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ABSTRACT: Target deconvolution is a vital initial step in
preclinical drug development to determine research focus and
strategy. In this respect, computational target prediction is
used to identify the most probable targets of an orphan ligand
or the most similar targets to a protein under investigation.
Applications range from the fundamental analysis of the
mode-of-action over polypharmacology or adverse effect
predictions to drug repositioning. Here, we provide a review
on published ligand- and target-based as well as hybrid
approaches for computational target prediction, together with current limitations and future directions.

■ INTRODUCTION

Target prediction is a key aspect in early preclinical drug
development, pivotal to determine the clinical application and
to initiate drug development campaigns. For instance, orphan
compounds may be known from phenotypic screening,
showing changes in cell or organism phenotypes upon
compound exposure, without the underlying molecular
mechanism being known.1 Targets for orphan compounds
can be experimentally identified with techniques based on
chemical proteomics such as affinity chromatography and
activity-based protein profiling (ABPP), enabling compound
testing against the proteome of cell lysates or even intact cells
and organisms.2−4

Since these experiments are time and cost extensive,
computational alternatives to rapidly predict the primary
targets have gained momentum and are commonly known as in
silico target prediction, target identification, or target fishing.5

Herein, a general distinction can be made between ligand-based
methods, centered around small molecules, and structure-based
methods, implementing information from protein structures.6

Pivotal to most of these approaches is the chemical similarity
principle stating that “similar molecules have a similar
biological effect” and conversely that “similar proteins bind
similar ligands”.7

One of the main applications of computational target
prediction is to elucidate the mode-of-action of a compound by
identifying its potential target. However, the traditional magic
bullet paradigm, wherein a ligand has a high potency and
selectivity toward a single target, has shifted to the under-
standing that a ligand affects multiple targets simultaneously.8,9

In this context, target prediction methods can be used to
explore desired polypharmacological ef fects of ligands to cover
disease pathways.10 Similarly, it can help to spot selectivity or

toxicity problems during compound optimization which can
potentially lead to unwanted adverse or side ef fects.11 Moreover,
approved drugs, and hence clinically tested ligands, can be
repurposed for different indications if they are also found to
interact with a protein target that is part of another disease
mechanism.12−14 This process is called drug repositioning or
drug repurposing. Whereas the aforementioned applications
focus on predicting targets, computational target prediction
methods can also be applied to select ligands that have the
highest potential to be relevant chemical probes used for ABPP
to characterize the biological function of a poorly understood
target.15−17

Designed for computational biologists, medicinal chemists,
and neighboring disciplines, this review aims to outline the
general principle and potential of computational target
prediction together with the underlying methods and their
application. The article starts with ligand-based modeling,
followed by hybrid approaches (using both ligand and protein
data), as well as structure- and interaction-based methods
(Figure 1). Finally, potential pitfalls of the different approaches
are covered, and a future perspective is given.

■ LIGAND-BASED TARGET PREDICTION

Central to ligand-based methods is that they rely on the
chemical structure of ligands and associated bioactivity of
similar ligands. Ligand-based methods are often used to predict
the bioactivity of novel compounds for a specific target (Figure
2). However, ligand-based methods can also be applied to
predict activities for a range of targets. Generally, this can be
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Figure 1. Overview of ligand- and structure-based as well as hybrid methods for target prediction (blue) with optional data enrichment strategies
(light blue), using database (DB) or training data input (green), separated by applicability depending on available query data (orange). Necessary
and potential connections are displayed with solid and dotted arrows, respectively.

Figure 2. Ligand-based methods for target prediction. Descriptors in ligand-based methods are shown in the dashed-lined boxes on the left.
Methods increase in complexity from left to right.
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accomplished by ranking targets based on predicted compound
activity: the target for which the highest activity is predicted is
expected to be the most likely target of that query compound.
Typically, the ChEMBL database18 occasionally in combi-

nation with PubChem,19 e.g., in the case of the ExCape
database,20 is used as a public source for chemical structures.
These databases hold experimentally validated bioactivity data
for many compounds tested on a wide range of proteins.
In the following, some general compound descriptors for

ligand-based methods are outlined; for specific details, the
reader is referred to the review by Rognan.21 Subsequently, a
description of ligand-based methods ordered by increasing
complexity coupled to prediction confidence is given (Table
1). The latter is expected to be higher for the more complex
methods.
Compound Descriptors. Compounds in ligand-based

models are typically described using their 2D chemical
structures. Depending on the data source, an intermediate
step can be the conversion from a 1D sequential textual format
(e.g., SMILES22) to a 2D structure, from which more complex
binary vectors such as molecular fingerprints are usually
obtained.23 Different fingerprints are available to describe
chemical structures, e.g., atom-pair fingerprints, topological-
torsion fingerprints, or circular fingerprints, where atom
environments are included (e.g., ECFP).24 Optionally, the
3D shape of compounds is taken into account and translated
into similar molecular fingerprints. However, this requires
additional information on the 3D conformation of the
compounds.25,26 The use of different chemical fingerprints
can impact model performance and was explored by Bender et
al.27 Additionally, physicochemical properties, topological
information, and pharmacophore features of compounds can
be added as descriptors in a similar way. As a result, each
compound is described by an array of numbers forming the
compound descriptors. Resemblance between arrays is higher
when compounds are more similar to each other.
A more complex representation of compounds, compared to

chemical descriptors, are bioactivity spectra descriptors. A
spectrum in its simplest form is a binary bitstring
representation where each bit represents a protein. Proteins
for which a given compound shows activity are marked with a
“1” as opposed to those for which this is not the case (marked

with “0”). Bioactivity spectra rely on compounds being tested
on a range of proteins, instead of compounds being tested on
only one or a few targets. Considering compound promiscuity,
it is expected that compounds display activity on a number of
proteins.28 Based on the bioactivity spectra, compounds that
are not chemically similar but do exert a similar phenotype/
bioactivity might be recognized (so-called activity cliffs29).
Likewise, this bioactivity profile can form an array of numbers
that can be implemented as descriptors for similarity searching
or machine learning, where activities can be treated as a
bioactivity fingerprint. Recently, the biological annotation of
compounds has been extended to include gene expression
profiles30,31 and high content cellular images,32 providing
additional, high-dimensional descriptors that can be added to a
bioactivity fingerprint in a straightforward way.

Similarity Searching. The simplest and fastest method for
target prediction is based on molecular similarity and is often
referred to as similarity search or nearest neighbor search.33

Using a similarity coefficient of choice (e.g., Tanimoto) and
any type of compound descriptors (e.g., ECFP), the similarity
between a pair of molecules can be quickly generated. For
example, finding the most similar 100 compounds for a given
query compound in a PubChem-sized library (∼96 million
compounds) takes a few seconds using chemfp tools developed
by Dalke.34

The simplest implementation for target prediction based on
similarity is to rank the data set compounds based on their
similarity toward the query compound and assume that the
biologically tested target of the most similar compounds is also
the most likely target of the query compound. Webserver tools
that enable the use of this method are, e.g., SwissTargetPre-
diction35 and SuperPred.36 These tools suggest protein targets
based on molecular similarity of the query compound to
compounds with known bioactivity toward these targets. It
should be noted however that these approaches cannot provide
a direct quantification of the biological activity of the query
compound on the top-ranked targets.
While similarity search is classically performed by comparing

chemical descriptors, activity spectra descriptors can also be
used (if enough bioactivity data is available). Early work by
Kauvar et al.37 characterized molecular similarity by an affinity
fingerprint based on experimental screenings of molecules

Table 1. Ligand-Based and Hybrid Methods in Target Predictiona

Data in model training

Name Compound Interaction Training set requirements Target ranking Target prediction tools

Ligand-based models

Similarity searching Chemical struc-
ture

− − Targets classified based on sim-
ilarity threshold of compounds

SwissTarget-Prediction,35

SuperPred,36 SEA,40 OCEAN,45

ROCS,72 FTrees73

Similarity searching Bioactivities − − Targets classified based on sim-
ilarity threshold of bioactivity
spectra

BASS,38 BioSEA46

Machine learning:
Classification

Chemical struc-
ture

Activity class Balanced (in)active classes Targets classified based on activ-
ity class

PIDGIN74

Machine learning:
Regression

Chemical struc-
ture

Bioactivity Normally/equally distributed bio-
activities

Targets ranked based on bioac-
tivity

−

Hybrid models (ligand- and structure-based)

Proteochemometrics Chemical struc-
ture

Activity class
or bioactiv-
ity

Balanced (in)active classes or
normally/equally distributed bi-
oactivities

Targets classified or ranked based
on bioactivity

ChEMBL models58,65

Network-based
models

Chemical struc-
ture and sim-
ilarity

Activity class
or bioactiv-
ity

Sufficient number of connections/
bioactivities

Targets classified or ranked based
on bioactivity

DINIES,68 drugCIPHER69

aThe table gives information on what data is used and how targets are inferred from the model output.
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against a reference panel of selected proteins. Also in BASS38

(bioactivity profile similarity search), the similarity search is
performed based on bioactivity spectra of chemical structures.
Here, when the query has experimentally validated activities on
a number of targets, additional targets can be predicted based
on its bioactivity spectrum. Alternatively, gene expression
profiles can be used to predict bioactivities of compounds for
targets.30,39 Both bioactivity spectra and gene expression
profiles do not compare the molecular structure of compounds.
Therefore, these methods are suited to identify different
chemical structures for similar targets.
In contrast to a classical similarity search, similarity

ensemble methods are applied to identify targets based on a
group of known compounds for that target rather than a single
compound. The compounds are first grouped based on
interactions (e.g., bioactivity) with the same target(s). The
similarity between different compound groups is subsequently
calculated, and when defined as being similar, the targets that
are known to interact with one compound group are identified
as targets for the other compound group(s). The added benefit
is that this allows the calculation of statistical measures that can
score the relevance of a given retrieved target. When ensemble
approaches are applied to identify targets for a query
compound, the similarity is measured between this compound
and the different compound groups. The targets belonging to
the most similar groups are then identified as targets for the
query compound. The SEA40 method utilizes the similarity
ensemble concept to group proteins based on ligand topology.
Within SEA, the retrieved value is then compared to an
expected random value (similar to the way this is implemented
in BLAST41,42), and subsequently, an “E-value” is returned.43

This E-value represents the extreme value and indicates the
quality of the result. The (similarity) score of the selected
samples is compared to what is expected when two random
samples are taken into account. E-values closer to zero indicate
that it is more unlikely that random samples would have equal
similarity as the selected samples. The SEA method has been
applied by Lounkine et al.44 in a target prediction challenge.
Here, side effects of 656 compounds were predicted based on
compound interactions with 73 off-targets. The results were
partially validated by data from hold-out databases or
experimentally validated in vitro. Remarkably, off-targets were
identified that had very low sequence similarity with the on-
target (e.g., off-target serotonin transporter 5-HTT and on-
target histamine H1 receptor for antihistamine diphenhydr-
amine), indicating that such a ligand-based approach can
predict targets without the need of molecular biology
information on protein targets. OCEAN45 is a similar
technique, though using different thresholds to determine
compound similarities. Finally, BioSEA46 also applies the same
methodology; however, instead of comparing compound
similarities based on chemical structure, bioactivity profiles
are compared to create ensembles of compounds.
Machine Learning. Similarity search methods consider all

features in the compound descriptors as equal. However,
statistical methods can weigh the relevance of individual
descriptors by connecting them to biological activity of the
compounds and are often better suited to extrapolate to new
compounds. Machine learning methods require a training
phase, which is performed on known active and inactive
compounds. Herein, a statistical model is fitted to the data to
quantify how chemical descriptors relate to activity. Contrary
to the similarity searching example above, this approach

returns predicted compound−protein activities rather than a
number of compound structures that are similar for a query
compound. When applied to a single protein target for a
congeneric chemical series, these methods are named
quantitative structure−activity relationship (QSAR) models.47

Given a query compound, QSARs can predict its expected
activity based on the compound descriptors. In target
prediction, however, more than one protein is considered.
Machine learning can both be used for classification (e.g., is

the expected affinity higher than a threshold that was defined a
priori as active?) or for regression (e.g., what is the predicted Ki

value for a compound−protein interaction?). Typically,
algorithms such as Random Forest,48 Support Vector
Machines,49 and Naıv̈e Bayes50 are applied. However, with
more data becoming available and to become more
independent of the chosen descriptor, recent work is moving
toward deep learning, a method able to directly derive features
from molecular structures.51,52

An example where machine learning was applied in target
prediction is the identification of novel inhibitors for the
enzyme mycobacterial dihydrofolate reductase.53 Here, targets
were predicted for a set of query compounds using Naıv̈e
Bayesian models. The predicted compound−target interac-
tions were validated in vitro, which indicates the value of such
target prediction methods.

Classification. The most frequently used method in ligand-
based target prediction is arguably classification.1,54 Classi-
fication requires the setting of an activity threshold for
measured interactions to separate the classes. This interaction
can be measured binding affinity (e.g., pKi) but can also be
efficacy or other experimental measurements (e.g., pEC50) or
even a combination of multiple measurement types (e.g.,
pChEMBL value).55 For classification models, a difference can
be made between several approaches:

Single Model Multi-Class (SMMC). In this approach, one
model is used that predicts the most probable target for a given
compound, and target classes are mutually exclusive, in other
words a compound cannot be active on more than one
target.56 Given known ligand promiscuity, the SMMC method
provides an inaccurate representation of the behavior of
ligands and could even be considered to be at odds with the
similarity principle.

Ensemble Model Multi-Label (EMML). With EMML, also
referred to as ensemble model multi-class, one model is used
per protein, and compounds receive a prediction from each
model.1,57 Thus, the sum of protein models where the
compound was predicted active on represents the set of
potential target proteins. To build the model per protein, all
compounds with an activity for the respective protein above a
certain threshold are deemed the active class, and all other
compounds are typically pooled in the inactive class. For the
EMML approach, pooling constitutes a source of error. It
might very well be that although a given compound has not
been tested on the protein under consideration, it is indeed
active yet pooling defines it to be inactive. Thus, potential
targets for the query compound may be missed.

Single Model Multi-Label (SMML). Here, one model is used
to predict all potential targets for a given molecule, and
compounds can belong to multiple target classes (or labels).56

The active class for a given protein is defined equally as is
described for EMML, but all other compounds are not
explicitly pooled in an inactive class, merely the ones that were
tested to be inactive are considered. A caveat can be that there
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are none or too few known inactive compounds for good
model fitting.
When a query compound is run through a classification

model, the output gives the activity class per target (e.g.,
active/inactive, depending on the previously described
approaches and on the predetermined activity threshold).
However, regression can directly predict the affinity of a
compound.
Pitfalls Defining an “Active” Class. Typically, the activity

threshold in classification models is set at 10 μM (i.e., an
affinity better than 10 μM defines active interactions,
corresponding to a pKi of 5). This parameter carries a
significant influence on effectiveness and applicability of target
prediction methods. In principle, for classification, a balanced
set of active and inactive compounds is desired. When the
activity threshold is set at 10 μM, this gives a skewed
distribution of actives and inactives. Recently, target prediction
was performed using an affinity value of ∼316 nM
(corresponding to 6.5 on a logarithmic scale) as the threshold;
this leads to a better distribution of active and inactive classes
when using ChEMBL data.58 An added benefit is that this
threshold also provides a more relevant prediction of biological
activity. Given that the biological error of assays is on average
around ∼0.5 log units for mixed pKi values, a model using a
cutoff of pKi = 6.5 could at worst correspond to an
experimental activity of a pKi = 6.0. When a cutoff of pKi =
5.0 (10 μM) is used, this error would be at worst pKi = 4.5 for
predicted actives.57,58 However, the optimal activity threshold
for balanced classification sets is dependent on the databases
from which compounds and bioactivities are extracted (e.g.,
ExCape20 contains more compounds with lower bioactivities
than ChEMBL). Furthermore, the targets that are considered
can be biased toward reported (in)actives (often in relation to
the amount of studies focused on the target, see the Discussion
and Future Directions section).
When a reasonable number of inactive compounds is

available, but significantly less than the number of active
compounds, some workarounds can be applied to train
representative models. For instance, active compounds can
be divided into smaller subsets in order to train separate
models for each subset of actives with the same set of inactives
(e.g., random undersampling) and, finally, recombined by
ensembling. Ensembling is a technique to combine predictions
from multiple models into one prediction that has shown to
increase performance.58,59 The downside of any ensembling
method is the unavoidable increase in computational time
required as predictions for multiple methods are needed.
Another workaround (which also requires increased

computational time) is to construct multiple ligand-based
target prediction models at different thresholds (e.g., 10 μM, 1
μM, 100 nM, 10 nM, and 1 nM). However, doing so decreases
the available data points for the higher activity thresholds as
fewer compounds are known that meet the threshold, and
hence, this has a negative effect on the chemical applicability
domain. In these cases, regression might allow the use of more
data.
Regression. Contrary to classification, regression methods

are able to directly train on the strength of a given ligand−
protein interaction avoiding the need for a preset threshold.
Trained on experimental data, regression models can make
quantitative predictions (e.g., Ki values) for compounds based
on the chemical structure. These predictions can be directly
translated to the interaction (e.g., affinity as a Ki value). Thus,

when regression is applied to multiple proteins (using an
ensemble of models), the targets can quantitatively be ranked
based on predicted compound−protein activity. In addition to
predicting activity, the differences in interaction strength for
different proteins can be evaluated. Using regression models,
the output of a query ligand can constitute a list with ranked
targets based on quantitative bioactivity predictions. The
output, therefore, does not only define “active” or “inactive”
targets but also the activity strength that is reflected by the
predicted bioactivity values.

■ HYBRID METHODS FOR TARGET PREDICTION

Similarity searching and machine learning methodswhich
are classically built on ligand informationcan also be applied
in more complex systems where protein information is added.
Although the underlying mechanism of the methods is the
same (e.g., machine learning), the implementation can be
different, in turn leading to other application possibilities. This
results in alternate methods to model and analyze the data.

Proteochemometrics. With proteochemometrics (PCM),
both compound and protein information are combined by
addition of an explicit protein descriptor.60 The most common
approach is to add protein information based on knowledge
derived from the protein sequence. Sequences are translated
into descriptive scores (e.g., Z-scales61), reflecting the
properties of the amino acid residues of the proteins.62

Additionally, when structural protein information is available,
this may be used to increase descriptor quality as information
on binding site location can be included, making the model
more accurate compared to using full sequences.63 PCM can
be applied to expand single target models to multiple targets:
based on sequence similarity between proteins, data from one
protein can be extrapolated to a related one.64 Another
application is increasing the amount of available data
(compared to single target models) in order to increase
model performance.63 Several PCM models for target
prediction based on ChEMBL data have been reported.58,65

Such models predict the activities of a query compound for
each of the incorporated targets. When these models are based
on regression, the most likely target for a query compound can
be derived based on the highest predicted activity for that
target compared to other targets. Additionally, a quantitative
activity score is given per target; therefore, it can be assessed if
activity of the query compound for the highest ranked target(s)
is sufficient. Noteworthy, as the combination of compound and
protein descriptors defines each compound protein pair as a
unique pair, even binary class PCM models behave as SMML
models. A compound tested to be inactive on protein A can be
distinguished from the same compound tested on protein B by
the algorithm based on the protein descriptor.

Network-Based Methods. Protein−protein or protein−
ligand interactions can be described as a large network similar
to a social network. Here, nodes can be proteins, compounds,
or both, with the edges being interactions, similarities, or
phenotypic effects. These connections can also be weighted
based on the strength of interaction (e.g., pKi). Using chemical
structures and similarities between connections, targets can be
identified for query compounds.51 This has led to the
publication of several works that use network analysis tools
to predict protein pharmacology.66,67 Additionally, network-
based target prediction tools such as DINIES68 and
drugCIPHER69 are made available as open source tools to
detect ligand−target interactions for query molecules. The
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concept of network-based models is often based on similarities
between chemical structures but can also include similarities
between proteins. More simplistic models implement only one
similarity (e.g., protein similarity), whereas more complex
models can encompass similarities between protein, chemical
structures, and interactions, simultaneously. Such a heterolo-
gous network was constituted using three different networks by
Chen et al.70 Here, a protein similarity network (based on
sequence similarity) was connected to a compound similarity
network by using a ligand−protein interaction network.71

Therefore, in this network, protein and compound similarities
can simultaneously be addressed, which is not possible with
only similarity searching as described in the section regarding
this topic. Targets for a given query compound can be inferred
from the network based on activities (or connections) of
similar ligands and their corresponding targets.

■ STRUCTURE-BASED TARGET PREDICTION

Methods for structure-based target prediction identify the most
likely targets for a query ligand or the most similar targets for a
query target, using 3D structural, i.e., steric and physicochem-
ical, information (Figure 3). The former group of approaches

focuses on docking a query ligand either to a set of targets
(inverse screening) or to a set of pharmacophores inferred from
ligand−target complexes (reverse pharmacophore screening), see
Table 2. The latter group of methods compares a query target,
either to a set of targets (binding site comparison) or to a set of
interactions inferred from ligand−target complexes (interaction
f ingerprint comparison),5 see Table 3.
Typically, the Protein Data Bank (PDB)75 is used as a public

source for protein structures, currently holding more than
140,000 protein structures (accessed in November 2018).
Since the binding site is the key to protein function, most
methods are proceeded by a binding site annotation step: with

a ligand present, binding sites are extracted by a defined
ligand−target residue distance cutoff, and without a co-
crystallized ligand, binding site detection methods can be
invoked.76 A widely used resource for such annotated binding
sites is the scPDB77 database, containing more than 16,000
ligand-bound binding sites from the PDB and covering about
4700 proteins with 6300 ligands.
Methods for structure-based target prediction are all

composed of three main steps, which are described in detail
in the individual method paragraphs: (i) binding site encoding,
(ii) target screening or comparison, and (iii) target ranking.
First, binding sites or ligand−target interactions are encoded
using different descriptor techniques and stored in a target
database. Second, depending on the method, either a query
ligand is screened against the target database, using different
docking engines, or a query binding site is compared with the
target database, using different similarity measures. Finally,
targets are ranked based on a suitable scoring approach.

Inverse Screening. Classically, molecular docking is used
to predict both the binding mode and the approximate binding
free energy of a set of ligands against one target of interest. In
inverse docking, also known as inverse screening or panel
docking, this strategy is reversed, and one query ligand is
docked to a set of target proteins in order to predict its most
likely targets. Most docking tools are theoretically applicable
for inverse screening, yet need adaption with respect to inter-
target instead of conventional inter-ligand ranking (Table
2).78,79

(i) Binding Site Encoding. Since the query compound is
screened against each target in the data set, the targets need to
be preprocessed accordingly. Target databases for methods
using conventional docking engines simply contain structure
files for binding sites (e.g., TarFisDock80 and idTarget81) or
for whole proteins (INVDOCK82), preprocessed as required
for the respective docking tool. In contrast, iRAISE83 prepares
for an efficient comparison by encoding binding sites with
triangle descriptors, which contain pharmacophoric and shape
information and are stored as bitmap database, a specialized
index for high-dimensional features.

(ii) Target screening. Most inverse screening methods use
conventional docking engines, such as DOCK (TarFisDock),
MEDock (idTarget), Glide (VTS84), or AutoDock Vina
(VinaMPI85 and IFPTarget86), in order to estimated the fit
of the query compound against each protein in the target
database. High computational costs are addressed by either
parallel screening (VinaMPI and IFPTarget) or by search
space reduction. The latter can be realized by aborting the
search at the first pose reaching a threshold score based on
interaction energies from reference ligand−protein complexes
(INVDOCK) or by testing one target representative per
precalculated target cluster (based on sequence identity)
before screening the entire cluster (idTarget). Usually, energy-
based functions, such as interaction or binding free energy
functions, are used to score the resulting docking poses. In
iRAISE, the query ligand is described with triangles, in the
same manner as the binding sites before, and is efficiently
matched based on bitmap indices, followed by respective
superimposition of the ligand and binding site triangles.
Finally, iRAISE docking poses are scored using a more
extensive approach in the form of a scoring cascade, including
a clash test, an interaction energy score, a reference score cutoff
(based on the co-crystallized reference ligand), and a ligand
and pocket coverage score.

Figure 3. Structure-based target prediction: conceptual representation
of the four main approaches, i.e. binding site comparison, inverse
screening, reverse pharmacophore screening, and interaction finger-
print comparison.
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(iii) Target Ranking. Targets are ranked either directly
based on the interaction energies of the best docking pose(s)
per target (INVDOCK, TarFisDock, and VinaMPI) or based
on separate functions tailor-made for inter-target ranking. In
the latter approach, each target in the database is profiled
beforehand either with a set of ligands using docking (iRAISE
and VTS) or with one co-crystallized ligand (idTarget and
IFPTarget). These reference profiles are then used to
normalize the scores of docking poses of a query ligand and
potential targets.
Inverse screening methods have been widely used for target

prediction.78,79 For example, Scafuri et al.87 applied idTarget to
predict potential targets of apple polyphenols, known for their
chemo-preventive effect against colorectal cancer. In a
bioinformatics-driven function analysis, the gene expression
levels for the predicted targets were shown to be significantly
altered in colorectal cancer cells, indirectly linking the
investigated apple polyphenols to the predicted targets.
Reverse Pharmacophore Screening. Similar to inverse

screening, reverse pharmacophore screening consecutively fits
a query ligand in the form of a ligand-based pharmacophore
into a precalculated panel of pharmacophore models, derived
from protein−ligand complexes. A pharmacophore is defined
as an ensemble of physicochemical and steric features that are
necessary for the recognition of a ligand by a target, triggering
or blocking a biological response.88 Structure-based ap-
proaches derive such pharmacophores from a target complex,
whereas ligand-based pharmacophores consider solely ligand
properties. Several studies have conducted reverse pharmaco-
phore screening for polypharmacology, using available stand-
ard software packages that allow for rapid pharmacophore
model building and evaluation.89 However, to the knowledge
of the authors, the only available automated workflow for
pharmacophore-based target prediction is PharmMapper.90

In PharmMapper, the interactions of selected ligand−target
complexes are encoded as pharmacophore feature triplets,
stored in a hash table, and deposited in a target database (i).
For target screening (ii), ligand-based pharmacophores are
generated for multiple conformations of the query ligand. Each
conformer pharmacophore is described in form of triplets and
aligned onto each pharmacophore triplet in the target database,
using triangle hashing. Subsequently, targets are scored based
on the overlap of feature types and positions between the

ligand and target pharmacophores. Finally, each target score is
normalized by a reference score for target ranking (iii). The
reference score per target reflects the score distribution of
matching all ligand pharmacophores extracted from the
original protein−ligand complex structures in the database
against the target pharmacophore.
Reverse pharmacophore screening was often applied to

search for targets of compounds in Chinese traditional
medicine (CTM).79 For example, Liu et al.91 used
PharmMapper to predict the glucocorticoid receptor, p38
mitogen-activated protein kinase, and dihydroorotate dehy-
drogenase as potential targets of berberine, a compound used
in CTM to treat cancers including melanoma. Experimental
tests confirmed the predicted targets to be potentially involved
in the anti-melanoma effect of berberine.

Binding Site Comparison. Target comparison is based on
the assumption that similar proteinsor more precisely
binding sitesbind similar ligands. Various binding site
comparison methods have been developed, pursuing different
strategies to encode binding sites, as well as to measure and
score their similarities92,93 (Table 3).

(i) Binding Site Encoding. The structural complexity of
binding sites is reduced to labeled representatives, whose
spatial arrangement is encoded and stored in a database, to be
compared with a query binding site encoded accordingly.
Binding site representatives can be per-residue points (e.g.,
CavBase94 or (Med-)SuMo95,96), binding site surfaces (e.g.,
ProBis97), or binding site volumes (e.g., Volsite/Shaper98),
with labels mostly containing pharmacophoric information.
The spatial arrangement of these representatives is often
encoded as graphs (e.g., CavBase) and triangles/quadruplets.
The latter are binned by their edge lengths and vertex labels
and stored as fingerprints (e.g., FuzCav99 and FLAP100), hash
tables (SiteEngine101), or bitmaps (TrixP102), whereas (Med-)
SuMo95,96 uses a graph of adjacent triangles. Alternate
methods describe binding sites as distance distributions
between aforementioned per-residue points (e.g., RAP-
MAD103), or with volume functions (Volsite/Shaper).

(ii) Binding Site Similarity Measure. Common strategies for
measuring binding site similarities can be divided into
alignment-based (often slower) and alignment-free methods
(mostly faster), as well as accelerated alignment-based
methods. The latter combine the speed of alignment-free

Table 2. Structure-Based Target Prediction: Selected Methods for Inverse Screening and Reverse Pharmacophore Screening

Target screening

Name Encoding Docking engine Scoring function Target ranking Av.a

Inverse screening

INVDOCK82 Sphere-coated surface DOCK deriva-
tive

Interaction energy − 2

TarFisDock80 Sphere-coated surface DOCK 4.0 Interaction energy − 2

idTarget81 Energetic grid map MEDock Binding free energy (AutoDock4 score) Z-score based on binding free
energies of reference complexes

1

VTS84 Energetic grid map Glide Binding free energy (Glide Gscore) Gscore comparison to Boltzmann-
weighted average of reference
Gscores

2

VinaMPI85 Energetic grid map AutoDock Vina Binding free energy (Vina score) − 1

iRAISE83 Bitmap of binned triangles (3
pharmacophore features and cavity
shape)

Index-based bit-
map compari-
son

Scoring cascade: clash test, interaction energy
and reference cutoff, ligand and pocket
coverage

Gaussian-weighted score based on
scores for reference complexes

1

Reverse pharmacophore screening

PharmMapper90 Hash table of binned triangles (5
pharmacophore features)

Geometric hash-
ing

Fit score (based on matching feature types and
positions)

Z-score based on fit score distribu-
tion of reference complexes

1

aAv. = availability: web server, software, or code is (1) free for academic use and/or available upon request or (2) not (yet) available or unclear.
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methods with the visual interpretability of alignment-based
methods. Alignment-based methods calculate and perform the
best possible structural superimposition of two binding sites
based on their encoded features, using geometric matching and
hashing of two triangle sets (e.g., SiteBase104 and SiteEngine,
respectively) or most commonly clique detection between two
graphs (e.g., CavBase). The latter approach searches the
maximum complete subgraph (clique) in a product graph,
which is built from a target and query graph with matching
vertices and edges. Many alignment-f ree methods operate on the
comparison of fingerprints (e.g., FuzCav) or of distance
histograms (e.g., RAPMAD). Accelerated alignment-based
methods use efficient data structures for rapid comparison,
with subsequent binding site alignments for scoring and visual
interpretation. Those methods include strategies to reduce
graph complexity before clique detection (BSAlign105), to
compare binding site volumes using smooth Gaussian
functions (Volsite/Shaper), and to store binned 3-point
pharmacophores in bitmap indices (TrixP). Moreover, proper-
ties of a binding site can be projected to a triangulated sphere
positioned at its center, stored as fingerprint to be iteratively
compared, and aligned to another binding site fingerprint
(SiteAlign106).
(iii) Binding Site Similarity Ranking. Alignment-based

methods score the similarity of binding sites based on the
mutual overlap and/or root-mean square deviation (RMSD) of
their associated encoded features. In contrast, alignment-free
methods mainly calculate fingerprint similarity based on the
number of matching fingerprints, if multiple fingerprints exist
per binding site (e.g., FLAP), or based on the Tanimoto
coefficient, if only one fingerprint per binding site (e.g.,
FuzCav) is calculated.
An exemplary application of binding site comparison is a

study on cross-reactivity using SiteAlign by De Franchi et al.107

Virtual screening of Pim-1 kinase against ATP-binding sites
showed high similarity to synapsin I, a protein regulating
neurotransmitter release in the synapse, suggesting a cross-
reaction of protein kinase inhibitors with synapsin I.
Biochemical validation revealed nanomolar affinities for pan-
kinase inhibitor staurosporine and selective Pim-1 kinase
inhibitor quercetagetin for synapsin I. These findings were
proposed as possible explanations for the observed down-
regulation of neutrotransmitter release by some protein kinase
inhibitors.
Interaction Fingerprint Comparison. Interaction finger-

prints (IFPs), or protein−ligand fingerprints, are vectors that
encode information on interacting ligand and target moieties,
such as hydrogen bond, hydrophobic, charge, aromatic, and
metal-binding interactions. IFPs are often used in combination
with screening methods in order to rescore docking poses.108

Only a few IFP-based pipelines have been published for target
prediction so far. Note that they require a ligand placement
step for IFP calculation. Thus, for IFP encoding (i), the query
ligand has to be docked against the target structure(s).
Generally, IFP methods either map detected interactions to
ligand atoms (e.g., LIFt109), to target binding site residues
(e.g., SIFt110 and IFPTarget86), or define a ligand- and target-
independent fixed length fingerprint (e.g., TIFP111 and
SPLIF112). Similar to the alignment-free fingerprint-based
binding site comparison, the comparison of two IFPs is usually
based on the Tanimoto coefficient (ii), and targets are rank-
ordered accordingly (iii). In the following, two tools are
introduced: In the first approach, interactions are mapped on

the ligand; thus, ligand IFPs are compared. In the second,
information is mapped on the target residues, and
subsequently, target IFPs are compared.
Cao and Wang109 propose a pipeline for off-target prediction

exemplified on a tubulin agent with kinase-cross activity. The
tubulin agent complex structure is the starting point to
generate the ligand-based interaction fingerprint (LIFt) for the
query compound. Next, the query ligand is docked to a panel
of kinase structures. The best-scoring pose per ligand−kinase
complex is encoded as LIFt, documenting interactions per
ligand atom. Finally, these predicted panel LIFts are compared
(Tanimoto coefficient) to the known reference LIFt and
ranked accordingly.
In contrast, IFPTarget by Li et al.86 first sets up a target

database, where the co-crystallized ligand is used to define the
reference target IFP, documenting per-residue interactions.
Next, the query ligand is docked to the same panel of targets,
and the top-scoring pose for each target is used to generate the
docked target IFP. Subsequently, reference and docked target
IFPs are compared and ranked by a final score that integrates
aforementioned energy-based docking and IFP-based scores.
The presented methods are strongly intertwined with a

docking (inverse screening) procedure: Two IFPs can only be
compared if they have one constant component (LIFT: same
ligand in two different structures, or IFPTarget: same structure
with two different ligands) because otherwise the IFP lengths
and order differ. Here, the third category of ligand and protein
invariant fingerprints, such as TIFP by Desaphy et al.,111 could
find a remedy, but has, to the knowledge of the authors, not yet
been used for target prediction.

Consideration of Target Flexibility in Structure-Based
Methods. Proteins are flexible, existing in transient conforma-
tional states, whereby only a subset may be receptive to ligand
binding. Such flexibility is to some extent implicitly considered
by the coarse-grained representation of binding sites in the
encoding step, such as binned distances (e.g., RAPMAD and
FuzCav) and fuzzified graphs (PoLiMorph114), as well as by
including tolerances during the matching step. Small side-chain
flexibility can be explicitly included by, e.g., representing
rotatable hydrophilic interactions (TrixP) or “on-the-fly”
conformational sampling of side chains (FLAP and
BioGPS118). Instead of conformational sampling, different
parts of the binding site can be investigated separately from
each other in order to spot local similarities. Some methods
therefore allow for partial shape matching (TrixP) or local
examination of binding site segments (ProBis). Inverse
screening methods usually treat the target structure as rigid
body, while considering ligand flexibility by conformational
sampling of the ligand (e.g., iRAISE and INVDOCK).
However, information on protein flexibility can be enriched

by including protein ensembles in screening databases, either
derived from a set of experimentally determined structures or
from molecular dynamics (MD) simulations. The former
approach is to some extent integrated whenever methods are
built upon a database containing multiple structures per
protein (e.g., scPDB-based target databases); however, so far,
those structures have not been statistically evaluated as one
protein ensemble. Furthermore, such PDB-derived protein
ensembles can only cover protein classes with high coverage.
Methods describing binding site changes based on MD
simulations, as described in TRAPP119 for transient pockets,
are already available but have not been integrated yet into a
workflow for target prediction.
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■ DISCUSSION AND FUTURE DIRECTIONS

Since without sufficient data computational target prediction
would not be possible at all, we first discuss the beauty and
peril of current data sources. We then cover challenges in
target ranking and method validation as well as directions on
how to overcome them.
Data. Usage of in silico techniques for target prediction has

been enabled in the first place by the rapidly increasing amount
of available structural, chemical, and biological data. In this
respect, the increasing availability of open access databases for
drug discovery should be appreciated, with the PDB,75

ChEMBL,18 PubChem,19 and DrugBank120 databases being
arguably the most well known. While the speed of computation
has increased at a phenomenal rate with transistor counts
roughly doubling every two years121 (slowing down in recent
years122), data availability and quality still form the bottle-
neck.20,123 Given more data, more intricate methods can be
applied, which should result in higher quality predictions.21

This does not only concern bioactivity data but also structural
information on proteins.75

In ligand-based methods, the large amount of available
bioactivity data is used for model training. Lack of data here
typically means that there are not enough experimentally
derived activities of compounds for a given target. One way to
overcome this is using computational target prediction to fill in
the expected bioactivities for proteins that were not
experimentally tested.54,124 However, even if sufficient data is
available, this does not directly mean the data quality is
adequate. It has been shown that the experimental error in
bioactivity databases can be substantial.33,125 In public data,
experimental activities are not derived following the same
standard operating procedure or are even from the same lab or
assay. This leads to a relatively large experimental error in the
data (on average 0.47 log units for mixed pKi data),

33 which is
reflected in the prediction accuracy of the models. Data quality
and bias each determine the applicability domain of a model
and should therefore be addressed early on by comparing the
similarity between training and screening compounds. For
instance, models trained on smaller or more hydrophobic
molecules may not be able to make reliable predictions for
larger or more hydrophilic compounds. Furthermore, high
chemical similarity within the training set leads to a bias toward
a similar group of compounds. Therefore, a wide diversity in
chemical space is more favorable than a large compound set
encompassing a congeneric series of ligands. Models trained
only on close analogues cannot predict activities of very
dissimilar compounds reliably. In summary, in order to build
reliable models, important factors to check are the amount of
data and heterogeneity (as discussed here), as well as the bias
toward (in)actives (see Pitfalls Defining an “Active” Class
section) and toward certain targets (see Target Ranking
section).
Structure-based methods build on the structural arrangement

of binding site atoms, experimentally derived from currently
mostly X-ray crystallography. Such structural arrangements are
(i) less reliable with decreasing resolution and (ii) represent
only a static (and maybe even artificial) conformational state.
The former is usually addressed with resolution thresholds
(e.g., <3 Å in case of the scPDB), whereas the latter is
sometimes considered with conformational sampling (see
Consideration of Target Flexibility in Structure-Based
Methods section). Furthermore, using structure-based meth-

ods, only targets with available structures can be queried,
introducing a bias toward structurally known targets. Currently,
most methods rely only on the available structures in the PDB.
While there are over 140,000 protein structures deposited in
the PDB (accessed in November 2018), they only cover at
most 30% of the human proteome and 50% of known human
drug targets,126 with protein classes being differently well
represented. Homology modeling is a possibility to infer
lacking information from determined structures of homologous
proteins. Somody et al.126 have shown that given a sequence
identity of ≥30% (as generally accepted lower limit for
homology modeling) the structural coverage of the modeled
human proteome could approach 70% (that of known human
drug targets 95%). While large scale homology models have
been used, e.g., for kinome-wide druggability predictions,127

they have not been widely used yet for target prediction. It
should be noted that the higher the sequence identity is, the
more reliable the homology models are for structural modeling
purposes. Furthermore, target-focused methods such as inverse
screening and binding site comparison only require 3D target
structures and binding site locations, whereas interaction-
focused methods require ligand−target complex information,
limiting their applicability. To overcome this, such interactions
can be predicted: For instance, interaction fingerprint
comparison can be coupled with inverse docking, and reverse
pharmacophore screening can be based on target-focused
pharmacophore methods such as T2F-Pharm128 that generate
pharmacophores from apo-structures. However, it is important
to note that such ligand- as well as structure-based models-
based-on-models approaches may introduce noise to the
predictions.

Target Ranking. Results from computational target
prediction are highly dependent on the scoring function(s)
used for target ranking. If two objects of the same typefor
example, two small molecules or two protein binding sites
are compared, similarity of the query to the database can
directly be inferred from the commonalities or mutual overlap
between the objects and ranked accordingly. In contrast, if the
objects to be compared are of different types, target ranking
becomes more complex. For example, this is the case when the
most likely targets are predicted for a small molecule based on
individual machine learning models per target (ligand-based
methods) or based on inverse screening against a target
database (structure-based methods). While it is already
challenging to predict the correct activity or binding energy
of a ligand against one target, in panel predictions, the ligand is
scored individually against multiple targets, requiring inter-
target ranking. This is especially ambitious since the
predictions are influenced by different forms of bias present
in the data. Typically, some protein classes (e.g., kinases or G
protein-coupled receptors) have been very well explored,
whereas others have been explored less thoroughly (e.g.,
transporters). This means that more ligands are known for
these proteins (ligand-based methods) or more structures have
been elucidated (structure-based methods). Thus, the chemical
or structural space is better covered, and they might score
better compared to less explored chemical or structural spaces.
Another form of bias influencing target ranking can be the
average molecular weight of ligands for certain protein classes.
For example, the molecular weight of class B GPCRs is much
higher than that of other proteins such as kinases. The higher
molecular weight leads to the presence of more chemical
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substructures in the fingerprint vector and can increase the
amount of predicted targets for these ligands.58

In an effort to reduce the effect of these biases on ligand-
based prediction probability, raw probabilities can be
converted to a z-score.53 In this method, for all molecules in
the training set, a prediction score is obtained for all proteins in
the training set. Subsequently, for each protein, a mean
probability and standard deviation of this probability can be
derived and converted into a z-score. By applying the same z-
scoring for novel compounds rather than the raw probability,
the predictions are converted to a number of standard
deviations over or under the mean for that particular protein.
This method has been shown to be more robust than using the
raw probability.58 Similarly, in structure-based inverse screen-
ing, the interaction score of the ligand with each target is
compared with the interaction score distribution from a set of
reference ligands of the respective target complex structures,
taken from X-ray structures or determined by docking.81,83,84

Validation Strategies. The performance of ligand-based
models should always be estimated using external test sets to
minimize overfitting (besides cross-validation). If test sets are
composed randomly, this may lead to overoptimistic perform-
ance values as similar ligands may be present in both training
and test sets, resulting in “easy” predictions. In order to
overcome this effect, cluster splits, where the whole cluster of
similar molecules is either contained in the test or training set,
or temporal splits, where data from the most recent years is
used for testing, can be applied.129 Predictive performances of
ligand-based models can be estimated by metrics such as R2

and Q2 as well as error-based metrics such as the root-mean-
square error (RMSE) and mean absolute error (MAE). It is
debatable what the best metric is to indicate model
performance as this is dependent on the data and validation
method. Generally, performance can be better estimated when
multiple metrics are considered.130

Evaluating the performance of structure-based methods is
based on diverse strategies. Binding site comparison methods,
for instance, often screen a query target against a set of true
(well-studied protein class with subclass classification) and
decoy targets, whereas inverse screening methods often test
only one or few query ligands in a set of true (known targets of
the ligand) and decoy targets. Evaluation metrics are, for
instance, the percentage of true targets in the top x% of the
ranked hit list, the so-called enrichment factor (EF), and the
area under the curve (AUC). While different sizes and
compositions of benchmark data sets and the diverse use of
performance metrics hamper a direct comparison between
methods, efforts to unify benchmarking have been made. Since
binding site comparison is a long-established approach with
many published methods, proposed data sets have often been
reused. Such an example is the data set compilation by Weill
and Rognan,99 encompassing a set of similar and dissimilar
structure pairs as well as sets focused on kinases and serine
endopeptidases (all scPDB-based). Also concentrating on
similar and dissimilar pairs, Ehrt et al.131 have recently
proposed a collection of new and reused data sets
(ProSPECCTs) to test different performance aspects, which
the authors applied to multiple binding site methods to
establish guidelines for their application scope. For inverse
screening methods, Schomburg et al.83 proposed two data sets
together with evaluation strategies: a small data set consisting
of three target classes for detailed proof-of-concept and
selectivity studies and a large data set with about 8000 protein

structures and over 70 drug-like ligands. In addition to the
widely used EF and AUC, the authors propose performance
metrics capable of measuring the early enrichments, i.e.,
BEDROC (Boltzman-enhanced discrimination of ROC) and
NSLR (normalized sum of logarithmic ranks).

■ CONCLUSION

Drug target identification is one of the most important, but
also most complex, aspects of preclinical drug development. In
this respect, computational target prediction is a highly
valuable tool to identify the most probable targets for a
compound under investigation. Such tools can guide wet lab
experiments by suggesting potential targets for orphan
compounds, supply tool compounds for functional analyses
of poorly understood proteins, and thus help to decipher the
mode-of-action of a protein under investigation. Furthermore,
desired as well as undesired multitarget drug effects can be
rationalized by computational (off-)target predictions, and
known drugs can potentially be repositioned based on these
forecasts.
Computational target prediction methods rely on the

general assumption that similar molecules/structures will
have similar interactions or interaction patterns. Exceptions
are so-called activity cliffs, describing that small changes can
cause large differences in activity.29 Depending on the research
question and the data available, ligand- or structure-based
target prediction methods can be applied. In ligand-based
methods, potential targets can either be inferred from the most
similar known ligands or through elaborated machine learning
models. The latter require sufficient and well annotated data in
order to train proper models. Structure-based approaches
compare a query protein based on their binding sites or
interaction fingerprints to a panel of protein structures or
screen a query compound against these panels using a docking
or pharmacophore screening engine. It should be noted that
usually ligand-centric methods are faster than structure-centric
methods, especially when structural alignment or pose
prediction is evoked. The former provides more quantitative
information such as predicted bioactivities that can directly be
associated with experimental values, whereas the latter can give
additional information about the binding pose of ligands to
potential targets. It should be noted that most methods do not
consider alternate binding pockets on a single protein or the
effect of protein complex formation. Although protein function
or (de)activation through allosteric modulation can occur,
most target prediction methods are based on the assumption
that all ligands are orthosteric binders.
In our opinion, future progress needs to promote data

coverage from both the ligand and protein point of view, e.g.,
annotation of non-biased bioactivities (reporting inactives) and
deposition of novel structures or the same protein structures,
but with different ligands to provide a better view on the
dynamics of the ligand binding site (high-throughput
crystallization). Furthermore, protein flexibility modeling and
inter-target ranking are equally important matters to address.
Moreover, new methods should be evaluated on standardized
benchmarking data sets and performance metrics, as well as
made accessible to the community in order to improve
predictability, reliability, and reproducibility. Finally, holistic
approaches should and will gain momentum, integrating
multiple types of data, e.g., coupling chemical and structural
space with information on the proteome level and pathways,
linking cellular and molecular scales.
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