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Discovering (or planning) a new drug candidate involves many parameters, which makes

this process slow, costly, and leading to failures at the end in some cases. In the last

decades, we have witnessed a revolution in the computational area (hardware, software,

large-scale computing, etc.), as well as an explosion in data generation (big data), which

raises the need for more sophisticated algorithms to analyze this myriad of data. In this

scenario, we can highlight the potentialities of artificial intelligence (AI) or computational

intelligence (CI) as a powerful tool to analyze medicinal chemistry data. According to

IEEE, computational intelligence involves the theory, the design, the application, and

the development of biologically and linguistically motivated computational paradigms.

In addition, CI encompasses three main methodologies: neural networks (NN), fuzzy

systems, and evolutionary computation. In particular, artificial neural networks have

been successfully applied in medicinal chemistry studies. A branch of the NN area that

has attracted a lot of attention refers to deep learning (DL) due to its generalization

power and ability to extract features from data. Therefore, in this mini-review we will

briefly outline the present scope, advances, and challenges related to the use of

DL in drug design and discovery, describing successful studies involving quantitative

structure-activity relationships (QSAR) and virtual screening (VS) of databases containing

thousands of compounds.
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ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN DRUG
DISCOVERY AND DESIGN

In the last decades, we have experienced a revolution in data science in terms of the huge amount
of data to be analyzed (era of big data) and the availability of high-performance processors, in
particular graphics processing unit (GPU) computing. In drug discovery, this scenario is not
different: the large volume of data (chemical, biological, etc.) along with the automation of
techniques have generated a fertile ground for the use of artificial (or computational) intelligence.

In medicinal chemistry, molecular features, such as physicochemical properties and other
molecular descriptors can be related to the bioactivity level as molecular target affinity and to
other pharmacokinetics properties (absorption, distribution, metabolism, and excretion) by using
several computational methods. The results obtained by these techniques can assist the discovery
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and design of new drug candidates, if a suitable technique is
chosen (Duch et al., 2007; Maltarollo et al., 2015, 2017).

The autonomous knowledge acquisition from the molecular
properties of compounds requires the use of machine learning
(ML) techniques, such as k-nearest neighbors (kNN), partial least
squares (PLS), and artificial neural networks (ANN) (Gertrudes
et al., 2012; Lavecchia, 2015; Lima et al., 2016). ML is a branch
of artificial intelligence (AI), focusing on giving computers the
capability of learning from data, which is of great importance in
drug discovery protocols nowadays. From IEEE, computational
intelligence (CI) involves the theory, the design, the application,
and the development of biologically and linguistically motivated
computational paradigms. In addition, CI encompasses three
main methodologies: neural networks (NN), fuzzy systems,
and evolutionary computation. In particular, artificial neural
networks have been successfully applied in medicinal chemistry.
Among the methodologies comprised by CI, deep learning (DL)
has attracted a lot of attention in several areas due to its
generalization power and ability to extract features from data
(Gawehn et al., 2016; Sharma and Sharma, 2018).

DEEP LEARNING

Deep learning methods can be described as a class of
representation-learning techniques that are able to discover, from
the raw data, multiple-level of representations of increasing
complexity by composing non-linear models. In this structure,
each module in a level transform its input into a higher, more
abstract representation. In this context, the term “deep” is
associated to the number of layers in the network—the more
layers, the deeper the network (Goodfellow et al., 2016). Two
popular deep architectures are Deep Belief Networks (DBNs)
(Hinton et al., 2006) and Convolutional Neural Networks (CNN)
(LeCun et al., 1990). Multi-task learning for deep architectures
has also been of great interest inmany domain applications due to
its ability to generalize predictivemodels to new scenarios (Zhang
et al., 2018). Such approaches will be briefly described as follows.

RESTRICTED BOLTZMANN MACHINES
(RBMS) AND DEEP BELIEF NETWORKS
(DBNS)

A restricted Boltzmann machine (Smolensky, 1986) is a two-
layer, undirected, bipartite graphical model where the first layer
(or visible layer) consists of the input data, and the second layer
(or hidden layer) consists of latent variables. In this architecture,
there are no intra-layer connections within either the visible or
the hidden layer and the connections between the layer nodes
are bi-directional, so given an input vector we can obtain its
latent feature representation and vice versa. In this sense, RBM
is considered a generative model, which learns the probability
distribution of input data and generates new data points.

DBNs (Hinton et al., 2006) are neural networks consisted by
RBMs stacked where each layer encodes statistical dependencies
among the units in the layer below it. In such architecture, an
RBM uses the previous layer’s activations as inputs. The training

procedure aims at maximizing the likelihood of the training
data and involves two consecutive processes: the training of the
individual layers, which is done in an unsupervised manner
and the final fine-tuning process that is accomplished by a
linear classifier. An illustration of DBN structure is displayed
in Figure 1.

CONVOLUTIONAL NEURAL NETWORKS
(CNNS)

Widely applied in computing vision tasks, CNNs (LeCun et al.,
1990) contain many layers that transform their input by applying
convolution filters. In contrast to other deep learning structures,
CNNs extract features of small portions of input images, which
are called receptive fields. At each layer of this model, the input
data is convolved with a set of filters, each generating a new
feature map of data. Next, these features are subjected to a non-
linear transformation and the same process is repeated for the
remain convolutional layers. In order to increase the receptive
field of subsequent convolutional layers and to make it invariant
to small local deformations in the input, pooling layers are also
incorporated in CNNs in order to aggregate pixel values of
neighborhoods by using typically the max or mean operation.
Fully connected layers are usually added at the end of the
convolutional pipeline, feeding the activations in the final layer
through a softmax function. CNNs commonly consist of several
convolutional filters and many convolutional and pooling layers
to enable the network to integrate the information extracted by
different filters and various levels of abstraction (LeCun et al.,
2015). Recent advances on CNN models can be found in Rawat
and Wang (2017). An example of such architecture is shown
in Figure 2.

FIGURE 1 | Illustration of the DBN structure, where the hidden layers are

RBMs (adapted from Chen et al., 2012).
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FIGURE 2 | Illustration of the structure of a standard CNN. In drug design, the input data could be molecular structures or atom distances from molecular graphs

(adapted from Rawat and Wang, 2017).

MULTI-TASK LEARNING

Multi-task learning (Caruana, 1997) aims at improving the
generalization performance of multiple task predictors by jointly
training them and thereby enabling learning multiple related
objectives from a shared representation. As an example of task,
we can consider the classification of chemical compounds as
active or inactive according certain type of biological activity. DL
naturally implements multi-task learning by allowing different
related tasks to share the abstract features extracted during the
learning process. Typically, multi-task learning can be helpful
when the training data for a given task is small or imbalanced,
which usually occurs in drug discovery applications. In a multi-
task model, a task for which there is not sufficient information
can acquire features from related tasks, then improving its
performance. In a common setting, the training process for
multi-task DL benefits from sharing the deep layers with all
considered tasks, configuring the last layer to be task specific
(Collobert and Weston, 2008). Some studies illustrating DL
applications in medicinal chemistry will be described.

DL IN MEDICINAL CHEMISTRY

In the drug discovery, DL has proved to be effective
in handling large chemical libraries to provide predictive
computational models, as well as modeling various properties
of drug candidates, showing to be a highly relevant tool in
virtual screening and quantitative structure-activity relationships
(Pereira et al., 2016; Zhang et al., 2016). In protein engineering,
DL can be applied to explore structures and functions of proteins,
where it simulates interactions between them or with other
molecules. DL has also been able to predict biological functions
from fields of electron density and electrostatic potential,
obtained directly from the raw data of these structures (Golkov
et al., 2017). In analyses of gene expression data, using advanced
sequencing technologies, DL has extracted knowledge from large
amounts of genomic data to apply it in the genomic modeling
for drug repurposing and in the precision medicine (Liang et al.,
2015; Aliper et al., 2016).

DL has also been used to predict several different endpoints
related to medicinal chemistry. From literature, we have found

various studies on models to predict protein-ligand interactions,
to score docking poses and to perform virtual screenings
(Wallach et al., 2015; Pereira et al., 2016; Tian et al., 2016;
Wen et al., 2017; Rifaioglu et al., 2018). Pharmacokinetic and
toxicity parameters, such as aqueous solubility (Lusci et al.,
2013) and specific toxicities (Unterthiner et al., 2015; Xu et al.,
2015; Capuzzi et al., 2016) were also found as target-properties
in prediction studies using DL models. So, applications of
DL can be classified in ligand- and structure-based studies, as
well as ligand-target interaction predictions. Some examples are
described below.

LIGAND-BASED STUDIES

Ligand-based approaches involve methodologies that used only
information from the samples; in this case, chemicals with
biological activity or other physicochemical property of interest
(to be predicted). In general, molecular descriptors are used as
input to construct models that relate chemical structure and
biological activity. However, when DL is used for this purpose,
graph representations of molecules (as graph convolution neural
networks) are broadly employed.

An example of ligand-based study is performed by Lusci
et al. (2013), which used a recursive deep learning architecture
to predict aqueous solubility for four different benchmark
datasets. This approach uses contracted graphs representation of
molecules (called undirected graph recursive neural networks,
UGRNN) that automatically extract and select structural features
from molecules as learning step, differing from other methods
in which the feature selection is often performed by human
knowledge. In addition, the models generated by Lusci et al.
outperformed other state-of-art works of aqueous solubility
prediction for organic compounds.

Unterthiner et al. (2015) generated a deep neural network to
predict several different binary toxic effects related to nuclear
receptor and stress response pathways from Tox21 Data
Challenge (National Center for Advancing Translational
Sciences, 2015), which contains about 12,000 reported
compounds with experimental data. The models were built
by using the similarity between dataset compounds and known

Frontiers in Robotics and AI | www.frontiersin.org 3 November 2019 | Volume 6 | Article 108

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Lipinski et al. Deep Learning in Drug Design and Discovery

toxicophores, as well as molecular descriptors and Extended
Connectivity FingerPrint (ECFP4) as input features. Several
models were generated by combining parameters as number of
hidden units and layers and the learning rates of backpropagation
algorithm. Multi-task models outperformed single task models
for almost all of 12 modeled endpoints. The results indicated that
the deep learning-based model outperformed other generated
models, winning the Tox21 Grand Challenge (Unterthiner et al.,
2015; Mayr et al., 2016).

Xu et al. (2015) used three different datasets to predict drug-
induced liver injury with UGRNN from the study performed by
Lusci et al. (2013). The datasets were used to generate individual
models as well combinations of databases. The model generated
with a benchmark dataset predicted better than original model
and the combined model outperformed the single models.
Furthermore, the authors compared DL with a traditional neural
network (NN) and the first approach outperformed NN.

Kearnes et al. (2016) applied molecular graph convolution
deep neural networks to construct models for 259 datasets
derived from the Tox21 challenge, “the maximum unbiased
validation” dataset (MUV) PubChem BioAssay, and DUD-
E. The deep neural networks were generated by including
graph convolutional standard hyperparameters, atom features
(as chirality, atomic charges, and aromaticity) and atom pair
features (as bond type, and graph distance). The models
were compared to logistic regression, random forests and a
multitask neural network with two hidden layers trained with a
circular fingerprint. In all cases, graph convolutional networks
outperformed the logistic regression and random forests.

Altae-Tran et al. (2017) compared four convolutional
architecture models with random forest using 100 trees and
circular fingerprints as input to predict several datasets (Tox21,
SIDER, and MUV). For both Tox21 and SIDER, the use
of convolutional networks gives better results than random
forest. For the MUV database, random forest performed better
predictions, indicating that graph convolutional methods may
have problems in the generalization of prediction in the case
of new scaffolds. The authors also tried to perform transfer
learning from models trained on the Tox21 datasets to predict
observations from real patients (SIDER), but the predictability of
the obtained models were not acceptable (AUC of a ROC curve
about 0.5).

Ohue et al. (2019) proposed variations of graph convolutional
networks by correcting the distances of atoms in a ring system
and changing the treatment of atom pairs with the aim to
represent better differences related to large interatomic distances
of several conformations. The datasets employed in this study
were Tox21, MUV, and PubChem BioAssay. The correction
of atom distances on ring systems improved the accuracy of
the models in comparison with a standard graph convolutional
network (for all datasets). The correction of atom pair with large
interaction distances also improved the accuracy of the models.
These variations suggest that modifications in traditional graph
convolutional deep neural networks, aiming to represent 3D
effects from 2D structures, could be useful in the prediction of
biological activities.

STRUCTURE-BASED STUDIES

Different from the previous approaches, structure-based
techniques consider information from the samples and its
molecular targets (for example, receptors, enzymes, and other
structural or functional proteins). In this case, structure-based
approaches can use interaction fingerprints (atom pairs from
ligand-target complexes) and/or machine learning-based scoring
functions to rank poses and hits (or classify the samples
as active/inactive).

An example of this approach was performed by Wallach et al.
(2015), in which the authors constructed deep learning models
using DUD-E, ChEMBL-20 and an in-house version of ChEMBL-
20 that contains experimentally inactive compounds instead
decoys. Themodels were generated by using descriptors obtained
from ligand-target complexes, such as the presence of certain
atom types and functional groups into grid points of a 20 Å
cubic box centered at center of mass of target binding site. These
models were generated with a convolutional 3D layer method,
which outperformed Smina scoring function (AutoDock Vina
optimized version for scoring) in enrichment validations.

Pereira et al. (2016) proposed an approach (DeepVS)
that uses docking results as input to train a deep neural
network with the aim to distinguish active compounds from
decoys by using features as atom types, atomic partial
charges, amino acid types, and the distances from neighbors.
This approach was employed and compared with DOCK
6.6 and AutoDock Vina 1.1.2 (ADV) using 40 molecular
targets selected from DUD. DeepVS was also used to rank
active molecules and decoys from eight randomly selected
molecular targets from DUD-E. The results produced better
AUC (area under the curve) values, which were calculated from
enrichment plots indicating that this approach can be applied
in virtual screenings with better performance than docking
programs itself.

LIGAND-TARGET INTERACTION
PREDICTION

Finally, in this last category of studies the main objective is to
predict the binding affinity of samples (ligands) with a specific
molecular target. For example, Tian et al. (2016) generated
models to predict compound-protein interactions by using DL.
For this, compound-protein complexes were retrieved from
STITCHdatabase and considered as positive control; compounds
and proteins were randomly generated as negative controls.
This work considered, as input data, PubChem fingerprints
that were taken as molecular descriptors, and protein features
extracted from the Pfam database. After several model trainings,
accomplished by varying the DL architecture, the best model
performance was achieved by a network with four hidden layers
and 2,000 unities in each layer. The results were compared to
those obtained from logistic regression, support vector machines,
and random forest models previously reported by other authors,
indicating that DL outperformed all of them.
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Wen et al. (2017) generated DBN models to predict drug-
target interactions. The authors used drugs and targets retrieved
from DrugBank as dataset and, as input features, Extended
Connectivity Fingerprints (ECFP) and Protein Sequence
Composition Descriptors (PSC) were employed to describe
compounds and targets, respectively. The authors also compared
the generated models with results obtained from random
forest, decision tree and Naïve Bayesian approaches. The
generated model outperformed the other techniques and, due
to its high prediction performance in DrugBank dataset, the
authors proposed that their tool could be employed in drug
repurposing studies.

Rifaioglu et al. (2018) used ChEMBL database (only binding
assays of molecular targets were kept in the dataset curation)
as dataset to generate models. As features, 2D images of
compounds were used as input for convolutional neural networks
with the aim to classify images. Models were generated for
enzymes, GPCRs (G protein-coupled receptors), ion channels,
nuclear receptors, and other molecular targets. For all cases,
DL outperformed logistic regression, random forest and support
vector machines in classification of compounds as active
or inactive.

Tsubaki et al. (2018) proposed a method that combines
protein sequences and molecular fingerprints of ligands
(from convolutional neural network and graph neural
network, respectively) as vector input to predict protein-
ligand interactions. The proposed method outperformed
some techniques, such as kNN, random forest, logistic
regression, and SVM. Finally, the authors concluded that
the vectors obtained from the models correctly predicted
important amino acid residues at the binding site responsible for
drug-target interactions.

As proposed by Lee et al. (2019), the DeepConv-DTI
method also uses the combination of protein sequences and
molecular fingerprints of ligands to generate a fully connected
layer, which represents the ligand-target complex in the
predictive model. To generate the models, the authors used
over than 32,000 drug-target complexes from DrugBank, KEGG,
and IUPHAR databases. In addition, to evaluate the ability
to predict binding affinity of samples into the molecular
targets, PubChem BioAssay, ChEMBL, and KinaseSARfari
were employed as test sets. The results indicated that deep

neural networks outperformed similarity-based models and
conventional representation of proteins.

CONCLUSIONS

Due to the fast development of computing power and the
generation of enormous amount of chemical and biological
data, projects involving drug discovery have been benefited
from artificial intelligence. Particularly, in the last decades,
we have observed a significant increase in the number of
studies using deep learning. Some applications of DL involve
studies of quantitative structure-activity relationships (QSAR),
virtual screening, drug repositioning and in silico prediction
of pharmacokinectic properties (absorption, distribution,
metabolism, and excretion–ADME) and toxicity. It is important
to highlight that traditional techniques have been outperformed
by DL in some applications related to drug design due some
intrinsic characteristics of biological and chemical data, such
as complexity, uncertainty, diversity, and high dimensionality.
The main advantages of DL refer to the scale and the complexity
of the neural networks used to build robust and predictive
models, as well the flexibility in their architecture, allowing for
adaptations to specific problems. Some drawbacks of applying
DL include the limited number of data in some areas of study
and the difficult interpretation of the chemical and biological
mechanisms involved in the DL models. In summary, from
the many applications of DL in drug design we can conclude
that many advances have been observed in this area and new
applications and methodologies have been developed every day,
making this technique a reliable tool in the arsenal available for
the discovery of new drug candidates.
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