1, ADD, 3],[1, ADD, 2],[1, ADD, 2, ADD, 3]};

info(1).masses = [0.01,0.04,0.03,0.01,0.03,0.02,0.02,0.03,0.04,...

0.04,0.02,0.01,0.2,0.01,0.02,0.04,0.03,0.4];

info(2).elements = {[1, MULT, 2, MULT, 3],[2, MULT, 3],[1, MULT, 3],...

[1, MULT, 3, ADD, 2, MULT, 3],[3],[1, MULT, 2],[1, MULT, 2, ADD, 2, MULT, 3],...

[1, MULT, 2, ADD, 1, MULT, 3],[1, MULT, 2, ADD, 1, MULT, 3, ADD, 2, MULT, 3],...

[3, ADD, 1, MULT, 2],[2],[2, ADD, 1, MULT, 3],[2, ADD, 3],[1],...

[1, ADD, 2, MULT, 3],[1, ADD, 3],[1, ADD, 2],[1, ADD, 2, ADD, 3]};

info(2).masses = [0.4,0.03,0.04,0.02,0.04,0.20,0.01,0.04,0.03,0.03,...

0.01,0.02,0.02,0.02,0.01,0.03,0.04,0.01];

contrainte{1} = {[1, MULT, 2], [1, MULT, 2, MULT, 3]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 7, Page 90’);
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nombre_source = 2;

info(1).elements = {[1, MULT, 2, MULT, 3],[2, MULT, 3],[1, MULT, 3],...

[1, MULT, 3, ADD, 2, MULT, 3],[3],[1, MULT, 2],[1, MULT, 2, ADD, 2, MULT, 3],...

[1, MULT, 2, ADD, 1, MULT, 3],[1, MULT, 2, ADD, 1, MULT, 3, ADD, 2, MULT, 3],...

[3, ADD, 1, MULT, 2],[2],[2, ADD, 1, MULT, 3],[2, ADD, 3],[1],...

[1, ADD, 2, MULT, 3],[1, ADD, 3],[1, ADD, 2],[1, ADD, 2, ADD, 3]};

info(1).masses = [0.01,0.04,0.03,0.01,0.03,0.02,0.02,0.03,0.04,...

0.04,0.02,0.01,0.2,0.01,0.02,0.04,0.03,0.4];

info(2).elements = {[1, MULT, 2, MULT, 3],[2, MULT, 3],[1, MULT, 3],...

[1, MULT, 3, ADD, 2, MULT, 3],[3],[1, MULT, 2],[1, MULT, 2, ADD, 2, MULT, 3],...

[1, MULT, 2, ADD, 1, MULT, 3],[1, MULT, 2, ADD, 1, MULT, 3, ADD, 2, MULT, 3],...

[3, ADD, 1, MULT, 2],[2],[2, ADD, 1, MULT, 3],[2, ADD, 3],[1], ...

[1, ADD, 2, MULT, 3],[1, ADD, 3],[1, ADD, 2],[1, ADD, 2, ADD, 3]};

info(2).masses = [0.4,0.03,0.04,0.02,0.04,0.20,0.01,0.04,0.03,0.03,...

0.01,0.02,0.02,0.02,0.01,0.03,0.04,0.01];

contrainte{1} = {[1, MULT, 2, MULT, 3], [2, MULT, 3], [1, MULT, 3], ...

[1, MULT, 3, ADD, 2, MULT, 3], [3], [1, MULT, 2], ...

[1, MULT, 2, ADD, 2, MULT, 3], [1, MULT, 2, ADD, 1, MULT, 3], ...

[1, MULT, 2, ADD, 1, MULT, 3, ADD, 2, MULT, 3], [3, ADD, 1, MULT, 2]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 3.2, Page 97’);

nombre_source = 3;

%sorte = [’dynamique’];

sorte = [’statique’];

info(1).elements = {[1],[2],[1, ADD, 2],[1, MULT, 2]};

info(1).masses = [0.1, 0.2, 0.3, 0.4];

info(2).elements = {[1],[2],[1, ADD, 2],[1, MULT, 2]};

info(2).masses = [0.5, 0.3, 0.1, 0.1];

info(3).elements = {[3],[1, MULT, 3],[2, ADD, 3]};

info(3).masses = [0.4, 0.3, 0.3];

contrainte{1} = {};

contrainte{2} = {[3],[1, MULT, 2, MULT, 3],[1, MULT, 3],...

[2, MULT, 3],[1, MULT, 3, ADD, 2, MULT, 3]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 3.5, Pages 99-100’);
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nombre_source = 3;

sorte = [’dynamique’];

%sorte = [’statique’];

info(1).elements = {[1],[2]};

info(1).masses = [0.6, 0.4];

info(2).elements = {[1],[2]};

info(2).masses = [0.7, 0.3];

info(3).elements = {[1], [2], [3]};

info(3).masses = [0.5, 0.2, 0.3];

contrainte{1} = {};

contrainte{2} = {[3], [1, MULT, 3], [2, MULT, 3], ...

[1, MULT, 2, MULT, 3], [1, MULT, 3, ADD, 2, MULT, 3]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 3.6, Page 100’);

nombre_source = 2;

info(1).elements = {[1], [2], [1, MULT, 2]};

info(1).masses = [0.5, 0.4 0.1];

info(2).elements = {[1], [2], [1, MULT, 3], [4]};

info(2).masses = [0.3, 0.2, 0.1, 0.4];

contrainte{1} = {[1, MULT, 3], [1, MULT, 2], [1, MULT, 3, MULT, 4],...

[1, MULT, 2, MULT, 3], [1, MULT, 2, MULT, 4],[1, MULT, 2, ADD, 1, MULT, 3]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 5.2.1.3, Page 107’);

nombre_source = 3;

sorte = [’dynamique’];

%rep du livre = statique

sorte = [’statique’];

info(1).elements = {[1],[3]};

info(1).masses = [0.6, 0.4];

info(2).elements = {[2],[4]};

info(2).masses = [0.2, 0.8];

info(3).elements = {[2], [4]};

info(3).masses = [0.3, 0.7];

contrainte{1} = {};

contrainte{2} = {[1, MULT, 3],[1, MULT, 2],[1, MULT, 4],[2, MULT, 3],...
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[2, MULT, 4],[3, MULT, 4],[1, MULT, 2, MULT, 3],[1, MULT, 2, MULT, 4],...

[1, MULT, 3, MULT, 4],[2, MULT, 3, MULT, 4],[1, MULT, 2, MULT, 3, MULT, 4],...

[1, MULT, 3, ADD, 1, MULT, 4],[1, MULT, 2, ADD, 1, MULT, 3],...

[1, MULT, 2, ADD, 1, MULT, 4],[2, MULT, 3, ADD, 2, MULT, 4],...

[1, MULT, 2, ADD, 2, MULT, 4],[1, MULT, 2, ADD, 2, MULT, 3],...

[1, MULT, 3, ADD, 2, MULT, 3],[1, MULT, 3, ADD, 3, MULT, 4],...

[2, MULT, 3, ADD, 3, MULT, 4],[1, MULT, 4, ADD, 2, MULT, 4],...

[1, MULT, 4, ADD, 3, MULT, 4],[2, MULT, 4, ADD, 3, MULT, 4],...

[1, MULT, 2, MULT, 3, ADD, 1, MULT, 2, MULT, 4],...

[1, MULT, 3, ADD, 1, MULT, 4, ADD, 2, MULT, 3, ADD, 2, MULT, 4]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 5.2.2.2, Page 109’);

nombre_source = 3;

sorte = [’dynamique’];

%sorte = [’statique’];

info(3).elements = {[1],[2],[1, ADD, 2]};

info(3).masses = [0.4, 0.5, 0.1];

info(2).elements = {[3],[4],[3, ADD, 4]};

info(2).masses = [0.3, 0.6, 0.1];

info(1).elements = {[1], [1, ADD, 2]};

info(1).masses = [0.8, 0.2];

contrainte{1} = {};

contrainte{2} = {[1, MULT, 3],[1, MULT, 2],[1, MULT, 4],...

[2, MULT, 3],[2, MULT, 4],[3, MULT, 4],[1, MULT, 2, MULT, 3],...

[1, MULT, 2, MULT, 4],[1, MULT, 3, MULT, 4],[2, MULT, 3, MULT, 4],...

[1, MULT, 2, MULT, 3, MULT, 4],[1, MULT, 3, ADD, 1, MULT, 4],...

[1, MULT, 2, ADD, 1, MULT, 3],[1, MULT, 2, ADD, 1, MULT, 4],...

[2, MULT, 3, ADD, 2, MULT, 4],[1, MULT, 2, ADD, 2, MULT, 4],...

[1, MULT, 2, ADD, 2, MULT, 3],[1, MULT, 3, ADD, 2, MULT, 3],...

[1, MULT, 3, ADD, 3, MULT, 4],[2, MULT, 3, ADD, 3, MULT, 4],...

[1, MULT, 4, ADD, 2, MULT, 4],[1, MULT, 4, ADD, 3, MULT, 4],...

[2, MULT, 4, ADD, 3, MULT, 4],[1, MULT, 2, MULT, 3, ADD, 1, MULT, 2, MULT, 4],...

[1, MULT, 3, ADD, 1, MULT, 4, ADD, 2, MULT, 3, ADD, 2, MULT, 4]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 5.4.2, Page 116’);
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nombre_source = 3;

%sorte = [’dynamique’];

sorte = [’statique’];

info(1).elements = {[1],[4, ADD, 5]};

info(1).masses = [0.99, 0.01];

info(3).elements = {[2],[3],[4, ADD, 5]};

info(3).masses = [0.98, 0.01, 0.01];

info(2).elements = {[1], [2], [3], [4, ADD, 5]};

info(2).masses = [0.01, 0.01, 0.97, 0.01];

contrainte{1} = {};

contrainte{2} = {};

contrainte{2} = {[1, MULT, 3],[1, MULT, 2],[1, MULT, 4],[2, MULT, 3],...

[2, MULT, 4],[3, MULT, 4],[1, MULT, 2, MULT, 3],[1, MULT, 2, MULT, 4],...

[1, MULT, 3, MULT, 4],[2, MULT, 3, MULT, 4],[1, MULT, 2, MULT, 3, MULT, 4],...

[1, MULT, 3, ADD, 1, MULT, 4],[1, MULT, 2, ADD, 1, MULT, 3],...

[1, MULT, 2, ADD, 1, MULT, 4],[2, MULT, 3, ADD, 2, MULT, 4],...

[1, MULT, 2, ADD, 2, MULT, 4],[1, MULT, 2, ADD, 2, MULT, 3],...

[1, MULT, 3, ADD, 2, MULT, 3],[1, MULT, 3, ADD, 3, MULT, 4],...

[2, MULT, 3, ADD, 3, MULT, 4],[1, MULT, 4, ADD, 2, MULT, 4],...

[1, MULT, 4, ADD, 3, MULT, 4],[2, MULT, 4, ADD, 3, MULT, 4],...

[1, MULT, 2, MULT, 3, ADD, 1, MULT, 2, MULT, 4],...

[1, MULT, 3, ADD, 1, MULT, 4, ADD, 2, MULT, 3, ADD, 2, MULT, 4],...

[1, MULT, 5],[2, MULT, 5],[3, MULT, 5],[4, MULT, 5],[1, MULT, 2, MULT, 5],...

[1, MULT, 3, MULT, 5],[1, MULT, 4, MULT, 5],[2, MULT, 3, MULT, 5],...

[2, MULT, 4, MULT, 5],[3, MULT, 4, MULT, 5],[1, MULT, 2, MULT, 3, MULT, 5],...

[1, MULT, 2, MULT, 4, MULT, 5],[1, MULT, 3, MULT, 4, MULT, 5],...

[2, MULT, 3, MULT, 4, MULT, 5],[1, MULT, 2, MULT, 3, MULT, 4, MULT, 5],...

[1, MULT, 4, ADD, 1, MULT, 5],[2, MULT, 4, ADD, 2, MULT, 5],...

[3, MULT, 4, ADD, 3, MULT, 5],[1, MULT, 2, MULT, 4, ADD, 1, MULT, 2, MULT, 5],...

[1, MULT, 3, MULT, 4, ADD, 1, MULT, 3, MULT, 5],...

[2, MULT, 3, MULT, 4, ADD, 2, MULT, 3, MULT, 5],...

[1, MULT, 2, MULT, 3, MULT, 4, ADD, 1, MULT, 2, MULT, 3, MULT, 5]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

15.7.10 File : enlever contrainte.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% description: function removing constraints in sets

%

% ensemble_complet: sets composed of S1, S2, S3

% contrainte_separe: constraints’ sets : divided in cells with vectors :

% each vector is a product, and a change of vector = sum

%

% ensemble_complet: final set

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ensemble_complet] = ...



15.7. APPENDIX: MATLABTMCODE LISTINGS 405

enlever_contrainte(ensemble_complet, contrainte_separe);

%#inbounds

%#realonly

global ENLEVE

ENLEVE = {};

ensemble_contrainte = {};

ensemble_elements = [];

ensemble_produit = [];

%go through contraints

for g = 1 : length(contrainte_separe)

ensemble_contrainte = contrainte_separe{g};

for h = 1 : length(ensemble_complet)

%si la contrainte est en entier dans l’ensemble complet, l’enlever

if isequal(ensemble_contrainte, ensemble_complet(h).elements)

ensemble_complet(h).elements = ENLEVE;

ensemble_complet(h).masses = 0;

end

end

end

%go through contraints

for g = 1 : length(contrainte_separe)

ensemble_contrainte = contrainte_separe{g};

%si elle est un singleton

if isequal(length(ensemble_contrainte),1) & ...

isequal(length(ensemble_contrainte{1}),1)

for h = 1 : length(ensemble_complet)

if ~isequal(ensemble_complet(h).elements, ENLEVE)

ensemble_elements = ensemble_complet(h).elements;

entre = 0;

for k = 1 : length(ensemble_elements)

%si une union, enleve

if isequal(ensemble_elements{k},ensemble_contrainte{1})

vecteur1 = ensemble_elements{k};

vecteur2 = ensemble_contrainte{1};

ensemble_elements{k} = setdiff(vecteur1, vecteur2);

entre = 1;

end

end

if isequal(entre, 1)

j = 1;

ensemble_elements_new = [];

for k = 1 : length(ensemble_elements)

if ~isequal(ensemble_elements{k},[]);

ensemble_elements_new{j} = ensemble_elements{k};

j = j + 1;

end

end

ensemble_elements = [];
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ensemble_elements = ensemble_elements_new;

end

ensemble_complet(h).elements = ensemble_elements;

end

end

%otherwise, its an intersection

elseif length(ensemble_contrainte) == 1

ensemble_produit = ensemble_complet;

for t = 1 : length(ensemble_produit)

ensemble = ensemble_produit(t).elements;

j = 1;

entre = 1;

nouvel_ensemble = {};

for h = 1 : length(ensemble)

for y = 1 : length(ensemble_contrainte)

if isequal(ensemble{h}, ensemble_contrainte{y})

ensemble{h} = [];

entre = 0;

else

nouvel_ensemble{j} = ensemble{h};

j = j + 1;

end

end

end

ensemble_produit(t).elements = nouvel_ensemble;

ensemble_complet(t).elements = ensemble_produit(t).elements;

end

end

end

%remove empty

for r = 1 : length(ensemble_complet)

ensemble1 = ensemble_complet(r).elements;

j = 1;

nouvel_ensemble = [];

for s = 1 : length(ensemble1)

if ~isequal(ensemble1{s},[])

nouvel_ensemble{j} = ensemble1{s};

j = j + 1;

end

end

ensemble_complet(r).elements = nouvel_ensemble;

end

%combines identical elements

ensemble_complet = dedouble(ensemble_complet,2);

ensemble_complet = dedouble(ensemble_complet,1);

15.7.11 File : ensemble.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



15.7. APPENDIX: MATLABTMCODE LISTINGS 407

% Description: function regrouping equal structure from matrix

%

% matrice: the matrix to regroup

%

% ensembleOut: outputs the structure with sets of regrouped matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ensembleOut] = ensemble(matrice)

%#inbounds

%#realonly

ensembleOut = [];

[m,n] = size(matrice);

j = 1;

if ~(m < 2)

if isequal(matrice(2,2).elements, [])

u = 1;

y = 1;

else

u = 2;

y = 2;

end

else

u = 1;

y = 1;

end

%% go through all sets of the matrix, put the equal ones togheter and sum

%% their mass

for g = u : m

for h = y : n

if isequal(g,u) & isequal(h,y) & ~isequal(matrice(g,h).elements,[])

ensembleOut(j).elements = matrice(g,h).elements;

ensembleOut(j).masses = matrice(g,h).masses;

j = j + 1;

elseif ~isequal(matrice(g,h).elements,[])

compris = 0;

for f = 1 : length(ensembleOut)

if isequal(matrice(g,h).elements, ensembleOut(f).elements)

ensembleOut(f).masses = ...

ensembleOut(f).masses + matrice(g,h).masses;

compris = 1;

end

end

if isequal(compris,0)

ensembleOut(j).elements = matrice(g,h).elements;

ensembleOut(j).masses = matrice(g,h).masses;

j = j + 1;

end

end

end

end
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15.7.12 File : faire contraire.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that changes the sum of products in product of

% sums with ADD and MULT

%

% info: set that we want to modify

%

% ensembleOut: once in product of sums and in same format as the input

% contraire: only the first two information

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ensembleOut, contraire] = faire_contraire(info)

%#inbounds

%#realonly

ensembleOut = [];

j = 1;

f = 1;

temp = [];

flag = 3;

contraire = [];

%% puts the sets in product of sums

[temp, ignorance, nombre] = separation(info,2);

temp = produit_somme_complet(temp);

temp = depart(temp,2);

%% puts back the sets in one set

for g = 1 : length(nombre)

debut = 1;

d = 1;

ensembleElement = {};

for h = 1 : nombre(g)

if isequal(debut,1)

ensembleElement{d} = [temp(f).elements];

ensembleOut(j).masses = temp(f).masses;

debut = 0;

else

ensembleElement{d} = [temp(f).elements];

ensembleOut(j).masses = [ensembleOut(j).masses, temp(f).masses];

end

f = f + 1;

d = d + 1;

end

%% ensembleOut: output, once in product of sums

ensembleOut(j).elements = ensembleElement;

%% contraire: only the first two elements of output

if j < 3

contraire(j).elements = ensembleOut(j).elements;

contraire(j).masses = ensembleOut(j).masses;

end

j = j + 1;

end
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15.7.13 File : hybride.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that executes the three steps of the DSmH

%

% info: informations from the sources in product of sums

% contrainte: contraints in sum of product

% contraire: informations from sources in sum of products

%

% sorte: indicates the type of fusion: dynamic ou static

% nombre_source: number of source of evidence

% contraire_complet: All the information in product of sum

%

% ensemble_complet: final values (objects + masses)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ensemble_complet] = ...

hybride(info,contrainte,contraire,sorte,nombre_source,contraire_complet)

matrice_intersection = []; matrice_union = []; matrice_monome = [];

ensemble_step1 = []; ensemble_step2 = []; ensemble_step3 = [];

ensemble_complet = []; vecteur_singleton = []; contrainte_produit = [];

ignorance = []; ensemble_complet_temp = [];

%% case static

if isequal(sorte,1)

matrice_infos = [];

matrice_infos_contraire = [];

for g = 1 : nombre_source

[matrice_infos,ignorance,nombreElement] = ...

separation_unique(info(g),matrice_infos);

[matrice_infos_contraire,ignorance,nombreElement] = ...

separation_unique(contraire_complet(g),matrice_infos_contraire);

end

%% compute the intersection matrix

matrice_intersection = intersection_matrice(matrice_infos_contraire,2);

matrice_intersection = somme_produit_complet(matrice_intersection);

matrice_intersection = dedouble(matrice_intersection,2);

matrice_intersection = ordre_grandeur(matrice_intersection,1);

%% compute the union matrix

matrice_intersection_contraire = intersection_matrice(matrice_infos,2);

matrice_intersection_contraire = dedouble(matrice_intersection_contraire,2);

%% case dynamic

else

%% Separates products of each objects, also computes total ignorance

[matrice_monome,ignorance1,nombreElement] = separation(info,1);

[matrice_monome_contraire,ignorance2,nombreElement] = separation(contraire,1);

ignorance = [ignorance1];

%% compute the union matrix

matrice_intersection_contraire = intersection_matrice(matrice_monome,1);

matrice_intersection_contraire = ...

ordre_grandeur(matrice_intersection_contraire,2);

matrice_intersection_contraire = dedouble(matrice_intersection_contraire,2);

%% compute the intersection matrix

matrice_intersection = intersection_matrice(matrice_monome_contraire,1);

matrice_intersection = somme_produit_complet(matrice_intersection);
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matrice_intersection = dedouble(matrice_intersection,2);

end

%% separates objects in contraints: will help compare the with intersection

if ~isempty(contrainte)

[contrainte_separe, ignorance3, nombre] = separation(contrainte,3);

contrainte_separe = tri(contrainte_separe,2);

end

%% compute S1, S2, S3

%% If there is no constraints, simply take S1

if isempty(contrainte)

ensemble_complet = ensemble(matrice_intersection);

%% Otherwise, we have to go throught the three steps

else

%% Go through intersection matrix, if objects = contraints, take union,

%% if objects from union = contraints, take union of objects, if it’s a

%% contraints, take total ignorance.

j = 1; source = 1;

[m,n] = size(matrice_intersection);

ss = 1:m; s = 1;

gg = 1:n; g = 1;

%% Go through each line (s) of the matrix process by accessing each

%% objects, by column (g)

while s ~= (length(ss)+1)

while g ~= (length(gg)+1)

%% take value from intersection matrix

ensemble_step = matrice_intersection(s,g).elements;

%% if the flag is not active, set it to ’1’

if ~(source > 10)

source = 1;

end

%% Proceed if there is something at (s,g) matrix position

if ~isequal(ensemble_step, [])

intersection = 0;

for h = 1 : length(contrainte_separe)

%% If value from intersection matrix is equal to actual

%% constraint and if it hasn’t been equal to a previous

%% constraint, OR, if the flag was active, then proceed to

%% union matrix.

if (isequal(contrainte_separe{h},ensemble_step) &...

isequal(intersection,0)) | isequal(source,22)

intersection = 1; union = 0;

ensemble_step = [];

ensemble_step = matrice_intersection_contraire(s,g).elements;

%% if the flag is not active for the union of objects

%% or to total ignorance, set it to ’2’

if ~(source > 22)

source = 2;

end

for t = 1 : length(contrainte_separe)

%% If value from union matrix is equal to actual

%% constraint and if it hasn’t been equal to a

%% previous constraint, OR, if the flag was active,

%% then proceed to union of objects calculation.
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if (isequal(contrainte_separe{t},ensemble_step)&...

isequal(union,0)) | isequal(source,33)

union = 1; subunion = 0;

nouveau_vecteur = [];

ensemble_step = {};

ensemble1 = matrice_monome(s,1).elements;

ensemble2 = matrice_monome(1,g).elements;

b = 1;

for f = 1 : length(ensemble1)

vecteur = ensemble1{f};

for d = 1 : length(vecteur)

nouveau_vecteur{b} = [vecteur(d)];

b = b + 1;

end

end

for f = 1 : length(ensemble2)

vecteur = ensemble2{f};

for d = 1 : length(vecteur)

nouveau_vecteur{b} = [vecteur(d)];

b = b + 1;

end

end

%% remove repetition

for f = 1 : length(nouveau_vecteur)

for r = f + 1 : length(nouveau_vecteur)

if isequal(nouveau_vecteur{f},nouveau_vecteur{r})

nouveau_vecteur{r} = [];

end

end

end

y = 1;

for r = 1 : length(nouveau_vecteur)

if ~isequal(nouveau_vecteur{r},[])

ensemble_step{y} = nouveau_vecteur{r};

y = y + 1;

end

end

%% ordering

matrice = [];

matrice(1,1).elements = ensemble_step;

matrice(1,1).masses = 0;

matrice(2,2).elements = [];

matrice = ordre_grandeur(matrice,2);

ensemble_step = [];

ensemble_step = matrice(1,1).elements;

%% if the flag is not active for ignorance

if ~(source > 33)

source = 3;

end

for r = 1 : length(contrainte_separe)

%% If value from union of objects matrix is

%% equal to actual constraint and if it

%% hasn’t been equal to previous constraint
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%% OR, if the flag was active.

if (isequal(contrainte_separe{r}, ensemble_step)...

& isequal(subunion,0)) | isequal(source,44)

subunion = 1;

ensemble_step = {};

ensemble_step = ignorance;

source = 4;

end

end

end

end

end

end

ensemble_complet_temp = [];

ensemble_complet_temp(1).elements = ensemble_step;

ensemble_complet_temp(1).masses = matrice_intersection(s,g).masses;

%% remove constraints of composed objects, if there is any

ensemble_step_temp = ...

enlever_contrainte(ensemble_complet_temp,contrainte_separe);

%% once the contraints are all removed, check if the object are

%% empty. If not, increment output matrix position, if it is

%% empty, activate the flag following the position from where

%% the answer would have been taken and restart loop without

%% incrementing (s,g) intersection matrix position.

if ~isempty(ensemble_step_temp(1).elements)

ensemble_step = [];

ensemble_step = ensemble_step_temp(1).elements;

ensemble_complet(j).elements = ensemble_step;

ensemble_complet(j).masses = ...

matrice_intersection(s,g).masses;

ensemble_complet = tri(ensemble_complet,1);

j = j + 1;

else

switch (source)

%% CASE 4 is not used here. It’s the case where there

%% would be a constraint on total ignorance.

case 1

source = 22;

case 2

source = 33;

case 3

source = 44;

end

%% Will let the while loop repeat process for actual (s,g)

g = g - 1;

end

end %% ’end’ for the "if ~isequal(ensemble_step, [])" line

%% move forward in the intersection matrix

g = g + 1;

end %g = 1 : n (columns of intersection matrix)

%% move forward in the intersection matrix
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s = s + 1;

g = 1;

end %s = 1 : m (lines of intersection matrix)

end

g = 1; s = 1;

%% Sort the content of the output matrix

ensemble_complet = tri(ensemble_complet,1);

%% Filter the ouput matrix to merge equal cells

ensemble_complet = dedouble(ensemble_complet,1);

15.7.14 File : intersection matrice.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that computes the intersection matrix and masses

%

% sorte: type of fusion [static | dynamic]

% matrice_monome: initial information, once separated by objects with ADD

% and MULT removed. vector represents products, a change of vector the sum

% includes only the first line and column of the matrix

%

% matrice_intersection: return the result of intersections

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [matrice_intersection] = intersection_matrice(matrice_monome,sorte)

%% case dynamic

if isequal(sorte,1)

matrice_intersection = [];

[m,n] = size(matrice_monome);

ensembleN = {};

ensembleM = {};

%% go through the first line and column, fill the intersection matrix

for g = 2 : m

ensembleM = matrice_monome(g,1).elements;

for h = 2 : n

ensembleN = matrice_monome(1,h).elements;

matrice_intersection(g,h).elements = [ensembleN,ensembleM];

matrice_intersection(g,h).masses = ...

matrice_monome(g,1).masses * matrice_monome(1,h).masses;

end

end

matrice_intersection = dedouble(matrice_intersection,2);

matrice_intersection = ordre_grandeur(matrice_intersection,2);

%% case static

else

matrice_intersection = [];

matrice_intermediaire = [];

[m,n] = size(matrice_monome);

ensembleN = {};

ensembleM = {};

j = 1;

s = 1;

%% fill the intersection matrix by multipliying all at once

for g = 1 : n
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ensembleM = matrice_monome(1,g).elements;

if ~isequal(ensembleM,[])

for h = 1 : n

ensembleN = matrice_monome(2,h).elements;

if ~isequal(ensembleN,[])

matrice_intermediaire(j,s).elements = [ensembleN,ensembleM];

matrice_intermediaire(j,s).masses = ...

matrice_monome(2,h).masses * matrice_monome(1,g).masses;

s = s + 1;

end

end

end

end

[r,t] = size(matrice_intermediaire);

s = 1;

for g = 3 : m

for h = 1 : t

ensembleM = matrice_intermediaire(1,h).elements;

for u = 1 : n

ensembleN = matrice_monome(g,u).elements;

if ~isequal(ensembleN,[])

matrice_intersection(1,s).elements = [ensembleN,ensembleM];

matrice_intersection(1,s).masses = ...

matrice_intermediaire(1,h).masses * matrice_monome(g,u).masses;

s = s + 1;

end

end

end

matrice_intermediaire = matrice_intersection;

matrice_intersection = [];

[r,t] = size(matrice_intermediaire);

s = 1;

end

matrice_intersection = matrice_intermediaire;

matrice_intersection = dedouble(matrice_intersection,2);

end

15.7.15 File : ordre grandeur.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that orders vectors

%

% matrice: matrix in which we order the vectors in the sets

%

% matriceOut: output ordered matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [matriceOut] = ordre_grandeur(matrice,sorte)

[m,n] = size(matrice);

ensemble = {};

ensembleTemp = [];

%% case static

if isequal(sorte,1)

u = 1;
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y = 1;

%% case dynamic

else

essai = matrice(2,2).elements;

if isempty(essai)

u = 1;

y = 1;

else

u = 2;

y = 2;

end

end

%% Order by size vector of sets of matrix

for g = u : m

for h = y : n

ensemble = matrice(g,h).elements;

for f = 1 : length(ensemble)

for k = f + 1 : length(ensemble)

if length(ensemble{k}) < length(ensemble{f})

ensembleTemp = ensemble{f};

ensemble{f} = ensemble{k};

ensemble{k} = ensembleTemp;

elseif isequal(length(ensemble{k}), length(ensemble{f}))

vecteur1 = ensemble{k};

vecteur2 = ensemble{f};

changer = 0;

for t = 1 : length(vecteur1)

if (vecteur1(t) < vecteur2(t)) & isequal(changer,0)

ensembleTemp = ensemble{f};

ensemble{f} = ensemble{k};

ensemble{k} = ensembleTemp;

changer = 1;

break;

end

end

end

end

end

matriceOut(g,h).elements = ensemble;

matriceOut(g,h).masses = matrice(g,h).masses;

end

end

15.7.16 File : plausibilite.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that calculates plausibility

%

% I: final information for which we want plausibility

% contrainte: initial constraints

%

% plausibilite_complet: returns plausibility and masses

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function plausibilite_complet = plausibilite(I,contrainte)

%#inbounds

%#realonly

global ADD

global MULT

ADD = -2;

MULT = -1;

ensemble_complet = {};

contrainte_compare = {};

info = [];

matrice_monome = [];

ignorance = [];

ensemble_elements = [];

vecteur1 = [];

vecteur2 = [];

nombreElement = 0;

f = 1;

j = 1;

r = 1;

%% separates the objects, removes ADD and MULT

for g = 1 : length(I)

if ~isempty(I(g).elements)

ensemble_elements{f} = I(g).elements;

vecteur2(f) = I(g).masses;

vecteur1(f) = 1;

f = f + 1;

end

end

info(1).elements = ensemble_elements;

info(2).elements = ensemble_elements;

info(1).masses = vecteur1;

info(2).masses = vecteur2;

[matrice_monome,ignorance,nombreElement] = separation(info,1);

[contraire_complet, contraire] = faire_contraire(info);

[matrice_monome_contraire,ignorance,nombreElement] = separation(contraire,1);

%% creates the intersection matrix

matrice_intersection = intersection_matrice(matrice_monome_contraire,1);

matrice_intersection = somme_produit_complet(matrice_intersection);

matrice_intersection = dedouble(matrice_intersection,2);

%% takes the contraint in sum of products, however, if there’s none, do

%% nothing and put it all to ’1’

entre = 0;

s = 1;

for r = 1 : length(contrainte)

if ~isempty(contrainte) & ~isempty(contrainte{r}) & isequal(entre,0)

for g = 1 : length(contrainte)

if ~isequal(contrainte{g},{})

[contrainte_compare{s}, ignorance, nombre] = ...

separation(contrainte{g},3);

s = s + 1;

end

end

%% remove contraints on the intersection matrix
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[m,n] = size(matrice_intersection);

for g = 2 : n

ensemble_complet = [];

matrice_intersection_trafique = matrice_intersection(:,g);

matrice_intersection_trafique(2,2).elements = [];

ensemble_complet = ensemble(matrice_intersection_trafique);

ensemble_complet = tri(ensemble_complet,1);

ensemble_complet = dedouble(ensemble_complet,1);

for t = 1 : length(contrainte_compare)

ensemble_complet = enlever_contrainte(ensemble_complet,...

contrainte_compare{t});

end

resultat(j).masses = 0;

for t = 1 : length(ensemble_complet)

if ~isempty(ensemble_complet(t).elements)

resultat(j).masses = resultat(j).masses + ...

ensemble_complet(t).masses;

end

end

resultat(j).elements = matrice_monome(g,1).elements;

j = j + 1;

end

entre = 1;

%% if there’s no constraints, put it all to ’1’,

elseif isequal(length(contrainte),r) & isequal(entre,0)

[m,n] = size(matrice_monome);

for g = 1 : m

resultat(j).elements = matrice_monome(g,1).elements;

resultat(j).masses = 1;

j = j + 1;

end

end

end

plausibilite_complet = dedouble(resultat,1);

15.7.17 File : produit somme complet.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that converts input in product of sums

%

% ensemble_complet: matrix in sum of products

%

% ensemble_produit: matrix in product of sums

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ensemble_produit] = produit_somme_complet(ensemble_complet);

global ENLEVE

ENLEVE = {};

ensemble_elements = {}; ensemble_produit = {};

vecteur = []; matrice = [];

p = 1; y = 1;

%% go through all sets, puts them in product of sums

for g = 1 : length(ensemble_complet)

if ~isequal(ensemble_complet(g).elements, ENLEVE)
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ensemble_elements = ensemble_complet(g).elements;

if (length(ensemble_elements) >= 2)

i = 1;

ensemble_produit(p).elements = {};

changer = 0;

if length(ensemble_elements) >= 3

vecteur1 = ensemble_elements{1};

vecteur2 = ensemble_elements{2};

if ~(length(vecteur1) > 1 & length(vecteur2) > 1)

ensemble_produit(p).elements = ensemble_complet(g).elements;

ensemble_produit(p).masses = ensemble_complet(g).masses;

p = p + 1;

else

changer = 1 ;

end

else

changer = 1;

end

if isequal(changer, 1)

for k = 1 : length(ensemble_elements) - 1

if (k < 2)

if (k + 1) > length(ensemble_elements)

x = length(ensemble_elements);

else

x = k + 1;

end

for w = k : x

vecteur = ensemble_elements{w};

j = 1;

for f = 1 : length(vecteur)

if isequal(length(vecteur),1)

ensembleN{j} = [vecteur];

else

ensembleN{j} = [vecteur(f)];

j = j + 1;

end

end

if isequal(i,1)

matrice(1,2).elements = ensembleN;

matrice(1,2).masses = 0;

ensembleN = {};

i = 2;

elseif isequal(i,2)

matrice(2,1).elements = ensembleN;

matrice(2,1).masses = 0;

ensembleN = {};

i = 1;

end

end

elseif (k >= 2) & (length(ensemble_elements) > 2)

w = k + 1;

j = 1;

vecteur = ensemble_elements{w};
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for f = 1 : length(vecteur)

if isequal(length(vecteur),1)

ensembleN{j} = [vecteur];

else

ensembleN{j} = [vecteur(f)];

j = j + 1;

end

end

matrice(1,2).elements = ensemble_produit(p).elements;

matrice(1,2).masses = 0;

matrice(2,1).elements = ensembleN;

matrice(2,1).masses = 0;

ensembleN = {};

end

resultat = union_matrice(matrice);

[s,t] = size(resultat);

for r = 1 : s

for d = 1 : t

masse = resultat(r,d).masses;

if isequal(masse, 0)

ensemble_produit(p).elements = ...

resultat(r,d).elements;

ensemble_produit(p).masses = ...

ensemble_complet(g).masses;

end

end

end

end

p = p + 1;

end

elseif isequal(length(ensemble_elements),1)

for k = 1 : length(ensemble_elements)

vecteur = ensemble_elements{k};

j = 1;

for f = 1 : length(vecteur)

if isequal(length(vecteur),1)

ensembleN{j} = [vecteur];

else

ensembleN{j} = [vecteur(f)];

j = j + 1;

end

end

end

ensemble_produit(p).elements = ensembleN;

ensembleN = {};

ensemble_produit(p).masses = ensemble_complet(g).masses;

p = p + 1;

elseif ~isequal(ensemble_elements, [])

ensemble_produit(p).elements = ensemble_complet(g).elements;

ensemble_produit(p).masses = ensemble_complet(g).masses;

p = p + 1;

end

end
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end

15.7.18 File : separation.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: separates products in input data

%

% info: information from sources (initial data)

% sorte: type of separation

%

% retour: separated data (products)

% ignorance: total ignorance

% nombreElement:number of vectors in sets of each information

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [retour,ignorance_nouveau,nombreElement] = separation(info,sorte)

global ADD

global MULT

global SOURCE

ADD = -2;

MULT = -1;

SOURCE = 2;

nouvelle_info = []; %struc elements: set of vector

ensemble_monome = []; %cell (1,1) of matrix is empty

matrice_monome = []; %cell (1,1) of matrix is empty

retour = [];

ignorance_nouveau = [];

%% takes each elements of each sources and separates the products

[m,n] = size(info);

if ~isequal(sorte,3)

for g = 1 : n

nombreElement(g) = length(info(g).elements);

end

else

nombreElement(1) = 1;

end

%% case dynamic or two sources

if isequal(sorte,1)

%% variables

ligne = 1;

colonne = 2;

ignorance = [];

%% go through each sources

for g = 1 : n

ensemble = info(g).elements;

vecteur_masse = info(g).masses;

if isequal(g,SOURCE)

colonne = 1;

ligne = 2;

end

%% go through each set of elements

for h = 1 : length(ensemble)

vecteur = ensemble{h};

nouveau_vecteur = [];
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nouvel_ensemble = {};

k = 1;

%% go through each element of the vector

%% to separate the products and sums

for j = 1 : length(vecteur)

if ~isequal(vecteur(j), ADD)

if ~isequal(nouveau_vecteur, []) & ~isequal(vecteur(j), MULT)

nouveau_vecteur = [nouveau_vecteur, vecteur(j)];

if isequal(j,length(vecteur))

nouvel_ensemble{k} = nouveau_vecteur;

ignorance = [ignorance, nouveau_vecteur];

end

elseif ~isequal(vecteur(j), MULT)

nouveau_vecteur = [vecteur(j)];

if isequal(j,length(vecteur))

nouvel_ensemble{k} = nouveau_vecteur;

ignorance = [ignorance, nouveau_vecteur];

end

end

else

nouvel_ensemble{k} = nouveau_vecteur;

ignorance = [ignorance, nouveau_vecteur];

nouveau_vecteur = [];

k = k + 1;

end

end

nouvelle_info(g,h).elements = nouvel_ensemble;

nouvelle_info(g,h).masses = vecteur_masse(h);

if isequal(g,1)

matrice_monome(ligne,colonne).elements = nouvel_ensemble;

matrice_monome(ligne,colonne).masses = vecteur_masse(h);

colonne = colonne + 1;

elseif isequal(g,2)

matrice_monome(ligne,colonne).elements = nouvel_ensemble;

matrice_monome(ligne,colonne).masses = vecteur_masse(h);

ligne = ligne + 1;

end

end

end

ignorance = unique(ignorance);

for r = 1 : length(ignorance)

ignorance_nouveau{r} = ignorance(r);

end

retour = matrice_monome;

%% case static

elseif isequal(sorte,2)

%% variables

f = 1;

%% go through each sources

for g = 1 : n

ensemble = info(g).elements;

vecteur_masse = info(g).masses;

%% go through each set of elements
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for h = 1 : length(ensemble)

vecteur = ensemble{h};

nouveau_vecteur = [];

nouvel_ensemble = {};

k = 1;

%% go through each element of the vector

%% to separate the products and sums

for j = 1 : length(vecteur)

if ~isequal(vecteur(j), ADD)

if ~isequal(nouveau_vecteur, []) & ~isequal(vecteur(j), MULT)

nouveau_vecteur = [nouveau_vecteur, vecteur(j)];

if isequal(j,length(vecteur))

nouvel_ensemble{k} = nouveau_vecteur;

end

elseif ~isequal(vecteur(j), MULT)

nouveau_vecteur = [vecteur(j)];

if isequal(j,length(vecteur))

nouvel_ensemble{k} = nouveau_vecteur;

end

end

else

nouvel_ensemble{k} = nouveau_vecteur;

nouveau_vecteur = [];

k = k + 1;

end

end

ensemble_monome(f).elements = nouvel_ensemble;

ensemble_monome(f).masses = vecteur_masse(h);

f = f + 1;

end

end

ignorance = [];

retour = ensemble_monome;

%% case contraint

elseif isequal(sorte,3)

for g = 1 : length(info)

vecteur = info{g};

nouveau_vecteur = [];

nouvel_ensemble = {};

k = 1;

for h = 1 : length(vecteur)

if ~isequal(vecteur(h), ADD)

if ~isequal(nouveau_vecteur, []) & ~isequal(vecteur(h), MULT)

nouveau_vecteur = [nouveau_vecteur, vecteur(h)];

if isequal(h,length(vecteur))

nouvel_ensemble{k} = nouveau_vecteur;

end

elseif ~isequal(vecteur(h), MULT)

nouveau_vecteur = [vecteur(h)];

if isequal(h,length(vecteur))

nouvel_ensemble{k} = nouveau_vecteur;

end

end
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else

nouvel_ensemble{k} = nouveau_vecteur;

nouveau_vecteur = [];

k = k + 1;

end

end

nouvelle_contrainte{g} = nouvel_ensemble;

end

ignorance = [];

retour = nouvelle_contrainte;

end

15.7.19 File : separation unique.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: separates products in input data, one info. at a time

%

% info: information from sources (initial data)

% sorte: type of separation

%

% matrice_monome: separated data (products)

% ignorance: total ignorance

% nombreElement: number of vectors in sets of each information

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [matrice_monome,ignorance,nombreElement] = ...

separation_unique(info,matrice_monome)

%#inbounds

%#realonly

global ADD

global MULT

global SOURCE

ADD = -2;

MULT = -1;

SOURCE = 2;

nouvelle_info = []; %struc elements: set of vector

ignorance = [];

if isequal(matrice_monome, [])

ligne = 1;

colonne = 1;

else

[m,n] = size(matrice_monome);

ligne = m + 1;

colonne = 1;

end

%% takes each elements of each sources and separates the products

[m,n] = size(info);

for g = 1 : n

nombreElement(g) = length(info(g).elements);

end

%% go through each sources

for g = 1 : n

ensemble = info(g).elements;

vecteur_masse = info(g).masses;
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%% go through each set of elements

for h = 1 : length(ensemble)

vecteur = ensemble{h};

nouveau_vecteur = [];

nouvel_ensemble = {};

k = 1;

%% go through each elements of the vector

%% separates the products and sums

for j = 1 : length(vecteur)

if ~isequal(vecteur(j), ADD)

if ~isequal(nouveau_vecteur, []) & ~isequal(vecteur(j), MULT)

nouveau_vecteur = [nouveau_vecteur, vecteur(j)];

if isequal(j,length(vecteur))

nouvel_ensemble{k} = nouveau_vecteur;

ignorance = [ignorance, nouveau_vecteur];

end

elseif ~isequal(vecteur(j), MULT)

nouveau_vecteur = [vecteur(j)];

if isequal(j,length(vecteur))

nouvel_ensemble{k} = nouveau_vecteur;

ignorance = [ignorance, nouveau_vecteur];

end

end

else

nouvel_ensemble{k} = nouveau_vecteur;

ignorance = [ignorance, nouveau_vecteur];

nouveau_vecteur = [];

k = k + 1;

end

end

nouvelle_info(g,h).elements = nouvel_ensemble;

nouvelle_info(g,h).masses = vecteur_masse(h);

matrice_monome(ligne,colonne).elements = nouvel_ensemble;

matrice_monome(ligne,colonne).masses = vecteur_masse(h);

colonne = colonne + 1;

end

end

ignorance = unique(ignorance);

15.7.20 File : somme produit complet.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that converts input in sum of products

%

% matrice_contraire: matrix in product of sums

%

% matrice_complet: matrix in sum of products

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [matrice_complet] = somme_produit_complet(matrice_contraire);

%#inbounds

%#realonly

ensemble_elements = {};

vecteur = [];
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matrice = [];

matrice_complet = [];

p = 1;

ensembleN = {};

[m,n] = size(matrice_contraire);

if ~isempty(matrice_contraire(1,1).elements)

u = 1;

v = 1;

else

u = 2;

v = 2;

end

%% go through the sets and puts them in sum of product

for g = u : m

for t = v : n

ensemble_elements = matrice_contraire(g,t).elements;

if ~isequal(ensemble_elements, {})

matrice_complet(g,t).elements = {};

matrice_complet(g,t).masses = 0;

ensembleN = {};

if isequal(length(ensemble_elements), 1)

vecteur = ensemble_elements{1};

j = 1;

ensembleN{j} = [];

for f = 1 : length(vecteur)

ensembleN{j} = [vecteur(f)];

j = j + 1;

end

matrice_complet(g,t).elements = ensembleN;

matrice_complet(g,t).masses = matrice_contraire(g,t).masses;

elseif length(ensemble_elements) >= 2

matrice_complet(g,t).elements = [];

changer = 0;

if length(ensemble_elements) >= 3

vecteur1 = ensemble_elements{1};

vecteur2 = ensemble_elements{2};

%file produit_somme_complet.m needed an ’~’ for the IF

%here to work as it should be.

if (length(vecteur1) > 1 & length(vecteur2) > 1)

matrice_complet(g,t).elements = ...

matrice_contraire(g,t).elements;

matrice_complet(g,t).masses = ...

matrice_contraire(g,t).masses;

else

changer = 1 ;

end

else

changer = 1;

end

if isequal(changer,1);

matrice_complet(g,t).elements = {};

i = 1;
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for k = 1 : length(ensemble_elements) - 1

if (k < 2)

if (k + 1) > length(ensemble_elements)

x = length(ensemble_elements);

else

x = k + 1;

end

for w = k : x

vecteur = ensemble_elements{w};

j = 1;

for f = 1 : length(vecteur)

if isequal(length(vecteur),1)

ensembleN{j} = [vecteur];

else

ensembleN{j} = [vecteur(f)];

j = j + 1;

end

end

if isequal(i,1)

matrice(1,2).elements = ensembleN;

matrice(1,2).masses = 0;

ensembleN = {};

i = 2;

elseif isequal(i,2)

matrice(2,1).elements = ensembleN;

matrice(2,1).masses = 0;

ensembleN = {};

i = 1;

end

end

elseif (k >= 2) & (length(ensemble_elements) > 2)

w = k + 1;

j = 1;

vecteur = ensemble_elements{w};

for f = 1 : length(vecteur)

if isequal(length(vecteur),1)

ensembleN{j} = [vecteur];

else

ensembleN{j} = [vecteur(f)];

j = j + 1;

end

end

matrice(1,2).elements = matrice_complet(g,t).elements;

matrice(1,2).masses = 0;

matrice(2,1).elements = ensembleN;

matrice(2,1).masses = 0;

ensembleN = {};

end

matrice = ordre_grandeur(matrice,2);

resultat = union_matrice(matrice);
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matrice(2,1).elements = {};

matrice(1,2).elements = {};

[s,b] = size(resultat);

for r = 1 : s

for d = 1 : b

masse = resultat(r,d).masses;

if isequal(masse, 0)

matrice_complet(g,t).elements = ...

resultat(r,d).elements;

matrice_complet(g,t).masses = ...

matrice_contraire(g,t).masses;

end

end

end

end

end

elseif ~isequal(ensemble_elements, [])

matrice_complet(g,t).elements = matrice_contraire(g,t).elements;

matrice_complet(g,t).masses = matrice_contraire(g,t).masses;

end

end

end

end

if (g >= 2) & (t >= 2)

matrice_complet = ordre_grandeur(matrice_complet,2);

end

15.7.21 File : tri.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that sorts the elements

%

% matrice: matrix to sort, can be a set

% sorte: type of input [matrix | set]

%

% retour: matrix, or set, once the elements are sorted

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [retour] = tri(matrice,sorte)

%#inbounds

%#realonly

%% case matrix

if isequal(sorte,1)

[m,n] = size(matrice);

ensemble_temp = [];

if m > 1

u = 2;

v = 2;

else

u = 1;

v = 1;

end

%% go through each elements of the matrix, sort them
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for h = u : m

for g = v : n

ensemble = matrice(h,g).elements;

for f = 1 : length(ensemble)

for k = f + 1 : length(ensemble)

%% if they are the same length, look at each number, at

%% order them

if isequal(length(ensemble{f}),length(ensemble{k}))

if (ensemble{f} > ensemble{k})

ensemble_temp = ensemble{f};

ensemble{f} = ensemble{k};

ensemble{k} = ensemble_temp;

end

else

%% ifnot the same length, put at first, the smaller

if length(ensemble{f}) > length(ensemble{k})

ensemble_temp = ensemble{f};

ensemble{f} = ensemble{k};

ensemble{k} = ensemble_temp;

end

end

end

end

matriceOut(h,g).elements = ensemble;

matriceOut(h,g).masses = matrice(h,g).masses;

end

end

retour = matriceOut;

%% case set

else

ensemble_temp = [];

%% go through each elements of the set, sort them

for h = 1 : length(matrice)

ensemble_tri = matrice{h};

for f = 1 : length(ensemble_tri)

for k = f + 1 : length(ensemble_tri)

if isequal(length(ensemble_tri{f}),length(ensemble_tri{k}))

if (ensemble_tri{f} > ensemble_tri{k})

ensemble_temp = ensemble_tri{f};

ensemble_tri{f} = ensemble_tri{k};

ensemble_tri{k} = ensemble_temp;

end

else

if length(ensemble_tri{f}) > length(ensemble_tri{k})

ensemble_temp = ensemble_tri{f};

ensemble_tri{f} = ensemble_tri{k};

ensemble_tri{k} = ensemble_temp;

end

end

end

end

ensembleOut{h} = ensemble_tri;
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end

retour = ensembleOut;

end

15.7.22 File : union matrice.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that computes the union matrix and masses

%

% matrice_monome: objects and masses once separated, on the 1st line/column

%

% matrice_union : returns the result of the union and masses

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [matrice_union] = union_matrice(matrice_monome)

%#inbounds

%#realonly

matrice_union = [];

[m,n] = size(matrice_monome);

ensembleN = {};

ensembleM = {};

vecteurN = [];

vecteurM = [];

ensemble1 = [];

ensemble2 = [];

%% go through the 1st line and column, fill the union matrix

for g = 2 : n

ensembleN = matrice_monome(1,g).elements;

if ~isequal(ensembleN,{})

for h = 2 : m

ensembleM = matrice_monome(h,1).elements;

if ~isequal(ensembleM,{})

if isequal(ensembleN, ensembleM)

matrice_union(h,g).elements = ensembleN;

matrice_union(h,g).masses = matrice_monome(1,g).masses *...

matrice_monome(h,1).masses;

else

%% put the identical ones (from same line) togheter

[ensembleM,ensembleN] = bon_ordre(ensembleM,ensembleN);

%% verifies which one is the higher

if length(ensembleM) >= length(ensembleN)

ensemble1 = ensembleN;

ensemble2 = ensembleM;

else

ensemble1 = ensembleM;

ensemble2 = ensembleN;

end

end

%% fill the union matrix

nouvel_ensemble = {};

j = 1;

for t = 1 : length(ensemble1)

for s = 1 : length(ensemble2)

if t <= length(ensemble2)
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if isequal(ensemble2{s},ensemble1{t})

nouvel_ensemble{j} = [ensemble1{t}];

else

vecteur = [ensemble2{s},ensemble1{t}];

nouvel_ensemble{j} = unique(vecteur);

end

else

if isequal(ensemble1{length(ensemble2)},ensemble1{t})

nouvel_ensemble{j} = [ensemble1{t}];

else

vecteur = ...

[ensemble1{length(ensemble2)},ensemble1{t}];

nouvel_ensemble{j} = unique(vecteur);

end

end

j = j + 1;

end

end

matrice_union(h,g).elements = nouvel_ensemble;

matrice_union(h,g).masses = matrice_monome(1,g).masses *...

matrice_monome(h,1).masses;

end

end

end

end

matrice_union = ordre_grandeur(matrice_union,2);
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