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Advances and Challenges in Two-Dimensional 

Organic–Inorganic Hybrid Perovskites Toward 

High-Performance Light-Emitting Diodes

Miao Ren1, Sheng Cao1, Jialong Zhao1, Bingsuo Zou1, Ruosheng Zeng1 *

HIGHLIGHTS

• The fundamental structure, photophysical and electrical properties of 2D perovskite films were illustrated systematically.

• The advantages and challenges of 2D perovskite light-emitting diodes (PeLED) have been also discussed, which may benefit the 

audient to get insight into the 2D perovskite materials as well as the resultant LED devices.

• An outlook on further improving the efficiency of pure-blue PeLEDs, enhancing the operational stability of PeLEDs and reducing 

the toxicity to push this field forward was also provided.

ABSTRACT Two-dimensional (2D) perovskites are known 

as one of the most promising luminescent materials due to 

their structural diversity and outstanding optoelectronic 

properties. Compared with 3D perovskites, 2D perovskites 

have natural quantum well structures, large exciton binding 

energy (Eb) and outstanding thermal stability, which shows 

great potential in the next-generation displays and solid-

state lighting. In this review, the fundamental structure, pho-

tophysical and electrical properties of 2D perovskite films 

were illustrated systematically. Based on the advantages of 

2D perovskites, such as special energy funnel process, ultra-

fast energy transfer, dense film and low efficiency roll-off, 

the remarkable achievements of 2D perovskite light-emitting 

diodes (PeLEDs) are summarized, and exciting challenges 

of 2D perovskite are also discussed. An outlook on further 

improving the efficiency of pure-blue PeLEDs, enhancing the 

operational stability of PeLEDs and reducing the toxicity to 

push this field forward was also provided. This review pro-

vides an overview of the recent developments of 2D perovskite materials and LED applications, and outlining challenges for achieving 

the high-performance devices.
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1 Introduction

Perovskite materials have attracted extensive attention due 
to their interesting properties such as photoluminescence, 
electroluminescence, high carrier mobility, large optical 
absorption coefficient and good nonlinear optical properties 
[1–10]. The chemical composition of traditional perovskite 
is  CaTiO3, which belongs to orthorhombic system. The ori-
gin of perovskite dates back to 1839 when Gustav Rose, a 
German mineralogist, discovered perovskite rock samples in 
the Ural Mountains and named after L. A. Perovski, a Rus-
sian geologist. After that, materials with similar structure to 
 CaTiO3 are called perovskite. The formula of three-dimen-
sional (3D) halide perovskite is  ABX3 (A =  MA+,  FA+,  Cs+, 
 Rb+,  K+; B =  Pb2+,  Cu2+,  Sn2+; X =  Cl−,  Br−,  I−) [11–21].

The preparation of  CsPbX3 was successfully reported in 
1893 [22]. However, it was not until the 1950s that per-
ovskite crystal structure and properties were discovered. In 
1978, the crystal structure and properties of  MAPbX3 were 
synthesized and determined by Weber et al. [23]. Subse-
quently, Mitzi et al. further studied the unique optoelectronic 
properties of three-dimensional (3D) perovskites [24, 25]. 
However, until 2009, perovskite materials broadly attracted 
researchers’ interest. Miyasaka reported for the first time that 
 MAPbBr3 and  MAPbI3 sensitized  TiO2 to achieve visible 
light conversion in photoelectrochemical cells [26]. Beyond 
solar cells, perovskite materials were also used in LEDs. 
In 2014, Tan et al. [27] realized near-infrared, green and 
red room temperature electroluminescence by adjusting the 
halide compositions in perovskites, which used 3D meth-
ylammonium lead halide perovskites as the emissive layer. 
However, the focus has gradually shifted to low-dimensional 
perovskite films. Different from three-dimensional perovs-
kites, there is at least one large organic cation in the low-
dimensional perovskites, which cannot match the cubic 
center. Interestingly, 3D, 2D, 1D and 0D perovskites can be 
formed by different bonding methods of octahedral  [BX6]

4−. 
At the same time, 2D perovskite materials have unique phys-
ical and chemical properties due to the influences of quan-
tum confinement and dielectric confinement effect [28]. In 
addition, the existence of organic cations greatly improves 
the stability of perovskites [29]. Therefore, 2D perovskites 
have become star materials used in many fields, including 
LEDs [30, 31], solar cells [32–35], photodetectors [36, 37], 
lasers [38, 39] and sensors [40].

In the early stage, the LEDs with 2D perovskites as the 
emissive layer can only observe the electroluminescence 
at low temperature. In recent years, a quasi-2D perovskite 
structure has been proposed by introducing organic cations 
into 3D perovskites, which can assemble multiple quantum 
wells. The existence of quantum wells not only benefits the 
formation of exciton, but also increases the difficulty of exci-
ton separation. This makes quasi-2D perovskite materials 
promising for high-performance LEDs. Sargent et al. [41] 
realized the photoexcitation funneling to the lowest band-
gap emitter in the mixture by dimensional modulation. In 
2016, Huang et al. [42] reported a multi quantum well-based 
PeLED, showing a very high external quantum efficiency 
(EQE) of 11.7%. Recently, Lee et al. [43] prepared high-
quality quasi-2D perovskite films by a simple and novel 
encapsulation growth method and obtained high-efficiency 
sky-blue LEDs with maximum EQE of 12.8%. Di et al. [44] 
reported near-infrared LEDs with quasi-2D and 3D perovs-
kites and insulating polymers as emissive layers. The EQE 
was as high as 20.1%. Su et al. [45] proposed a co-interlayer 
engineering strategy for the preparation of quasi-2D per-
ovskite materials, which makes the green LEDs have a high 
current efficiency of 66.1 cd  A−1.

In this review, the structural types of 2D perovskite are 
reviewed. Then, the unique optical properties of 2D perovs-
kite are discussed as the advantages of the emitting layer of 
LEDs. In addition, the effects of different types of organic 
cations on devices and the design principles of high-effi-
ciency 2D PeLEDs are summarized. Finally, we emphasize 
that 2D PeLEDs have great potential in the fields of display 
and solid-state lightings.

2  Characteristics of 2D Perovskite Materials

2.1  Structure of 2D Perovskite Materials

2D perovskite materials with (100)-oriented, (110)-ori-
ented and (111)-oriented structures are formed by cutting 
along the specific (hkl) planes of the corresponding 3D per-
ovskite structures (Fig. 1a) [46–48]. The most studied are 
the (100)-oriented 2D perovskites with  K2NiF4 or  RbAlF4 
crystal structure, and the general formula is A′2An-1BnX3n+1. 
The general formula of (110)-oriented 2D perovskite is 
A′2AmBmX3m+2. Because octahedrons are usually highly 
distorted, there will be many interesting physical phenomena 
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Fig. 1  a Schematic diagram of 2D perovskite series with different orientations. Copyright 2018 American Chemical Society [47]. b Schematic 
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BA = butylammonium. Copyright 2018 American Chemical Society [50]



 Nano-Micro Lett. (2021) 13:163163 Page 4 of 36

https://doi.org/10.1007/s40820-021-00685-5© The authors

at room temperature, such as self-trapping exciton and white 
light emission [49]. The general formula of (111)-oriented 
2D perovskite is A′2Aq-1BqX3q+3(q > 1).

At present, (100)-oriented perovskites are the most 
widely studied 2D perovskites, which can be further divided 
into Ruddlesden–Popper (RP) and Dion–Jacobson (DJ) 
phases. The general formulas of RP and DJ perovskites are 
A′2An−1BnX3n+1 and A′′An−1BnX3n+1, respectively, where 
A’ represents a large aromatic or aliphatic alkyl ammonium 
cation (monovalent) and A′′ is divalent cation. A is a small 
cation like  CH3NH3

+,  Cs+, CH(NH2)2
+, B refers to a diva-

lent metal cation  (Pb2+,  Sn2+,  Cu2+,  Cd2+,  Zn2+), and X 
represents an anion, such as  Cl−,  Br−,  I−,  SCN− and  F−. For 
the DJ phase (3AMP)(MA)2Pb3I10, the layers overlap com-
pletely without any displacement (Fig. 1c) [50]. Different 
from DJ phase, the layers of (BA)2(MA)2Pb3I10 show (1/2, 
1/2) displacement in RP phase (Fig. 1d) [51]. In addition, the 
interlayer distance between DJ and RP phase is quite differ-
ent. Generally, the interlayer distance of RP phase is larger 
than that of DJ phase. RP phase has double-layer organic 
cations, which increases the interlayer distance.

The (110)-oriented structures are the most distorted and 
uncommon, and few cations can stabilize them. Generally, 
these cations have small ionic radii and highly symmetrical 
structures [52]. The (100)-oriented 2D perovskites consist 
of flat perovskite sheets, while the (110)-oriented perovs-
kites have corrugated layers. The structures can be defined as 
2 × 2, 3 × 3, 4 × 4, etc., according to the corrugation length. 
These perovskites with roof shape are named “n × n,” where 
n is the number of octahedrons that make up half of the roof.

Different from other layered perovskites, (111)-oriented 
perovskites are actually a kind of defective perovskites. 
The formation of layered perovskites is due to the intro-
duction of vacancies rather than large organic cations. 
The (111)-oriented perovskites belong to M-site-deficient, 
and the general formula is A’2Aq-1BqX3q+3 (q > 1). The 
(111)-oriented perovskites can be obtained by cutting 
along the volume diagonal of 3D perovskite cell, which 
selectively “eliminates” the metal sites in the cutting 
process. Thus, if the B site contains only divalent metal 
ions, there is no way to form (111)-oriented perovskites. 
When B site is the same metal ion (q = 2), some common 
(111)-oriented perovskite materials such as  FA3Bi2Br9 
[53],  Cs3Bi2Br9 [54],  Cs3Sb2I9 [55],  Rb3Sb2I9 [56] and 
 MA3Bi2I9 [57].

2.2  n Values in the 2D Perovskites

The value of n in the formula is defined as the number 
of  [BX6]4− octahedral layers, which can be achieved by 
adjusting the stoichiometry of the precursor solution. 
The band gap, carrier mobility and Eb of 2D perovskite 
are all related to n value. At present, in most reports, 
researchers have assumed that there is a specific n value 
in 2D perovskite thin films. However, the 2D perovskites 
prepared according to the formula are usually mixtures 
with different n values, even though the purpose is to 
prepare pure 2D perovskites [58]. Jin et al. prepared 2D 
perovskite (BA)2(MA)3Pb4I13 with nominal “n = 4,” but 
found that the sample is a mixture of multiple perovs-
kite phases. As shown in Fig. 2a, the absorption peaks at 
∼572, 608, 645 and 750 nm can be assigned to pure phase 
(BA)2(MA)n−1PbnI3n+1 with n = 2, 3, 4 and ∞, respec-
tively [59]. Combined with the absorption and PL spectra 
(Fig. 2a, b), it can be inferred that the bottom is conducive 
to the formation of low n phase, and high-n phase is easy 
to form at the top. For display and lasing applications with 
high color purity, it is necessary to accurately control 2D 
perovskites with specific n value, which can be obtained by 
growing single crystal. However, due to the fast nucleation 
rate of perovskites, the precise preparation of perovskite 
films with specific n value is still a worldwide scientific 
problem. Recently, Huang et al. introduced n-butylamine 
acetate to replace the traditional n-butylamine iodide 
to obtain phase-pure thin films. Figure 2c, d shows the 
absorption and PL spectra of the phase-pure RP perovskite 
films, which have obvious single peaks compared with the 
previous studies. The peak positions of the films are red 
shifted with the increase of n value [60, 61]. Chiu et al. 
[62] used tin-based and lead-based perovskites as research 
objects, added carboxylic acid in the anti-solvent, through 
the kinetic control of 2D perovskites nucleation process, 
inhibited the formation of thermodynamic favorable small 
n value and improved the selectivity for 2D perovskites 
with specific n value. It can be seen from Fig. 2e that the 
addition of hexanoic acid significantly suppress the for-
mation of (BA)2PbBr4 (n = 1). Interestingly, the control 
of hexanoic acid is not limited to the synthesis of n = 2 
phase-pure perovskites. The n = 3 perovskite nanoplates 
can also be obtained by reducing the molar ratio of butyl-
amine hydrobromide (Fig. 2f).



Nano-Micro Lett. (2021) 13:163 Page 5 of 36 163

1 3

Compared with 3D perovskites, 2D perovskites not only 
have dimensional changes, but also have natural quantum 
well structures [63]. As shown in Fig. 1b, n represents the 
number of  [BX4]

2− octahedron layers, which can determine 
the well width and band gap. The larger the n value, the 
smaller the band gap. The  [BX4]

2− sheet can be regarded as a 
potential well, and the large organic cation acts as a potential 
barrier. And the barrier width is determined by the radius 
of the large organic cation. Through the self-assembly from 

bottom to top, the organic–inorganic layers are arranged 
alternately to form multiple quantum well structures natu-
rally. In addition, the Eb of 2D perovskites are larger than 
that of 3D perovskites due to the large difference of dielec-
tric constants between organic and inorganic layers. Gen-
erally, the 2D layered perovskites contain many different 
components (marked by n value). The quantum wells have 
an ultra-fast energy transfer process; the transfer efficiency 
is close to 100% (sub nanoscale), which effectively inhibits 
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Fig. 2  a UV–Vis absorption spectra of (BA)2(MA)3Pb4I13 perovskite film. b Comparison of the emission spectra of the 2D perovskite film 
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exciton quenching and makes the quantum well films exhibit 
high photoluminescence quantum efficiency (PLQY) under 
low excitation [64, 65]. Di et  al. [44] achieved PeLED 
comparable to organic light-emitting diodes (OLEDs) and 
quantum dot light-emitting diodes (QD LEDs) by enhancing 
outcoupling with polymer additives, with EQE as high as 
20.1% at 0.1–1 mA  cm−2.

2.3  Charge-Carrier Recombination Kinetics

From the material point of view, the PLQY and photo-
excited charge-carrier lifetime of perovskite materials 
are closely associated with the realization of efficient 
PeLED [30, 66, 67]. In Eq. 1, Rr and Rnr are radiative 
and non-radiative recombination rates, respectively. In 
perovskite, radiative recombination can be band-to-band 

recombination or exciton recombination, while non-radi-
ative processes are Shockley–Read–Hall (SRH) recombi-
nation and multiparticle interaction recombination (three 
body Auger recombination) (Fig. 3). The kinetics of car-
rier recombination in 3D perovskites can be summarized 
by Eq. 2. n is the charge-carrier density, t is the time, 
k1 is the trap-assisted monomolecular recombination rate 
constant (SRH), k2 is the bimolecular recombination rate 
constant (band-to-band recombination), and k3 is the three 
body Auger recombination rate constant; among them, k1 
is usually affected by carrier confinement and defects, and 
k2 and k3 are intrinsic values. Carrier density determines 
which recombination is dominant. It is well known that 
free carriers are dominant in 3D perovskites because of 
their small Eb, which is close to room temperature thermal 
energy. This indicates that the excitons will dissociate into 

(a)

(d) (e)

(b) (c)

Eb Eb

Eg Eg Eg

Trap

hv

hv

Electron ExcitonHole Trap Trap

Radiative recombination
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Fig. 3  a Exciton recombination. b Trap-assistant recombination. c Auger recombination. Copyright 2021 Springer Nature [72]. A schematic 
illustration of charge-carrier recombination d in 3D perovskites and e in 2D perovskites. Copyright 2020 Springer Nature [71]
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free carriers at room temperature, so the radiative recom-
bination in 3D perovskite is mainly controlled by the band-
to-band recombination  k2 [68]. As expressed in Eq. 2, the 
relationship between carrier recombination kinetics and 
carrier density is inseparable in 3D perovskites. Due to 
the slow band-to-band recombination rate (Fig. 3d), trap-
assisted monomolecular recombination (k1) is dominant at 
low carrier density, and free carriers are easy to be trapped 
by defects. If the carrier density is high, the traps are full 
of free carriers and reach saturation states, which promotes 
bimolecular radiative recombination and improves PLQY.

It is a pity that the charge-carrier density in typical 3D 
PeLED is usually less than  1015  cm−3, which severely lim-
its the rate of radiative recombination [48]. Reducing the 
size or dimension (such as 2D, 1D) of perovskite crystals 
can effectively increase the charge-carrier confinement 
[69, 70]. From the above point of view, 2D perovskites 
are an ideal candidate for PeLED. Unlike 3D perovskites, 
2D perovskites have exciton binding energies as high as 
several hundred milli-electron volts. As shown in Fig. 3e, 
the excitons are stable and difficult to separate into free 
carriers at room temperature, which directly leads to the 
rapid radiative monomolecular recombination rates [41], 
and hence, the relationship between the carrier recombina-
tion dynamics and the carrier density changes correspond-
ingly. Equation 2 is not suitable for 2D perovskites, and 
this relationship is shown in equation [71]. Where ktrap is 
non-radiative monomolecular recombination rate constant, 
k is radiative monomolecular recombination rate constant 
and k2 is the rate constant of Auger recombination. From 
Eq. 3, it can be seen that the influence of carrier density 
on carrier recombination kinetics is reduced. In 2D per-
ovskite, excitonic recombination not only competes with 
non-radiative monomolecular recombination, but also 
competes with Auger recombination.

(1)PLQY =

∑

R
r

∑

R
r
+
∑

R
nr

(2)−
dn

dt
= k

1
n + k

2
n

2
+ k

3
n

3

(3)−
dn

dt
= (ktrap + k)n + k2n

2

2.4  Advantages of 2D Perovskite as Light-Emitting 

Layer

It is well known that high PLQY is the key factor to real-
ize efficient PeLEDs. The Eb of 2D perovskites is large, 
which promotes the enhancement of radiative recombina-
tion rate. PLQY is also strongly dependent on defect density. 
The decrease of defect density can reduce the possibility 
of non-radiative recombination. In essence, the problem of 
low luminescence efficiency of materials is solved. Further-
more, the high-quality film morphology and balanced bipo-
lar charge injection are the key factors to determine the EQE 
of PeLEDs, because the compact films can effectively reduce 
the leakage current. It was found that large organic cations 
are favorable for the formation of uniform pinhole-free films 
in 2D perovskite [73].

2.4.1  Excitonic Characteristics and Ultra-Fast Energy 

Transfer

3D perovskites usually have a small Eb, which is unfavorable 
for LEDs [74]. Compared with 3D perovskites, 2D perovs-
kites are affected by quantum confinement and dielectric 
confinement [75]. The effect of quantum confinement origin 
the close thickness of the  [BX6]4− octahedral layers to the 
Bohr radius. The dielectric constant offset between organic 
cations and  [BX6]

4− octahedral layers results in the dielec-
tric confinement effect. These effects are beneficial to the 
formation of bound excitons. Besides, the natural quantum 
well structure has ultra-fast energy transfer, so the carrier 
density increases and the shallow defects which affect the 
luminescence efficiency are filled. In 2D perovskites, the 
trap-assisted monomolecular recombination lost its com-
petitiveness, and the first-order excitonic radiative recom-
bination is dominant, and PLQY is improved [31]. Similar 
to the host–guest systems of OLEDs, energy transfer can 
occur among different samples with n values. The cascade 
energy transfer from the wide bandgap (small n value) to 
the narrow bandgap (large n value) can effectively avoid 
the concentration quenching and dramatically improve the 
radiative recombination rate in the maximum n value [42, 
76]. Unfortunately, the quasi-2D perovskites are a mixture of 
many phases (especially a large number of small n phases), 
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resulting in inefficient energy transfer. Choy et al. introduced 
a bifunctional organic ligand (amino and carboxyl group) to 
weaken the van der Waals gap, which can contribute to the 
efficient energy transfer of perovskite films. As shown in 
the ultra-fast transient spectroscopy (TA) spectra (Fig. 4a, 
b), three distinctive ground-state bleach peaks correspond-
ing to n = 2, 3 and ≥4 are observed at 428, 453 and 481 nm, 
respectively. With increasing decay time, the ground-state 
bleach peak value of the small n phase gradually decreases, 
and that of the large n phase (n ≥ 4) gradually increases, 
indicating that carriers transfer from small n phase to large 
n phase. Further, n = 3 phase and n ≥ 4 phase are selected as 
the research objects, and the kinetic multi-exponential func-
tion fitting is carried out. Both n = 3 (τ1 = 0.67 ps) and n ≥ 4 
(τet = 0.95 ps) in the pristine/ABA perovskites show smaller 
values, which are about half of the pristine perovskites 
(τ1, n = 3 = 1.31 ps; τet, n ≥ 4 = 1.63 ps), implying that more 

efficient energy transfer is achieved (Fig. 4c, d). Moreover, 
the carrier transfer is completed in picoseconds [77]. Lee 
et al. [43] also observed a similar result, and the enhance-
ment of energy transfer is favorable to reduce the probability 
of non-radiative recombination, thus improving the device 
performance. Although the mechanism of photogenerated 
electron and hole transfer is still controversial, the rapid car-
rier transfer process can compete with trap-assisted mono-
molecular non-radiative recombination, which makes the 
quasi-2D perovskite structure beneficial to enhance PLQY 
[78, 79].

2.4.2  Dense Film Morphology

The morphology of perovskite films is a key factor to deter-
mine the performance of PeLEDs. Generally, 3D perovs-
kite thin films have rough surface and are prone to a large 
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number of pinholes, leading to the increase of leakage cur-
rent and obvious thermal effect, which will be resulting 
in the decrease of device efficiency and the shortening of 
device life [80, 81]. The results show that 2D perovskites 
have better film morphology than 3D perovskites. Organic 
cations can improve the morphology of 3D perovskite films 
and promote the formation of dense pinhole-free films [78, 
82, 83]. For example, the root-mean-square roughness of 
3D  FAPbI3 perovskite film is 18.8 nm. Surprisingly, the 
root-mean-square roughness of 2D (NMA)2PbI4 (n = 1) and 
(NMA)2FAPb2I7 (n = 2) films is 1.4 and 2.6 nm, respectively 
(Fig. 5a–c) [42]. In addition, Cao et al. improved the surface 
coverage of  CsPbCl0.9Br2.1 film by introducing PEABr, with 
only a few small pinholes (Fig. 5d–f). More importantly, if 
PEABr is replaced by other amines, a similar phenomenon 
will be observed [84].

2.4.3  Lower Efficiency Roll-Off

At present, the EQE of classical perovskite material 
 CsPbX3 (X =  Cl−,  Br−,  I−) has exceeded 20% [85]. How-
ever, as shown in Fig. 6a, with increasing brightness and 

current density, the EQE of devices tends to decrease, 
which is called efficiency roll-off. In particular, due to the 
exciton effect, the efficiency rolls off of perovskite quan-
tum dots are very serious at high current density [86]. 
Zeng et al. [87] used organic molecules to passivate the 
top and bottom of perovskite quantum dot film, which 
improved the stability of PeLEDs and effectively sup-
pressed the non-radiative recombination. The EQE was 
as high as 18.7% at low current density. Unfortunately, at 
a high current density of 100 mA  cm−2, the EQE value is 
only 32% of the maximum value (Fig. 6b). Sargent et al. 
[88] proposed to construct a bipolar shell composed of 
inner anion shell on the surface of perovskite quantum 
dots. More than 90% of PLQY blue quantum dot films 
were obtained. Surprisingly, the maximum EQE value is 
12.3%, but there is also a large efficiency roll-off value. 
For most devices, the decrease of EQE at high current den-
sity is due to the combination of charge injection imbal-
ance, Auger-induced luminescence quenching and Joule 
heating [89, 90]. Perovskite quantum dots LEDs have 
severe efficiency roll-off because of Auger recombination 
at low current density. However, in quasi-2D perovskite, 
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Auger recombination can be suppressed by reducing the 
local carrier density in the quantum well. Huang et al. [91] 
changed the width of perovskite quantum wells by con-
trolling the proportion of organic cations without reduc-
ing the luminescence performance. The results show that 
increasing the well width can significantly suppress the 
luminescence quenching effect. As shown in Fig. 6c, the 
maximum EQE values of 2:1:2 and 2:1.9:2 devices are 
8.7% and 12.7%, respectively. Furthermore, the efficiency 
roll-off of 2:1.9:2 device is effectively suppressed; even 
at 500 mA  cm−2, it can still maintain 10% of the peak 

value. In addition, compared with 2:1.9:2 device (5.7%), 
the relative standard deviation of 2:1:2 device is larger 
(16.3%). Under the same current density (300 mA  cm−2), 
the average EQE value of 2:1.9:2 device is more than twice 
that of 2:1:2 device (Fig. 6d). Although adjusting the well 
width can effectively reduce the efficiency roll-off, com-
pared with the 3D PeLEDs, quasi-2D PeLEDs also suffer 
from serious efficiency roll-off. The strategies of reducing 
the roll-off effect of quasi-2D PeLEDs will be discussed in 
details in the next section.
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3  Strategies for Boosting the Performance 

of PeLEDs

3.1  Suppression of Efficiency Roll-Off

As we all know, quasi-2D perovskite materials are expected 
to be candidates for the next-generation display applications 
[58, 92]. Unfortunately, the quasi-2D perovskite materi-
als suffer from serious efficiency roll-off, which is mainly 
caused by the charge injection imbalance, Auger recombina-
tion and Joule heating [93].

3.1.1  Balance of Charge Injection

High PLQY is the key factor to realize efficient and sta-
ble 2D PeLEDs. Other key elements include effective charge 
injection, defect passivation and ion migration suppression. 
Currently, for PeLEDs devices, there is no unified name for 
the device structures, which are usually divided into formal 
and inverted device structures. Rogach et al. adjusted the 
classification of PeLEDs device structures on the basis of 
Cd-based QD LEDs. As shown in Fig. 6e, type I has no 
charge transport layer, charge transport layers of type II are 
all organic polymers/small molecules, charge transport lay-
ers of type III are all inorganic, and organic and inorganic 
molecules of type IV are used as charge transport layers 
[85]. For 2D PeLEDs, the device structures of type I and III 
are rarely reported, while type II and IV are mostly studied.

The charge injection imbalance is related to the injection 
barrier [94], carrier mobilities [95] and defect density [96]. 
The relationship between barrier height and electric current 
can be seen from Eqs. 4 and 5

where J is the current density, E is the electric field, φ is 
the barrier height, m* is the carrier effective mass, q is the 
element charge, and h is the Planck constant [97]. The work 
function of the cathode is different from that of the conduc-
tion band bottom of the electron transport layer (ETL). Simi-
larly, the difference also exists in the work function of the 
anode and the top of the valence band of the hole transport 
layer (HTL), resulting in potential barrier. To overcome the 

(4)J ∝ E
2 exp

(

−b

E

)

(5)b =

8�

√

2m∗�

3

2

3qh

barrier, the charge carrier must have enough energy. The 
relationship between barrier height and luminous efficiency 
can be seen in Eq. 6.

where V is applied bias and γ is constant. The turn-on volt-
age and luminous efficiency of the device are affected by 
the barrier heights of the interfaces and the semiconductor 
energy levels of each layer. The turn-on voltage is closely 
associated with the flat band conditions determined by the 
work functions of cathode and anode. For 2D PeLEDs, it 
can be seen from Eq. 6 that the charge injection with a small 
energy barrier is a necessary condition to obtain low operat-
ing voltage and high luminous efficiency. Also, the stability 
of 2D PeLED is also going hand in hand with effective car-
rier injection. Invalid carrier injection will lead to charge 
imbalance and space charge accumulation in perovskite 
emitting layer. Thus, it is very important to match the energy 
levels at the interfaces [98]. For most PeLEDs, high electron 
injection efficiency and low hole injection efficiency lead to 
the imbalance of charge injection, which seriously affects 
the performance of PeLEDs [99, 100]. As shown in Fig. 7a, 
taking  CsPbI3 as an example, there is a high barrier between 
HTL and emitting layer, and holes need to overcome it to 
successfully transport to emitting layer (red arrow). How-
ever, ETL is different from HTL. For inorganic ETL, only 
a very small barrier needs to be overcome to reach the per-
ovskite layer (yellow arrow). Furthermore, for organic ETL, 
electrons can be easily transported to the emitting layer due 
to the additional driving force (green arrow) [100]. At a low 
current density, more radiative recombination can be main-
tained with less carrier injection. At a high current density, 
the number of carriers injected increases, and the electron 
hole pairs are easily quenched between the HTL and the 
emitting layer due to the mismatch of energy levels [101]. 
Lin et al. established “energy ladder” in HTL to solve the 
problem of charge injection imbalance (Fig. 7b). It can be 
seen from Fig. 7c that the maximum luminance of multilayer 
HTL devices (PEDOT: PSS/TFB/PVK, poly-TPD/PVK) is 
20342 and 31,012 cd  m−2, respectively, while the maximum 
luminance of single-layer HTL device (PEDOT: PSS) is only 
18,154 cd  m−2. The establishment of “energy ladder” is help-
ful to improve the efficiency of hole injection and reduce the 
turn-on voltage. It is gratifying that the EQEs of multilayer 
HTL devices have also been greatly improved (Fig. 7d), and 
the efficiency roll-off of poly-TPD/PVK is suppressed at the 
current density of 0.01–1000 mA  cm−2 [102].

Although balanced charge injection can suppress the effi-
ciency roll-off, there is still a serious efficiency roll-off at a 

(6)Efficiency ∝ exp
−r�

3

2

v
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high current density, which may be due to the existence of 
long organic chains, resulting in poor charge transport, or 
the increase of Auger recombination rate due to the quantum 
well structures.

3.1.2  Reducing of Auger Recombination

Auger recombination is affected by carrier density, as 
shown in Eq. 7, where geeh is the Coulomb enhancement 
factor, and the value is associated with  Eb. k0

Auger
 is the 

band-to-band Auger recombination rate (non-interact 

particles),  Cn is the Auger coefficient, and n and P are the 
electron density and hole density, respectively.

As shown in Fig. 7e, the black curve is an ideal evo-
lution trend of PLQY. The curve trend of the quasi-2D 
perovskites is highly similar to that of the black curve. 
Even at a low current density, the quasi-2D perovskites 
can obtain high PLQY. However, compared with 3D per-
ovskites, Auger recombination of quasi-2D perovskites 
is very severe. That is because the carrier density of 

(7)kAuger = geehk0
Auger

= geehCnn2p
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3D perovskites is lower than that of quasi-2D perovs-
kites [41, 103]. From Eq. 7, it can be concluded that 
the Auger recombination rate is positively related to the 
third power of carrier density, so the Auger recombina-
tion rate of quasi-2D perovskites increases. The other 
reason is due to the enhanced electron hole interac-
tion, which leads to the non-uniform distribution of 
carriers [104, 105]. Yuan et al. increased the dielec-
tric constant of organic cations to weaken the “dielec-
tric confinement effect,” which not only significantly 
reduced Eb, but also did not change the energy transfer 
efficiency. Using highly polarized p-FPEA+ to replace 
the A site in the classical quasi-2D perovskite material 
 PEA2MAn−1PbnBr3n+1, the molecular dipole moment is 
increased (simulated by density function theory), which 
is conducive to charge separation. Strong evidence for 
the decrease of Eb is found in the optical absorption 
spectra. As shown in Fig. 7f,  PEA2PbBr4 has an obvious 
excitonic peak at about 3.08 eV, while only a small kink 
(3.04 eV) is observed in p-FPEA2PbBr4. Moreover, the 
Eb values are estimated quantitatively by temperature-
dependent photoluminescence measurements. And the 
Eb values of  PEA2PbBr4 and p-FPEA2PbBr4 are 347 
and 195 meV, respectively. To further strengthen this 
conclusion, multi-exponential fitting is used to analyze 
the carrier dynamics at a high current density (up to 
~1 ×  1017   cm−3). The fastest decay is associated with 
Auger recombination. The fast decay times of Auger 
recombination for PEA and p-FPE samples are 0.8 and 
3.4 ns, respectively (Fig. 7g, h). Thus, Auger recombina-
tion rate decreased significantly. Unfortunately, while 
Auger recombination decreased, PLQY also decreased 
significantly. On the basis of previous study, molecular 
passivation (another strategy) was used to reduce trap-
assistant recombination. Finally, the device showed a 
record luminance (82,480 cd  m−2) [72].

3.2  Passivation of Surface Defects

At present, a large number of research reports regard solu-
tion processing as the deposition method of PeLEDs [106, 
107]. Solution processing has significant advantages, such 
as high cost-effectiveness, simple process and no need for a 
complex vacuum system [108, 109]. It has broad application 
prospects in PeLEDs. General solution-processing methods 
include one-step, two-step and solvent engineering methods 

(Fig. 8a) [107]. Solvent engineering is the most widely used 
method so far, which is based on the one-step method, add-
ing anti-solvent to promote the crystallization of perovskite 
films [110]. However, solution-processing perovskite materi-
als suffer from severe non-radiative recombination (caused 
by traps), which seriously limits the application and devel-
opment of PeLEDs [111, 112]. Trap states are generally 
considered to be related to ionic defects, such as vacancies, 
anti-site occupations and interstitials (Fig. 8b) [71]. Using 
passivation agents to passivate defects is a very effective 
method, which has been determined to reduce the defect 
density and non-radiative recombination of perovskites. 
Usually, the passivation agents are added at the beginning 
of the reaction or in the post-treatment. Common passiva-
tion agents include Lewis acid/base and organic halide salts 
[113]. For example, Sargent et al. produced high-efficiency, 
lead-free PeLED by adding valeric acid (VA). The EQE is 
5%, and the half-life is exceeding 15 h. That is so due to 
strong forces, of hydrogen bonds (O=C–OH…I−) and coor-
dination bond (C=O…Sn2+) between VA and  PEA2SnI4 
thin films (Fig. 8c). The existence of the interaction forces 
inhibits the rapid nucleation and slows down the crystalliza-
tion rate, thus forming a uniform pinhole-free morphology 
(Fig. 8d, e). And VA can also be used to inhibit the oxida-
tion of tin in the process of film formation [114]. Moreover, 
Adachi et al. systematically compared the effects of control-
ling stoichiometry and adding organic ammonium salts on 
the surface defects and domain distribution of the films with 
quasi-2D perovskites (Fig. 8f). The results show that  PEA+ 
cations in the stoichiometric control method mainly play 
the role of passivation. In contrast, adding a large amount 
of PEABr in 3D perovskite precursor can not only passivate 
the surface defects but also inhibit the appearance of small 
n values, which is helpful to the formation of quasi-2D per-
ovskite domains. It is well known that low-order domains 
damage the performance of PeLEDs. Therefore, perovskite 
films with organic ammonium salts have higher defect pas-
sivation efficiency and higher EQE [115].

3.3  Critical Role of Organic Cations for PeLEDs

3.3.1  Reasonable Selection of Organic Cations

It is universally acknowledged that 2D perovskites can still 
show better stability than 3D perovskites when exposed to 
moisture, which is due to the hydrophobicity of organic 
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cations. And there is a strong interaction between the organic 
cations and the capped organic molecules. Moreover, the 
chain lengths and π − π stacking of organic cations affect 
the n distribution of 2D perovskites [116–118]. A variety of 
organic cations, such as butylammonium (BA) [119], phe-
nylethylammonium (PEA) [120], 1-naphthylmethylammo-
nium (NMA) [120] and benzimidazolium (BIZ) [121], have 
been studied (Table 1). Unfortunately, most of the research 
reports focus on a specific ion. There are some questions 
about which organic cation should be selected, and the 
device design is not reasonable.

Jin et al. selected two different organic cations, namely 
PBA and BA. Through comparison, it was found that dif-
ferent organic amine cations would affect the thicknesses of 
perovskite quantum wells, efficiency of energy transfer and 
recombination kinetics, resulting in great differences in the 
performance of PeLEDs [122]. Similarly, Nie et al. deeply 
discussed the influence of organic cations with benzyl ring 
(PEA) or alkyl chain (BA) as spacer on PeLEDs. It is found 
that the carrier lifetime of PEA-based film is 5 times that of 
BA-based film (Fig. 9a), which greatly improves the prob-
ability of radiative recombination. It is worth noting that 
the luminance of benzyl ring is 70 times that of alkyl chain, 
and it has superior output luminance efficiency (about 25 cd 
 A−1) and EQE (more than 9%). The results show that such a 
large difference is closely related to the steric hindrance of 
organic cations. Compared with alkyl chain, the volume of 
benzyl ring is larger, which will affect the crystalline pack-
ing of inorganic layers. Because the alkyl chain is more flex-
ible, the band structure of perovskite will not be affected. 
The time-resolved X-ray absorption spectra show that the 
hole localization signal of benzyl ring film is near the Br 
p-orbital, which increases the carrier lifetime and enhances 
the radiative recombination efficiency (Fig. 9b–d). There-
fore, the PeLEDs of benzyl ring show excellent electrolu-
minescent properties. However, these were not observed in 
the alkyl chain film [123]. In addition, Wang et al. selected 
the organic cation BIZ without alkyl branches by comparing 
the d-spacing of various organic cations (Fig. 9e). Because 
the smaller the d-spacing, the shorter the barrier width, 
which can increase the carrier mobility. Figure 9f shows 
that BIZ has excellent electron mobility and hole mobil-
ity [124]. Using the same method, Pullerits et al. [125] 
selected iso-BA with smaller d-spacing, which significantly 
increased the transfer rate and reduced the possibility of 
charge accumulation. Choosing different organic cations will 

change the intrinsic electronic properties of semiconductors 
[126], which is helpful to design highly efficient and stable 
PeLEDs. So far, the choice of spacer cations is not limited to 
a single organic ion. Various mixed organic cations as spac-
ers have been reported in many excellent works. Choy et al. 
introduced the bifunctional organic spacer 4-(2-Aminoethyl)
benzoic acid (ABA) into  PEAxPA2−x(CsPbBr3)n−1PbBr4. 
Due to the addition of ABA, the interaction between the 
layers of perovskite was enhanced, and Pb was suppressed 
to reduce the trapped states and promote the reduction of 
non-radiative recombination loss. The blue 2D PeLEDs 
with good performance (EQE = 8.21%) and high stability 
(T50 = 81.3 min) were obtained [77]. From the perspective of 
theoretical calculation, taking n = 2 as an example, the per-
formance of mixed organic cation LEDs is better than that 
of single spacer cation LEDs, which is attributed to lower 
formation energy, lower strain and lower electron–phonon 
coupling [21].

In a word, the chain length, size and properties of organic 
cations may affect the performance of the device. Compared 
with alkyl chain, organic cations with large volumes are 
selected, such as traditional  PEA+ and  PBA+. The higher the 
molecular packing density in the organic layer is, the higher 
the rigidity of the crystal will be. Sargent et al. showed that 
2D perovskite single crystals with high PLQY and good 
quality can be obtained by controlling the crystal rigidity 
[74]. In addition, the selection of organic cations with small 
spacing also helps to increase PLQY, which is due to the 
decrease of the barrier width of charge transport and the 
increase of carrier mobility.

3.3.2  Adjusting Width of Quantum Well

As we known, effective energy transfer plays a decisive 
role in the photoluminescence efficiency of 2D perovs-
kites. Reasonable distribution of quantum well width can 
reduce unnecessary energy loss and facilitate carrier trans-
port. To achieve high-performance PeLEDs, it is necessary 
to study the influence of quantum well width distribution 
on devices. Zhong et al. controlled the n values of per-
ovskite films by adjusting the ratio of DPPABr to PEABr. 
Figure 10a shows that the larger the DPPABr/PEABr ratio 
is, the larger the n domains are. Interestingly, there are 
multiple emissions when DPPABr content is the highest. 
DPPABr promotes the formation of large n domains, while 
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1 3

PEABr is beneficial to the formation of small n domains. 
DPPABr and PEABr are mixed in a certain proportion 
to realize the regulation of quantum well width distribu-
tion. Furthermore, the carrier dynamics process is divided 
into five stages as shown in Fig. 10f. Firstly, photogen-
erated carriers will be formed in the 2D perovskites after 

photoexcitation, resulting in the increase of bleach peak 
signal. The peak and FWHM fluctuations in Fig. 10d, e are 
due to the competition of different n values bleach signals. 
Then, the carriers transfer rapidly (0.7–1.3 ps) and the 
bleach peak shifts red. In the third stage, the excitons are 
decomposed into free carriers and charge transfer occurs, 

(e)

(c)

(a) (b)
(f)

(d)
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resulting further red shifts of the bleach peak. During the 
whole process, the FWHM of D4P4 decreases most rapidly 
(Fig. 10e), indicating the most effective energy transfer 
and the narrowest distribution of quantum well width. In 
the fourth stage, due to the blueshift of the bleach peak 
(about 100 ps) caused by the reverse charge transfer, the 
energy cannot be concentrated in the effective emission 
region. Lastly, the free carriers are transferred to the layer 
with large n values or band-tail states and recombined 
through radiative or non-radiative processes. The combi-
nation of DPPABr and PEABr not only reduces the small 
n value which is not conducive to the emission efficiency, 
but also shortens the width of quantum well. Likewise, 
Sargent et al. used IPA and PEA to control the distribu-
tion of quantum well width by combining various cations. 
Their result indicated that the absorption edge shifts blue 
after inducing IPABr, indicating that the formation of 

small n value phases and large n value phases is inhibited 
(Fig. 10g). And Fig. 10h also shows that the existence of 
large n phases (n = 5, 6…) is not observed after adding 
40% IPABr to PEA2A1.5Pb2.5Br8.5. In addition, the sta-
bility of the device is also enhanced (Fig. 10b, c).

3.3.3  Management of Singlet and Triplet Excitons

The management of triplet excitons plays a key role in the 
design of efficient and stable organic OLEDs. Although 
the influence of excitons on the performance of PeLEDs 
is not clear, Adachi et al. used the management strategy of 
triplet excitons and selected organic cation  NMA+ as the 
comparison of  PEA+, which proved the importance of tri-
plet excitons on 2D PeLEDs. It can be seen from Fig. 11a, 
b that the PL decay curves of (NMA)2  FA7Pb8Br25 (N2F8) 
and (PEA)2FA7Pb8Br25 (P2F8) are obviously different. The 
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decay curve of N2F8 hardly changes under different tem-
perature. However, P2F8 shows fast and slow decay with the 
increase of temperature, which is due to the thermally acti-
vated reverse intersystem crossing (RISC) of triplet excitons. 
Excitons are formed in 2D perovskites by light excitation. 
The singlet states transfer rapidly to the large n domains, but 
the triplet states are different. As shown in Fig. 11c,  PEA+ 
has a higher triplet energy level than  NMA+. And the lowest 
excited triplet  T1 of  PEA+ is 3.3 eV, which is higher than all 
triplet energy levels, so  PEA+ can effectively obtain triplet 
excitons. However, the  T1 of  NMA+ is 2.6 eV, which is lower 
than the triplet exciton levels Γ1 and Γ2 of  [PbBr6]

4−, lead-
ing to Dexter energy transfer. Dexter energy transfer will 
compete with energy transfer in 2D perovskites. The high-
efficiency PeLEDs with EQE and current efficiency of 12.4% 
and 52.1 cd  A−1 are rationally designed by the effectively 
management of the triplet states [147].

3.4  Enhanced Energy Transfer

As mentioned above, compared with 3D perovskite, 2D per-
ovskite has a larger Eb, and the electrons and holes are effec-
tively confined to enhance the radiation recombination [142]. 
Moreover, 2D perovskite structure is a common method to 
construct high-performance PeLEDs. However, due to the 
random stacking of 2D perovskites, the distribution of n 
domains is uneven and multiple emission peaks appear. In 
addition, small n phases are formed first in 2D perovskites 
because of the low formation energy of small n phases [158]. 
All of these have negative effects on the energy transfer from 
small n domains to large n ones. In particular, the radiation 
of n = 1 phase belongs to non-radiation recombination, which 
seriously affects the performance of PeLEDs. Yang et al. 
introduced methanesulfonate (MES) to reconstruct the phase 
distribution of perovskite and promote the energy transfer 
from small n phase to large n one. The density functional 
theory (DFT) calculation shows that  SO3

− in MES tends to 
form a strong force with organic cation  BA+, and the charge 
redistribution between them is 0.84 e (electron), which is 
greater than that between  BA+ and  Br− (0.70 e) (Fig. 12a). 
The existence of hydrogen bonds increases large n domains, 
which can regulate the crystallization kinetics. In Fig. 12b, 
the exciton resonance at  GSBn=2 still exists after long-time 
excitation at 101 ps. However, the exciton resonance at 

 GSBn=2 is not found in the 8%-MES films (Fig. 12c). The rea-
son resulting in the noticeable difference is due to the effect 
of effective energy transfer. It is gratifying that the exciton 
resonance of  GSBn = 1 is not found in the 8%-MES films. 
The introduction of MES successfully inhibits the formation 
of small n phases. Eventually, quasi-2D green PeLED with 
EQE up to 20.5% is obtained [134]. Ning et al. achieved high 
carrier transfer efficiency based on DJ structure by adjusting 
the ratio of BAB to FA in (BAB)FAn−1PbnX3n+1 (X = Br, I). 
As shown in Fig. 12d, e, the peak intensity of BAB25 in the 
large n domain is about twice that of BAB33 [79]. As we all 
known, many defects in 3D perovskites are not conducive 
to radiative recombination (Fig. 12f). Zeng et al. used the 
2D/3D perovskite structure to make the energy levels con-
nected and enhance the energy transfer. The formation of 
energy level cascade channels makes the energy transfer from 
the wide bandgap to the narrow bandgap (Fig. 12g), which 
enhances the radiative recombination efficiency. Although 
the organic ligands of 2D perovskites do not contribute to the 
charge transfer, the free charge diffusion is inhibited in 3D 
perovskites, which can just combine with the opposite charge. 
The coordination effect of the above two factors has suc-
cessfully increased the EQE value by about 5 times, and the 
stability has also been greatly improved [163]. By introduc-
ing [1,4-Bis(aminomethyl)benzene bromide (P-PDABr2)], 
the exciton shifts rapidly from small n domains to large ones 
(Fig. 12h).

4  Current Challenges Ahead in 2D PeLEDs

4.1  Improving Efficiency of Blue 2D PeLEDs

Since 2014, the largest EQEs of green and red PeLEDs 
have exceeded 20%, and have made great achievements 
[164–170]. However, as one of the primary colors of high-
definition displays [171], the development of blue PeLEDs 
is quite slow, far behind red and green PeLEDs. As shown 
in Fig. 13a. The universal strategy for preparing blue emis-
sion is to control the mixed halogen anions so that achieve 
tuning of continuous bandgap by adding chlorine (Cl) to the 
bromide (Br)-based perovskites and modulating the propor-
tion of halogen ions (Fig. 13b, c) [84, 172]. But the spectral 
shift of these mixed perovskites usually occurs under dif-
ferent operating voltages, which is due to the migration and 
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segregation of mixed halides [173, 174]. In addition, differ-
ent metal ions such as  Mn2+,  Al3+,  Cu2+ and  Zn2+ are doped 

into the B site to adjust the conduction band [175–178]. 
Unfortunately, the impurity energy levels induced by metal 

Fig. 12  a Hydrogen bond calculations. Differential charge density diagrams of BABr and BAMeS (where isosurface value is 0.0015 eV Å−3; 
cyan is charge accumulation; yellow is charge depletion). TA spectra at selected timescales of the b control and c 8%-MES perovskite films. 
Copyright 2021 Springer Nature [134]. The energy transfer process of d BAB33 and e BAB25 perovskite films was studied. Copyright 2019 
American Association for the Advancement of Science [79]. Comparison of f 3D and g 2D/3D perovskite film carrier recombination. Copyright 
2020 Wiley–VCH Verlag [163]. h Domain distribution, exciton transfer and emission properties of P2 and P2m2 films. Copyright 2019 Wiley-
Blackwell [31]
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ions are disadvantageous to radiative recombination. At 
present, it is also an important strategy to achieve blue 
emission by inserting large organic cations into 3D per-
ovskites. Ma and co-workers not only introduced PEABr 
into  CsPbX3, but also rearranged the 2D perovskite phase 
distribution with NaBr, which reduced the formation of a 
small n domain (n = 1) dominated by non-radiative recom-
bination and increased PLQY from 39 to 67%. The sky-blue 
PeLED with EQE up to 11.7% was obtained [78]. However, 
the charge transport capacity of 2D perovskites is poor due 
to the organic compounds acting as spacer cations. Jin et al. 
used ethyl acetate (EA) as the anti-solvent, which was ben-
eficial to the dissolution of PBABr, and would not damage 

the emission layer and the underlying layer. As shown in 
the high-resolution N 1s XPS spectra, EA changed the ratio 
of  PBA+ and  FA+ (Fig. 13d, e) [152]. Huang et al. intro-
duced PEACl into  CsPbBr3 to facilitate the formation of 
layered perovskites, and further doped  YCl3, resulting in a 
qualitative leap in the PLQE of the films, from 1.1 to 49.7% 
(Fig. 13f).  CsPbBr3: PEACl: 2%  YCl3 exhibits the brightest 
luminescence under the ultraviolet lamp (Fig. 13g). How-
ever, the existence of yttrium on  CsPbBr3 grain increases the 
bandgap and forces the radiative recombination of carriers 
in  CsPbBr3. The sky-blue PeLED with a maximum bright-
ness of 9040 cd  m−2 and EQE of 11.0% are prepared [120]. 
The above efficient perovskite blue LEDs mainly focus on 
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the modification of organic cations. You et al. used  EA+ 
to replace Cs in  PEA2(CsPbBr3)2PbBr4 at A site, which 
makes the maximum valence band of the 2D perovskite 
moves down and the bandgap increase (Fig. 13h). So far, 
this may be the highest efficiency of sky-blue LED (12.1%). 
Moreover, the device shows excellent stability and can sur-
vive for as long as 1 h without encapsulation in nitrogen 
[141]. Although 2D perovskite blue LEDs have made great 
progress, their applications in full-color display and white 
lighting are still far away, which is a huge challenge.

4.2  Enhanced Stability of 2D PeLEDs

At present, some excellent works have reported more than the 
EQEs of 2D PeLEDs exceed 20%. Unfortunately, the stability 
of 2D PeLEDs is poor, which is a stumbling block in practi-
cal application. As we all know,  T50 is one of the important 
parameters to evaluate the stability of LEDs. However, at the 
low luminance of 100 cd  m−2, the  T50 values of most blue 
2D PeLEDs reported so far are tens of minutes [120, 152, 
161], some even tens of seconds [78, 141], which are far from 
those of OLED and QD LEDs. Compared with perovskite 
solar cells, PeLEDs need to work in higher applied electric 
field. Ion migration is the main factor leading to poor stabil-
ity of 2D PeLEDs. To enhance the stability of PeLEDs, it is 
necessary to effectively suppress ion migration. Because ion 
migration mainly occurs at grain boundaries, preventing ion 
migration along grain boundaries is a feasible way to suppress 
ion migration. Lee et al. designed proton-transfer-induced 2D 
perovskite formation while retaining 3D perovskite. Compared 
with  MA+, due to the π − π interaction and steric repulsion of 
Benzylamine cation  (BnA+), the reorientation rate is signifi-
cantly reduced and the ion migration along grain boundaries is 
effectively suppressed [179]. Furthermore, the decomposition 
of organic cations a voltage bias is one of the reasons for the 
instability of 2D PeLEDs. Snaith et al. found that phenylethyl-
ammonium bromide (PEABr) greatly improves the efficiency 
of  CsPbBr3 LEDs, but PEABr will decompose and produce 
mobile ions, which will move to ETL, eventually leading to 
the charge imbalance of the device [144]. In RP phase, the 
adjacent inorganic octahedral slabs have an inherent disso-
ciation tendency, which also leads to the decomposition of 
perovskites, and the organic cations are connected by weak 
van der Waals force. Therefore, enhancing the interaction 

between large organic cations and octahedral slabs is beneficial 
to improve the stability of 2D PeLEDs. The octahedral slabs of 
DJ phase are bridged by diamine cations, and the interaction 
force is stronger than that of monoamine cations of RP phase 
[157]. Ning et al. used 1,4-bis(aminomethyl)benzene (BAB) 
as bridging molecules to obtain a 2D PeLED with T50 lifetime 
up to 100 h, which is almost two orders of magnitude longer 
than that of RP phase (PEA as organic spacer cation) [79].

In addition, the stability of PeLEDs is also related to the 
thermal stability of the material. Under the continuous operat-
ing voltage, the Joule heat causes the perovskite interface to 
be heated, leading to degradation. Most of the 2D perovskite 
films are easy to transform into mixed 2D/3D phases when 
heated [180]. Moreover, the efficiency of the devices will be 
adversely affected if the annealing temperature is too high and 
the annealing time is too long [181].

4.3  Toxicity Reduction of 2D PeLEDs

Most of the researches on 2D perovskite optoelectronic 
devices are mainly based on lead-based perovskites at the 
moment. Although the lead content meets the standard of 
commercial products, lead-based perovskite is easily soluble 
in water. If the encapsulant material is damaged, lead leak-
age occurs and seeps into the water, which will cause serious 
pollution to the environment. In recent years, lead-free tin-
based perovskite has attracted people’s attention [31, 182]. 
Unfortunately,  Sn2+ is easily oxidized to  Sn4+. Moreover, 
the crystallization rate of Sn-based perovskite is faster than 
that of Pb-based perovskite, resulting in more defects. The 
films are prone to non-radiative recombination caused by 
defects, which seriously affects the performance of devices. 
Sargent et al. introduced liquid reductant  H3PO2 into the pre-
cursor solution to inhibit the oxidation of  Sn2+, and obtained 
red LED with maximum brightness of 70 cd  m−2 and EQE 
of 0.3% [183]. Soon after, they developed a new strategy, 
using valeric acid to slow down the Sn-based crystallization 
rate and avoid the formation of  Sn4+. Thus, the lead-free 
red PeLED with the longest half-life and the highest EQE 
(5%) was obtained [114]. Dou et al. used 7-(thiophen-2-yl)
benzothiadiazol-4-yl)-[2,2’bithiophen]-5-yl)ethylammonium 
iodide (BTmI) as the barrier layers to display a pure red Sn-
based PeLED with a luminance of 3466 cd  m−2 and a work-
ing stability of more than 150 h [184]. (111)-oriented 2D 
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perovskites have also been used as LEDs, but they all show 
unsatisfactory efficiency. The first example using  Cs3Sb2I9 
as the emitting layer was reported by Chu et al. The wave-
length of  Cs3Sb2I9 is controlled by the vapor anion exchange 
method. The device shows an average radiance of 0.012 W 
 sr–1  m–2 at 6 V [185]. Shan and his colleagues reported lead-
free  Cs3Sb2Br9 with EQE of ∼0.206%, which is the short-
est wavelength PeLED known to us [186]. Even though the 
performances of lead-free PeLEDs are far from that of lead-
based perovskite, there is a great room for development.

5  Conclusions and Outlook

In this review, we summarize the applications of 2D per-
ovskites in LEDs in recent years, mainly RP perovskites. 
Compared with typical 3D  ABX3, 2D perovskites have 
natural quantum well structures, larger  Eb and better 
ambient stability. The structure of 2D perovskites can be 
regarded as the periodic splitting of 3D perovskites along 
(100), (110) and (111) planes by organic cations. RP per-
ovskites belong to (100)-oriented 2D perovskites. Here, we 
analyze and compare the structures of 2D perovskites with 
different orientations. In this direction, more and more 
new members have been found, increasing members of 
halide perovskite group. Moreover, 2D perovskites have 
many excellent properties, such as convenient control of 
the width of quantum wells, formation of dense films and 
ultra-fast energy transfer, which shows great potential in 
the field of optoelectronic devices. However, there are 
many types of organic spacers, so how choose organic 
cations correctly is the key to promote the development 
of PeLEDs. The effects of steric hindrance and alkyl 
chain length on the performance of the devices are briefly 
described. Although many alkylamines or aromatic amines 
have been explored as spacers, there is still a lot of space 
to expand the 2D perovskites family, which is helpful to 
understand the 2D perovskites comprehensively and to 
grasp the influence of perovskites structures and proper-
ties on device performance fundamentally.

Unfortunately, the introduction of organic cations also 
has negative effects. Due to the rapid nucleation, 2D per-
ovskites usually contain many different n values, result-
ing in multipeak emission, which is fatal for high color 
purity display. Therefore, the accurate control of phase 
purity is one of the key factors in the design of efficient 

and stable PeLEDs. Although some promising results have 
been achieved, there is still a long way to go for large-scale 
productions of films. It is necessary to further study the 
nucleation and growth mechanism of 2D perovskites. In 
addition, as an emerging technology, the stability of 2D 
PeLEDs is also a big obstacle to their practical applica-
tions. In 2D perovskite materials, although large organic 
cations can improve the humidity resistance of films, the 
stability of devices is still threatened by ion migration, 
thermal instability and interface instability. Currently, pas-
sivation of surface defects and control of crystal growth 
rate is often used to alleviate the instability of perovskites 
phase. How to obtain long-term stable and efficient 2D 
PeLEDs needs further research.

In summary, due to the unique photoelectric perfor-
mance of quasi-2D, PeLEDs have experienced a blowout 
type development in just seven years. It has the potential to 
surpass OLEDs and QD LEDs and is expected to be used in 
next-generation displays and lighting equipment. Although 
remarkable achievements have been made, many problems 
still remain unsolved. We hope that this review will provide 
a comprehensive summary for society to deepen the under-
standing of 2D PeLEDs.
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